US20130296877A1 - Pleated deployment sheath - Google Patents

Pleated deployment sheath Download PDF

Info

Publication number
US20130296877A1
US20130296877A1 US13/843,800 US201313843800A US2013296877A1 US 20130296877 A1 US20130296877 A1 US 20130296877A1 US 201313843800 A US201313843800 A US 201313843800A US 2013296877 A1 US2013296877 A1 US 2013296877A1
Authority
US
United States
Prior art keywords
sheath
deployment
pleat
length
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/843,800
Inventor
Craig W. Irwin
James D. Silverman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Priority to US13/843,800 priority Critical patent/US20130296877A1/en
Publication of US20130296877A1 publication Critical patent/US20130296877A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3435Cannulas using everted sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means

Definitions

  • the present invention relates to apparatus used to position and deploy medical diagnostic and treatment devices in a body.
  • a growing number of medical diagnostic and treatment devices are being developed that are remotely used to assess and/or treat patients, typically being guided to a target site using imagining technology such as fluoroscopes or ultrasound.
  • imagining technology such as fluoroscopes or ultrasound.
  • Such devices include stents, stent-grafts, balloons, blood filters, occluders, probes, valves, electronic leads, orthopedic devices, etc.
  • Radiopaque markers or similar indicia are often used to allow the medical staff to exactly position the medical device using the imagining technology.
  • the medical staff will then carry out the procedure and/or deploy the necessary device or devices. Since most of these procedures, such as interventional treatment of occlusions or aneurysms, require exact placement of a treatment device, it is important that the device deploys in the same position where it had been initially placed. For instance, in treating aortic aneurysms with a stent-graft, physicians expect displacement of the device of less than 5 mm following deployment. Any greater displacement may result in endoleaks, blocked side vessels, or other complications requiring otherwise unnecessary further treatments or even risky conversion to open surgery.
  • a similar concept to the original catheter tube constraint is to use a thin sheath of material that is pulled back over the treatment device while holding the device in place.
  • One advantage of this concept is that the device and thin sheath can take up considerably less space than housing a device within a relatively bulky catheter tube.
  • the thin sheaths also can provide greater flexibility over much stiffer catheter tube materials. Such compactness and flexibility are highly desirable as physicians try to reach tighter treatment sites through smaller and more tortuous vessels.
  • this method can put considerable strain on a self-expanding device, which is exerting pressure against the constraining sheath throughout the deployment process.
  • the resulting friction between the device and the sheath often requires application of considerable tensile force to remove the sheath, making ultimate exact positioning much more difficult, as well as possibly damaging the treatment device in the process of sheath removal.
  • One deployment method to limit such effects is to employ a thin sheath of material that is everted over itself, so that the constraining sheath rubs only against itself while it is being pulled back over a self-expanding device.
  • a sheath of a given diameter is everted back over itself and then pulled down the length of the sheath through the deployment procedure.
  • everting sheaths address some of the complications seen with non-everting sheaths, they still can require considerable tension in order to pull the sheath over itself and the self-expanding device during deployment, resulting mainly from the friction of everted portion of the sheath rubbing against the non-everted portion of the sheath while the sheath is being removed. These concerns are compounded with longer device lengths and more robust self-expanding devices that exert greater outward pressures. The greater the tension needed to evert and remove the sheath, the more demanding it is for the medical staff to remove the sheath while trying to hold the apparatus in its exact position during deployment. Increased deployment tensions also require more substantial sheath constructions so as to avoid sheath and deployment line breakage during deployment. It is believed that these deficiencies of everting sheaths may have limited practical applications for such deployment methods.
  • the present invention is directed to a deployment sheath for medical devices that includes one or more pleats in its pre-deployment state that are allowed to open during deployment so as to facilitate easier sheath removal.
  • the sheath is deployed by everting it over itself during the delivery process.
  • the sheath undergoes a predictable enlargement during device deployment so as to relieve friction of the everted sheath sliding along itself during deployment. This allows the sheath to be removed with considerably less tension than previous everting sheath constructions and assures more accurate device placement in a patient.
  • the sheath may be used to deliver an endoprosthesis.
  • the sheath may be tubular in construct and includes at least one pleat oriented along at least a portion of its length, preferably helically along its length.
  • the pleat may incorporate a material or other feature that resists folding and tensile strain, such as a polyimide, to aid in creating and maintaining the pleat form and orientation.
  • the sheath may be used to deploy a medical device with the sheath at least partially everted over itself to form an interior segment and an exterior segment in the pre-deployed configuration. At least one pleat is provided along at least a portion of the interior segment, again preferably in a helical orientation.
  • the interior segment When deployment occurs by applying tension to the exterior segment of the sheath, the interior segment progressively reorients itself into the exterior segment with the pleat progressively opening as the sheath everts. This un-pleating of the sheath as it becomes the exterior segment allows the exterior segment to be of sufficiently greater diameter than the pleated interior segment so as to reduce frictional contact between the interior segment and the exterior segment during deployment.
  • the sheath By minimizing the frictional contact of the sheath upon itself, it has been determined that the sheath can be removed with considerably less applied tension than has been required in prior sheath containment apparatus. Once again, it is preferred that the sheath incorporates a material or other feature that is resistant to folding and tensile strain to aid in pleat formation and maintenance.
  • the deployment apparatus of the present invention may be used to deploy a wide variety of devices to diagnose and/or treat patients.
  • Such devices may include stents, stent-grafts, balloons, blood filters, occluders, probes, valves, electronic leads (e.g., pacing or defibulator leads), orthopedic devices, etc.
  • the deployment apparatus of the present invention may be modified to address many different device delivery and deployment needs. For instance, the number of pleats, the orientation of the pleats, the size and spacing of the pleats, pleat pitch, etc., can be adjusted to allow devices to deploy in different manners. Additionally, the sheaths of the present invention can be mounted in a variety of ways on devices to accommodate different deployment requirements, such as allowing a device to deploy off a catheter hub-to-tip, or tip-to-hub, or from a mid-point of a device outward in both directions.
  • FIG. 1 is a plan view of one embodiment of a medical device deployment system employing a pleated sheath of the present invention mounted near a distal end of a delivery catheter;
  • FIG. 2 is an enlarged perspective view of a distal end of a delivery catheter showing an everting pleated sheath of the present invention being withdrawn, progressively releasing a self-expanding stent contained therein;
  • FIG. 3 is a cross-section view along line 3 - 3 of FIG. 2 , showing only the pleated sheath component of the present invention
  • FIG. 4 is a perspective view of a portion of an everting pleated sheath of the present invention, showing the pleat unfolding during eversion of the sheath, the sheath being actuated by a deployment line;
  • FIG. 5 is a perspective view of another embodiment of a pleated sheath of the present invention comprising a single layer
  • FIG. 6 is a cross-section view along line 6 - 6 of the sheath of FIG. 5 ;
  • FIG. 7 is a cross-section view of the sheath of FIG. 5 following opening of the pleat, the sheath being of a greater effective diameter than the pleated orientation shown in FIG. 6 ;
  • FIG. 8 is a perspective view of still another embodiment of a pleated sheath of the present invention comprising a single layer and having two pleats provided therein;
  • FIG. 9 is a cross-section view along line 9 - 9 of FIG. 8 ;
  • FIG. 10 is a perspective view of another embodiment of a sheath of the present invention wherein the spacing and pitch of the element that will define the pleat is changed along the length of the sheath in order to provide a variable diameter along the sheath length after the pleat is formed;
  • FIG. 11 is a perspective view of the sheath of FIG. 10 after it has been pleated
  • FIG. 12 is a perspective view of another embodiment of a sheath of the present invention wherein the width of the element that will define the pleat is changed along the length of the sheath;
  • FIG. 13 is a perspective view of the sheath of FIG. 12 after it has been pleated
  • FIG. 14 is a longitudinal cross-section view of a delivery catheter incorporating a pair of sheaths of the present invention and containing a compacted device, the pair of sheaths being oriented to withdraw from the device in opposite directions from a point midway along the device;
  • FIG. 15 is an enlarged perspective view showing a stent-graft device being deployed from a midpoint by removing two sheaths of the present invention in opposite directions;
  • FIG. 16A is a longitudinal cross-section view of a distal portion of a catheter utilizing a sheath of the present invention, showing another embodiment of apparatus to remove the sheath;
  • FIG. 16B is a longitudinal cross-section view of a proximal portion the catheter shaft of FIG. 16A ;
  • FIG. 17A is a partially cut-way perspective view of a distal portion of a catheter utilizing a sheath of the present invention, showing still another embodiment of apparatus to remove the sheath;
  • FIG. 17B is a partially cut-way perspective view of a proximal portion the catheter shaft of FIG. 17A ;
  • FIG. 18 is a three-quarter isometric view of another single-layer sheath of the present invention including additional thickness of material along a portion of a monolithic structure to provide pleat reinforcement;
  • FIG. 19 is a three-quarter isometric view of still another single-layer sheath of the present invention including surface treatment of the sheath in order provide a defined pleat hinge line;
  • FIG. 20 is a cross-section view of another embodiment of a sheath of the present invention comprising a sheet of material that is formed into a tubular construct by interlocking pleats formed on edges of the sheet;
  • FIG. 21 is a graph illustrating the tension applied and extension of deployment lines in various embodiments.
  • the present invention employs a pleated deployment sheath for medical device containment and delivery, preferably for use with everting sheath delivery.
  • One or more pleats are pre-formed into the sheath in its pre-deployment state and are allowed to open during deployment so as to facilitate easier sheath removal.
  • the sheath undergoes a predictable enlargement during deployment and thus relieves friction of the everted sheath sliding along itself during deployment. This allows the sheath to be removed with considerably less tension than previous everting sheath constructions and assures more accurate device placement in a patient.
  • FIG. 1 Shown in FIG. 1 is one embodiment of a pleated sheath 10 of the present invention mounted near the end of a medical device deployment system 12 .
  • the deployment system comprises a catheter shaft 14 extending from a distal olive 16 to a control hub 18 .
  • a medical device such as a stent, stent-graft, balloon, blood filter, occluder, probe, valves, etc., may be contained in the sheath 10 to be deployed at a treatment site within a patient's body.
  • the sheath 10 is everted over itself to form two layers, an exterior segment 20 which, in this embodiment, completely covers an interior segment 22 .
  • the exterior segment is split at its proximal end 24 to form a deployment line 26 that is fed into the catheter shaft through opening 28 .
  • the deployment line 26 is operatively connected to a deployment knob 30 on the hub 18 .
  • the sheath 10 may be formed from any material that is sufficiently strong both to constrain the device to be delivered and to withstand the tension of the removal process. It is desirable that the sheath 10 also be as thin and lubricious as possible so as to maintain a small device delivery profile and to facilitate the removal process. Since the sheath 10 is placed temporarily deep within a patient during delivery and deployment, it is likewise desirable that the sheath be formed from a biocompatible material. As is explained in greater detail below, suitable sheath materials may include: polytetrafluoroethylene (PTFE); expanded PTFE (ePTFE); fluorinated ethylene propylene (FEP), polyethylene teraphthalate (PET), nylon, polyurethane, polypropylene, polyester, etc.
  • PTFE polytetrafluoroethylene
  • ePTFE expanded PTFE
  • FEP fluorinated ethylene propylene
  • PET polyethylene teraphthalate
  • the interior segment 22 includes a helical pleat 32 extending fully along its length.
  • the pleat 32 comprises a fold in the material of the sheath that reduces the interior segment 22 of the sheath to a diameter smaller than the diameter of the exterior segment 20 .
  • a reinforcing material 34 may be layered over or otherwise attached to the sheath.
  • such material is fold-resistant so that the pleat more readily holds its correct orientation along its entire length during the folding process and through sheath deployment.
  • Suitable reinforcing materials may include: one or more strips of polymer material, such as polyimide, polyethylene teraphthalate (PET), nylon, polyurethane, or similar material, adhered to the sheath; a coating applied to the strip that hardens to provide the desired properties, such as providing sufficient stiffness/Young's Modulus and thickness to resist folding for a given helical pitch, pleat width, and effective diameter.
  • polymer material such as polyimide, polyethylene teraphthalate (PET), nylon, polyurethane, or similar material
  • each pleat refers to any fold or multiple folds in the sheath material that reduces the effective diameter of the sheath.
  • each pleat comprises two folds that cause the sheath material to double back on itself.
  • the pleat may comprise a single fold or multiple folds along an edge of a sheet of material, which may be interlocked, for instance as shown in FIG. 20 .
  • a pleat may also be formed through a rolling, twisting, or accordion folding of a section of material or similarly storing material for later un-pleating during deployment.
  • the sheath 10 everts over itself at a fold 36 at one end, in this embodiment at the distal end.
  • the fold 36 may be oriented at either the distal end or the proximal end of the device, or anywhere in between.
  • the deployment line 26 In order to actuate the deployment line 26 , medical personnel will unscrew the deployment knob 30 and pull on the knob and connected deployment line to cause the sheath to progressively withdraw off of the contained device. As the exterior segment of the sheath is withdrawn, the fold 36 will progress down the length of the contained device, steadily everting the interior segment 22 so that it becomes the exterior segment 20 . In the process of everting, the pleat 32 will wrap around the fold 36 and open up. In this manner, the un-pleated exterior segment 20 will always remain at a larger effective diameter than the pleated interior segment 22 of the sheath. As a result, the larger diameter exterior segment 20 slides easily over the interior segment 22 and is readily removed with minimal friction between the two layers.
  • FIG. 2 The process of device delivery can be better seen in FIG. 2 .
  • the interior segment 22 with its reinforced pleats 32 is shown exposed in cut-away.
  • the pleats 32 open up along fold 36 .
  • Seen along the length of the exterior segment 20 are the strips of reinforcement material 34 , now merely attached to the sheath 10 and no longer defining a pleat.
  • a constrained self-expanding stent 38 is progressively deployed from this embodiment.
  • FIG. 4 shows the process of un-pleating with the contained pleats 32 shown in phantom and the un-pleated reinforcement material 34 shown exposed along the exterior segment 20 . Again, transition occurs along fold 36 .
  • a deployment line 40 is connected to one end 42 of the exterior segment 20 . Tension on the deployment line 42 actuates the sheath 10 .
  • FIG. 5 illustrates another embodiment of the present invention comprising a single layer sheath 10 .
  • the helically formed pleat 32 again includes a strip of reinforcement material 34 .
  • the pleat 32 causes the sheath 10 to have a given diameter of x.
  • the diameter of the sheath 10 enlarges to increased diameter of y.
  • the pleats of the present invention are preferably stable without a constraining force.
  • a sufficiently rigid pleat with sufficient helical angle will be inherently stable and will remain in place even without an external constraint.
  • constraints can be provided to help retain the pleats in position.
  • the single layer sheath may be formed and then everted over itself, either partially or entirely, and then employed in the manner described above. The everted portion of the sheath will maintain the pleats in their folded configuration until the device is ready for deployment.
  • the single layer sheath may be contained in another tubular structure to maintain the pleats in a folded configuration, such as through use of another sheath, a closely fitted catheter tube, or similar structure.
  • the pleats can be joined to the sheath, such as through use of an adhesive, an adhered tape, a wrapped tape, a wrapped thread, or similar means, that will hold the pleats in position until the device is ready for deployment.
  • a further method of deployment of a single layer sheath may include tensioning from the proximal end of the pleated tube (that is, the end closest to the clinician). When sufficient tension is applied, the pleat will unfold and the tube will increase diametrically allowing it to be translated relative to the device.
  • FIGS. 8 and 9 Illustrated in FIGS. 8 and 9 is a still another embodiment of a pleated sheath 10 of the present invention.
  • the sheath 10 comprises a single layer and includes two pleats 32 a, 32 b therein.
  • the pleats may be evenly aligned on opposite sides of the sheath 10 , as shown, or may be placed in other orientations. It should be understood that depending on desired deployment specifications, the present invention can be practiced with one, two, three, four, five or more pleats along part or all of the sheath length.
  • FIG. 10 illustrates another embodiment of a sheath 10 of the present invention wherein the spacing 44 a, 44 b, 44 c, 44 d between pleating elements 32 varies along the length of the sheath 10 .
  • the pitch 46 a, 46 b, 46 c, 46 d, 46 e of the helical wraps of the pleating elements 32 also varies along the length of the sheath 10 .
  • Each of these properties can be adjusted, independently or in cooperation, in device design so as to provide varying diameters along the length of the sheath after pleating. Diameter may be varied along the length of the sheath to accommodate non-cylindrical device profiles and/or produce variable sheath removal properties.
  • FIG. 11 depicts the sheath of FIG. 10 after it has been pleated.
  • the sheath and contained device provide a tapered profile, with the distal end 48 being a smaller diameter than the proximal end 50 .
  • width 52 a, 52 b, 52 c of the pleating element is changed along the length of the sheath 10 .
  • diameter can be varied along the length of the sheath to accommodate non-cylindrical device profiles and/or produce variable sheath removal properties.
  • the pleated sheath can be formed with a variable diameter, producing either greater or lesser friction (depending on the direction of deployment) as the sheath is deployed along its length—making it either initially easier or more difficult to deploy the sheath.
  • FIG. 13 depicts the sheath of FIG. 12 after it has been pleated.
  • the sheath and contained device provide a tapered profile, with the distal end 48 being a smaller diameter than the proximal end 50 .
  • FIG. 14 Shown in FIG. 14 is a delivery catheter incorporating a pair of sheaths of the present invention and containing a compacted device 38 , the pair of sheaths 10 a, 10 b being oriented to withdraw from a compacted device 38 in opposite directions from a point midway along the device.
  • Proximal sheath 10 a runs along catheter shaft 14 to an actuation mechanism 54 .
  • Distal sheath 10 b is withdrawn in the opposite direction (that is, towards the distal end of the catheter 14 ) and is inverted into the catheter shaft 14 .
  • the distal sheath 10 b is likewise controlled by actuation mechanism 54 .
  • the two sheaths 10 a, 10 b are withdrawn simultaneously from the compacted device 38 to allow it to deploy from its middle outward.
  • Such deployment may be useful in those instances where very rapid device deployment is sought and/or where it is desirable to minimize the effect of high volume of blood flow upon the device prior to full deployment (for instance, when a device is deployed in the aorta and it is desirous to have the upstream end of the device deploy last so as to avoid a “windsock” effect in the high-volume blood flow which may misalign device positioning).
  • FIG. 15 illustrates how a stent-graft device 38 can be deployed from its midpoint by removing two sheaths 10 a, 10 b. This deployment method would be preferred for placing a stent-graft device in a thoracic aorta or the like.
  • each of the sheaths 10 a, 10 b independently of each other so that only part of the device is deployed at any given time. This can be readily accomplished by providing separate actuation mechanisms for each of the sheaths. It should be further appreciated that with respect to all of the embodiments of the present invention discussed herein it may be desirable to have sheath deployment occur either from the distal end of the catheter back or from the proximal end of the catheter forward, or with two or more deployment sheaths moving in opposite directions, as illustrated in the embodiments of FIGS. 14 and 15 .
  • FIGS. 16A and 16B illustrate a deployment mechanism similar to the one shown in FIG. 14 .
  • a single everted sheath 10 is provided constraining a device 38 .
  • the sheath 10 extends proximally within an outer casing 54 of catheter shaft 14 , coaxially surrounding inner catheter shaft 56 .
  • the sheath 10 extends to the proximal end 58 of the catheter 14 , where it can be actuated by a user.
  • the sheath 10 is constructed from a material that will split longitudinally, such as through a pre-formed longitudinal line of perforations or similar weakening means 60 , so that the sheath 10 can be removed from the inner shaft 56 by applying tension to tail 62 , as is shown in FIG. 16B .
  • a strain relief 64 may be provided on the distal end of the outer casing 54 to assist in handling of the catheter 14 during placement and deployment.
  • FIGS. 17A and 17B Another deployment mechanism that may be used with the present invention is shown in FIGS. 17A and 17B .
  • a dual lumen catheter 14 is provided, having a lumen 66 for housing inner shaft 56 and a lumen 68 designed to accept a deployment line 40 .
  • the deployment line 40 is integral with or attached to the sheath 10 .
  • the line 40 is actuated to cause the sheath 10 to withdraw in the manner previously described.
  • the preferred sheath of the present invention for containing and deploying a self-expanding stent or stent-graft for vascular applications will be constructed of a thin, lubricous polymer material, such as an ePTFE multi-layer laminated film tube, with a thickness of 0.03 to 0.3 mm, and more preferably 0.05 to 0.12 mm.
  • a thin, lubricous polymer material such as an ePTFE multi-layer laminated film tube, with a thickness of 0.03 to 0.3 mm, and more preferably 0.05 to 0.12 mm.
  • the tube of the present invention is preferably as thin as possible while having strength properties that will withstand loading forces and effectively constrain the device until it is deployed.
  • FIG. 18 illustrates a pleat reinforcement 70 that is formed from the same material as the sheath 10 itself.
  • Such reinforcement 70 is achieved by providing a layer of additional material along a portion of the sheath circumference so as to provide defined fold lines 72 a, 72 b on either side of the raised reinforcement 70 .
  • This construct may be formed by extruding or otherwise adding additional material in the defined manner on the sheath and/or removing material from, or densifying material on, the remainder of the sheath 10 in order to leave a pleat reinforcement 70 of increased dimension.
  • a similar effect may be achieved by densifying the reinforcement area in order to establish fold-resistance.
  • FIG. 19 illustrates another approach to achieve predictable sheath folding.
  • the sheath 10 has been treated to provide one or more defined pleat hinge lines 74 a, 74 b.
  • Each hinge line 74 may be formed through any of a variety of surface treatment means, including through mechanical methods (e.g., cutting, scoring, densification, etc.), through extrusion or other material manufacture steps, or through thermal processing (e.g., through heat or laser treatment), or some combination of such various methods.
  • the pleated configuration of the sheath 10 is folded along these hinge lines 74 .
  • the desired result is achieved by forming a pleat region with sufficient relative stiffness and/or thickness to resist folding or otherwise to fold preferentially. Additionally, using these techniques the sheath can be provided with preferential folding properties without the need to add additional material to the sheath.
  • FIG. 20 illustrates still another method of forming a pleat in accordance with the present invention.
  • the sheath 10 is formed from a sheet of material having two edges 76 a, 76 b. Each of these edges 76 a, 76 b can then be folded to form a pleat 78 a, 78 b with one or more folds.
  • the edge pleats 76 a, 76 b can then be interlocked with one another, for instance as shown, to create a tubular structure that serves as the sheath 10 of the present invention.
  • the edges 76 will separate from each other to provide the desired predictable enlargement of the present invention.
  • One or both of the edges 76 can be provided with reinforcement 80 a, 80 b, such as through one of the methods previously described, in order to facilitate the formation and retention of the pleat 78 .
  • the exterior segment in the final construct should have an inner diameter that is sufficiently greater than the outer diameter of the interior segment in order to minimize friction between the two segments. That is, in order to minimize interference between the interior segment and the exterior segment, the un-pleated exterior segment should enlarge enough so that its inner diameter comfortably clears the outer diameter of the pleated interior segment. It is preferred that the inner diameter of the exterior segment be 0.1 to 50% larger than the outer diameter of the interior segment, and more preferably 10 to 20% larger.
  • a sheath with a wall thickness of about 0.08 mm and an un-pleated a inner diameter of about 2.1 mm will typically be provided with one or more pleats with a pleat width of 0.8 mm to create a pleated interior segment having a outer diameter of about 1.9 mm.
  • pleats are provided with a width of 0.3 to 2.0 mm, and more preferably with a width range of 0.6 to 1.3 mm.
  • Pleats will typically be oriented helically around the sheath, with a typical pitch angle of 30 to 75 degrees, and more preferably a pitch of 50 to 70 degrees.
  • the pleats are preferably reinforced with a strip or strips of relatively fold-resistant material, such as polyimide film, with a thickness of 0.01 to 0.08 mm, and more preferably 0.02 to 0.05 mm.
  • the reinforcement material is encapsulated between layers of a laminated sheath, adhered using an adhesive such as FEP or similar material.
  • the preferred sheath of the present invention includes one or more pleats helically oriented along part or all of the longitudinal length of the sheath, it should be appreciated that other pleat orientations as likewise contemplated by the present invention. For example, so long as they are adequately constrained or adhered the pleat or pleats may be arranged essentially parallel to the axis of the device. Further, for some applications multiple discontinuous pleats may be provided to achieve suitable deployment properties. Additionally, for some applications it may be desirable to provide pleats along at least a portion of both the interior segment and the exterior segment of the sheath.
  • the sheath of the present invention has been determined to vastly reduce the amount of tension required to deploy a device.
  • deployment tensions are typically on the order of 50-150 grams
  • a 1′′ (25.4 mm) wide strip of expanded polytetrafluoroethylene (ePTFE) film (having predominantly longitudinally oriented strength, film thickness of approximately 0.006 mm and break strength of approximately 0.8 kg/cm width) was “cigarette” wrapped on a 0.11′′ (2.8 mm) diameter ⁇ 40 cm long mandrel.
  • the film structure was orientation parallel to mandrel axis so that the film was stronger parallel to the mandrel's longitudinal axis.
  • a second layer of 0.4′′ (10 mm) wide ePTFE/FEP laminate film (predominantly longitudinally oriented strength, total film thickness of approximately 0.003 mm, FEP thickness of approximately 0.001 mm and break strength of approximately 0.7 kg/cm width) was then helically overwrapped around the first film layer with a single pass at a 0.2′′ (5 mm) pitch, to create a double thickness of the second film layer.
  • the oriented film structure of the second layer was aligned in the helical direction around the mandrel.
  • the wrapped tube was thermally processed on-mandrel at a temperature of 380° C. for 8 minutes, after which the tube (approximately 25 cm in length) was stripped from the mandrel.
  • the tube was helically pleated by manually flipping the polyimide strip 180°. Approximately 11 cm of the tube was pleated with the pleat originating at one end of the tube, open side of the pleat facing away from the un-pleated section. Pleated inside diameter of the tube was approximately 0.095′′ (2.4 mm) with the helical pleat having a pitch of about 0.23′′ (5.8 mm). Approximately 14 cm of the tube was left un-pleated.
  • a long stainless steel nozzle (approximately 100 mm length, 0.095′′ (2.4 mm) outer diameter, 0.088′′ (2.2 mm) inner diameter) was fixed to the small end of a stainless steel loading funnel.
  • the funnel was sized with a wide opening of approximately 14 mm diameter, a small funnel opening of approximately 2.2 mm diameter and a straight taper approximately 34 mm in length.
  • the pleat opens up or unfolds at the point of eversion, allowing the un-pleated outer layer of the tube to translate relative to the pleated inner layer without interference.
  • this delivery tube could be deployed with significantly less deployment line tension than a comparably constructed everted tube that did not include pleats.
  • a conventional tensile test was conducted on an un-pleated everting sheath and a pleated everting sheath of the present invention, the sheaths being otherwise comparable in material and construction, using an INSTRON Tensile Tester employing a crosshead speed of 400 mm/min.
  • tension required to deploy the pleated sheath of the present invention was consistent throughout the deployment with a peak of approximately 0.074 kg.
  • Tension required to deploy the conventional everting sheath without pleats was approximately 2.2 kg initially, reducing to approximately 0.50 kg midway through the deployment.
  • the upper plot shows the load encountered by a deployment line attached to the conventional un-pleated everting sheath during device deployment, and the lower plot shows the load encountered by a deployment line attached to the pleated everting sheath of the present invention during device deployment.

Abstract

A deployment sheath for medical devices is provided that includes one or more pleats in its pre-deployment state that are allowed to open during deployment so as to facilitate easier device deployment and sheath removal. Preferably, the sheath is removed by everting it over itself during the delivery process. By orienting the pleats along the length of the sheath, preferably helically around the sheath, the sheath undergoes a predictable enlargement during deployment so as to relieve friction of the everted sheath sliding along itself during deployment. This allows the sheath to be removed with less tension than previous everting sheath constructions and assures more accurate device placement in a patient.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Nonprovisional application Ser. No. 12/014,536 filed on Jan. 15, 2008, all of which is incorporated by reference herein in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to apparatus used to position and deploy medical diagnostic and treatment devices in a body.
  • 2. Discussion of the Related Art
  • A growing number of medical diagnostic and treatment devices are being developed that are remotely used to assess and/or treat patients, typically being guided to a target site using imagining technology such as fluoroscopes or ultrasound. Such devices include stents, stent-grafts, balloons, blood filters, occluders, probes, valves, electronic leads, orthopedic devices, etc. Usually these devices are mounted near the end of a catheter or guidewire and are remotely steered to the targeted site. Radiopaque markers or similar indicia are often used to allow the medical staff to exactly position the medical device using the imagining technology.
  • Once properly positioned, the medical staff will then carry out the procedure and/or deploy the necessary device or devices. Since most of these procedures, such as interventional treatment of occlusions or aneurysms, require exact placement of a treatment device, it is important that the device deploys in the same position where it had been initially placed. For instance, in treating aortic aneurysms with a stent-graft, physicians expect displacement of the device of less than 5 mm following deployment. Any greater displacement may result in endoleaks, blocked side vessels, or other complications requiring otherwise unnecessary further treatments or even risky conversion to open surgery.
  • Not surprisingly, numerous apparatus have been proposed to facilitate the placement of such devices. Originally self-expanding devices were simply drawn or stuffed into a catheter tube and then pushed out at the treatment site. Exact placement using this method can prove somewhat elusive, with the medical staff often required to deploy and retract the device repeatedly before the correct orientation is achieved.
  • More exacting deployment methods have since been developed, such as employing various constraining cords, e.g., those described in U.S. Pat. No. 6,042,605 to Martin et al., or implantable constraining sheaths, e.g., those described in U.S. Pat. No. 6,352,561 to Leopold et al.
  • A similar concept to the original catheter tube constraint is to use a thin sheath of material that is pulled back over the treatment device while holding the device in place. One advantage of this concept is that the device and thin sheath can take up considerably less space than housing a device within a relatively bulky catheter tube. The thin sheaths also can provide greater flexibility over much stiffer catheter tube materials. Such compactness and flexibility are highly desirable as physicians try to reach tighter treatment sites through smaller and more tortuous vessels. Unfortunately, this method can put considerable strain on a self-expanding device, which is exerting pressure against the constraining sheath throughout the deployment process. The resulting friction between the device and the sheath often requires application of considerable tensile force to remove the sheath, making ultimate exact positioning much more difficult, as well as possibly damaging the treatment device in the process of sheath removal.
  • One deployment method to limit such effects is to employ a thin sheath of material that is everted over itself, so that the constraining sheath rubs only against itself while it is being pulled back over a self-expanding device. In other words, a sheath of a given diameter is everted back over itself and then pulled down the length of the sheath through the deployment procedure. Variations on this concept are described in, for instance, U.S. Pat. No. 4,732,152 to Wallsten, U.S. Pat. No. 5,571,135 to Fraser et al., U.S. Pat. No. 6,942,682 to Vrba et al., and US Application 2006/0025844 to Majercak et al., and US Patent Application 2006/0030923 to Gunderson. With sufficiently thin and strong sheath materials, these methods offer the prospect of compactness with less strain placed on the treatment device and perhaps more precise device placement.
  • While everting sheaths address some of the complications seen with non-everting sheaths, they still can require considerable tension in order to pull the sheath over itself and the self-expanding device during deployment, resulting mainly from the friction of everted portion of the sheath rubbing against the non-everted portion of the sheath while the sheath is being removed. These concerns are compounded with longer device lengths and more robust self-expanding devices that exert greater outward pressures. The greater the tension needed to evert and remove the sheath, the more demanding it is for the medical staff to remove the sheath while trying to hold the apparatus in its exact position during deployment. Increased deployment tensions also require more substantial sheath constructions so as to avoid sheath and deployment line breakage during deployment. It is believed that these deficiencies of everting sheaths may have limited practical applications for such deployment methods.
  • Accordingly, it would be desirable to develop a deployment apparatus that retains many of the benefits of everting sheath deployment while allowing for lower deployment tensions and more exact device placement.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a deployment sheath for medical devices that includes one or more pleats in its pre-deployment state that are allowed to open during deployment so as to facilitate easier sheath removal. Preferably, the sheath is deployed by everting it over itself during the delivery process. By orienting the pleats along the length of the sheath, preferably helically around the sheath, the sheath undergoes a predictable enlargement during device deployment so as to relieve friction of the everted sheath sliding along itself during deployment. This allows the sheath to be removed with considerably less tension than previous everting sheath constructions and assures more accurate device placement in a patient.
  • In one embodiment of the present invention, the sheath may be used to deliver an endoprosthesis. The sheath may be tubular in construct and includes at least one pleat oriented along at least a portion of its length, preferably helically along its length. The pleat may incorporate a material or other feature that resists folding and tensile strain, such as a polyimide, to aid in creating and maintaining the pleat form and orientation.
  • In a further embodiment of the present invention, the sheath may be used to deploy a medical device with the sheath at least partially everted over itself to form an interior segment and an exterior segment in the pre-deployed configuration. At least one pleat is provided along at least a portion of the interior segment, again preferably in a helical orientation. When deployment occurs by applying tension to the exterior segment of the sheath, the interior segment progressively reorients itself into the exterior segment with the pleat progressively opening as the sheath everts. This un-pleating of the sheath as it becomes the exterior segment allows the exterior segment to be of sufficiently greater diameter than the pleated interior segment so as to reduce frictional contact between the interior segment and the exterior segment during deployment.
  • By minimizing the frictional contact of the sheath upon itself, it has been determined that the sheath can be removed with considerably less applied tension than has been required in prior sheath containment apparatus. Once again, it is preferred that the sheath incorporates a material or other feature that is resistant to folding and tensile strain to aid in pleat formation and maintenance.
  • The deployment apparatus of the present invention may be used to deploy a wide variety of devices to diagnose and/or treat patients. Such devices may include stents, stent-grafts, balloons, blood filters, occluders, probes, valves, electronic leads (e.g., pacing or defibulator leads), orthopedic devices, etc.
  • The deployment apparatus of the present invention may be modified to address many different device delivery and deployment needs. For instance, the number of pleats, the orientation of the pleats, the size and spacing of the pleats, pleat pitch, etc., can be adjusted to allow devices to deploy in different manners. Additionally, the sheaths of the present invention can be mounted in a variety of ways on devices to accommodate different deployment requirements, such as allowing a device to deploy off a catheter hub-to-tip, or tip-to-hub, or from a mid-point of a device outward in both directions.
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1 is a plan view of one embodiment of a medical device deployment system employing a pleated sheath of the present invention mounted near a distal end of a delivery catheter;
  • FIG. 2 is an enlarged perspective view of a distal end of a delivery catheter showing an everting pleated sheath of the present invention being withdrawn, progressively releasing a self-expanding stent contained therein;
  • FIG. 3 is a cross-section view along line 3-3 of FIG. 2, showing only the pleated sheath component of the present invention;
  • FIG. 4 is a perspective view of a portion of an everting pleated sheath of the present invention, showing the pleat unfolding during eversion of the sheath, the sheath being actuated by a deployment line;
  • FIG. 5 is a perspective view of another embodiment of a pleated sheath of the present invention comprising a single layer;
  • FIG. 6 is a cross-section view along line 6-6 of the sheath of FIG. 5;
  • FIG. 7 is a cross-section view of the sheath of FIG. 5 following opening of the pleat, the sheath being of a greater effective diameter than the pleated orientation shown in FIG. 6;
  • FIG. 8 is a perspective view of still another embodiment of a pleated sheath of the present invention comprising a single layer and having two pleats provided therein;
  • FIG. 9 is a cross-section view along line 9-9 of FIG. 8;
  • FIG. 10 is a perspective view of another embodiment of a sheath of the present invention wherein the spacing and pitch of the element that will define the pleat is changed along the length of the sheath in order to provide a variable diameter along the sheath length after the pleat is formed;
  • FIG. 11 is a perspective view of the sheath of FIG. 10 after it has been pleated;
  • FIG. 12 is a perspective view of another embodiment of a sheath of the present invention wherein the width of the element that will define the pleat is changed along the length of the sheath;
  • FIG. 13 is a perspective view of the sheath of FIG. 12 after it has been pleated;
  • FIG. 14 is a longitudinal cross-section view of a delivery catheter incorporating a pair of sheaths of the present invention and containing a compacted device, the pair of sheaths being oriented to withdraw from the device in opposite directions from a point midway along the device;
  • FIG. 15 is an enlarged perspective view showing a stent-graft device being deployed from a midpoint by removing two sheaths of the present invention in opposite directions;
  • FIG. 16A is a longitudinal cross-section view of a distal portion of a catheter utilizing a sheath of the present invention, showing another embodiment of apparatus to remove the sheath;
  • FIG. 16B is a longitudinal cross-section view of a proximal portion the catheter shaft of FIG. 16A;
  • FIG. 17A is a partially cut-way perspective view of a distal portion of a catheter utilizing a sheath of the present invention, showing still another embodiment of apparatus to remove the sheath;
  • FIG. 17B is a partially cut-way perspective view of a proximal portion the catheter shaft of FIG. 17A;
  • FIG. 18 is a three-quarter isometric view of another single-layer sheath of the present invention including additional thickness of material along a portion of a monolithic structure to provide pleat reinforcement;
  • FIG. 19 is a three-quarter isometric view of still another single-layer sheath of the present invention including surface treatment of the sheath in order provide a defined pleat hinge line;
  • FIG. 20 is a cross-section view of another embodiment of a sheath of the present invention comprising a sheet of material that is formed into a tubular construct by interlocking pleats formed on edges of the sheet; and
  • FIG. 21 is a graph illustrating the tension applied and extension of deployment lines in various embodiments.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • Reference will now be made in detail to an embodiment of the present invention, example of which is illustrated in the accompanying drawings.
  • The present invention employs a pleated deployment sheath for medical device containment and delivery, preferably for use with everting sheath delivery. One or more pleats are pre-formed into the sheath in its pre-deployment state and are allowed to open during deployment so as to facilitate easier sheath removal. By orienting the pleats longitudinally along the length of the sheath, preferably helically around the sheath, the sheath undergoes a predictable enlargement during deployment and thus relieves friction of the everted sheath sliding along itself during deployment. This allows the sheath to be removed with considerably less tension than previous everting sheath constructions and assures more accurate device placement in a patient.
  • Shown in FIG. 1 is one embodiment of a pleated sheath 10 of the present invention mounted near the end of a medical device deployment system 12. The deployment system comprises a catheter shaft 14 extending from a distal olive 16 to a control hub 18. A medical device, such as a stent, stent-graft, balloon, blood filter, occluder, probe, valves, etc., may be contained in the sheath 10 to be deployed at a treatment site within a patient's body. In the embodiment shown, the sheath 10 is everted over itself to form two layers, an exterior segment 20 which, in this embodiment, completely covers an interior segment 22. The exterior segment is split at its proximal end 24 to form a deployment line 26 that is fed into the catheter shaft through opening 28. The deployment line 26 is operatively connected to a deployment knob 30 on the hub 18.
  • The sheath 10 may be formed from any material that is sufficiently strong both to constrain the device to be delivered and to withstand the tension of the removal process. It is desirable that the sheath 10 also be as thin and lubricious as possible so as to maintain a small device delivery profile and to facilitate the removal process. Since the sheath 10 is placed temporarily deep within a patient during delivery and deployment, it is likewise desirable that the sheath be formed from a biocompatible material. As is explained in greater detail below, suitable sheath materials may include: polytetrafluoroethylene (PTFE); expanded PTFE (ePTFE); fluorinated ethylene propylene (FEP), polyethylene teraphthalate (PET), nylon, polyurethane, polypropylene, polyester, etc.
  • In this embodiment of the present invention, the interior segment 22 includes a helical pleat 32 extending fully along its length. The pleat 32 comprises a fold in the material of the sheath that reduces the interior segment 22 of the sheath to a diameter smaller than the diameter of the exterior segment 20. In order to aid in forming and maintaining the pleat 32, a reinforcing material 34 may be layered over or otherwise attached to the sheath. Preferably such material is fold-resistant so that the pleat more readily holds its correct orientation along its entire length during the folding process and through sheath deployment. Suitable reinforcing materials may include: one or more strips of polymer material, such as polyimide, polyethylene teraphthalate (PET), nylon, polyurethane, or similar material, adhered to the sheath; a coating applied to the strip that hardens to provide the desired properties, such as providing sufficient stiffness/Young's Modulus and thickness to resist folding for a given helical pitch, pleat width, and effective diameter.
  • As the term “pleat” is used with respect the present invention, it refers to any fold or multiple folds in the sheath material that reduces the effective diameter of the sheath. In the preferred embodiment, each pleat comprises two folds that cause the sheath material to double back on itself. Alternatively, as is explained below, the pleat may comprise a single fold or multiple folds along an edge of a sheet of material, which may be interlocked, for instance as shown in FIG. 20. A pleat may also be formed through a rolling, twisting, or accordion folding of a section of material or similarly storing material for later un-pleating during deployment.
  • The sheath 10 everts over itself at a fold 36 at one end, in this embodiment at the distal end. As is explained below, the fold 36 may be oriented at either the distal end or the proximal end of the device, or anywhere in between.
  • In order to actuate the deployment line 26, medical personnel will unscrew the deployment knob 30 and pull on the knob and connected deployment line to cause the sheath to progressively withdraw off of the contained device. As the exterior segment of the sheath is withdrawn, the fold 36 will progress down the length of the contained device, steadily everting the interior segment 22 so that it becomes the exterior segment 20. In the process of everting, the pleat 32 will wrap around the fold 36 and open up. In this manner, the un-pleated exterior segment 20 will always remain at a larger effective diameter than the pleated interior segment 22 of the sheath. As a result, the larger diameter exterior segment 20 slides easily over the interior segment 22 and is readily removed with minimal friction between the two layers.
  • The process of device delivery can be better seen in FIG. 2. In this embodiment, the interior segment 22 with its reinforced pleats 32 is shown exposed in cut-away. As the larger diameter exterior segment 20 is withdrawn, the pleats 32 open up along fold 36. Seen along the length of the exterior segment 20 are the strips of reinforcement material 34, now merely attached to the sheath 10 and no longer defining a pleat. As the sheath 10 is withdrawn in this manner, a constrained self-expanding stent 38 is progressively deployed from this embodiment.
  • As can be seen in the cross-section illustration of FIG. 3, the coaxial interior segment 22 and pleat 32 and reinforcement material 34 are shown within the larger diameter exterior segment 20 having only un-pleated reinforcement material 34.
  • FIG. 4 shows the process of un-pleating with the contained pleats 32 shown in phantom and the un-pleated reinforcement material 34 shown exposed along the exterior segment 20. Again, transition occurs along fold 36. In this embodiment a deployment line 40 is connected to one end 42 of the exterior segment 20. Tension on the deployment line 42 actuates the sheath 10.
  • FIG. 5 illustrates another embodiment of the present invention comprising a single layer sheath 10. The helically formed pleat 32 again includes a strip of reinforcement material 34. As can be seen in the cross-section of FIG. 6, the pleat 32 causes the sheath 10 to have a given diameter of x. Once the pleat 32 is released, as is shown in FIG. 7, the diameter of the sheath 10 enlarges to increased diameter of y.
  • With respect to single layer embodiments of the present invention, there are a variety of methods through which the sheath can be used. First, the pleats of the present invention are preferably stable without a constraining force. For instance, a sufficiently rigid pleat with sufficient helical angle will be inherently stable and will remain in place even without an external constraint. Alternatively, a variety of constraints can be provided to help retain the pleats in position. For instance, the single layer sheath may be formed and then everted over itself, either partially or entirely, and then employed in the manner described above. The everted portion of the sheath will maintain the pleats in their folded configuration until the device is ready for deployment. In another embodiment, the single layer sheath may be contained in another tubular structure to maintain the pleats in a folded configuration, such as through use of another sheath, a closely fitted catheter tube, or similar structure. In still another embodiment, the pleats can be joined to the sheath, such as through use of an adhesive, an adhered tape, a wrapped tape, a wrapped thread, or similar means, that will hold the pleats in position until the device is ready for deployment. A further method of deployment of a single layer sheath may include tensioning from the proximal end of the pleated tube (that is, the end closest to the clinician). When sufficient tension is applied, the pleat will unfold and the tube will increase diametrically allowing it to be translated relative to the device.
  • Illustrated in FIGS. 8 and 9 is a still another embodiment of a pleated sheath 10 of the present invention. In this embodiment, the sheath 10 comprises a single layer and includes two pleats 32 a, 32 b therein. The pleats may be evenly aligned on opposite sides of the sheath 10, as shown, or may be placed in other orientations. It should be understood that depending on desired deployment specifications, the present invention can be practiced with one, two, three, four, five or more pleats along part or all of the sheath length.
  • FIG. 10 illustrates another embodiment of a sheath 10 of the present invention wherein the spacing 44 a, 44 b, 44 c, 44 d between pleating elements 32 varies along the length of the sheath 10. Likewise, the pitch 46 a, 46 b, 46 c, 46 d, 46 e of the helical wraps of the pleating elements 32 also varies along the length of the sheath 10. Each of these properties can be adjusted, independently or in cooperation, in device design so as to provide varying diameters along the length of the sheath after pleating. Diameter may be varied along the length of the sheath to accommodate non-cylindrical device profiles and/or produce variable sheath removal properties.
  • FIG. 11 depicts the sheath of FIG. 10 after it has been pleated. In this instance, the sheath and contained device provide a tapered profile, with the distal end 48 being a smaller diameter than the proximal end 50.
  • In the embodiment of FIG. 12, width 52 a, 52 b, 52 c of the pleating element is changed along the length of the sheath 10. Again, by changing pleat width, diameter can be varied along the length of the sheath to accommodate non-cylindrical device profiles and/or produce variable sheath removal properties. For instance, by making the pleating elements progressively narrower along the length of the device as shown, the pleated sheath can be formed with a variable diameter, producing either greater or lesser friction (depending on the direction of deployment) as the sheath is deployed along its length—making it either initially easier or more difficult to deploy the sheath.
  • FIG. 13 depicts the sheath of FIG. 12 after it has been pleated. In this instance, the sheath and contained device provide a tapered profile, with the distal end 48 being a smaller diameter than the proximal end 50.
  • Shown in FIG. 14 is a delivery catheter incorporating a pair of sheaths of the present invention and containing a compacted device 38, the pair of sheaths 10 a, 10 b being oriented to withdraw from a compacted device 38 in opposite directions from a point midway along the device. Proximal sheath 10 a runs along catheter shaft 14 to an actuation mechanism 54. Distal sheath 10 b is withdrawn in the opposite direction (that is, towards the distal end of the catheter 14) and is inverted into the catheter shaft 14. The distal sheath 10 b is likewise controlled by actuation mechanism 54.
  • By actuating the two sheaths in this embodiment, the two sheaths 10 a, 10 b are withdrawn simultaneously from the compacted device 38 to allow it to deploy from its middle outward. Such deployment may be useful in those instances where very rapid device deployment is sought and/or where it is desirable to minimize the effect of high volume of blood flow upon the device prior to full deployment (for instance, when a device is deployed in the aorta and it is desirous to have the upstream end of the device deploy last so as to avoid a “windsock” effect in the high-volume blood flow which may misalign device positioning).
  • FIG. 15 illustrates how a stent-graft device 38 can be deployed from its midpoint by removing two sheaths 10 a, 10 b. This deployment method would be preferred for placing a stent-graft device in a thoracic aorta or the like.
  • It should be understood that for some applications it may be preferred to actuate each of the sheaths 10 a, 10 b independently of each other so that only part of the device is deployed at any given time. This can be readily accomplished by providing separate actuation mechanisms for each of the sheaths. It should be further appreciated that with respect to all of the embodiments of the present invention discussed herein it may be desirable to have sheath deployment occur either from the distal end of the catheter back or from the proximal end of the catheter forward, or with two or more deployment sheaths moving in opposite directions, as illustrated in the embodiments of FIGS. 14 and 15.
  • FIGS. 16A and 16B illustrate a deployment mechanism similar to the one shown in FIG. 14. In this embodiment, a single everted sheath 10 is provided constraining a device 38. The sheath 10 extends proximally within an outer casing 54 of catheter shaft 14, coaxially surrounding inner catheter shaft 56. The sheath 10 extends to the proximal end 58 of the catheter 14, where it can be actuated by a user. In this embodiment, the sheath 10 is constructed from a material that will split longitudinally, such as through a pre-formed longitudinal line of perforations or similar weakening means 60, so that the sheath 10 can be removed from the inner shaft 56 by applying tension to tail 62, as is shown in FIG. 16B. A strain relief 64 may be provided on the distal end of the outer casing 54 to assist in handling of the catheter 14 during placement and deployment.
  • Another deployment mechanism that may be used with the present invention is shown in FIGS. 17A and 17B. In this embodiment, a dual lumen catheter 14 is provided, having a lumen 66 for housing inner shaft 56 and a lumen 68 designed to accept a deployment line 40. The deployment line 40 is integral with or attached to the sheath 10. The line 40 is actuated to cause the sheath 10 to withdraw in the manner previously described.
  • The preferred sheath of the present invention for containing and deploying a self-expanding stent or stent-graft for vascular applications will be constructed of a thin, lubricous polymer material, such as an ePTFE multi-layer laminated film tube, with a thickness of 0.03 to 0.3 mm, and more preferably 0.05 to 0.12 mm. In light of the present description, it should be evident that the tube of the present invention is preferably as thin as possible while having strength properties that will withstand loading forces and effectively constrain the device until it is deployed.
  • Still other embodiments of pleats that may be employed in the present invention are illustrated in FIGS. 18 through 20. FIG. 18 illustrates a pleat reinforcement 70 that is formed from the same material as the sheath 10 itself. Such reinforcement 70 is achieved by providing a layer of additional material along a portion of the sheath circumference so as to provide defined fold lines 72 a, 72 b on either side of the raised reinforcement 70. This construct may be formed by extruding or otherwise adding additional material in the defined manner on the sheath and/or removing material from, or densifying material on, the remainder of the sheath 10 in order to leave a pleat reinforcement 70 of increased dimension. A similar effect may be achieved by densifying the reinforcement area in order to establish fold-resistance.
  • FIG. 19 illustrates another approach to achieve predictable sheath folding. In this embodiment the sheath 10 has been treated to provide one or more defined pleat hinge lines 74 a, 74 b. Each hinge line 74 may be formed through any of a variety of surface treatment means, including through mechanical methods (e.g., cutting, scoring, densification, etc.), through extrusion or other material manufacture steps, or through thermal processing (e.g., through heat or laser treatment), or some combination of such various methods. The pleated configuration of the sheath 10 is folded along these hinge lines 74.
  • It should be evident that with respect to the embodiments of both FIG. 18 and FIG. 19, the desired result is achieved by forming a pleat region with sufficient relative stiffness and/or thickness to resist folding or otherwise to fold preferentially. Additionally, using these techniques the sheath can be provided with preferential folding properties without the need to add additional material to the sheath.
  • FIG. 20 illustrates still another method of forming a pleat in accordance with the present invention. In this embodiment the sheath 10 is formed from a sheet of material having two edges 76 a, 76 b. Each of these edges 76 a, 76 b can then be folded to form a pleat 78 a, 78 b with one or more folds. The edge pleats 76 a, 76 b can then be interlocked with one another, for instance as shown, to create a tubular structure that serves as the sheath 10 of the present invention. In this embodiment when the pleat 10 is opened, the edges 76 will separate from each other to provide the desired predictable enlargement of the present invention. One or both of the edges 76 can be provided with reinforcement 80 a, 80 b, such as through one of the methods previously described, in order to facilitate the formation and retention of the pleat 78.
  • It should be appreciated that in the everted embodiments of the present invention, in the final construct the exterior segment should have an inner diameter that is sufficiently greater than the outer diameter of the interior segment in order to minimize friction between the two segments. That is, in order to minimize interference between the interior segment and the exterior segment, the un-pleated exterior segment should enlarge enough so that its inner diameter comfortably clears the outer diameter of the pleated interior segment. It is preferred that the inner diameter of the exterior segment be 0.1 to 50% larger than the outer diameter of the interior segment, and more preferably 10 to 20% larger.
  • For example, to achieve these dimensions, a sheath with a wall thickness of about 0.08 mm and an un-pleated a inner diameter of about 2.1 mm will typically be provided with one or more pleats with a pleat width of 0.8 mm to create a pleated interior segment having a outer diameter of about 1.9 mm.
  • In the preferred embodiments of the present invention for the deployment of a self-expanding stent or stent-graft, pleats are provided with a width of 0.3 to 2.0 mm, and more preferably with a width range of 0.6 to 1.3 mm. Pleats will typically be oriented helically around the sheath, with a typical pitch angle of 30 to 75 degrees, and more preferably a pitch of 50 to 70 degrees.
  • The pleats are preferably reinforced with a strip or strips of relatively fold-resistant material, such as polyimide film, with a thickness of 0.01 to 0.08 mm, and more preferably 0.02 to 0.05 mm. The reinforcement material is encapsulated between layers of a laminated sheath, adhered using an adhesive such as FEP or similar material.
  • While the preferred sheath of the present invention includes one or more pleats helically oriented along part or all of the longitudinal length of the sheath, it should be appreciated that other pleat orientations as likewise contemplated by the present invention. For example, so long as they are adequately constrained or adhered the pleat or pleats may be arranged essentially parallel to the axis of the device. Further, for some applications multiple discontinuous pleats may be provided to achieve suitable deployment properties. Additionally, for some applications it may be desirable to provide pleats along at least a portion of both the interior segment and the exterior segment of the sheath.
  • The sheath of the present invention has been determined to vastly reduce the amount of tension required to deploy a device. In this regard, deployment tensions are typically on the order of 50-150 grams
  • It should be noted that the present invention may be scaled to virtually any dimensions.
  • EXAMPLE
  • Without intending to limit the scope of the present invention, the following example illustrates one embodiment of how the present invention may be practiced.
  • Sheath Tube Construct:
  • (1) A 1″ (25.4 mm) wide strip of expanded polytetrafluoroethylene (ePTFE) film (having predominantly longitudinally oriented strength, film thickness of approximately 0.006 mm and break strength of approximately 0.8 kg/cm width) was “cigarette” wrapped on a 0.11″ (2.8 mm) diameter×40 cm long mandrel. The film structure was orientation parallel to mandrel axis so that the film was stronger parallel to the mandrel's longitudinal axis.
  • (2) A second layer of 0.4″ (10 mm) wide ePTFE/FEP laminate film (predominantly longitudinally oriented strength, total film thickness of approximately 0.003 mm, FEP thickness of approximately 0.001 mm and break strength of approximately 0.7 kg/cm width) was then helically overwrapped around the first film layer with a single pass at a 0.2″ (5 mm) pitch, to create a double thickness of the second film layer. The oriented film structure of the second layer was aligned in the helical direction around the mandrel.
  • (3) A 0.035″ (0.89 mm) wide×0.001″ (0.025 mm) thick strip of polyimide was wrapped over the second film layer at a pitch of 0.375″ (9.5 mm).
  • (4) A second pass of the second layer of film was wrapped over the polyimide in a direction opposing the previous pass of the second layer of film.
  • (5) The wrapped tube was thermally processed on-mandrel at a temperature of 380° C. for 8 minutes, after which the tube (approximately 25 cm in length) was stripped from the mandrel.
  • (6) The tube was helically pleated by manually flipping the polyimide strip 180°. Approximately 11 cm of the tube was pleated with the pleat originating at one end of the tube, open side of the pleat facing away from the un-pleated section. Pleated inside diameter of the tube was approximately 0.095″ (2.4 mm) with the helical pleat having a pitch of about 0.23″ (5.8 mm). Approximately 14 cm of the tube was left un-pleated.
  • Loading:
  • (1) Traction lines were attached to each of the six leading apices on an 8 mm×10 cm GORE VIABIL® endoprosthesis device (available from W. L. Gore & Associates, Inc., Flagstaff, Ariz.). A Pebax® coated, braided stainless steel shaft (approximately 0.038″ (0.97 mm) I.D., 0.045″ (1.1 mm O.D.) was positioned in the lumen of the device.
  • (2) A long stainless steel nozzle (approximately 100 mm length, 0.095″ (2.4 mm) outer diameter, 0.088″ (2.2 mm) inner diameter) was fixed to the small end of a stainless steel loading funnel. The funnel was sized with a wide opening of approximately 14 mm diameter, a small funnel opening of approximately 2.2 mm diameter and a straight taper approximately 34 mm in length.
  • (3) The pleated end of the tube was positioned on the O.D. of the nozzle with the pleat extending approximately 5 mm beyond the end of the nozzle. The open side of the pleat was facing the funnel end of the nozzle.
  • (4) The endoprosthesis was compressed by pulling it through the funnel and attached nozzle, via the attached traction lines. As the device exited the nozzle, the pleated tube was fed from the O.D. of the nozzle onto the compressed device, constraining the device at the pleated diameter.
  • (5) With the entire device pulled through the nozzle and subsequently constrained in the pleated tube, the un-pleated section of the tube was everted over the device.
  • Deployment:
  • (1) Deployment of the device was accomplished by tensioning and displacing the outer, un-pleated, section of the tube relative to the device, releasing it from its constrained state.
  • (2) As the tube is everted, the pleat opens up or unfolds at the point of eversion, allowing the un-pleated outer layer of the tube to translate relative to the pleated inner layer without interference.
  • It was determined that this delivery tube could be deployed with significantly less deployment line tension than a comparably constructed everted tube that did not include pleats. A conventional tensile test was conducted on an un-pleated everting sheath and a pleated everting sheath of the present invention, the sheaths being otherwise comparable in material and construction, using an INSTRON Tensile Tester employing a crosshead speed of 400 mm/min.
  • As illustrated in FIG. 21, tension required to deploy the pleated sheath of the present invention was consistent throughout the deployment with a peak of approximately 0.074 kg. Tension required to deploy the conventional everting sheath without pleats was approximately 2.2 kg initially, reducing to approximately 0.50 kg midway through the deployment. In FIG. 21, the upper plot shows the load encountered by a deployment line attached to the conventional un-pleated everting sheath during device deployment, and the lower plot shows the load encountered by a deployment line attached to the pleated everting sheath of the present invention during device deployment.
  • It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

What is claimed is:
1. A medical device delivery system comprising
a tubular sheath, having a length, mounted about and containing a medical device;
wherein said tubular sheath includes at least one pleat oriented along at least a portion of the length; and wherein a portion of the pleat is reinforced with a reinforcing material having variable properties along the length of the pleat.
2. The medical device delivery system of claim 1 wherein the pleat is oriented helically along at least a portion of the length of the sheath.
3. The medical device delivery system of claim 1 wherein the variable property is pitch.
4. The medical device delivery system of claim 1 wherein the variable property is width.
5. The medical device delivery system of claim 2 wherein the pleat has variable pitch along a portion of the length of the tubular sheath.
6. The medical device delivery system of claim 5 wherein the tubular sheath is tapered.
7. A medical device delivery system comprising
a tubular sheath, having a length, mounted about and containing a medical device;
wherein said tubular sheath includes at least one pleat oriented along at least a portion of the length; and wherein the pleat is defined by hinge lines to provide preferential folding.
8. A medical device delivery system according to claim 7, wherein the hinge lines comprise lines of reduced thickness in the tubular sheath.
9. A medical device delivery system according to claim 8, wherein the pleat is oriented helically along at least a portion of the length of the sheath.
10. The medical device delivery system of claim 1 wherein a portion of the pleat is reinforced with a reinforcing material having variable properties along the length of the tubular sheath.
11. The medical device delivery system of claim 10 wherein the variable property is pitch.
12. The medical device delivery system of claim 10 wherein the variable property is width.
13. The medical device delivery system of claim 9 wherein the pleat has variable pitch along a portion of the length of the tubular sheath.
14. The medical device delivery system of claim 13 wherein the tubular sheath is tapered.
US13/843,800 2008-01-15 2013-03-15 Pleated deployment sheath Abandoned US20130296877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/843,800 US20130296877A1 (en) 2008-01-15 2013-03-15 Pleated deployment sheath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/014,536 US8845712B2 (en) 2008-01-15 2008-01-15 Pleated deployment sheath
US13/843,800 US20130296877A1 (en) 2008-01-15 2013-03-15 Pleated deployment sheath

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/014,536 Continuation US8845712B2 (en) 2008-01-15 2008-01-15 Pleated deployment sheath

Publications (1)

Publication Number Publication Date
US20130296877A1 true US20130296877A1 (en) 2013-11-07

Family

ID=40592085

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/014,536 Active 2031-12-26 US8845712B2 (en) 2008-01-15 2008-01-15 Pleated deployment sheath
US13/843,800 Abandoned US20130296877A1 (en) 2008-01-15 2013-03-15 Pleated deployment sheath

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/014,536 Active 2031-12-26 US8845712B2 (en) 2008-01-15 2008-01-15 Pleated deployment sheath

Country Status (8)

Country Link
US (2) US8845712B2 (en)
EP (1) EP2249749B1 (en)
JP (1) JP5710981B2 (en)
AU (1) AU2009205667B2 (en)
CA (1) CA2711507C (en)
ES (1) ES2581936T3 (en)
HK (1) HK1150530A1 (en)
WO (1) WO2009091603A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226839B1 (en) * 2013-03-14 2016-01-05 W. L. Gore & Associates, Inc. Torque sleeve
US10449335B2 (en) 2013-05-03 2019-10-22 C.R. Bard, Inc. Peelable protective sheath
US10966850B2 (en) * 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US11166806B2 (en) 2014-01-10 2021-11-09 W. L. Gore & Associates, Inc. Implantable intraluminal device
US11229539B2 (en) 2011-08-12 2022-01-25 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US11389627B1 (en) 2018-10-02 2022-07-19 Lutonix Inc. Balloon protectors, balloon-catheter assemblies, and methods thereof
US11540933B2 (en) 2017-10-11 2023-01-03 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US11903856B1 (en) 2013-03-05 2024-02-20 W. L. Gore & Associates, Inc. Tapered sleeve

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021060A1 (en) 2008-04-26 2009-10-29 Biotronik Vi Patent Ag An insertion device with a release device for releasing an article carried by a catheter and a release device of an insertion device
US8326437B2 (en) 2009-03-04 2012-12-04 W. L. Gore & Associates, Inc. Atraumatic lead removal sheath
US10045868B2 (en) * 2009-03-04 2018-08-14 W. L. Gore & Associates Inc. Atraumatic vascular graft removal sheath
AU2012209013B2 (en) * 2011-08-02 2013-11-14 Cook Medical Technologies Llc Delivery device having a variable diameter introducer sheath
US9364358B2 (en) 2012-07-27 2016-06-14 Medinol Ltd. Catheter with retractable cover and pressurized fluid
US20140172068A1 (en) * 2012-12-17 2014-06-19 Cook Medical Technologies Llc Restraining sheath with variable diameter medical device nesting region
US9849015B2 (en) * 2012-12-28 2017-12-26 Cook Medical Technologies Llc Endoluminal prosthesis introducer
US9539411B2 (en) * 2013-03-13 2017-01-10 W. L. Gore & Associates, Inc. Deconstructable endoluminal devices and related systems and methods
US10758387B2 (en) 2014-10-16 2020-09-01 Cook Medical Technologies Llc Endovascular stent graft assembly and delivery device
US10959826B2 (en) 2014-10-16 2021-03-30 Cook Medical Technology LLC Support structure for scalloped grafts
US10258492B2 (en) 2017-03-03 2019-04-16 Cook Medical Technologies Llc Prosthesis delivery system with axially collapsible sheath
US10959869B2 (en) * 2017-06-13 2021-03-30 Boston Scientific Scimed, Inc. Introducer with expandable capabilities
CN111971001B (en) * 2018-04-09 2023-09-12 波士顿科学国际有限公司 Stent delivery system with reduced deployment force
US11259944B2 (en) 2019-06-27 2022-03-01 Cook Medical Technologies Llc Stent deployment system with unwrapping deployment constraint
JPWO2023281598A1 (en) * 2021-07-05 2023-01-12

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225129A (en) 1962-06-26 1965-12-21 Budd Co Method of making memory re-shaped plastic tubes, especially fluorocarbon cylinder jackets
US4141364A (en) 1977-03-18 1979-02-27 Jorge Schultze Expandable endotracheal or urethral tube
US4411655A (en) * 1981-11-30 1983-10-25 Schreck David M Apparatus and method for percutaneous catheterization
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4569347A (en) * 1984-05-30 1986-02-11 Advanced Cardiovascular Systems, Inc. Catheter introducing device, assembly and method
ES8705239A1 (en) 1984-12-05 1987-05-01 Medinvent Sa A device for implantation and a method of implantation in a vessel using such device.
US4738666A (en) * 1985-06-11 1988-04-19 Genus Catheter Technologies, Inc. Variable diameter catheter
US4601713A (en) * 1985-06-11 1986-07-22 Genus Catheter Technologies, Inc. Variable diameter catheter
SE454482B (en) 1986-09-30 1988-05-09 Medinvent Sa DEVICE FOR IMPLANTATION
SE455834B (en) 1986-10-31 1988-08-15 Medinvent Sa DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS
US4921479A (en) * 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US5234425A (en) 1989-03-03 1993-08-10 Thomas J. Fogarty Variable diameter sheath method and apparatus for use in body passages
US5171262A (en) 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5066298A (en) * 1989-11-30 1991-11-19 Progressive Angioplasty Systems, Inc. Article and method of sheathing angioplasty balloons
GB2240926A (en) * 1990-02-14 1991-08-21 Steven Streatfield Gill An expansible cannula
DE4018525C2 (en) * 1990-06-09 1994-05-05 Kaltenbach Martin Expandable area catheter
US5201756A (en) 1990-06-20 1993-04-13 Danforth Biomedical, Inc. Radially-expandable tubular elements for use in the construction of medical devices
US5176659A (en) * 1991-02-28 1993-01-05 Mario Mancini Expandable intravenous catheter and method of using
FR2679484B1 (en) 1991-07-26 1995-02-17 Plastic Omnium Cie PROCESS FOR THE PRODUCTION OF FLUORINATED RESIN TUBES, IN PARTICULAR POLYTETRAFLUORETHYLENE.
US5447503A (en) * 1991-08-14 1995-09-05 Cordis Corporation Guiding catheter tip having a tapered tip with an expandable lumen
US5171305A (en) * 1991-10-17 1992-12-15 Imagyn Medical, Inc. Linear eversion catheter with reinforced inner body extension
US5364345A (en) 1991-10-18 1994-11-15 Imagyn Medical, Inc. Method of tubal recanalization and catheter system therefor
US6652492B1 (en) * 1991-12-13 2003-11-25 Endovascular Technologies, Inc. Dual valve, flexible sheath and method
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5458573A (en) 1992-05-01 1995-10-17 American Biomed, Inc. Everting toposcopic dilation catheter
US5352236A (en) * 1992-09-29 1994-10-04 Medtronic, Inc. Balloon protector
JPH08500757A (en) 1992-12-30 1996-01-30 シュナイダー・(ユーエスエイ)・インコーポレーテッド Device for deploying a stent implantable in the body
US5328469A (en) 1993-03-19 1994-07-12 Roger Coletti Hybrid balloon angioplasty catheter and methods of use
NL9300500A (en) * 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
US6025044A (en) 1993-08-18 2000-02-15 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5445646A (en) * 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5571135A (en) 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
US5789047A (en) 1993-12-21 1998-08-04 Japan Gore-Tex, Inc Flexible, multilayered tube
ATE151258T1 (en) 1994-04-26 1997-04-15 Ruesch Willy Ag SELF-EXPANDING STENT FOR HOLLOW ORGANS
US5476508A (en) 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
US5569183A (en) * 1994-06-01 1996-10-29 Archimedes Surgical, Inc. Method for performing surgery around a viewing space in the interior of the body
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
JP3199383B2 (en) * 1995-04-14 2001-08-20 シュナイダー(ユーエスエー)インク Rolling membrane type stent supply device
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
EP0840577B1 (en) 1995-07-07 2005-08-24 W.L. GORE & ASSOCIATES, INC. Interior liner for tubes, pipes and blood conduits
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5997508A (en) * 1996-03-28 1999-12-07 Medtronic, Inc. Expandable percutaneous introducer sheath
US5833699A (en) 1996-04-10 1998-11-10 Chuter; Timothy A. M. Extending ribbon stent
CA2211249C (en) * 1996-07-24 2007-07-17 Cordis Corporation Balloon catheter and methods of use
US5868707A (en) * 1996-08-15 1999-02-09 Advanced Cardiovascular Systems, Inc. Protective sheath for catheter balloons
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
JP2001504017A (en) * 1996-11-15 2001-03-27 クック インコーポレーティッド. Separable sleeve, stent deployment device
US5993427A (en) 1996-12-03 1999-11-30 Laborie Medical Technologies Corp. Everting tube structure
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
DE19703482A1 (en) 1997-01-31 1998-08-06 Ernst Peter Prof Dr M Strecker Stent
US5893868A (en) * 1997-03-05 1999-04-13 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US6110146A (en) * 1998-09-30 2000-08-29 Medtronic Ave, Inc. Protector for catheter balloon with guidewire backloading system
US6059813A (en) * 1998-11-06 2000-05-09 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6544278B1 (en) 1998-11-06 2003-04-08 Scimed Life Systems, Inc. Rolling membrane stent delivery system
AU1405400A (en) * 1998-12-01 2000-06-19 Atropos Limited A medical device comprising an evertable sleeve
US6719805B1 (en) 1999-06-09 2004-04-13 C. R. Bard, Inc. Devices and methods for treating tissue
US6280412B1 (en) * 1999-06-17 2001-08-28 Scimed Life Systems, Inc. Stent securement by balloon modification
JP3804351B2 (en) 1999-08-25 2006-08-02 ニプロ株式会社 Balloon catheter
US6371980B1 (en) * 1999-08-30 2002-04-16 Cardiovasc, Inc. Composite expandable device with impervious polymeric covering and bioactive coating thereon, delivery apparatus and method
AUPQ641400A0 (en) 2000-03-23 2000-04-15 Kleiner, Daniel E. A device incorporating a hollow member for being positioned along a body cavity of a patient and method of positioning same
US6432130B1 (en) * 2000-04-20 2002-08-13 Scimed Life Systems, Inc. Fully sheathed balloon expandable stent delivery system
US6387118B1 (en) * 2000-04-20 2002-05-14 Scimed Life Systems, Inc. Non-crimped stent delivery system
US6607552B1 (en) * 2000-09-18 2003-08-19 Scimed Life Systems, Inc. Rolling socks
US6899727B2 (en) * 2001-01-22 2005-05-31 Gore Enterprise Holdings, Inc. Deployment system for intraluminal devices
US6783542B2 (en) 2001-02-22 2004-08-31 Scimed Life Systems, Inc Crimpable balloon/stent protector
US6547813B2 (en) * 2001-03-23 2003-04-15 Medtronic Ave, Inc. Stent delivery catheter with folded sleeve and method of making same
JP4043210B2 (en) 2001-10-09 2008-02-06 オリンパス株式会社 Stent
AU2002357045A1 (en) 2001-11-28 2003-06-10 Benjamin S. Hsiao Endovascular graft and graft trimmer
US20050228479A1 (en) 2001-11-29 2005-10-13 Cook Incorporated Medical device delivery system
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
US6939327B2 (en) * 2002-05-07 2005-09-06 Cardiac Pacemakers, Inc. Peel-away sheath
AU2003256331A1 (en) * 2002-06-28 2004-01-19 Cook Critical Care Introducer sheath
US7115138B2 (en) * 2002-09-04 2006-10-03 Boston Scientific Scimed, Inc. Sheath tip
WO2004034767A2 (en) * 2002-09-20 2004-04-29 Flowmedica, Inc. Catheter system for renal therapy
US7105013B2 (en) * 2002-09-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Protective sleeve assembly for a balloon catheter
WO2004037333A1 (en) * 2002-10-25 2004-05-06 Nmt Medical, Inc. Expandable sheath tubing
US7753945B2 (en) 2003-01-17 2010-07-13 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
US7625337B2 (en) * 2003-01-17 2009-12-01 Gore Enterprise Holdings, Inc. Catheter assembly
US7198636B2 (en) 2003-01-17 2007-04-03 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
GB0310715D0 (en) 2003-05-09 2003-06-11 Angiomed Ag Strain management in stent delivery system
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US7780692B2 (en) * 2003-12-05 2010-08-24 Onset Medical Corporation Expandable percutaneous sheath
US7699864B2 (en) * 2004-03-18 2010-04-20 Onset Medical Corporation Expandable medical access device
US20050246008A1 (en) 2004-04-30 2005-11-03 Novostent Corporation Delivery system for vascular prostheses and methods of use
JP2008502378A (en) 2004-05-25 2008-01-31 チェストナット メディカル テクノロジーズ インコーポレイテッド Flexible vascular closure device
DE602005005567T2 (en) 2004-07-28 2009-04-30 Cordis Corp., Miami Lakes Insertion device with a low deployment force
US7955370B2 (en) * 2004-08-06 2011-06-07 Boston Scientific Scimed, Inc. Stent delivery system
US7393358B2 (en) * 2004-08-17 2008-07-01 Boston Scientific Scimed, Inc. Stent delivery system
US7691137B2 (en) 2004-09-28 2010-04-06 Boston Scientific Scimed, Inc. Rotatable sheath, assembly and method of manufacture of same
US7578838B2 (en) 2005-01-12 2009-08-25 Cook Incorporated Delivery system with helical shaft
US20060184225A1 (en) 2005-02-11 2006-08-17 Medtronic Vascular, Inc. Force distributing system for delivering a self-expanding stent
US7918880B2 (en) 2005-02-16 2011-04-05 Boston Scientific Scimed, Inc. Self-expanding stent and delivery system
US7632296B2 (en) * 2005-03-03 2009-12-15 Boston Scientific Scimed, Inc. Rolling membrane with hydraulic recapture means for self expanding stent
US8435279B2 (en) 2005-06-14 2013-05-07 Advanced Cardiovascular Systems, Inc. Delivery system for a device such as a stent
US9375215B2 (en) * 2006-01-20 2016-06-28 W. L. Gore & Associates, Inc. Device for rapid repair of body conduits
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US7780630B2 (en) * 2007-03-30 2010-08-24 Boston Scientific Scimed, Inc. Perfusion device
US8372138B2 (en) 2007-06-12 2013-02-12 Boston Scientific Scimed, Inc. Shape memory polymeric stent
CA2691064C (en) 2007-06-22 2015-11-24 David L. Bogert Helical and segmented stent-graft
DE102008048416A1 (en) 2008-08-05 2010-02-11 Acandis Gmbh & Co. Kg Medical device and method for manufacturing such a device
DE102008048417A1 (en) 2008-09-23 2010-04-01 Acandis Gmbh & Co. Kg Medical device
US8435282B2 (en) 2009-07-15 2013-05-07 W. L. Gore & Associates, Inc. Tube with reverse necking properties

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229539B2 (en) 2011-08-12 2022-01-25 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US11903856B1 (en) 2013-03-05 2024-02-20 W. L. Gore & Associates, Inc. Tapered sleeve
US9226839B1 (en) * 2013-03-14 2016-01-05 W. L. Gore & Associates, Inc. Torque sleeve
US10449335B2 (en) 2013-05-03 2019-10-22 C.R. Bard, Inc. Peelable protective sheath
US11166806B2 (en) 2014-01-10 2021-11-09 W. L. Gore & Associates, Inc. Implantable intraluminal device
US11857407B2 (en) 2014-01-10 2024-01-02 W. L. Gore & Associates, Inc. Implantable intraluminal device
US10966850B2 (en) * 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US11801155B2 (en) 2014-03-06 2023-10-31 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US11540933B2 (en) 2017-10-11 2023-01-03 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US11389627B1 (en) 2018-10-02 2022-07-19 Lutonix Inc. Balloon protectors, balloon-catheter assemblies, and methods thereof

Also Published As

Publication number Publication date
CA2711507C (en) 2013-04-16
US20090182411A1 (en) 2009-07-16
AU2009205667B2 (en) 2012-05-31
CA2711507A1 (en) 2009-07-23
WO2009091603A1 (en) 2009-07-23
ES2581936T3 (en) 2016-09-08
HK1150530A1 (en) 2012-01-06
JP5710981B2 (en) 2015-04-30
EP2249749A1 (en) 2010-11-17
JP2011509744A (en) 2011-03-31
AU2009205667A1 (en) 2009-07-23
US8845712B2 (en) 2014-09-30
EP2249749B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US8845712B2 (en) Pleated deployment sheath
US20220125610A1 (en) Evertable sheath devices, systems, and methods
CA2767540C (en) Tube with reverse necking properties
US9060894B2 (en) Catheter sheath for implant delivery
EP0943302B1 (en) Delivery catheter for positioning an endoluminal prosthesis
EP3363409B1 (en) Length extensible implantable device and methods for making such devices
US20060142838A1 (en) Medical devices including metallic films and methods for loading and deploying same
US20080132879A1 (en) Containment sleeve and deployment device
AU2012216515A1 (en) Pleated deployment sheath

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION