US20130317591A1 - Drug eluting stent for the treatment of dialysis graft stenoses - Google Patents

Drug eluting stent for the treatment of dialysis graft stenoses Download PDF

Info

Publication number
US20130317591A1
US20130317591A1 US13/957,349 US201313957349A US2013317591A1 US 20130317591 A1 US20130317591 A1 US 20130317591A1 US 201313957349 A US201313957349 A US 201313957349A US 2013317591 A1 US2013317591 A1 US 2013317591A1
Authority
US
United States
Prior art keywords
stent
zone
length
graft
maximum circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/957,349
Inventor
Paul Consigny
Tracey Krausa
Matthew C. MARKERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Abbott Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Cardiovascular Systems Inc filed Critical Abbott Cardiovascular Systems Inc
Priority to US13/957,349 priority Critical patent/US20130317591A1/en
Publication of US20130317591A1 publication Critical patent/US20130317591A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3655Arterio-venous shunts or fistulae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0035Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in release or diffusion time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body

Definitions

  • grafts are used.
  • the grafts are implanted just below the patient's skin, typically on the patient's arm, to give the physician easy access to the artery and vein and the circulating blood.
  • the graft can be easily palpated and punctured easily with needles so that the dialysis technician can access the patient's bloodstream.
  • grafts do not last long since they develop thrombosis and restenosis, particularly at the distal anastamosis.
  • an injury repair process occurs, typically at the distal anastamosis where there is initially some thrombosis forming a matrix deposit.
  • the cells migrate into that area, and the patient ends up developing a restenosis at the distal anastamosis.
  • This stenosis developing in the distal anastamosis restricts the flow of blood flow through the graft.
  • a blood clot will form proximal to that stenosis.
  • the physician will usually then remove the blood clot from the graft with a balloon and then dilate the stenosis.
  • the graft will stay open for awhile but the restenosis and rethrombosis process will reoccur, with the time interval between successive stenoses being shorter and shorter. After a few stenoses, the graft is considered a failure, requiring that the physician close the graft down and create a new one. Unfortunately, patients only have a limited number of sites where these grafts can be placed.
  • Stents have been used to maintain patency in stenosed dialysis access grafts. These stents are typically plain biliary stents. See, e.g., U.S. Pat. No. 5,591,226 (Trerotola et al.) U.S. Pat. No. 5,755,775 (Trerotola et al.), US 2004/0015180 (Yencho et al.) and George X. Zaleski, Brian Funaki, Jordan Rosenblum, Jennifer Theoharis and Jeff Leef, “Metallic Stents Deployed in Synthetic Arteriovenous Hemodialysis Grafts,” American Journal of Roentgenology 2001; 176:1515-1519.
  • Examples of self-expanding stents that have been used in dialysis grafts include the Gianturco Z-stent (Cook) and the Wall Stent (Boston Scientific).
  • a drug eluting stent construction including a stent having a first end, an opposite second end, a first stent part along a length thereof proximate to the first end and spaced from the second end, and a second stent part along a length thereof proximate to the second end and spaced from the first end.
  • Stent cells in the second part have a Maximum Circular Uncovered Stent Area (MCUSA) greater than stent cells in the first part.
  • a first drug or drug combination is on the first part but not on the second part, and a second different drug or drug combination is on the second part.
  • the first drug or drug combination can include an anti-restenotic drug
  • the second different drug or drug combination can include an overlaying anti-thrombotic drug covering both the first part and the second part.
  • a stent construction which includes a stent having a first cell pattern proximate to one end of the stent and a second cell pattern proximate to an opposite end of the stent.
  • the first cell pattern has smaller cell dimensions than those of the second cell pattern.
  • a stent construction which includes a stent having a first end and an opposite second end.
  • the stent has a first zone along a length thereof proximate to the first end and spaced from the second end and a second zone along a length thereof proximate to the second end and spaced from the first end.
  • a first drug or drug combination is on the first zone but not on the second zone, and a second different drug or drug combination is on the second zone.
  • the drugs can be applied to the stent by dip coating, roll coating, electrostatic coating, vapor deposition coating or spray coating.
  • a method which includes positioning a stent construction having a first stent portion adjacent one end thereof and a second stent portion having a different construction than that of the first stent portion adjacent an opposite end thereof at a stenosis at a distal graft-vein anastamosis with the first stent portion adjacent the stenosis.
  • the stent construction can be positioned with the second stent portion adjacent the vein as an arterial venous anastomosis stent, or with the second stent portion adjacent the graft or the vein as a dialysis graft stent.
  • FIG. 1 is an enlarged schematic view of a stent of the present invention having a small cell portion and a large cell portion.
  • FIG. 2 is a view of a first alternative of the stent of FIG. 1 .
  • FIG. 3 is a view of a second alternative of the stent of FIG. 1 .
  • FIG. 4 is an enlarged view taken on circle 4 of FIG. 1 showing the coating on the struts in the small cell portion.
  • FIG. 5 is an enlarged view taken on circle 5 of FIG. 1 showing the coating on the struts in the large cell portion.
  • FIG. 6 is an enlarged view taken on circle 6 of FIG. 1 showing a small open-cell layout with a dialysis needle illustrated.
  • FIG. 7 is an enlarged view taken on circle 7 of FIG. 1 showing a large open-cell layout with a dialysis needle illustrated.
  • FIG. 8 is an enlarged view taken on circle 8 of FIG. 2 showing a small closed-cell layout with a dialysis needle illustrated.
  • FIG. 9 is an enlarged view taken on circle 9 of FIG. 2 showing a large closed-cell layout with a dialysis needle illustrated.
  • FIG. 10 is an enlarged view taken at the intersection of the small cell portion and the large cell portion of the stent of FIG. 1 showing the maximum circular unsupported surface areas (MCUSA) for both portions.
  • FIG. 11 is a schematic view of a stenosis at a distal graft-vein anastomosis.
  • FIG. 12 shows a stent of the present invention in an operative position in the view of FIG. 11 .
  • FIG. 13 shows a stent of the present invention in an alternative operative position in the view of FIG. 11 .
  • a stent of the present invention is illustrated schematically in FIG. 1 , generally at 100 , and can be balloon-expandable or self-expandable. As discussed in detail later and with reference to FIGS. 12 and 13 , it can be a dialysis graft stent or an arterial venous anastomosis stent.
  • Stent 100 which is preferably formed as a single unitary construction, includes two zones or portions, and can be formed by laser cutting a hypo tube as would be apparent to those skilled in the art from this disclosure. The first portion is shown on the left side of FIG. 1 generally at 110 and a (longer) second portion is shown on the right side generally at 120 .
  • the stent 100 can be formed with generally any strut and link configuration as is known.
  • the stent 100 when expanded, can have an internal diameter of between four and eight mm and a length between fifteen and seventy mm, or more particularly, a diameter of approximately six mm and a length of approximately thirty mm.
  • the first portion 110 has a tighter cell dimension than that of the second portion 120 , where the cell dimension is defined by the Maximum Circular Unsupported Surface Area (“MCUSA”).
  • MCUSA Maximum Circular Unsupported Surface Area
  • cells in the first portion 110 can have an MCUSA of 2.0 to 5.0 mm 2 or approximately 3.5 mm 2
  • the MCUSA of cells in the second portion 120 can be 6.0 to 80 mm 2 or approximately 19.0 mm 2
  • the cells in the second portion 120 are large enough to easily accommodate dialysis needles therethrough such as “14” and “16” Gauge needles, having respective diameters of 1.63 mm and 1.29 mm, and respective cross-sectional areas of 2.09 mm 2 and 1.31 mm 2 .
  • Dialysis needles are shown in FIGS. 12 (and 13 ) at 130 and 136 .
  • Areas greater than 2.1 mm 2 permit a 14 Gauge needle to penetrate with only a low probability of touching the stent.
  • the probability of introducing a 14 Gauge needle without touching the stent increases as the areas of the individual cells increase, with areas of at least five mm 2 being acceptable.
  • the first portion 110 has cells 140 having a smaller MCUSA than that of the cells 142 of the second portion 120 so that the first portion can hold and effectively transmit drugs from a coating 148 to the anastomotic stenosis, as shown in FIG. 12 for example.
  • These drugs are lipophilic so the cell size needs to be small to provide drug to the entire area to prevent hyperplasia from occurring, which creates restenosis.
  • the second portion 120 can have a different drug coating 150 for transmitting drugs into the bloodstream. Blood clot formation in grafts is a problem and can be exacerbated by the presence of the stent, a foreign body.
  • an anti-thrombotic drug can be provided throughout the entire length of the stent 100 or at least in the non-drug eluting stent area 120 .
  • a purpose of the anti-thrombotic coating is thus to reduce the likelihood of thrombosis being initiated by the stent 100 . This is especially true for metallic stents made of materials such as stainless steel, cobalt chrome, and nitinol.
  • thrombosis is exacerbated by stents damaged by needle penetration, suggesting that an anti-thrombotic coating can retard that thrombosis.
  • FIG. 5 shows struts 170 in the cell pattern of the second portion 120 coated with a different second drug 150 . While the struts 160 , 170 are illustrated as having rectangular cross-sections, other shapes as would be apparent to those skilled in the art can be used. Further, the struts within the same stent can have different widths.
  • the first stent portion 110 can have an anti-restenotic drug coating 148 .
  • the drug of this coating can be eluted from a nonabsorbable or absorbable polymer placed on a metallic stent or eluted from a stent composed of a mixture of a bioabsorbable polymer and drug or drugs.
  • Biocompatible, nonabsorbable polymers include alkylene vinyl alcohol copolymers such as ethylene vinyl acetate (EVA), alkylene vinyl alcohol copolymers such as ethylene vinyl alcohol (EVAL), poly (n-butyl methacrylate (PMBA), SOLEF polymers such as poly (vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP and poly (vinylidene fluoride) (PVDF) and combinations thereof.
  • Biocompatible, bioabsorbable polymers include blends of polyesters, poly (D,L-lactide), poly (L-lactide), polyglycolide, and poly (D,L-lactide-co-glycolide). See U.S. Pat. No. 6,673,385 (Ding et al.) and US 2004/0086542 (Hossainy et al.).
  • the anti-restenotic drug can be a single drug or a combination of drugs that are eluted at similar or different rates.
  • the drugs include but are not limited to: (1) antiproliferative drugs such as everolimus, sirolimus, ABT-578, and paclitaxel; (2) anti-inflammatory drugs such as corticosteroids (e.g., clobetasol, dexamethasone, and momentasone), inhibitors of the NFkB and p38 pathways; (3) immunosuppressants such as tacrolimus and pimecrolimus; and (4) pro-healing drugs such as 17-beta estradiol, nitric oxide donors, and nitric oxide generators (e.g., chelated copper catalysts).
  • antiproliferative drugs such as everolimus, sirolimus, ABT-578, and paclitaxel
  • anti-inflammatory drugs such as corticosteroids (e.g., clobetasol, dexamethasone
  • the struts 170 of the second stent portion 120 can have an anti-thrombotic coating 150 as mentioned above especially on the luminal surfaces thereof.
  • This coating 150 can include: (1) anti-thrombotics including heparan or heparin; and (2) antiplatelet drugs including nitric oxide donors or nitric oxide generators (chelated copper catalysts).
  • the first drug or drug combination can include an anti-restenotic drug and the second different drug or drug combination can include an overlaying anti-thrombotic drug covering both the first zone or portion 110 and the second zone or portion 120 .
  • the drugs can be applied by techniques known in the art including spray coating, dip coating and roll coating.
  • Another coating application technique uses “depot” technology (see, e.g., US 2005/0234544 (Shanley)), or applies the coating in channels or grooves on the stent surfaces.
  • radiopaque markers 180 , 184 are provided at opposite ends of the first portion. These (metal) radiopaque markers can have a construction as is known in the prior art, for biodegradable stents. The markers can also be provided at the opposite end of the stent 110 , that is, at the right end of FIGS. 1 (and 2 and 3 ).
  • a transitional portion 200 can be provided therebetween as shown in FIG. 2 for the first alternative stent 210 .
  • the transitional portion 200 can have a cell pattern with cells having an MCUSA greater than those of the first portion 110 but smaller than those of the second portion 120 .
  • the second portion 120 can have a gradually increasing MCUSA for cells at the end adjacent the first portion 110 to the opposite end 220 , as illustrated in FIG. 3 by the second alternative stent 230 .
  • the patterns of the cells 140 of the first stent portion 110 and/or the cells 142 of the second stent portion 120 can have an “open” cell construction such as illustrated in FIG. 6 as well as in FIG. 7 .
  • Examples of open cell designs are those. of the RX Herculink Plus stent and the Multi-Link Zeta stent. While FIG. 6 shows at 240 a small open cell construction with a small MCUSA, FIG. 7 shows at 250 a large open cell construction with a large MCUSA. The relative sizes can be understood from the cross-section of the dialysis needle 260 drawn in these figures.
  • the first portion 110 and/or the second portion 120 can have a closed cell construction, such as illustrated in FIGS. 8 and 9 .
  • FIG. 8 and 9 FIG.
  • FIG. 8 shows at 270 a small closed cell layout
  • FIG. 9 shows a large closed cell layout at 280 with a larger MCUSA than that of the layout 270 .
  • Examples of closed cell designs are the Palmax Genesis stent and the Cypher Sirolimus-Eluting Coronary stent.
  • the stent cell size can be increased by increasing the distance between the struts, as can be seen from comparing FIG. 6 with FIG. 7 , and FIG. 8 with FIG. 9 .
  • it can be increased by switching from a closed cell design to an open cell design by eliminating a link, as can be understood from comparing FIGS. 8 and 9 with FIGS. 6 and 7 . See, e.g., Garasic, J Metal., Circulation 101: 812-818, 2000.
  • the length of the strut links 300 can be increased. If the links 300 have undulations 310 , one way of increasing the lengths of the links is to increase the lengths of the undulations 310 .
  • Another way is to increase the number of undulations 310 per link 300 .
  • a third way is to increase the lengths of the straight portions 320 , 330 on one or both sides of the undulations 310 as can be seen by comparing FIGS. 6 and 7 and by comparing FIGS. 8 and 9 .
  • the stent 100 can have a strut and link configuration as disclosed in U.S. Pat. No. 6,616,689 (Ainsworth et al).
  • the links 300 of the second portion 120 can each be approximately two to six mm long, and the links 300 of the first portion 110 can each be approximately one to three mm long. Alternatively, the links 300 of the second portion 120 can be approximately one to five mm longer than the links of the first portion 110 .
  • Another definition of the invention is for the links 100 in the first cell portion 110 to have lengths which provide MCUSA's of two to five mm 2 of the cells 140 in the first portion 100 , when expanded.
  • Links 300 in the second cell portion 120 can have lengths which provide MCUSA's of six to eighty mm 2 of cells 142 in the second portion of the stent 100 when expanded.
  • the links 300 can have lengths which provide MCUSA's of approximately 3.5 mm 2 in the first portion 110 of the stent 100 when expanded and the links in the second portion 120 can have lengths which provide MCUSA's of approximately 19 mm 2 in the second portion of the stent when the stent is expanded.
  • the short links (as on the left portion of FIG. 1 , for example) would be in the area of the stent that would contain the drug and would be placed at the graft vein anastamoses, as depicted in FIGS. 12 and 13 .
  • the underlying stent 100 itself can be made of a biodegradable metal or polymer.
  • biocompatible, bioabsorbable polymers include blends of polyesters, poly (D,L-lactide), poly (L-Iactide), polyglycolide, poly (D,L-lactide-co-glycolide), poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g., PEO/PLA), polyphosphazenes, biomolecules (such
  • Examples of usable biodegradable metals for the stent 100 include magnesium alloys such as an alloy of magnesium, yttrium and rare earth, and usable bioerodible metals include magnesium, zinc, and iron.
  • the underlying stents can be metal stents or polymer stents; they can be bioabsorbable, bioerodable, and/or biodegradable polymeric stents with or without metallic components.
  • Metals including cobalt chromium alloy (Elgiloy), stainless steel (316L), Nitinol, tantalum, and nickel-titanium alloy can be used as the stent material.
  • the first portion 110 of the stent 100 can be shorter than the second portion 120 . It can be approximately one-third of the length of the total stent 100 , while the second portion can be two-thirds of the length.
  • the first portion 110 can have a stent length approximately between twenty and fifty percent of the length of the stent 100
  • the second portion 120 can have a length approximately between fifty and eighty percent of the length of the stent.
  • the stent 100 when expanded, can have an internal diameter of between four and eight mm and a length between fifteen and seventy mm, or more specifically a diameter of approximately six mm and a length of approximately thirty mm.
  • FIG. 11 shows a stenosis at a distal graft-vein anastomosis.
  • proximal artery 410 blood flow 420
  • distal artery 430 stenosis 440
  • distal anastomosis 450 central vein 460
  • distal vein 470 distal vein 470
  • (PTFE) graft 480 graft 480
  • the stent 100 can be used as a dialysis graft stent as shown in FIG. 12 .
  • the catheter for inserting the stent 100 in position as shown in FIG. 12 is illustrated in phantom lines at 510 on the right side of the drawing.
  • a first dialysis needle 130 can be inserted through the graft 480 and a first stent cell in the second stent portion 120 and into the blood channel 530 in the graft; and a second dialysis needle 136 can be inserted through the graft 520 and a second stent cell in the second stent portion 120 , or through the graft 520 directly into the blood channel 530 in the graft.
  • Blood from the blood channel 530 at a proximal area is withdrawn through the inserted first dialysis needle 136 , processed in a dialysis machine 540 , and returned through the inserted second dialysis needle into the blood channel at a distal area thereof.
  • the stent 100 can be used as an arterial venous anastomosis stent as shown in FIG. 13 .
  • the catheter for inserting the stent in the position of FIG. 13 is illustrated in the upper left portion of that figure in phantom lines at 560 .
  • Both of the dialysis needles 136 , 130 pass directly in the graft 480 , and not through the stent 110 , and into the blood channel 530 .
  • the open cell design is useful in this alternative placement of the stent even though the dialysis needles 130 , 136 will not be inserted through the cells in this embodiment for two reasons. First, venous flow can go through more easily because it is less restricted. Second, because of the anti-thrombotic coating, there is reduced likelihood of thrombosis in the venous segment.
  • the present invention can include a self-expanding or balloon-expandable stent comprised of nitinol or biodegradable polymer and having two cell patterns.
  • An open cell pattern in the area proximal to the anastamosis is provided in order to facilitate needle punctures of the (PTFE) graft.
  • the performance of this area can be further enhanced by rounding the edges of the stent struts to better deflect needles that strike the strut.
  • the stent has a less open pattern in the area that would be opposed to the anastamotic area.
  • This tighter cell design enhances drug delivery by providing additional surface onto or into which drugs can be placed. In addition, it decreases diffusion distances and thereby decreases the likelihood that there would be areas unaffected by the drug.
  • Another definition of the invention is a drug coated stent in which the area in contact with the PTFE graft is coated with a polymer that is nonfouling or anti-thrombotic or has affixed to it or elutes a drug that prevents/inhibits thrombosis.
  • An example is a hydrogel to which is tethered a heparin or nitric oxide donor/generator.
  • the closed cell area of the stent that is in contact with the stenotic vein-graft anastamosis elutes a drug that inhibits restenosis.
  • the drug can be a single drug such as everolimus of paclitaxel, or a drug combination such as everolimus with a anticoagulant/antithrombotic; everolimus with a nitric oxide donor/generator; everolimus with an anti-inflammatory; or everolimus with an immunosuppressant.
  • This area may also be coated with an antifouling coating that prevents clot formation.
  • the stent is designed to be deployed via a catheter inserted directly through the dialysis graft material or via an artery or vein that leads to or from the graft.
  • the small cell region of the stent can be positioned at the site of the anastamotic stenosis.
  • the large cell region of the stent can be positioned in the graft area.
  • the biodegradable polymer can be one that has a property to self-expand to bring the drug eluting portion of the device in contact with the anastamotic stenosis and then degrade faster than the graft is expected to fail. This advantageously permits another such stent to be inserted before the graft occludes.

Abstract

A drug-eluting stent having a first cell pattern at one end and a second cell pattern on an opposite end. The cells in the first cell pattern have a smaller MCUSA than those in the second cell pattern. An anti-restonic drug can be coated on the first cell pattern and an anti-thrombotic drug on the second, with the anti-thrombotic drug overlaying and covering both the first and second cell patterns. The stent is operatively positionable at a distal graft-vein anastomosis with the first cell pattern adjacent the stenosis, and with the second cell pattern positioned adjacent the vein or the graft.

Description

    BACKGROUND OF THE INVENTION
  • In the late stages of kidney disease it is often necessary for patients to repeatedly undergo dialysis where their blood is removed, cleansed in a dialysis machine and then returned to their bloodstream. Since arteries cannot be punctured numerous times during a dialysis process and remain functional, grafts are used. The grafts are implanted just below the patient's skin, typically on the patient's arm, to give the physician easy access to the artery and vein and the circulating blood. The graft can be easily palpated and punctured easily with needles so that the dialysis technician can access the patient's bloodstream.
  • Unfortunately, these grafts do not last long since they develop thrombosis and restenosis, particularly at the distal anastamosis. Wherever a graft is inserted, an injury repair process occurs, typically at the distal anastamosis where there is initially some thrombosis forming a matrix deposit. The cells migrate into that area, and the patient ends up developing a restenosis at the distal anastamosis. This stenosis developing in the distal anastamosis restricts the flow of blood flow through the graft. A blood clot will form proximal to that stenosis. The physician will usually then remove the blood clot from the graft with a balloon and then dilate the stenosis. The graft will stay open for awhile but the restenosis and rethrombosis process will reoccur, with the time interval between successive stenoses being shorter and shorter. After a few stenoses, the graft is considered a failure, requiring that the physician close the graft down and create a new one. Unfortunately, patients only have a limited number of sites where these grafts can be placed.
  • Stents have been used to maintain patency in stenosed dialysis access grafts. These stents are typically plain biliary stents. See, e.g., U.S. Pat. No. 5,591,226 (Trerotola et al.) U.S. Pat. No. 5,755,775 (Trerotola et al.), US 2004/0015180 (Yencho et al.) and George X. Zaleski, Brian Funaki, Jordan Rosenblum, Jennifer Theoharis and Jeff Leef, “Metallic Stents Deployed in Synthetic Arteriovenous Hemodialysis Grafts,” American Journal of Roentgenology 2001; 176:1515-1519. (The entire contents of these publications and all other publications mentioned anywhere in this disclosure are hereby incorporated by reference.) Examples of self-expanding stents that have been used in dialysis grafts include the Gianturco Z-stent (Cook) and the Wall Stent (Boston Scientific).
  • When the dialysis needles are inserted into the graft through the stent they will frequently impact the stent because the stent cell openings are very small. If the needle impacts the stent, it can dislodge it. It can also dull the needle, making it impossible to enter so that the needle has to be removed and reinserted, causing more trauma to the graft. Injury to stents after needle puncture has been observed. See, e.g., Lane et al., “Puncture-Induced Deforming of a Metallic Stent Within a Dialysis Access Graft Causing Thrombotic Failure: Case Report and Description of Salvage,” Journal of Vascular and Interventional Radiology 1998; 9:837-839. Lane et al. at page 839, recommends that one refrain from placing needle access in any dialysis graft segment containing a stent. This recommendation is based upon their observation that needle access deforms stents. See also, Rhodes and Silas, “Dialysis Needle Puncture of Wallgrafts Placed in Polytetrafluoroethylene Hemodialysis Grafts,” Journal of Vascular and Interventional Radiology 2005 16:1129-1134.
  • Accordingly, a new method and system for increasing the lives of dialysis grafts are needed.
  • SUMMARY OF THE INVENTION
  • Directed to remedying disadvantages in the prior art, disclosed herein is a drug eluting stent construction including a stent having a first end, an opposite second end, a first stent part along a length thereof proximate to the first end and spaced from the second end, and a second stent part along a length thereof proximate to the second end and spaced from the first end. Stent cells in the second part have a Maximum Circular Uncovered Stent Area (MCUSA) greater than stent cells in the first part. A first drug or drug combination is on the first part but not on the second part, and a second different drug or drug combination is on the second part. The first drug or drug combination can include an anti-restenotic drug, and the second different drug or drug combination can include an overlaying anti-thrombotic drug covering both the first part and the second part.
  • According to another definition of the invention, a stent construction is provided which includes a stent having a first cell pattern proximate to one end of the stent and a second cell pattern proximate to an opposite end of the stent. The first cell pattern has smaller cell dimensions than those of the second cell pattern.
  • According to a further definition of the present invention, a stent construction is provided which includes a stent having a first end and an opposite second end. The stent has a first zone along a length thereof proximate to the first end and spaced from the second end and a second zone along a length thereof proximate to the second end and spaced from the first end. A first drug or drug combination is on the first zone but not on the second zone, and a second different drug or drug combination is on the second zone. The drugs can be applied to the stent by dip coating, roll coating, electrostatic coating, vapor deposition coating or spray coating.
  • Pursuant to another embodiment of the present invention, a method is provided which includes positioning a stent construction having a first stent portion adjacent one end thereof and a second stent portion having a different construction than that of the first stent portion adjacent an opposite end thereof at a stenosis at a distal graft-vein anastamosis with the first stent portion adjacent the stenosis. The stent construction can be positioned with the second stent portion adjacent the vein as an arterial venous anastomosis stent, or with the second stent portion adjacent the graft or the vein as a dialysis graft stent.
  • Other objects and advantages of the present invention will become more apparent to those persons having ordinary skill in the art to which the present invention pertains from the foregoing description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an enlarged schematic view of a stent of the present invention having a small cell portion and a large cell portion.
  • FIG. 2 is a view of a first alternative of the stent of FIG. 1.
  • FIG. 3 is a view of a second alternative of the stent of FIG. 1.
  • FIG. 4 is an enlarged view taken on circle 4 of FIG. 1 showing the coating on the struts in the small cell portion.
  • FIG. 5 is an enlarged view taken on circle 5 of FIG. 1 showing the coating on the struts in the large cell portion.
  • FIG. 6 is an enlarged view taken on circle 6 of FIG. 1 showing a small open-cell layout with a dialysis needle illustrated.
  • FIG. 7 is an enlarged view taken on circle 7 of FIG. 1 showing a large open-cell layout with a dialysis needle illustrated.
  • FIG. 8 is an enlarged view taken on circle 8 of FIG. 2 showing a small closed-cell layout with a dialysis needle illustrated.
  • FIG. 9 is an enlarged view taken on circle 9 of FIG. 2 showing a large closed-cell layout with a dialysis needle illustrated.
  • FIG. 10 is an enlarged view taken at the intersection of the small cell portion and the large cell portion of the stent of FIG. 1 showing the maximum circular unsupported surface areas (MCUSA) for both portions.
  • FIG. 11 is a schematic view of a stenosis at a distal graft-vein anastomosis.
  • FIG. 12 shows a stent of the present invention in an operative position in the view of FIG. 11.
  • FIG. 13 shows a stent of the present invention in an alternative operative position in the view of FIG. 11.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • A stent of the present invention is illustrated schematically in FIG. 1, generally at 100, and can be balloon-expandable or self-expandable. As discussed in detail later and with reference to FIGS. 12 and 13, it can be a dialysis graft stent or an arterial venous anastomosis stent. Stent 100, which is preferably formed as a single unitary construction, includes two zones or portions, and can be formed by laser cutting a hypo tube as would be apparent to those skilled in the art from this disclosure. The first portion is shown on the left side of FIG. 1 generally at 110 and a (longer) second portion is shown on the right side generally at 120. The stent 100 can be formed with generally any strut and link configuration as is known. The stent 100, when expanded, can have an internal diameter of between four and eight mm and a length between fifteen and seventy mm, or more particularly, a diameter of approximately six mm and a length of approximately thirty mm.
  • The first portion 110 has a tighter cell dimension than that of the second portion 120, where the cell dimension is defined by the Maximum Circular Unsupported Surface Area (“MCUSA”). For example, cells in the first portion 110 can have an MCUSA of 2.0 to 5.0 mm2 or approximately 3.5 mm2, while the MCUSA of cells in the second portion 120 can be 6.0 to 80 mm2 or approximately 19.0 mm2. The cells in the second portion 120 are large enough to easily accommodate dialysis needles therethrough such as “14” and “16” Gauge needles, having respective diameters of 1.63 mm and 1.29 mm, and respective cross-sectional areas of 2.09 mm2 and 1.31 mm2. Dialysis needles are shown in FIGS. 12 (and 13) at 130 and 136.
  • Today's coronary artery drug eluting stents have maximal circular uncovered surface areas (MCUSA) for individual cells ranging from one to five mm2, which indicates that these cell sizes are acceptable in the drug eluting stent area of the subject stent 100. Areas greater than 2.1 mm2 permit a 14 Gauge needle to penetrate with only a low probability of touching the stent. The probability of introducing a 14 Gauge needle without touching the stent increases as the areas of the individual cells increase, with areas of at least five mm2 being acceptable.
  • The first portion 110 has cells 140 having a smaller MCUSA than that of the cells 142 of the second portion 120 so that the first portion can hold and effectively transmit drugs from a coating 148 to the anastomotic stenosis, as shown in FIG. 12 for example. These drugs are lipophilic so the cell size needs to be small to provide drug to the entire area to prevent hyperplasia from occurring, which creates restenosis. The second portion 120 can have a different drug coating 150 for transmitting drugs into the bloodstream. Blood clot formation in grafts is a problem and can be exacerbated by the presence of the stent, a foreign body. Accordingly, an anti-thrombotic drug can be provided throughout the entire length of the stent 100 or at least in the non-drug eluting stent area 120. A purpose of the anti-thrombotic coating is thus to reduce the likelihood of thrombosis being initiated by the stent 100. This is especially true for metallic stents made of materials such as stainless steel, cobalt chrome, and nitinol. Furthermore, thrombosis is exacerbated by stents damaged by needle penetration, suggesting that an anti-thrombotic coating can retard that thrombosis.
  • The drug of the first portion 110 is shown coated on struts 160 of the first portion in FIG. 4. FIG. 5 shows struts 170 in the cell pattern of the second portion 120 coated with a different second drug 150. While the struts 160, 170 are illustrated as having rectangular cross-sections, other shapes as would be apparent to those skilled in the art can be used. Further, the struts within the same stent can have different widths.
  • The first stent portion 110 can have an anti-restenotic drug coating 148. The drug of this coating can be eluted from a nonabsorbable or absorbable polymer placed on a metallic stent or eluted from a stent composed of a mixture of a bioabsorbable polymer and drug or drugs. Biocompatible, nonabsorbable polymers include alkylene vinyl alcohol copolymers such as ethylene vinyl acetate (EVA), alkylene vinyl alcohol copolymers such as ethylene vinyl alcohol (EVAL), poly (n-butyl methacrylate (PMBA), SOLEF polymers such as poly (vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP and poly (vinylidene fluoride) (PVDF) and combinations thereof. Biocompatible, bioabsorbable polymers include blends of polyesters, poly (D,L-lactide), poly (L-lactide), polyglycolide, and poly (D,L-lactide-co-glycolide). See U.S. Pat. No. 6,673,385 (Ding et al.) and US 2004/0086542 (Hossainy et al.).
  • The anti-restenotic drug can be a single drug or a combination of drugs that are eluted at similar or different rates. The drugs include but are not limited to: (1) antiproliferative drugs such as everolimus, sirolimus, ABT-578, and paclitaxel; (2) anti-inflammatory drugs such as corticosteroids (e.g., clobetasol, dexamethasone, and momentasone), inhibitors of the NFkB and p38 pathways; (3) immunosuppressants such as tacrolimus and pimecrolimus; and (4) pro-healing drugs such as 17-beta estradiol, nitric oxide donors, and nitric oxide generators (e.g., chelated copper catalysts).
  • The struts 170 of the second stent portion 120 can have an anti-thrombotic coating 150 as mentioned above especially on the luminal surfaces thereof. This coating 150 can include: (1) anti-thrombotics including heparan or heparin; and (2) antiplatelet drugs including nitric oxide donors or nitric oxide generators (chelated copper catalysts).
  • More particularly, the first drug or drug combination can include an anti-restenotic drug and the second different drug or drug combination can include an overlaying anti-thrombotic drug covering both the first zone or portion 110 and the second zone or portion 120. See U.S. 2005/0192662 (Ward). The drugs can be applied by techniques known in the art including spray coating, dip coating and roll coating. Another coating application technique uses “depot” technology (see, e.g., US 2005/0234544 (Shanley)), or applies the coating in channels or grooves on the stent surfaces.
  • To assist in the placement of the strut in the body, radiopaque markers 180, 184 are provided at opposite ends of the first portion. These (metal) radiopaque markers can have a construction as is known in the prior art, for biodegradable stents. The markers can also be provided at the opposite end of the stent 110, that is, at the right end of FIGS. 1 (and 2 and 3).
  • It may be to reduce the effect of bending stresses at the juncture of the first and second portions 110, 120, that a transitional portion 200 can be provided therebetween as shown in FIG. 2 for the first alternative stent 210. The transitional portion 200 can have a cell pattern with cells having an MCUSA greater than those of the first portion 110 but smaller than those of the second portion 120. Alternatively, the second portion 120 can have a gradually increasing MCUSA for cells at the end adjacent the first portion 110 to the opposite end 220, as illustrated in FIG. 3 by the second alternative stent 230.
  • The patterns of the cells 140 of the first stent portion 110 and/or the cells 142 of the second stent portion 120 can have an “open” cell construction such as illustrated in FIG. 6 as well as in FIG. 7. Examples of open cell designs are those. of the RX Herculink Plus stent and the Multi-Link Zeta stent. While FIG. 6 shows at 240 a small open cell construction with a small MCUSA, FIG. 7 shows at 250 a large open cell construction with a large MCUSA. The relative sizes can be understood from the cross-section of the dialysis needle 260 drawn in these figures. Alternatively, the first portion 110 and/or the second portion 120 can have a closed cell construction, such as illustrated in FIGS. 8 and 9. FIG. 8 shows at 270 a small closed cell layout, and FIG. 9 shows a large closed cell layout at 280 with a larger MCUSA than that of the layout 270. Examples of closed cell designs are the Palmax Genesis stent and the Cypher Sirolimus-Eluting Coronary stent.
  • The stent cell size can be increased by increasing the distance between the struts, as can be seen from comparing FIG. 6 with FIG. 7, and FIG. 8 with FIG. 9. Alternatively, it can be increased by switching from a closed cell design to an open cell design by eliminating a link, as can be understood from comparing FIGS. 8 and 9 with FIGS. 6 and 7. See, e.g., Garasic, J Metal., Circulation 101: 812-818, 2000. To increase the MCUSA of the open and/or closed cell configurations, the length of the strut links 300 can be increased. If the links 300 have undulations 310, one way of increasing the lengths of the links is to increase the lengths of the undulations 310. Another way is to increase the number of undulations 310 per link 300. A third way is to increase the lengths of the straight portions 320, 330 on one or both sides of the undulations 310 as can be seen by comparing FIGS. 6 and 7 and by comparing FIGS. 8 and 9.
  • The stent 100, for example, can have a strut and link configuration as disclosed in U.S. Pat. No. 6,616,689 (Ainsworth et al). The links 300 of the second portion 120 can each be approximately two to six mm long, and the links 300 of the first portion 110 can each be approximately one to three mm long. Alternatively, the links 300 of the second portion 120 can be approximately one to five mm longer than the links of the first portion 110. Another definition of the invention is for the links 100 in the first cell portion 110 to have lengths which provide MCUSA's of two to five mm2 of the cells 140 in the first portion 100, when expanded. Links 300 in the second cell portion 120 can have lengths which provide MCUSA's of six to eighty mm2 of cells 142 in the second portion of the stent 100 when expanded. Alternatively, the links 300 can have lengths which provide MCUSA's of approximately 3.5 mm2 in the first portion 110 of the stent 100 when expanded and the links in the second portion 120 can have lengths which provide MCUSA's of approximately 19 mm2 in the second portion of the stent when the stent is expanded. In other words, the short links (as on the left portion of FIG. 1, for example) would be in the area of the stent that would contain the drug and would be placed at the graft vein anastamoses, as depicted in FIGS. 12 and 13.
  • The underlying stent 100 itself can be made of a biodegradable metal or polymer. Examples of biocompatible, bioabsorbable polymers include blends of polyesters, poly (D,L-lactide), poly (L-Iactide), polyglycolide, poly (D,L-lactide-co-glycolide), poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g., PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, and poly(iminocarbonate) polydioxanone. Examples of usable biodegradable metals for the stent 100 include magnesium alloys such as an alloy of magnesium, yttrium and rare earth, and usable bioerodible metals include magnesium, zinc, and iron. The underlying stents can be metal stents or polymer stents; they can be bioabsorbable, bioerodable, and/or biodegradable polymeric stents with or without metallic components. Metals including cobalt chromium alloy (Elgiloy), stainless steel (316L), Nitinol, tantalum, and nickel-titanium alloy can be used as the stent material.
  • The first portion 110 of the stent 100 can be shorter than the second portion 120. It can be approximately one-third of the length of the total stent 100, while the second portion can be two-thirds of the length. Alternatively, the first portion 110 can have a stent length approximately between twenty and fifty percent of the length of the stent 100, and the second portion 120 can have a length approximately between fifty and eighty percent of the length of the stent. As an example, the stent 100, when expanded, can have an internal diameter of between four and eight mm and a length between fifteen and seventy mm, or more specifically a diameter of approximately six mm and a length of approximately thirty mm.
  • FIG. 11 shows a stenosis at a distal graft-vein anastomosis. Referring to the reference numerals in that figure, disclosed therein are proximal artery 410, blood flow 420, distal artery 430, stenosis 440, distal anastomosis 450, central vein 460, distal vein 470, and (PTFE) graft 480.
  • The stent 100 can be used as a dialysis graft stent as shown in FIG. 12. The catheter for inserting the stent 100 in position as shown in FIG. 12 is illustrated in phantom lines at 510 on the right side of the drawing. A first dialysis needle 130 can be inserted through the graft 480 and a first stent cell in the second stent portion 120 and into the blood channel 530 in the graft; and a second dialysis needle 136 can be inserted through the graft 520 and a second stent cell in the second stent portion 120, or through the graft 520 directly into the blood channel 530 in the graft. Blood from the blood channel 530 at a proximal area is withdrawn through the inserted first dialysis needle 136, processed in a dialysis machine 540, and returned through the inserted second dialysis needle into the blood channel at a distal area thereof.
  • Alternatively, the stent 100 can be used as an arterial venous anastomosis stent as shown in FIG. 13. The catheter for inserting the stent in the position of FIG. 13 is illustrated in the upper left portion of that figure in phantom lines at 560. Both of the dialysis needles 136, 130 pass directly in the graft 480, and not through the stent 110, and into the blood channel 530. The open cell design is useful in this alternative placement of the stent even though the dialysis needles 130, 136 will not be inserted through the cells in this embodiment for two reasons. First, venous flow can go through more easily because it is less restricted. Second, because of the anti-thrombotic coating, there is reduced likelihood of thrombosis in the venous segment.
  • In summary, the present invention can include a self-expanding or balloon-expandable stent comprised of nitinol or biodegradable polymer and having two cell patterns. An open cell pattern in the area proximal to the anastamosis is provided in order to facilitate needle punctures of the (PTFE) graft. The performance of this area can be further enhanced by rounding the edges of the stent struts to better deflect needles that strike the strut. The stent has a less open pattern in the area that would be opposed to the anastamotic area. This tighter cell design enhances drug delivery by providing additional surface onto or into which drugs can be placed. In addition, it decreases diffusion distances and thereby decreases the likelihood that there would be areas unaffected by the drug.
  • Another definition of the invention is a drug coated stent in which the area in contact with the PTFE graft is coated with a polymer that is nonfouling or anti-thrombotic or has affixed to it or elutes a drug that prevents/inhibits thrombosis. An example is a hydrogel to which is tethered a heparin or nitric oxide donor/generator. The closed cell area of the stent that is in contact with the stenotic vein-graft anastamosis elutes a drug that inhibits restenosis. The drug can be a single drug such as everolimus of paclitaxel, or a drug combination such as everolimus with a anticoagulant/antithrombotic; everolimus with a nitric oxide donor/generator; everolimus with an anti-inflammatory; or everolimus with an immunosuppressant. This area may also be coated with an antifouling coating that prevents clot formation.
  • The stent is designed to be deployed via a catheter inserted directly through the dialysis graft material or via an artery or vein that leads to or from the graft. The small cell region of the stent can be positioned at the site of the anastamotic stenosis. The large cell region of the stent can be positioned in the graft area. The biodegradable polymer can be one that has a property to self-expand to bring the drug eluting portion of the device in contact with the anastamotic stenosis and then degrade faster than the graft is expected to fail. This advantageously permits another such stent to be inserted before the graft occludes.
  • From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. The scope of the invention includes any combination of the elements from the different species or embodiments disclosed herein, as well as subassemblies, assemblies, and methods thereof. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.

Claims (22)

1-33. (canceled)
34. A method, comprising:
positioning a stent having a first stent portion adjacent one end thereof and a second stent portion adjacent an opposite end thereof at a stenosis at an anastamosis with the first stent portion adjacent the stenosis;
the first portion defining a first maximum circular uncovered surface area (MCUSA1); and
the second stent portion defining a second maximum circular uncovered surface area (MCUSA2);
wherein MCUSA1 is less than MCUSA2.
35. The method of claim 34, wherein the positioning includes positioning the stent construction with the second stent portion adjacent the vein.
36. The method of claim 34, wherein the positioning includes positioning the stent construction with the second stent portion adjacent a graft.
37-39. (canceled)
40. The method of claim 34, wherein the first stent portion has a drug eluting coating on at least the abluminal surfaces thereof.
41. The method of claim 34, wherein the second stent portion has an anti-thrombotic coating on at least the luminal surfaces thereof.
42. The method of claim 34, wherein the first stent portion has an anti-restenotic drug eluting coating on luminal and abluminal surfaces thereof.
43. The method of claim 34, wherein the second stent portion has an anti-thrombotic coating on luminal and abluminal surfaces thereof.
44. The method of claim 34, wherein the luminal and abluminal surfaces of the entire stent has an anti-thrombotic coating.
45. The method of claim 34, wherein the positioning includes delivering the stent using a catheter via puncture of a proximal graft.
46. The method of claim 34, wherein the positioning includes delivering the stent using a catheter via a central vein or artery.
47. A stent, comprising:
a stent having a first end and an opposite second end; and
the stent having a first stent zone extending from the first end along a length thereof proximate to the first end and spaced from the second end and a second stent zone extending from the second end along a length thereof proximate to the second end and spaced from the first end,
wherein each one of the cells in the first stent zone defines an open space that contains a first maximum circular uncovered surface area (MCUSA1) and each one of the cells in the second stem zone defines an open space that contains a second first maximum circular uncovered surface area (MCUSA2), wherein MCUSA1 is less than MCUSA2;
wherein the stent has a length measured as the distance between the first and second ends and the first stent zone occupies from 20% up to about 50% of the stent length and the second stent zone occupies the remaining 80% to about 50%, respectively.
48. The stent of claim 47, wherein the first maximum circular area is two to five mm2 and the second maximum circular area is six to eighty mm2.
49. The stent of claim 47, wherein the first maximum circular area is approximately 3.5 mm2 and the second maximum circular area is approximately 19 mm2.
50. The stent of claim 47, wherein an anti-restenotic drug is on at least an abluminal surface of the first zone, and an anti-thrombotic drug is on at least a luminal surface of the second zone.
51. The stent of claim 47, wherein the first zone has a length of one to three cm, the second zone has a length of two to six cm and the stent has a length of four to eight cm, or wherein the first zone has a length of approximately two cm, the second zone has a length of approximately four cm and the stent has a length of approximately six cm.
52. A dialysis graft kit, comprising:
a graft for being connected to a vessel; and
a stent for supporting the graft when the graft is connected to the vessel, the stent comprising:
a first end and an opposite second end,
the stent having a first stent zone extending from the first end and spaced from the second end and a second stent zone extending from the second end and spaced from the first end.
wherein when the stent is expanded within the graft and supports the graft, each of the cells in the first stent zone define an open space that contains first maximum circular uncovered surface area (MCUSA1) and each of the cells in the second stent zone define an open space that contains a second maximum circular uncovered surface area (MCUSA2), wherein MCUSA1 is less than MCUSA2,
the first stent zone occupies about 33% of the stent length,
the second stent zone occupies about 66% of the stent length, and
a first drug or drug combination on the first zone but not on the second zone, and
a second drug or drug combination on the second zone but not the first zone.
53. The dialysis graft kit of claim 52, further comprising:
a third stent zone occupying a portion of the length of the stent not occupied by the first stent zone and the second stent zone,
wherein each of the cells in the third stent zone define an open space that contains a third maximum circular area smaller than the second maximum circular area and larger than the first maximum circular area.
54. The stent of claim 47, further comprising:
a third cell pattern of the stent located between the first and second cell patterns,
wherein each of the cells in the third cell pattern contain a third maximum circular area smaller than the second maximum circular area and larger than the first maximum circular area.
55. The stent of claim 47, further comprising:
a third cell pattern of the stent located between the first and second cell patterns,
wherein the third cell pattern has a maximum circular area that gradual increases for cells at the end adjacent the first cell pattern to the opposite end adjacent the second cell pattern.
56. The stem of claim 47, wherein the first cell pattern occupies about 33% of the total stent length and the second cell pattern occupies about 66% of the total stent length.
US13/957,349 2005-12-19 2013-08-01 Drug eluting stent for the treatment of dialysis graft stenoses Abandoned US20130317591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/957,349 US20130317591A1 (en) 2005-12-19 2013-08-01 Drug eluting stent for the treatment of dialysis graft stenoses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/312,159 US8518100B2 (en) 2005-12-19 2005-12-19 Drug eluting stent for the treatment of dialysis graft stenoses
US13/957,349 US20130317591A1 (en) 2005-12-19 2013-08-01 Drug eluting stent for the treatment of dialysis graft stenoses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/312,159 Division US8518100B2 (en) 2005-12-19 2005-12-19 Drug eluting stent for the treatment of dialysis graft stenoses

Publications (1)

Publication Number Publication Date
US20130317591A1 true US20130317591A1 (en) 2013-11-28

Family

ID=38006935

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/312,159 Expired - Fee Related US8518100B2 (en) 2005-12-19 2005-12-19 Drug eluting stent for the treatment of dialysis graft stenoses
US13/957,349 Abandoned US20130317591A1 (en) 2005-12-19 2013-08-01 Drug eluting stent for the treatment of dialysis graft stenoses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/312,159 Expired - Fee Related US8518100B2 (en) 2005-12-19 2005-12-19 Drug eluting stent for the treatment of dialysis graft stenoses

Country Status (2)

Country Link
US (2) US8518100B2 (en)
WO (1) WO2007075521A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052231A1 (en) * 2012-08-14 2014-02-20 Jong-Hoon Lee Stent and artificial vessel having the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US20050216043A1 (en) * 2004-03-26 2005-09-29 Blatter Duane D Stented end graft vessel device for anastomosis and related methods for percutaneous placement
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US20080091262A1 (en) * 2006-10-17 2008-04-17 Gale David C Drug delivery after biodegradation of the stent scaffolding
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
WO2008017028A2 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
JP2010503485A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Medical device and method for manufacturing the same
ES2368125T3 (en) * 2006-09-15 2011-11-14 Boston Scientific Scimed, Inc. BIOEROSIONABLE ENDOPROOTHESIS WITH BIOESTABLE INORGANIC LAYERS.
JP2010503489A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
EP2277563B1 (en) 2006-12-28 2014-06-25 Boston Scientific Limited Bioerodible endoprostheses and method of making the same
US8221496B2 (en) * 2007-02-01 2012-07-17 Cordis Corporation Antithrombotic and anti-restenotic drug eluting stent
US20080306580A1 (en) * 2007-02-05 2008-12-11 Boston Scientific Scimed, Inc. Blood acess apparatus and method
DE102007034364A1 (en) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag Degradable metal stent with active ingredient-containing coating
US8906081B2 (en) 2007-09-13 2014-12-09 W. L. Gore & Associates, Inc. Stented vascular graft
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8435281B2 (en) 2009-04-10 2013-05-07 Boston Scientific Scimed, Inc. Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys
US20130211489A1 (en) * 2010-02-10 2013-08-15 Apertomed L.L.C. Methods, Systems and Devices for Treatment of Cerebrospinal Venous Insufficiency and Multiple Sclerosis
WO2011119573A1 (en) 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
WO2011130539A2 (en) * 2010-04-14 2011-10-20 Northwestern University Liquid cast biodegradable arterial stent
US20120130468A1 (en) 2010-07-27 2012-05-24 Fred Khosravi Methods and apparatus for treating neurovascular venous outflow obstruction
CN103371876B (en) * 2012-04-12 2016-01-20 先健科技(深圳)有限公司 The medical apparatus and instruments of biological absorbable or medical device element, and preparation method thereof
US20150119908A1 (en) 2013-10-25 2015-04-30 Abbott Cardiovascular Systems Inc. Extravascular devices supporting an arteriovenous fistula
US20150157475A1 (en) 2013-12-06 2015-06-11 Abbott Cardiovascular Systems Inc. Deflector for increased wall shear stress adjacent an arteriovenous fistula
US9687239B2 (en) 2014-04-15 2017-06-27 Abbott Cardiovascular Systems Inc. Intravascular devices supporting an arteriovenous fistula
US10314593B2 (en) * 2015-09-23 2019-06-11 Covidien Lp Occlusive devices
JP2019058284A (en) * 2017-09-25 2019-04-18 テルモ株式会社 Treatment method
CN112569027B (en) * 2019-05-10 2023-09-19 上海蓝脉医疗科技有限公司 Venous vascular stent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010013A1 (en) * 1999-07-22 2001-07-26 Cox Daniel L. Tapered self-expanding stent
US20040102834A1 (en) * 2001-02-01 2004-05-27 Ryoji Nakano Stent
US20060265041A1 (en) * 2005-05-23 2006-11-23 Arashmidos Sanati Apparatus and methods for delivering a stent into an ostium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591226A (en) * 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5951599A (en) * 1997-07-09 1999-09-14 Scimed Life Systems, Inc. Occlusion system for endovascular treatment of an aneurysm
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6461320B1 (en) * 1998-08-12 2002-10-08 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20020072792A1 (en) * 2000-09-22 2002-06-13 Robert Burgermeister Stent with optimal strength and radiopacity characteristics
US8282678B2 (en) * 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US20050131458A1 (en) * 2003-08-07 2005-06-16 Batich Christopher D. Biodegradable embolic agents
US20050060017A1 (en) * 2003-09-15 2005-03-17 Fischell Robert E. Means and method for the treatment of cerebral aneurysms
US20060085062A1 (en) * 2003-11-28 2006-04-20 Medlogics Device Corporation Implantable stent with endothelialization factor
EP1750619B1 (en) * 2004-05-25 2013-07-24 Covidien LP Flexible vascular occluding device
US8617234B2 (en) * 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010013A1 (en) * 1999-07-22 2001-07-26 Cox Daniel L. Tapered self-expanding stent
US20040102834A1 (en) * 2001-02-01 2004-05-27 Ryoji Nakano Stent
US20060265041A1 (en) * 2005-05-23 2006-11-23 Arashmidos Sanati Apparatus and methods for delivering a stent into an ostium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052231A1 (en) * 2012-08-14 2014-02-20 Jong-Hoon Lee Stent and artificial vessel having the same

Also Published As

Publication number Publication date
US8518100B2 (en) 2013-08-27
WO2007075521A3 (en) 2007-10-04
WO2007075521A2 (en) 2007-07-05
US20070142897A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US8518100B2 (en) Drug eluting stent for the treatment of dialysis graft stenoses
US7090694B1 (en) Portal design for stent for treating bifurcated vessels
EP1349517B1 (en) Stent for treating in-stent restenosis
US9375331B2 (en) Flexible stent
US5851217A (en) Intralumenal drug eluting prosthesis
US6004346A (en) Intralumenal drug eluting prosthesis
US8333798B2 (en) Implantable medical devices with enhanced visibility, mechanical properties and biocompatability
EP0470246B1 (en) Intralumenal drug eluting prosthesis
US7637940B2 (en) Stent with bioabsorbable membrane
EP2374434B1 (en) Stents with connectors and stabilizing biodegradable elements
US7803181B2 (en) Ostial stent
EP2099393B1 (en) Bifurcated stent with variable length branches
EP1933776B1 (en) Crown stent assembly
AU2002228855A1 (en) Stent for treating in-stent restenosis
US10748659B2 (en) Method and system for predicting risk of thrombosis
US20160175122A1 (en) Stent with anti-migration features
Gunn et al. Does stent design influence restenosis?
JP5445649B2 (en) Stent
US20150374485A1 (en) Targeted perforations in endovascular device
Mariano et al. Coronary stents
Randhawa et al. Coronary stenting I: Intracoronary stents–Form and function

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION