US20130301495A1 - Daisy Chaining Device Servers Via Ethernet - Google Patents

Daisy Chaining Device Servers Via Ethernet Download PDF

Info

Publication number
US20130301495A1
US20130301495A1 US13/867,453 US201313867453A US2013301495A1 US 20130301495 A1 US20130301495 A1 US 20130301495A1 US 201313867453 A US201313867453 A US 201313867453A US 2013301495 A1 US2013301495 A1 US 2013301495A1
Authority
US
United States
Prior art keywords
ethernet
ports
serial
switch
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/867,453
Inventor
Daryl R. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lantronix Inc
Original Assignee
Lantronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lantronix Inc filed Critical Lantronix Inc
Priority to US13/867,453 priority Critical patent/US20130301495A1/en
Assigned to LANTRONIX, INC. reassignment LANTRONIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLER, DARYL R.
Publication of US20130301495A1 publication Critical patent/US20130301495A1/en
Assigned to SVB INNOVATION CREDIT FUND VIII, L.P. reassignment SVB INNOVATION CREDIT FUND VIII, L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANTRONIX, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANTRONIX, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/60Software-defined switches
    • H04L49/602Multilayer or multiprotocol switching, e.g. IP switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node

Definitions

  • the field of the invention is serial communications over Ethernet.
  • Serial to Ethernet converters also referred to as “device servers” have been developed to an advanced degree, both in software, where innumerable pre-programmed, customizable and programmable features are supported, and in hardware, where the entire circuitry for Ethernet to serial connection has been integrated into the network connector itself (U.S. Pat. No. 6,881,096).
  • the present invention provides apparatus, systems and methods for facilitating daisy chain connection between first and second other devices, in which a circuit board includes an Ethernet switch function, first and second Ethernet connections, and a serial communications port.
  • the service server can include one or more of a second serial communications port, a second serial communications port, a third Ethernet connection, and a Wireless network connection, each of which can be operatively coupled to the circuit board.
  • the device server can be configured to accept either AC or DC power, but is preferably configured to accept both.
  • AC power preferably falls within the range 9 to 24 volts RMS, and DC power preferably falls within the range 9 to 30 volts.
  • Power can also be provided by Power over Ethernet (POE).
  • POE Power over Ethernet
  • the Ethernet connections are preferably galvanically isolated from other internal circuitry by at least 1500 volts, and more preferably galvanically isolated from the power supply input by at least 2000 volts.
  • the power connections are made via screw terminals. Communications connections can also advantageously be made via screw terminals and/or multi-contact connectors.
  • the circuit board is preferably housed in a housing having features for mounting the product to a supporting structure, which can, for example, comprise a DIN rail.
  • the circuit board can advantageously include receive and transmit indicators which are visible from outside the housing. Such indicators preferably receive pulse stretched signals from the circuit board.
  • the Ethernet switch function(s) can be operationally substantially equivalent to an Ethernet hub function, and/or an Ethernet router function.
  • a Serial to Ethernet Converter has a plurality of serial ports wherein at least two serial ports are logically connected in that information arriving at a first port is passed internally through the device server to a second port, and information arriving at the second port is passed internally through the device server to the first port.
  • FIG. 1 describes Ethernet topologies in FIG. 1 a and FIG. 1 b;
  • FIG. 2 is a schematic of the device server circuit board
  • FIG. 3 is a perspective view of a device server
  • FIG. 4 shows an internal view of a device server
  • FIG. 1 compares two topologies.
  • FIG. 1 a shows an Ethernet “star” topology
  • FIG. 1 b shows a “daisy chain” topology wherein devices are connected in series, one after the other in linear fashion, by using two Ethernet ports on each daisy chained device.
  • the device server circuit board 10 interconnects the device server circuitry.
  • the control microprocessor 11 is DSTni-EX, a System-on-chip (SOC) integrated circuit.
  • DSTni-EX includes serial communications ports, on-board RAM and ROM, an Ethernet MAC and PHY, and ample address and data lines to connect and control lights and GPIO pins.
  • a DC to DC converter 30 capable of supplying a 3 Watt load is galvanically isolated from input to output by a breakdown rating of 2000 volts.
  • a protection circuit 21 prevents electrical overstress of the converter by absorbing and dissipating excess joules of energy.
  • the protection circuit also accepts AC and DC input and with diode steering provides DC to the input of the converter.
  • the wide range of input allowed, 9 to 30 volts DC and 9 to 24 volts AC accommodate varying external supplies with a single device server PCB 10 .
  • Electrostatic Discharge (ESD) and Noise Filtering capacitance 27 is provided on the power supply input lines.
  • Power from the DC to DC converter output is further filtered and provided to the DSTni-EX 11 as 3.3V, and the converter output also drives a 1.8V linear regulator 12 for core voltage to the DSTni-EX.
  • Other components on the PCB powered from the 3.3V source include varying amounts of SRAM 13 and FLASH memory 14 , serial line drivers for RS232 28 and 422/485 protocols 29 , an Ethernet switch 17 , a small EEROM 18 , a reset IC 19 , pulse stretching circuitry 20 and status and activity LEDs 15 .
  • FIG. 3 shows a perspective view of the device server within a housing 25 .
  • Basic to a preferred embodiment of a daisy chained device server are at least one of the serial ports 22 and at least two of the Ethernet ports 24 all shown exposed through the walls of the housing. It is apparent that there can be variations on the physical nature of the serial interface and the communications protocol implemented. For example, also shown is a RS4XX (an abbreviation for RS422 or RS485 standards) serial port 23 . Activity and status indicators 15 are shown visible from outside the housing.
  • the housing can further comprise mounting features 26 which facilitate attachment to supporting structures. Connection for power is not illustrated.
  • FIG. 4 shows an internal view of the device server, with housing 25 removed.
  • the circuit board 10 contains the Ethernet ports 24 , the serial ports 22 , activity and status indicators 15 , a processor 11 and a hardware Ethernet switch 17 .
  • the device server function is to translate information between serial ports and Ethernet ports. To do so, the DSTni-EX processor executes software instructions stored in the Flash memory. These software instructions are organized logically into a device server application, a web server, an operating system, and drivers for hardware elements. Additionally, other software, such as HTML and Java applets can be stored in Flash or RAM and can be transmitted over one of the Ethernet ports to a remote client by the web server module. It is possible for software stored in Flash to be modified, and custom versions of the device server application code are commonly developed for a specific need or purpose. A kit containing development software and selected source and object code for the device server application is available and can be used by trained programmers to create, load, execute and debug such custom device server applications.
  • an inventive element of the device server is the inclusion of an
  • Ethernet switch function In practice, the Ethernet switch function can be implemented either as hardware or software, or in a combination of both. Note that there are many elaborations of packet handling functions, sometimes abstracted into “hub”, “switch”, and “router” functions. For simplicity in discourse, all such packet handling functions will be abstracted into the “switch” function herein, by which term we mean all ways of handling and routing packets as they arrive at any of the network ports of the device server.
  • the switch function is performed by an Integrated Circuit chip.
  • a preferred embodiment can use an integrated circuit such as Micrel KS8993M configured on the circuit board as shown in FIG. 3 .
  • This integrated circuit offers an extensive feature set that includes tag/port-based VLAN, QoS priority, switch management, MIB counters and interfaces to MII (Media Independent Interface) and CPU for design flexibility to address emerging Ethernet applications.
  • the Integrated Circuit chip interfaces to the DSTni-EX through the MII (Media Independent Interface) port on the DSTni-EX, and further drives two Ethernet ports.
  • the device server is capable of being installed in a “daisy-chained” manner with similar device servers or other compatible network equipment.
  • the switch function can implement a standard and well-documented Ethernet packet switching function described in IEEE 802.1d Spanning Tree Protocol. Because the switch function builds and maintains tables of MAC addresses observed on each device server Ethernet port the switch function is able to determine which Ethernet port to employ when passing on packets not intended for the present device server.
  • software running in the DSTni-EX can alternatively perform some or all of the switch function, reducing the requirements on, or eliminating, a hardware switch element.
  • Additional Ethernet ports can be incorporated in the device server, and additional switch functions can be implemented with two or more ports as desired.
  • a preferred embodiment is compliant with relevant Ethernet standards as defined for general network equipment.
  • Wireless Ethernet can be substituted for any or all wired
  • Ethernet ports in any existing wireless standard. Also contemplated are all future wireless network standards.
  • a housing for the circuitry can be provided, and it can have provision for geometric features to facilitate attachment to a support structure.
  • Such attaching features can include mounting ears for fasteners, tabs, brackets, clips and other facilitating shapes and surfaces. Also contemplated are magnetic and chemical attachment mechanisms. Attaching features can be designed to existing or future standards, such as the provision of integral DIN rail attachment features.
  • Receive and Transmit indicator lamps are visible from outside the housing, and the indicator lamps are driven with a pulse stretching circuit so that rapid signal transitions to and from a given state will be extended in duration to be visible.
  • power for operation can be supplied to the device server via Power over Ethernet (POE), as described in IEEE Std 802.3afTM—2003.
  • POE Power over Ethernet
  • MDI Ethernet Media Dependent Interface
  • device servers can supply other interface standards and protocols, such as USB and Firewire.
  • Analog signals can be supported for certain specific or general applications, such as Analog to Digital converter input, voltage and current monitoring or other sensing and control applications.
  • the device server can implement more I/O capability in the form of General Programmable I/O (GPIO) pins—pins that can be defined as input, output or bidirectional digital pins, or which can be assigned a definition of fixed or varying nature, as supported by internal device server software.
  • GPIO General Programmable I/O
  • an inventive element provides a device server or Serial to Ethernet Converter with a plurality of serial ports wherein at least two ports are logically connected in that information arriving at a first port is passed internally through the device server to a second port, and information arriving at the second port is passed internally through the device server to the first port.

Abstract

A device server intended for attaching serial devices to a network includes Ethernet communications, an Ethernet switch, and serial communication capability so that multiple device servers are connected in a “daisy chain” or series pattern. Galvanic isolation of the power supply from the housing and communication ports, screw terminal and modular connections, DIN rail mounting, broad power supply voltage ranges or “Power-over-Ethernet” and operator visible indicator lamps with a pulse stretching feature greatly simplify installation and use.

Description

  • This application is a continuation of U.S. patent application Ser. No. 11/273,791 filed on Nov. 14, 2005. This and all other extrinsic materials discussed herein are incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The field of the invention is serial communications over Ethernet.
  • BACKGROUND
  • There is a long history of remote communication and control of instruments, especially instruments and devices with a serial interface. Initially control elements were interfaced to devices using direct serial connections, but with the ubiquity of networks and the world wide web, remote control via web browsers became feasible (See as examples U.S. Pat. Nos. 6,139,177 and 6,373,841). Devices designed with native web interfaces could connect directly to a computer network. And to accommodate the vast base of legacy devices without built in network connections, adapters were developed that connected a serial device to a network. These Serial to Ethernet converters, also referred to as “device servers”, have been developed to an advanced degree, both in software, where innumerable pre-programmed, customizable and programmable features are supported, and in hardware, where the entire circuitry for Ethernet to serial connection has been integrated into the network connector itself (U.S. Pat. No. 6,881,096).
  • But practical difficulties still remain. Consider that originally, high speed networks were implemented as a long wire with multiple taps for network peripherals. However, as systems developed, modern IT equipment evolved to a “star” configuration, where an Ethernet hub, switch or router with multiple network ports is connected point to point with a surrounding group of devices, one network port on the central hub switch or router being consumed by each connected device.
  • For system compatibility, device servers incorporated that architecture. This has many advantages well understood in the networking field, but in some fields of use, especially industrial and building automation, this “star” topology is not optimal. For example, in these fields, standard practice for wiring of sensors and controls is to connect multiple devices in series, one after the other, on a single long run of cable (commonly, “daisy-chaining”) and to implement a serial communication standard such as RS485.
  • Consequently, networking solutions that maintain a series topology have achieved some popularity, notably in these fields of industrial and building automation. LonWorks™ by Echelon is one example. While this series topology is beneficial in minimizing wiring and installation expense in these fields, the lack of a strong unifying standard such as Ethernet has fragmented these markets with various proprietary hardware and software offerings, and customers have as a result become locked into a particular manufacturer's offerings, limiting their ability to incorporate new networking innovations to what their proprietary vendor can implement and support. Thus compared over the last decade to the dramatic progress of the world's Ethernet community, industrial and building automation systems based on serial communications lag far behind, and the gap is increasing at an increasing rate. It would be of substantial benefit to incorporate the ability to make series connections but based on Ethernet standards.
  • Additionally, as a practical limitation, the equipment, tools and techniques required to fabricate and install the types of power supply and communications connectors used in traditional IT networks differ significantly from common practice and skills found in, for example, the construction industry. This mismatch makes the physical installation and maintenance of the network more difficult.
  • This and all other referenced patents and applications are incorporated herein by reference in their entirety. Furthermore, where a definition or use of a term in a reference, which is incorporated by reference herein is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
  • Thus, there is still a need for a device server that considers these non-IT environments in its design yet brings the benefits of Ethernet standards.
  • SUMMARY OF THE INVENTION
  • The present invention provides apparatus, systems and methods for facilitating daisy chain connection between first and second other devices, in which a circuit board includes an Ethernet switch function, first and second Ethernet connections, and a serial communications port.
  • In contemplated embodiments, the service server can include one or more of a second serial communications port, a second serial communications port, a third Ethernet connection, and a Wireless network connection, each of which can be operatively coupled to the circuit board.
  • The device server can be configured to accept either AC or DC power, but is preferably configured to accept both. AC power preferably falls within the range 9 to 24 volts RMS, and DC power preferably falls within the range 9 to 30 volts. Power can also be provided by Power over Ethernet (POE). The Ethernet connections are preferably galvanically isolated from other internal circuitry by at least 1500 volts, and more preferably galvanically isolated from the power supply input by at least 2000 volts.
  • Also in preferred embodiments, the power connections are made via screw terminals. Communications connections can also advantageously be made via screw terminals and/or multi-contact connectors.
  • The circuit board is preferably housed in a housing having features for mounting the product to a supporting structure, which can, for example, comprise a DIN rail. The circuit board can advantageously include receive and transmit indicators which are visible from outside the housing. Such indicators preferably receive pulse stretched signals from the circuit board.
  • The Ethernet switch function(s) can be operationally substantially equivalent to an Ethernet hub function, and/or an Ethernet router function.
  • In an especially preferred embodiment, a Serial to Ethernet Converter has a plurality of serial ports wherein at least two serial ports are logically connected in that information arriving at a first port is passed internally through the device server to a second port, and information arriving at the second port is passed internally through the device server to the first port.
  • Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 describes Ethernet topologies in FIG. 1 a and FIG. 1 b;
  • FIG. 2 is a schematic of the device server circuit board;
  • FIG. 3 is a perspective view of a device server;
  • FIG. 4 shows an internal view of a device server;
  • DETAILED DESCRIPTION
  • FIG. 1 compares two topologies. FIG. 1 a shows an Ethernet “star” topology, while FIG. 1 b shows a “daisy chain” topology wherein devices are connected in series, one after the other in linear fashion, by using two Ethernet ports on each daisy chained device.
  • Referring to FIG. 2, in a preferred embodiment the device server circuit board 10 interconnects the device server circuitry. The control microprocessor 11 is DSTni-EX, a System-on-chip (SOC) integrated circuit. DSTni-EX includes serial communications ports, on-board RAM and ROM, an Ethernet MAC and PHY, and ample address and data lines to connect and control lights and GPIO pins. A DC to DC converter 30, capable of supplying a 3 Watt load is galvanically isolated from input to output by a breakdown rating of 2000 volts. A protection circuit 21 prevents electrical overstress of the converter by absorbing and dissipating excess joules of energy. The protection circuit also accepts AC and DC input and with diode steering provides DC to the input of the converter. The wide range of input allowed, 9 to 30 volts DC and 9 to 24 volts AC accommodate varying external supplies with a single device server PCB 10. Electrostatic Discharge (ESD) and Noise Filtering capacitance 27 is provided on the power supply input lines.
  • Power from the DC to DC converter output is further filtered and provided to the DSTni-EX 11 as 3.3V, and the converter output also drives a 1.8V linear regulator 12 for core voltage to the DSTni-EX. Other components on the PCB powered from the 3.3V source include varying amounts of SRAM 13 and FLASH memory 14, serial line drivers for RS23228 and 422/485 protocols 29, an Ethernet switch 17, a small EEROM 18, a reset IC 19, pulse stretching circuitry 20 and status and activity LEDs 15.
  • FIG. 3 shows a perspective view of the device server within a housing 25. Basic to a preferred embodiment of a daisy chained device server are at least one of the serial ports 22 and at least two of the Ethernet ports 24 all shown exposed through the walls of the housing. It is apparent that there can be variations on the physical nature of the serial interface and the communications protocol implemented. For example, also shown is a RS4XX (an abbreviation for RS422 or RS485 standards) serial port 23. Activity and status indicators 15 are shown visible from outside the housing. The housing can further comprise mounting features 26 which facilitate attachment to supporting structures. Connection for power is not illustrated.
  • FIG. 4. shows an internal view of the device server, with housing 25 removed. The circuit board 10 contains the Ethernet ports 24, the serial ports 22, activity and status indicators 15, a processor 11 and a hardware Ethernet switch 17.
  • 1. Operation
  • The device server function, most broadly, is to translate information between serial ports and Ethernet ports. To do so, the DSTni-EX processor executes software instructions stored in the Flash memory. These software instructions are organized logically into a device server application, a web server, an operating system, and drivers for hardware elements. Additionally, other software, such as HTML and Java applets can be stored in Flash or RAM and can be transmitted over one of the Ethernet ports to a remote client by the web server module. It is possible for software stored in Flash to be modified, and custom versions of the device server application code are commonly developed for a specific need or purpose. A kit containing development software and selected source and object code for the device server application is available and can be used by trained programmers to create, load, execute and debug such custom device server applications.
  • It is contemplated that an inventive element of the device server is the inclusion of an
  • Ethernet switch function. In practice, the Ethernet switch function can be implemented either as hardware or software, or in a combination of both. Note that there are many elaborations of packet handling functions, sometimes abstracted into “hub”, “switch”, and “router” functions. For simplicity in discourse, all such packet handling functions will be abstracted into the “switch” function herein, by which term we mean all ways of handling and routing packets as they arrive at any of the network ports of the device server.
  • In preferred embodiments, the switch function is performed by an Integrated Circuit chip. A preferred embodiment can use an integrated circuit such as Micrel KS8993M configured on the circuit board as shown in FIG. 3. This integrated circuit offers an extensive feature set that includes tag/port-based VLAN, QoS priority, switch management, MIB counters and interfaces to MII (Media Independent Interface) and CPU for design flexibility to address emerging Ethernet applications. The Integrated Circuit chip interfaces to the DSTni-EX through the MII (Media Independent Interface) port on the DSTni-EX, and further drives two Ethernet ports. Because of the two Ethernet ports and because the switch function handles packet routing between those ports, the device server is capable of being installed in a “daisy-chained” manner with similar device servers or other compatible network equipment. In operation, the switch function can implement a standard and well-documented Ethernet packet switching function described in IEEE 802.1d Spanning Tree Protocol. Because the switch function builds and maintains tables of MAC addresses observed on each device server Ethernet port the switch function is able to determine which Ethernet port to employ when passing on packets not intended for the present device server.
  • Thus normal network communications not intended for the current device server are handled appropriately and transparently both up and down the daisy chain connection.
  • In more preferred embodiments software running in the DSTni-EX can alternatively perform some or all of the switch function, reducing the requirements on, or eliminating, a hardware switch element.
  • Additional Ethernet ports can be incorporated in the device server, and additional switch functions can be implemented with two or more ports as desired. A preferred embodiment is compliant with relevant Ethernet standards as defined for general network equipment.
  • It should be understood that Wireless Ethernet can be substituted for any or all wired
  • Ethernet ports, in any existing wireless standard. Also contemplated are all future wireless network standards.
  • Installation and use of the device server is highly simplified with various degrees of galvanic isolation provided. 1500 volts, 2000 volts and even higher are included within the inventive material herein.
  • Further simplification in the installation and use of the device server is accomplished via the incorporation of screw terminal connections for communications wiring and power supply wiring. Also, modular terminals or other forms of connectors can be provided for simplified connection and disconnection without additional wire removal.
  • A housing for the circuitry can be provided, and it can have provision for geometric features to facilitate attachment to a support structure. Such attaching features can include mounting ears for fasteners, tabs, brackets, clips and other facilitating shapes and surfaces. Also contemplated are magnetic and chemical attachment mechanisms. Attaching features can be designed to existing or future standards, such as the provision of integral DIN rail attachment features.
  • Receive and Transmit indicator lamps are visible from outside the housing, and the indicator lamps are driven with a pulse stretching circuit so that rapid signal transitions to and from a given state will be extended in duration to be visible.
  • In addition power for operation can be supplied to the device server via Power over Ethernet (POE), as described in IEEE Std 802.3af™—2003. This document explains the capabilities and requirements for devices receiving operating power over the Ethernet Media Dependent Interface (MDI).
  • Beyond serial communications ports, device servers can supply other interface standards and protocols, such as USB and Firewire. Analog signals can be supported for certain specific or general applications, such as Analog to Digital converter input, voltage and current monitoring or other sensing and control applications. Additionally, the device server can implement more I/O capability in the form of General Programmable I/O (GPIO) pins—pins that can be defined as input, output or bidirectional digital pins, or which can be assigned a definition of fixed or varying nature, as supported by internal device server software.
  • It is contemplated that an inventive element provides a device server or Serial to Ethernet Converter with a plurality of serial ports wherein at least two ports are logically connected in that information arriving at a first port is passed internally through the device server to a second port, and information arriving at the second port is passed internally through the device server to the first port. This effectively provides a “daisy chained” capability, port to port, on the serial port side of the Serial to Ethernet Converter. Consistent with the Serial to Ethernet conversion function, serial information passing between serial ports can, if desired, be further linked in a unidirectional or a bidirectional manner with the Ethernet communications interfaces.
  • Thus, specific embodiments and applications of daisy chaining device servers via Ethernet have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.

Claims (21)

1. A device comprising:
a first plurality of communication ports configured to adhere to a first communication standard;
a second plurality of communication ports configured to adhere to a second, different communication standard; and
circuit board coupled with the first and the second plurality of communication ports and including a switch configured to provide a daisy chained capability among the first plurality of communication ports as well as among second plurality of communication ports.
2. The device of claim 1, further comprising wherein the first plurality of communication ports include serial ports that adhere to a second serial communications port coupled to the circuit board. communication standard as the first communication standard.
3. The device 2, wherein the serial communication standard includes at least one of the following: RS-232, RS-422, and RS-485.
4. The device server of claim 1, wherein the second plurality of communication ports include Ethernet ports.
5. The device wherein the Ethernet ports comprises a wireless Ethernet port.
6. The device of claim 1, wherein the switch comprises an Ethernet switch.
7. The device of claim 1, wherein the switch comprises a microprocessor configured to execute software instructions stored in a memory and that cause the microprocessor to implement switch functionality.
8. The device of claim 1, further comprising a memory storing a port address table.
9. The device of claim 8, wherein the switch is configured to route packets among the first and the second plurality of communication ports according to the port address table.
10. The device of claim 1, wherein the switch is configured to route packets not intended for the device to other daisy chained devices coupled with the device via at least one of the first and the second plurality of communication ports.
11. The device of claim 10, wherein the switch is configured to route packets among the other daisy chained devices according to a packet switching protocol.
12. The device of claim 11, wherein the packet switching protocol comprises a spanning tree protocol.
13. The device of claim 1, further comprising a housing in which is disposed the circuit board.
14. The device of claim 13, further comprising a of DIN rail attachment feature.
15. The device of claim 1, wherein the first plurality of communication ports comprise screw terminal connections.
16. The device of claim 1, wherein the second plurality of communications ports includes a power over Ethernet connection configured to supply power to the circuit board.
17. The device of claim 1, further comprising a protocol converter configured to convert packets from the first communication standard to the second communication standard.
18. The device of claim 17, wherein the protocol converter is further configured to convert packets from the second communication standard to the first communication standard.
19. The device of claim 17, wherein the protocol converter comprises a serial to Ethernet converter.
20. The device server of claim 1 wherein the Ethernet switch function is operationally substantially equivalent to an Ethernet router function.
21. A Serial to Ethernet Converter having a plurality of serial ports wherein at least two serial ports are logically connected in that information arriving at a first port is passed internally through the device server to a second port, and information arriving at the second port is passed internally through the device server to the first port.
US13/867,453 2005-11-14 2013-04-22 Daisy Chaining Device Servers Via Ethernet Abandoned US20130301495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/867,453 US20130301495A1 (en) 2005-11-14 2013-04-22 Daisy Chaining Device Servers Via Ethernet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/273,791 US8428054B2 (en) 2005-11-14 2005-11-14 Daisy chaining device servers via ethernet
US13/867,453 US20130301495A1 (en) 2005-11-14 2013-04-22 Daisy Chaining Device Servers Via Ethernet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/273,791 Continuation US8428054B2 (en) 2005-11-14 2005-11-14 Daisy chaining device servers via ethernet

Publications (1)

Publication Number Publication Date
US20130301495A1 true US20130301495A1 (en) 2013-11-14

Family

ID=38040750

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/273,791 Active 2027-12-16 US8428054B2 (en) 2005-11-14 2005-11-14 Daisy chaining device servers via ethernet
US13/867,453 Abandoned US20130301495A1 (en) 2005-11-14 2013-04-22 Daisy Chaining Device Servers Via Ethernet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/273,791 Active 2027-12-16 US8428054B2 (en) 2005-11-14 2005-11-14 Daisy chaining device servers via ethernet

Country Status (5)

Country Link
US (2) US8428054B2 (en)
EP (1) EP1949506A4 (en)
JP (1) JP2009516432A (en)
CA (1) CA2626729C (en)
WO (1) WO2007059067A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160156569A1 (en) * 2014-11-28 2016-06-02 Igor, Inc. Node and Method of Assigning Node to Space
CN108809663A (en) * 2017-04-28 2018-11-13 江森自控科技公司 With by Power over Ethernet(PoE)The building set of independently-powered communication subsystem
DE102019127551A1 (en) * 2019-10-14 2021-04-15 Phoenix Contact Gmbh & Co. Kg Multifunctional switch for use in a process-controlling automation system as well as such a process-controlling automation system
US11546187B2 (en) 2018-12-17 2023-01-03 Graco Minnesota Inc. Large packet daisy chain serial bus
US11704257B1 (en) 2022-04-15 2023-07-18 Graco Minnesota Inc. System provisioning using virtual peripherals
US11748261B2 (en) * 2020-07-24 2023-09-05 Eaton Intelligent Power Limited Automatic address generation for modular electronic devices

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7930043B2 (en) 2006-09-15 2011-04-19 International Business Machines Corporation Method and system for discovery, validation and delivery of power through a universal power center
US8004863B2 (en) * 2007-12-26 2011-08-23 Silicon Laboratories Inc. Circuit device and method of providing feedback across an isolation barrier
EP2359237A4 (en) * 2008-11-28 2012-04-25 Siemens Ag Automatic control system and method for executing control program in parallel
US9244866B2 (en) 2010-04-30 2016-01-26 International Business Machines Corporation Remote access of peripheral device connected to serial bus
US8954762B2 (en) * 2010-06-08 2015-02-10 International Business Machines Corporation Peer to peer power management
US9397960B2 (en) 2011-11-08 2016-07-19 Mellanox Technologies Ltd. Packet steering
US20130286896A1 (en) * 2012-04-27 2013-10-31 Selph Secured LLC Telecommunications and computer network interconnectivity apparatuses and methods thereof
US10454991B2 (en) * 2014-03-24 2019-10-22 Mellanox Technologies, Ltd. NIC with switching functionality between network ports
US10200203B2 (en) 2014-07-16 2019-02-05 Honeywell International Inc. Controllers with integrated power over ethernet network switches
CA2891165A1 (en) 2015-05-14 2016-11-14 Peter E. Freill Lighting assembly, system and installation method for hardscapes and steps
CN106898131A (en) * 2015-12-17 2017-06-27 广州航天海特系统工程有限公司 A kind of single fiber data transmission system
CN106200829A (en) * 2016-08-31 2016-12-07 安徽康海时代科技股份有限公司 RJ45 type double-serial port server
JP6988650B2 (en) * 2018-03-30 2022-01-05 オムロン株式会社 Control device
US11474592B2 (en) 2019-09-17 2022-10-18 Honeywell International Inc. Daisy-chained power-over-ethernet (PoE) network
US11397419B2 (en) * 2019-09-24 2022-07-26 Rockwell Automation Technologies, Inc. Electrical status indication system
US11398979B2 (en) 2020-10-28 2022-07-26 Mellanox Technologies, Ltd. Dynamic processing trees

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259978B1 (en) * 1996-12-06 2001-07-10 Union Switch & Signal, Inc. Programmable relay driver
US20040255018A1 (en) * 2002-10-04 2004-12-16 Brian Taraci Method and apparatus for providing universal web access functionality with port contention resolution
US20050245127A1 (en) * 2004-05-03 2005-11-03 Nordin Ronald A Powered patch panel
US20060198389A1 (en) * 2005-03-01 2006-09-07 Eriokson Michael J Multi-drop ethernet
US7376760B1 (en) * 2003-02-28 2008-05-20 United Electronic Industries Methods and apparatus to support acquisition of data
US7433302B2 (en) * 2005-05-04 2008-10-07 Micrel, Inc. Ethernet network implementing redundancy using a single category 5 cable

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890102A (en) * 1987-05-26 1989-12-26 Cabletron, Inc. Visual display for communication network monitoring and troubleshooting
JPH05227187A (en) * 1992-02-14 1993-09-03 Matsushita Electric Works Ltd Cascade connection system for twist pair line lan
JP3261162B2 (en) * 1992-06-25 2002-02-25 松下電工株式会社 Remote monitoring and control system
US5555100A (en) * 1993-10-07 1996-09-10 Audiofax, Inc. Facsimile store and forward system with local interface translating DTMF signals into store and forward system commands
JPH09504680A (en) * 1994-08-24 1997-05-06 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Device including transient voltage suppression means
US5598418A (en) * 1994-11-10 1997-01-28 Advanced Micro Devices Inc. Repeater status LED array interface
US6139177A (en) 1996-12-03 2000-10-31 Hewlett Packard Company Device access and control using embedded web access functionality
US5994998A (en) * 1997-05-29 1999-11-30 3Com Corporation Power transfer apparatus for concurrently transmitting data and power over data wires
US6373841B1 (en) 1998-06-22 2002-04-16 Agilent Technologies, Inc. Integrated LAN controller and web server chip
JP2000132201A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Decentralized control system by different kind of communication medium
US7046983B2 (en) * 1999-08-02 2006-05-16 Powerdsine, Ltd. Integral board and module for power over LAN
JP2000284853A (en) * 1999-03-30 2000-10-13 Sumitomo Wiring Syst Ltd Portable network computing device and its using method
US6735635B1 (en) * 2000-05-18 2004-05-11 International Business Machines Corporation Dynamic preamble configuration on a shared bus
JP2002077191A (en) * 2000-08-31 2002-03-15 Matsushita Electric Works Ltd Communication network coping type power feeding connector
JP2002287242A (en) * 2001-01-19 2002-10-03 Mitsubishi Electric Corp Projector, network system, and centralized management method for projector
US6977939B2 (en) * 2001-01-26 2005-12-20 Microsoft Corporation Method and apparatus for emulating ethernet functionality over a serial bus
JP2002244606A (en) * 2001-02-14 2002-08-30 Sony Corp Device and method for advertisement display
US7447762B2 (en) * 2001-04-02 2008-11-04 Curray Timothy G Ethernet communications for power monitoring system
JP2003018173A (en) * 2001-07-05 2003-01-17 Nippon Telegr & Teleph Corp <Ntt> Unit for home-network wiring using utp power feeding
US7873028B2 (en) * 2002-01-25 2011-01-18 Quanta Computer, Inc. Method and apparatus for a flexible peripheral access router
US6881096B2 (en) * 2002-04-15 2005-04-19 Lantronix, Inc. Compact serial-to-ethernet conversion port
JP2004112120A (en) * 2002-09-13 2004-04-08 Aruze Corp Portable repeating hub
CA2501198C (en) * 2002-10-04 2012-10-02 Rgb Systems, Inc. Universal web based access functionality for remote electronic devices
WO2004038900A2 (en) 2002-10-21 2004-05-06 Advanced Power Technology, Inc. Ac-dc power converter having high input power factor and low harmonic distortion
JP2004214956A (en) * 2002-12-27 2004-07-29 Synclayer Inc Radio lan system using optical fiber and its radio lan repeater
US7206392B2 (en) * 2003-02-12 2007-04-17 Larry Fingler Fiber optic premise wiring system
US6793539B1 (en) * 2003-04-18 2004-09-21 Accton Technology Corporation Linking apparatus for stackable network devices
US7154381B2 (en) * 2003-05-23 2006-12-26 Sonos, Inc. System and method for operating a sensed power device over data wiring
JP4213621B2 (en) * 2003-06-26 2009-01-21 株式会社東芝 Railway vehicle transmission equipment
US7692773B2 (en) * 2003-08-05 2010-04-06 Luminex Corporation Light emitting diode based measurement systems
JP2005070975A (en) * 2003-08-21 2005-03-17 Sharp Corp Repeater system and control system
US20050129033A1 (en) 2003-12-13 2005-06-16 Gordy Stephen C. Network tap for use with multiple attached devices
EP1797724A1 (en) * 2004-09-20 2007-06-20 American Power Conversion Corporation Equipment rack data/power distribution
US20070025240A1 (en) * 2005-07-29 2007-02-01 Snide Todd A Bypass switch for an ethernet device and method of bypassing devices in an ethernet network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259978B1 (en) * 1996-12-06 2001-07-10 Union Switch & Signal, Inc. Programmable relay driver
US20040255018A1 (en) * 2002-10-04 2004-12-16 Brian Taraci Method and apparatus for providing universal web access functionality with port contention resolution
US7376760B1 (en) * 2003-02-28 2008-05-20 United Electronic Industries Methods and apparatus to support acquisition of data
US20050245127A1 (en) * 2004-05-03 2005-11-03 Nordin Ronald A Powered patch panel
US20060198389A1 (en) * 2005-03-01 2006-09-07 Eriokson Michael J Multi-drop ethernet
US7433302B2 (en) * 2005-05-04 2008-10-07 Micrel, Inc. Ethernet network implementing redundancy using a single category 5 cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160156569A1 (en) * 2014-11-28 2016-06-02 Igor, Inc. Node and Method of Assigning Node to Space
CN108809663A (en) * 2017-04-28 2018-11-13 江森自控科技公司 With by Power over Ethernet(PoE)The building set of independently-powered communication subsystem
US10908570B2 (en) 2017-04-28 2021-02-02 Johnson Controls Technology Company Building devices with communication subsystems independently powered by power over Ethernet (POE)
US11546187B2 (en) 2018-12-17 2023-01-03 Graco Minnesota Inc. Large packet daisy chain serial bus
DE102019127551A1 (en) * 2019-10-14 2021-04-15 Phoenix Contact Gmbh & Co. Kg Multifunctional switch for use in a process-controlling automation system as well as such a process-controlling automation system
US11748261B2 (en) * 2020-07-24 2023-09-05 Eaton Intelligent Power Limited Automatic address generation for modular electronic devices
US11704257B1 (en) 2022-04-15 2023-07-18 Graco Minnesota Inc. System provisioning using virtual peripherals

Also Published As

Publication number Publication date
WO2007059067A3 (en) 2007-12-13
EP1949506A2 (en) 2008-07-30
US8428054B2 (en) 2013-04-23
EP1949506A4 (en) 2011-04-20
CA2626729A1 (en) 2007-05-24
US20070110081A1 (en) 2007-05-17
JP2009516432A (en) 2009-04-16
WO2007059067A2 (en) 2007-05-24
CA2626729C (en) 2012-05-29

Similar Documents

Publication Publication Date Title
CA2626729C (en) Daisy chaining device servers via ethernet
US7294786B2 (en) System and method for managing a cable in a server system
US20150106447A1 (en) Modular system and method for communicating information between different protocols on a control network
EP2624375B1 (en) Power distribution system
US20080062003A1 (en) Wireless controllable power control device molded into a power cable
WO2006126160A2 (en) Power and data transmission over ethernet network
CN200980086Y (en) A controllable high-power power supplying equipment for the industrial Ethernet
CN201639593U (en) PSE power supply module with two paths of network ports
US10484519B2 (en) Auto-negotiation over extended backplane
CN108268001A (en) High-performance MODBUS-IO expansion modules
CN201230321Y (en) Serial port communication adaptor
CN216134479U (en) Communication sharing device based on RS485
Cisco Overview
Cisco Overview
Cisco Catalyst 1600 FDDI Module Installation and Configuration Notes
Cisco Catalyst 1600 FDDI Module Installation and Configuration Notes
Cisco Catalyst 1600 FDDI Module Installation and Configuration Notes
Cisco Catalyst 1600 FDDI Module Installation and Configuration Notes
CN211293729U (en) Remote control multifunctional PLC experimental box
CN218473171U (en) Three-in-one gateway device
CN216905147U (en) Multifunctional communication base station
US11736315B2 (en) Flexible power and data infrastructure
CN219496943U (en) Multi-protocol and extensible integrated remote IO module
CN214900922U (en) Lighting protocol conversion device
CN215269094U (en) High-speed long-range IO signal acquisition device of industry five unification agreements

Legal Events

Date Code Title Description
AS Assignment

Owner name: LANTRONIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILLER, DARYL R.;REEL/FRAME:030323/0211

Effective date: 20051114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:LANTRONIX, INC.;REEL/FRAME:058587/0313

Effective date: 20210802

Owner name: SVB INNOVATION CREDIT FUND VIII, L.P., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:LANTRONIX, INC.;REEL/FRAME:058587/0352

Effective date: 20210802