US20140008120A1 - Terminal Box - Google Patents

Terminal Box Download PDF

Info

Publication number
US20140008120A1
US20140008120A1 US13/716,697 US201213716697A US2014008120A1 US 20140008120 A1 US20140008120 A1 US 20140008120A1 US 201213716697 A US201213716697 A US 201213716697A US 2014008120 A1 US2014008120 A1 US 2014008120A1
Authority
US
United States
Prior art keywords
projecting
spring
terminal box
projecting portion
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/716,697
Other versions
US9048641B2 (en
Inventor
Takahide Kawanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Assigned to HOSIDEN CORPORATION reassignment HOSIDEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWANISHI, TAKAHIDE
Publication of US20140008120A1 publication Critical patent/US20140008120A1/en
Application granted granted Critical
Publication of US9048641B2 publication Critical patent/US9048641B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/08Distribution boxes; Connection or junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a terminal box having a terminal board for connecting a tab of a solar cell panel to a power line.
  • a solar cell module includes a plurality of solar cell panels, with a terminal box being mounted on the back face of each solar cell panel.
  • This terminal box includes a terminal board for establishing conduction between the tab of the solar cell panel and the external power line. Hence, it is necessary for a portion of the terminal board to be contacted to the tab of the solar cell panel.
  • the tab of the solar cell panel including a mode of arrangement in which the tab is mounted on the back face of the solar cell panel (this will be referred to as “the first mode of arrangement” hereinafter), another mode of arrangement in which the tab is disposed inside the solar cell panel adjacent its back face (this will be referred to as “the second mode arrangement” hereinafter).
  • the first mode of arrangement hereinafter
  • the second mode arrangement hereinafter
  • the terminal box may fail to contact the tab, thus resulting in conduction failure. Conversely, if the projection amount is too large, this may cause the terminal box to “float off”, i.e. to detach from, the back face of the solar cell panel, thus forming a gap that allows intrusion of rainwater or the like therethrough to the inside of the terminal box. For this reason, appropriate setting is required for the projection amount of the terminal box according to varied specifications of the solar cell panel.
  • the appropriate projection amount of terminal board differs according to the specification of the solar cell panel.
  • the appropriate projection amount may differ according also to the difference of the above-described mode of arrangement. For this reason, it is necessary to adjust the projection amount of the terminal board according to the specification of the solar cell panel employed. However, this adjustment is troublesome and increases the cost of installment.
  • the terminal box too needs to be configured to allow adjustment of the projection amount of terminal board. This leads to increase in the manufacture cost of the terminal box disadvantageously. Alternatively, it is conceivable to prepare and employ terminal boards set with differing projection amounts. This is also disadvantageous since it invites manufacture cost increase of the terminal box again.
  • WO 2010/067466 discloses a terminal box configured such that spring-like characteristics is provided to the leading end of the terminal board disposed substantially parallel with a solar cell panel.
  • Japanese Patent Application National Transfer Publication No. 2011-503884 discloses a terminal box wherein an elastic part is formed in an intermediate portion of the terminal board.
  • the present invention has been made in view of the above-described state of the art and its object is to provide a terminal box that allows easy adjustment of the projection amount of the terminal board.
  • the terminal box comprising:
  • a terminal board accommodated within the recessed portion and providing conduction between a tab of a solar cell panel and a power line;
  • the terminal board includes a projecting portion projecting from the box body toward the solar cell panel, and a spring portion extended along a direction perpendicular to the projecting direction of the projecting portion;
  • the projecting portion includes a contact portion for contacting the tab of the solar cell panel
  • the projecting portion is supported by a first-side end of the spring portion
  • the spring portion comprises a meander structure having a plurality of folded portions in a plane having a normal line perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion.
  • a contact portion is formed at the projecting portion which projects from the box body toward the solar cell panel and this contact portion comes into contact with the tab of the solar cell panel. Therefore, upon establishment of the contact between the contact portion and the tab, a force is applied to the projecting portion in its retracting direction (the direction opposite the solar cell panel). As this projecting portion is supported by the first-side end of the spring portion disposed along the direction perpendicular to the projecting direction of the projecting portion, the force applied to the projecting portion is transmitted as a force along a direction bending the spring portion. Therefore, the contact between the contact portion and the tab can be maintained appropriately by the bending elasticity of the spring portion, thus effectively preventing the contact failure.
  • the spring portion is configured as a meander structure having a plurality of folded portions in a plane having a normal line which is perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion.
  • the terminal box further comprises a displacement maintaining portion for maintaining a displaced state of the projecting portion displaced along its projecting direction.
  • the projecting portion is supported to the end of the spring portion and a force along the bending direction is applied to the spring portion when the projecting portion (contact portion) comes into contact with the tab.
  • a large elastic resilient force will be generated in the spring portion.
  • This elastic resilient force is effective in the direction of detaching the terminal box from the solar cell panel (this direction will be referred to as “the detaching direction”).
  • the displacement maintaining portion maintains the displaced state of the projecting portion displaced along the projecting direction. Namely, the elastic resilience of the spring portion will be supported by the displacement maintaining portion.
  • the force in the detaching direction applied to the terminal box can be reduced.
  • the reduction of the force in the detaching direction applied to the terminal box can eliminate necessity of such an inconvenient operation of keeping the terminal box pressed until adhesive agent applied for bonding the terminal box to the solar cell panel is cured to provide appropriate bonding force.
  • the displacement maintaining portion can be realized with a simple arrangement as follows. Namely, the displacement maintaining portion can include an engaging pawl formed in one of the projecting portion and the box body and an engaged portion formed in the other of the projecting portion and the box body, the engaged portion being engageable with the engaging pawl at one of a plurality of positions.
  • the terminal board includes a supported portion to be supported to the box body, the supported portion being provided at a second-side end opposite the first-side.
  • the supported portion will serve as a “pivot” for supporting the force applied to the projecting portion. Further, since the projecting portion is supported to the first-side end of the spring portion and the supported portion is provided at the second-side end, a large distance can be secured between the pivot and the point of force or leverage application. Therefore, a large force can be supported effectively.
  • the terminal box further comprises a pair of said spring portions and a support portion disposed between the first-side ends of the pair of spring portions, and the projecting portion is supported at an approximately center position of the support portion along its disposing direction.
  • the projecting portion in particular, the contact portion, can be exposed from the space formed between the pair of spring portions, so that the soldering operation between the contact portion and the tab can be further facilitated. Moreover, since the projecting portion is supported by the pair of spring portions via the support portion, the projecting portion can be supported in a stable manner.
  • the terminal board has an approximately rectangular shape having four sides, and the spring portions are formed in the two sides adjacent the side along the first-side, and an external connecting portion for connecting the power line is formed in the second-side.
  • the projecting portion and the external connecting portion are formed in the sides opposite each other. This arrangement makes it difficult for the force applied to the projecting portion to be transmitted to the external connecting portion. Thus, when a force is applied to the connecting portion between the external connecting portion and the power line, it is possible to prevent deterioration of the connection conditions therebetween.
  • FIG. 1 is a perspective view showing a terminal box of the present invention as viewed from its upper side
  • FIG. 2 is a perspective view showing the terminal box of the present invention as viewed from its lower side
  • FIG. 3 is an exploded perspective view of the terminal box of the present invention
  • FIG. 4 is an exploded perspective view of the terminal box of the present invention
  • FIG. 5 is a section view of the terminal box of the present invention.
  • FIG. 6 is a section view showing the terminal box of the present invention at the time of its mounting
  • FIG. 7 is a section view of the terminal box of the present invention.
  • FIG. 8 is a development view of the terminal board of the present invention.
  • FIGS. 1 and 2 are perspective views showing the terminal box according to the instant embodiment as viewed from its upper side and lower side, respectively.
  • FIGS. 3 and 4 are exploded perspective views showing the terminal box according to the instant embodiment as viewed from its upper side and lower side, respectively.
  • the terminal box includes, as its principal components, an upper body portion 1 , a lower body portion 2 (“a box main body”), a pin 3 , and a terminal board 4 . It should be noted that these figures show only those portions of the above-described components of the terminal box which relate in particular to the present invention.
  • the upper body portion 1 includes an upper wall 11 , four side walls 12 a , 12 b , 12 c , 12 d extending vertically from the upper wall 11 . Therefore, the upper body portion 11 has an approximately box-like shape having a bottom opening.
  • the side walls 12 a , 12 b and 12 d respectively have a rectangular shape, whereas the side wall 12 c has an arch-like shape defining a hole 13 .
  • the lower body portion 2 includes a lower wall 21 and four side walls 22 a , 22 b , 22 c , 22 d extending vertically from the lower wall 21 .
  • the space surrounded by the side wall 22 a and the inner walls 28 b , 28 c , 28 d defines a recessed portion 24 for accommodating the terminal board 4 .
  • a hole 21 a is formed at the portion of the lower wall 21 corresponding to the bottom of the recessed portion 24 .
  • a vertical wall 23 extends vertically from the lower wall 21 and between the side wall 22 c and the vertical wall 23 , there is formed a connecting portion 25 having an approximately cylindrical shape.
  • the recessed portion 24 of the lower body portion 2 can be sealed. More particularly, the side walls 12 a , 12 b , 12 c , 12 d of the upper body portion 1 come into contact respectively with the side walls 22 a , 22 b , 22 c , 22 d of the lower body portion 2 from the outside thereof. In the course of this, the outer face of the side wall 12 c of the upper body portion 1 comes into contact with the face (this will be referred to as the “inner face” hereinafter) of the vertical wall 23 of the lower body portion 2 which face defines the recessed portion 24 . Further, into the hole 13 defined in the side wall 12 c of the upper body portion 1 , the connecting portion 25 of the lower body portion 2 will come into engagement. In this way, the recessed portion 24 of the lower body portion 2 can be sealed.
  • the pin 3 comprises a conductive member having an approximately cylindrical shape. Into this pin 3 , a conductive member connected to the power line will be inserted. With this, electric conduction is established between the power line and the pin 3 . At the terminal end of the pin 3 to be inserted into the terminal box, there is provided a tongue-like portion 31 to be connected to the terminal board 4 . Therefore, the pin 3 will be inserted such that the tongue-like portion 31 is exposed to the recessed portion 24 through the cylindrical portion 26 and the connecting portion 25 (see FIG. 5 and FIG. 6 ). Incidentally, a different arrangement may be provided wherein the pin 3 is connected to a power line having its conductive wire exposed with stripping of its outer sheath.
  • a retaining portion 32 for maintaining the conductive member connected to the power line.
  • this retaining portion 32 there are formed a plurality of slits extending along the axial direction for forming an inner diameter smaller than that of the rest.
  • the terminal board 4 is formed of a conductive material and includes a projecting portion 41 projecting downwards, a pair of spring portions 42 supporting the projecting portion 41 , a pair of supported portions 43 supported by the lower body portion 2 and an external connecting portion 44 on which the tongue-like portion 31 of the pin 3 is to be placed.
  • Each spring portion 42 supports the projecting portion 41 at the first-side end thereof and supports the supported portion 43 at the second-side end opposite the first-side.
  • FIGS. 5 and 6 are section views of the terminal box according to the instant embodiment taken along a section line extending along the inner walls 28 b , 28 d (this direction will be referred to as the “fore/aft direction” hereinafter).
  • the spring portions 42 are accommodated in the recessed portion 24 of the lower body portion 2 in such a manner that the longitudinal direction thereof is aligned with the fore/aft direction of the terminal box.
  • the length of the projecting portion 41 is set such that this projecting portion 41 may project from the lower wall 21 of the lower body portion 2 through the hole 21 a of the lower body portion 2 .
  • the projecting-side terminal end of the projecting portion 41 is bent inwards at an approximately right angle, thus forming a contacting portion 41 a to contact and be connected to the tab of the solar cell panel.
  • the terminal box will be mounted to the back face of the solar cell panel with the tab and the connecting portion 41 a being in contact with each other, these components will be soldered to each other. With this, electrical conduction will be established between the solar cell panel and the terminal board 4 .
  • the spring portions 42 are accommodated in the recessed portion 24 with their longitudinal direction being aligned with the fore/aft direction. And, between the side wall 22 a side ends of the pair of spring portions 42 , there is provided a supporting portion 45 that extends in the direction along the side wall 22 a (this direction will be referred to as the “right/left direction” hereinafter).
  • the projecting portion 41 is supported at the approximately right/left center of this supporting portion 45 . With use of such arrangement as above, the projecting portion 41 can be supported in a stable manner.
  • a pair of supported portions 43 are provided at the ends of the spring portions 42 opposite the sides provided with the projecting portion 41 .
  • These supported portions 43 respectively define engaging holes 43 a in which engaging projections (not shown) formed in the inner wall face of the recessed portion 24 of the lower body portion 2 can engage. With this engagement, the terminal board 4 is supported to the lower body portion 2 .
  • the external connecting portion 44 which is substantially flat. As described hereinbefore, on this external connecting portion 44 , the tongue-like portion 31 of the pin 31 will be placed and then the external connecting portion 44 and the tongue-like portion 31 will be soldered to each other. With this, via the pin 3 , conduction is established between the terminal board 4 and the power line, thus establishing electric conduction between the solar cell panel and the power line.
  • Each spring portion 42 has a meandering (zigzagging) structure having a plurality of folded portions in the plane extending along the inner faces of the side walls 22 b , 22 d of the lower body portion 2 . Therefore, the spring portion 42 has bending elasticity in the direction along the projecting direction of the projecting portion 41 (this direction will be referred to as the “projecting/retracting direction”, the increasing direction will be referred to as the “projecting direction” and the decreasing direction will be referred to as the “retracting direction”, respectively, hereinafter). This bending elasticity serves to facilitate adjustment of the projection amount of the projecting portion 41 .
  • the terminal board 4 is supported to the lower body portion 2 via the supported portions 43 and the projecting portion 41 and the supported portions 43 are provided on the opposed ends of the spring portions 42 .
  • a large distance can be secured between the point of force application of the reaction force applied from the solar cell panel to the terminal board 4 and the pivot point, thus increasing the reaction force that can be supported by the spring portions 42 .
  • Each spring portion 42 is formed of a plate-like member having a face extending along the inner face of the side walls 22 c , 22 d of the lower body portion 2 .
  • a space is formed between the pair of spring portions 42 as shown in the section view of FIG. 7 along the section line parallel with the lower wall, and through this space, the contacting portion 41 a can be seen or exposed.
  • the plate-like spring portions 42 are disposed in opposition to each other, the above space can be formed large. Therefore, through this space formed between the pair of spring portions 42 , the contacting portion 41 a and the tab can be soldered to each other. In this way, the soldering work can be carried out with ease.
  • the reaction force applied to the projecting portion 41 from the solar cell panel can be supported effectively.
  • the resulting elastic resilient forces of the spring portions 42 will be large, and these forces will act as forces tending to detach the terminal box from the solar cell panel, so that the assembling of the terminal box may be hindered.
  • the terminal box according to the present invention includes a displacement maintaining portion for maintaining a displaced state of the projecting portion 41 displaced along its projecting/retracting direction.
  • this displacement maintaining portion consists essentially of a ladder-like portion 41 b (an example of “engaged portion” in the invention) formed in the projecting portion 41 , and an engaging pawl 21 b formed in the inner wall face of the hole 21 a defined in the lower body portion 2 .
  • the ladder-like portion 41 b includes a plurality of bar-like members extending along the right/left direction, to each one of the bar-like members, the engaging pawl 21 b is engageable.
  • the terminal box is provided with the displacement maintaining portion for maintaining the displaced state of the projecting portion 41 , when the terminal box is fixed and bonded to the back face of the solar cell panel, the floating phenomenon of the terminal box can be effectively prevented, so that the reliability of bonding can be increased.
  • FIG. 8 is a development view of the terminal board 4 .
  • the terminal board 4 is formed by punching and pressing of a single flat sheet of conductive material. In this way, the projecting portion 41 is formed between the pair of spring portions 42 .
  • the amount of material needed for this terminal board 4 can be small and the amount of material to be wasted can be correspondingly reduced also.
  • a mold for use in the punching or pressing can be small. As these all contribute to reduction of manufacturing cost, they are advantageous.
  • the engaging pawl 21 b is formed in the lower body portion 2 and the ladder-like portion 41 b is formed in the projecting portion 41 of the terminal board.
  • the ladder-like portion can be formed in the lower body portion 2 and the engaging pawl can be formed in the projecting portion of the terminal board.
  • the engaged portion can be embodied not as a ladder-like portion, but may be embodied in any other form.
  • the displacement maintaining portion is configured to check or hinder displacement of the projecting portion 41 in the projecting direction.
  • the displacement maintaining portion can be configured to check or hinder displacement of the projecting portion 41 in the retracting direction.

Abstract

A terminal box includes a box body forming a recessed portion and a terminal board accommodated within the recessed portion and providing conduction between a tab of a solar cell panel and a power line. The terminal board includes a projecting portion projecting from the box body toward the solar cell panel, and a spring portion extended along a direction perpendicular to the projecting direction of the projecting portion. The projecting portion includes a contact portion for contacting the tab of the solar cell panel. The projecting portion is supported by a first-side end of the spring portion. The spring portion has a meander structure having a plurality of folded portions in a plane having a normal line perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a terminal box having a terminal board for connecting a tab of a solar cell panel to a power line.
  • 2. Description of the Related Art
  • Generally, a solar cell module includes a plurality of solar cell panels, with a terminal box being mounted on the back face of each solar cell panel. This terminal box includes a terminal board for establishing conduction between the tab of the solar cell panel and the external power line. Hence, it is necessary for a portion of the terminal board to be contacted to the tab of the solar cell panel.
  • Various arrangements are possible for the tab of the solar cell panel, including a mode of arrangement in which the tab is mounted on the back face of the solar cell panel (this will be referred to as “the first mode of arrangement” hereinafter), another mode of arrangement in which the tab is disposed inside the solar cell panel adjacent its back face (this will be referred to as “the second mode arrangement” hereinafter). For contacting the tab arranged as above with the terminal board, it is needed to ensure that the terminal board projects from the main body of the terminal box.
  • On the other hand, if the amount of projection of the terminal box is inappropriate, the terminal box may fail to contact the tab, thus resulting in conduction failure. Conversely, if the projection amount is too large, this may cause the terminal box to “float off”, i.e. to detach from, the back face of the solar cell panel, thus forming a gap that allows intrusion of rainwater or the like therethrough to the inside of the terminal box. For this reason, appropriate setting is required for the projection amount of the terminal box according to varied specifications of the solar cell panel.
  • However, the appropriate projection amount of terminal board differs according to the specification of the solar cell panel. The appropriate projection amount may differ according also to the difference of the above-described mode of arrangement. For this reason, it is necessary to adjust the projection amount of the terminal board according to the specification of the solar cell panel employed. However, this adjustment is troublesome and increases the cost of installment. Further, the terminal box too needs to be configured to allow adjustment of the projection amount of terminal board. This leads to increase in the manufacture cost of the terminal box disadvantageously. Alternatively, it is conceivable to prepare and employ terminal boards set with differing projection amounts. This is also disadvantageous since it invites manufacture cost increase of the terminal box again.
  • In an attempt to overcome the above problem, WO 2010/067466 discloses a terminal box configured such that spring-like characteristics is provided to the leading end of the terminal board disposed substantially parallel with a solar cell panel. Japanese Patent Application National Transfer Publication No. 2011-503884 discloses a terminal box wherein an elastic part is formed in an intermediate portion of the terminal board. With these arrangements, reliable connection between the terminal board and the tab can be ensured by the spring-like property characteristics of the terminal board if a relatively large projection amount of the leading end of the terminal board is set in advance. Further, as a pressing force resulting from the connection is absorbed by the spring-like characteristics of the leading end of the terminal board, the floating phenomenon of the terminal box can be prevented also.
  • However, with the terminal boxes disclosed in WO 2010/067466 and Japanese Patent Application National Transfer Publication No. 2011-503884, because an elastic part is formed at the leading end or intermediate portion of the terminal board, the adjustability of the projection amount of terminal board is not so large. Also, with the terminal box disclosed in Japanese Patent Application National Transfer Publication No. 2011-503884, since an elastic part is formed upwardly of a soldering zone (a portion to be soldered to the tab of the terminal board), the elastic part may hinder the soldering operation.
  • The present invention has been made in view of the above-described state of the art and its object is to provide a terminal box that allows easy adjustment of the projection amount of the terminal board.
  • SUMMARY OF THE INVENTION
  • According to one preferred embodiment of a terminal box relating to the present invention, the terminal box comprising:
  • a box body forming a recessed portion; and
  • a terminal board accommodated within the recessed portion and providing conduction between a tab of a solar cell panel and a power line;
  • wherein the terminal board includes a projecting portion projecting from the box body toward the solar cell panel, and a spring portion extended along a direction perpendicular to the projecting direction of the projecting portion;
  • the projecting portion includes a contact portion for contacting the tab of the solar cell panel;
  • the projecting portion is supported by a first-side end of the spring portion; and
  • the spring portion comprises a meander structure having a plurality of folded portions in a plane having a normal line perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion.
  • With the above arrangement, a contact portion is formed at the projecting portion which projects from the box body toward the solar cell panel and this contact portion comes into contact with the tab of the solar cell panel. Therefore, upon establishment of the contact between the contact portion and the tab, a force is applied to the projecting portion in its retracting direction (the direction opposite the solar cell panel). As this projecting portion is supported by the first-side end of the spring portion disposed along the direction perpendicular to the projecting direction of the projecting portion, the force applied to the projecting portion is transmitted as a force along a direction bending the spring portion. Therefore, the contact between the contact portion and the tab can be maintained appropriately by the bending elasticity of the spring portion, thus effectively preventing the contact failure. Further, since this force applied to the projecting portion is absorbed by the spring portion, the floating phenomenon of the box body can be prevented. Moreover, even when the projection amount of the projecting portion is small, the projection amount can be adjusted largely, thanks to the bending elasticity of the spring portion.
  • Further, with the above arrangement, the spring portion is configured as a meander structure having a plurality of folded portions in a plane having a normal line which is perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion. With this, when viewed along the projecting direction of the projecting portion, only the thickness portion of the spring portion is visible. That is, when viewed as above, the spring portion will show only as a linear form. Therefore, the presence of the spring portion does not impair the visibility of the contact portion, so that the soldering operation between this contact portion and the tab can be carried out easily.
  • According to a preferred embodiment of the terminal box relating to the present invention, the terminal box further comprises a displacement maintaining portion for maintaining a displaced state of the projecting portion displaced along its projecting direction.
  • As described above, the projecting portion is supported to the end of the spring portion and a force along the bending direction is applied to the spring portion when the projecting portion (contact portion) comes into contact with the tab. In this, if the amount of retraction of the projection portion is large, a large elastic resilient force will be generated in the spring portion. This elastic resilient force is effective in the direction of detaching the terminal box from the solar cell panel (this direction will be referred to as “the detaching direction”). However, with the above-described arrangement, the displacement maintaining portion maintains the displaced state of the projecting portion displaced along the projecting direction. Namely, the elastic resilience of the spring portion will be supported by the displacement maintaining portion. With this, even when a large elastic resilient force is generated in the spring portion, the force in the detaching direction applied to the terminal box can be reduced. In this way, the reduction of the force in the detaching direction applied to the terminal box can eliminate necessity of such an inconvenient operation of keeping the terminal box pressed until adhesive agent applied for bonding the terminal box to the solar cell panel is cured to provide appropriate bonding force.
  • Such displacement maintaining portion can be realized with a simple arrangement as follows. Namely, the displacement maintaining portion can include an engaging pawl formed in one of the projecting portion and the box body and an engaged portion formed in the other of the projecting portion and the box body, the engaged portion being engageable with the engaging pawl at one of a plurality of positions.
  • According to a further preferred embodiment of the terminal box relating to the present invention, the terminal board includes a supported portion to be supported to the box body, the supported portion being provided at a second-side end opposite the first-side.
  • With the above-described arrangement, the supported portion will serve as a “pivot” for supporting the force applied to the projecting portion. Further, since the projecting portion is supported to the first-side end of the spring portion and the supported portion is provided at the second-side end, a large distance can be secured between the pivot and the point of force or leverage application. Therefore, a large force can be supported effectively.
  • According to a still further preferred embodiment of the terminal box relating to the present invention, the terminal box further comprises a pair of said spring portions and a support portion disposed between the first-side ends of the pair of spring portions, and the projecting portion is supported at an approximately center position of the support portion along its disposing direction.
  • With the above-described arrangement, the projecting portion, in particular, the contact portion, can be exposed from the space formed between the pair of spring portions, so that the soldering operation between the contact portion and the tab can be further facilitated. Moreover, since the projecting portion is supported by the pair of spring portions via the support portion, the projecting portion can be supported in a stable manner.
  • According to a still further preferred embodiment of the terminal box relating to the present invention, the terminal board has an approximately rectangular shape having four sides, and the spring portions are formed in the two sides adjacent the side along the first-side, and an external connecting portion for connecting the power line is formed in the second-side.
  • With the above-described arrangement, the projecting portion and the external connecting portion are formed in the sides opposite each other. This arrangement makes it difficult for the force applied to the projecting portion to be transmitted to the external connecting portion. Thus, when a force is applied to the connecting portion between the external connecting portion and the power line, it is possible to prevent deterioration of the connection conditions therebetween.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view showing a terminal box of the present invention as viewed from its upper side,
  • FIG. 2 is a perspective view showing the terminal box of the present invention as viewed from its lower side,
  • FIG. 3 is an exploded perspective view of the terminal box of the present invention,
  • FIG. 4 is an exploded perspective view of the terminal box of the present invention,
  • FIG. 5 is a section view of the terminal box of the present invention,
  • FIG. 6 is a section view showing the terminal box of the present invention at the time of its mounting,
  • FIG. 7 is a section view of the terminal box of the present invention, and
  • FIG. 8 is a development view of the terminal board of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Next, with reference to the accompanying drawings, an embodiment of the terminal box relating to the present invention will be described. FIGS. 1 and 2 are perspective views showing the terminal box according to the instant embodiment as viewed from its upper side and lower side, respectively. FIGS. 3 and 4 are exploded perspective views showing the terminal box according to the instant embodiment as viewed from its upper side and lower side, respectively. As shown in these figures, the terminal box includes, as its principal components, an upper body portion 1, a lower body portion 2 (“a box main body”), a pin 3, and a terminal board 4. It should be noted that these figures show only those portions of the above-described components of the terminal box which relate in particular to the present invention.
  • The upper body portion 1 includes an upper wall 11, four side walls 12 a, 12 b, 12 c, 12 d extending vertically from the upper wall 11. Therefore, the upper body portion 11 has an approximately box-like shape having a bottom opening. The side walls 12 a, 12 b and 12 d respectively have a rectangular shape, whereas the side wall 12 c has an arch-like shape defining a hole 13.
  • On the other hand, the lower body portion 2 includes a lower wall 21 and four side walls 22 a, 22 b, 22 c, 22 d extending vertically from the lower wall 21. On the inner sides of the side walls 22 b, 22 c, 22 d, there are formed inner walls 28 b, 28 c, 28 d extending vertically and in parallel with the respective side walls. The space surrounded by the side wall 22 a and the inner walls 28 b, 28 c, 28 d defines a recessed portion 24 for accommodating the terminal board 4. At the portion of the lower wall 21 corresponding to the bottom of the recessed portion 24, a hole 21 a is formed. Further, at a predetermined distance from the side wall 22 c, a vertical wall 23 extends vertically from the lower wall 21 and between the side wall 22 c and the vertical wall 23, there is formed a connecting portion 25 having an approximately cylindrical shape.
  • Then, when the upper body portion 1 is engaged over the lower body portion 2 constructed as above, the recessed portion 24 of the lower body portion 2 can be sealed. More particularly, the side walls 12 a, 12 b, 12 c, 12 d of the upper body portion 1 come into contact respectively with the side walls 22 a, 22 b, 22 c, 22 d of the lower body portion 2 from the outside thereof. In the course of this, the outer face of the side wall 12 c of the upper body portion 1 comes into contact with the face (this will be referred to as the “inner face” hereinafter) of the vertical wall 23 of the lower body portion 2 which face defines the recessed portion 24. Further, into the hole 13 defined in the side wall 12 c of the upper body portion 1, the connecting portion 25 of the lower body portion 2 will come into engagement. In this way, the recessed portion 24 of the lower body portion 2 can be sealed.
  • The face (this will be referred to as the “outer face” hereinafter) on the side opposite (this side will be referred to as the “outer side” hereinafter) the side of the vertical wall 23 defining the recessed portion 24 forms a cylindrical portion 26. Into this cylindrical portion 26, there is inserted the pin 3 in which the power line is inserted. Further, from the vertical wall 23 toward the outer side, a pair of retaining pawls 27 extend.
  • The pin 3 comprises a conductive member having an approximately cylindrical shape. Into this pin 3, a conductive member connected to the power line will be inserted. With this, electric conduction is established between the power line and the pin 3. At the terminal end of the pin 3 to be inserted into the terminal box, there is provided a tongue-like portion 31 to be connected to the terminal board 4. Therefore, the pin 3 will be inserted such that the tongue-like portion 31 is exposed to the recessed portion 24 through the cylindrical portion 26 and the connecting portion 25 (see FIG. 5 and FIG. 6). Incidentally, a different arrangement may be provided wherein the pin 3 is connected to a power line having its conductive wire exposed with stripping of its outer sheath.
  • Further, at the terminal end of the pin 3 opposite the side having the tongue-like portion, there is formed a retaining portion 32 for maintaining the conductive member connected to the power line. In this retaining portion 32, there are formed a plurality of slits extending along the axial direction for forming an inner diameter smaller than that of the rest.
  • The terminal board 4 is formed of a conductive material and includes a projecting portion 41 projecting downwards, a pair of spring portions 42 supporting the projecting portion 41, a pair of supported portions 43 supported by the lower body portion 2 and an external connecting portion 44 on which the tongue-like portion 31 of the pin 3 is to be placed. Each spring portion 42 supports the projecting portion 41 at the first-side end thereof and supports the supported portion 43 at the second-side end opposite the first-side.
  • FIGS. 5 and 6 are section views of the terminal box according to the instant embodiment taken along a section line extending along the inner walls 28 b, 28 d (this direction will be referred to as the “fore/aft direction” hereinafter). As shown, the spring portions 42 are accommodated in the recessed portion 24 of the lower body portion 2 in such a manner that the longitudinal direction thereof is aligned with the fore/aft direction of the terminal box. In this, the length of the projecting portion 41 is set such that this projecting portion 41 may project from the lower wall 21 of the lower body portion 2 through the hole 21 a of the lower body portion 2. After the terminal board 4 is accommodated in the recessed portion 24 and a soldering is provided between the connecting portion of the projecting portion and the tab of the solar cell panel as will be described later, an amount of filling material will be charged into the recessed portion 24, thus sealing this recessed portion 24.
  • The projecting-side terminal end of the projecting portion 41 is bent inwards at an approximately right angle, thus forming a contacting portion 41 a to contact and be connected to the tab of the solar cell panel. Hence, the terminal box will be mounted to the back face of the solar cell panel with the tab and the connecting portion 41 a being in contact with each other, these components will be soldered to each other. With this, electrical conduction will be established between the solar cell panel and the terminal board 4.
  • As described above, the spring portions 42 are accommodated in the recessed portion 24 with their longitudinal direction being aligned with the fore/aft direction. And, between the side wall 22 a side ends of the pair of spring portions 42, there is provided a supporting portion 45 that extends in the direction along the side wall 22 a (this direction will be referred to as the “right/left direction” hereinafter). The projecting portion 41 is supported at the approximately right/left center of this supporting portion 45. With use of such arrangement as above, the projecting portion 41 can be supported in a stable manner.
  • Further, at the ends of the spring portions 42 opposite the sides provided with the projecting portion 41, there are provided a pair of supported portions 43. These supported portions 43 respectively define engaging holes 43 a in which engaging projections (not shown) formed in the inner wall face of the recessed portion 24 of the lower body portion 2 can engage. With this engagement, the terminal board 4 is supported to the lower body portion 2.
  • Between the pair of supported portions 43, there is formed the external connecting portion 44 which is substantially flat. As described hereinbefore, on this external connecting portion 44, the tongue-like portion 31 of the pin 31 will be placed and then the external connecting portion 44 and the tongue-like portion 31 will be soldered to each other. With this, via the pin 3, conduction is established between the terminal board 4 and the power line, thus establishing electric conduction between the solar cell panel and the power line.
  • Each spring portion 42 has a meandering (zigzagging) structure having a plurality of folded portions in the plane extending along the inner faces of the side walls 22 b, 22 d of the lower body portion 2. Therefore, the spring portion 42 has bending elasticity in the direction along the projecting direction of the projecting portion 41 (this direction will be referred to as the “projecting/retracting direction”, the increasing direction will be referred to as the “projecting direction” and the decreasing direction will be referred to as the “retracting direction”, respectively, hereinafter). This bending elasticity serves to facilitate adjustment of the projection amount of the projecting portion 41.
  • Further, when the terminal box is mounted on the back face of the solar cell panel, a reaction force from the solar cell panel will be applied to the projecting portion 41. In this, this reaction force can be absorbed by the bending elasticity of the spring portion 42. Thus, even when a significant reaction force along the retracting direction is applied to the projecting portion 41, as this reaction force is absorbed by the bending elasticity of the spring portion 42, the floating phenomenon of the terminal box can be prevented by this reaction force.
  • Conversely, even when there exists shortage in the projection amount of the projecting portion 41, as the bending elasticity of the spring portion 42 allows large adjustment of the projection amount of the projecting portion 41, reliable contact between the contacting portion 41 a and the tab can be realized, thus effectively preventing occurrence of contact failure.
  • As described hereinbefore, the terminal board 4 is supported to the lower body portion 2 via the supported portions 43 and the projecting portion 41 and the supported portions 43 are provided on the opposed ends of the spring portions 42. With this arrangement, a large distance can be secured between the point of force application of the reaction force applied from the solar cell panel to the terminal board 4 and the pivot point, thus increasing the reaction force that can be supported by the spring portions 42.
  • Each spring portion 42 is formed of a plate-like member having a face extending along the inner face of the side walls 22 c, 22 d of the lower body portion 2. Hence, when the terminal board 4 is viewed from the above, a space is formed between the pair of spring portions 42 as shown in the section view of FIG. 7 along the section line parallel with the lower wall, and through this space, the contacting portion 41 a can be seen or exposed. Moreover, as the plate-like spring portions 42 are disposed in opposition to each other, the above space can be formed large. Therefore, through this space formed between the pair of spring portions 42, the contacting portion 41 a and the tab can be soldered to each other. In this way, the soldering work can be carried out with ease.
  • As described hereinbefore, with the bending elasticity of the spring portions 42, the reaction force applied to the projecting portion 41 from the solar cell panel can be supported effectively. However, if a significant bending force is applied to the spring portions 42, the resulting elastic resilient forces of the spring portions 42 will be large, and these forces will act as forces tending to detach the terminal box from the solar cell panel, so that the assembling of the terminal box may be hindered.
  • In order to avoid the above, the terminal box according to the present invention includes a displacement maintaining portion for maintaining a displaced state of the projecting portion 41 displaced along its projecting/retracting direction. In the instant embodiment, this displacement maintaining portion consists essentially of a ladder-like portion 41 b (an example of “engaged portion” in the invention) formed in the projecting portion 41, and an engaging pawl 21 b formed in the inner wall face of the hole 21 a defined in the lower body portion 2. More particularly, the ladder-like portion 41 b includes a plurality of bar-like members extending along the right/left direction, to each one of the bar-like members, the engaging pawl 21 b is engageable.
  • As shown in FIG. 5, when the projecting portion 41 is not displaced, the engaging pawl 21 b is located upwardly of the plurality of bar-like members of the ladder-like portion 41 b, not engaging any of these bar-like members. On the other hand, as shown in FIG. 6, when the projecting portion 41 is displaced in the retracting direction, this will bring the engaging pawl 21 b to a position downwardly of one of the bar-like members. In this, the elastic resilient force of the spring portion 42 will be applied to the projecting portion 41, but, the engagement between the engaging pawl 21 b and one bar-like member prevents the displacement of the projecting portion 41 in the projecting direction.
  • As described above, as the terminal box is provided with the displacement maintaining portion for maintaining the displaced state of the projecting portion 41, when the terminal box is fixed and bonded to the back face of the solar cell panel, the floating phenomenon of the terminal box can be effectively prevented, so that the reliability of bonding can be increased.
  • FIG. 8 is a development view of the terminal board 4. As may be apparent from this figure, the terminal board 4 is formed by punching and pressing of a single flat sheet of conductive material. In this way, the projecting portion 41 is formed between the pair of spring portions 42. The amount of material needed for this terminal board 4 can be small and the amount of material to be wasted can be correspondingly reduced also. Moreover, a mold for use in the punching or pressing can be small. As these all contribute to reduction of manufacturing cost, they are advantageous.
  • OTHER EMBODIMENTS
  • (1) In the foregoing embodiment, the engaging pawl 21 b is formed in the lower body portion 2 and the ladder-like portion 41 b is formed in the projecting portion 41 of the terminal board. Instead, the ladder-like portion can be formed in the lower body portion 2 and the engaging pawl can be formed in the projecting portion of the terminal board. Further alternatively, the engaged portion can be embodied not as a ladder-like portion, but may be embodied in any other form.
  • (2) In the foregoing embodiment, the displacement maintaining portion is configured to check or hinder displacement of the projecting portion 41 in the projecting direction. Conversely, the displacement maintaining portion can be configured to check or hinder displacement of the projecting portion 41 in the retracting direction. With this alternative configuration of the displacement maintaining portion, when adjustment is made to increase the projection amount of the projecting portion 41, inadvertent retraction of the projecting portion 41 can be effectively prevented, so that contact failure between the contact portion 41 a and the tab can be avoided.

Claims (6)

1. A terminal box comprising:
a box body forming a recessed portion; and
a terminal board accommodated within the recessed portion and providing conduction between a tab of a solar cell panel and a power line;
wherein the terminal board includes a projecting portion projecting from the box body toward the solar cell panel, and a spring portion extended along a direction perpendicular to the projecting direction of the projecting portion;
the projecting portion includes a contact portion for contacting the tab of the solar cell panel;
the projecting portion is supported by a first-side end of the spring portion; and
the spring portion comprises a meander structure having a plurality of folded portions in a plane having a normal line perpendicular to both the projecting direction of the projecting portion and the extending direction of the spring portion.
2. The terminal box according to claim 1, further comprising a displacement maintaining portion for maintaining a displaced state of the projecting portion displaced along its projecting direction.
3. The terminal box according to claim 2, wherein the displacement maintaining portion includes an engaging pawl formed in one of the projecting portion and the box body and an engaged portion formed in the other of the projecting portion and the box body, the engaged portion being engageable with the engaging pawl at one of a plurality of positions.
4. The terminal box according to claim 1, wherein the terminal board includes a supported portion to be supported to the box body, the supported portion being provided at a second-side end opposite the first-side.
5. The terminal box according to claim 1, further comprising:
a pair of said spring portions;
a support portion disposed between the first-side ends of the pair of spring portions, and
the projecting portion being supported at an approximately center position of the support portion along its disposing direction.
6. The terminal box according to claim 5, wherein:
the terminal board has an approximately rectangular shape having four sides;
the spring portions are formed in the two sides adjacent the side along the first-side; and
an external connecting portion for connecting the power line is formed in the second-side.
US13/716,697 2011-12-19 2012-12-17 Terminal box Active 2033-05-28 US9048641B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277337 2011-12-19
JP2011277337A JP5790940B2 (en) 2011-12-19 2011-12-19 Terminal box

Publications (2)

Publication Number Publication Date
US20140008120A1 true US20140008120A1 (en) 2014-01-09
US9048641B2 US9048641B2 (en) 2015-06-02

Family

ID=47257521

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/716,697 Active 2033-05-28 US9048641B2 (en) 2011-12-19 2012-12-17 Terminal box

Country Status (5)

Country Link
US (1) US9048641B2 (en)
EP (1) EP2608277B1 (en)
JP (1) JP5790940B2 (en)
CN (1) CN103165713B (en)
CA (1) CA2796687C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202264B2 (en) * 2013-09-10 2017-09-27 ホシデン株式会社 Terminal box for solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257900B1 (en) * 1999-10-15 2001-07-10 Hon Hai Precision Ind. Co., Ltd. Electrical connector with contacts having improved resiliency
US20030188882A1 (en) * 2002-04-08 2003-10-09 Sumitomo Wiring Systems, Ltd. Electric junction box
US7098397B2 (en) * 2004-10-05 2006-08-29 Phoenix Contact Gmbh & Co. Kg Housing arrangement with at least one junction box
US7705234B2 (en) * 2004-05-25 2010-04-27 Tyco Electronics Amp Gmbh Solar module having a connecting element
US20120122336A1 (en) * 2009-07-15 2012-05-17 Phoenix Contact Gmbh & Co. Kg Terminating and connecting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334935B3 (en) * 2003-07-31 2004-12-23 Harting Electric Gmbh & Co. Kg Termination device for solar current module has contact pins contacting ends of electrical coupling conductors supported by stiffening element
EP2058867A3 (en) 2007-11-12 2009-07-22 Multi-Holding AG Junction box for a photovoltaic solar panel
JP2010118257A (en) * 2008-11-13 2010-05-27 Smk Corp Punched spring type contact
WO2010067466A1 (en) * 2008-12-12 2010-06-17 オーナンバ株式会社 Solar cell module
CN201490352U (en) * 2009-06-22 2010-05-26 庆盟工业股份有限公司 Conductive clamping device of solar terminal box
JP2011009587A (en) * 2009-06-27 2011-01-13 Angel Kogyo Kk Solar cell module with terminal box holding output wire by clip
DE202009012176U1 (en) * 2009-09-08 2009-11-12 Yamaichi Electronics Deutschland Gmbh Junction box and solar panel
US8192233B2 (en) * 2010-05-10 2012-06-05 Tyco Electronics Corporation Connector assembly for a photovoltaic module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257900B1 (en) * 1999-10-15 2001-07-10 Hon Hai Precision Ind. Co., Ltd. Electrical connector with contacts having improved resiliency
US20030188882A1 (en) * 2002-04-08 2003-10-09 Sumitomo Wiring Systems, Ltd. Electric junction box
US7705234B2 (en) * 2004-05-25 2010-04-27 Tyco Electronics Amp Gmbh Solar module having a connecting element
US7098397B2 (en) * 2004-10-05 2006-08-29 Phoenix Contact Gmbh & Co. Kg Housing arrangement with at least one junction box
US20120122336A1 (en) * 2009-07-15 2012-05-17 Phoenix Contact Gmbh & Co. Kg Terminating and connecting device

Also Published As

Publication number Publication date
US9048641B2 (en) 2015-06-02
EP2608277B1 (en) 2017-08-16
EP2608277A1 (en) 2013-06-26
JP2013128061A (en) 2013-06-27
CN103165713A (en) 2013-06-19
CA2796687A1 (en) 2013-06-19
JP5790940B2 (en) 2015-10-07
CA2796687C (en) 2019-05-14
CN103165713B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US9054456B2 (en) Power connector assembly having an alignment body
US7575487B2 (en) Electric connector
KR101933087B1 (en) Energy storage module containing a plurality of energy storage elements and improved means of thermal dissipation and method of assembly
US9666853B2 (en) Bus bar module
US9318824B2 (en) Connecting structure for terminal fitting and substrate
JP2011082210A (en) Terminal box for solar cell module
US9972823B2 (en) Fusible link
JP2006127974A (en) Surface mount type electric connector
US9048641B2 (en) Terminal box
US20160013572A1 (en) Connector
JP5652736B2 (en) Terminal box
JP5354377B2 (en) Electrical junction box
WO2007013262A1 (en) Terminal box for solar cell module
KR102138549B1 (en) A terminal, a circuit-board comprising the termianl and manufacture methods thereof
JP5516982B2 (en) Terminal box
JP2008047417A (en) Terminal for electric connector, and electric connector equipped with the same
JP2015128037A (en) AC adapter
JP7401500B2 (en) electrical terminals
US20220225525A1 (en) Electronic device
JP2013055305A (en) Attachment structure of terminal member in terminal box
WO2024080074A1 (en) Connector, mating connector, and connector assembly
US9966682B2 (en) Connector
JP2023017661A (en) capacitor
JP2015170589A (en) connector
JP5939999B2 (en) Terminal box with terminal plate with mating plate

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOSIDEN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAWANISHI, TAKAHIDE;REEL/FRAME:030009/0628

Effective date: 20130116

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8