US20140107704A1 - Dynamized Interspinal Implant - Google Patents

Dynamized Interspinal Implant Download PDF

Info

Publication number
US20140107704A1
US20140107704A1 US14/134,090 US201314134090A US2014107704A1 US 20140107704 A1 US20140107704 A1 US 20140107704A1 US 201314134090 A US201314134090 A US 201314134090A US 2014107704 A1 US2014107704 A1 US 2014107704A1
Authority
US
United States
Prior art keywords
implant
flexible
stiffness
posterior
flexible body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/134,090
Inventor
Hassan Serhan
Alexander Michel DiNello
William Christianson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Synthes Products Inc
Original Assignee
DePuy Synthes Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/134,090 priority Critical patent/US20140107704A1/en
Application filed by DePuy Synthes Products Inc filed Critical DePuy Synthes Products Inc
Publication of US20140107704A1 publication Critical patent/US20140107704A1/en
Priority to US14/845,687 priority patent/US9402654B2/en
Assigned to DePuy Synthes Products, Inc. reassignment DePuy Synthes Products, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DePuy Synthes Products, LLC
Priority to US15/148,937 priority patent/US9662147B2/en
Priority to US15/149,085 priority patent/US9662148B2/en
Priority to US15/149,132 priority patent/US9662149B2/en
Priority to US15/219,505 priority patent/US9668785B2/en
Priority to US15/446,554 priority patent/US9949769B2/en
Priority to US15/787,998 priority patent/US10433881B2/en
Priority to US15/927,512 priority patent/US10512489B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7065Devices with changeable shape, e.g. collapsible or having retractable arms to aid implantation; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7068Devices comprising separate rigid parts, assembled in situ, to bear on each side of spinous processes; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4405Joints for the spine, e.g. vertebrae, spinal discs for apophyseal or facet joints, i.e. between adjacent spinous or transverse processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00075Motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00964Material properties composite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/567Joint mechanisms or joint supports in addition to the natural joints and outside the joint gaps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B2017/681Alignment, compression, or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/48Operating or control means, e.g. from outside the body, control of sphincters
    • A61F2/482Electrical means

Definitions

  • the posterior portion of the annulus fibrosis or folding of the ligamentum flavum may further compress and extend into the spinal canal.
  • This condition called “spinal stenosis”, narrows the spinal canal and causes impingement of tissue upon the spinal cord, thereby producing pain.
  • Zuchermann discloses a spinal distraction implant that alleviates pain associated with spinal stenosis by expanding the volume in the spinal canal or neural foramen. Zuchermann discloses a plurality of implants having a body portion and lateral wings. The body portion is adapted to seat between the adjacent spinous processes, while the wings are adapted to prevent lateral movement of the body portion, thereby holding it in place between the adjacent spinous processes.
  • U.S. Pat. No. 5,645,599 attempts to relieve spinal stenosis by essentially inserting a flexible horseshoe-shaped device between the adjacent spinous processes.
  • the Samani device desirably provides a self-limiting flexibility, it nonetheless suffers from some inadequacies.
  • the Samani device does not provide for natural physiologic rotational movement, nor for post-operative adjustment.
  • the Samani device discloses the insertion of a bearing cushion, and the adhesive bonding of the bearing cushion to the horseshoe element. However, it is believed that mere adhesive bonding of these elements would cause the cushion to be prone to migration.
  • the present inventors have developed a number of flexible interspinous devices having a number of desirable features providing improved performance over conventional solutions.
  • the device has a flexible anterior wall having a narrowed portion.
  • the narrowed portion allows the device to twist in response to spinal rotation, thereby more closely mimicking natural physiologic movement.
  • an interspinous implant for insertion between adjacent spinous processes comprising:
  • the device has a cushion portion interdigitated with each of the upper and lower bearing portions. Because the cushion portion is interdigitated with these elements, a tenacious bond is provided and migration concerns are alleviated.
  • an interspinous implant for insertion between adjacent spinous processes comprising:
  • the device is adapted to be post-operatively adjustable.
  • the adjustability allows the device to respond to an altered physiologic state, such as an increased collapse of the disc space or decreased patient flexibility, by adjusting the overall stiffness of the implant.
  • an interspinous implant for insertion between adjacent spinous processes comprising:
  • FIG. 1 a is a posterior view of the first embodiment of the interspinous implant in the coronal plane
  • FIG. 1 b is a side view of the first embodiment of the interspinous implant in the saggital plane.
  • FIG. 1 c is a posterior view of the first embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIG. 2 a is a posterior view of the second embodiment of the interspinous implant.
  • FIG. 2 b is a side view of the second embodiment of the interspinous implant in the saggital plane.
  • FIG. 2 c is a side view of an embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIG. 3 a is a posterior view of the third embodiment of the interspinous implant.
  • FIG. 3 b is a side view of the third embodiment of the interspinous implant in the saggital plane.
  • FIGS. 4 a - 4 c are perspective, longitudinal and frontal cross-sectional views of a fourth embodiment of the present invention.
  • FIG. 4 d is a side view of the fourth embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIGS. 5 a - b are side views of a fifth embodiment of the interspinous implant having outer and inner flexible shells.
  • FIG. 6 is a side view of a functional spinal unit of the human anatomy.
  • interspinous refers to the volume located between two adjacent spinous processes of adjacent vertebrae.
  • anterior andposterior are used as they are normally used in spinal anatomy. Accordingly, the “anterior” portion of the interspinous device is that portion rests relatively close to the spinal cord, while the “posterior” portion of the interspinous device is that portion rests relatively close to the skin on the patient's back.
  • an anatomic “functional spinal unit” or FSU comprising an upper vertebrae Vu having an upper vertebral body VB U and an upper spinous process SPu, a lower vertebra having a lower vertebral body VB L having a lower spinous process SP L .
  • the vertebral bodies lies in the anterior A portion of the FSU, while the spinous processes lie in the posterior portion P of the FSU.
  • Disposed between the vertebral bodies is a disc space DISC.
  • Disposed between the spinous process is an “interspinous region”.
  • Disposed between the spinous process and the vertebral body of each vertebra is a lamina L.
  • the supraspinous ligament SSL lies posterior to the spinous processes.
  • the Posterior longitudinal ligament PLL lies posterior to the vertebral bodies.
  • an interspinous implant 1 for insertion between adjacent spinous processes comprising:
  • the implant of FIGS. 1 a and 1 b is inserted into the interspinous region of an functional spinal unit (FSU), that is, between the adjacent spinous processes.
  • the U-shaped body has a stiffness and geometry adapted to provide the desired spacing between the upper and lower process.
  • the U-shaped body is adapted to be somewhat flexible, so that it somewhat restricts the extent of extension motion of the FSU.
  • the flexible body is U-shaped.
  • the flexible body has a posterior wall (preferably, arcuate) that flexibly connects the posterior portions of the upper and lower bearing surfaces of the flexible body to provide an overall substantially oval shape.
  • the flexible body has a configuration and is made of a material that provides a first stiffness that limits the range of motion of the FSU.
  • the flexible body stiffness provides at least 50% of the overall initial stiffness of the implant, preferably at least 75%, more preferably at least 90%.
  • the flexible body is adapted to provide a stiffness of between 50 N/mm and 1000 N/mm, more preferably between 100 N/mm and 500 N/mm.
  • the flexible body stiffness is in this range, it maintains the flexion/extension ROM of a normal lumbar FSU to less than 20 degrees, with less than 13 degrees of motion in flexion and less than 7 degrees of motion in extension.
  • the typical displacement of the posterior ends of the device under physiologic loading in the saggital plane is in the range of 1-6 mm.
  • the flexible can be made of a suitable biocompatible material typically used in structural spinal applications, including metals, plastics and ceramics.
  • the flexible body is made of a material selected from the group consisting of titanium alloy (including memory metals and superelastic alloys), stainless steel, and chrome cobalt.
  • the flexible body is provided in a sterile form.
  • the flexible body has a height H of between 10 mm and 20 mm; a thickness T of between 1 mm and 2 mm; a length L of between 20 mm and 30 mm, and a width W of between 3 and 20 mm, preferably between 5 mm and 10 mm.
  • the implant can be easily inserted between typical adjacent spinous processes.
  • the flexible body has a longitudinal cross section having a horseshoe shape.
  • the longitudinal cross-section describes a circle.
  • it is a pill shape.
  • it is substantially oval.
  • the upper and lower posterior portions are substantially non-parallel.
  • the upper and lower posterior portions of the flexible body each have a longitudinal recess 25 defining a bearing surface 23 , 33 and opposing recess walls 27 .
  • the recess shape is adapted to receive projecting portions of the opposed spinous processes, thereby securing the U-shaped shell between the spinous processes.
  • the recess walls have teeth 28 extending inwardly therefrom that provide a more grip upon the spinous processes.
  • at least the bearing surfaces of the recess have teeth 415 (as shown in FIG. 4 c ) extending outwardly therefrom that provide a more grip upon the spinous processes.
  • the recess 25 defines an upper pair of extensions 45 extending from the bearing surface 33 and collectively defining a bracket.
  • Each extension may comprise a transverse throughhole (not shown) adapted for fixing the implant to the adjacent spinous processes.
  • each extension comprises a transverse throughhole adapted for fixing the implant to the adjacent spinous processes.
  • the implant further comprises a fastening element having a first end extending through the first transverse throughole and a second end extending through the second transverse through-hole.
  • the flexible body of the present invention preferably has a flexible anterior wall connecting the upper and lower portions of the U-shaped body, thereby providing a spring quality to the U-shaped body for flexibly resisting extreme FSU extension.
  • This flexible anterior wall is preferably shaped to conform with the opposed surfaces of the opposing spinous processes (as shown in FIG. 1 c ). This quality also insures the grip of the implant and reduces unwanted stresses upon the flexible body.
  • the thickness of the distal wall is greater than the thickness of the posterior portions.
  • an interspinous implant 51 for insertion between adjacent spinous processes comprising:
  • the cushion element In use, the cushion element provides a dampening effect upon natural extension.
  • the interdigitated nature of the cushion bond reduces migration concerns.
  • the bonding covers substantially the entire extent of the inner surface of the U-shaped body (i.e., the upper surface of the cushion is bonded to the lower surface of the upper posterior portion, the anterior surface of the cushion is bonded to the posterior surface of the flexible anterior wall, and the lower surface of the cushion is bonded to the upper surface of the lower posterior portion).
  • the bonding covers only the posterior portions of the inner surface of the U-shaped body (i.e., the lower surface of the upper posterior portion, and the upper surface of the lower posterior portion, but not the posterior surface of the flexible anterior wall).
  • the partial coverage of this embodiment provides an amount of stress relief to the cushion-U-shaped body interface.
  • the cushion element of FIGS. 2 a - 2 b is preferably made of an elastomeric material, more preferably a polyolefin rubber or carbon black reinforced polyolefin rubber.
  • the hardness of the elastomeric cushion element is preferably between 56 and 72 shore A durometer.
  • the ultimate tensile strength of the cushion element is preferably greater than 1600 psi.
  • the cushion element preferably has an ultimate elongation greater than 300% using the ASTM D412-87 testing method, and a tear resistance greater than 100 psi using the ASTM D624-86 testing method.
  • the cushion element is preferably a polyolefin rubber, it can be made of any elastomeric material that simulates the response of the natural ligaments.
  • a porous coating 98 is provided as the inner surface of the U-shaped body.
  • the porous coating provides an opportunity for the cushion element to interdigitate with the porous coating, and so obtain a greater amount of surface contact between the U-shaped body and the cushion, thereby achieving a lower maximum stress.
  • the coating covers the entire extent of the inner surface of the U-shaped body (i.e., the upper surface of the cushion is bonded to the lower surface of the upper posterior portion, the anterior surface of the cushion is bonded to the posterior surface of the flexible anterior wall, and the lower surface of the cushion is bonded to the upper surface of the lower posterior portion).
  • the coating comprises a layer of small spherical particles or beads.
  • the coating covers only the posterior portions of the inner surface of the U-shaped body (i.e., the lower surface of the upper posterior portion, and the upper surface of the lower posterior portion, but not the posterior surface of the flexible anterior wall).
  • a coating may also be applied to the superior side of the upper portion and the inferior side of the lower portion to promote bony ingrowth and osteointegration.
  • the coating may include beads, and may have osteobiologic components such as hydroxyapatite or tricalcium phosphate.
  • the present inventors have noted that there may be a need to correct the range of motion (ROM) provided by a motion disc after the motion disc has been implanted and there is need to change the load transferred through the facet joints to alleviate pain and facet joint degeneration.
  • ROM range of motion
  • an implanted disc has an acceptable ROM at the time of implantation, but the patient undergoes typical aging so that the patient's normal range of motion decreases over time. In this case, it may be desirable to decrease the implant ROM so that it corresponds with the patient's natural decreased ROM.
  • the implant of the present invention is advantageous because it can be inserted into the spine at a first stiffness, and then adjusted to a second stiffness to meet the needs of the particular patient.
  • the stiffness of the implant is adjusted post-operatively in order to fine tune the implant to the surgical needs of the patient.
  • the stiffness of the implant is adjusted in order to fine tune the implant to the changing post-surgical needs of the patient.
  • the stiffness of the implant is increased in order to reduce the ROM of a functional spinal unit (FSU).
  • FSU functional spinal unit
  • the implant further comprises a compression spring, and the overall stiffness of the implant is changed by adjusting the length of the compression spring.
  • actuation of the worm screw causes inner thread 363 of the worm screw to turn relative to the outer cylinder 361 of the worm screw.
  • the outer cylinder 361 responds by moving axially upward, thereby forcing compression of the compression spring, and increasing the effective resistance of the device to axial compression.
  • an interspinous implant 401 for insertion between adjacent spinous processes the implant having an implant stiffness and comprising:
  • the stiffness of the core material may be increased, thereby increasing the stiffness of the implant and its resistance to an axial load.
  • the resulting increase in the stiffness of the interspinous implant provides a more substantial resistance to extension, thereby desirably decreasing the ROM of the FSU to correspond with the needs of the patient.
  • the stiffness of the core material is decreased, thereby decreasing the stiffness of the implant and its resistance to an axial load.
  • the resulting decrease in the stiffness of the interspinous implant reduces resistance to extension, thereby desirably increasing the ROM of the FSU to correspond with the needs of the patient.
  • the implant of this embodiment of the present invention also has a flexible posterior wall extending between the upper and lower portions of the U-shaped body.
  • This posterior wall is preferably arcuate and preferably connects the upper surface of the lower portion and the lower surface of the upper portion of the U-shaped body to form a substantially oval body (as shown). In this condition, the posterior wall provides substantial closure to the U-shaped body. Accordingly, adjustment of the stiffness of the core material residing within the outer shell increases or decreases the stiffness of the implant.
  • the compliance of the sidewalls is selected to correspond with the level of resistance desired by the implant.
  • the sidewalls are very thin and may be made of a very flexible material, such as a plastic weave.
  • the high compliance of the sidewalls will allow the core material to bulge laterally in response to an axial load, thereby tempering the resistance provided by the core material to the axial load.
  • the sidewalls can be made of metal, and even be integral with the outer shell.
  • the sidewalls will be flexible but more rigid than a plastic membrane.
  • the relative rigidity of the sidewalls will not allow the core material to bulge significantly laterally, thereby augmenting the resistance provided by the core material to the axial load.
  • the core is a fluid material contained within the cavity of the shell and is made of a material having a quality whose adjustment will produce a change in the stiffness of the implant.
  • the overall stiffness of the implant correspondingly changes.
  • the core has a first stiffness and contributes between 10 and 20% of the overall initial stiffness of the implant.
  • the stiffness of the core is increased to a second stiffness that increases the overall initial stiffness of the implant up to at least 40% to provide an adjusted implant stiffness of at least 300 N/mm, and more preferably at least 500 N/mm.
  • the implant stiffness is in this range, the implant can by itself provide sufficient stiffness to reduce the extension of a normal lumbar FSU to less than 7 degrees, preferably less than 5 degrees.
  • the core material is selected to be sensitive to an external stimulus, which, when applied, stimulates the core material to adjust its stiffness from a first stiffness to a second stiffness.
  • the stimulus stimulates the core to increase its stiffness.
  • the stimulus stimulates the core to lower its stiffness.
  • the core material is sensitive to a stimulus selected from the group consisting pH, light, and electric current.
  • the core material comprises a hydrogel.
  • the hydrogel undergoes expansion when stimulated by a decreased pH. The resulting expansion of the core material increases the stiffness of the core, thereby increasing the stiffness of the implant and providing increased resistance to extension by the FSU.
  • the hydrogel is selected from ionic polymers disclosed in US Published Patent Application No. 2002/0039620, the specification of which is incorporated by reference in its entirety.
  • the hydrogel is selected from ionic polymers disclosed in U.S. Pat. No. 6,475,639, the specification of which is incorporated by reference in its entirety.
  • an acid or a base is introduced into the core material from an ex vivo source.
  • the acid or base can be administered subcutaneously via a hypodermic needle and introduced into the core material through a fluid port 455 .
  • the provision of a fluid port provides the surgeon with the flexibility to selected the amount of acid or base needed to suit the needs of the patient.
  • the implant further comprises a container that individually houses and sequesters the acid or base from the core material.
  • the acid or base can be sequestered in a valved, separate compartment within the shell that is in fluid connection with the cavity housing the core material.
  • the valve is opened (for example, by telemetry), the acid or base enters the cavity housing the core material and mixes with the core material.
  • the resulting pH change causes a change in the specific volume of the core material, thereby increasing or decreasing the stiffness of the core material and the overall implant.
  • the advantage of this embodiment is that the stiffness of the implant is changed through a completely non-invasive technique.
  • the device could be made of a shape memory metal having a relatively flexible property during the martensitic phase and a relatively stiff property in the austenitic phase.
  • this memory metal device could be implanted in its flexible martensitic phase. If the clinician desires to increase the stiffness of the implant, the clinician could raise the temperature of the device (by heating) to a temperature above its austenitic phase, thereby increasing the stiffness of the device and increasing its resistance to an axial compressive load.
  • the implant further comprises smart features for helping the surgeon monitor and react to the changing conditions of the implanted device.
  • a sensing means is also used with the implant of the present invention.
  • This sensing means analyzes physical surroundings. Its purpose is to identify when a significant change has occurred which could warrant adjusting the stiffness of the implant.
  • the sensor can be contained within the implant, or provided as a stand alone entity.
  • a reporting means for reporting the findings of the sensors to an ex vivo source is also used with the implant of the present invention.
  • the reporter can be contained within the implant, or provided as a stand alone entity.
  • a receiver for receiving ex vivo-generated information is also used with the implant of the present invention.
  • the receiver can be contained within the implant, or provided as a stand alone entity.
  • the implant comprises two shells having flexible anterior walls extending in the same direction, wherein the stiffness is adjusted by adjusting the distance between the respective flexible anterior walls.
  • the implant of FIG. 5 a is implanted into the interspinous void so that the opposing sets of teeth of the inner and outer shells are engaged to the opposed spinous processes, thereby providing a secure implant and defining a distance between the anterior walls D 1 of the inner and outer shells.
  • the clinician desires to change the stiffness of the implant, then the clinician may alter the distance D between the anterior walls of the inner and outer shells. Reducing the distance D between the anterior walls will cause a decrease in the stiffness of the implant, while increasing the distance D between the anterior walls will cause an increase in the stiffness of the implant.
  • the clinician when the clinician desires to decrease the stiffness of the implant of FIG. 5 a , the clinician can use a pair of foreceps (not shown) to engage the slots 581 provided on the upper and lower posterior portions of the inner shell. Providing a clamping force through the foreceps squeezes together the posterior portions of the inner shell, thereby disengaging the respective pairs of teeth. The clinician can then move the disengaged inner shell anteriorly by a predetermined distance to a second position (shown in shadow), thereby decreasing the distance between the anterior walls to a smaller distance D 2 and lowering the stiffness of the implant.
  • a pair of foreceps (not shown) to engage the slots 581 provided on the upper and lower posterior portions of the inner shell.
  • Providing a clamping force through the foreceps squeezes together the posterior portions of the inner shell, thereby disengaging the respective pairs of teeth.
  • the clinician can then move the disengaged inner shell anteriorly by a predetermined distance to a second position (shown in shadow),
  • the slots of the implant of FIGS. 5 a and 5 b are replaced within other means for adjusting the distance D between the flexible anterior walls of the inner and outer shells.
  • a set screw or a worm gear may be provided on the implant to alter the distance D, thereby adjusting the stiffness of the implant.
  • an interspinous implant for insertion between adjacent spinous processes comprising:
  • the implant of the present invention is used posteriorly in conjunction with a motion disc inserted within the disc space of the anterior portion of the spinal column.
  • the implant of the present invention is used in conjunction with a motion disc having a large range of motion (“ROM”).
  • ROM large range of motion
  • Various motion discs are described by Stefee et al. in U.S. Pat. No. 5,071,437; Gill et al. in U.S. Pat. No. 6,113,637; Bryan et al. in U.S. Pat. No. 6,001,130; Hedman et al. in U.S. Pat. No. 4,759,769; Ray in U.S. Pat. No. 5,527,312; Ray et al.
  • kits for providing therapy to a functional spinal unit comprising an upper vertebrae having an upper spinous process, a lower vertebrae having a lower spinous process, and a disc space therebetween, the kit comprising:

Abstract

An interspinous process implant for insertion between adjacent spinous processes, the implant having a flexible body having i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process, ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process, and iii) an arcuate, flexible anterior wall connecting the upper and lower portions, wherein the anterior wall has a narrowed portion.

Description

    CONTINUING DATA
  • This application claims priority from co-pending U.S. patent application U.S. Ser. No. 10/793,967, filed Mar. 6, 2004, entitled “Dynamized Interspinal Implant”, Serhan et al., (Attorney Docket DEP5250), the specification of which is incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The leading cause of lower back pain arises from rupture or degeneration of lumbar intervertebral discs. Pain in the lower extremities is caused by the compression of spinal nerve roots by a bulging disc, while lower back pain is caused by collapse of the disc and by the adverse effects of articulation weight through a damaged, unstable vertebral joint.
  • In some cases, when a patient having a collapsed disc moves in extension (e.g., leans backward), the posterior portion of the annulus fibrosis or folding of the ligamentum flavum may further compress and extend into the spinal canal. This condition, called “spinal stenosis”, narrows the spinal canal and causes impingement of tissue upon the spinal cord, thereby producing pain.
  • There have been numerous attempts to provide relief for these afflictions by providing a spacer that inserts between adjacent spinous processes present in the posterior portion of the spinal column. This spacer essentially lifts the upper spinous process off of the lower spinous process, thereby relieving stenosis. In general, these interspinous implants are adapted to allow flexion movement in the patient, but resist or limit extension.
  • U.S. Pat. No. 6,068,630 (“Zuchermann”) discloses a spinal distraction implant that alleviates pain associated with spinal stenosis by expanding the volume in the spinal canal or neural foramen. Zuchermann discloses a plurality of implants having a body portion and lateral wings. The body portion is adapted to seat between the adjacent spinous processes, while the wings are adapted to prevent lateral movement of the body portion, thereby holding it in place between the adjacent spinous processes.
  • U.S. Pat. No. 5,645,599 (“Samani”) attempts to relieve spinal stenosis by essentially inserting a flexible horseshoe-shaped device between the adjacent spinous processes. Although the Samani device desirably provides a self-limiting flexibility, it nonetheless suffers from some inadequacies. For example, the Samani device does not provide for natural physiologic rotational movement, nor for post-operative adjustment. In addition, the Samani device discloses the insertion of a bearing cushion, and the adhesive bonding of the bearing cushion to the horseshoe element. However, it is believed that mere adhesive bonding of these elements would cause the cushion to be prone to migration.
  • SUMMARY OF THE INVENTION
  • The present inventors have developed a number of flexible interspinous devices having a number of desirable features providing improved performance over conventional solutions.
  • In a first embodiment, the device has a flexible anterior wall having a narrowed portion. The narrowed portion allows the device to twist in response to spinal rotation, thereby more closely mimicking natural physiologic movement.
  • Therefore, in accordance with the first embodiment of the present invention, there is provided an interspinous implant for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible body comprising:
      • i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process,
      • ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process, and
      • iii) an arcuate, flexible anterior wall connecting the upper and lower portions,
        wherein the anterior wall has a narrowed portion.
  • In a second embodiment, the device has a cushion portion interdigitated with each of the upper and lower bearing portions. Because the cushion portion is interdigitated with these elements, a tenacious bond is provided and migration concerns are alleviated.
  • Therefore, in accordance with the second embodiment of the present invention, there is provided an interspinous implant for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible body comprising:
      • i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process,
      • ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process,
      • iii) an arcuate, flexible anterior wall connecting the upper and lower portions, and
    • b) a cushion element having an upper surface and a lower surface,
      wherein the lower surface of the upper portion of the flexible body comprises a porous coating thereon, and wherein the upper surface of the cushion element is interdigitated with the porous coating.
  • In a third embodiment, the device is adapted to be post-operatively adjustable. The adjustability allows the device to respond to an altered physiologic state, such as an increased collapse of the disc space or decreased patient flexibility, by adjusting the overall stiffness of the implant.
  • Therefore, in accordance with the third embodiment of the present invention, there is provided an interspinous implant for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible body comprising:
      • i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process,
      • ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process,
      • iii) an arcuate, flexible anterior wall connecting the upper and lower posterior portions, and
      • iv) means for adjusting the stiffness of the implant.
    DESCRIPTION OF THE FIGURES
  • FIG. 1 a is a posterior view of the first embodiment of the interspinous implant in the coronal plane
  • FIG. 1 b is a side view of the first embodiment of the interspinous implant in the saggital plane.
  • FIG. 1 c is a posterior view of the first embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIG. 2 a is a posterior view of the second embodiment of the interspinous implant.
  • FIG. 2 b is a side view of the second embodiment of the interspinous implant in the saggital plane.
  • FIG. 2 c is a side view of an embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIG. 3 a is a posterior view of the third embodiment of the interspinous implant.
  • FIG. 3 b is a side view of the third embodiment of the interspinous implant in the saggital plane.
  • FIGS. 4 a-4 c are perspective, longitudinal and frontal cross-sectional views of a fourth embodiment of the present invention.
  • FIG. 4 d is a side view of the fourth embodiment of the interspinous implant implanted between adjacent vertebrae.
  • FIGS. 5 a-b are side views of a fifth embodiment of the interspinous implant having outer and inner flexible shells.
  • FIG. 6 is a side view of a functional spinal unit of the human anatomy.
  • DETAILED DESCRIPTION OF THE FIGURES
  • For the purposes of the present invention, the term “interspinous” refers to the volume located between two adjacent spinous processes of adjacent vertebrae. The terms “anterior” and “posterior” are used as they are normally used in spinal anatomy. Accordingly, the “anterior” portion of the interspinous device is that portion rests relatively close to the spinal cord, while the “posterior” portion of the interspinous device is that portion rests relatively close to the skin on the patient's back. Now referring to FIG. 6, there is provided an anatomic “functional spinal unit” or FSU comprising an upper vertebrae Vu having an upper vertebral body VBU and an upper spinous process SPu, a lower vertebra having a lower vertebral body VBL having a lower spinous process SPL. The vertebral bodies lies in the anterior A portion of the FSU, while the spinous processes lie in the posterior portion P of the FSU. Disposed between the vertebral bodies is a disc space DISC. Disposed between the spinous process is an “interspinous region”. Disposed between the spinous process and the vertebral body of each vertebra is a lamina L. The supraspinous ligament SSL lies posterior to the spinous processes. The Posterior longitudinal ligament PLL lies posterior to the vertebral bodies.
  • Now referring to FIGS. 1 a and 1 b, there is provided an interspinous implant 1 for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible body 11:
      • i) an upper posterior portion 21 having an upper surface 23 adapted to bear upon an upper spinous process and a width WUP,
      • ii) a lower posterior portion 31 having a lower surface 33 adapted to bear upon a lower spinous process and a width WLP, and
      • iii) a flexible arcuate anterior wall 41 connecting the upper and lower portions and having a narrowed portion 43 defining a minimum width WDW,
        wherein the minimum width of the anterior wall is less than the width WUP of the upper portion.
  • Now referring to FIG. 1 c, in use, the implant of FIGS. 1 a and 1 b is inserted into the interspinous region of an functional spinal unit (FSU), that is, between the adjacent spinous processes. The U-shaped body has a stiffness and geometry adapted to provide the desired spacing between the upper and lower process. In addition, in preferred embodiments, the U-shaped body is adapted to be somewhat flexible, so that it somewhat restricts the extent of extension motion of the FSU.
  • In preferred embodiments, the flexible body is U-shaped. In other embodiments, the flexible body has a posterior wall (preferably, arcuate) that flexibly connects the posterior portions of the upper and lower bearing surfaces of the flexible body to provide an overall substantially oval shape.
  • Preferably, the flexible body has a configuration and is made of a material that provides a first stiffness that limits the range of motion of the FSU. In some embodiments, the flexible body stiffness provides at least 50% of the overall initial stiffness of the implant, preferably at least 75%, more preferably at least 90%.
  • Preferably, the flexible body is adapted to provide a stiffness of between 50 N/mm and 1000 N/mm, more preferably between 100 N/mm and 500 N/mm. When the flexible body stiffness is in this range, it maintains the flexion/extension ROM of a normal lumbar FSU to less than 20 degrees, with less than 13 degrees of motion in flexion and less than 7 degrees of motion in extension. Preferably, the typical displacement of the posterior ends of the device under physiologic loading in the saggital plane is in the range of 1-6 mm.
  • The flexible can be made of a suitable biocompatible material typically used in structural spinal applications, including metals, plastics and ceramics. In some embodiments, the flexible body is made of a material selected from the group consisting of titanium alloy (including memory metals and superelastic alloys), stainless steel, and chrome cobalt. Preferably, the flexible body is provided in a sterile form.
  • Now referring to FIG. 1, in some embodiments, the flexible body has a height H of between 10 mm and 20 mm; a thickness T of between 1 mm and 2 mm; a length L of between 20 mm and 30 mm, and a width W of between 3 and 20 mm, preferably between 5 mm and 10 mm. In these embodiments, the implant can be easily inserted between typical adjacent spinous processes.
  • In some embodiments, the flexible body has a longitudinal cross section having a horseshoe shape. In others, the longitudinal cross-section describes a circle. In others, it is a pill shape. In others, it is substantially oval. In some embodiments, the upper and lower posterior portions are substantially non-parallel.
  • In some embodiments, as shown in FIG. 1 b, the upper and lower posterior portions of the flexible body each have a longitudinal recess 25 defining a bearing surface 23, 33 and opposing recess walls 27. The recess shape is adapted to receive projecting portions of the opposed spinous processes, thereby securing the U-shaped shell between the spinous processes. In some embodiments, the recess walls have teeth 28 extending inwardly therefrom that provide a more grip upon the spinous processes. In some embodiments, at least the bearing surfaces of the recess have teeth 415 (as shown in FIG. 4 c) extending outwardly therefrom that provide a more grip upon the spinous processes.
  • In some embodiments, the recess 25 defines an upper pair of extensions 45 extending from the bearing surface 33 and collectively defining a bracket. Each extension may comprise a transverse throughhole (not shown) adapted for fixing the implant to the adjacent spinous processes.
  • In some embodiments, each extension comprises a transverse throughhole adapted for fixing the implant to the adjacent spinous processes. In some embodiments, the implant further comprises a fastening element having a first end extending through the first transverse throughole and a second end extending through the second transverse through-hole.
  • The flexible body of the present invention preferably has a flexible anterior wall connecting the upper and lower portions of the U-shaped body, thereby providing a spring quality to the U-shaped body for flexibly resisting extreme FSU extension. This flexible anterior wall is preferably shaped to conform with the opposed surfaces of the opposing spinous processes (as shown in FIG. 1 c). This quality also insures the grip of the implant and reduces unwanted stresses upon the flexible body. In some embodiments, the thickness of the distal wall is greater than the thickness of the posterior portions.
  • Now referring to FIGS. 2 a and 2 b, there is provided an interspinous implant 51 for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible U-shaped body 61:
      • i) an upper portion 71 having an upper surface 73 adapted to bear upon an upper spinous process and a lower surface 75,
      • ii) a lower portion 81 having a lower surface 83 adapted to bear upon a lower spinous process and an upper surface 85,
      • iii) a flexible distal wall 91 connecting the upper and lower portions, and
    • b) a cushion element 95 having an upper surface 97 and a lower surface 99,
      wherein the lower surface of the upper portion of the flexible body comprises a porous coating 98 thereon, and wherein the upper surface of the cushion element is interdigitated with the porous coating.
  • In use, the cushion element provides a dampening effect upon natural extension. The interdigitated nature of the cushion bond reduces migration concerns.
  • In some embodiments, the bonding covers substantially the entire extent of the inner surface of the U-shaped body (i.e., the upper surface of the cushion is bonded to the lower surface of the upper posterior portion, the anterior surface of the cushion is bonded to the posterior surface of the flexible anterior wall, and the lower surface of the cushion is bonded to the upper surface of the lower posterior portion).
  • Now referring to FIG. 2 c, in some embodiments, the bonding covers only the posterior portions of the inner surface of the U-shaped body (i.e., the lower surface of the upper posterior portion, and the upper surface of the lower posterior portion, but not the posterior surface of the flexible anterior wall). The partial coverage of this embodiment provides an amount of stress relief to the cushion-U-shaped body interface.
  • The cushion element of FIGS. 2 a-2 b is preferably made of an elastomeric material, more preferably a polyolefin rubber or carbon black reinforced polyolefin rubber. The hardness of the elastomeric cushion element is preferably between 56 and 72 shore A durometer. The ultimate tensile strength of the cushion element is preferably greater than 1600 psi. The cushion element preferably has an ultimate elongation greater than 300% using the ASTM D412-87 testing method, and a tear resistance greater than 100 psi using the ASTM D624-86 testing method. Although the cushion element is preferably a polyolefin rubber, it can be made of any elastomeric material that simulates the response of the natural ligaments.
  • Still referring to FIG. 2 a, a porous coating 98 is provided as the inner surface of the U-shaped body. The porous coating provides an opportunity for the cushion element to interdigitate with the porous coating, and so obtain a greater amount of surface contact between the U-shaped body and the cushion, thereby achieving a lower maximum stress. In some embodiments, the coating covers the entire extent of the inner surface of the U-shaped body (i.e., the upper surface of the cushion is bonded to the lower surface of the upper posterior portion, the anterior surface of the cushion is bonded to the posterior surface of the flexible anterior wall, and the lower surface of the cushion is bonded to the upper surface of the lower posterior portion). Preferably, the coating comprises a layer of small spherical particles or beads.
  • In some embodiments, the coating covers only the posterior portions of the inner surface of the U-shaped body (i.e., the lower surface of the upper posterior portion, and the upper surface of the lower posterior portion, but not the posterior surface of the flexible anterior wall).
  • In some embodiments, a coating may also be applied to the superior side of the upper portion and the inferior side of the lower portion to promote bony ingrowth and osteointegration. In some embodiments thereof, and the coating may include beads, and may have osteobiologic components such as hydroxyapatite or tricalcium phosphate.
  • The present inventors have noted that there may be a need to correct the range of motion (ROM) provided by a motion disc after the motion disc has been implanted and there is need to change the load transferred through the facet joints to alleviate pain and facet joint degeneration.
  • For example, because implantation of spinal prostheses is an inexact procedure, there may be times when implantation provides too much or too little motion. For example, in some implantation procedures, damage to the anterior longitudinal ligament (ALL) is contemplated. Because the ALL in its physiologic form restricts the flexion/extension range of the natural disc, damage to it may provide the implanted disc with an unacceptably large range of motion (ROM) in flexion and extension. This overly large ROM is problematic because it produces atypical loads upon the facet joints as well as the adjacent intervertebral discs, thereby leading to premature degeneration of those facet joints and intervertebral discs. Accordingly, there may be a need to post-operatively correct the ROM of the implant in order to fine tune the ROM.
  • In another example, an implanted disc has an acceptable ROM at the time of implantation, but the patient undergoes typical aging so that the patient's normal range of motion decreases over time. In this case, it may be desirable to decrease the implant ROM so that it corresponds with the patient's natural decreased ROM.
  • Accordingly, there may be a need to post-operatively correct the ROM of the implant in order to adjust the implant ROM to the new needs of the patient.
  • The implant of the present invention is advantageous because it can be inserted into the spine at a first stiffness, and then adjusted to a second stiffness to meet the needs of the particular patient.
  • In a first preferred embodiment, the stiffness of the implant is adjusted post-operatively in order to fine tune the implant to the surgical needs of the patient.
  • In a second preferred embodiment, the stiffness of the implant is adjusted in order to fine tune the implant to the changing post-surgical needs of the patient.
  • In many embodiments, the stiffness of the implant is increased in order to reduce the ROM of a functional spinal unit (FSU).
  • In some embodiments, the implant further comprises a compression spring, and the overall stiffness of the implant is changed by adjusting the length of the compression spring. Now referring to FIGS. 3 a-3 b, in some embodiments, there is provided an interspinous implant 301 for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible outer shell 311 comprising:
      • i) an upper posterior portion 315 adapted to bear upon an upper spinous process,
      • ii) a lower posterior portion 321 adapted to bear upon a lower spinous process,
      • iii)a flexible anterior wall 325 connecting the upper and lower posterior portions,
    • b) a compression spring 341 having an upper portion 343 and a lower portion 345, the upper portion of the compression screw being attached to the upper posterior portion of the flexible outer shell, and
    • c) a worm screw 351 having a lower portion 353 connected to the lower posterior portion and an upper portion 355 contacting the lower portion of the compression spring.
      In this particular embodiment, the upper portion of the worm screw comprises a cup 357 having an annular sidewall 359 extending upward. The lower end portion of the compression spring is not rigidly attached to the cup, but rather sits freely in the annulus and bears against the cup. Containment by the cup allows the upper end of the worm screw to simply bear against the lower end of the spring without requiring rigid connection thereto.
  • In use, actuation of the worm screw causes inner thread 363 of the worm screw to turn relative to the outer cylinder 361 of the worm screw. The outer cylinder 361 responds by moving axially upward, thereby forcing compression of the compression spring, and increasing the effective resistance of the device to axial compression.
  • Now referring to FIGS. 4 a-4 c, in some embodiments, there is provided an interspinous implant 401 for insertion between adjacent spinous processes, the implant having an implant stiffness and comprising:
    • a) a flexible outer shell 411 having a shell stiffness and comprising:
      • i) an upper surface 415 adapted to bear upon an upper spinous process,
      • ii) a lower surface 421 adapted to bear upon a lower spinous process,
      • iii) an arcuate anterior wall 425 connecting the upper and lower surfaces, and
      • iv) an arcuate posterior wall 431 extending between the upper and lower surfaces,
    • b) compliant side walls 451,453, extending between the upper and lower surfaces, and
    • c) an inner core 441 (such as a hydrogel) contained within the shell, wherein the inner core has an adjustable stiffness.
  • When it is desired to decrease the range of motion (“ROM”) of the functional spinal unit (“FSU”), the stiffness of the core material may be increased, thereby increasing the stiffness of the implant and its resistance to an axial load. The resulting increase in the stiffness of the interspinous implant provides a more substantial resistance to extension, thereby desirably decreasing the ROM of the FSU to correspond with the needs of the patient.
  • Similarly, when it is desired to increase the range of motion (“ROM”) of the functional spinal unit (“FSU”), the stiffness of the core material is decreased, thereby decreasing the stiffness of the implant and its resistance to an axial load. The resulting decrease in the stiffness of the interspinous implant reduces resistance to extension, thereby desirably increasing the ROM of the FSU to correspond with the needs of the patient.
  • The implant of this embodiment of the present invention also has a flexible posterior wall extending between the upper and lower portions of the U-shaped body. This posterior wall is preferably arcuate and preferably connects the upper surface of the lower portion and the lower surface of the upper portion of the U-shaped body to form a substantially oval body (as shown). In this condition, the posterior wall provides substantial closure to the U-shaped body. Accordingly, adjustment of the stiffness of the core material residing within the outer shell increases or decreases the stiffness of the implant.
  • The compliance of the sidewalls is selected to correspond with the level of resistance desired by the implant. For example, in some embodiments (as in FIG. 4 a-4 c,) the sidewalls are very thin and may be made of a very flexible material, such as a plastic weave. In these embodiments, the high compliance of the sidewalls will allow the core material to bulge laterally in response to an axial load, thereby tempering the resistance provided by the core material to the axial load.
  • In other embodiments, however, the sidewalls can be made of metal, and even be integral with the outer shell. In these embodiments, the sidewalls will be flexible but more rigid than a plastic membrane. In these embodiments, the relative rigidity of the sidewalls will not allow the core material to bulge significantly laterally, thereby augmenting the resistance provided by the core material to the axial load.
  • Preferably, the core is a fluid material contained within the cavity of the shell and is made of a material having a quality whose adjustment will produce a change in the stiffness of the implant. When the stiffness of the core is adjusted, the overall stiffness of the implant correspondingly changes. In some embodiments, the core has a first stiffness and contributes between 10 and 20% of the overall initial stiffness of the implant. In such embodiments, the stiffness of the core is increased to a second stiffness that increases the overall initial stiffness of the implant up to at least 40% to provide an adjusted implant stiffness of at least 300 N/mm, and more preferably at least 500 N/mm. When the implant stiffness is in this range, the implant can by itself provide sufficient stiffness to reduce the extension of a normal lumbar FSU to less than 7 degrees, preferably less than 5 degrees.
  • Preferably, the core material is selected to be sensitive to an external stimulus, which, when applied, stimulates the core material to adjust its stiffness from a first stiffness to a second stiffness. In some embodiments, the stimulus stimulates the core to increase its stiffness. In some embodiments, the stimulus stimulates the core to lower its stiffness.
  • Preferably, the core material is sensitive to a stimulus selected from the group consisting pH, light, and electric current.
  • In preferred embodiments, the core material comprises a hydrogel. In preferred embodiments, the hydrogel undergoes expansion when stimulated by a decreased pH. The resulting expansion of the core material increases the stiffness of the core, thereby increasing the stiffness of the implant and providing increased resistance to extension by the FSU. In some embodiments, the hydrogel is selected from ionic polymers disclosed in US Published Patent Application No. 2002/0039620, the specification of which is incorporated by reference in its entirety. In some embodiments, the hydrogel is selected from ionic polymers disclosed in U.S. Pat. No. 6,475,639, the specification of which is incorporated by reference in its entirety.
  • When pH is selected as the stimuli, in some embodiments, an acid or a base is introduced into the core material from an ex vivo source. For example, the acid or base can be administered subcutaneously via a hypodermic needle and introduced into the core material through a fluid port 455. The provision of a fluid port provides the surgeon with the flexibility to selected the amount of acid or base needed to suit the needs of the patient.
  • In other embodiments in which pH is selected as the stimuli, the implant further comprises a container that individually houses and sequesters the acid or base from the core material. For example, the acid or base can be sequestered in a valved, separate compartment within the shell that is in fluid connection with the cavity housing the core material. The valve is opened (for example, by telemetry), the acid or base enters the cavity housing the core material and mixes with the core material. The resulting pH change causes a change in the specific volume of the core material, thereby increasing or decreasing the stiffness of the core material and the overall implant. The advantage of this embodiment is that the stiffness of the implant is changed through a completely non-invasive technique.
  • In some embodiments (not shown), the device could be made of a shape memory metal having a relatively flexible property during the martensitic phase and a relatively stiff property in the austenitic phase. In one embodiment, this memory metal device could be implanted in its flexible martensitic phase. If the clinician desires to increase the stiffness of the implant, the clinician could raise the temperature of the device (by heating) to a temperature above its austenitic phase, thereby increasing the stiffness of the device and increasing its resistance to an axial compressive load.
  • In some embodiments of the present invention, the implant further comprises smart features for helping the surgeon monitor and react to the changing conditions of the implanted device.
  • In some embodiments, a sensing means is also used with the implant of the present invention. This sensing means analyzes physical surroundings. Its purpose is to identify when a significant change has occurred which could warrant adjusting the stiffness of the implant. The sensor can be contained within the implant, or provided as a stand alone entity.
  • In some embodiments, a reporting means for reporting the findings of the sensors to an ex vivo source is also used with the implant of the present invention. The reporter can be contained within the implant, or provided as a stand alone entity.
  • In some embodiments, a receiver for receiving ex vivo-generated information is also used with the implant of the present invention. The receiver can be contained within the implant, or provided as a stand alone entity.
  • In some embodiments, the implant comprises two shells having flexible anterior walls extending in the same direction, wherein the stiffness is adjusted by adjusting the distance between the respective flexible anterior walls. Now referring to FIG. 5 a, there is provided an interspinous implant 501 for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible outer shell 511 comprising:
      • i) an upper posterior portion 515 adapted to bear upon an upper spinous process and having a lower end 517 having a first set of teeth 519,
      • ii) a lower posterior portion 521 adapted to bear upon a lower spinous process and having a upper end 522 having a second set of teeth 523,
      • iii) a flexible anterior wall 525 connecting the upper and lower posterior portions of the flexible outer shell,
    • b) a flexible inner shell 551 comprising:
      • i) an upper posterior portion 555 having an upper end 556 having a third set of teeth 557 engaged in the first set of teeth,
      • ii) a lower posterior portion 571 having a lower end 573 having fourth set of teeth 577 engaged in the second set of teeth,
      • iii)a flexible anterior wall 575 connecting the upper and lower posterior portions.
  • In use, the implant of FIG. 5 a is implanted into the interspinous void so that the opposing sets of teeth of the inner and outer shells are engaged to the opposed spinous processes, thereby providing a secure implant and defining a distance between the anterior walls D1 of the inner and outer shells. If the clinician desires to change the stiffness of the implant, then the clinician may alter the distance D between the anterior walls of the inner and outer shells. Reducing the distance D between the anterior walls will cause a decrease in the stiffness of the implant, while increasing the distance D between the anterior walls will cause an increase in the stiffness of the implant.
  • Now referring to FIG. 5 b, when the clinician desires to decrease the stiffness of the implant of FIG. 5 a, the clinician can use a pair of foreceps (not shown) to engage the slots 581 provided on the upper and lower posterior portions of the inner shell. Providing a clamping force through the foreceps squeezes together the posterior portions of the inner shell, thereby disengaging the respective pairs of teeth. The clinician can then move the disengaged inner shell anteriorly by a predetermined distance to a second position (shown in shadow), thereby decreasing the distance between the anterior walls to a smaller distance D2 and lowering the stiffness of the implant.
  • In other embodiments, the slots of the implant of FIGS. 5 a and 5 b are replaced within other means for adjusting the distance D between the flexible anterior walls of the inner and outer shells. For example, in some embodiments, a set screw or a worm gear may be provided on the implant to alter the distance D, thereby adjusting the stiffness of the implant.
  • Therefore, in accordance with the present invention, there is provided an interspinous implant for insertion between adjacent spinous processes, the implant comprising:
    • a) a flexible outer shell comprising:
      • i) an upper posterior portion adapted to bear upon an upper spinous process and having a lower end having a first set of teeth,
      • ii) a lower posterior portion adapted to bear upon a lower spinous process and having a upper end having a second set of teeth,
      • iii)a flexible anterior wall connecting the upper and lower posterior portions of the flexible outer shell,
    • b) a flexible inner shell comprising:
      • i) an upper posterior portion having an upper end having a third set of teeth engaged in the first set of teeth,
      • ii) a lower posterior portion having a lower end having fourth set of teeth engaged in the second set of teeth,
      • iii) a flexible anterior wall connecting the upper and lower posterior portions.
  • In preferred embodiments, the implant of the present invention is used posteriorly in conjunction with a motion disc inserted within the disc space of the anterior portion of the spinal column. For example, in some embodiments, the implant of the present invention is used in conjunction with a motion disc having a large range of motion (“ROM”). Various motion discs are described by Stefee et al. in U.S. Pat. No. 5,071,437; Gill et al. in U.S. Pat. No. 6,113,637; Bryan et al. in U.S. Pat. No. 6,001,130; Hedman et al. in U.S. Pat. No. 4,759,769; Ray in U.S. Pat. No. 5,527,312; Ray et al. in U.S. Pat. No. 5,824,093; Buttner-Janz in U.S. Pat. No. 5,401,269; and Serhan et al. in U.S. Pat. No. 5,824,094; all which documents are hereby incorporated herein by reference in their entireties. The flexibility of the flexible body provides resistance to extreme extension, thereby restricting the motion disc to a more narrow and more physiologically desirable range of motion.
  • Therefore, in accordance with the present invention, there is provided a kit for providing therapy to a functional spinal unit comprising an upper vertebrae having an upper spinous process, a lower vertebrae having a lower spinous process, and a disc space therebetween, the kit comprising:
    • a) an interspinous implant for insertion between adjacent spinous processes, the implant comprising a flexible (preferably, U-shaped) body comprising:
      • i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process,
      • ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process, and
      • iii) a flexible (preferably arcuate) anterior wall connecting the upper and lower portions, and
    • b) an artificial disc adapted for insertion into the disc space.

Claims (10)

We claim:
1. An interspinous implant for insertion between adjacent spinous processes, the implant comprising:
a) a flexible body comprising:
i) an upper posterior portion having an upper surface adapted to bear upon an upper spinous process,
ii) a lower posterior portion having a lower surface adapted to bear upon a lower spinous process, and
iii) an arcuate, flexible anterior wall connecting the upper and lower portions,
wherein the anterior wall has a narrowed portion.
2. The implant of claim 1 wherein the flexible body is substantially U-shaped.
3. The implant of claim 1 wherein the flexible body further comprises:
iv) an arcuate, flexible posterior wall connecting the upper and lower portions.
4. The implant of claim 1 further comprising:
b) a lower pair of extensions extending downward from the lower surface of the lower portion of the flexible body and collectively defining a lower bracket.
5. The implant of claim 4 wherein each extension comprises a transverse throughhole adapted for fixing the implant to the adjacent spinous processes.
6. The implant of claim 5 further comprising:
c) a fastening element having a first end extending through the first transverse throughole and a second end extending through the second transverse through hole.
7. The implant of claim 4 each extension comprises an inner wall and a fixation element extending inwardly from the inner wall, the fixation element adapted for fixing the implant to the adjacent spinous processes.
8. The implant of claim 1 wherein the upper and lower posterior portions are substantially non-parallel.
9. The implant of claim 1 wherein the flexible body is adapted to provide a stiffness of between 50 N/mm and 1000 N/mm.
10. The implant of claim 1 wherein the flexible body is adapted to provide a stiffness of between 100 N/mm and 500 N/mm.
US14/134,090 2004-03-06 2013-12-19 Dynamized Interspinal Implant Abandoned US20140107704A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/134,090 US20140107704A1 (en) 2004-03-06 2013-12-19 Dynamized Interspinal Implant
US14/845,687 US9402654B2 (en) 2004-03-06 2015-09-04 Dynamized interspinal implant
US15/148,937 US9662147B2 (en) 2004-03-06 2016-05-06 Dynamized interspinal implant
US15/149,085 US9662148B2 (en) 2004-03-06 2016-05-07 Dynamized interspinal implant
US15/149,132 US9662149B2 (en) 2004-03-06 2016-05-08 Dynamized interspinal implant
US15/219,505 US9668785B2 (en) 2004-03-06 2016-07-26 Dynamized interspinal implant
US15/446,554 US9949769B2 (en) 2004-03-06 2017-03-01 Dynamized interspinal implant
US15/787,998 US10433881B2 (en) 2004-03-06 2017-10-19 Dynamized interspinal implant
US15/927,512 US10512489B2 (en) 2004-03-06 2018-03-21 Dynamized interspinal implant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/793,967 US8636802B2 (en) 2004-03-06 2004-03-06 Dynamized interspinal implant
US14/134,090 US20140107704A1 (en) 2004-03-06 2013-12-19 Dynamized Interspinal Implant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/793,967 Division US8636802B2 (en) 2004-03-06 2004-03-06 Dynamized interspinal implant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/845,687 Continuation US9402654B2 (en) 2004-03-06 2015-09-04 Dynamized interspinal implant

Publications (1)

Publication Number Publication Date
US20140107704A1 true US20140107704A1 (en) 2014-04-17

Family

ID=34919753

Family Applications (10)

Application Number Title Priority Date Filing Date
US10/793,967 Active 2027-01-22 US8636802B2 (en) 2004-03-06 2004-03-06 Dynamized interspinal implant
US14/134,090 Abandoned US20140107704A1 (en) 2004-03-06 2013-12-19 Dynamized Interspinal Implant
US14/845,687 Expired - Lifetime US9402654B2 (en) 2004-03-06 2015-09-04 Dynamized interspinal implant
US15/148,937 Expired - Lifetime US9662147B2 (en) 2004-03-06 2016-05-06 Dynamized interspinal implant
US15/149,085 Expired - Lifetime US9662148B2 (en) 2004-03-06 2016-05-07 Dynamized interspinal implant
US15/149,132 Expired - Lifetime US9662149B2 (en) 2004-03-06 2016-05-08 Dynamized interspinal implant
US15/219,505 Expired - Lifetime US9668785B2 (en) 2004-03-06 2016-07-26 Dynamized interspinal implant
US15/446,554 Expired - Lifetime US9949769B2 (en) 2004-03-06 2017-03-01 Dynamized interspinal implant
US15/787,998 Expired - Lifetime US10433881B2 (en) 2004-03-06 2017-10-19 Dynamized interspinal implant
US15/927,512 Expired - Lifetime US10512489B2 (en) 2004-03-06 2018-03-21 Dynamized interspinal implant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/793,967 Active 2027-01-22 US8636802B2 (en) 2004-03-06 2004-03-06 Dynamized interspinal implant

Family Applications After (8)

Application Number Title Priority Date Filing Date
US14/845,687 Expired - Lifetime US9402654B2 (en) 2004-03-06 2015-09-04 Dynamized interspinal implant
US15/148,937 Expired - Lifetime US9662147B2 (en) 2004-03-06 2016-05-06 Dynamized interspinal implant
US15/149,085 Expired - Lifetime US9662148B2 (en) 2004-03-06 2016-05-07 Dynamized interspinal implant
US15/149,132 Expired - Lifetime US9662149B2 (en) 2004-03-06 2016-05-08 Dynamized interspinal implant
US15/219,505 Expired - Lifetime US9668785B2 (en) 2004-03-06 2016-07-26 Dynamized interspinal implant
US15/446,554 Expired - Lifetime US9949769B2 (en) 2004-03-06 2017-03-01 Dynamized interspinal implant
US15/787,998 Expired - Lifetime US10433881B2 (en) 2004-03-06 2017-10-19 Dynamized interspinal implant
US15/927,512 Expired - Lifetime US10512489B2 (en) 2004-03-06 2018-03-21 Dynamized interspinal implant

Country Status (1)

Country Link
US (10) US8636802B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402654B2 (en) 2004-03-06 2016-08-02 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10076366B2 (en) * 2016-10-21 2018-09-18 Essence Medical Devices Co., Ltd. Vertebral lamina supporting device
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment

Families Citing this family (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US7201751B2 (en) 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US20080027552A1 (en) * 1997-01-02 2008-01-31 Zucherman James F Spine distraction implant and method
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US8128661B2 (en) 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US20080039859A1 (en) 1997-01-02 2008-02-14 Zucherman James F Spine distraction implant and method
US20080071378A1 (en) * 1997-01-02 2008-03-20 Zucherman James F Spine distraction implant and method
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
FR2812185B1 (en) 2000-07-25 2003-02-28 Spine Next Sa SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION
FR2844179B1 (en) 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US20080021468A1 (en) 2002-10-29 2008-01-24 Zucherman James F Interspinous process implants and methods of use
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US7833246B2 (en) * 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US7909853B2 (en) 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US20060064165A1 (en) * 2004-09-23 2006-03-23 St. Francis Medical Technologies, Inc. Interspinous process implant including a binder and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US20050075634A1 (en) * 2002-10-29 2005-04-07 Zucherman James F. Interspinous process implant with radiolucent spacer and lead-in tissue expander
US7335203B2 (en) 2003-02-12 2008-02-26 Kyphon Inc. System and method for immobilizing adjacent spinous processes
CN1774220A (en) 2003-02-14 2006-05-17 德普伊斯派尔公司 In-situ formed intervertebral fusion device and method
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US8496660B2 (en) * 2003-10-17 2013-07-30 K2M, Inc. Systems, devices and apparatuses for bony fixation and disk repair and replacement and methods related thereto
WO2005037082A2 (en) 2003-10-17 2005-04-28 Highgate Orthorpedics, Inc. Systems, devices and apparatuses for bony fixation and disk repair and replacement and methods related thereto
AU2003271501A1 (en) * 2003-10-30 2005-05-19 Synthes Gmbh Intervertebral implant
US7458981B2 (en) * 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US8523904B2 (en) 2004-03-09 2013-09-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for constraint of spinous processes with attachment
US7585316B2 (en) * 2004-05-21 2009-09-08 Warsaw Orthopedic, Inc. Interspinous spacer
US8114158B2 (en) * 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US8012209B2 (en) 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
WO2006041963A2 (en) 2004-10-05 2006-04-20 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US7927354B2 (en) 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US8029549B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8096995B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20070276373A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7998208B2 (en) * 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US7988709B2 (en) 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US8092459B2 (en) 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
JP2006253316A (en) * 2005-03-09 2006-09-21 Sony Corp Solid-state image sensing device
US20060241757A1 (en) * 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8066742B2 (en) 2005-03-31 2011-11-29 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
CN103479419B (en) 2005-04-08 2017-04-12 帕拉迪格脊骨有限责任公司 Interspinous vertebral and lumbosacral stabilization devices and methods of use
US7862590B2 (en) 2005-04-08 2011-01-04 Warsaw Orthopedic, Inc. Interspinous process spacer
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US7780709B2 (en) * 2005-04-12 2010-08-24 Warsaw Orthopedic, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US7789898B2 (en) * 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
US7727233B2 (en) 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20070049849A1 (en) * 2005-05-24 2007-03-01 Schwardt Jeffrey D Bone probe apparatus and method of use
FR2887434B1 (en) 2005-06-28 2008-03-28 Jean Taylor SURGICAL TREATMENT EQUIPMENT OF TWO VERTEBRATES
US7753938B2 (en) * 2005-08-05 2010-07-13 Synthes Usa, Llc Apparatus for treating spinal stenosis
US8870890B2 (en) * 2005-08-05 2014-10-28 DePuy Synthes Products, LLC Pronged holder for treating spinal stenosis
CN103169533B (en) 2005-09-27 2015-07-15 帕拉迪格脊骨有限责任公司 Interspinous vertebral stabilization devices
US8267970B2 (en) * 2005-10-25 2012-09-18 Depuy Spine, Inc. Laminar hook spring
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7862591B2 (en) * 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8002802B2 (en) * 2005-12-19 2011-08-23 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
EP1981445A4 (en) * 2006-01-17 2012-05-23 K2M Inc Systems, devices and apparatuses for bony fixation and disk repair and replacement and methods related thereto
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7578849B2 (en) * 2006-01-27 2009-08-25 Warsaw Orthopedic, Inc. Intervertebral implants and methods of use
US7682376B2 (en) * 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US7691130B2 (en) * 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7837711B2 (en) 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
WO2007089905A2 (en) * 2006-02-01 2007-08-09 Synthes (U.S.A.) Interspinous process spacer
US9011441B2 (en) * 2006-02-17 2015-04-21 Paradigm Spine, L.L.C. Method and system for performing interspinous space preparation for receiving an implant
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US7985246B2 (en) 2006-03-31 2011-07-26 Warsaw Orthopedic, Inc. Methods and instruments for delivering interspinous process spacers
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
DE102007018860B4 (en) * 2006-04-28 2023-01-05 Paradigm Spine L.L.C. Instrument system for use with an interspinous implant
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US8252031B2 (en) 2006-04-28 2012-08-28 Warsaw Orthopedic, Inc. Molding device for an expandable interspinous process implant
US7846185B2 (en) 2006-04-28 2010-12-07 Warsaw Orthopedic, Inc. Expandable interspinous process implant and method of installing same
US20070270823A1 (en) 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Multi-chamber expandable interspinous process brace
US8348978B2 (en) 2006-04-28 2013-01-08 Warsaw Orthopedic, Inc. Interosteotic implant
US8105357B2 (en) 2006-04-28 2012-01-31 Warsaw Orthopedic, Inc. Interspinous process brace
US8062337B2 (en) 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8529626B2 (en) * 2006-05-09 2013-09-10 Centinel Spine, Inc. Systems and methods for stabilizing a functional spinal unit
US20070276496A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
WO2008008522A2 (en) 2006-07-13 2008-01-17 Highgate Orthopedics, Inc. Devices and methods for stabilizing a spinal region
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
WO2008013960A2 (en) 2006-07-27 2008-01-31 Abdou Samy M Devices and methods for the minimally invasive treatment of spinal stenosis
US20080086115A1 (en) 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8162982B2 (en) 2006-10-19 2012-04-24 Simpirica Spine, Inc. Methods and systems for constraint of multiple spine segments
US8187307B2 (en) 2006-10-19 2012-05-29 Simpirica Spine, Inc. Structures and methods for constraining spinal processes with single connector
US8029541B2 (en) 2006-10-19 2011-10-04 Simpirica Spine, Inc. Methods and systems for laterally stabilized constraint of spinous processes
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
US20080177298A1 (en) * 2006-10-24 2008-07-24 St. Francis Medical Technologies, Inc. Tensioner Tool and Method for Implanting an Interspinous Process Implant Including a Binder
FR2908035B1 (en) 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
US20080114357A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity
AR064013A1 (en) * 2006-11-30 2009-03-04 Paradigm Spine Llc VERTEBRAL, INTERLAMINAR, INTERESPINOUS STABILIZATION SYSTEM
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US20080167657A1 (en) * 2006-12-31 2008-07-10 Stout Medical Group, L.P. Expandable support device and method of use
US8974496B2 (en) 2007-08-30 2015-03-10 Jeffrey Chun Wang Interspinous implant, tools and methods of implanting
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US8075596B2 (en) * 2007-01-12 2011-12-13 Warsaw Orthopedic, Inc. Spinal prosthesis systems
US8034081B2 (en) * 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US7842074B2 (en) * 2007-02-26 2010-11-30 Abdou M Samy Spinal stabilization systems and methods of use
US20080269897A1 (en) * 2007-04-26 2008-10-30 Abhijeet Joshi Implantable device and methods for repairing articulating joints for using the same
US20080268056A1 (en) * 2007-04-26 2008-10-30 Abhijeet Joshi Injectable copolymer hydrogel useful for repairing vertebral compression fractures
US9173686B2 (en) * 2007-05-09 2015-11-03 Ebi, Llc Interspinous implant
US9381047B2 (en) 2007-05-09 2016-07-05 Ebi, Llc Interspinous implant
US20080281361A1 (en) * 2007-05-10 2008-11-13 Shannon Marlece Vittur Posterior stabilization and spinous process systems and methods
US8840646B2 (en) 2007-05-10 2014-09-23 Warsaw Orthopedic, Inc. Spinous process implants and methods
US20080294199A1 (en) * 2007-05-25 2008-11-27 Andrew Kohm Spinous process implants and methods of using the same
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8348976B2 (en) * 2007-08-27 2013-01-08 Kyphon Sarl Spinous-process implants and methods of using the same
US8968365B2 (en) * 2007-09-14 2015-03-03 DePuy Synthes Products, LLC Interspinous spacer
US20090112262A1 (en) 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
US20090198338A1 (en) 2008-02-04 2009-08-06 Phan Christopher U Medical implants and methods
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8202299B2 (en) 2008-03-19 2012-06-19 Collabcom II, LLC Interspinous implant, tools and methods of implanting
US8343190B1 (en) 2008-03-26 2013-01-01 Nuvasive, Inc. Systems and methods for spinous process fixation
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20090297603A1 (en) * 2008-05-29 2009-12-03 Abhijeet Joshi Interspinous dynamic stabilization system with anisotropic hydrogels
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US9044278B2 (en) * 2008-11-06 2015-06-02 Spinal Kinetics Inc. Inter spinous process spacer with compressible core providing dynamic stabilization
JP2012508597A (en) 2008-11-12 2012-04-12 シンピライカ スパイン, インコーポレイテッド Adjusted restraint device and method of use
US8216278B2 (en) * 2008-12-22 2012-07-10 Synthes Usa, Llc Expandable interspinous process spacer
US8114135B2 (en) 2009-01-16 2012-02-14 Kyphon Sarl Adjustable surgical cables and methods for treating spinal stenosis
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
WO2010114925A1 (en) 2009-03-31 2010-10-07 Lanx, Inc. Spinous process implants and associated methods
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
AU2010289288B2 (en) 2009-09-04 2015-11-26 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
WO2011047157A1 (en) 2009-10-14 2011-04-21 Latitude Holdings, Llc Spinous process fixation plate and minimally invasive method for placement
US8771317B2 (en) 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8388656B2 (en) * 2010-02-04 2013-03-05 Ebi, Llc Interspinous spacer with deployable members and related method
EP2538889A1 (en) * 2010-02-22 2013-01-02 Synthes GmbH Total disc replacement with w-shaped spring elements
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
US9204907B2 (en) * 2010-07-15 2015-12-08 Kamran Aflatoon Dynamic inter-spinous process spacer
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US8734488B2 (en) 2010-08-09 2014-05-27 Ellipse Technologies, Inc. Maintenance feature in magnetic implant
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8603142B2 (en) 2010-12-05 2013-12-10 James C. Robinson Spinous process fixation apparatus and method
US8603143B2 (en) 2010-12-05 2013-12-10 James C. Robinson Spinous process fixation apparatus
US8496689B2 (en) 2011-02-23 2013-07-30 Farzad Massoudi Spinal implant device with fusion cage and fixation plates and method of implanting
US8562650B2 (en) 2011-03-01 2013-10-22 Warsaw Orthopedic, Inc. Percutaneous spinous process fusion plate assembly and method
US8425560B2 (en) 2011-03-09 2013-04-23 Farzad Massoudi Spinal implant device with fixation plates and lag screws and method of implanting
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
USD757943S1 (en) 2011-07-14 2016-05-31 Nuvasive, Inc. Spinous process plate
US8882805B1 (en) 2011-08-02 2014-11-11 Lawrence Maccree Spinal fixation system
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US10448977B1 (en) * 2012-03-31 2019-10-22 Ali H. MESIWALA Interspinous device and related methods
ITMI20120936A1 (en) * 2012-05-30 2013-12-01 Promev S R L INTERLAMINAR-INTERSPINOSUS VERTEBRAL DEVICE
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
US9138325B2 (en) * 2012-07-11 2015-09-22 Globus Medical, Inc. Lamina implant and method
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
AU2013308332B2 (en) 2012-08-31 2017-01-19 Newsouth Innovations Pty Limited Bone stabilization device and methods of use
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
EP2967902A4 (en) * 2013-03-15 2016-12-14 Anand K Agarwal Spinal rods formed from polymer and hybrid materials and growth rod distraction system including same
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9592083B2 (en) * 2013-08-30 2017-03-14 New South Innovations Pty Limited Spine stabilization device
EP3110352B1 (en) * 2014-02-25 2023-03-29 Refai Technologies, LLC Spinal cage device, system, and methods of assembly and use
US9554831B2 (en) * 2014-04-21 2017-01-31 Warsaw Orthopedic, Inc. Intervertebral spinal implant and method
US10314619B2 (en) 2014-10-23 2019-06-11 Nuvasive Specialized Orthopedics, Inc. Remotely adjustable interactive bone reshaping implant
US10326728B2 (en) * 2014-12-11 2019-06-18 International Business Machines Corporation Origin-based consolidation of related content within social network posts
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
AU2016303648B2 (en) 2015-07-31 2021-03-25 Paradigm Spine, Llc Interspinous stabilization and fusion device
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
EP3228268A4 (en) * 2015-10-21 2018-08-08 Bioda Diagnostics (Wuhan) Co.,Ltd Interspinous omnidirectional dynamic stabilization device
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
CN109688981A (en) 2016-06-28 2019-04-26 Eit 新兴移植技术股份有限公司 Distensible, adjustable angle intervertebral cage
JP7023877B2 (en) 2016-06-28 2022-02-22 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle-adjustable range-of-motion intervertebral cage
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11278238B2 (en) * 2018-09-14 2022-03-22 Warsaw Orthopedic, Inc. Wearable sensor device and analysis platform for objective outcome assessment in spinal diseases
US11589905B2 (en) 2018-07-19 2023-02-28 Warsaw Orthopedic, Inc. Set screw sensor placement
US11529208B2 (en) 2018-07-19 2022-12-20 Warsaw Orthopedic, Inc. Break-off set screw
US11707299B2 (en) 2018-07-19 2023-07-25 Warsaw Orthopedic, Inc. Antenna placement for a digital set screw
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
AU2020217806A1 (en) 2019-02-07 2021-08-26 Nuvasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
USD923793S1 (en) * 2020-10-30 2021-06-29 Perumala Holdings, LLC Intervertebral cage
US20220265327A1 (en) 2021-02-23 2022-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors

Family Cites Families (517)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
CH624573A5 (en) 1978-02-01 1981-08-14 Sulzer Ag Intervertebral prosthesis
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
US5030233A (en) 1984-10-17 1991-07-09 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4871366A (en) 1986-05-27 1989-10-03 Clemson University Soft tissue implants for promoting tissue adhesion to same
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
CH671691A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1283501C (en) 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
US4714469A (en) * 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
DE8807485U1 (en) * 1988-06-06 1989-08-10 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US4911718A (en) 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
CA1318469C (en) * 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
DE3911610A1 (en) 1989-04-08 1990-10-18 Bosch Gmbh Robert ARTIFICIAL DISC
US5024670A (en) * 1989-10-02 1991-06-18 Depuy, Division Of Boehringer Mannheim Corporation Polymeric bearing component
DE8912648U1 (en) 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
FR2659226B1 (en) 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
DE4012622C1 (en) 1990-04-20 1991-07-18 Eska Medical Luebeck Medizintechnik Gmbh & Co, 2400 Luebeck, De Two-part metal vertebra implant - has parts locked by two toothed racks, pre-stressed by elastic cushion between both implant parts
US5134477A (en) 1990-12-11 1992-07-28 At&T Bell Laboratories Hdtv receiver
US5123926A (en) 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
JP3007903B2 (en) 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
US5290312A (en) 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
GB9125798D0 (en) 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
US5425773A (en) 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5344252A (en) 1992-02-12 1994-09-06 Hiroshi Kakimoto Key for coupling driving and driven members together
DE4208115A1 (en) 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
DE4208116C2 (en) * 1992-03-13 1995-08-03 Link Waldemar Gmbh Co Intervertebral disc prosthesis
DE59206917D1 (en) 1992-04-21 1996-09-19 Sulzer Medizinaltechnik Ag Artificial intervertebral disc body
US5306309A (en) 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
FR2694882B1 (en) 1992-08-24 1994-10-21 Sofamor Intervertebral disc prosthesis.
JPH06178787A (en) 1992-12-14 1994-06-28 Shima Yumiko Centrum spacer with joint, intervertebral cavity measuring device and centrum spacer pattern
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
DE69428143T2 (en) 1993-02-09 2002-05-29 Depuy Acromed Inc disc
FR2707480B1 (en) 1993-06-28 1995-10-20 Bisserie Michel Intervertebral disc prosthesis.
DE4423826B4 (en) 1993-07-07 2007-01-04 Pentax Corp. Ceramic vertebral prosthesis
US5372660A (en) 1993-08-26 1994-12-13 Smith & Nephew Richards, Inc. Surface and near surface hardened medical implants
US5458641A (en) 1993-09-08 1995-10-17 Ramirez Jimenez; Juan J. Vertebral body prosthesis
FR2709949B1 (en) * 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
BE1007549A3 (en) 1993-09-21 1995-08-01 Beckers Louis Francois Charles Implant.
CN1156255C (en) 1993-10-01 2004-07-07 美商-艾克罗米德公司 Spinal implant
US6197065B1 (en) 1993-11-01 2001-03-06 Biomet, Inc. Method and apparatus for segmental bone replacement
US5514180A (en) 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US5458642A (en) * 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US20060100635A1 (en) 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
FR2715293B1 (en) 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
US5893890A (en) 1994-03-18 1999-04-13 Perumala Corporation Rotating, locking intervertebral disk stabilizer and applicator
US5697977A (en) 1994-03-18 1997-12-16 Pisharodi; Madhavan Method and apparatus for spondylolisthesis reduction
FR2718635B1 (en) 1994-04-15 1996-07-05 Axcyl Medical Cervical prosthesis.
EP0678489A1 (en) 1994-04-19 1995-10-25 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Sintered alumina and procces for its production
FR2719763B1 (en) 1994-05-11 1996-09-27 Jean Taylor Vertebral implant.
US5980522A (en) 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
FR2722980B1 (en) * 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
US5527312A (en) * 1994-08-19 1996-06-18 Salut, Ltd. Facet screw anchor
EP0700671B1 (en) * 1994-09-08 2001-08-08 Stryker Technologies Corporation Hydrogel intervertebral disc nucleus
US5824093A (en) * 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
FR2730159B1 (en) 1995-02-06 1997-04-25 Teule Jean Germain PROSTHESIS FOR INTERVERTEBRAL DISC
WO1997000054A1 (en) 1995-06-19 1997-01-03 Sven Olerud An adjustable spacing device and a method of adjusting the distance between two vertebrae with the aid of said spacing device in spinal surgical operations
DE19529605C2 (en) 1995-08-11 1997-10-09 Bernhard Zientek Intervertebral implant
DE19541114A1 (en) 1995-10-26 1997-04-30 Artos Med Produkte Intervertebral implant
US6475639B2 (en) * 1996-01-18 2002-11-05 Mohsen Shahinpoor Ionic polymer sensors and actuators
US6087553A (en) * 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
US5683465A (en) 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US5653763A (en) 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
FR2748387B1 (en) 1996-05-13 1998-10-30 Stryker France Sa BONE FIXATION DEVICE, IN PARTICULAR TO THE SACRUM, IN OSTEOSYNTHESIS OF THE SPINE
US5782832A (en) 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5895428A (en) 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US5836948A (en) * 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6039761A (en) 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
DE69839051T2 (en) 1997-03-07 2009-01-15 Disc-O-Tech Medical Technologies, Ltd. PERCUT BONE SYSTEMS AND SPINAL STABILIZATION, MOUNTING AND REPAIR
DE19710392C1 (en) 1997-03-13 1999-07-01 Haehnel Michael Slipped disc implant comprises an extensible, hinged or wound body
US6641614B1 (en) 1997-05-01 2003-11-04 Spinal Concepts, Inc. Multi-variable-height fusion device
US6045579A (en) 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US5893889A (en) 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US6146421A (en) 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
US5865848A (en) 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US6139579A (en) 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
US5888226A (en) 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6162252A (en) * 1997-12-12 2000-12-19 Depuy Acromed, Inc. Artificial spinal disc
FR2772594B1 (en) 1997-12-19 2000-05-05 Henry Graf REAR PARTIAL DISCAL PROSTHESIS
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
FR2774581B1 (en) 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
DE19807236C2 (en) 1998-02-20 2000-06-21 Biedermann Motech Gmbh Intervertebral implant
US5989291A (en) 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
US6835208B2 (en) 1998-03-30 2004-12-28 J. Alexander Marchosky Prosthetic system
WO1999049818A1 (en) 1998-03-30 1999-10-07 Marchosky J Alexander Prosthetic system
US6019792A (en) 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6179874B1 (en) 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6241769B1 (en) 1998-05-06 2001-06-05 Cortek, Inc. Implant for spinal fusion
US6126689A (en) 1998-06-15 2000-10-03 Expanding Concepts, L.L.C. Collapsible and expandable interbody fusion device
US6136031A (en) 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
GB2338652A (en) 1998-06-23 1999-12-29 Biomet Merck Ltd Vertebral body replacement
DE29813139U1 (en) 1998-07-23 1998-12-03 Howmedica Gmbh Vertebral body reconstruction system
US6063121A (en) 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
DE29814174U1 (en) 1998-08-07 1999-12-16 Howmedica Gmbh Instruments for inserting an implant into the human spine
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
US6146387A (en) 1998-08-26 2000-11-14 Linvatec Corporation Cannulated tissue anchor system
ES2274637T3 (en) 1998-09-04 2007-05-16 Warsaw Orthopedic, Inc. THREADED, SEMILUNAR, CYLINDRICAL DISK PROTESIS, FOR PARALLEL ORDERING.
US6113637A (en) * 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6039763A (en) 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6193757B1 (en) 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US6179794B1 (en) 1998-11-19 2001-01-30 Jon Burras Adjustable vibrating head massaging device
FR2787016B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISK PROSTHESIS
FR2787017B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787014B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
FR2787018B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
FR2787015B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH COMPRESSIBLE BODY
FR2787019B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
US6183517B1 (en) 1998-12-16 2001-02-06 Loubert Suddaby Expandable intervertebral fusion implant and applicator
US6547823B2 (en) 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
US7621950B1 (en) 1999-01-27 2009-11-24 Kyphon Sarl Expandable intervertebral spacer
US6113638A (en) 1999-02-26 2000-09-05 Williams; Lytton A. Method and apparatus for intervertebral implant anchorage
US6368350B1 (en) 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
WO2000054821A1 (en) * 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
US6320485B1 (en) 1999-04-07 2001-11-20 Klaus A. Gruner Electromagnetic relay assembly with a linear motor
AU4238700A (en) 1999-04-16 2000-11-02 Nuvasive, Inc. Segmented linked intervertebral implant systems
US6964686B2 (en) 1999-05-17 2005-11-15 Vanderbilt University Intervertebral disc replacement prosthesis
ATE235863T1 (en) 1999-05-21 2003-04-15 Link Waldemar Gmbh Co INTERVERBARY ENDOPROSTHESIS WITH A TOOTHED CONNECTION PLATE
US6491724B1 (en) 1999-08-13 2002-12-10 Bret Ferree Spinal fusion cage with lordosis correction
US6969404B2 (en) 1999-10-08 2005-11-29 Ferree Bret A Annulus fibrosis augmentation methods and apparatus
FR2794362B1 (en) 1999-06-02 2001-09-21 Henry Graf INTERVERTEBRAL IMPLANT AND POSITIONING ASSEMBLY OF SUCH AN IMPLANT
US6520996B1 (en) 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
US6419705B1 (en) 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
AU5701200A (en) 1999-07-02 2001-01-22 Petrus Besselink Reinforced expandable cage
BR9917397A (en) 1999-07-02 2002-03-05 Spine Solutions Inc Intervertebral Implant
US6454806B1 (en) 1999-07-26 2002-09-24 Advanced Prosthetic Technologies, Inc. Spinal surgical prosthesis
US7824445B2 (en) 1999-07-26 2010-11-02 Ladislau Biro Corpectomy vertebral body replacement implant system
WO2002009626A1 (en) 1999-07-26 2002-02-07 Advanced Prosthetic Technologies, Inc. Improved spinal surgical prosthesis
WO2001017464A1 (en) 1999-09-08 2001-03-15 Depuy International Limited Combination of material for joint prosthesis
US6592624B1 (en) 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6479418B2 (en) 1999-12-16 2002-11-12 Isotis N.V. Porous ceramic body
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
FR2805733B1 (en) 2000-03-03 2002-06-07 Scient X DISC PROSTHESIS FOR CERVICAL VERTEBRUS
US6332894B1 (en) 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6332895B1 (en) 2000-03-08 2001-12-25 Loubert Suddaby Expandable intervertebral fusion implant having improved stability
FR2805985B1 (en) 2000-03-10 2003-02-07 Eurosurgical INTERVERTEBRAL DISK PROSTHESIS
WO2001068004A2 (en) 2000-03-10 2001-09-20 Sdgi Holdings, Inc. Synthetic reinforced interbody fusion implants
AR027685A1 (en) 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
US20020010070A1 (en) 2000-04-25 2002-01-24 Bernard Cales Zirconia-toughened alumina biocomponent having high resistance to low temperature degradation and method for preparing same
US6482234B1 (en) 2000-04-26 2002-11-19 Pearl Technology Holdings, Llc Prosthetic spinal disc
US7018416B2 (en) 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
US20020035400A1 (en) 2000-08-08 2002-03-21 Vincent Bryan Implantable joint prosthesis
AU2001281166B2 (en) * 2000-08-08 2006-07-20 Warsaw Orthopedic, Inc. Implantable joint prosthesis
EP1309280A2 (en) 2000-08-11 2003-05-14 SDGI Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US6443989B1 (en) 2000-12-04 2002-09-03 Roger P. Jackson Posterior expandable fusion cage
US6773460B2 (en) 2000-12-05 2004-08-10 Roger P. Jackson Anterior variable expandable fusion cage
US6565605B2 (en) * 2000-12-13 2003-05-20 Medicinelodge, Inc. Multiple facet joint replacement
US6468311B2 (en) 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
JP4133331B2 (en) 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US6863689B2 (en) 2001-07-16 2005-03-08 Spinecore, Inc. Intervertebral spacer having a flexible wire mesh vertebral body contact element
US6740117B2 (en) 2001-02-15 2004-05-25 Spinecore, Inc. Intervertebral spacer device having a radially thinning slotted belleville spring
US20030069642A1 (en) 2001-10-04 2003-04-10 Ralph James D. Artificial intervertebral disc having a flexible wire mesh vertebral body contact element
WO2002098332A1 (en) 2001-02-16 2002-12-12 Sulzer Spine-Tech Inc. Bone implants and methods
US6595998B2 (en) 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
DE10116412C1 (en) 2001-04-02 2003-01-16 Ulrich Gmbh & Co Kg Implant to be inserted between the vertebral body of the spine
WO2002078759A1 (en) 2001-04-02 2002-10-10 Stratec Medical Ag Bioactive surface layer, particularly for medical implants and prostheses
WO2002080823A1 (en) 2001-04-04 2002-10-17 Rapp Lawrence G Interbody spinal fusion device
DE10119096A1 (en) 2001-04-19 2002-10-24 Keramed Medizintechnik Gmbh New biologically functionalized coatings, useful for e.g. accelerating osteo-integration of implants, e.g. dental or joint implants, comprise resorbable calcium-phosphorus phase containing adhesion and/or signal proteins
US6974480B2 (en) 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20030039620A1 (en) 2001-05-04 2003-02-27 Rodriguez Victor Ruben Transfer resistant, non-tacky, liquid cosmetic compositions for covering skin discolorations and imperfections
EP1408874B1 (en) 2001-06-14 2012-08-08 Amedica Corporation Metal-ceramic composite articulation
US6558424B2 (en) 2001-06-28 2003-05-06 Depuy Acromed Modular anatomic fusion device
US6607558B2 (en) 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
DE10132588C2 (en) * 2001-07-05 2003-05-22 Fehling Instr Gmbh Disc prosthesis
US20030006942A1 (en) 2001-07-05 2003-01-09 Damion Searls Ergonomic auxiliary screen and display subsystem for portable handheld devices
US6468310B1 (en) * 2001-07-16 2002-10-22 Third Millennium Engineering, Llc Intervertebral spacer device having a wave washer force restoring element
JP4073867B2 (en) 2001-07-16 2008-04-09 スパインコア,インコーポレーション Artificial disc with corrugated washer restoring element
US20030028251A1 (en) 2001-07-30 2003-02-06 Mathews Hallett H. Methods and devices for interbody spinal stabilization
ES2211253B1 (en) 2001-08-16 2005-11-01 Industrias Quirurgicas De Levante, S.L. INTERSOMATIC CASE FOR BACK FUSION SURGERY OF THE LUMBAR COLUMN.
US7018412B2 (en) 2001-08-20 2006-03-28 Ebi, L.P. Allograft spinal implant
DE50114037D1 (en) * 2001-08-24 2008-07-31 Zimmer Gmbh Artificial disc
ATE398431T1 (en) * 2001-08-24 2008-07-15 Zimmer Gmbh ARTIFICIAL DISC
EP1429693B1 (en) 2001-09-27 2006-01-04 Zimmer Spine, Inc. Modular spinal fusion device and manufacturing method therefor
CA2461407A1 (en) 2001-09-28 2003-04-03 Sulzer Spine-Tech Inc. Skeletal stabilization implant
US6648917B2 (en) 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
US6923936B2 (en) 2001-10-23 2005-08-02 Medtronic Minimed, Inc. Sterile device and method for producing same
US20030139812A1 (en) 2001-11-09 2003-07-24 Javier Garcia Spinal implant
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US6893464B2 (en) 2002-03-05 2005-05-17 The Regents Of The University Of California Method and apparatus for providing an expandable spinal fusion cage
US20040030387A1 (en) 2002-03-11 2004-02-12 Landry Michael E. Instrumentation and procedure for implanting spinal implant devices
US6966910B2 (en) * 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US7179294B2 (en) 2002-04-25 2007-02-20 Warsaw Orthopedic, Inc. Articular disc prosthesis and method for implanting the same
US20040010318A1 (en) 2002-05-15 2004-01-15 Ferree Bret A. Conformable endplates for artificial disc replacement (ADR) devices and other applications
WO2003105673A2 (en) 2002-06-17 2003-12-24 Trimedyne, Inc. Devices and methods for minimally invasive treatment of degenerated spinal discs
US6770095B2 (en) * 2002-06-18 2004-08-03 Depuy Acroned, Inc. Intervertebral disc
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
BR0313502A (en) 2002-08-15 2005-07-12 Justin K Coppes Intervertebral disc
US20060293753A1 (en) 2002-08-19 2006-12-28 Lanx, Llc Corrective artificial disc
US20040087947A1 (en) 2002-08-28 2004-05-06 Roy Lim Minimally invasive expanding spacer and method
US7066938B2 (en) * 2002-09-09 2006-06-27 Depuy Spine, Inc. Snap-on spinal rod connector
US7156876B2 (en) 2002-10-09 2007-01-02 Depuy Acromed, Inc. Intervertebral motion disc having articulation and shock absorption
DE10248170A1 (en) 2002-10-16 2004-04-29 Advanced Medical Technologies Ag Implant for insertion between vertebras of a spinal column comprises two sides whose outer surfaces at the start of a vertebra spreading process converge towards the free ends of the sides
US7267688B2 (en) 2002-10-22 2007-09-11 Ferree Bret A Biaxial artificial disc replacement
CA2502292C (en) 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
US6723126B1 (en) 2002-11-01 2004-04-20 Sdgi Holdings, Inc. Laterally expandable cage
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
US7320708B1 (en) * 2002-11-13 2008-01-22 Sdgi Holdings, Inc. Cervical interbody device
CA2508666C (en) 2002-12-06 2011-02-15 Synthes (U.S.A.) Intervertebral implant
ATE394087T1 (en) 2002-12-17 2008-05-15 Synthes Gmbh INTERVERBARY IMPLANT
US20040133279A1 (en) 2003-01-06 2004-07-08 Krueger David J. Surgical implants for use as spinal spacers
US20040186577A1 (en) 2003-01-29 2004-09-23 Ferree Bret A. In situ artificaial disc replacements and other prosthetic components
US7828849B2 (en) 2003-02-03 2010-11-09 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
US7235101B2 (en) 2003-09-15 2007-06-26 Warsaw Orthopedic, Inc. Revisable prosthetic device
CN1774220A (en) 2003-02-14 2006-05-17 德普伊斯派尔公司 In-situ formed intervertebral fusion device and method
US7094257B2 (en) 2003-02-14 2006-08-22 Zimmer Spine, Inc. Expandable intervertebral implant cage
IL155146A0 (en) 2003-03-30 2003-10-31 Expandis Ltd Minimally invasive distraction device and method
US7517364B2 (en) 2003-03-31 2009-04-14 Depuy Products, Inc. Extended articulation orthopaedic implant and associated method
US6893465B2 (en) * 2003-03-31 2005-05-17 Shi, Tain-Yew Vividly simulated prosthetic intervertebral disc
DE20321645U1 (en) 2003-04-14 2008-08-21 Synthes Gmbh Intervertebral implant
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
ZA200509644B (en) 2003-05-27 2007-03-28 Spinalmotion Inc Prosthetic disc for intervertebral insertion
WO2004105655A1 (en) * 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
US6984246B2 (en) * 2003-06-06 2006-01-10 Tain-Yew Shi Artificial intervertebral disc flexibly oriented by spring-reinforced bellows
US7537612B2 (en) 2003-06-20 2009-05-26 Warsaw Orthopedic, Inc. Lumbar composite nucleus
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7022138B2 (en) 2003-07-31 2006-04-04 Mashburn M Laine Spinal interbody fusion device and method
US7806932B2 (en) 2003-08-01 2010-10-05 Zimmer Spine, Inc. Spinal implant
US7785351B2 (en) 2003-08-05 2010-08-31 Flexuspine, Inc. Artificial functional spinal implant unit system and method for use
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
WO2005039455A1 (en) 2003-09-23 2005-05-06 Vanderbilt University Intervertebral disc replacement prosthesis
US7655010B2 (en) 2003-09-30 2010-02-02 Depuy Spine, Inc. Vertebral fusion device and method for using same
US20050119752A1 (en) 2003-11-19 2005-06-02 Synecor Llc Artificial intervertebral disc
DE60315037T2 (en) 2003-11-20 2008-04-24 Kyungwon Medical Co., Ltd. Expandable intervertebral fusion cage
US6955691B2 (en) 2003-11-21 2005-10-18 Kyungwon Medical Co., Ltd. Expandable interfusion cage
US7217293B2 (en) 2003-11-21 2007-05-15 Warsaw Orthopedic, Inc. Expandable spinal implant
US7217291B2 (en) 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
DE502004010737D1 (en) 2003-12-09 2010-03-25 Biedermann Motech Gmbh Height-adjustable intervertebral implant
DE20320974U1 (en) 2003-12-11 2005-08-25 Deltacor Gmbh Surgical backbone implant is positioned between adjacent vertebrae and consists of two concentric cylinders with interlocking fingers in cruciform array, where the cylinder inner faces bear a thread
US7569074B2 (en) 2003-12-11 2009-08-04 Warsaw Orthopedic, Inc. Expandable intervertebral implant
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US7211112B2 (en) 2004-02-10 2007-05-01 Atlas Spine Spinal fusion device
US7850733B2 (en) 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
EP1570813A1 (en) 2004-03-05 2005-09-07 Cervitech, Inc. Cervical intervertebral disc prosthesis with anti-luxation means, and instrument
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US8480742B2 (en) 2005-08-02 2013-07-09 Perumala Corporation Total artificial disc
US7507241B2 (en) 2004-04-05 2009-03-24 Expanding Orthopedics Inc. Expandable bone device
US20050256576A1 (en) 2004-05-13 2005-11-17 Moskowitz Nathan C Artificial expansile total lumbar and thoracic discs for posterior placement without supplemental instrumentation and its adaptation for anterior placement of artificial cervical, thoracic and lumbar discs
US7854766B2 (en) 2004-05-13 2010-12-21 Moskowitz Nathan C Artificial total lumbar disc for unilateral safe and simple posterior placement in the lumbar spine, and removable bifunctional screw which drives vertical sliding expansile plate expansion, and interplate widening, and angled traction spikes
US7722612B2 (en) 2004-05-19 2010-05-25 Sintea Biotech S.P.A. Devices, kit and method for kyphoplasty
FR2871366A1 (en) 2004-06-09 2005-12-16 Ceravic Soc Par Actions Simpli PROSTHETIC EXPANSIBLE BONE IMPLANT
BRPI0512736B1 (en) 2004-06-30 2022-04-12 Synergy Disc Replacement, Inc Core for an artificial disc to replace the natural disc of a human spine
US20060004431A1 (en) 2004-07-01 2006-01-05 Fuller Thomas A Prophylactic bactericidal implant
US7703727B2 (en) 2004-07-21 2010-04-27 Selness Jerry N Universal adjustable spacer assembly
US7503920B2 (en) 2004-08-11 2009-03-17 Tzony Siegal Spinal surgery system and method
AU2004322167A1 (en) 2004-08-13 2006-02-16 Synthes Gmbh Intervertebral implant
US7931688B2 (en) 2004-08-25 2011-04-26 Spine Wave, Inc. Expandable interbody fusion device
FR2874814B1 (en) 2004-09-08 2007-11-16 Hassan Razian INTERVERTEBRAL CAGE
US7799081B2 (en) 2004-09-14 2010-09-21 Aeolin, Llc System and method for spinal fusion
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
IL164260A0 (en) 2004-09-23 2005-12-18 Medigus Ltd An improved articulation section
WO2006042487A1 (en) 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disc endoprosthesis having cylindrical articulation surfaces
AU2005299397A1 (en) 2004-10-25 2006-05-04 Alphaspine, Inc. Expandable intervertebral spacer method and apparatus
US20060095136A1 (en) 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
US20060100706A1 (en) 2004-11-10 2006-05-11 Shadduck John H Stent systems and methods for spine treatment
EP1814492A2 (en) 2004-11-15 2007-08-08 Disc-O-Tech Medical Technologies, Ltd. Assembled prosthesis such as a disc
US20060122701A1 (en) 2004-11-23 2006-06-08 Kiester P D Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same
US7887589B2 (en) 2004-11-23 2011-02-15 Glenn Bradley J Minimally invasive spinal disc stabilizer and insertion tool
WO2006066228A2 (en) 2004-12-16 2006-06-22 Innovative Spinal Technologies Expandable implants for spinal disc replacement
US20060136062A1 (en) 2004-12-17 2006-06-22 Dinello Alexandre Height-and angle-adjustable motion disc implant
US7655046B2 (en) 2005-01-20 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal fusion cage and associated instrumentation
DE102005004563B4 (en) 2005-02-01 2017-03-16 Advanced Medical Technologies Ag Spreadable implant for preferably dorsal arrangement between the vertebral bodies of the spine
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US20060265077A1 (en) 2005-02-23 2006-11-23 Zwirkoski Paul A Spinal repair
ATE531346T1 (en) 2005-02-24 2011-11-15 Morphogeny Llc CONNECTED, SLIDING AND MATCHABLE ROTATABLE COMPONENTS
US8940048B2 (en) 2005-03-31 2015-01-27 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
EP1863415A4 (en) 2005-03-31 2012-04-04 Life Spine Inc Expandable spinal interbody and intravertebral body devices
US7959675B2 (en) 2005-04-08 2011-06-14 G&L Consulting, Llc Spine implant insertion device and method
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US8308802B2 (en) 2010-01-21 2012-11-13 Globus Medical, Inc. Expandable vertebral prosthesis
US7799080B2 (en) 2005-04-22 2010-09-21 Doty Keith L Spinal disc prosthesis and methods of use
US7655043B2 (en) 2005-04-29 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal implant and associated instrumentation
EP1879528B1 (en) 2005-05-02 2012-06-06 Kinetic Spine Technologies Inc. Intervertebral disc prosthesis
WO2006119092A2 (en) 2005-05-02 2006-11-09 Seaspine, Inc. Motion restoring intervertebral device
US7799083B2 (en) 2005-05-02 2010-09-21 Seaspine, Inc. Prosthesis for restoring motion in an appendage or spinal joint and an intervertebral spacer
DE102005022921B3 (en) 2005-05-19 2007-01-25 Aesculap Ag & Co. Kg Vertebral body replacement implant
US8021426B2 (en) 2005-06-15 2011-09-20 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
US7951199B2 (en) 2005-06-15 2011-05-31 Miller Jimmy D Lateral expandable interbody fusion cage
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US7722674B1 (en) 2005-08-12 2010-05-25 Innvotec Surgical Inc. Linearly expanding spine cage for enhanced spinal fusion
US20070067034A1 (en) 2005-08-31 2007-03-22 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US7731753B2 (en) 2005-09-01 2010-06-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs
ATE369094T1 (en) 2005-09-06 2007-08-15 Orthopaedic & Spine Dev DEFORMABLE INTERVERBAL PROSTHESIS
EP1951164A1 (en) 2005-09-26 2008-08-06 Warsaw Orthopedic, Inc. Transforaminal hybrid implant
US9271843B2 (en) 2005-09-27 2016-03-01 Henry F. Fabian Spine surgery method and implant
US8236058B2 (en) 2005-09-27 2012-08-07 Fabian Henry F Spine surgery method and implant
US7879098B1 (en) 2005-10-19 2011-02-01 Simmons Jr James W Expandable lordosis stabilizing cage
US20070123989A1 (en) 2005-10-21 2007-05-31 Synthes (U.S.A.) Method and instruments to treat spondylolisthesis by an anterior minimally invasive approach of the spine
WO2007062080A2 (en) 2005-11-21 2007-05-31 Philipp Lang Intervetebral devices and methods
US20070173939A1 (en) 2005-12-23 2007-07-26 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for fixation of bone with an expandable device
US20070168043A1 (en) 2006-01-13 2007-07-19 Anova Corporation Percutaneous cervical disc reconstruction
US7799079B2 (en) 2006-01-18 2010-09-21 Zimmer Spine, Inc. Vertebral fusion device and method
US20070178222A1 (en) 2006-01-30 2007-08-02 Storey Daniel M Radiopaque coatings for polymer substrates
US8016859B2 (en) * 2006-02-17 2011-09-13 Medtronic, Inc. Dynamic treatment system and method of use
US8409290B2 (en) 2006-03-08 2013-04-02 Seaspine, Inc. Interbody device for spinal applications
US20070233244A1 (en) 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
EP2007322A4 (en) 2006-04-12 2011-10-26 Spinalmotion Inc Posterior spinal device and method
US7981157B2 (en) 2006-04-27 2011-07-19 Warsaw Orthopedic, Inc. Self-contained expandable implant and method
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
EP2023864B1 (en) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Expandable support device
US20070260314A1 (en) 2006-05-02 2007-11-08 Ashok Biyani Transforaminal lumbar interbody fusion cage
US20070272259A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical procedure for inserting a device between anatomical structures
US7771473B2 (en) 2006-07-06 2010-08-10 Lanx, Inc. Expandable spinal fusion cage
US9089347B2 (en) 2006-07-07 2015-07-28 Orthophoenix, Llc Medical device with dual expansion mechanism
US20080021556A1 (en) 2006-07-21 2008-01-24 Edie Jason A Expandable vertebral implant and methods of use
US20080051902A1 (en) 2006-08-10 2008-02-28 James Dwyer Modular intervertebral disc prosthesis and method of replacing an intervertebral disc
US8057545B2 (en) 2006-08-25 2011-11-15 Warsaw Orthopedic, Inc. Revision spacer
US8506636B2 (en) 2006-09-08 2013-08-13 Theken Spine, Llc Offset radius lordosis
US8128700B2 (en) 2006-09-13 2012-03-06 Synthes Usa, Llc Allograft intervertebral implant and method of manufacturing the same
US8025697B2 (en) 2006-09-21 2011-09-27 Custom Spine, Inc. Articulating interbody spacer, vertebral body replacement
US8641764B2 (en) 2006-10-11 2014-02-04 G&L Consulting, Llc Spine implant insertion device and method
GB0620400D0 (en) 2006-10-13 2006-11-22 Seddon Peter Spinal implant
US20080161927A1 (en) 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Intervertebral Implant with Porous Portions
CA2668655A1 (en) 2006-11-16 2008-05-29 Rex Medical, L.P. Spinal implant and method of use
EP1925272B1 (en) 2006-11-23 2010-01-13 BIEDERMANN MOTECH GmbH Expandable intervertebral implant
AR064013A1 (en) * 2006-11-30 2009-03-04 Paradigm Spine Llc VERTEBRAL, INTERLAMINAR, INTERESPINOUS STABILIZATION SYSTEM
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US20080140085A1 (en) 2006-12-11 2008-06-12 G&L Consulting, Llc Steerable spine implant insertion device and method
US20080288077A1 (en) 2006-12-28 2008-11-20 Spinal Kinetics, Inc. Prosthetic Disc Assembly Having Natural Biomechanical Movement
US20080167657A1 (en) 2006-12-31 2008-07-10 Stout Medical Group, L.P. Expandable support device and method of use
US7875059B2 (en) 2007-01-18 2011-01-25 Warsaw Orthopedic, Inc. Variable stiffness support members
US8597358B2 (en) 2007-01-19 2013-12-03 Flexuspine, Inc. Dynamic interbody devices
US20080281425A1 (en) 2007-02-21 2008-11-13 John Thalgott Orthopaedic Implants and Prostheses
US9248278B2 (en) 2010-03-11 2016-02-02 Mainstay Medical Limited Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
EP2131767B1 (en) 2007-03-12 2017-11-22 Stout Medical Group, L.P. Expandable attachment device
FR2914180B1 (en) 2007-03-28 2010-02-12 David Attia EXPANSIVE CAGE FOR VERTEBRAL SURGERY.
US9237954B2 (en) 2007-03-29 2016-01-19 Life Spine, Inc. Height adjustable spinal prostheses
US8241358B2 (en) 2007-03-29 2012-08-14 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US8137401B2 (en) 2007-03-30 2012-03-20 Depuy Spine, Inc. Intervertebral device having expandable endplates
US9687353B2 (en) 2007-03-31 2017-06-27 Spinal Kinetics, Inc. Prosthetic intervertebral discs having balloon-based fillable cores that are implantable by minimally invasive surgical techniques
US8361154B2 (en) 2007-03-31 2013-01-29 Spinal Kinetics Inc. Temporarily bound prosthetic intervertebral discs implantable by minimally invasive surgical techniques
US20090069895A1 (en) 2007-03-31 2009-03-12 Spinal Kinetics, Inc. Prosthetic Intervertebral Discs Having Folding End Plates That Are Implantable By Minimally Invasive Surgical Techniques
US8795374B2 (en) 2007-04-01 2014-08-05 Spinal Kinetics Inc. Prosthetic intervertebral discs that are implantable by minimally invasive surgical techniques and that have cores that are insertable in situ using end plate guideways
US8163026B2 (en) 2007-04-05 2012-04-24 Zimmer Spine, Inc. Interbody implant
US8262666B2 (en) 2007-04-27 2012-09-11 Atlas Spine, Inc. Implantable distractor
US20100076559A1 (en) 2007-05-04 2010-03-25 Titan Spine, Llc Composite telescoping anterior interbody spinal implant
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8216312B2 (en) 2007-05-31 2012-07-10 Zimmer Spine, Inc. Spinal interbody system and method
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US20090005873A1 (en) 2007-06-29 2009-01-01 Michael Andrew Slivka Spinous Process Spacer Hammock
ES2621084T3 (en) 2007-07-27 2017-06-30 R Tree Innovations, Llc Intercorporeal Implantation System
WO2009021144A2 (en) 2007-08-07 2009-02-12 Transcorp, Inc. Device for variably adjusting intervertebral distraction and lordosis
JP5393683B2 (en) 2007-09-13 2014-01-22 デル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Endoprosthesis parts
US8052754B2 (en) 2007-09-28 2011-11-08 Zimmer Gmbh Intervertebral endoprosthesis
US7850734B2 (en) 2007-10-10 2010-12-14 Custom Spine, Inc. Sliding intervertebral implant
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
EP2209444A4 (en) 2007-10-22 2013-03-27 Spinalmotion Inc Dynamic spacer device and method for spanning a space formed upon removal of an intervertebral disc
US8043381B2 (en) 2007-10-29 2011-10-25 Zimmer Spine, Inc. Minimally invasive interbody device and method
US8182537B2 (en) 2007-10-30 2012-05-22 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
DE102007052042A1 (en) 2007-10-30 2009-05-14 Kilian Kraus Height-adjustable spine implant
WO2009064787A2 (en) 2007-11-12 2009-05-22 Synthes (U.S.A.) Adjustable height intervertebral implant
US8518115B2 (en) 2007-11-16 2013-08-27 DePuy Synthes Products, LLC Porous containment device and associated method for stabilization of vertebral compression fractures
US20090164020A1 (en) 2007-11-28 2009-06-25 Pioneer Surgical Technology, Inc. Device for Securing an Implant to Tissue
US7985231B2 (en) 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
US7799056B2 (en) 2007-12-31 2010-09-21 Warsaw Orthopedic, Inc. Bone fusion device and methods
WO2009092030A1 (en) 2008-01-16 2009-07-23 Life Spine, Inc. Spinal inetrbody fusion cages providing variable anterior/posterior profieles
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
DE102008005998B4 (en) 2008-01-25 2010-01-14 Aesculap Ag Intervertebral implant
US8353961B2 (en) 2008-02-07 2013-01-15 K2M, Inc. Expandable vertebral device with cam lock
US8216314B2 (en) 2008-02-13 2012-07-10 Marc Richelsoph Distractable spinal implant assembly
US8323345B2 (en) 2008-02-14 2012-12-04 U.S. Spine, Inc. Anterior lumbar interbody fusion cage device and associated method
US20100145455A1 (en) 2008-12-10 2010-06-10 Innvotec Surgical, Inc. Lockable spinal implant
US8696751B2 (en) 2008-12-10 2014-04-15 Coalign Innovations, Inc. Adjustable distraction cage with linked locking mechanisms
US20090222099A1 (en) 2008-02-28 2009-09-03 Warsaw Orthopedics, Inc. Self Centering Nucleus Implant
US20090222096A1 (en) 2008-02-28 2009-09-03 Warsaw Orthopedic, Inc. Multi-compartment expandable devices and methods for intervertebral disc expansion and augmentation
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
EP2249747B1 (en) 2008-03-07 2013-12-25 Synthes GmbH Expandable interbody spacer device
EP2259736B1 (en) 2008-03-14 2012-04-25 Synthes GmbH Nested expandable sleeve implant
EP2265200B1 (en) 2008-03-14 2020-05-27 Mazor Robotics Ltd. Segmented insert for intervertebral support
US8795365B2 (en) 2008-03-24 2014-08-05 Warsaw Orthopedic, Inc Expandable devices for emplacement in body parts and methods associated therewith
US8673011B2 (en) 2008-03-28 2014-03-18 K2M, Inc. Expandable cage
US8147555B2 (en) 2008-03-31 2012-04-03 Aflatoon Kamran Artificial disc prosthesis for replacing a damaged nucleus
US20090248163A1 (en) 2008-03-31 2009-10-01 King Emily E Spinal surgery interbody
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20090270873A1 (en) 2008-04-24 2009-10-29 Fabian Henry F Spine surgery method and inserter
WO2009137514A1 (en) 2008-05-05 2009-11-12 Spinalmotion, Inc. Polyaryletherketone artificial intervertebral disc
WO2009143496A1 (en) 2008-05-22 2009-11-26 Trinity Orthopedics, Llc Devices and methods for spinal reduction, displacement and resection
ES2361099B1 (en) 2008-05-26 2012-05-08 Rudolf Morgenstern Lopez "INTERVERTEBRAL PROSTHESIS"
WO2010003062A2 (en) 2008-07-03 2010-01-07 The Regents Of The University Of California Biomaterials and implants for enhanced cartilage formation, and methods for making and using them
EP2326281A4 (en) 2008-08-13 2013-05-29 Smed Ta Td Llc Orthopaedic implant with porous structural member
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US7927375B2 (en) 2008-09-12 2011-04-19 Doty Keith L Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis
US20100094426A1 (en) 2008-10-14 2010-04-15 Grohowski Jr Joseph A Hybrid intervertebral spinal implant
US8545567B1 (en) 2008-11-14 2013-10-01 David Krueger Spinal fusion device
EP2199423B1 (en) 2008-12-16 2013-04-17 Sulzer Metco AG Thermally injected surface layer and orthopaedic implant
US8721723B2 (en) 2009-01-12 2014-05-13 Globus Medical, Inc. Expandable vertebral prosthesis
WO2010088766A1 (en) 2009-02-03 2010-08-12 National Research Council Of Canada Implant for total disc replacement, and method of forming
DE102009011648A1 (en) 2009-03-04 2010-09-09 Advanced Medical Technologies Ag Implant system with support elements
PL2405835T3 (en) 2009-03-12 2018-05-30 Vexim Apparatus for bone restoration of the spine
EP2408382A4 (en) 2009-03-13 2013-06-19 Univ Toledo Minimally invasive collapsible cage
US8840669B2 (en) 2009-04-13 2014-09-23 Biomet Spine, Llc Variable height intervertebral devices and methods for use
WO2010126915A1 (en) 2009-04-27 2010-11-04 Spinal Kinetics, Inc. Prosthetic intervertebral discs implantable by minimally invasive surgical techniques
WO2010148112A1 (en) 2009-06-16 2010-12-23 Stout Medical Group, L.P. Expandable support device and method of use
WO2010147829A1 (en) 2009-06-17 2010-12-23 Trinity Orthopedics, Llc Expanding intervertebral device and methods of use
US20100324607A1 (en) 2009-06-23 2010-12-23 Davis Reginald J Pedicle screw with expansion anchor sleeve
EP2457001B1 (en) 2009-07-22 2017-11-01 Spinex Tec, LLC Coaxial screw gear sleeve mechanism
WO2011046459A1 (en) 2009-10-14 2011-04-21 Manuel Laranjeira Gomes Adjustable device for replacing intervertebral disks of the vertebral column
WO2011046460A1 (en) 2009-10-14 2011-04-21 Manuel Laranjeira Gomes Dynamic biocompatible cage for replacing intervertebral disks of the vertebral column
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8685098B2 (en) 2010-06-25 2014-04-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8679183B2 (en) 2010-06-25 2014-03-25 Globus Medical Expandable fusion device and method of installation thereof
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8556979B2 (en) 2009-10-15 2013-10-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9155628B2 (en) 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
WO2011082174A1 (en) 2009-12-30 2011-07-07 Spinal USA LLC Spinal implant devices and methods
US8894712B2 (en) 2010-01-11 2014-11-25 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
US8795366B2 (en) 2010-01-11 2014-08-05 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
US8353963B2 (en) 2010-01-12 2013-01-15 Globus Medical Expandable spacer and method for use thereof
US8303879B2 (en) 2010-02-01 2012-11-06 Sb Technologies, Llc Composite interbody device and method of manufacture
CZ2010155A3 (en) 2010-03-03 2011-09-14 Šrámek@Jirí Stand alone PLIF and TLIF cage for spinal column fusion with stability secured by threaded pins
WO2011119617A1 (en) 2010-03-22 2011-09-29 Seaspine, Inc. Spinal implant device, surgical instrumentation for implanting and method
US8591585B2 (en) 2010-04-12 2013-11-26 Globus Medical, Inc. Expandable vertebral implant
US9414923B2 (en) 2010-04-15 2016-08-16 Warsaw Orthopedic, Inc. Implant and method for producing an implant
US8540724B2 (en) 2010-04-30 2013-09-24 Lanx, Inc. Anterior distractor-inserter with linear countersink adjustment
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
WO2011142761A1 (en) 2010-05-13 2011-11-17 Stout Medical Group, L.P. Fixation device and method
EP2575691B1 (en) 2010-05-27 2015-12-30 Flexmedex, LLC Support device
WO2011150350A1 (en) 2010-05-28 2011-12-01 Benvenue Medical, Inc. Disc space sizing devices and methods of using the same
US8506635B2 (en) 2010-06-02 2013-08-13 Warsaw Orthopedic, Inc. System and methods for a laterally expanding implant
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
US20160100954A1 (en) 2010-07-12 2016-04-14 Spinesmith Partners, L.P. Fusion device and associated methods
US8641769B2 (en) 2010-07-15 2014-02-04 Spine Wave, Inc. Plastically deformable inter-osseous device
WO2012012327A1 (en) 2010-07-20 2012-01-26 X-Spine Systems, Inc. Composite orthopedic implant having a low friction material substrate with primary frictional features and secondary frictional features
US8496706B2 (en) 2010-08-02 2013-07-30 Ashraf A. Ragab Bone cage with components for controlled expansion
US8778025B2 (en) 2010-08-02 2014-07-15 Ashraf A. Ragab Rotatable cam lift for an expandable bone cage
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
WO2012028182A1 (en) 2010-09-01 2012-03-08 Smith & Nephew Orthopaedics Ag Orthopaedic implant system
WO2012030331A1 (en) 2010-09-01 2012-03-08 Smith & Nephew Orthopaedics Ag Fluent material delivery implant
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8632595B2 (en) 2010-09-03 2014-01-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8435298B2 (en) 2010-09-03 2013-05-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8852279B2 (en) 2010-09-03 2014-10-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8398713B2 (en) 2010-09-03 2013-03-19 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845732B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845731B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20120071980A1 (en) 2010-09-16 2012-03-22 Alphatec Spine, Inc. Steerable spine implant and system
JP5885270B2 (en) 2010-10-05 2016-03-15 ロリオ,モーガン,ピー. Intervertebral device and method of use
WO2012062889A1 (en) 2010-11-12 2012-05-18 Aesculap Ag Spinal fixation system and use
US20120123546A1 (en) 2010-11-15 2012-05-17 MEDevice IP Holdings, LLC. Implant apparatus for spinal fusion
IT1403237B1 (en) 2010-12-29 2013-10-17 Mikai S P A PERCUTANEOUS DEVICE FOR TREATING VERTEBRAL FRACTURES
US8740980B2 (en) 2011-01-27 2014-06-03 Warsaw Orthopedic, Inc. Expandable medical implant
WO2012112596A1 (en) 2011-02-14 2012-08-23 Imds Corporation Expandable intervertebral implants
US8518087B2 (en) 2011-03-10 2013-08-27 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
CA2831326A1 (en) 2011-03-30 2012-10-04 Trinity Orthopedics, Llc Articulating interbody cage and methods thereof
US8409291B2 (en) 2011-04-07 2013-04-02 Warsaw Orthopedic, Inc. Laterally expandable interbody spinal fusion implant
US8685095B2 (en) 2011-04-19 2014-04-01 Warsaw Orthopedic, Inc. Expandable implant system and methods of use
EP2517676B1 (en) 2011-04-29 2017-04-05 Medacta International S.A. Intervertebral implant for the fusion between two vertebral bodies of a vertebral column and corresponding positioning instrument
US9066813B2 (en) 2011-06-03 2015-06-30 Biomet Spine, Llc Unidirectional dynamic interbody fusion device and method of use
WO2013006669A2 (en) 2011-07-05 2013-01-10 Expanding Orthopedics Inc. Bone structural device
US9358123B2 (en) 2011-08-09 2016-06-07 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
EP2729092B1 (en) 2011-08-16 2016-09-21 Stryker European Holdings I, LLC Expandable implant
US9427330B2 (en) 2011-09-06 2016-08-30 Globus Medical, Inc. Spinal plate
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
KR102043737B1 (en) 2011-09-20 2019-11-12 더유니버시티오브톨레도 Expandable inter-vertebral cage and method of installing same
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8864833B2 (en) 2011-09-30 2014-10-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9017410B2 (en) 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US20130116791A1 (en) 2011-11-04 2013-05-09 Boo Holdings, Llc Expandable intervertebral spacer implant
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
WO2013082184A1 (en) 2011-11-28 2013-06-06 Flexmedex, LLC Support device and method for use
US9271777B2 (en) 2011-12-14 2016-03-01 Biomet Spine, Llc Unilateral moveable interbody fusion device and method of use
US9445919B2 (en) 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US8628578B2 (en) 2011-12-19 2014-01-14 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US20130190876A1 (en) 2012-01-19 2013-07-25 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US8778027B2 (en) 2012-01-23 2014-07-15 Medevice Ip Holdings, Llc Implant apparatus and method including tee and screw mechanism for spinal fusion
US8663329B2 (en) 2012-01-28 2014-03-04 Mark J Ernst Expandable implant for mammalian bony segment stabilization
CN104203293A (en) 2012-02-07 2014-12-10 加利福尼亚大学董事会 Products of manufacture having tantalum coated nanostructures, and methods of making and using them
US9233007B2 (en) 2012-02-13 2016-01-12 Blue Tip Biologics, Llc Expandable self-anchoring interbody cage for orthopedic applications
EP2628466B1 (en) 2012-02-17 2017-04-05 Medacta International S.A. Intervertebral implant with improved fastening system for the fixing plate
US20130261746A1 (en) 2012-03-28 2013-10-03 Linares Medical Devices, Llc Implantable inter-vertebral disk having upper and lower layers of a metal exhibiting bone fusing characteristics and which sandwich therebetween a soft plastic cushioning disc for providing dynamic properties mimicking that of a natural inter-vertebral disc
WO2013158294A1 (en) 2012-04-16 2013-10-24 Biospine, Llc Multiple spindle adjustable interbody fusion devices and methods of use
WO2013173767A1 (en) 2012-05-18 2013-11-21 Trinity Orthopedics, Llc Articulating interbody cage and methods thereof
CA2876118A1 (en) 2012-06-06 2013-12-12 Medivest, Llc Expandable tissue spacer implant and method of use
US8843229B2 (en) 2012-07-20 2014-09-23 Biomet Manufacturing, Llc Metallic structures having porous regions from imaged bone at pre-defined anatomic locations
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
WO2014026007A1 (en) 2012-08-08 2014-02-13 Robinson James C Expandable tlif/plif cage assemblies and methods
US9532881B2 (en) 2012-08-12 2017-01-03 Brian Albert Hauck Memory material implant system and methods of use
US9226831B2 (en) 2012-08-27 2016-01-05 Globus Medical, Inc. Intervertebral implant
US9387087B2 (en) 2012-10-19 2016-07-12 Tyber Medical Llc Orthopedic systems for spine and tracking control
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8715351B1 (en) 2012-11-29 2014-05-06 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
EP2928417A2 (en) 2012-12-06 2015-10-14 Bal, Kamil Intervertebral expandable cage system and its instrument
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
US20140188225A1 (en) 2012-12-14 2014-07-03 Facet-Link Inc. Intervertebral cage expandable in steps
EP2948106B1 (en) 2013-01-24 2021-05-26 BioSpine, LLC Adjustable interbody fusion device
TWI571233B (en) 2013-02-08 2017-02-21 Stage - supported vertebral body fixation
US9204972B2 (en) 2013-03-01 2015-12-08 Globus Medical, Inc. Articulating expandable intervertebral implant
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US9308090B2 (en) 2013-03-11 2016-04-12 DePuy Synthes Products, Inc. Coating for a titanium alloy substrate
US8900312B2 (en) 2013-03-12 2014-12-02 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US8828085B1 (en) 2013-03-15 2014-09-09 Wade K. Jensen Hinged spinal insert device
US9456856B2 (en) 2013-09-26 2016-10-04 Warsaw Orthopedic, Inc. Intrabody osteotomy implant and methods of use
WO2015048997A1 (en) 2013-10-02 2015-04-09 Vigas Spinal implant for interbody use
US9782270B2 (en) 2014-08-08 2017-10-10 Warsaw Orthopedic, Inc. Spinal implant system and method
TWI548429B (en) 2014-11-07 2016-09-11 財團法人工業技術研究院 Medical composite material method for fabricating the same and applications thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402654B2 (en) 2004-03-06 2016-08-02 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9662147B2 (en) 2004-03-06 2017-05-30 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9662148B2 (en) 2004-03-06 2017-05-30 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9662149B2 (en) 2004-03-06 2017-05-30 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9668785B2 (en) 2004-03-06 2017-06-06 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9949769B2 (en) 2004-03-06 2018-04-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10433881B2 (en) 2004-03-06 2019-10-08 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10512489B2 (en) 2004-03-06 2019-12-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US10076366B2 (en) * 2016-10-21 2018-09-18 Essence Medical Devices Co., Ltd. Vertebral lamina supporting device

Also Published As

Publication number Publication date
US20160000476A1 (en) 2016-01-07
US20180036043A1 (en) 2018-02-08
US20180271565A1 (en) 2018-09-27
US8636802B2 (en) 2014-01-28
US20170172632A1 (en) 2017-06-22
US20160331415A1 (en) 2016-11-17
US20160249960A1 (en) 2016-09-01
US9402654B2 (en) 2016-08-02
US9662148B2 (en) 2017-05-30
US10512489B2 (en) 2019-12-24
US9949769B2 (en) 2018-04-24
US20160249959A1 (en) 2016-09-01
US20050203624A1 (en) 2005-09-15
US20160249958A1 (en) 2016-09-01
US9662149B2 (en) 2017-05-30
US9668785B2 (en) 2017-06-06
US10433881B2 (en) 2019-10-08
US9662147B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
US10512489B2 (en) Dynamized interspinal implant
US11179246B2 (en) Intervertebral implant
EP1968495B1 (en) Rotatable interspinous spacer
US8500810B2 (en) Adjustable posterior spinal column positioner
US8529626B2 (en) Systems and methods for stabilizing a functional spinal unit
EP2197374B1 (en) Interspinous spacer
US8241329B2 (en) Device and method for the prevention of multi-level vertebral extension
KR101052833B1 (en) A intervertebral cage having flexibility
AU2005220849A1 (en) Posterior process dynamic spacer
JP2011515148A (en) Implant and method for dynamic stabilization between spinous processes of spinal motor segment

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:DEPUY SYNTHES PRODUCTS, LLC;REEL/FRAME:036552/0746

Effective date: 20141219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION