US20140104811A1 - Cooling box for components or circuits - Google Patents

Cooling box for components or circuits Download PDF

Info

Publication number
US20140104811A1
US20140104811A1 US14/098,850 US201314098850A US2014104811A1 US 20140104811 A1 US20140104811 A1 US 20140104811A1 US 201314098850 A US201314098850 A US 201314098850A US 2014104811 A1 US2014104811 A1 US 2014104811A1
Authority
US
United States
Prior art keywords
cooling box
box according
cooling
electrical
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/098,850
Inventor
Peter Claus KLUGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Priority to US14/098,850 priority Critical patent/US20140104811A1/en
Publication of US20140104811A1 publication Critical patent/US20140104811A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Definitions

  • the invention relates to a cooling box for electrical or electronic component elements or circuits made of a material, the cooling box being electrically non-conductive or virtually non-conductive, being constructed in one piece or more than one piece and having a hollow space enveloped by the material, and this hollow space being closed or provided with at least one opening.
  • planar structures are constructed which dissipate the heat diffusing from a heat source (active or passive electrical component) into an electrically non-conductive, uniformly shaped, simple geometrical body (disc, rectangular substrate) via numerous intermediate layers (solders, conductive pastes, adhesives, metallisations).
  • a heat source active or passive electrical component
  • intermediate layers solders, conductive pastes, adhesives, metallisations.
  • Cooling boxes are described in DE 296 12 943 01, DE 91 10 268 01, DE 92 01 158 01, DE 195 27 674 02 or DE 295 14 012 U1.
  • the construction comprising a plurality of different materials is complex and a compromise in terms of long-term reliability. An increase in power density is possible only to a small extent.
  • the thermal conductivity can be used only under certain circumstances, since a plane-parallel construction is involved.
  • a direct connection of an electrically conductive body and a heat source is likewise not possible.
  • the object on which the invention is based is to substantially improve a cooling box according to the precharacterising clause of Claim 1 with regard to the thermal dissipation. Furthermore, the form of application of a cooling box is to be extended. In a further object, the reliability of the cooling box and its resistance to thermal cycling is to be improved.
  • At least one surface region of the cooling box is defined by the functions of electrical and/or thermal conductivity.
  • the surface region of the cooling box which is defined by the functions of electrical and/or thermal conductivity is a metallisation layer sintered to the material of the cooling box.
  • connection of the cooling box and semiconductor with matched coefficients of expansion can afford a significantly higher level of reliability.
  • the surface region is a printed circuit board.
  • surface region is meant that part of the cooling box which is defined by the functions of electrical and/or thermal conductivity, i.e. that part which has the metallisation layer sintered to the material of the cooling box.
  • the cooling box thus at the same time has the function of a printed circuit board with an extremely high thermal conductivity.
  • the conductor tracks are applied to the cooling box by the metallisation layer, i.e. the sintered metallisation layers can be applied such that they form a printed circuit board.
  • the conductor tracks of the printed circuit board are thus intimately connected to the cooling box via a thermal process (sintering).
  • metallic conductor tracks can also be adhesively bonded on and conductive adhesive can be used. Combinations of different types of conductor tracks may also be employed.
  • the components have a direct outflow of heat into the cooling box.
  • the components can be connected to the cooling box, for example, directly or via one or more layers.
  • the hollow space of the cooling box has a heating or cooling medium admitted to it.
  • the heating or cooling medium can remain permanently in the hollow space or be exchanged continually or as required, via at least one entrance to the hollow space, for an identical or different heating or cooling medium with an identical or different temperature.
  • the heating or cooling medium is preferably a gas, such as, for example, air or nitrogen or a liquid, such as, for example, water or oil.
  • the cooling box consists of at least one ceramic component or a composite of different ceramics.
  • the ceramic components can be present, in the crystallographic sense, in monocrystalline or polycrystalline form or combinations thereof.
  • sub-pieces of a cooling box of more than one piece are connected to one another by adhesive bonding, sintering, soldering, reaction soldering, clamping, riveting, bracing and preferably by sealing with additional sealing material.
  • adhesive bonding preferably sintering, soldering, reaction soldering, clamping, riveting, bracing and preferably by sealing with additional sealing material.
  • Ceramic components or ceramics are aluminium oxide, technical aluminium oxide, zirconium oxide, differently doped zirconium oxides, aluminium nitride, silicon nitride, silicon oxide, glass ceramic, LTCC ceramics (Low Temperature Co-fired Ceramics), silicon carbide, boron nitride, boron oxide.
  • High thermal conductivities are of particular technical importance in applications such as power electronics, high-power LEDs, slow-response high-load fuses, processors, power resistors.
  • Low thermal conductivities are of particular technical importance in rapid-response high-load resistors and in applications in which it is necessary to ensure over a surface (the cooling box) a temperature distribution which is as uniform as possible.
  • thermoanalytical measurement arrangements may be mentioned, for example,
  • the cooling box consists of a composite material and the composite material contains electrically non-conductive or virtually non-conductive matrix materials with thermally conductive additives.
  • the matrix materials used are preferably resins, polymers or silicones.
  • the composite materials are multicomponent systems consisting of polymers or silicones mixed with ceramic components, such as, for example:
  • the cooling box may also be a composite of metal and/or ceramic or a composite of ceramic and metal.
  • the cooling box may also be fabricated as a hybrid by, in the case of cooling boxes of more than one piece, making at least one piece from metal. Use may be made, for example, of aluminium, copper, nickel, tungsten or special steels.
  • the metallisation layer on the cooling box is of multilayered construction.
  • the electrical or electronic component elements are electrically conductively and/or thermally conductively connected to the cooling box.
  • Component elements can be, for example, electrical or electronic or active or passive or geometrical bodies or any desired combinations thereof.
  • At least one mounting facility is connected to the cooling box.
  • the cooling box can be connected to further cooling boxes with or without electrical or electronic component elements or circuits, via the mounting facility.
  • the fastening can be effected via screwing, riveting, clamping, adhesive bonding, crimping, welding, soldering or further fastening possibilities.
  • the surface of the hollow space of the cooling box can assume the functions of all the surfaces which do not belong to the hollow space of the cooling box, and vice versa.
  • the surface of the cooling box and/or the surface of the cooling box belonging to the hollow space bears or has any desired surface structurings which bring about the effect of altering the surface.
  • one or more surface structurings or combinations thereof are arranged on the cooling box and the surface structurings are, for example, roughenings, furrows, corrugations, apertures in the surface or dendritic or branching structures.
  • the surface structurings are planar or uneven or rough surfaces which are connected, in particular in an interlocking manner and/or permanently and/or temporarily or as a combination thereof, to likewise uneven or planar or rough surfaces of components to be mounted.
  • the type of connection can be, for example, soldering or adhesive bonding.
  • the cooling box has an interlocking connection to component elements over the entire surface or over part of the surface.
  • the connection can be present, for example, permanently or temporarily or as a combination thereof.
  • Component elements can be, for example, electrical or electronic or active or passive or geometrical bodies or any desired combinations thereof.
  • the cooling box is flat or provided with cutouts or with elevations, these being formed in one piece or more than one piece with the respective cooling-box element.
  • the metallisation layers are greater than 5 ⁇ m and are applied using DCB processes (Direct Copper Bonding) or AMB processes (Active Metal Brazing).
  • the metallisation layers can consist, for example, of copper or aluminium or combinations thereof.
  • the construction according to the invention with components is present, for example, in the rest state at room temperature.
  • local temperature maxima may now arise in a very short period of time at the components as a result of their operation.
  • So-called thermal shock results in the environment of the component.
  • the construction according to the invention can withstand this state without any intrinsic damage. If these states occur alternately, so-called thermal cycling, then in the case of conventional constructions with, for example, adhesively bonded conductor tracks, after relatively few cycles detachment phenomena of conductor tracks on the cooling box result, for example.
  • the construction according to the invention displays a considerably improved resistance to thermal cycling in comparison with conventional constructions.
  • identical or different component elements are fixed on the cooling box with identical or different spatial orientations.
  • the orientation can take place, for example, by means of different amounts of solder or different cutouts or elevations or any desired combinations of orientation possibilities.
  • LEDs for example, their orientation and therefore the light can thus be oriented in a simple manner.
  • cooling box according to the invention can be used as a mounting body for component elements, in particular electrical or electronic component elements.
  • the cooling box is connected to sensory components.
  • Sensory components can emit, for example, signals from which variables such as pressure, temperature, weight, etc. can be derived,
  • sensory signals are derived from the partial or total deformation of the cooling box.
  • the cooling box is partially provided with metallic regions. These regions can connect the upper and lower sides of the cooling box electrically to one another, for example.
  • the cooling box builds up virtually no electrochemical potential with respect to other materials. Given corresponding coupling, for example, the corrosion of the cooling box or of the environment can therefore be significantly reduced.
  • the cooling box is used as a heat source by the heat produced being released via the cooling box to the medium whose temperature is to be regulated.
  • the medium whose temperature is to be regulated can contact the hollow space surface or the surface not associated with the hollow space.
  • the cooling box has a targeted temperature distribution owing to supplied heat or cold which is transferred to the cooling box. For example, temperature differences in the environment can thus be compensated for in a targeted manner.
  • substances are applied to the cooling box which make bonding processes possible.
  • a metallisation construction W—Ni—Au tungsten-nickel-gold
  • the substances may consist of one or more materials, which are applied to the cooling box mixed or from at least one layer.
  • the substances may consist, for example, of materials such as gold or layers comprising a plurality of materials such as copper, nickel and gold or comprising mixtures of at least two different materials, such as metals and/or additives, for example, and layers of identical or different metals or additives.
  • one or more light emitting substances or one or more light-emitting components or combinations thereof are connected to the cooling box.
  • this may be a semiconductor or a housing with a semiconductor, such as is used for LED lighting systems.
  • metals or metal layers are connected over the entire surface or over part of the surface to the cooling box intimately or by a mechanical interlocking connection and have an identical or different thermal conductivity to the cooling box.
  • Metals or metal layers may be, for example, pure-grade or technical-grade tungsten, silver, gold, copper, platinum, palladium, nickel or mixtures of at least two different metals.
  • Metals or metal layers can also be mixed, for example, with adhesion-promoting agents or other additives such as glasses or polymeric materials.
  • Metals or metal layers may also be, for example, reaction solders, soft solders or hard solders.
  • the heat needs to be spread, i.e. distributed, very rapidly over the entire surface of the cooling box.
  • the cooling box with comparatively low thermal conductivity, can thus receive the heat produced, via the metal, distributed over its entire surface. Since the cooling box is electrically insulating, the metal can at the same time fulfil the function of electrical conductivity and thermal conductivity.
  • the metals or the metal layers on the cooling boxes may have different functions.
  • they can have the function of electrical conductivity and/or of thermal conductivity or the function of a colour change of the surface or thermal spreading or an adhesion promoter to third materials, such as, for example, solders, adhesives, and any desired combinations of the functions of identical or different metal regions.
  • the advantage consists in the matched current-carrying capacity of the metal regions.
  • the metal regions therefore need not necessarily have the same heights or thicknesses, for example.
  • the metals or the metallisation layers are connected to the material of the cooling box over the entire surface or over part of the surface with identical or different thicknesses (heights) in identical or different metal regions.
  • identical or different metals are connected as metallisation layers to the material of the cooling box over the entire surface or over part of the surface, with one or more layers with identical or different thicknesses (heights).
  • the cooling box has the intrinsic colouring of the material (s) used over the entire surface or over part of the surface or subregions of the cooling box are coloured differently from the intrinsic colouring.
  • the cooling box can be provided, for example during the production process thereof, with-colour-imparting additives, so that the bulk material is completely and mechanically inseparably penetrated by colour as a result of a thermal treatment.
  • the cooling box can be provided, after the production process thereof, for example over the surface with colour-imparting additives, so that the surface of the bulk material is completely penetrated by colour as a result of a thermal treatment.
  • the bulk material can also retain its intrinsic colouring internally.
  • the gradient of the coloration can assume a very wide variety of characteristics.
  • the cooling box can be provided with colour-imparting layers, so that the bulk material of the cooling box is not coloured as a result and the change in colour is only produced by one or more mechanically separable layers.
  • Colour-imparting layers may be, for example, varnishes, glazes, adhesive films, metals etc.
  • the cooling box is connected to at least one further geometrically identical or different cooling box via suitable connecting materials to form a type of three-dimensional array.
  • Connecting materials may have a single-layered or multilayered nature. Connecting materials may be identical or different in nature or else be used in combination with a single-layered or multilayered construction.
  • connecting materials such as adhesives, metallisations, metals, metals which have been connected to the cooling box, by way of example, by processes such as DCB (Direct Copper Bonding) or AMB (Active Metal Brazing) may be mentioned. It is also possible, for example, to use solders, reaction solders, double-sided adhesive films, etc.
  • the cooling box is connected to one or more light-emitting substances or one or more light-emitting components and combinations thereof and, at the same time, is preferably provided with standardised or non-standardised electrical connectors. It is also possible for combinations of identical or different electrical connectors to be used.
  • a mechanical connection to the cooling box which is appropriate for the electrical connector is preferably used. Electrical connectors may be, for example, lamp bases E27, E14, GU series, G series, U series, R series, plug-in bases, bayonet-type bases, clamping connectors, screw connectors, plug-in connectors, etc.
  • Mechanical connections or combinations of mechanical connections may be, for example, adhesive bonding, soldering, crimping, riveting, clamping, etc.
  • At least one cooling box is connected to at least one further geometrical body via suitable connecting materials to form a type of three-dimensional construction.
  • Connecting materials may have a single-layered or multilayered nature.
  • Connecting materials may be identical or different or may also be used in combination with a single-layered or multilayered construction.
  • At least one or more identical or different cooling boxes can be attached at any desired points with identical or different orientations.
  • connecting materials such as adhesives, metallisations, metals, metals which, by way of example, have been connected to the cooling box by processes such as DCB (Direct Copper Bonding) or AMB (Active Metal Brazing), solders, reaction solders, double-sided adhesive films, etc. may be mentioned.
  • geometrical bodies may be plates on which at least one or more identical or different cooling boxes are located in different regions.
  • the cooling box may be, for example, part of a plastic housing.
  • At least one and/or different or identical cooling boxes are embedded in a matrix material with any desired orientation or oriented in the same direction.
  • the embedding can take place, for example, by injection moulding or die-casting.
  • the embedding compositions themselves should be selected as desired and according to the respective intended functions. Plastics are particularly suitable.
  • a change in the heat transport is achieved by modifying the size or the colouring or modifying the geometry of the metallised regions or metallisation layers or combinations thereof. If, for example, the design of the hollow space in the cooling box is changed, in the case of a constant input of heat, the absolute temperature in the steady state or in the state of equilibrium can change by thermal energy being emitted or absorbed. This can also take place, for example, by the hollow space in the cooling box being added or removed or increased or decreased in size in a targeted manner. The change can also take place, for example, by a change in the colour. Thus, the emission characteristics of a black bode are different from those of a white body.
  • the surface of the hollow space can also assume the functions of the surface not belonging to the hollow space, i.e. be formed, for example, as a printed circuit board.
  • the metallisation layers are applied to the outer or inner surface of the cooling box by sintering.
  • High-power semiconductors with or without thermal power loss are preferably connected directly or indirectly to the cooling box.
  • the waste heat arising is passed on to the material of the cooling box at the same time and automatically.
  • the material of the cooling box can then pass on the quantity of heat to the heating or cooling medium.
  • the process can also take place in the opposite direction, so that the quantity of heat is removed from the heating or cooling medium.
  • a combination of both transport directions can also be utilised.
  • the metallisation regions consist of tungsten and are chemically nickel-plated or gold-plated.
  • the metallisation regions are circular in one configuration.
  • the cooling box is provided with electrical conductor tracks, via which electrical voltages up into the kV range can be transported without electrical voltage flowing away via the material of the cooling box.
  • electrical voltage ranges of from 1 volt to 600 volts, and voltages >>2 kvolts (2000 volts).
  • the cooling box does not have any screening effect or has little screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof, and therefore these fields can pass through the cooling box.
  • the cooling box is provided in a targeted manner with materials over the entire surface or over part of the surface, the function of these materials being to provide regions in which a different screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof occurs in comparison with the screening effect of the material of the cooling box.
  • regions are arranged which, owing to their geometry, via inductive or capacitive effects or combinations thereof are capable of receiving or transmitting electrical or magnetic or electromagnetic signals.
  • Signals in the broadest sense are used for the wireless transmission of energy.
  • the energy can also transmit additional information, for example by means of modulation.
  • the cooling box is equipped with the functionality of intelligent self-identification.
  • Self-identification may be, for example, lettering or marking or a magnetic strip with corresponding information or an RFID unit (radio-frequency identification) or combinations thereof.
  • the cooling box is connected directly or indirectly to at least one laser diode of identical or different wavelength.
  • the laser diode can be a module or the light-emitting semiconductor itself.
  • An indirect connection would be, for example, screwing on, adhesive bonding, clamping.
  • a direct connection would be, for example, soldering on.
  • the cooling box is connected directly or indirectly to at least one power module of identical or different design, which, for example, regulates the starting current of an electric motor.
  • An indirect connection would be, for example, screwing on, adhesive bonding, clamping.
  • a direct connection would be, for example, soldering on
  • only one electrical conductor of a power semiconductor is, for example, soldered onto one cooling box and at least one other electrical conductor of the power semiconductor is, for example, soldered onto another cooling box, in order to ensure optimum heat transfer at the same time as electrical insulation.
  • Suitable power semiconductors can thus be, for example, soldered to at least two cooling boxes in order to strengthen the desired cooling effect using a type of sandwich construction.
  • the material of the cooling box is chosen so that the cooling box can come into contact with corrosive or ionically conductive heating or cooling media.
  • the cooling box is equipped with standardised or non-standardised connectors for the heating or cooling medium.
  • the material of the cooling box or the ceramic material contains as the main component 50.1% by weight to 100% by weight of ZrO 2 /HfO 2 or 50.1% by weight to 100% by weight of Al 2 O 3 or 50.1% by weight to 100% by weight of AlN or 50.1% by weight to 100% by weight of Si 3 N 4 or 50.1% by weight to 100% by weight of BeO, 50.1% by weight to 100% by weight of SIC or a combination of at least two of the main components in any desired combination in the given percentage range, and contains as the secondary component the elements Ca, Sr, Si, Mg, B, Y, Sc, Ce, Cu, Zn, Ph in at least one oxidation state and/or compound with a proportion of ⁇ 49.9% by weight individually or in any desired combination in the given percentage range, and the main components and the secondary components are combined with one another in any desired combination with one another to form a total composition of 100% by weight, with deduction of a proportion of impurities of ⁇ 3% by weight.
  • At least one piece of the cooling box consists of a metallic material.
  • metallic materials which may be mentioned are aluminium, copper, nickel, as well as the technical variants of highest-grade metals or special steels.
  • the metallic piece of a cooling box consists of combinations of different metals.
  • surface regions of the cooling box over the entire surface or over part of the surface are provided with conductor tracks capable of carrying high current and standardised or non-standardised conductor connections capable of carrying high current.
  • At least a thin layer ⁇ 1000 ⁇ m of identical or different material is applied to the cooling box over the entire surface or over part of the surface by sputtering or lithographic processes or combinations of same.
  • an alternating stack construction of cooling box and component to be cooled takes place by partially or completely connecting individual levels or all the levels of the stack.
  • the connection can be, for example, adhesive bonding or clamping or soldering or brazing or phase-change materials.
  • cooling boxes of more than one piece are connected to one another by the processes of DCB (direct copper bonding) or AMB (active metal brazing) or metallisations, such as tungsten.
  • the metals can cover the sealing surface over the entire surface or over part of the surface and/or be greater than the actual sealing surface.
  • metal regions which are greater than the sealing surface also assume other functions, such as that of a seal.
  • Other functions can be, for example, a mounting possibility, electrical signal forwarding, electrical connection, thermal conduction, connection to a further cooling box or combinations thereof.
  • the heating- or cooling-medium connections of at least two cooling boxes are connected to one another in series or in parallel.
  • a quantity of heat is supplied to at least one cooling box and a quantity of heat is removed from at least one further cooling box.
  • This state of the heat flow direction can, in relation to the individual cooling box, be static or reversible or dynamically changing.
  • the heating- or cooling-medium circuit can be closed or open or provided with pressure equalisation.
  • the cooling box has at least two separate self-contained hollow spaces.
  • the hollow spaces can be closed or each provided with at least one entrance.
  • Identical or different heating or cooling media can be in identical or different states in the hollow spaces.
  • At least two hollow spaces are connected to one another in series or in parallel, or combinations thereof, inside the cooling box or outside via the heating- or cooling-medium entrances or combinations thereof.
  • the heating or cooling medium flows through the cooling box via convection or is circulated by a pump or by combination of same.
  • the cooling box is provided with standardised or non-standardised optical or optoelectrical connectors or components.
  • Connectors or components can be, for example, ferrules or optoelectrical transducers or light-guide connections.
  • an RFID unit is connected to the cooling box.
  • At least one conductor track of the RFID unit and/or at least one antenna of the RFID unit and/or at least one active and/or passive component part of the RFID unit is connected to the cooling box.
  • the cooling box consists of technical aluminium oxide with a minimum aluminium oxide content of 89%.
  • the metallisation regions are suitable for being able to solder on component parts, for example, and therefore produce an intimate connection.
  • the connection to a commercially available LED, for example, can be produced via a soldered connection.
  • the soldered connection has at least the functions of the mechanical connection between the LED and the cooling box.
  • the metallisation regions makes it possible to make electrical contact with the LED and to make thermal contact.
  • the technically necessary electrical conductor track cross-section can be chosen to be significantly larger than is necessary, since at the same time as the electrical conduction via the metallisation regions and conductor track cross-sections, the heat is also spread over a larger surface area of the cooling box.
  • a greater quantity of heat can be distributed over the surface of the cooling box in a shorter period of time via enlarged metallisation regions and conductor track cross-sections.
  • the cooling box also referred to below as body, can preferably consist of at least one ceramic component or a composite of different ceramics.
  • ceramic component or a composite of different ceramics. Examples which may be mentioned are technical aluminium oxide 80-99.9%, aluminium oxide, beryllium oxide, zirconium oxide, stabilised zirconium oxide, aluminium nitride, zirconium strengthened aluminium oxide, glass ceramic or ceramics produced by mixtures of at least two different ceramics or additives.
  • Monocrystalline ceramics may be, for example, sapphire.
  • the body may also consist of a composite material.
  • Matrix materials for example resins, polymers or silicones with additives, may be used.
  • the additives bring about a change in the thermal conductivity of the matrix materials.
  • Multicomponent systems may preferably be polymers with Al 2 O 3 , polymers with AlN, silicones with Al 2 O 3 /AlN.
  • the body may be rigid or flexible or a combination of rigid/flexible.
  • the body may be a metal/ceramic composite or a composite of body and metal.
  • the body may be of multilayered construction with inner conductor tracks and electrical component parts, such as resistors, coils, capacitors, etc., electrically conductive regions between the layers also being possible.
  • the body may also be used as a replacement for an electrically conductive cooling body, in this case in particular if the environment has a corrosive effect.
  • the body may, at the same time, also be a mounting housing.
  • Heat sources may be electrical or electronic component parts, such as heating elements, Peltier elements, resistors, active and passive semiconductors, for example.
  • the heat can be produced intentionally as a function or can arise as a by-product when performing the function.
  • the heat sources can also experience changes in their functionality owing to the heat produced by them during operation.
  • the heat sources can be directly connected to the body, for example by a soldered connection.
  • Modules are subject to ever greater powers per area and the permanent functionality of these modules can only be ensured by mounting cooling bodies.
  • the cooling box according to the invention is chosen for the thermal dissipation.
  • LEDs Light-Emitting Diodes
  • Laser Diodes
  • the semiconductors can be mounted directly on a printed circuit board or first housed and then placed onto the printed circuit board as a component part.
  • the circuit arranged on the printed circuit board in turn is cooled, according to the invention, by the cooling box or the semiconductor is provided directly with an additional cooling box.
  • Semiconductors may also be, for example, solar cells, since their power output decreases with increasing temperature. In this case, the semiconductor itself would not produce any waste heat which would need to be dissipated, but here the semiconductor is heated by the IR component of the sunlight.
  • the prior art for example in motor cars, involves separating the heat sources from the circuit and electrically connecting them. In this case, too, the construction with thermally conductive cooling bodies is used.
  • Peltier elements have a cold and a warm side. Depending on the application, the construction can always be seen in combination with a separate cooling body. Here, the Peltier element can be applied directly to the electrically insulating cooling body. The opposite effect may also be utilised to generate electric voltage from a temperature difference (Seebeck effect).
  • the cooling body itself can contain a sensor system which has been introduced or mounted/applied on/to a surface. Owing to the direct coupling to the system, self-regulating protective functions of the heat sources are possible.
  • the prior art When mounting the component part and cooling body, the prior art often also requires a third component, a so-called heat-conducting film, which at the same time must also be electrically insulating.
  • the cooling body and the component part In order that the desired effect of the heat dissipation can be achieved, the cooling body and the component part must have flat and plane-parallel surfaces, in order that a 100% interlocking connection is ensured. If a heat-conducting film is used as well, this too must have a flat and plane-parallel surface.
  • a screw connection is often chosen. If distortions occur in the construction during the mounting or operation, the thermal contact may be partially lost. Consequently, the functionality and service life of the construction are jeopardised.
  • the prior art is to provide a printed circuit board having inadequate thermal management with an electrically conductive cooling body.
  • the thermal coupling is set limits insofar it must be stable for a long period of time. Limiting factors are, for example, the temporal and geometrical change of the electrically insulating medium.
  • FIG. 1 shows a cooling box 1 which consists of two sub-pieces 1 ′.
  • the two sub-pieces 1 ′ are identical in the configuration shown here and enclose a hollow space which is arranged between the two sub-pieces 1 ′.
  • the hollow space is not visible in this figure.
  • This hollow space is connected to the outside environment via two openings 2 .
  • a cooling medium can be led into the hollow space via the two openings.
  • FIG. 2 shows two cooling boxes 1 according to the invention, which both enclose a respective hollow space, not visible in the figure.
  • Both cooling boxes 1 are formed in one piece and are connected to one another via a mounting possibility 8 , in this case a pin soldered onto the cooling boxes 1 .
  • the hollow spaces are connected to the outside environment via openings 2 .
  • One cooling box has only a single opening 2 .
  • the cooling medium can in this case pass into the hollow space by convection.
  • the other cooling box shown has two openings 2 .
  • the cooling medium can be, for example, pumped into the hollow space.
  • the two cooling boxes consist of a ceramic and are electrically non-conductive or virtually non-conductive.
  • At least one surface region of the cooling box 1 is defined by the functions of electrical and/or thermal conductivity.
  • the surface region of the cooling boxes 1 which is defined by the functions of electrical and/or thermal conductivity is a metallisation layer sintered to the material of the cooling boxes 1 .
  • this surface region is a printed circuit board 5 .
  • FIG. 3 shows a cooling box 1 , similar to FIG. 1 , which consists of two sub-pieces.
  • FIG. 4 shows a section along the line A-A of FIG. 3 .
  • the two sub-pieces are of identical form and enclose a hollow space 4 which is arranged between the two sub-pieces.
  • This hollow space 4 is connected to the outside environment via two openings 2 .
  • a cooling medium can be led into the hollow space 4 via the two openings.
  • to the top side of the cooling box 1 there is applied a metallisation layer 3 which is sintered to the material of the cooling box 1 .
  • FIG. 5 shows, like the left cooling box from FIG. 2 , a one-part cooling box 1 with an opening 2 for a hollow space, not shown here.
  • a metallisation layer 5 formed as a printed circuit board is applied to the top surface 6 of the cooling box 1 .
  • the cooling box 1 consists of a ceramic as the material of the cooling box.
  • the metallisation layer 5 is sintered to the material of the cooling box 1 in this case too.
  • FIG. 6 shows a total of three cooling boxes 1 which are connected to one another to form a type of three-dimensional array.
  • Each of the cooling boxes 1 has openings 2 for supplying the cooling medium.
  • the surface regions of the cooling boxes 1 are defined by the functions of electrical and/or thermal conductivity, i.e. have metallisation layers sintered to the material of the cooling boxes 1 .
  • FIG. 7 shows a cooling box 1 which consists of two identical sub-pieces 1 ′. These sub-pieces 1 ′ are connected to one another by a connecting material 7 , in this case an adhesive.
  • a connecting material 7 in this case an adhesive.
  • the sintered metallisation layers are not shown.

Abstract

The invention relates to a cooling box (1) for electric or electronic components, consisting of a material. Said cooling box (1) is non-electrically conductive or practically non-electrically conductive, is configured in one piece or multiple pieces and has a cavity (4) that is enclosed by the material, said cavity (4) being closed or provided with at least one opening (2). To improve thermal dissipation, at least one surface region of the cooling box (1) is defined by functions of electrical and/or thermal conductivity.

Description

  • The invention relates to a cooling box for electrical or electronic component elements or circuits made of a material, the cooling box being electrically non-conductive or virtually non-conductive, being constructed in one piece or more than one piece and having a hollow space enveloped by the material, and this hollow space being closed or provided with at least one opening.
  • According to the prior art, for the dissipation of heat from modules of power electronics, planar structures are constructed which dissipate the heat diffusing from a heat source (active or passive electrical component) into an electrically non-conductive, uniformly shaped, simple geometrical body (disc, rectangular substrate) via numerous intermediate layers (solders, conductive pastes, adhesives, metallisations). Although the geometry of the individual components is simple, the layered construction as a whole is complicated and requires consecutive application of a wide variety of processes which are susceptible to faults, such as adhesive bonding, pressing, screwing and, to a limited extent, also soldering. Each interface of this stack construction represents a barrier for heat transfer and reduces either the reliability and/or service life of the module (oxidation, burning through, ageing) or limits its power.
  • Cooling boxes are described in DE 296 12 943 01, DE 91 10 268 01, DE 92 01 158 01, DE 195 27 674 02 or DE 295 14 012 U1.
  • Organic and ceramic circuit carriers with low or inadequate thermal conductivity have to be permanently attached to a metallic cooling body in an interlocking manner by additional measures, such as electrically insulating intermediate layers. With increasing thermal loads, some of the heat sources have to be removed from the printed circuit board and mounted, in the conventional manner, on a metallic cooling body and electrically connected to the circuit carrier.
  • The construction, comprising a plurality of different materials is complex and a compromise in terms of long-term reliability. An increase in power density is possible only to a small extent.
  • The thermal conductivity can be used only under certain circumstances, since a plane-parallel construction is involved.
  • A direct connection of an electrically conductive body and a heat source is likewise not possible.
  • In the case of power thyristors, an alternating construction of cooling body and thyristor is usually chosen. In order for the heat transfer to be optimal, this construction is mechanically braced. This bracing is accompanied by a dynamic process of thermal expansion. The control of the bracing forces over time can only be ensured by additional outlay.
  • The object on which the invention is based is to substantially improve a cooling box according to the precharacterising clause of Claim 1 with regard to the thermal dissipation. Furthermore, the form of application of a cooling box is to be extended. In a further object, the reliability of the cooling box and its resistance to thermal cycling is to be improved.
  • According to the invention, this object is achieved by the features of claim 1.
  • According to the invention, at least one surface region of the cooling box is defined by the functions of electrical and/or thermal conductivity. In a preferred development, the surface region of the cooling box which is defined by the functions of electrical and/or thermal conductivity is a metallisation layer sintered to the material of the cooling box.
  • As a result of this sintered-in metallisation layer, the heat dissipation of the components connected (soldered) to the metallisation layer is substantially improved.
  • In the case of small-area power semiconductors, as components with extreme waste heat, the connection of the cooling box and semiconductor with matched coefficients of expansion can afford a significantly higher level of reliability.
  • In one configuration according to the invention, the surface region is a printed circuit board. By surface region is meant that part of the cooling box which is defined by the functions of electrical and/or thermal conductivity, i.e. that part which has the metallisation layer sintered to the material of the cooling box. The cooling box thus at the same time has the function of a printed circuit board with an extremely high thermal conductivity.
  • The conductor tracks are applied to the cooling box by the metallisation layer, i.e. the sintered metallisation layers can be applied such that they form a printed circuit board. The conductor tracks of the printed circuit board are thus intimately connected to the cooling box via a thermal process (sintering). In addition, metallic conductor tracks can also be adhesively bonded on and conductive adhesive can be used. Combinations of different types of conductor tracks may also be employed.
  • According to the invention, the components have a direct outflow of heat into the cooling box. The components can be connected to the cooling box, for example, directly or via one or more layers.
  • The terms component elements and components describe the same objects hereinbelow.
  • In one embodiment, the hollow space of the cooling box has a heating or cooling medium admitted to it. The heating or cooling medium can remain permanently in the hollow space or be exchanged continually or as required, via at least one entrance to the hollow space, for an identical or different heating or cooling medium with an identical or different temperature.
  • The heating or cooling medium is preferably a gas, such as, for example, air or nitrogen or a liquid, such as, for example, water or oil.
  • In a preferred configuration, the cooling box consists of at least one ceramic component or a composite of different ceramics. The ceramic components can be present, in the crystallographic sense, in monocrystalline or polycrystalline form or combinations thereof.
  • Preferably, sub-pieces of a cooling box of more than one piece are connected to one another by adhesive bonding, sintering, soldering, reaction soldering, clamping, riveting, bracing and preferably by sealing with additional sealing material. Combinations of at least two different connecting techniques for the assembly of a cooling box consisting of at least two sub-pieces are also possible.
  • Examples of possible ceramic components or ceramics are aluminium oxide, technical aluminium oxide, zirconium oxide, differently doped zirconium oxides, aluminium nitride, silicon nitride, silicon oxide, glass ceramic, LTCC ceramics (Low Temperature Co-fired Ceramics), silicon carbide, boron nitride, boron oxide.
  • Of particular technical importance are technical 96%-pure aluminium oxide with thermal conductivities of approximately 24 W/mK, and technical >99%-pure aluminium oxide with approximately 28 W/mK, technical or pure aluminium nitrides with, for example, approximately 180 W/mK, aluminium oxides strengthened with zirconium oxide with approximately 24 W/mK, and glass ceramics with approximately 2 W/mK.
  • High thermal conductivities are of particular technical importance in applications such as power electronics, high-power LEDs, slow-response high-load fuses, processors, power resistors. Low thermal conductivities are of particular technical importance in rapid-response high-load resistors and in applications in which it is necessary to ensure over a surface (the cooling box) a temperature distribution which is as uniform as possible. Here, thermoanalytical measurement arrangements may be mentioned, for example,
  • In a special configuration, the cooling box consists of a composite material and the composite material contains electrically non-conductive or virtually non-conductive matrix materials with thermally conductive additives.
  • The matrix materials used are preferably resins, polymers or silicones.
  • In a preferred configuration, the composite materials are multicomponent systems consisting of polymers or silicones mixed with ceramic components, such as, for example:
      • a) polymers with Al2O3
      • b) polymers with AlN
      • c) silicones with Al2O3/AlN
      • d) silicones and polymers with ZrO2/Y2O3
  • The cooling box may also be a composite of metal and/or ceramic or a composite of ceramic and metal.
  • The cooling box may also be fabricated as a hybrid by, in the case of cooling boxes of more than one piece, making at least one piece from metal. Use may be made, for example, of aluminium, copper, nickel, tungsten or special steels.
  • In one embodiment, the metallisation layer on the cooling box is of multilayered construction.
  • Expediently, the electrical or electronic component elements are electrically conductively and/or thermally conductively connected to the cooling box. Component elements can be, for example, electrical or electronic or active or passive or geometrical bodies or any desired combinations thereof.
  • In a development of the invention, at least one mounting facility is connected to the cooling box.
  • The cooling box can be connected to further cooling boxes with or without electrical or electronic component elements or circuits, via the mounting facility. The fastening can be effected via screwing, riveting, clamping, adhesive bonding, crimping, welding, soldering or further fastening possibilities.
  • The surface of the hollow space of the cooling box can assume the functions of all the surfaces which do not belong to the hollow space of the cooling box, and vice versa.
  • In a development of the invention, the surface of the cooling box and/or the surface of the cooling box belonging to the hollow space bears or has any desired surface structurings which bring about the effect of altering the surface.
  • Advantageously, one or more surface structurings or combinations thereof are arranged on the cooling box and the surface structurings are, for example, roughenings, furrows, corrugations, apertures in the surface or dendritic or branching structures.
  • Preferably, the surface structurings are planar or uneven or rough surfaces which are connected, in particular in an interlocking manner and/or permanently and/or temporarily or as a combination thereof, to likewise uneven or planar or rough surfaces of components to be mounted. The type of connection can be, for example, soldering or adhesive bonding.
  • In a special embodiment, the cooling box has an interlocking connection to component elements over the entire surface or over part of the surface. The connection can be present, for example, permanently or temporarily or as a combination thereof. Component elements can be, for example, electrical or electronic or active or passive or geometrical bodies or any desired combinations thereof.
  • In one configuration, the cooling box is flat or provided with cutouts or with elevations, these being formed in one piece or more than one piece with the respective cooling-box element.
  • Furthermore, the metallisation layers are greater than 5 μm and are applied using DCB processes (Direct Copper Bonding) or AMB processes (Active Metal Brazing). The metallisation layers can consist, for example, of copper or aluminium or combinations thereof.
  • The construction according to the invention with components is present, for example, in the rest state at room temperature. During operation, local temperature maxima may now arise in a very short period of time at the components as a result of their operation. So-called thermal shock results in the environment of the component. The construction according to the invention can withstand this state without any intrinsic damage. If these states occur alternately, so-called thermal cycling, then in the case of conventional constructions with, for example, adhesively bonded conductor tracks, after relatively few cycles detachment phenomena of conductor tracks on the cooling box result, for example. The construction according to the invention displays a considerably improved resistance to thermal cycling in comparison with conventional constructions.
  • In a development of the invention, identical or different component elements are fixed on the cooling box with identical or different spatial orientations. The orientation can take place, for example, by means of different amounts of solder or different cutouts or elevations or any desired combinations of orientation possibilities. In the case of LEDs, for example, their orientation and therefore the light can thus be oriented in a simple manner.
  • Advantageously, the cooling box according to the invention can be used as a mounting body for component elements, in particular electrical or electronic component elements.
  • In one configuration of the invention, the cooling box is connected to sensory components. Sensory components can emit, for example, signals from which variables such as pressure, temperature, weight, etc. can be derived,
  • In one configuration of the invention, sensory signals are derived from the partial or total deformation of the cooling box.
  • According to the invention, the cooling box is partially provided with metallic regions. These regions can connect the upper and lower sides of the cooling box electrically to one another, for example.
  • Preferably, the cooling box builds up virtually no electrochemical potential with respect to other materials. Given corresponding coupling, for example, the corrosion of the cooling box or of the environment can therefore be significantly reduced.
  • In one inventive configuration, the cooling box is used as a heat source by the heat produced being released via the cooling box to the medium whose temperature is to be regulated. The medium whose temperature is to be regulated can contact the hollow space surface or the surface not associated with the hollow space.
  • Preferably, the cooling box has a targeted temperature distribution owing to supplied heat or cold which is transferred to the cooling box. For example, temperature differences in the environment can thus be compensated for in a targeted manner.
  • Preferably, substances are applied to the cooling box which make bonding processes possible. By way of example, a metallisation construction W—Ni—Au (tungsten-nickel-gold) can be used here in order to make gold-wire bonding possible. The substances may consist of one or more materials, which are applied to the cooling box mixed or from at least one layer. The substances may consist, for example, of materials such as gold or layers comprising a plurality of materials such as copper, nickel and gold or comprising mixtures of at least two different materials, such as metals and/or additives, for example, and layers of identical or different metals or additives.
  • In a development of the invention, one or more light emitting substances or one or more light-emitting components or combinations thereof are connected to the cooling box. For example, this may be a semiconductor or a housing with a semiconductor, such as is used for LED lighting systems.
  • Preferably, metals or metal layers are connected over the entire surface or over part of the surface to the cooling box intimately or by a mechanical interlocking connection and have an identical or different thermal conductivity to the cooling box. Metals or metal layers may be, for example, pure-grade or technical-grade tungsten, silver, gold, copper, platinum, palladium, nickel or mixtures of at least two different metals. Metals or metal layers can also be mixed, for example, with adhesion-promoting agents or other additives such as glasses or polymeric materials. Metals or metal layers may also be, for example, reaction solders, soft solders or hard solders.
  • It should be stressed in particular that, in the case of punctiform heat sources, the heat needs to be spread, i.e. distributed, very rapidly over the entire surface of the cooling box. The cooling box, with comparatively low thermal conductivity, can thus receive the heat produced, via the metal, distributed over its entire surface. Since the cooling box is electrically insulating, the metal can at the same time fulfil the function of electrical conductivity and thermal conductivity.
  • In one configuration according to the invention, the metals or the metal layers on the cooling boxes may have different functions. For example, they can have the function of electrical conductivity and/or of thermal conductivity or the function of a colour change of the surface or thermal spreading or an adhesion promoter to third materials, such as, for example, solders, adhesives, and any desired combinations of the functions of identical or different metal regions.
  • The advantage consists in the matched current-carrying capacity of the metal regions. The metal regions therefore need not necessarily have the same heights or thicknesses, for example.
  • Consequently, the metals or the metallisation layers are connected to the material of the cooling box over the entire surface or over part of the surface with identical or different thicknesses (heights) in identical or different metal regions.
  • In another configuration according to the invention, identical or different metals are connected as metallisation layers to the material of the cooling box over the entire surface or over part of the surface, with one or more layers with identical or different thicknesses (heights).
  • In a further configuration, the cooling box has the intrinsic colouring of the material (s) used over the entire surface or over part of the surface or subregions of the cooling box are coloured differently from the intrinsic colouring.
  • Based on a technical aluminium oxide, the cooling box can be provided, for example during the production process thereof, with-colour-imparting additives, so that the bulk material is completely and mechanically inseparably penetrated by colour as a result of a thermal treatment.
  • For example, based on a technical zirconium oxide, the cooling box can be provided, after the production process thereof, for example over the surface with colour-imparting additives, so that the surface of the bulk material is completely penetrated by colour as a result of a thermal treatment. Depending on the depth of penetration of the resulting coloration, the bulk material can also retain its intrinsic colouring internally. The gradient of the coloration can assume a very wide variety of characteristics.
  • For example, based on a technical aluminium nitride, the cooling box can be provided with colour-imparting layers, so that the bulk material of the cooling box is not coloured as a result and the change in colour is only produced by one or more mechanically separable layers. Colour-imparting layers may be, for example, varnishes, glazes, adhesive films, metals etc.
  • In another configuration, the cooling box is connected to at least one further geometrically identical or different cooling box via suitable connecting materials to form a type of three-dimensional array.
  • Connecting materials may have a single-layered or multilayered nature. Connecting materials may be identical or different in nature or else be used in combination with a single-layered or multilayered construction. By way of example, connecting materials such as adhesives, metallisations, metals, metals which have been connected to the cooling box, by way of example, by processes such as DCB (Direct Copper Bonding) or AMB (Active Metal Brazing) may be mentioned. It is also possible, for example, to use solders, reaction solders, double-sided adhesive films, etc.
  • In one embodiment, the cooling box is connected to one or more light-emitting substances or one or more light-emitting components and combinations thereof and, at the same time, is preferably provided with standardised or non-standardised electrical connectors. It is also possible for combinations of identical or different electrical connectors to be used. A mechanical connection to the cooling box which is appropriate for the electrical connector is preferably used. Electrical connectors may be, for example, lamp bases E27, E14, GU series, G series, U series, R series, plug-in bases, bayonet-type bases, clamping connectors, screw connectors, plug-in connectors, etc. Mechanical connections or combinations of mechanical connections may be, for example, adhesive bonding, soldering, crimping, riveting, clamping, etc.
  • In a further configuration, at least one cooling box is connected to at least one further geometrical body via suitable connecting materials to form a type of three-dimensional construction. Connecting materials may have a single-layered or multilayered nature. Connecting materials may be identical or different or may also be used in combination with a single-layered or multilayered construction. At least one or more identical or different cooling boxes can be attached at any desired points with identical or different orientations. By way of example, connecting materials, such as adhesives, metallisations, metals, metals which, by way of example, have been connected to the cooling box by processes such as DCB (Direct Copper Bonding) or AMB (Active Metal Brazing), solders, reaction solders, double-sided adhesive films, etc. may be mentioned. By way of example, geometrical bodies may be plates on which at least one or more identical or different cooling boxes are located in different regions.
  • The cooling box may be, for example, part of a plastic housing.
  • In another configuration, at least one and/or different or identical cooling boxes are embedded in a matrix material with any desired orientation or oriented in the same direction. The embedding can take place, for example, by injection moulding or die-casting. The embedding compositions themselves should be selected as desired and according to the respective intended functions. Plastics are particularly suitable.
  • According to the invention, in the case of a cooling box, a change in the heat transport is achieved by modifying the size or the colouring or modifying the geometry of the metallised regions or metallisation layers or combinations thereof. If, for example, the design of the hollow space in the cooling box is changed, in the case of a constant input of heat, the absolute temperature in the steady state or in the state of equilibrium can change by thermal energy being emitted or absorbed. This can also take place, for example, by the hollow space in the cooling box being added or removed or increased or decreased in size in a targeted manner. The change can also take place, for example, by a change in the colour. Thus, the emission characteristics of a black bode are different from those of a white body.
  • The surface of the hollow space can also assume the functions of the surface not belonging to the hollow space, i.e. be formed, for example, as a printed circuit board. The metallisation layers are applied to the outer or inner surface of the cooling box by sintering.
  • High-power semiconductors with or without thermal power loss, such as, for example, MOSFETs, IGBTs, processor cores, are preferably connected directly or indirectly to the cooling box. As a result, the waste heat arising is passed on to the material of the cooling box at the same time and automatically. The material of the cooling box can then pass on the quantity of heat to the heating or cooling medium. The process can also take place in the opposite direction, so that the quantity of heat is removed from the heating or cooling medium. A combination of both transport directions can also be utilised.
  • In a configuration according to the invention, the metallisation regions consist of tungsten and are chemically nickel-plated or gold-plated. The metallisation regions are circular in one configuration.
  • In a special configuration, the cooling box is provided with electrical conductor tracks, via which electrical voltages up into the kV range can be transported without electrical voltage flowing away via the material of the cooling box. Of particular technical interest are electrical voltage ranges of from 1 volt to 600 volts, and voltages >>2 kvolts (2000 volts).
  • In a preferred embodiment, the cooling box does not have any screening effect or has little screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof, and therefore these fields can pass through the cooling box.
  • In one configuration, the cooling box is provided in a targeted manner with materials over the entire surface or over part of the surface, the function of these materials being to provide regions in which a different screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof occurs in comparison with the screening effect of the material of the cooling box.
  • Preferably, by applying suitable materials, such as metals, for example, in a targeted manner to the cooling box, regions are arranged which, owing to their geometry, via inductive or capacitive effects or combinations thereof are capable of receiving or transmitting electrical or magnetic or electromagnetic signals. Signals in the broadest sense are used for the wireless transmission of energy. The energy can also transmit additional information, for example by means of modulation.
  • In a configuration according to the invention, the cooling box is equipped with the functionality of intelligent self-identification. Self-identification may be, for example, lettering or marking or a magnetic strip with corresponding information or an RFID unit (radio-frequency identification) or combinations thereof.
  • In one configuration, the cooling box is connected directly or indirectly to at least one laser diode of identical or different wavelength. The laser diode can be a module or the light-emitting semiconductor itself. An indirect connection would be, for example, screwing on, adhesive bonding, clamping. A direct connection would be, for example, soldering on.
  • In one embodiment, the cooling box is connected directly or indirectly to at least one power module of identical or different design, which, for example, regulates the starting current of an electric motor. An indirect connection would be, for example, screwing on, adhesive bonding, clamping. A direct connection would be, for example, soldering on
  • In one embodiment, only one electrical conductor of a power semiconductor is, for example, soldered onto one cooling box and at least one other electrical conductor of the power semiconductor is, for example, soldered onto another cooling box, in order to ensure optimum heat transfer at the same time as electrical insulation. Suitable power semiconductors can thus be, for example, soldered to at least two cooling boxes in order to strengthen the desired cooling effect using a type of sandwich construction.
  • In one embodiment, the material of the cooling box is chosen so that the cooling box can come into contact with corrosive or ionically conductive heating or cooling media.
  • In one embodiment, the cooling box is equipped with standardised or non-standardised connectors for the heating or cooling medium.
  • Preferably, the material of the cooling box or the ceramic material contains as the main component 50.1% by weight to 100% by weight of ZrO2/HfO2 or 50.1% by weight to 100% by weight of Al2O3 or 50.1% by weight to 100% by weight of AlN or 50.1% by weight to 100% by weight of Si3N4 or 50.1% by weight to 100% by weight of BeO, 50.1% by weight to 100% by weight of SIC or a combination of at least two of the main components in any desired combination in the given percentage range, and contains as the secondary component the elements Ca, Sr, Si, Mg, B, Y, Sc, Ce, Cu, Zn, Ph in at least one oxidation state and/or compound with a proportion of ≦49.9% by weight individually or in any desired combination in the given percentage range, and the main components and the secondary components are combined with one another in any desired combination with one another to form a total composition of 100% by weight, with deduction of a proportion of impurities of ≦3% by weight.
  • In one embodiment, in the case of cooling boxes of more than one piece, at least one piece of the cooling box consists of a metallic material. Examples of metallic materials which may be mentioned are aluminium, copper, nickel, as well as the technical variants of highest-grade metals or special steels.
  • In one embodiment, the metallic piece of a cooling box consists of combinations of different metals.
  • In one embodiment, surface regions of the cooling box over the entire surface or over part of the surface are provided with conductor tracks capable of carrying high current and standardised or non-standardised conductor connections capable of carrying high current.
  • In one embodiment, at least a thin layer <1000 μm of identical or different material is applied to the cooling box over the entire surface or over part of the surface by sputtering or lithographic processes or combinations of same.
  • In one embodiment, an alternating stack construction of cooling box and component to be cooled takes place by partially or completely connecting individual levels or all the levels of the stack. The connection can be, for example, adhesive bonding or clamping or soldering or brazing or phase-change materials.
  • Preferably, cooling boxes of more than one piece are connected to one another by the processes of DCB (direct copper bonding) or AMB (active metal brazing) or metallisations, such as tungsten. In this case, the metals can cover the sealing surface over the entire surface or over part of the surface and/or be greater than the actual sealing surface.
  • In one embodiment, metal regions which are greater than the sealing surface also assume other functions, such as that of a seal. Other functions can be, for example, a mounting possibility, electrical signal forwarding, electrical connection, thermal conduction, connection to a further cooling box or combinations thereof.
  • In one embodiment, the heating- or cooling-medium connections of at least two cooling boxes are connected to one another in series or in parallel.
  • In one embodiment, a quantity of heat is supplied to at least one cooling box and a quantity of heat is removed from at least one further cooling box. This state of the heat flow direction can, in relation to the individual cooling box, be static or reversible or dynamically changing. The heating- or cooling-medium circuit can be closed or open or provided with pressure equalisation.
  • In one embodiment, the cooling box has at least two separate self-contained hollow spaces. The hollow spaces can be closed or each provided with at least one entrance. Identical or different heating or cooling media can be in identical or different states in the hollow spaces.
  • In one embodiment, at least two hollow spaces are connected to one another in series or in parallel, or combinations thereof, inside the cooling box or outside via the heating- or cooling-medium entrances or combinations thereof.
  • In one embodiment, the heating or cooling medium flows through the cooling box via convection or is circulated by a pump or by combination of same.
  • In one embodiment, the cooling box is provided with standardised or non-standardised optical or optoelectrical connectors or components. Connectors or components can be, for example, ferrules or optoelectrical transducers or light-guide connections.
  • In one embodiment, an RFID unit is connected to the cooling box.
  • In one embodiment, at least one conductor track of the RFID unit and/or at least one antenna of the RFID unit and/or at least one active and/or passive component part of the RFID unit is connected to the cooling box.
  • In one exemplary embodiment, the cooling box consists of technical aluminium oxide with a minimum aluminium oxide content of 89%. The metallisation regions are suitable for being able to solder on component parts, for example, and therefore produce an intimate connection. The connection to a commercially available LED, for example, can be produced via a soldered connection. The soldered connection has at least the functions of the mechanical connection between the LED and the cooling box. In addition, the metallisation regions makes it possible to make electrical contact with the LED and to make thermal contact.
  • Using the example of a construction of a cooling box with printed-on and sintered metallisation regions (also conductor track cross-sections) with a soldered-on point heat source, for example an LED, the technically necessary electrical conductor track cross-section can be chosen to be significantly larger than is necessary, since at the same time as the electrical conduction via the metallisation regions and conductor track cross-sections, the heat is also spread over a larger surface area of the cooling box. Compared with an electrically expedient and sufficient smaller metallisation region and conductor track cross-section, a greater quantity of heat can be distributed over the surface of the cooling box in a shorter period of time via enlarged metallisation regions and conductor track cross-sections.
  • The cooling box, also referred to below as body, can preferably consist of at least one ceramic component or a composite of different ceramics. Examples which may be mentioned are technical aluminium oxide 80-99.9%, aluminium oxide, beryllium oxide, zirconium oxide, stabilised zirconium oxide, aluminium nitride, zirconium strengthened aluminium oxide, glass ceramic or ceramics produced by mixtures of at least two different ceramics or additives. Monocrystalline ceramics may be, for example, sapphire.
  • The body may also consist of a composite material. Matrix materials, for example resins, polymers or silicones with additives, may be used. The additives bring about a change in the thermal conductivity of the matrix materials. Multicomponent systems may preferably be polymers with Al2O3, polymers with AlN, silicones with Al2O3/AlN.
  • The body may be rigid or flexible or a combination of rigid/flexible.
  • The body may be a metal/ceramic composite or a composite of body and metal.
  • The body may be of multilayered construction with inner conductor tracks and electrical component parts, such as resistors, coils, capacitors, etc., electrically conductive regions between the layers also being possible.
  • The body may also be used as a replacement for an electrically conductive cooling body, in this case in particular if the environment has a corrosive effect.
  • The body may, at the same time, also be a mounting housing.
  • The use of the cooling box according to the invention has the following advantages:
      • Reduction of the variety of components
      • Expansion of the variety of functions
      • Intrinsic protection against thermal overload
      • Long-term reliability
      • Avoidance of TCE mismatch owing to the use of greatly differing materials
      • Increase in power owing to improved heat dissipation
      • Difficulty of directly dissipating high heat losses has been overcome
      • Basic principle can be transferred to manifold applications
      • An “automatic” system-inherent thermal balance
      • Indirect mounting of the heat source in a separate housing, which in turn can be mounted on the body, is eliminated
  • Heat sources may be electrical or electronic component parts, such as heating elements, Peltier elements, resistors, active and passive semiconductors, for example.
  • The heat can be produced intentionally as a function or can arise as a by-product when performing the function.
  • The heat sources can also experience changes in their functionality owing to the heat produced by them during operation.
  • The heat sources can be directly connected to the body, for example by a soldered connection.
  • IGBTs
  • Modules are subject to ever greater powers per area and the permanent functionality of these modules can only be ensured by mounting cooling bodies.
  • In this case, the cooling box according to the invention is chosen for the thermal dissipation.
  • LEDs (Light-Emitting Diodes) or Laser Diodes
  • With the prior art, it has hitherto not been possible, or only possible to a limited extent, to satisfy greater demands in terms of luminance. The reasons for this are the poor thermal management associated with the prior art. As the luminance increases, the waste heat increases. The waste heat significantly influences the service life and the colour constancy. The same also applies to applications with laser diodes.
  • According to the invention, the semiconductors can be mounted directly on a printed circuit board or first housed and then placed onto the printed circuit board as a component part. The circuit arranged on the printed circuit board in turn is cooled, according to the invention, by the cooling box or the semiconductor is provided directly with an additional cooling box. Semiconductors may also be, for example, solar cells, since their power output decreases with increasing temperature. In this case, the semiconductor itself would not produce any waste heat which would need to be dissipated, but here the semiconductor is heated by the IR component of the sunlight.
  • Controllers
  • The prior art, for example in motor cars, involves separating the heat sources from the circuit and electrically connecting them. In this case, too, the construction with thermally conductive cooling bodies is used.
  • Corrosion of Cooling Bodies
  • Under certain application conditions, surface corrosion occurs in the case of electrically conductive cooling bodies. The surface compounds produced by chemical conversion change the transfer to the cooling medium and may also change the surface, for example due to pitting. Cooling boxes made of a ceramic eliminate this problem.
  • Ceramic Heating Element
  • Use for thermal stabilisation of the cooling body itself or the direct or indirect environment.
  • Peltier Application
  • Peltier elements have a cold and a warm side. Depending on the application, the construction can always be seen in combination with a separate cooling body. Here, the Peltier element can be applied directly to the electrically insulating cooling body. The opposite effect may also be utilised to generate electric voltage from a temperature difference (Seebeck effect).
  • Sensor system internally/on the surface owing to direct feedback in the dedicated system
  • The cooling body itself can contain a sensor system which has been introduced or mounted/applied on/to a surface. Owing to the direct coupling to the system, self-regulating protective functions of the heat sources are possible.
  • Mounting of the Cooling Body
  • Mounting points, pads, cavities, mounting pins
  • Active and Passive Cooling
      • bores
      • fans
      • ribs in cooling medium other than air
  • When mounting the component part and cooling body, the prior art often also requires a third component, a so-called heat-conducting film, which at the same time must also be electrically insulating. In order that the desired effect of the heat dissipation can be achieved, the cooling body and the component part must have flat and plane-parallel surfaces, in order that a 100% interlocking connection is ensured. If a heat-conducting film is used as well, this too must have a flat and plane-parallel surface. When mounting such a construction, a screw connection is often chosen. If distortions occur in the construction during the mounting or operation, the thermal contact may be partially lost. Consequently, the functionality and service life of the construction are jeopardised.
  • According to the invention, there is now for the first time the possibility of a soldered connection on the electrically insulating cooling bodies, the above-described disadvantages of the thermal coupling not arising during the soldering operation.
  • Multilayered Sandwich Construction
  • Simple mechanical connections of the cooling body for mounting the unit itself and for connection to further cooling bodies and/or functions associated with bodies.
  • Self-Cooled Printed Circuit Board
  • The prior art is to provide a printed circuit board having inadequate thermal management with an electrically conductive cooling body. In this case, the thermal coupling is set limits insofar it must be stable for a long period of time. Limiting factors are, for example, the temporal and geometrical change of the electrically insulating medium.
  • The invention is explained below with reference to figures.
  • FIG. 1 shows a cooling box 1 which consists of two sub-pieces 1′. The two sub-pieces 1′ are identical in the configuration shown here and enclose a hollow space which is arranged between the two sub-pieces 1′. The hollow space is not visible in this figure. This hollow space is connected to the outside environment via two openings 2. A cooling medium can be led into the hollow space via the two openings.
  • FIG. 2 shows two cooling boxes 1 according to the invention, which both enclose a respective hollow space, not visible in the figure. Both cooling boxes 1 are formed in one piece and are connected to one another via a mounting possibility 8, in this case a pin soldered onto the cooling boxes 1. The hollow spaces are connected to the outside environment via openings 2. One cooling box has only a single opening 2. The cooling medium can in this case pass into the hollow space by convection. The other cooling box shown has two openings 2. Here, the cooling medium can be, for example, pumped into the hollow space. The two cooling boxes consist of a ceramic and are electrically non-conductive or virtually non-conductive. According to the invention, in the case of both cooling boxes, at least one surface region of the cooling box 1 is defined by the functions of electrical and/or thermal conductivity. The surface region of the cooling boxes 1 which is defined by the functions of electrical and/or thermal conductivity is a metallisation layer sintered to the material of the cooling boxes 1. In the embodiment shown here, this surface region is a printed circuit board 5. These surface regions can be arranged on all sides and also in the hollow space of the cooling boxes 1.
  • FIG. 3 shows a cooling box 1, similar to FIG. 1, which consists of two sub-pieces. FIG. 4 shows a section along the line A-A of FIG. 3. The two sub-pieces are of identical form and enclose a hollow space 4 which is arranged between the two sub-pieces. This hollow space 4 is connected to the outside environment via two openings 2. A cooling medium can be led into the hollow space 4 via the two openings. According to the invention, to the top side of the cooling box 1 there is applied a metallisation layer 3 which is sintered to the material of the cooling box 1.
  • FIG. 5 shows, like the left cooling box from FIG. 2, a one-part cooling box 1 with an opening 2 for a hollow space, not shown here. A metallisation layer 5 formed as a printed circuit board is applied to the top surface 6 of the cooling box 1. In this case too, the cooling box 1 consists of a ceramic as the material of the cooling box. The metallisation layer 5 is sintered to the material of the cooling box 1 in this case too.
  • FIG. 6 shows a total of three cooling boxes 1 which are connected to one another to form a type of three-dimensional array. Each of the cooling boxes 1 has openings 2 for supplying the cooling medium. What is not shown is that the surface regions of the cooling boxes 1 are defined by the functions of electrical and/or thermal conductivity, i.e. have metallisation layers sintered to the material of the cooling boxes 1.
  • FIG. 7 shows a cooling box 1 which consists of two identical sub-pieces 1′. These sub-pieces 1′ are connected to one another by a connecting material 7, in this case an adhesive. Here too, the sintered metallisation layers are not shown.

Claims (73)

1. A cooling box for electrical or electronic component elements or circuits made of a material, the cooling box being electrically non-conductive or virtually non-conductive, being constructed in one piece or more than one piece and having a hollow space enveloped by the material, and this hollow space being closed or provided with at least one opening, wherein at least one surface region of the cooling box is defined by the functions of electrical or thermal conductivity.
2. A cooling box according to claim 1, wherein the surface region of the cooling box which is defined by the functions of electrical or thermal conductivity is a metallization layer sintered to the material of the cooling box.
3. A cooling box according to claim 2, wherein the surface region is a printed circuit board.
4. A cooling box according to claim 1, wherein the hollow space of the cooling box has a heating or cooling medium admitted to it.
5. A cooling box according to claim 4, wherein the heating or cooling medium is a gas, such as, for example, air or nitrogen or a liquid, such as, for example, water or oil.
6. A cooling box according to claim 1, wherein the material of the cooling box consists of at least one ceramic component or a composite of different ceramics.
7. A cooling box according to claim 1, wherein sub-pieces of a cooling box of more than one piece are connected.
8. A cooling box according to claim 1, wherein the material of the cooling box consists of a composite material and the composite material contains electrically non-conductive or virtually non-conductive matrix materials with thermally conductive additives.
9. A cooling box according to claim 8, wherein the matrix materials are resins, polymers or silicones.
10. A cooling box according to claim 8, wherein the composite materials are multicomponent systems comprising a polymers or a silicones mixed with a ceramic component
11. A cooling box according to claim 1, wherein the material of the cooling box is metal or ceramic or a composite of ceramic and metal.
12. A cooling box according to claim 1, wherein the metallization layer is of multilayered construction.
13. A cooling box according to claim 1, wherein electrical or electronic component elements are electrically conductively or thermally conductively connected to the cooling box.
14. A cooling box according to claim 1, wherein at least one mounting facility is connected to the cooling box.
15. A cooling box according to claim 14, wherein the cooling box is connected to further cooling boxes, with or without electrical or electronic component elements or circuits, via the mounting possibility.
16. A cooling box according to claim 14, wherein the fastening of the mounting possibility is effected via screwing, riveting, clamping, adhesive bonding, crimping, welding, soldering or further fastening possibilities.
17. A cooling box according to claim 1, wherein the cooling box is connected to at least one cooling body.
18. A cooling box according to claim 1, wherein the surface of the cooling box or the surface of the cooling box belonging to the hollow space bears or has any desired surface structurings which bring about the effect of altering the surface.
19. A cooling box according to claim 18, wherein one or more surface structurings or combinations thereof are arranged on one or more cooling boxes and the surface structurings are, for example, roughenings, furrows, corrugations, apertures in the surface or dendritic or branching structures.
20. A cooling box according to claim 18 or 19, wherein the surface structurings are planar or uneven or rough surfaces which are connected, in particular in an interlocking manner or permanently or temporarily, to likewise uneven or planar or rough surfaces of components to be mounted.
21. A cooling box according to claim 1, wherein the cooling box has an interlocking connection with component elements over the entire surface or over part of the surface.
22. A cooling box according to claim 1, wherein the cooling box is formed flat or with cutouts or with elevations, these being formed in one piece or more than one piece with the respective cooling-box element.
23. A cooling box according to one of claim 2, wherein the metallization layers are greater than 5 μm and are applied using Direct Copper Bonding (DCB) processes or Active Metal Brazing processes.
24. A cooling box according to claim 1, wherein identical or different component elements are fixed on the cooling box with identical or different spatial orientations.
25. A cooling box according to one of claim 1 for use as a mounting body for component elements, in particular electrical or electronic component elements.
26. A cooling box according to claim 1, wherein sensory components are connected to the cooling box.
27. A cooling box according to claim 1, wherein sensory signals are derived from the partial or total deformation of the cooling box.
28. A cooling box according to claim 1, wherein the cooling box is partially provided with metallic regions.
29. A cooling box according to claim 1, wherein the cooling box builds up virtually no electrochemical potential with respect to other materials.
30. A cooling box according to claim 1, wherein the cooling box is used as a heat source by the heat produced being released via the cooling box to the medium whose temperature is to be regulated.
31. A cooling box according to claim 1, wherein the cooling box has a targeted temperature distribution due to supplied heat or cold which is transmitted to the cooling box.
32. A cooling box according to claim 1, wherein substances are applied to the cooling box which make bonding processes possible.
33. A cooling box according to claim 1, wherein one or more at least one light-emitting substance or at least one light-emitting component or a combination thereof are connected to the cooling box.
34. A cooling box according to claim 1, wherein metals or metal layers are connected over the entire surface or over part of the surface to the cooling box intimately or by a mechanical interlocking connection and have an identical or different thermal conductivity to the cooling box.
35. A cooling box according to claim 1, wherein the function of the metals is the electrical conductivity or the thermal conductivity or a color change of the surface or thermal spreading or an adhesion promoter to third materials, such as, for example, solders, adhesives, and any desired combinations of the functions of identical or different metal regions.
36. A cooling box according to claim 1, wherein the metals or the metallization layers are connected to the material of the cooling box over the entire surface or over part of the surface with identical or different thicknesses color in identical or different metal regions.
37. A cooling box according to claim 1, wherein identical or different metals are connected as metallization layers to the material of the cooling box over the entire surface or over part of the surface, with one or more layers with identical or different thicknesses color.
38. A cooling box according to claim 1, wherein the cooling box has the intrinsic coloring of the material(s) used over the entire surface or over part of the surface or subregions of the cooling box are colored differently from the intrinsic coloring.
39. A cooling box according to claim 1, wherein the cooling box is connected to at least one further geometrically identical or different cooling box via suitable connecting materials to form a type of three-dimensional array.
40. A cooling box according to one of claim 1, wherein the cooling box is connected to one or more light-emitting substances or one or more light-emitting components and combinations thereof and, at the same time, is provided with standardized or non-standardized electrical connectors.
41. A cooling box according to claim 40, wherein the electrical connectors are lamp bases, such as E27, E14, GU series, G series, U series or R series.
42. A cooling box according to one of claim 1, wherein at least one or different or identical cooling boxes are embedded in a matrix material with any desired orientation or oriented in the same direction.
43. A cooling box according to claim 1, wherein, in the case of a cooling box, a change in the heat transport is achieved by modifying the size or the coloring or modifying the geometry of the metallized surface regions or the metallization layers or combinations thereof.
44. A cooling box according to claim 1, wherein the surface of the hollow space also assumes the functions of the surface not belonging to the hollow space.
45. A cooling box according to claim 44, wherein high-power semiconductors with or without thermal power loss, such as, for example, MOSFETs, IGBTs, processor cores, are connected directly or indirectly to the cooling box and thus the waste heat arising is passed on to the material of the cooling box at the same time and automatically.
46. A cooling box according to claim 2, wherein the metallization layers are applied to the outer or inner surface of the cooling box by sintering.
47. A cooling box according to one of claim 2, wherein the metallization layers comprise tungsten.
48. A cooling box according to one of claim 1, wherein the cooling box is provided with electrical conductor tracks, via which electrical voltages up into the kV range can be transported without electrical voltage discharge due away via the material of the cooling box.
49. A cooling box according to claim 1, wherein the cooling box does not have any screening effect or has little screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof, and therefore these fields can pass through the cooling box.
50. A cooling box according to claim 1, wherein the cooling box is provided in a targeted manner with materials over the entire surface or over part of the surface, the function of these materials being to provide regions in which a different screening effect with respect to electrical or magnetic or electromagnetic fields or combinations thereof occurs in comparison with the screening effect of the material of the cooling box.
51. A cooling box according to claim 1, wherein by applying suitable materials, such as metals, for example, in a targeted manner to the cooling box, regions are arranged which, due to their geometry, via inductive or capacitive effects or combinations thereof are capable of receiving or transmitting electrical or magnetic or electromagnetic signals.
52. A cooling box according to one of claim 1, wherein the cooling box is equipped with the functionality of intelligent self-identification.
53. A cooling box according to claim 1, wherein the cooling box is connected directly or indirectly to at least one laser diode of identical or different wavelength.
54. A cooling box according to claim 1, wherein the cooling box is connected directly or indirectly to at least one power module of identical or different design, which, for example, regulates the starting current of an electric motor.
55. A cooling box according to claim 1, wherein only one electrical conductor of a power semiconductor is, for example, soldered onto one cooling box and at least one other electrical conductor of the power semiconductor is, for example, soldered onto another cooling box, in order to ensure optimum heat transfer at the same time as electrical insulation.
56. A cooling box according to one of claim 1, wherein the material of the cooling box is chosen such that the cooling box can come into contact with corrosive or ionically conductive heating or cooling media.
57. A cooling box according to claim 1, wherein the cooling box is equipped with standardized or non-standardized connectors for the heating or cooling medium.
58. A cooling box according to claim 1, wherein the ceramic material contains as the main component 50.1% by weight to 100% by weight of ZrO2/HfO2 or 50.1% by weight to 100% by weight of Al2O3 or 50.1% by weight to 100% by weight of AlN or 50.1% by weight to 100% by weight of Si3N4 or 50.1% by weight to 100% by weight of BeO, 50.1% by weight to 100% by weight of SiC or a combination of at least two of the main components in any desired combination in the given percentage range, and contains as the secondary component the elements Ca, Sr, Si, Mg, B, Y, Sc, Ce, Cu, Zn, Pb in at least one oxidation state and/or-or compound with a proportion of ≦49.9% by weight individually or in any desired combination in the given percentage range, and in that the main components and the secondary components are combined with one another in any desired combination with one another to form a total composition of 100% by weight, with deduction of a proportion of impurities of ≦3% by weight.
59. A cooling box according to one of claim 1, wherein, in the case of cooling boxes of more than one piece, at least one piece of the cooling box consists of a metallic material.
60. A cooling box according to one of claim 1, wherein the metallic piece of a cooling box consists of a combination of different metals.
61. A cooling box according to claim 1, wherein surface regions of the cooling box over the entire surface or over part of the surface are provided with conductor tracks capable of carrying high current and standardized or non-standardized conductor connectors capable of carrying high current.
62. A cooling box according to one of claim 1, wherein at least a thin layer <1000 μm of identical or different material is applied to the cooling box over the entire surface or over part of the surface by sputtering or lithographic processes or combinations of same.
63. A cooling box according to claim 1, wherein an alternating stack construction of cooling box and component part to be cooled takes place by partially or completely connecting individual levels or all the levels of the stack.
64. A cooling box according to claim 1, wherein cooling boxes of more than one piece are connected to one another by the processes of direct Copper bonding (DCB) or Active Metal Brazing (AMB) or metallizations, such as tungsten.
65. A cooling box according to claim 1, wherein metal regions which are greater than the sealing surface also assume other functions, such as that of a seal.
66. A cooling box according to claim 1, wherein the heating- or cooling-medium connections of at least two cooling boxes are connected to one another in series or in parallel.
67. A cooling box according to claim 66, wherein a quantity of heat is supplied to at least one cooling box and a quantity of heat is removed from at least one further cooling box.
68. A cooling box according to claim 1, wherein the cooling box has at least two separate self-contained hollow spaces.
69. A cooling box according to claim 1, wherein at least two hollow spaces are connected to one another in series or in parallel, or combinations thereof, inside the cooling box or outside via the heating- or cooling-medium entrances or combinations thereof.
70. A cooling box according to one of claim 1, wherein the heating or cooling medium flows through the cooling box via convection or is circulated by a pump or by combination of same.
71. A cooling box according to claim 1, wherein the cooling box is provided with standardized or non-standardized optical or optoelectrical connectors or components.
72. A cooling box according to claim 1, wherein an RFID unit is connected to the cooling box.
73. A cooling box according to claim 72, wherein at least one conductor track of the RFID unit or at least one antenna of the RFID unit or at least one active or passive component part of the RFID unit is connected to the cooling box.
US14/098,850 2007-04-26 2013-12-06 Cooling box for components or circuits Abandoned US20140104811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/098,850 US20140104811A1 (en) 2007-04-26 2013-12-06 Cooling box for components or circuits

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102007020170 2007-04-26
DE102007020170.4 2007-04-26
PCT/EP2008/054641 WO2008132056A1 (en) 2007-04-26 2008-04-17 Cooling box for components or circuits
US59684909A 2009-10-23 2009-10-23
US14/098,850 US20140104811A1 (en) 2007-04-26 2013-12-06 Cooling box for components or circuits

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/596,849 Continuation US8630092B2 (en) 2007-04-26 2008-04-17 Cooling box for components or circuits
PCT/EP2008/054641 Continuation WO2008132056A1 (en) 2007-04-26 2008-04-17 Cooling box for components or circuits

Publications (1)

Publication Number Publication Date
US20140104811A1 true US20140104811A1 (en) 2014-04-17

Family

ID=39590489

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/596,849 Expired - Fee Related US8630092B2 (en) 2007-04-26 2008-04-17 Cooling box for components or circuits
US14/098,850 Abandoned US20140104811A1 (en) 2007-04-26 2013-12-06 Cooling box for components or circuits

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/596,849 Expired - Fee Related US8630092B2 (en) 2007-04-26 2008-04-17 Cooling box for components or circuits

Country Status (11)

Country Link
US (2) US8630092B2 (en)
EP (2) EP2535928A3 (en)
JP (2) JP2010526427A (en)
KR (2) KR20150036793A (en)
CN (1) CN101689537B (en)
AU (1) AU2008244383B2 (en)
DE (1) DE102008001230A1 (en)
DK (1) DK2143139T3 (en)
HU (1) HUE046347T2 (en)
SI (1) SI2143139T1 (en)
WO (1) WO2008132056A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170263988A1 (en) * 2014-11-24 2017-09-14 Ceramtec Gmbh Thermal management in the field of e-mobility
EP3182814B1 (en) * 2015-12-17 2023-05-17 Valeo eAutomotive France SAS Cooling circuit and electrical device comprising the cooling circuit

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2142331A2 (en) * 2007-04-24 2010-01-13 CeramTec AG Method for producing a composite including at least one non-flat component
KR20150036793A (en) * 2007-04-26 2015-04-07 세람테크 게엠베하 Cooling box for components or circuits
DE102009036122B4 (en) * 2009-08-05 2011-07-21 BJB GmbH & Co. KG, 59755 Lamp base and lamp socket
US20140009946A1 (en) * 2011-03-29 2014-01-09 Ceramtec Gmbh Injection-molded lamp body with ceramic cooling apparatuses and leds
JP5447433B2 (en) * 2011-05-13 2014-03-19 株式会社安川電機 Electronic device and power conversion device provided with electronic device
CN102270679A (en) * 2011-07-28 2011-12-07 容云 Strutting piece, strutting component, solar photovoltaic optical collector and light emitting diode (LED) luminous device
CN102270690A (en) * 2011-07-28 2011-12-07 容云 Solar energy utilization device
WO2013061409A1 (en) * 2011-10-25 2013-05-02 富士通株式会社 Water-cooling apparatus, electronic apparatus having water-cooling apparatus, and water-cooling method
JP5714119B2 (en) * 2011-10-28 2015-05-07 京セラ株式会社 Channel member, heat exchanger using the same, semiconductor device, and semiconductor manufacturing apparatus
US9255741B2 (en) * 2012-01-26 2016-02-09 Lear Corporation Cooled electric assembly
CN102748624A (en) * 2012-06-28 2012-10-24 王干 Pluggable LED (Light-emitting Diode) light tube device with adjustable length
KR101375956B1 (en) * 2012-07-05 2014-03-18 엘에스산전 주식회사 Electronic component box for vehicle
DE102012106244B4 (en) * 2012-07-11 2020-02-20 Rogers Germany Gmbh Metal-ceramic substrate
JP6094015B2 (en) * 2013-04-12 2017-03-15 ホシデン株式会社 Terminal box
US9559490B2 (en) * 2013-05-02 2017-01-31 Koninklijke Philips N.V. Cooling device for cooling a laser arrangement and laser system comprising cooling devices
JP6164304B2 (en) * 2013-11-28 2017-07-19 富士電機株式会社 Manufacturing method of semiconductor module cooler, semiconductor module cooler, semiconductor module, and electrically driven vehicle
CN103672515B (en) * 2013-12-10 2016-02-03 林英强 A kind of LED bulb of high efficiency and heat radiation
CN103672516B (en) * 2013-12-11 2016-08-17 佛山市大明照明电器有限公司 A kind of LED and control system
FR3015178B1 (en) * 2013-12-13 2016-01-01 Sagemcom Broadband Sas ELECTRONIC EQUIPMENT WITH DOUBLE COOLING
CN103672520B (en) * 2013-12-18 2016-01-13 宁波市柯玛士电器实业有限公司 A kind of LED sense light
CN103672521B (en) * 2013-12-20 2016-09-14 陈琦 A kind of two-way allotment light module
CN103672522B (en) * 2013-12-23 2015-11-25 天津中环电子照明科技有限公司 Intelligent mirror surface LED panel lamp
CN103672523B (en) * 2013-12-23 2015-12-30 天津中环电子照明科技有限公司 With the LED bread lamp of emergency function
CN203827682U (en) * 2014-04-24 2014-09-10 中兴通讯股份有限公司 Mobile communication terminal
DE102015106552B4 (en) * 2015-04-28 2022-06-30 Infineon Technologies Ag Electronic module with fluid cooling channel and method for manufacturing the same
DE102015107489B4 (en) 2015-05-12 2020-07-02 Infineon Technologies Ag Method for reducing sheet resistance in an electronic device
EP3206468B1 (en) * 2016-02-15 2018-12-26 Siemens Aktiengesellschaft Converter with an intermediate d.c. circuit
DE102017003854A1 (en) * 2017-04-20 2018-10-25 Leopold Kostal Gmbh & Co. Kg Housing for an electrical or electronic device
CN109413932A (en) * 2017-08-18 2019-03-01 鹏鼎控股(深圳)股份有限公司 Radiator structure and preparation method thereof
EP3929976A4 (en) * 2019-03-22 2022-04-20 Showa Denko Materials Co., Ltd. Cooling structure
CN112444098A (en) * 2020-10-08 2021-03-05 中山市光大光学仪器有限公司 Cooling table and rapid cooling method thereof
CN114699874B (en) * 2020-12-16 2023-04-07 上海协微环境科技有限公司 Reaction byproduct collecting system and method
DE102021109617A1 (en) 2021-04-16 2022-10-20 Bayerische Motoren Werke Aktiengesellschaft Cooling device and method of manufacturing a cooling device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001299A (en) * 1989-04-17 1991-03-19 Explosive Fabricators, Inc. Explosively formed electronic packages
US5566055A (en) * 1995-03-03 1996-10-15 Parker-Hannifin Corporation Shieled enclosure for electronics
US6432253B1 (en) * 1998-06-23 2002-08-13 Amerasia International Technology, Inc. Cover with adhesive preform and method for applying same
US7054162B2 (en) * 2000-02-14 2006-05-30 Safenet, Inc. Security module system, apparatus and process
US7129422B2 (en) * 2003-06-19 2006-10-31 Wavezero, Inc. EMI absorbing shielding for a printed circuit board
US20100163210A1 (en) * 2007-04-26 2010-07-01 Claus Peter Kluge Cooling box for components or circuits
US7864532B1 (en) * 2004-10-18 2011-01-04 Lockheed Martin Corporation Molded or encapsulated transmit-receive module or TR module/antenna element for active array
US7911794B2 (en) * 2007-02-15 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor package
US8004860B2 (en) * 2006-08-29 2011-08-23 Texas Instruments Incorporated Radiofrequency and electromagnetic interference shielding
US8031485B2 (en) * 2007-09-07 2011-10-04 Autosplice, Inc. Electronic shielding apparatus and methods
US8081467B2 (en) * 2008-08-20 2011-12-20 Sri Hermetics Inc. Electronics package including heat sink in the housing and related methods
US20130114235A1 (en) * 2011-11-04 2013-05-09 Invensas Corporation Emi shield

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604074A1 (en) * 1986-02-08 1987-08-13 Bosch Gmbh Robert IGNITION SWITCH
DE3709200A1 (en) * 1987-03-20 1988-09-29 Heraeus Gmbh W C Electronic component
DE9110268U1 (en) 1991-02-23 1991-11-07 Abb Patent Gmbh, 6800 Mannheim, De
DE9201158U1 (en) 1992-01-31 1992-03-26 Abb Patent Gmbh, 6800 Mannheim, De
DE29514012U1 (en) 1994-08-03 1995-11-02 Anceram Gmbh & Co Kg Semi-finished product made of an aluminum nitride ceramic as a carrier with a conductive layer applied to at least one of its surfaces
JPH08139480A (en) * 1994-11-08 1996-05-31 Mitsubishi Materials Corp Heat-dissipative ceramic board having heat pipe structure
DE19527674C2 (en) 1995-07-31 2000-11-02 Anceram Gmbh & Co Kg Cooling device
DE19643717A1 (en) * 1996-10-23 1998-04-30 Asea Brown Boveri Liquid cooling device for a high-performance semiconductor module
EP1225633A1 (en) 2001-01-22 2002-07-24 ABB Schweiz AG Kühler zur Kühlung eines Leistungshalbleiterbauelements bzw.-Moduls sowie Verfahren zum Herstellen eines solchen Kühlers
JP3773797B2 (en) * 2001-03-02 2006-05-10 三洋電機株式会社 Cold plate connection structure and connection method
JP3556175B2 (en) * 2001-03-09 2004-08-18 株式会社日立製作所 Semiconductor module and power converter
JP2002329938A (en) * 2001-04-27 2002-11-15 Kyocera Corp Ceramic circuit board
DE10334354B4 (en) * 2002-07-25 2016-12-22 Gva Leistungselektronik Gmbh Arrangement comprising a liquid cooler and a power semiconductor element
JP2004116871A (en) * 2002-09-25 2004-04-15 Sony Corp Heat transport body and electronic apparatus having the same
JP4325263B2 (en) * 2003-04-21 2009-09-02 ソニー株式会社 Circuit device and electronic device
JP4543279B2 (en) 2004-03-31 2010-09-15 Dowaメタルテック株式会社 Manufacturing method of aluminum joining member
US6989991B2 (en) * 2004-05-18 2006-01-24 Raytheon Company Thermal management system and method for electronic equipment mounted on coldplates
JP4549759B2 (en) * 2004-07-08 2010-09-22 富士通株式会社 Cooling module
JP2006066464A (en) * 2004-08-24 2006-03-09 Toyota Industries Corp Semiconductor device
JP4710460B2 (en) * 2005-07-20 2011-06-29 株式会社村田製作所 Ceramic multilayer substrate, manufacturing method thereof, and power semiconductor module
US7551439B2 (en) * 2006-03-28 2009-06-23 Delphi Technologies, Inc. Fluid cooled electronic assembly
WO2007120530A2 (en) * 2006-03-30 2007-10-25 Cooligy, Inc. Integrated liquid to air conduction module
US7916484B2 (en) * 2007-11-14 2011-03-29 Wen-Long Chyn Heat sink having enhanced heat dissipation capacity
US7974099B2 (en) * 2007-11-19 2011-07-05 Nexxus Lighting, Inc. Apparatus and methods for thermal management of light emitting diodes
JP4941555B2 (en) * 2007-11-30 2012-05-30 パナソニック株式会社 Heat dissipation structure board
US7817428B2 (en) * 2008-06-27 2010-10-19 Greer Jr David Randall Enclosure with integrated heat wick

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001299A (en) * 1989-04-17 1991-03-19 Explosive Fabricators, Inc. Explosively formed electronic packages
US5566055A (en) * 1995-03-03 1996-10-15 Parker-Hannifin Corporation Shieled enclosure for electronics
US6432253B1 (en) * 1998-06-23 2002-08-13 Amerasia International Technology, Inc. Cover with adhesive preform and method for applying same
US7054162B2 (en) * 2000-02-14 2006-05-30 Safenet, Inc. Security module system, apparatus and process
US7129422B2 (en) * 2003-06-19 2006-10-31 Wavezero, Inc. EMI absorbing shielding for a printed circuit board
US7864532B1 (en) * 2004-10-18 2011-01-04 Lockheed Martin Corporation Molded or encapsulated transmit-receive module or TR module/antenna element for active array
US8004860B2 (en) * 2006-08-29 2011-08-23 Texas Instruments Incorporated Radiofrequency and electromagnetic interference shielding
US7911794B2 (en) * 2007-02-15 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor package
US20100163210A1 (en) * 2007-04-26 2010-07-01 Claus Peter Kluge Cooling box for components or circuits
US8031485B2 (en) * 2007-09-07 2011-10-04 Autosplice, Inc. Electronic shielding apparatus and methods
US8081467B2 (en) * 2008-08-20 2011-12-20 Sri Hermetics Inc. Electronics package including heat sink in the housing and related methods
US20130114235A1 (en) * 2011-11-04 2013-05-09 Invensas Corporation Emi shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170263988A1 (en) * 2014-11-24 2017-09-14 Ceramtec Gmbh Thermal management in the field of e-mobility
EP3182814B1 (en) * 2015-12-17 2023-05-17 Valeo eAutomotive France SAS Cooling circuit and electrical device comprising the cooling circuit

Also Published As

Publication number Publication date
SI2143139T1 (en) 2019-11-29
JP2014160873A (en) 2014-09-04
EP2143139A1 (en) 2010-01-13
CN101689537B (en) 2013-08-21
EP2143139B1 (en) 2019-06-19
US20100163210A1 (en) 2010-07-01
DK2143139T3 (en) 2019-09-23
US8630092B2 (en) 2014-01-14
JP2010526427A (en) 2010-07-29
CN101689537A (en) 2010-03-31
AU2008244383B2 (en) 2013-05-30
DE102008001230A1 (en) 2008-10-30
EP2535928A2 (en) 2012-12-19
WO2008132056A1 (en) 2008-11-06
KR20150036793A (en) 2015-04-07
AU2008244383A1 (en) 2008-11-06
KR20100017414A (en) 2010-02-16
HUE046347T2 (en) 2020-02-28
EP2535928A3 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US8630092B2 (en) Cooling box for components or circuits
US8040676B2 (en) Carrier body for components or circuits
US9111822B2 (en) Thermally and electrically conductive apparatus
CN101606247B (en) Integrated heat spreaders for leds and related assemblies
US7473933B2 (en) High power LED package with universal bonding pads and interconnect arrangement
CN101645478A (en) Light emitting diode (LED) radiating structure
CN110429069A (en) The heat transmitting of power module
US8962988B2 (en) Integrated semiconductor solar cell package
EP3355372B1 (en) Light-emission module having cooler and production method for light-emission module having cooler
CN209708967U (en) A kind of LED light module
Exel et al. Water cooled DBC direct bonded copper substrates
CN109524374A (en) A kind of LED light module

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE