US20140124129A1 - Acetabular cup having a wireless communication device - Google Patents

Acetabular cup having a wireless communication device Download PDF

Info

Publication number
US20140124129A1
US20140124129A1 US14/153,700 US201414153700A US2014124129A1 US 20140124129 A1 US20140124129 A1 US 20140124129A1 US 201414153700 A US201414153700 A US 201414153700A US 2014124129 A1 US2014124129 A1 US 2014124129A1
Authority
US
United States
Prior art keywords
wireless communication
communication device
acetabular cup
annular ring
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/153,700
Other versions
US9295555B2 (en
Inventor
Edward J. Caylor, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Spine LLC
DePuy Synthes Products Inc
Original Assignee
DePuy Synthes Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/153,700 priority Critical patent/US9295555B2/en
Application filed by DePuy Synthes Products Inc filed Critical DePuy Synthes Products Inc
Publication of US20140124129A1 publication Critical patent/US20140124129A1/en
Assigned to DEPUY SPINE, LLC reassignment DEPUY SPINE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEPUY PRODUCTS, INC.
Assigned to DePuy Synthes Products, Inc. reassignment DePuy Synthes Products, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DePuy Synthes Products, LLC
Assigned to DePuy Synthes Products, LLC reassignment DePuy Synthes Products, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HAND INNOVATIONS LLC
Assigned to HAND INNOVATIONS LLC reassignment HAND INNOVATIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEPUY SPINE, LLC
Assigned to DEPUY PRODUCTS, INC. reassignment DEPUY PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAYLOR, EDWARD J., III
Priority to US15/081,091 priority patent/US9962262B2/en
Publication of US9295555B2 publication Critical patent/US9295555B2/en
Application granted granted Critical
Priority to US15/973,578 priority patent/US20180256338A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/302Three-dimensional shapes toroidal, e.g. rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30289Three-dimensional shapes helically-coiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30364Rotation about the common longitudinal axis
    • A61F2002/30367Rotation about the common longitudinal axis with additional means for preventing said rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30403Longitudinally-oriented cooperating ribs and grooves on mating lateral surfaces of a mainly longitudinal connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • A61F2002/30449Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives the adhesive being cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30589Sealing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30668Means for transferring electromagnetic energy to implants
    • A61F2002/3067Means for transferring electromagnetic energy to implants for data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/3071Identification means; Administration of patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • A61F2002/30822Circumferential grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • A61F2002/30825Grooves arcuate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2002/3241Joints for the hip having a ring, e.g. for locking the femoral head into the acetabular cup
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0065Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0091Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants
    • A61F2250/0002Means for transferring electromagnetic energy to implants for data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0085Identification means; Administration of patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1064Partial cutting [e.g., grooving or incising]

Definitions

  • the present disclosure relates generally to acetabular cups, and particularly, to acetabular cups having a wireless communication device coupled thereto.
  • Orthopaedic implants or prostheses are implanted in patients by orthopaedic surgeons to, for example, correct or otherwise alleviate bone and/or soft tissue loss, trauma damage, and/or deformation of the bone(s) of the patients.
  • One orthopaedic surgical procedure in which an orthopaedic implant is used is a partial or total hip replacement procedure.
  • One of the implant components used in such a surgical procedure is an acetabular cup, which is secured to the acetabulum of the patient. The acetabular cup replaces the natural bearing surface of the acetabulum and provides a new bearing surface for the head portion of the patient's femur or femoral implant component.
  • Radio frequency identification (RFID) tags are devices typically used to track items such as, for example, items to be purchased or placed into inventory.
  • An RFID tag typically includes a transponder configured to transmit data, such as a serial number associated with the RFID tag, in response to an integrator signal.
  • An RFID reader is typically used to transmit the integrator signal and receive the data from the RFID tag.
  • an acetabular cup includes an outer surface, an inner surface, and a rim surface defined between the outer surface and the inner surface.
  • the outer surface may be configured to confront a portion of an acetabulum of a patient when the acetabular cup is implanted in the patient.
  • the inner surface may form an inner cavity configured to receive a bearing insert.
  • the rim surface may have a recess defined therein.
  • the recess may be, for example, an annular recess.
  • a wireless communication device may be positioned in the recess of the rim surface.
  • the wireless communication device may be secured in the recess via use of a biocompatible compound such as, for example, bone cement.
  • the wireless communication device may be, for example, a radio frequency identification (RFID) tag or device.
  • RFID radio frequency identification
  • the wireless communication device may include a transponder circuit and an antenna.
  • the antenna may be, for example, a coil antenna.
  • the transponder circuit may be configured to transmit identification data associated with the acetabular cup.
  • the transponder circuit may transmit the identification data in response to an interrogation signal received via the antenna.
  • the wireless communication device may be configured to transmit data, such as the identification data, using a frequency in the range of 30 kilohertz to 30 megahertz.
  • the acetabular cup may also include a sensor electrically coupled to the wireless communication device. The sensor may be configured to generate sensor data. In such embodiments, the wireless communication device may be configured to transmit the sensor data.
  • a method for fabricating an orthopaedic implant may include forming a recess in a rim surface of an acetabular cup.
  • the recess may be, for example, an annular recess defined in the rim surface.
  • the method may also include positioning a wireless communication device, such as a radio frequency identification (RFID) tag, in the recess.
  • RFID radio frequency identification
  • the method may include securing the wireless communication device in the recess using a biocompatible compound. For example, the wireless communication device may be secured in the recess by depositing an amount of bone cement into the recess.
  • an orthopaedic implant may include an acetabular cup.
  • the acetabular cup may have an outer surface, an inner surface, and a rim surface defined between the outer surface and the inner surface.
  • the orthopaedic implant may also include an annular ring formed from a biocompatible material.
  • the annular ring may be coupled to the rim surface of the acetabular cup.
  • the annular ring includes a bottom surface that is in registry with the rim surface of the acetabular cup when the annular ring is coupled thereto.
  • the annular ring may be formed from any biocompatible material. Additionally, the annular ring may be formed from a dielectric material.
  • the orthopaedic implant may further include a wireless communication device positioned in the annular ring.
  • the wireless communication device may be, for example, a radio frequency identification (RFID) tag.
  • the wireless communication device may include a transponder circuit and an antenna.
  • the antenna may be, for example, a dipole antenna such as a meandering dipole antenna.
  • the transponder circuit may be configured to transmit identification data associated with the acetabular cup.
  • the transponder circuit may transmit the identification data in response to an interrogation signal received via the antenna.
  • the wireless communication device may be configured to transmit data, such as the identification data, using a frequency in the range of 30 megahertz to 3,000 megahertz.
  • the acetabular cup may also include a sensor electrically coupled to the wireless communication device.
  • the sensor may be configured to generate sensor data.
  • the wireless communication device may be configured to transmit the sensor data.
  • a method for fabricating an orthopaedic implant may include forming an annular ring from a biocompatible material.
  • the annular ring may have a wireless communication device positioned therein.
  • the annular ring may be formed by molding the biocompatible material around the wireless communication device.
  • the wireless communication device may be, for example, a radio frequency identification (RFID) tag.
  • the method may also include securing the annular ring to a rim surface of an acetabular cup.
  • the annular ring may have a bottom surface that is in registry with the rim surface of the acetabular cup when coupled thereto.
  • FIG. 1 is an exploded perspective view of one embodiment of an orthopaedic implant having a wireless communication device
  • FIG. 2 is a front elevation view of an acetabular cup of the orthopaedic implant of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the acetabular cup of the orthopaedic implant of FIG. 1 taken generally along the cross-section line 3 - 3 ;
  • FIG. 4 is a simplified flowchart of an algorithm for fabricating the acetabular cup of the orthopaedic implant of FIG. 1 ;
  • FIG. 5 is an exploded perspective view of another embodiment of an orthopaedic implant having a wireless communication device
  • FIG. 6 is a front elevation view of an annular ring coupled to an acetabular cup of the orthopaedic implant of FIG. 5 ;
  • FIG. 7 is a cross-sectional view of the acetabular cup and annular ring of the orthopaedic implant of FIG. 1 taken generally along the cross-section line 7 - 7 ;
  • FIG. 8 is a simplified flowchart of an algorithm for fabricating the acetabular cup of the orthopaedic implant of FIG. 5 ;
  • FIG. 9 is a block diagram of one embodiment of the wireless communication device of FIGS. 1 and 5 .
  • an orthopaedic implant 10 includes an acetabular cup 12 , a bearing insert 14 , and a wireless communication device 16 .
  • the acetabular cup 12 includes an outer surface 18 and an inner surface 20 .
  • the acetabular cup 12 may be formed from any suitable material capable of being secured to the acetabulum of a patient and supporting a natural or artificial head portion of a femur of the patient.
  • the acetabular cup 12 may be formed from a titanium alloy.
  • the outer surface 18 of the acetabular cup 12 may have a textured or porous surface. Such a textured or porous surface may enhance bone ingrowth when the acetabular cup 12 is secured to the acetabulum. Such bone ingrowth may facilitate long-term attachment of the acetabular cup 12 to the acetabulum.
  • the inner surface 20 of the acetabular cup 12 is concave in shape and forms an inner cavity 22 .
  • the inner cavity 22 is shaped to receive the bearing insert 14 .
  • the bearing insert 14 provides an artificial surface for a natural or artificial head portion of the femur of the patient and may be formed from any material suitable for such purpose.
  • the bearing insert 14 may be formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE).
  • UHMWPE ultra-high molecular weight polypropylene
  • the bearing insert 14 may include a number of keying tabs 24 that are received by a number of keying slots 26 defined in the inner surface 18 of the acetabular cup 12 .
  • the keying slots 26 receive the keying tabs 24 and thereby reduce the likelihood of rotation of the bearing insert 14 relative to the acetabular cup 12 .
  • the acetabular cup 12 and the bearing insert 14 cooperate to provide an artificial bearing surface on which a natural or artificial head portion of a femur of a patient may bear.
  • the acetabular cup 12 includes a rim surface 28 defined between the outer surface 18 and the inner surface 20 .
  • the rim surface 28 is substantially planar and includes a recess 30 defined therein.
  • the recess 30 is configured to receive the wireless communication device 16 .
  • the recess 28 may be formed to have a length, width, and depth large enough such that the wireless communication device 16 does not extend pass the rim surface 28 when positioned in the recess 30 .
  • the particular configuration of the recess 30 may depend upon the type, size, and/or number of components of the wireless communication device 16 .
  • the recess 30 has a substantially annular top profile and extends the length of the rim surface 28 .
  • the recess may have any shape configured to receive the wireless communication device.
  • the recess 30 may be formed so as to not extend the complete length of the rim surface 28 .
  • the wireless communication device 16 may be embodied as any type of device capable of transmitting and/or receiving data via a wireless communication connection.
  • the wireless communication device 16 is embodied as a radio frequency identification (RFID) tag or device.
  • RFID radio frequency identification
  • the wireless communication device 16 may be embodied as an RFID device 500 having a communication circuit 502 and an antenna 504 .
  • the communication circuit 502 is coupled to the antenna 504 via a number of communication links 506 .
  • the communication link 506 may be embodied as any type of communication links capable of facilitating electrical communication between the transponder circuit 508 and the antenna 504 .
  • the communication link 506 may be embodied as any number of wires, cables, printed circuit board (PCB) traces, vias, fiber optic cables, and/or the like.
  • the RFID device 500 may be a passive RFID device or an active RFID device.
  • the communication circuit 502 is embodied as, or otherwise includes, a transponder circuit 508 .
  • the transponder circuit 508 is configured to transmit a data signal in response to an interrogation signal received via the antenna 504 .
  • the transponder circuit 508 may be configured to transmit the data signal by backscattering the carrier signal of the interrogation signal.
  • the data signal may be embodied as or include any type of data such as, for example, an identification number or other data associated with the RFID device 500 .
  • the interrogation signal may be generated by, for example, an RFID reader (not shown) or the like and, in some embodiments, provides a power signal to the transponder circuit 508 or portion thereof.
  • the antenna 504 may be embodied as any type of antenna capable of receiving the interrogation signal and transmitting the data signal.
  • the particular type of antenna used may also depend upon the predetermined frequency used by the RFID device 500 .
  • the RFID device 500 may be configured to transmit the data signal using a frequency in the low frequency (LF) or high frequency (HF) range (e.g., a frequency in the range of about 30 kilohertz to about 30 megahertz).
  • the antenna 504 may be embodied as a coil antenna having one or more turns.
  • the RFID device 500 may be configured to transmit the data signal using a frequency in the very high frequency (VHF) or ultra high frequency (UHF) range (e.g., a frequency in the range of about 30 megahertz to about 3,000 megahertz).
  • VHF very high frequency
  • UHF ultra high frequency
  • the antenna 504 may be embodied as a dipole antenna such as, for example, a straight or meandering line dipole antenna.
  • the communication circuit 502 may also include a power source 510 .
  • the power source 510 is coupled to the transponder circuit 508 via a number of communication links 512 .
  • the communication link 512 may be embodied as any type of communication link capable of facilitating electrical communication between the transponder circuit 508 and the power source 510 .
  • the communication link 512 may be embodied as any number of wires, cables, printed circuit board (PCB) traces, vias, fiber optic cables, and/or the like.
  • the power source 510 may be embodied as any type of power source capable of providing power to the transponder circuit 508 .
  • the power source 510 may be embodied as a number of rechargeable batteries.
  • the power source 510 may be embodied as or otherwise include a secondary coil configured to be inductively coupled to a primary coil positioned outside of the patient's body. When inductively coupled, the primary coil may generate a current in the secondary coil to thereby provide a power signal to the transponder circuit 508 and/or recharge a number of rechargeable batteries or other power storage devices such as a bank of capacitors or the like.
  • one or more implant sensors 514 may be communicatively coupled to the communication circuit 502 (e.g., to the transponder circuit 508 ).
  • the implant sensor(s) 514 may be embodied as any type of sensor capable of generating implant sensor data of a parameter of interest.
  • the implant sensor 514 may be embodied as a pressure sensor, a load sensor, a temperature sensor, a hall-effect sensor, or the like. It should be appreciated that although only a single sensor 514 is illustrated in FIG. 9 , in other embodiments, any number of similar and/or different implant sensors may be used.
  • the implant sensor(s) 514 may be coupled to the orthopaedic implant 10 (e.g., to the outer surface 18 of the acetabular cup 12 ) or positioned remote therefrom.
  • the illustrative wireless communication device 16 includes a communication circuit 32 and an antenna 34 .
  • the communication circuit 32 may be substantially similar to the communication device 502 illustrated in and described above in regard to FIG. 9 .
  • the antenna 34 may be substantially similar to the antenna 504 .
  • the wireless communication device 16 is configured to transmit data, such as identification data associated with the orthopaedic implant 10 and/or implant sensor data, using a predetermined frequency in the low frequency (LF) or high frequency (HF) range.
  • LF low frequency
  • HF high frequency
  • the wireless communication device 16 may use a frequency in the range of about 30 kilohertz to about 30 megahertz.
  • the antenna 34 may be embodied as a coil antenna having one or more turns.
  • other types of antennas may be used.
  • the wireless communication device 16 is positioned in the recess 30 of the rim surface 28 .
  • the recess 30 includes a circuit-receiving recess portion 36 and an antenna-receiving recess portion 38 .
  • the circuit-receiving recess portion 36 is configured to receive the communication circuit 32 of the wireless communication device 16 .
  • the circuit-receiving recess portion 36 may have a size and shape based on the size and shape of the communication circuit 32 .
  • the circuit-receiving recess portion 36 has a substantially rectangular top-profile configured to receive a rectangular shaped communication circuit 32 .
  • the antenna-receiving recess portion 38 is configured to receive the antenna 34 of the wireless communication device 16 .
  • the antenna-receiving recess portion 38 may have a size and shape based on the size and shape of the antenna 34 .
  • the antenna receiving recess portion 38 is embodied as an annular shaped channel recess that extends the length of rim surface 28 .
  • the individual turns of the antenna 34 may be stacked on top of each other.
  • the device 16 may be secured in recess 30 .
  • a suitable adhesive may be used to secure the wireless communication device 16 in the recess 30 .
  • a biocompatible compound may be used such that the adhesive does not adversely affect the surrounding tissue or bone of the patient.
  • the recess 30 may be sealed once the wireless communication device 16 has been positioned in the recess 30 .
  • the recess 30 may be sealed using any suitable biocompatible sealant or adhesive.
  • the wireless communication device 16 is secured in a position in the recess 30 and the recess 30 is sealed using the same sealant or adhesive.
  • the wireless communication device 16 is secured in a position in the recess 30 by filling, or substantially filing, the recess 30 with bone cement.
  • an algorithm 100 for fabricating the orthopaedic implant 10 begins with a process step 102 .
  • the recess 30 is formed in the rim surface 28 of the acetabular cup 12 . That is, the circuit-receiving recess portion 36 and the antenna-receiving recess portion 38 are formed in the rim surface 28 .
  • the circuit-receiving recess portion 36 and the antenna-receiving recess portion 38 may be formed to have a shape and size based on the shape and size of the communication circuit 32 and the antenna 34 of the wireless communication device 16 , respectively.
  • the recess 30 may be formed in the rim surface 28 by, for example, milling the rim surface 28 .
  • the acetabular cup 12 may be formed to include the recess 30 defined in the rim surface 28 .
  • the acetabular cup 12 may be molded to include the recess 30 defined in the rim surface 28 .
  • the wireless communication device 16 is positioned in the recess 30 in process step 104 .
  • the communication circuit 32 is positioned in the circuit-receiving recess portion 36 of the recess 30 .
  • the antenna 34 is positioned in the antenna-receiving portion 38 .
  • the wireless communication device 16 may be so positioned and/or the recess 30 is formed such that no portion of the wireless communication device 16 extends past the rim surface 28 of the acetabular cup 12 .
  • the wireless communication device 16 is secured in the recess 30 in process step 106 .
  • the wireless communication device 16 may be secured in the recess 30 using a biocompatible adhesive.
  • the recess 30 may be sealed once the wireless communication device 16 has been positioned in the recess 30 using a suitable biocompatible sealant or adhesive.
  • the wireless communication device 16 is secured in the recess 30 by filling, or substantially filing, the recess 30 with bone cement.
  • an orthopaedic implant 200 includes an acetabular cup 202 , a bearing insert 204 , an annular ring 220 , and a wireless communication device 230 positioned in the annular ring 200 (see FIGS. 6 and 7 ).
  • the acetabular cup 202 is similar to the acetabular cup 12 and includes an outer surface 206 , and inner surface 208 , and a rim surface 212 defined therebetween.
  • the acetabular cup 202 may be formed from any suitable material capable of being secured to the acetabulum of a patient and supporting a natural or artificial head portion of a femur of the patient.
  • the acetabular cup 202 may be formed from a titanium alloy.
  • the outer surface 202 of the acetabular cup 202 may have a textured or porous surface in some embodiments.
  • the inner surface 208 of the acetabular cup 202 is concave in shape and forms an inner cavity 210 .
  • the inner cavity 210 is shaped to receive the bearing insert 204 .
  • the bearing insert 204 is substantially similar to the bearing insert 14 and provides an artificial surface for a natural or artificial head portion of the femur of the patient.
  • the bearing insert 204 may be formed from any suitable material such as, for example, a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE). As discussed in detail above in regard to the bearing insert 14 illustrated in FIG.
  • the bearing insert 204 may include a number of keying tabs 216 which are received by a number of keying slots 218 defined in the inner surface 208 of the acetabular cup 202 to reduce the likelihood of rotation of the bearing insert 204 relative to the acetabular cup 202 .
  • the annular ring 220 is formed in a size and shape as to be couplable to the rim surface 212 of the acetabular cup 202 .
  • the annular ring 220 may be coupled to the rim surface 212 using any suitable biocompatible adhesive.
  • the wireless communication device 230 is positioned in the annular ring 220 .
  • the annular ring 220 may be formed from any material that is coupleable to the acetabular cup 202 and that does not overly attenuate the reception and/or transmission of the wireless communication device 230 .
  • the wireless communication device 230 is embodied as an RFID device such as RFID device 500 illustrated in and described below in regard to FIG.
  • the annular ring 220 is formed from a material that allows the wireless communication device 230 to receive an interrogation signal and transmit data such as identification data associated with the orthopaedic implant 200 .
  • the annular ring 220 may be formed from a dielectric material.
  • the annular ring 220 is formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE) similar to the bearing insert 204 .
  • UHMWPE ultra-high molecular weight polypropylene
  • the shape and size of the annular ring 220 may be dependent upon the shape and size of the rim surface 212 and/or the acetabular cup 202 .
  • the annular ring may have a substantially circular top profile in embodiments wherein the rim surface 212 also has a substantially circular top profile.
  • annular rings having other top profile shapes may be used.
  • the annular ring 220 may have an elliptical shape or the like.
  • the annular ring 230 has an outer diameter 236 substantially equal to the outer diameter of the acetabular cup 202 such that an outer sidewall 240 of the annular ring 220 is substantially congruent with the distal end of the outer surface 206 of the acetabular cup 202 .
  • the annular ring 220 has an inner diameter 238 substantially equal to the inner diameter of the acetabular cup 202 such that an inner sidewall 242 of the annular ring 220 is substantially congruent with the distal end of the inner surface 208 .
  • the annular ring 220 may be formed to have a shape such that the annular ring 220 is in a registered relationship with the rim surface 212 of the acetabular cup 202 when the annular ring 220 is coupled thereto in some embodiments. Regardless, the annular ring 220 is configured to be coupled to the rim surface 212 of the acetabular cup 202 .
  • the wireless communication device 230 is positioned in the annular ring 220 .
  • the wireless communication device 230 may be so positioned by forming the annular ring 220 around the wireless communication device 230 .
  • the annular ring 220 may be molded around the wireless communication device 230 .
  • the annular ring 220 includes an inner chamber in which the wireless communication device 230 is positioned. Regardless, when the annular ring 220 is coupled to the rim surface 212 of the acetabular cup 202 , the wireless communication device 230 is positioned on top of the acetabular cup 202 as illustrated in FIG. 7 . Such positioning of the wireless communication device 230 may reduce the attenuation of the reception and/or transmission signals of the device 230 due to the acetabular cup 12 and/or bony anatomy of the patient.
  • the illustrative wireless communication device 230 of FIGS. 6 and 7 includes a communication circuit 232 and an antenna 234 .
  • the wireless communication device 230 is embodied as an RFID device (e.g., RFID device 500 )
  • the communication circuit 232 may be substantially similar to the communication device 502 illustrated in and described above in regard to FIG. 9 .
  • the antenna 234 may be substantially similar to the antenna 504 . Because the wireless communication device 230 is positioned on top of the acetabular cup 202 (i.e., on top of the rim surface 212 ), the device 230 may use higher frequencies to receive and/or transmit data compared to the embodiment illustrated in and discussed above in regard to FIGS. 1-4 .
  • the wireless communication device 230 is configured to transmit data, such as identification data associated with the orthopaedic implant 200 and/or implant sensor data, using a predetermined frequency in the very high frequency (VHF) or ultra high frequency (UHF) range.
  • VHF very high frequency
  • UHF ultra high frequency
  • the wireless communication device 230 may use a frequency in the range of about 30 megahertz to about 3,000 megahertz.
  • the antenna 34 may be embodied as a dipole antenna as illustrated in FIG. 6 .
  • the antenna 34 may be, for example, a straight line or a meandering line dipole antenna based on the desired frequency to be used by the wireless communication device 230 .
  • other types of antennas may be used.
  • an algorithm 300 for fabricating the orthopaedic implant 200 begins with a process step 302 .
  • the annular ring 220 is formed to include the wireless communication device 230 . That is, the annular ring 220 is formed so as to encapsulate the wireless communication device 230 .
  • the wireless communication device 230 may be encapsulated by, for example, molding the annular ring 220 around the wireless communication device 230 in embodiments wherein the annular ring 220 is formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE).
  • UHMWPE ultra-high molecular weight polypropylene
  • the annular ring 220 may be formed to include an interior chamber.
  • the wireless communication device 230 may be positioned in the interior chamber of the annular ring 220 and subsequently sealed therein. Regardless, the wireless communication device 230 is encapsulated in or otherwise coupled to the annular ring 220 in process step 302 .
  • the annular ring 220 is coupled to the acetabular cup 202 in process step 302 . That is, the annular ring 220 is secured to the rim surface 212 of the acetabular cup 212 .
  • the annular ring 220 may be secured to the rim surface 212 using any suitable adhesive.
  • a biocompatible compound may be used such that the adhesive does not adversely affect the surrounding tissue or bone of the patient.
  • annular ring 220 and thereby the wireless communication device 230
  • a number of screws may be used to attach the annular ring 220 to the rim surface 212 of the acetabular cup 202 .
  • a snap slot may be milled or otherwise formed in the rim surface 212 of the acetabular cup 202 and the annular ring 220 may include a corresponding protrusion or lip formed on a bottom surface such that lip of the annular ring 220 mates (e.g., snaps into) the snap slot of the rim surface 212 to thereby secure the annular ring 220 to the acetabular cup 202 .

Abstract

A orthopaedic implant comprises an acetabular cup and a wireless communication device. The wireless communication device is coupled to a rim surface of the acetabular cup. In one embodiment, a recess is defined in the rim surface and the wireless communication device is positioned therein. In another embodiment, the wireless communication device is positioned in an annular ring formed of a biocompatible material. The annular ring is coupled to the rim surface of the acetabular cup. The wireless communication device may be, for example, a radio frequency identification (RFID) tag or device.

Description

  • This application is a divisional application of U.S. patent application Ser. No. 11/537,359, which was filed on Sep. 29, 2006 and is expressly incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to acetabular cups, and particularly, to acetabular cups having a wireless communication device coupled thereto.
  • BACKGROUND
  • Orthopaedic implants or prostheses are implanted in patients by orthopaedic surgeons to, for example, correct or otherwise alleviate bone and/or soft tissue loss, trauma damage, and/or deformation of the bone(s) of the patients. One orthopaedic surgical procedure in which an orthopaedic implant is used is a partial or total hip replacement procedure. One of the implant components used in such a surgical procedure is an acetabular cup, which is secured to the acetabulum of the patient. The acetabular cup replaces the natural bearing surface of the acetabulum and provides a new bearing surface for the head portion of the patient's femur or femoral implant component.
  • Radio frequency identification (RFID) tags are devices typically used to track items such as, for example, items to be purchased or placed into inventory. An RFID tag typically includes a transponder configured to transmit data, such as a serial number associated with the RFID tag, in response to an integrator signal. An RFID reader is typically used to transmit the integrator signal and receive the data from the RFID tag.
  • SUMMARY
  • According to one aspect, an acetabular cup includes an outer surface, an inner surface, and a rim surface defined between the outer surface and the inner surface. The outer surface may be configured to confront a portion of an acetabulum of a patient when the acetabular cup is implanted in the patient. The inner surface may form an inner cavity configured to receive a bearing insert. The rim surface may have a recess defined therein. The recess may be, for example, an annular recess. A wireless communication device may be positioned in the recess of the rim surface. The wireless communication device may be secured in the recess via use of a biocompatible compound such as, for example, bone cement. The wireless communication device may be, for example, a radio frequency identification (RFID) tag or device. In some embodiments, the wireless communication device may include a transponder circuit and an antenna. The antenna may be, for example, a coil antenna. The transponder circuit may be configured to transmit identification data associated with the acetabular cup. The transponder circuit may transmit the identification data in response to an interrogation signal received via the antenna. The wireless communication device may be configured to transmit data, such as the identification data, using a frequency in the range of 30 kilohertz to 30 megahertz. The acetabular cup may also include a sensor electrically coupled to the wireless communication device. The sensor may be configured to generate sensor data. In such embodiments, the wireless communication device may be configured to transmit the sensor data.
  • According to another aspect, a method for fabricating an orthopaedic implant may include forming a recess in a rim surface of an acetabular cup. The recess may be, for example, an annular recess defined in the rim surface. The method may also include positioning a wireless communication device, such as a radio frequency identification (RFID) tag, in the recess. Additionally, the method may include securing the wireless communication device in the recess using a biocompatible compound. For example, the wireless communication device may be secured in the recess by depositing an amount of bone cement into the recess.
  • According to a further aspect, an orthopaedic implant may include an acetabular cup. The acetabular cup may have an outer surface, an inner surface, and a rim surface defined between the outer surface and the inner surface. The orthopaedic implant may also include an annular ring formed from a biocompatible material. The annular ring may be coupled to the rim surface of the acetabular cup. In some embodiments, the annular ring includes a bottom surface that is in registry with the rim surface of the acetabular cup when the annular ring is coupled thereto. The annular ring may be formed from any biocompatible material. Additionally, the annular ring may be formed from a dielectric material. The orthopaedic implant may further include a wireless communication device positioned in the annular ring. The wireless communication device may be, for example, a radio frequency identification (RFID) tag. In some embodiments, the wireless communication device may include a transponder circuit and an antenna. The antenna may be, for example, a dipole antenna such as a meandering dipole antenna. The transponder circuit may be configured to transmit identification data associated with the acetabular cup. The transponder circuit may transmit the identification data in response to an interrogation signal received via the antenna. The wireless communication device may be configured to transmit data, such as the identification data, using a frequency in the range of 30 megahertz to 3,000 megahertz. The acetabular cup may also include a sensor electrically coupled to the wireless communication device. The sensor may be configured to generate sensor data. In such embodiments, the wireless communication device may be configured to transmit the sensor data.
  • According to yet another aspect, a method for fabricating an orthopaedic implant may include forming an annular ring from a biocompatible material. The annular ring may have a wireless communication device positioned therein. For example, the annular ring may be formed by molding the biocompatible material around the wireless communication device. The wireless communication device may be, for example, a radio frequency identification (RFID) tag. The method may also include securing the annular ring to a rim surface of an acetabular cup. The annular ring may have a bottom surface that is in registry with the rim surface of the acetabular cup when coupled thereto.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description particularly refers to the following figures, in which:
  • FIG. 1 is an exploded perspective view of one embodiment of an orthopaedic implant having a wireless communication device;
  • FIG. 2 is a front elevation view of an acetabular cup of the orthopaedic implant of FIG. 1;
  • FIG. 3 is a cross-sectional view of the acetabular cup of the orthopaedic implant of FIG. 1 taken generally along the cross-section line 3-3;
  • FIG. 4 is a simplified flowchart of an algorithm for fabricating the acetabular cup of the orthopaedic implant of FIG. 1;
  • FIG. 5 is an exploded perspective view of another embodiment of an orthopaedic implant having a wireless communication device;
  • FIG. 6 is a front elevation view of an annular ring coupled to an acetabular cup of the orthopaedic implant of FIG. 5;
  • FIG. 7 is a cross-sectional view of the acetabular cup and annular ring of the orthopaedic implant of FIG. 1 taken generally along the cross-section line 7-7;
  • FIG. 8 is a simplified flowchart of an algorithm for fabricating the acetabular cup of the orthopaedic implant of FIG. 5; and
  • FIG. 9 is a block diagram of one embodiment of the wireless communication device of FIGS. 1 and 5.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
  • Referring to FIG. 1, an orthopaedic implant 10 includes an acetabular cup 12, a bearing insert 14, and a wireless communication device 16. The acetabular cup 12 includes an outer surface 18 and an inner surface 20. The acetabular cup 12 may be formed from any suitable material capable of being secured to the acetabulum of a patient and supporting a natural or artificial head portion of a femur of the patient. For example, the acetabular cup 12 may be formed from a titanium alloy. In some embodiments, the outer surface 18 of the acetabular cup 12 may have a textured or porous surface. Such a textured or porous surface may enhance bone ingrowth when the acetabular cup 12 is secured to the acetabulum. Such bone ingrowth may facilitate long-term attachment of the acetabular cup 12 to the acetabulum.
  • The inner surface 20 of the acetabular cup 12 is concave in shape and forms an inner cavity 22. The inner cavity 22 is shaped to receive the bearing insert 14. The bearing insert 14 provides an artificial surface for a natural or artificial head portion of the femur of the patient and may be formed from any material suitable for such purpose. For example, the bearing insert 14 may be formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE). In some embodiments, the bearing insert 14 may include a number of keying tabs 24 that are received by a number of keying slots 26 defined in the inner surface 18 of the acetabular cup 12. When the bearing insert 14 is positioned in the inner cavity 22 of the acetabular cup 12, the keying slots 26 receive the keying tabs 24 and thereby reduce the likelihood of rotation of the bearing insert 14 relative to the acetabular cup 12. As such, the acetabular cup 12 and the bearing insert 14 cooperate to provide an artificial bearing surface on which a natural or artificial head portion of a femur of a patient may bear.
  • The acetabular cup 12 includes a rim surface 28 defined between the outer surface 18 and the inner surface 20. The rim surface 28 is substantially planar and includes a recess 30 defined therein. The recess 30 is configured to receive the wireless communication device 16. For example, the recess 28 may be formed to have a length, width, and depth large enough such that the wireless communication device 16 does not extend pass the rim surface 28 when positioned in the recess 30. As such, the particular configuration of the recess 30 may depend upon the type, size, and/or number of components of the wireless communication device 16. In the illustrative embodiment of FIG. 1, the recess 30 has a substantially annular top profile and extends the length of the rim surface 28. However, in other embodiments, the recess may have any shape configured to receive the wireless communication device. For example, in some embodiments, the recess 30 may be formed so as to not extend the complete length of the rim surface 28.
  • The wireless communication device 16 may be embodied as any type of device capable of transmitting and/or receiving data via a wireless communication connection. In one particular embodiment, the wireless communication device 16 is embodied as a radio frequency identification (RFID) tag or device. For example, as illustrated in FIG. 9, the wireless communication device 16 may be embodied as an RFID device 500 having a communication circuit 502 and an antenna 504. The communication circuit 502 is coupled to the antenna 504 via a number of communication links 506. The communication link 506 may be embodied as any type of communication links capable of facilitating electrical communication between the transponder circuit 508 and the antenna 504. For example, the communication link 506 may be embodied as any number of wires, cables, printed circuit board (PCB) traces, vias, fiber optic cables, and/or the like.
  • The RFID device 500 may be a passive RFID device or an active RFID device. In embodiments wherein the RFID device 500 is embodied as a passive RFID device, the communication circuit 502 is embodied as, or otherwise includes, a transponder circuit 508. The transponder circuit 508 is configured to transmit a data signal in response to an interrogation signal received via the antenna 504. For example, the transponder circuit 508 may be configured to transmit the data signal by backscattering the carrier signal of the interrogation signal. The data signal may be embodied as or include any type of data such as, for example, an identification number or other data associated with the RFID device 500. The interrogation signal may be generated by, for example, an RFID reader (not shown) or the like and, in some embodiments, provides a power signal to the transponder circuit 508 or portion thereof.
  • In embodiments wherein the RFID device 500 is embodied as a passive RFID device, the antenna 504 may be embodied as any type of antenna capable of receiving the interrogation signal and transmitting the data signal. The particular type of antenna used may also depend upon the predetermined frequency used by the RFID device 500. For example, in some embodiments the RFID device 500 may be configured to transmit the data signal using a frequency in the low frequency (LF) or high frequency (HF) range (e.g., a frequency in the range of about 30 kilohertz to about 30 megahertz). In such embodiments, the antenna 504 may be embodied as a coil antenna having one or more turns. Alternatively, in other embodiments, the RFID device 500 may be configured to transmit the data signal using a frequency in the very high frequency (VHF) or ultra high frequency (UHF) range (e.g., a frequency in the range of about 30 megahertz to about 3,000 megahertz). In such embodiments, the antenna 504 may be embodied as a dipole antenna such as, for example, a straight or meandering line dipole antenna.
  • In embodiments wherein the RFID device 500 is embodied as an active RFID device, the communication circuit 502 may also include a power source 510. In such embodiments, the power source 510 is coupled to the transponder circuit 508 via a number of communication links 512. The communication link 512 may be embodied as any type of communication link capable of facilitating electrical communication between the transponder circuit 508 and the power source 510. For example, the communication link 512 may be embodied as any number of wires, cables, printed circuit board (PCB) traces, vias, fiber optic cables, and/or the like.
  • The power source 510 may be embodied as any type of power source capable of providing power to the transponder circuit 508. For example, in one embodiment, the power source 510 may be embodied as a number of rechargeable batteries. Additionally or alternatively, the power source 510 may be embodied as or otherwise include a secondary coil configured to be inductively coupled to a primary coil positioned outside of the patient's body. When inductively coupled, the primary coil may generate a current in the secondary coil to thereby provide a power signal to the transponder circuit 508 and/or recharge a number of rechargeable batteries or other power storage devices such as a bank of capacitors or the like.
  • In some embodiments, one or more implant sensors 514 may be communicatively coupled to the communication circuit 502 (e.g., to the transponder circuit 508). The implant sensor(s) 514 may be embodied as any type of sensor capable of generating implant sensor data of a parameter of interest. For example, the implant sensor 514 may be embodied as a pressure sensor, a load sensor, a temperature sensor, a hall-effect sensor, or the like. It should be appreciated that although only a single sensor 514 is illustrated in FIG. 9, in other embodiments, any number of similar and/or different implant sensors may be used. In addition, the implant sensor(s) 514 may be coupled to the orthopaedic implant 10 (e.g., to the outer surface 18 of the acetabular cup 12) or positioned remote therefrom.
  • Referring now back to FIG. 1, the illustrative wireless communication device 16 includes a communication circuit 32 and an antenna 34. In embodiments wherein the wireless communication device 16 is embodied as an RFID device, the communication circuit 32 may be substantially similar to the communication device 502 illustrated in and described above in regard to FIG. 9. Additionally, the antenna 34 may be substantially similar to the antenna 504. In one particular embodiment, the wireless communication device 16 is configured to transmit data, such as identification data associated with the orthopaedic implant 10 and/or implant sensor data, using a predetermined frequency in the low frequency (LF) or high frequency (HF) range. For example, the wireless communication device 16 may use a frequency in the range of about 30 kilohertz to about 30 megahertz. In such embodiments, the antenna 34 may be embodied as a coil antenna having one or more turns. However, it should be appreciated that in other embodiments other types of antennas may be used.
  • As illustrated in FIGS. 2 and 3, the wireless communication device 16 is positioned in the recess 30 of the rim surface 28. To facilitate the positioning of the wireless communication device 16, the recess 30 includes a circuit-receiving recess portion 36 and an antenna-receiving recess portion 38. The circuit-receiving recess portion 36 is configured to receive the communication circuit 32 of the wireless communication device 16. For example, the circuit-receiving recess portion 36 may have a size and shape based on the size and shape of the communication circuit 32. In one particular embodiment as illustrated in FIG. 2, the circuit-receiving recess portion 36 has a substantially rectangular top-profile configured to receive a rectangular shaped communication circuit 32.
  • Similarly, the antenna-receiving recess portion 38 is configured to receive the antenna 34 of the wireless communication device 16. As such, the antenna-receiving recess portion 38 may have a size and shape based on the size and shape of the antenna 34. For example, in embodiments wherein the antenna 34 is embodied as a coil antenna, the antenna receiving recess portion 38 is embodied as an annular shaped channel recess that extends the length of rim surface 28. As illustrated in FIG. 3, when the antenna 34 of the wireless communication device 16 is positioned in the antenna-receiving recess portion 38, the individual turns of the antenna 34 may be stacked on top of each other.
  • Once the wireless communication device 16 is positioned in the recess 30 (e.g., the communication circuit 32 is positioned in the circuit-receiving recess portion 36 and the antenna 34 is positioned in the antenna-receiving portion 38), the device 16 may be secured in recess 30. In one embodiment, a suitable adhesive may be used to secure the wireless communication device 16 in the recess 30. For example, a biocompatible compound may be used such that the adhesive does not adversely affect the surrounding tissue or bone of the patient. Additionally, in some embodiments, the recess 30 may be sealed once the wireless communication device 16 has been positioned in the recess 30. The recess 30 may be sealed using any suitable biocompatible sealant or adhesive. In some embodiments, the wireless communication device 16 is secured in a position in the recess 30 and the recess 30 is sealed using the same sealant or adhesive. For example, in one particular embodiment, the wireless communication device 16 is secured in a position in the recess 30 by filling, or substantially filing, the recess 30 with bone cement.
  • Referring now to FIG. 4, an algorithm 100 for fabricating the orthopaedic implant 10 begins with a process step 102. In process step 102, the recess 30 is formed in the rim surface 28 of the acetabular cup 12. That is, the circuit-receiving recess portion 36 and the antenna-receiving recess portion 38 are formed in the rim surface 28. As discussed above in regard to FIGS. 2 and 3, the circuit-receiving recess portion 36 and the antenna-receiving recess portion 38 may be formed to have a shape and size based on the shape and size of the communication circuit 32 and the antenna 34 of the wireless communication device 16, respectively. The recess 30 may be formed in the rim surface 28 by, for example, milling the rim surface 28. Alternatively, the acetabular cup 12 may be formed to include the recess 30 defined in the rim surface 28. For example, depending on the material from which the acetabular cup 12 is formed, the acetabular cup 12 may be molded to include the recess 30 defined in the rim surface 28.
  • Once the recess 30 has been defined in the rim surface 28 of the acetabular cup 12, the wireless communication device 16 is positioned in the recess 30 in process step 104. To do so, the communication circuit 32 is positioned in the circuit-receiving recess portion 36 of the recess 30. Similarly, the antenna 34 is positioned in the antenna-receiving portion 38. In some embodiments, the wireless communication device 16 may be so positioned and/or the recess 30 is formed such that no portion of the wireless communication device 16 extends past the rim surface 28 of the acetabular cup 12.
  • Once the wireless communication device 16 has been positioned in the recess 30, the wireless communication device 16 is secured in the recess 30 in process step 106. As discussed above in regard to FIGS. 2 and 3, the wireless communication device 16 may be secured in the recess 30 using a biocompatible adhesive. Additionally, in some embodiments, the recess 30 may be sealed once the wireless communication device 16 has been positioned in the recess 30 using a suitable biocompatible sealant or adhesive. For example, in one particular embodiment, the wireless communication device 16 is secured in the recess 30 by filling, or substantially filing, the recess 30 with bone cement.
  • Referring now to FIG. 5, in another embodiment, an orthopaedic implant 200 includes an acetabular cup 202, a bearing insert 204, an annular ring 220, and a wireless communication device 230 positioned in the annular ring 200 (see FIGS. 6 and 7). The acetabular cup 202 is similar to the acetabular cup 12 and includes an outer surface 206, and inner surface 208, and a rim surface 212 defined therebetween. The acetabular cup 202 may be formed from any suitable material capable of being secured to the acetabulum of a patient and supporting a natural or artificial head portion of a femur of the patient. For example, the acetabular cup 202 may be formed from a titanium alloy. Similar to the acetabular cup 12, the outer surface 202 of the acetabular cup 202 may have a textured or porous surface in some embodiments.
  • Additionally, similar to the inner surface 20 of the acetabular cup 12, the inner surface 208 of the acetabular cup 202 is concave in shape and forms an inner cavity 210. The inner cavity 210 is shaped to receive the bearing insert 204. The bearing insert 204 is substantially similar to the bearing insert 14 and provides an artificial surface for a natural or artificial head portion of the femur of the patient. The bearing insert 204 may be formed from any suitable material such as, for example, a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE). As discussed in detail above in regard to the bearing insert 14 illustrated in FIG. 1, the bearing insert 204 may include a number of keying tabs 216 which are received by a number of keying slots 218 defined in the inner surface 208 of the acetabular cup 202 to reduce the likelihood of rotation of the bearing insert 204 relative to the acetabular cup 202.
  • The annular ring 220 is formed in a size and shape as to be couplable to the rim surface 212 of the acetabular cup 202. The annular ring 220 may be coupled to the rim surface 212 using any suitable biocompatible adhesive. As illustrated in FIGS. 6 and 7, the wireless communication device 230 is positioned in the annular ring 220. The annular ring 220 may be formed from any material that is coupleable to the acetabular cup 202 and that does not overly attenuate the reception and/or transmission of the wireless communication device 230. For example, in embodiments wherein the wireless communication device 230 is embodied as an RFID device such as RFID device 500 illustrated in and described below in regard to FIG. 9, the annular ring 220 is formed from a material that allows the wireless communication device 230 to receive an interrogation signal and transmit data such as identification data associated with the orthopaedic implant 200. For example, the annular ring 220 may be formed from a dielectric material. Additionally, in some embodiments, the annular ring 220 is formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE) similar to the bearing insert 204.
  • The shape and size of the annular ring 220 may be dependent upon the shape and size of the rim surface 212 and/or the acetabular cup 202. For example, as illustrated in FIG. 5, the annular ring may have a substantially circular top profile in embodiments wherein the rim surface 212 also has a substantially circular top profile. However, in other embodiments, annular rings having other top profile shapes may be used. For example, in some embodiments, the annular ring 220 may have an elliptical shape or the like.
  • In one particular embodiment, as illustrated in FIG. 7, the annular ring 230 has an outer diameter 236 substantially equal to the outer diameter of the acetabular cup 202 such that an outer sidewall 240 of the annular ring 220 is substantially congruent with the distal end of the outer surface 206 of the acetabular cup 202. In addition, the annular ring 220 has an inner diameter 238 substantially equal to the inner diameter of the acetabular cup 202 such that an inner sidewall 242 of the annular ring 220 is substantially congruent with the distal end of the inner surface 208. That is, the annular ring 220 may be formed to have a shape such that the annular ring 220 is in a registered relationship with the rim surface 212 of the acetabular cup 202 when the annular ring 220 is coupled thereto in some embodiments. Regardless, the annular ring 220 is configured to be coupled to the rim surface 212 of the acetabular cup 202.
  • The wireless communication device 230 is positioned in the annular ring 220. The wireless communication device 230 may be so positioned by forming the annular ring 220 around the wireless communication device 230. For example, in embodiments, wherein the annular ring 220 is formed from a polymeric material, the annular ring 220 may be molded around the wireless communication device 230. Alternatively, in some embodiments, the annular ring 220 includes an inner chamber in which the wireless communication device 230 is positioned. Regardless, when the annular ring 220 is coupled to the rim surface 212 of the acetabular cup 202, the wireless communication device 230 is positioned on top of the acetabular cup 202 as illustrated in FIG. 7. Such positioning of the wireless communication device 230 may reduce the attenuation of the reception and/or transmission signals of the device 230 due to the acetabular cup 12 and/or bony anatomy of the patient.
  • The illustrative wireless communication device 230 of FIGS. 6 and 7 includes a communication circuit 232 and an antenna 234. In embodiments wherein the wireless communication device 230 is embodied as an RFID device (e.g., RFID device 500), the communication circuit 232 may be substantially similar to the communication device 502 illustrated in and described above in regard to FIG. 9. Additionally, the antenna 234 may be substantially similar to the antenna 504. Because the wireless communication device 230 is positioned on top of the acetabular cup 202 (i.e., on top of the rim surface 212), the device 230 may use higher frequencies to receive and/or transmit data compared to the embodiment illustrated in and discussed above in regard to FIGS. 1-4. For example, in one particular embodiment, the wireless communication device 230 is configured to transmit data, such as identification data associated with the orthopaedic implant 200 and/or implant sensor data, using a predetermined frequency in the very high frequency (VHF) or ultra high frequency (UHF) range. For example, the wireless communication device 230 may use a frequency in the range of about 30 megahertz to about 3,000 megahertz. In such embodiments, the antenna 34 may be embodied as a dipole antenna as illustrated in FIG. 6. The antenna 34 may be, for example, a straight line or a meandering line dipole antenna based on the desired frequency to be used by the wireless communication device 230. However, it should be appreciated that in other embodiments other types of antennas may be used.
  • Referring now to FIG. 8, an algorithm 300 for fabricating the orthopaedic implant 200 begins with a process step 302. In process step 302, the annular ring 220 is formed to include the wireless communication device 230. That is, the annular ring 220 is formed so as to encapsulate the wireless communication device 230. The wireless communication device 230 may be encapsulated by, for example, molding the annular ring 220 around the wireless communication device 230 in embodiments wherein the annular ring 220 is formed from a polymeric material such as polyethylene or ultra-high molecular weight polypropylene (UHMWPE). Alternatively, in some embodiments, the annular ring 220 may be formed to include an interior chamber. In such embodiments, the wireless communication device 230 may be positioned in the interior chamber of the annular ring 220 and subsequently sealed therein. Regardless, the wireless communication device 230 is encapsulated in or otherwise coupled to the annular ring 220 in process step 302.
  • Once the wireless communication device 230 has been encapsulated in the annular ring 220 in process step 302, the annular ring 220 is coupled to the acetabular cup 202 in process step 302. That is, the annular ring 220 is secured to the rim surface 212 of the acetabular cup 212. The annular ring 220 may be secured to the rim surface 212 using any suitable adhesive. For example, a biocompatible compound may be used such that the adhesive does not adversely affect the surrounding tissue or bone of the patient. Alternatively, in other embodiments, other types of securing devices and/or methods may be used to secure the annular ring 220 (and thereby the wireless communication device 230) to the rim surface 212 of the acetabular cup 202. For example, in some embodiments, a number of screws may be used to attach the annular ring 220 to the rim surface 212 of the acetabular cup 202. Alternatively, a snap slot may be milled or otherwise formed in the rim surface 212 of the acetabular cup 202 and the annular ring 220 may include a corresponding protrusion or lip formed on a bottom surface such that lip of the annular ring 220 mates (e.g., snaps into) the snap slot of the rim surface 212 to thereby secure the annular ring 220 to the acetabular cup 202.
  • While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
  • There are a plurality of advantages of the present disclosure arising from the various features of the systems, apparatuses, and methods described herein. It will be noted that alternative embodiments of the systems and methods of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the systems, apparatuses, and methods that incorporate one or more of the features of the present invention and fall within the spirit and scope of the present disclosure as defined by the appended claims.

Claims (8)

1. A method for fabricating an orthopaedic implant, the method comprising:
forming a recess in a rim surface of an acetabular cup;
positioning a wireless communication device in the recess; and
securing the wireless communication device in the recess using a biocompatible compound.
2. The method of claim 1, wherein forming a recess comprises forming an annular recess in the rim surface of the acetabular cup.
3. The method of claim 1, wherein positioning a wireless communication device in the recess comprises positioning a radio frequency identification (RFID) tag in the recess.
4. The method of claim 1, wherein securing the wireless communication device in the recess comprises depositing an amount of bone cement in the recess.
5. A method for fabricating an orthopaedic implant, the method comprising:
forming an annular ring from a biocompatible material, the annular ring having a wireless communication device positioned therein; and
securing the annular ring to a rim surface of an acetabular cup.
6. The method of claim 5, wherein forming an annular ring comprises forming an annular ring having a bottom surface that is congruent with the rim surface of the acetabular cup.
7. The method of claim 5, wherein forming an annular ring comprises molding the biocompatible material around the wireless communication device.
8. The method of claim 5, wherein forming an annular ring comprises forming an annular ring having a radio frequency identification (RFID) tag positioned therein.
US14/153,700 2006-09-29 2014-01-13 Acetabular cup having a wireless communication device Active US9295555B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/153,700 US9295555B2 (en) 2006-09-29 2014-01-13 Acetabular cup having a wireless communication device
US15/081,091 US9962262B2 (en) 2006-09-29 2016-03-25 Acetabular cup having a wireless communication device
US15/973,578 US20180256338A1 (en) 2006-09-29 2018-05-08 Acetabular cup having a wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/537,359 US8641771B2 (en) 2006-09-29 2006-09-29 Acetabular cup having a wireless communication device
US14/153,700 US9295555B2 (en) 2006-09-29 2014-01-13 Acetabular cup having a wireless communication device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/537,359 Division US8641771B2 (en) 2006-09-29 2006-09-29 Acetabular cup having a wireless communication device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/081,091 Division US9962262B2 (en) 2006-09-29 2016-03-25 Acetabular cup having a wireless communication device

Publications (2)

Publication Number Publication Date
US20140124129A1 true US20140124129A1 (en) 2014-05-08
US9295555B2 US9295555B2 (en) 2016-03-29

Family

ID=38779994

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/537,359 Expired - Fee Related US8641771B2 (en) 2006-09-29 2006-09-29 Acetabular cup having a wireless communication device
US14/153,700 Active US9295555B2 (en) 2006-09-29 2014-01-13 Acetabular cup having a wireless communication device
US15/081,091 Expired - Fee Related US9962262B2 (en) 2006-09-29 2016-03-25 Acetabular cup having a wireless communication device
US15/973,578 Abandoned US20180256338A1 (en) 2006-09-29 2018-05-08 Acetabular cup having a wireless communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/537,359 Expired - Fee Related US8641771B2 (en) 2006-09-29 2006-09-29 Acetabular cup having a wireless communication device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/081,091 Expired - Fee Related US9962262B2 (en) 2006-09-29 2016-03-25 Acetabular cup having a wireless communication device
US15/973,578 Abandoned US20180256338A1 (en) 2006-09-29 2018-05-08 Acetabular cup having a wireless communication device

Country Status (4)

Country Link
US (4) US8641771B2 (en)
EP (2) EP2226035B1 (en)
AT (2) ATE533435T1 (en)
DE (1) DE602007008510D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962262B2 (en) 2006-09-29 2018-05-08 DePuy Synthes Products, Inc. Acetabular cup having a wireless communication device

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518335B2 (en) 2005-08-23 2014-06-11 スミス アンド ネフュー インコーポレーテッド Telemetric orthopedic implant
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US20110166671A1 (en) 2006-11-07 2011-07-07 Kellar Franz W Prosthetic joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
JP5599806B2 (en) 2008-10-15 2014-10-01 スミス アンド ネフュー インコーポレーテッド Composite in-house fixator
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US8740817B2 (en) * 2009-03-31 2014-06-03 Depuy (Ireland) Device and method for determining forces of a patient's joint
US8597210B2 (en) * 2009-03-31 2013-12-03 Depuy (Ireland) System and method for displaying joint force data
US8721568B2 (en) 2009-03-31 2014-05-13 Depuy (Ireland) Method for performing an orthopaedic surgical procedure
US8556830B2 (en) * 2009-03-31 2013-10-15 Depuy Device and method for displaying joint force data
US8551023B2 (en) 2009-03-31 2013-10-08 Depuy (Ireland) Device and method for determining force of a knee joint
DE102009028503B4 (en) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resection template for the resection of bones, method for producing such a resection template and operation set for performing knee joint surgery
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
WO2013012731A2 (en) * 2011-07-15 2013-01-24 Smith & Nephew, Inc. Fiber-reinforced composite orthopaedic device
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US20140379090A1 (en) * 2011-08-08 2014-12-25 Ecole Polytechnique Federale De Lausanne (Epfl) In-vivo condition monitoring of metallic implants by electrochemical techniques
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
EP2770918B1 (en) 2011-10-27 2017-07-19 Biomet Manufacturing, LLC Patient-specific glenoid guides
KR20130046336A (en) 2011-10-27 2013-05-07 삼성전자주식회사 Multi-view device of display apparatus and contol method thereof, and display system
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9381011B2 (en) 2012-03-29 2016-07-05 Depuy (Ireland) Orthopedic surgical instrument for knee surgery
US10070973B2 (en) 2012-03-31 2018-09-11 Depuy Ireland Unlimited Company Orthopaedic sensor module and system for determining joint forces of a patient's knee joint
US9545459B2 (en) 2012-03-31 2017-01-17 Depuy Ireland Unlimited Company Container for surgical instruments and system including same
US10206792B2 (en) 2012-03-31 2019-02-19 Depuy Ireland Unlimited Company Orthopaedic surgical system for determining joint forces of a patients knee joint
US10098761B2 (en) 2012-03-31 2018-10-16 DePuy Synthes Products, Inc. System and method for validating an orthopaedic surgical plan
GB2508654B (en) * 2012-12-07 2019-05-01 Corin Ltd Acetabular cup, system and method
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US20150112349A1 (en) 2013-10-21 2015-04-23 Biomet Manufacturing, Llc Ligament Guide Registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
GB2529203B (en) * 2014-08-13 2016-09-28 James Wallace Mcminn Derek Acetabular cup prosthesis
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
GB201417694D0 (en) * 2014-10-07 2014-11-19 Univ Warwick An acetabular cup for a hip replacement joint
WO2016139439A1 (en) * 2015-03-03 2016-09-09 Toshiba Research Europe Limited Orthopaedic implant
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
WO2018006026A1 (en) 2016-06-30 2018-01-04 Orthogrid Systems S.A.R.L Surgical instrument positioning system, apparatus and method of use as a non-invasive anatomical reference
USD858768S1 (en) * 2016-08-26 2019-09-03 Surgical Device Innovations, LLC Acetabular device
US11000378B2 (en) 2017-02-14 2021-05-11 Surgical Device Innovations, LLC Acetabular surgical implant for segmental pelvic defect and methods of use and manufacture
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
USD851765S1 (en) * 2017-11-15 2019-06-18 Joint Innovation Technology, Llc Acetabular cup liner
USD919089S1 (en) * 2017-11-15 2021-05-11 Joint Innovation Technology, Llc. Acetabular cup liner
USD922579S1 (en) * 2017-11-15 2021-06-15 Joint Innovation Technology, Llc. Acetabular cup liner
USD847997S1 (en) * 2017-11-15 2019-05-07 Joint Innovation Technology, Llc Acetabular cup liner
USD851764S1 (en) * 2017-11-15 2019-06-18 Joint Innovation Technology, Llc Acetabular cup liner
US11423240B1 (en) * 2019-12-12 2022-08-23 Automated Assembly Corporation RF transponder providing two-way engagement signaling and flexible substrate having attachment features

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300120A (en) * 1992-08-24 1994-04-05 Lipomatrix Incorporated Implant with electrical transponder marker
US5423334A (en) * 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US6366206B1 (en) * 1999-06-02 2002-04-02 Ball Semiconductor, Inc. Method and apparatus for attaching tags to medical and non-medical devices
US6248132B1 (en) * 1999-10-29 2001-06-19 Charles C. Harris Hip replacement prosthesis
US20030097178A1 (en) * 2001-10-04 2003-05-22 Joseph Roberson Length-adjustable ossicular prosthesis
US7458991B2 (en) * 2002-02-08 2008-12-02 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
AU2003304306A1 (en) 2003-07-01 2005-01-21 Nokia Corporation Method and device for operating a user-input area on an electronic display device
US7115145B2 (en) * 2003-07-03 2006-10-03 Zimmer, Inc. Acetabular component
US20050005146A1 (en) 2003-07-03 2005-01-06 Maui X-Tream, Inc. Methods, data structures, and systems for authenticating media stream recipients
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
EP1648354A4 (en) 2003-07-11 2010-03-31 Depuy Products Inc In vivo joint space measurement device and method
ITVR20030088A1 (en) 2003-07-17 2005-01-18 Gianfranco Natali PROCEDURE FOR THE IMPLEMENTATION OF ANTI-IMPLOSION BANDS FOR CINESCOPES
US7613497B2 (en) * 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
JP2007528243A (en) * 2004-03-05 2007-10-11 デピュー インターナショナル リミテッド Orthopedic monitoring system, method and apparatus
EP1722705A2 (en) * 2004-03-10 2006-11-22 Depuy International Limited Orthopaedic operating systems, methods, implants and instruments
WO2006063156A1 (en) * 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
US20070238992A1 (en) * 2006-02-01 2007-10-11 Sdgi Holdings, Inc. Implantable sensor
US8641771B2 (en) 2006-09-29 2014-02-04 DePuy Synthes Products, LLC Acetabular cup having a wireless communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962262B2 (en) 2006-09-29 2018-05-08 DePuy Synthes Products, Inc. Acetabular cup having a wireless communication device

Also Published As

Publication number Publication date
US20180256338A1 (en) 2018-09-13
EP2226035A1 (en) 2010-09-08
US9962262B2 (en) 2018-05-08
EP1905384B1 (en) 2010-08-18
US9295555B2 (en) 2016-03-29
ATE477764T1 (en) 2010-09-15
EP2226035B1 (en) 2011-11-16
DE602007008510D1 (en) 2010-09-30
EP1905384A1 (en) 2008-04-02
US8641771B2 (en) 2014-02-04
US20160206431A1 (en) 2016-07-21
ATE533435T1 (en) 2011-12-15
US20080133022A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US9962262B2 (en) Acetabular cup having a wireless communication device
EP2783659B1 (en) Tibial tray assembly
AU2005202620B2 (en) System and method for bidirectional communication with an implantable medical device using an implant component as an antenna
EP3189813B1 (en) Orthopaedic element with self-contained data storage
CA2758795C (en) Acetabular cup
US8771366B2 (en) Mobile bearing hip assembly having decoupled motion along multiple axes
JP2006055629A5 (en)
US8457755B2 (en) Container for storing an implantable medical device and a method for packaging such a device
CN111356418B (en) Acetabular cup assembly
CN113271893A (en) Acetabular orthopaedic prosthesis and method
US8747482B2 (en) Device and method for determining proper seating of an orthopaedic prosthesis
US20190335998A1 (en) Implantable device for prosthesis monitoring
WO2024010766A1 (en) Stemless orthopedic implants with sensors
WO2023199226A1 (en) Spinal implants with active sensing capabilities

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEPUY SPINE, LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY PRODUCTS, INC.;REEL/FRAME:037207/0475

Effective date: 20121230

Owner name: HAND INNOVATIONS LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:037211/0881

Effective date: 20121230

Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:DEPUY SYNTHES PRODUCTS, LLC;REEL/FRAME:037217/0956

Effective date: 20141219

Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:037217/0948

Effective date: 20121231

Owner name: DEPUY PRODUCTS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAYLOR, EDWARD J., III;REEL/FRAME:037207/0197

Effective date: 20060929

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY