US20130284217A1 - Substrate Cleaning System Using Stabilized Fluid Solutions - Google Patents

Substrate Cleaning System Using Stabilized Fluid Solutions Download PDF

Info

Publication number
US20130284217A1
US20130284217A1 US13/931,376 US201313931376A US2013284217A1 US 20130284217 A1 US20130284217 A1 US 20130284217A1 US 201313931376 A US201313931376 A US 201313931376A US 2013284217 A1 US2013284217 A1 US 2013284217A1
Authority
US
United States
Prior art keywords
solution
substrate
container
proximity head
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/931,376
Inventor
Erik M. Freer
John M. de Larios
Michael Ravkin
Mikhail Korolik
Katrina Mikhaylichenko
Fred C. Redeker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to US13/931,376 priority Critical patent/US20130284217A1/en
Publication of US20130284217A1 publication Critical patent/US20130284217A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/14Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02096Cleaning only mechanical cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • C11D2111/22
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • wafers In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on semiconductor wafers (“wafers”).
  • the wafers include integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.
  • any material present in a manufacturing operation is a potential source of contamination.
  • sources of contamination may include process gases, chemicals, deposition materials, and liquids, among others.
  • the various contaminants may deposit on the wafer surface in particulate form. If the particulate contamination is not removed, the devices within the vicinity of the contamination will likely be inoperable. Thus, it is necessary to clean contamination from the wafer surface in a substantially complete manner without damaging the features defined on the wafer.
  • the size of particulate contamination is often on the order of the critical dimension size of features fabricated on the wafer. Removal of such small particulate contamination without adversely affecting the features on the wafer can be quite difficult.
  • the present invention fills these needs by providing a stable solution that can elastically hold solid materials in suspension, so that solid materials are not allowed to separate from the remainder of the cleaning solution.
  • the solution preferably includes polymeric macromolecules that stabilize the solid particles in the fluid, so that the solid particles are prevented from either floating to the top of the solution or sinking to the bottom of the solution, due to the relative buoyancies of the solid particles to the continuous medium of the solution.
  • the polymeric macromolecules form a physical network with junctions that give the solution a finite yield stress.
  • the physical network behaves as an elastic solid when deformed with stresses below the yield value. When stress above the yield stress is applied to the material, the network will yield resulting in a fluid like behavior of the solution.
  • the solid particles will be trapped in the network unable to migrate.
  • This physical network stabilizes the cleaning solution by keeping the particles suspended, but does not inhibit utility since the solution behaves as a fluid above the yield stress.
  • the polymeric additives can give the solution elasticity which can provide a normal force to the wafer surface upon application, which promotes solid-wafer contact and better contamination removal.
  • a substrate cleaning system in one embodiment, includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation. Also provided is a container for holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form.
  • a pump coupled to the container is also provided for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress causing the solution to flow.
  • a conduit is provided between the container and the proximity head system.
  • a method for making a solution for use in preparing a surface of a substrate includes providing a continuous medium that adds a polymer material to the continuous medium.
  • a fatty acid is added to the continuous medium having the polymer material, and the polymer material defines a physical network that exerts forces in the solution that overcome buoyancy forces experienced by the fatty acid, thus preventing the fatty acids from moving within the solution until a yield stress of the polymer material is exceeded by an applied agitation.
  • the applied agitation is from transporting the solution from a container to a preparation station that applies the solution to the surface of the substrate.
  • a method for using a solution for cleaning a substrate includes providing a solution in a container, where the solution is mixed from at least a continuous medium, a polymer material, and a solid material.
  • the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form.
  • the stable elastic gel form is configured to hold the solid material from in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress is imparted on the solution after synthesis of the solution and during any storage of the solution.
  • the method further includes applying at least a minimum shear stress on the solution, and the minimum shear stress is at least greater than the finite yield stress so that the stable elastic gel form transforms from solid like to liquid like behavior. Then, flowing the solution from the container after imparting the minimum shear stress, where the solution that is flown from the container has a mixed consistency of the solid material in the solution. The method then includes applying the solution to a preparation system for application to a surface of the substrate.
  • a substrate cleaning system in yet another embodiment, includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation, where the meniscus is defined by a solution.
  • the system includes a container for holding the solution, and the solution is mixed from at least a continuous medium, a polymer material, and a solid material, where the polymer material in the solution imparts a finite yield stress to the material that enables a stable elastic gel form.
  • the stable elastic gel form is configured to hold the solid material form in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress are imparted on the solution, after synthesis of the solution and during any storage of the solution.
  • the system further includes a pump for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution.
  • the pump provides agitation that exceeds the finite yield stress that transforms the stable elastic gel to liquid.
  • a head of the proximity head system receives the solution that is configured to be applied to the surface of the substrate in the form of the meniscus.
  • the meniscus can either be in a two-state form or a tri-state form, depending on the application.
  • a substrate cleaning system in still another embodiment, includes a jet application system for applying a solution to a surface of a substrate during a cleaning operation.
  • a container holding the solution is provided.
  • the solution is mixed from at least a continuous medium, a polymer material, and solid material, and the polymer material in the solution imparts a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form.
  • the stable elastic gel form is configured to hold the solid material form in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress is imparted on the solution after synthesis of the solution and during any storage of the solution.
  • a pump is provided for moving the solution from the container to the jet application system, and the pump applies at least a minimum shear stress on the solution.
  • the pump provides agitation that exceeds the finite yield stress that transforms the stable elastic gel to liquid.
  • the jet sprays the solution to the surface of the substrate so as to remove unwanted contaminants.
  • FIGS. 1 and 2 illustrate mechanics of the solution, in accordance with one embodiment of the present invention.
  • FIG. 3 illustrates an example of the mixing of the main constituents of the solution, in accordance with one embodiment of the present invention.
  • FIG. 4 illustrates an example of several containers, which may be stably stored in an elastic gel-like form, in accordance with one embodiment of the present invention.
  • FIG. 5 illustrates an example use of the solution, which transforms the solution from the stable gel-like form to a low viscosity fluid through shear thinning, in accordance with one embodiment of the present invention.
  • FIG. 6 illustrates one example method of making the solution, in accordance with one embodiment of the present invention.
  • FIG. 7 illustrates one example method of using the solution, in accordance with one embodiment of the present invention.
  • the material is defined as a solution that can be used in the preparation of substrates.
  • Preparation broadly defined, includes the cleaning, etching, depositing, removing, or altering of surfaces of substrates, and in particular, the cleaning of particulates, contaminants or unwanted materials, layers, or surfaces form a substrate.
  • a “substrate,” as an example used herein, denotes without limitation, semiconductor wafers, hard drive disks, optical discs, glass substrates, and flat panel display surfaces, liquid crystal display surfaces, etc., which may become contaminated during manufacturing or handling operations. Depending on the actual substrate, a surface may become contaminated in different ways, and the acceptable level of contamination is defined in the particular industry in which the substrate is handled.
  • the solution is a suspended solution, that is engineered to suspend solids within a polymer network material.
  • the polymer network defines a physical network that behaves as an elastic solid when deformed with stresses below its yield value.
  • the solution includes at least a continuous medium (e.g., water), a polymer, and solids (e.g., fatty acids).
  • the solids although may have some buoyancy relative to the continuous medium of the solution, will be held in place, and thus will not be allowed to either sink or float. If the solids were to sink or float, the solution would have to be re-mixed before use, with may introduce downtime or uncertainty in the degree of mixing needed to produce a ready to use solution.
  • the polymer of the solution is configured to make the solution behave like a viscoplastic fluid (e.g., gel-like), which will suspend and hold the solids in place within the mixed solution.
  • the solution which in one embodiment acts like a physical gel, has a finite yield stress that is greater than the stress from the buoyancy force of the suspended solids, thus preventing sedimentation or creaming, which stabilizes the solution.
  • the stabilizing macromolecules of the polymer give the solution elasticity, which enhances contamination removal.
  • FIG. 1 illustrates a graph 100 which plots shear stress in the Y-axis versus shear rate in the X-axis.
  • Graph 100 is provided to illustrate a plot 102 a and a plot 102 b , each of which define a different plastic viscosity.
  • Plot 102 a will have a plastic viscosity A
  • plot 102 b will have a plastic viscosity B, which is distinguished by the graphed slope.
  • each of plots 102 a and 102 b begin at X-axes, at zero.
  • a viscoplastic fluid will therefore possess a yield stress, ⁇ y , that must be exceeded before the viscoplastic fluid will deform continuously.
  • viscoplastic fluids may include materials, but not limited to, materials commonly referred to as “Bingham plastics.” Bingham plastics exhibit a linear behavior of shear stress versus the shear rate, as defined in FIG. 1 . The higher the shear rate that is applied to the viscoplastic fluid, the more the viscosity drops, which allows the viscoplastic fluid to exhibit Newtonian characteristics. As used herein, Newtonian fluids are those that will adhere to the rheological definition of Newton's Law of viscosity.
  • a non-Newtonian fluid is a fluid in which the viscosity changes with an applied shear stress.
  • a non-Newtonian fluid does not obey Newton's Law of viscosity.
  • the shear stress is a non-linear function of the shear rate.
  • An example of a non-Newtonian fluid is a soft condensed matter which occupies a middle ground between the extremes of a solid and a liquid.
  • the soft condensed matter is easily deformable by external stresses and examples of the soft condensed matter include emulsions, gels, colloids, foam, etc. It should be appreciated that an emulsion is a mixture of immiscible liquids such as, for example, toothpaste, mayonnaise, oil in water, etc.
  • FIG. 2 illustrates a graph 120 that plots shear rate in the X-axes versus viscosity in the Y-axes.
  • a curve 122 is shown to illustrate the mechanics of shear thinning when a viscoplastic fluid experiences an increase in shear rate. In essence, the viscosity of the viscoplastic fluid will drop along the curve 122 as the shear rate increases. As the shear thinning direction illustrates, the more shear rate that is applied to the viscoplastic fluid, the characteristic of a non-Newtonian behavior will change into a more Newtonian behavior, as the shear rate increases.
  • the viscoplastic fluid will be in a substantially stable and substantially elastic solid form (i.e., substantially non-deformed state) when the shear rate is zero, as illustrated in both FIGS. 1 and 2 .
  • the shear rate increases, the viscosity will drop, having crossed the critical yield stress point, to cause the transformation of the viscoplastic fluid from a substantially solid elastic form to a substantially fluid form.
  • the shear thinning process is therefore one in which the apparent viscosity of the fluid decreases with increasing shear rate. This type of behavior may also be referred to as “pseudoplastic”, and no initial stress (yield stress) is required to initiate shearing.
  • one embodiment of the present invention will define a solution that is constructed so as to place the solution into a substantially stable suspended form.
  • the substantially stable suspended form will be one that is substantially elastically solid and non-flowing. Some elastic movement may occur, similar to the movement of jelly. Further, the stable suspended form will hold in place (i.e., suspend) any constituents that define the solution.
  • the solution will therefore exhibit a viscoplastic behavior, such that a minimum yield stress will be required to be applied to the solution before the solution can be used and applied in the form of a Newtonian fluid.
  • FIG. 3 illustrates a system diagram 300 identifying constituents that may be mixed together to define a suspended solution having a viscoplastic fluid characteristic, in accordance with one embodiment of the present invention.
  • the basic components of the solution in accordance with one embodiment of the present invention, will be three components. Other parts, fluids, chemicals, or additives may also be added, but the basic elements are defined by the three shown in FIG. 3 .
  • a first component will be a polymer network producing material 302
  • a second component will be a continuous media 304
  • the third component will be a solid material 306 .
  • the polymer network producing material 302 is preferably a polymer, such as a poly (acrylic acid) that is capable of defining a polymer network when combined with the other components of the solution.
  • polymers capable of absorbing a yield stress without substantial deformation may include, without limitation, Carbapol, Stabileze, Rheovis ATA and Rheovis ATN, Poly(acrylic acid), Carageenan, Methylcellulose, Hydroxypropylmethylcellulose, Hydroxyethylcellulose, Gum Arabic (Acacia), Gum Tragacanth, Polyacrylates, Carbomer, etc.
  • the selected polymer should be one that will allow the resulting solution to produce a network that will assist in stabilizing the solution into an elastic solid state.
  • the continuous media 304 may be de-ionized water, a hydrocarbon, selected base fluids, hydrofluoric acid (HF), ammonia, and other chemicals and/or mixtures of chemicals in DI water, that may be useful in cleaning surfaces of semiconductor substrates.
  • the continuous media 304 is an aqueous liquid defined by water (de-ionized or otherwise) alone.
  • an aqueous liquid is defined by water in combination with other constituents that are in solution with the water.
  • a non-aqueous liquid is defined by a hydrocarbon, a fluorocarbon, a mineral oil, or an alcohol, among others.
  • the liquid can be modified to include ionic or non-ionic solvents and other chemical additives.
  • the chemical additives to the liquid can include any combination of co-solvents, pH modifiers (e.g., acids and bases), chelating agents, polar solvents, surfactants, ammonia hydroxide, hydrogen peroxide, hydrofluoric acid, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and rheology modifiers such as polymers, particulates, and polypeptides.
  • the solids material 306 may be defined by aliphatic acids, carboxylic acids, paraffin, wax, polymers, polystyrene, resins, polypeptides, and other visco-elastic materials.
  • the solid portion 306 material should be present at a concentration that exceeds its solubility limit within the continuous media 304 . Also, it should be understood that the cleaning effectiveness associated with a particular solid material may vary as a function of temperature, pH, and other environmental conditions.
  • the aliphatic acids represent essentially any acid defined by organic compounds in which carbon atoms form open chains.
  • a fatty acid is an example of an aliphatic acid that can be used as the solid material.
  • fatty acids that may be used as the solid include lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, gadoleic acid, eurcic acid, butyric acid, caproic acid, caprylic acid, myristic acid, margaric acid, behenic acid, lignoseric acid, myristoleic acid, palmitoleic acid, nervanic acid, parinaric acid, timnodonic acid, brassic acid, clupanodonic acid, lignoceric acid, cerotic acid, and mixtures thereof, among others.
  • the solids material 306 can represent a mixture of fatty acids defined by various carbon chain lengths extending from C-1 to about C-26 (fatty acids only have an even number of carbons).
  • Carboxylic acids are defined by essentially any organic acid that includes one or more carboxyl groups (COOH).
  • the carboxylic acids can include mixtures of various carbon chain lengths extending from C-1 through about C-100.
  • the carboxylic acids can include long-chain alcohols, ethers, and/or ketones, above the solubility limit in the continuous medium 304 .
  • the fatty acid used as the solid acts as a surfactant when coming into contact with a contaminant particle on a surface of a substrate.
  • the polymer network producing material 302 , the continuous media 304 , and the solids material 306 are then passed through lines 308 , by way of valves 310 a , 310 b , and 310 c , which provide the material to a synthesis container 320 .
  • Control may be by way of computer control or manual control.
  • the lines 308 and the valves 310 are illustrated to show structure that can be used for transporting fluids and controlling access to fluids that may be delivered to a receiving source. However, it should be understood that any number for structures are possible, so long as the fluids can be communicated to their desired location for processing, storing, or use.
  • synthesis container 320 may be a beaker, a tank, a mixing manifold, a staging pipe, a holding cylinder, a container capable of being pressurized, a temperature controlled tank, or any type of structural container that will hold at least the received materials from the polymer network producing material 302 , the continuous media 304 , and the solids material 306 .
  • the materials from 302 , 304 , and 306 may be provided directly through facilities, and may not necessarily be pre-stored in a container, but for ease of illustration, containers are shown providing their contents in a controlled manner, as dictated by a human or computer, to the synthesis container 320 .
  • the synthesis container 320 may be provider with a mixer 324 , that will enable the synthesis container to mix the constituents, at given times, when introduced into the synthesis container 320 .
  • the result of mixing and synthesizing the different constituents in the synthesis container 320 will be to produce a suspended solution 322 .
  • the suspended solution when mixed and synthesized, is provided with a heat source 326 , that is controlled so as to enable temperature specific mixing, blending, and/or dissolving of the various constituents at specific times.
  • the resulting suspended solution 322 is then moved to a container 330 , by way of an output flow line 328 .
  • the output flow line may be any type of conduit or conduits, that can transfer the suspended solution 322 from the synthesis container 320 to the container 330 .
  • a minimum shear stress may be applied so as to cause the viscoplastic nature of the suspense solution 322 to flow along the output flow line 328 and into container 330 .
  • the suspended solution 322 may continue to ripen over time, such that nucleation of the solids will occur, and the solids will either join or grow together so as to produce larger sized solids within the suspended solution 322 .
  • the solids within the suspended solution 322 will be suspended by the polymer network material so that the solids do not either rise to the top of the container 330 or fall to the bottom of the container 330 .
  • FIG. 4 illustrates a plurality of containers 330 having solids dispersed in a suspended solution, which will sit, hold and store in a substantially elastic state (e.g., a solid).
  • a substantially elastic state e.g., a solid
  • the solid state of the solution is therefore designed to function as a viscoplastic fluid that is elastic, and any buoyancy associated with solids within the continuous medium of the suspended solution 332 will remain substantially in place.
  • the suspended solution 332 will be ready for use in a well dispersed manner, and any storage associated with the solution will not require pre-use mixing, as the suspended solution and its constituents are already in a dispersed and mixed form.
  • the solution in a viscoplastic fluid state is that the solution may be pre-mixed in larger batches, and then stored and transported to their point of use. If use of the solution is not needed until a later point in time, the solution will continue to hold its dispersed and stable suspended form until its use is dictated.
  • FIG. 5 illustrates a system diagram for using the suspended solution from a container 330 , when its use is required on substrate preparation systems 400 .
  • the container 330 will be holding the suspended solution 332 .
  • the solution may be pumped out of the container 330 using a pump 352 .
  • the pump 352 is shown connected to a conduit 350 that is placed within the suspended solution 332 .
  • the agitation provided by the pump 352 will therefore work to apply a shear stress to the suspended solution 332 , which therefore causes a shear stress application zone 344 (somewhere in the container) to cause the solution (or at least part of the solution) to flow continuously.
  • the lower viscosity fluid will thus freely move along the conduit 350 , as shown by indicator 332 a .
  • the flowing solution will then be transported by the pump 352 , that directs the fluid to some destination.
  • the pump 352 acts to transport the suspended solution 332 , and the shear thinning behavior of the suspended solids allows for easy transport through conduits 360 a and 362 .
  • the pump 352 may be connected to flow the low viscosity solution through conduit 360 a into a foam generation system 370 .
  • the foam generation system 370 may include a gas pressure chamber 372 that is configured to allow a foaming process to occur to the solution before it is communicated through a conduit 360 b .
  • Conduit 360 b will therefore carry the solution in a tri-state body form to one or more systems of the substrate preparation systems 400 .
  • a tri-state body is one where a “gas” component is added to the “fluid” component and the “solids” component of the solution.
  • a tri-state body will be defined in greater detail below.
  • the pump 352 may simply communicate the solution along conduit 362 , in a two-state body to the substrate preparation system 400 .
  • a two-state body is one that has a “fluid” component and a “solids” component, but substantially no “gas” component. It is said that substantially no gas is part of a two state body solution, but some gas may be inherently in the solution.
  • the substrate preparation system 400 may include any number of systems, and a few are provided as an example.
  • One example system may be a proximity head system 402 , that uses a proximity head to apply a meniscus to the surface of a substrate between a head surface and the substrate surface.
  • One proximity head on the top of the substrate may be used, or two proximity heads may be used, such that both the top and bottom of the substrate is processed at about the same time.
  • the substrate is caused to move along a horizontal direction, such that the meniscus is caused to traverse the surface of the substrate.
  • the heads of the proximity head system may be moved across the surface of the substrate.
  • a “meniscus”, as used herein, may be a controlled fluid meniscus that forms between the surface of a proximity head and a substrate surface, and surface tension of the fluid holds the meniscus in place and in a controlled form. Controlling the meniscus is also ensured by the controlled delivery and removal of fluid, which enables the controlled definition of the meniscus, as defined by the fluid.
  • the meniscus may be used to either clean, process, etch, or process the surface of the substrate. The processing on the surface may be such that particulates or unwanted materials are removed by the meniscus.
  • the meniscus may be formed out of a tristate body (e.g., a foamed solution), and the solution may simply sit on the surface at the substrate, but mechanically function different than fluid solutions that are affected by surface tension.
  • a foamed solution behaves more like a non-Newtonian fluid.
  • a Newtonian meniscus fluid is controlled by supplying a fluid to the proximity heads while removing the fluid with a vacuum in a controlled manner.
  • a gas tension reducer may be provided to the proximity heads, so as to reduce the surface tension between the meniscus and the substrate.
  • the gas tension reducer supplied to the proximity heads allow the meniscus to move over the surface of the substrate at an increased speed (thus increasing throughput).
  • An example of a gas tension reducer may be isopropyl alcohol mixed with nitrogen (IPA/N 2 ).
  • Another example of a gas tension reducer may be carbon dioxide (CO2).
  • CO2 carbon dioxide
  • Other types of gasses may also be used so long as the gasses do not interfere with the processing desired for the particular surface of the substrate.
  • a next example is a proximity head-brush system 404 .
  • This example is provided to illustrate that the proximity head system may be combined with other types of cleaning systems, such brush rollers that are configured to scrub the surface of a wafer.
  • the surface may be scrubbed either on top or bottom with a brush, and a proximity head system may be used either on the top or the bottom.
  • the brushes may be polyvinyl alcohol (PVA) brushes, that may provide fluids to the surface of the substrate while rotating.
  • PVA polyvinyl alcohol
  • the fluids provided by the brushes may be provided through the brush (TTB) core and the fluids may be for cleaning, and/or etching, and/or configuring the surface of the substrate to be either hydrophobic or hydrophilic, depending on the application.
  • a spray/jet system 406 which is configured to apply either the tri-state bodies or the two-state bodies to the surface of the substrate. Sprays and jets may be applied such that the solids in the tri-state bodies or two-state bodies can be efficiently dispensed so as to allow the appropriate preparation operation.
  • a module can be configured as a tank. The tank can be filled with the solution, and a substrate (or batches of substrates) can be lowered into the tank and then removed from the tank.
  • This type of substrate processing may be referred to as dipping.
  • the solution can either be in an elastic state or in a fluid state.
  • the movement of the substrate into the solution may provide the needed shear stresses that will overcome the yield stress of the suspended solution 332 .
  • the preparation operation may be for cleaning, drying, etching, transformation of surface states (e.g., hydrophobic/hydrophilic), and/or general cleaning to remove particles with the assistance of the solids, that are applied using the systems of the substrate preparation system 400 .
  • surface states e.g., hydrophobic/hydrophilic
  • the container 330 and the suspended solution 332 may be stored for a period of time and when used, can be transformed from a substantial solid state to a fluid flowing Newtonian state, by the application of shear stresses that will overcome the yield stress of the suspended solution 332 so that it can flow and be applied to the surface of a substrate for its application.
  • An example amount of minimum sheer stress may be between about le-6 Pa and about 100 Pa. However, the exact amount will change depending on the combined elements of the particular solution.
  • FIG. 6 illustrates an example recipe 600 for generating a solution that will exhibit a substantial solid elastic state when stored, and then transformed to a substantial Newtonian fluid upon the application of shear stresses when the solution is needed.
  • the recipe includes operation 602 where a continuous medium is supplied.
  • the continuous medium can be defined by a number of fluids and/or materials, but for this specific example, the continuous medium is de-ionized (DI) water.
  • DI de-ionized
  • the continuous medium is then supplied with a polymer, where it is mixed until it is substantially dissolved in the de-ionized water in operation 604 .
  • the mixed solution of 604 is them heated in operation 606 .
  • the heating of the solution should take place such that the temperature is between about 30° C. and about 100° C., and in one embodiment, between about 65° C., and about 85° C.
  • a surfactant is added to the mixture.
  • the surfactant material is preferably one of ammonium lauryl sulfate, linear alkyl benzene sulfonic acic, triethanol amine lauryl sulfate, or a ionic surfactant.
  • RPM revolution per minute
  • High RPM mixing should continue as long as possible, but without generating a noticeable froth layer. If some bubbles are created during this mixing operation, a minimum amount of bubbles would be allowable.
  • a neutralizing base component will be added to the solution once the solution is again heated to a temperature range of between about 70° C. and about 80° C.
  • the neutralizing basic component is ammonia (i.e. NH4OH).
  • Other neutralizing basic components may also work, for instance, tetramethyl ammonium hydroxide, triethanol amine, sodium hydroxide, potassium hydroxide can work.
  • the solid component is added and mixed until the solid is substantially melted in the heated mixture. Mixing of the solid component in the solution in operation 614 will continue until the solid component is substantially dissolved in the solution.
  • a chelating agent is added and then mixed. Other chelating agents may also work, for instance, EDTA, lactic acid, glycine, gluconic acid, citric acid may work. At this point, the solution is still preferably held at about a temperature range between 65° C. and about 85° C.
  • the solution will mix in operation 616 , for between about 5 minutes and about 120 minutes.
  • the solution is cool to about room temperature and then moved into a container, such as container 330 of FIG. 3 .
  • the solution will cool once moved to the container 330 .
  • the solution will undergo nucleation until its end solid elastic state is reached and held.
  • the final solution will appear to have a milky white color, and the viscosity of the solution.
  • the solution will change in time, to a consistency having slightly more viscosity than water. At this point, the solution will behave like a viscoplastic, or equivalently like a Bingham plastic.
  • the solution can be stored, having the solids (e.g., fatty acids) in a stable and substantial suspension.
  • Another example recipe for formulating a basic solution is defined in Table A.
  • a beaker of having a size of about 1 liter, is used to illustrate an example formulation of the solution.
  • FIG. 7 illustrates a flowchart 700 defining example operations for using the suspended solution, in accordance with one embodiment of the present invention.
  • the method begins at operation 720 , where a container of the solution characterized as a stable suspended solution is obtained.
  • the solution may have been stored for some time, or may have just been created, and allowed to cool.
  • the container will hold a viscoplastic fluid that holds the solids in a suspended form, thus not allowing the buoyancy of the solids relative to the continuous medium to be overcome.
  • a shear stress is applied to the solution to transform its non-Newtonian character to a Newtonian character.
  • the non-Newtonian character is that of the viscoplastic material with a yield stress (e.g., exhibits a substantially solid form).
  • the viscoplastic material will shear thin until Newtonian behavior dominates in operation 704 .
  • the solution is allowed to flow from the container to a next stage, before application to a substrate, through one or more application systems.
  • the solution is optionally foamed so as to create a tri-state body. If a tri-state body is not desired, the method moves to operation 710 where the solution in two-state form is flowed to an application system.
  • the application system may be any system such as those described with reference to FIG. 5 , or any other system that may be involved in the cleaning of parts, surfaces, or semiconductor substrates.
  • the solution is applied to a surface of a substrate.
  • the solution will then act to assist in the cleaning operation of a substrate, where the solids assist in removing of particles that may be present on the surface.
  • a tri-state body cleaning material contains a plurality of tri-state bodies that include a gas phase, a liquid phase and a solid phase.
  • the gas phase and liquid phase provides an intermediary to bring the solid phase into close proximity with contaminant particles on a substrate surface
  • the gas portion is defined to occupy 5% to 99.9% of the tri-state body cleaning material by volume. In another embodiment, the gas portion can occupy between about 15% and about 40% of the tri-state body, and still another embodiment, the gas portion can occupy between about 20% and about 30% of the tri-state body.
  • the gas or gases defining a gas portion can be either inert, e.g., nitrogen (N 2 ), argon (Ar), etc., or reactive, e.g., oxygen (O 2 ), ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), air, hydrogen (H 2 ), ammonia (NH 3 ), hydrogen fluoride (HF), hydrochloric acid (HCl), etc.
  • the gas portion includes only a single type of gas, for example, nitrogen (N 2 ).
  • the gas portion is a gas mixture that includes mixtures of various types of gases, such as: ozone (O 3 ), oxygen (O 2 ), carbon dioxide (CO 2 ), hydrochloric acid (HCl), hydrofluoric acid (HF), nitrogen (N 2 ), and argon (Ar); ozone (O 3 ) and nitrogen (N 2 ); ozone (O 3 ) and argon (Ar); ozone (O 3 ), oxygen (O 2 ) and nitrogen (N 2 ); ozone (O 3 ), oxygen (O 2 ) and argon (Ar); ozone (O 3 ), oxygen (O 2 ), nitrogen (N 2 ), and argon (Ar); and oxygen (O 2 ), argon (Ar), and nitrogen (N 2 ).
  • the gas portion can include essentially any combination of gas types as long as the resulting gas mixture can be combined with
  • the solid portion of the tri-state body may possess physical properties representing essentially any sub-state, wherein the solid portion is defined as a portion other than the liquid or gas portions.
  • physical properties such as elasticity and plasticity can vary among different types of solid portions within the tri-state body.
  • the solid portion can be defined as crystalline solids or non-crystalline solids. Regardless of their particular physical properties, the solid portion of the tri-state body should be capable of avoiding adherence to the substrate surface when positioned in either close proximity to or in contact with the substrate surface or capable of being easily removed (e.g., hydrodynamic removal with rinse). Additionally, the physical properties of the solid portion should not cause damage to the substrate surface during the cleaning process.
  • the solid portion should be capable of establishing an interaction with the contaminant particle present on the substrate surface when positioned in either close proximity to or contact with the particle.
  • the solid portion has foam inhibiting properties.
  • the solid portion has foam enhancing properties.
  • the foam enhancing or inhibiting properties can be adjusted, either in a stepped manner or in accordance with a recipe.
  • the solid portion avoids dissolution into the liquid portion and gas portions and has a surface functionality that enables dispersion throughout the liquid portion.
  • the solid portions does not have surface functionality that enables dispersion throughout the liquid portion, therefore requiring chemical dispersants to be added to the liquid portion to before the solid portions can be dispersed through the liquid portion.
  • the solid portions form through a precipitation reaction where a dissolved component in the liquid phase reacts by the addition of one or more components to form an insoluble compound.
  • the solid portion goes into suspension in the liquid portion when a base is added to the liquid portion (i.e., by altering the zeta potential).
  • the solid portion may take one or more of several different forms.
  • the solid portion may form aggregates, colloids, gels, coalesced spheres, or essentially any other type of agglutination, coagulation, flocculation, agglomeration, or coalescence.
  • the exemplary list of solid portion forms identified above is not intended to represent an inclusive list, and alternates or extensions falling within the spirit of the disclosed embodiments are possible.
  • the solid portion can be defined as essentially any solid material capable of functioning in the manner previously described with respect to their interaction with the substrate and the contaminant particle.

Abstract

A substrate cleaning systems are provided. One system includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation. Also provided is a container for holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form. A pump coupled to the container is also provided for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress causing the solution to flow. A conduit is provided between the container and the proximity head system.

Description

    CLAIM OF PRIORITY
  • This application is a Divisional application claiming priority from co-pending U.S. application Ser. No. 11/641,362, filed on Dec. 18, 2006, which claims the benefit of U.S. Provisional Application No. 60/755,377, filed Dec. 30, 2005. The disclosure of the above-identified application is incorporated herein by reference.
  • CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is related to U.S. Pat. No. 7,441,299, issued on Oct. 28, 2008, and entitled “Apparatuses and Methods for Cleaning a Substrate,” U.S. Pat. No. 8,043,441, issued on Oct. 25, 2011, and entitled “Method and Apparatus for Cleaning a Substrate Using Non-Newtonian Fluids,” U.S. Pat. No. 7,416,370, issued on Aug. 26, 2008, and entitled “Method and Apparatus for Transporting a Substrate Using Non-Newtonian Fluid,” U.S. Pat. No. 8,323,420, issued on Dec. 4, 2012, and entitled “Method for Removing Material from Semiconductor Wafer and Apparatus for Performing the Same,” U.S. Pat. No. 7,568,490, issued on Aug. 4, 2009, and entitled “Method and Apparatus for Cleaning Semiconductor Wafers using Compressed and/or Pressurized Foams, Bubbles, and/or Liquids,” U.S. Pat. No. 7,648,584, issued on Jan. 19, 2010, entitled “Method and Apparatus for removing contamination from a substrate,” U.S. Pat. No. 7,737,097, issued on Jun. 15, 2010, entitled “Method for removing contamination from a substrate and for making a cleaning solution,” and U.S. Pat. No. 7,696,141, issued on Apr. 13, 2010, entitled “Cleaning compound and method and system for using the cleaning compound.” The disclosure of each of the above-identified related applications is incorporated herein by reference.
  • BACKGROUND
  • In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on semiconductor wafers (“wafers”). The wafers include integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.
  • During the series of manufacturing operations, the wafer surface is exposed to various types of contaminants Essentially any material present in a manufacturing operation is a potential source of contamination. For example, sources of contamination may include process gases, chemicals, deposition materials, and liquids, among others. The various contaminants may deposit on the wafer surface in particulate form. If the particulate contamination is not removed, the devices within the vicinity of the contamination will likely be inoperable. Thus, it is necessary to clean contamination from the wafer surface in a substantially complete manner without damaging the features defined on the wafer. However, the size of particulate contamination is often on the order of the critical dimension size of features fabricated on the wafer. Removal of such small particulate contamination without adversely affecting the features on the wafer can be quite difficult.
  • Conventional wafer cleaning methods have relied heavily on mechanical force to remove particulate contamination from the wafer surface. As feature sizes continue to decrease and become more fragile, the probability of feature damage due to application of mechanical force to the wafer surface increases. For example, features having high aspect ratios are vulnerable to toppling or breaking when impacted by a sufficient mechanical force. To further complicate the cleaning problem, the move toward reduced feature sizes also causes a reduction in the size of particulate contamination. Particulate contamination of sufficiently small size can find its way into difficult to reach areas on the wafer surface, such as in a trench surrounded by high aspect ratio features. Thus, efficient and non-damaging removal of contaminants during modem semiconductor fabrication represents a continuing challenge to be met by continuing advances in wafer cleaning technology. It should be appreciated that the manufacturing operations for flat panel displays suffer from the same shortcomings of the integrated circuit manufacturing discussed above.
  • Many times, solutions that are engineered for cleaning surfaces are not sufficiently stable, and over time, their consistencies may change. An example of changes in consistencies is when materials in the solutions either float to the top or sink to the bottom. If this happens, there is a need for re-mixing, or reconfirming the solution so that it can still be applied to the surface of the substrate and the anticipated action/result of the solution will still be valid. For this reason, some solutions cannot be made and stored for later use, as the solution many not properly function without extra testing or reconditioning.
  • In view of the forgoing, there is a need for solutions that can be made, stored, and used at later times, without the need for extra testing, sampling, re-agitation, re-conditioning, re-mixing, or the like.
  • SUMMARY
  • Broadly speaking, the present invention fills these needs by providing a stable solution that can elastically hold solid materials in suspension, so that solid materials are not allowed to separate from the remainder of the cleaning solution. The solution preferably includes polymeric macromolecules that stabilize the solid particles in the fluid, so that the solid particles are prevented from either floating to the top of the solution or sinking to the bottom of the solution, due to the relative buoyancies of the solid particles to the continuous medium of the solution. In one embodiment, the polymeric macromolecules form a physical network with junctions that give the solution a finite yield stress. Thus, the physical network behaves as an elastic solid when deformed with stresses below the yield value. When stress above the yield stress is applied to the material, the network will yield resulting in a fluid like behavior of the solution. If the stress provided by the buoyancy force of the solid is below the yield stress of the continuous medium, then the solid particles will be trapped in the network unable to migrate. This physical network stabilizes the cleaning solution by keeping the particles suspended, but does not inhibit utility since the solution behaves as a fluid above the yield stress. In addition, the polymeric additives can give the solution elasticity which can provide a normal force to the wafer surface upon application, which promotes solid-wafer contact and better contamination removal.
  • It should be appreciated that the present invention can be implemented in numerous ways, including as an apparatus, a method and a system. Several inventive embodiments of the present invention are described below.
  • In one embodiment, a substrate cleaning system is provided. The system includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation. Also provided is a container for holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form. A pump coupled to the container is also provided for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress causing the solution to flow. A conduit is provided between the container and the proximity head system.
  • In one embodiment, a method for making a solution for use in preparing a surface of a substrate is provided. The method includes providing a continuous medium that adds a polymer material to the continuous medium. A fatty acid is added to the continuous medium having the polymer material, and the polymer material defines a physical network that exerts forces in the solution that overcome buoyancy forces experienced by the fatty acid, thus preventing the fatty acids from moving within the solution until a yield stress of the polymer material is exceeded by an applied agitation. The applied agitation is from transporting the solution from a container to a preparation station that applies the solution to the surface of the substrate.
  • In another embodiment, a method for using a solution for cleaning a substrate is provided. The method includes providing a solution in a container, where the solution is mixed from at least a continuous medium, a polymer material, and a solid material. The polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form. The stable elastic gel form is configured to hold the solid material from in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress is imparted on the solution after synthesis of the solution and during any storage of the solution. The method further includes applying at least a minimum shear stress on the solution, and the minimum shear stress is at least greater than the finite yield stress so that the stable elastic gel form transforms from solid like to liquid like behavior. Then, flowing the solution from the container after imparting the minimum shear stress, where the solution that is flown from the container has a mixed consistency of the solid material in the solution. The method then includes applying the solution to a preparation system for application to a surface of the substrate.
  • In yet another embodiment, a substrate cleaning system is disclosed. The system includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation, where the meniscus is defined by a solution. The system includes a container for holding the solution, and the solution is mixed from at least a continuous medium, a polymer material, and a solid material, where the polymer material in the solution imparts a finite yield stress to the material that enables a stable elastic gel form. The stable elastic gel form is configured to hold the solid material form in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress are imparted on the solution, after synthesis of the solution and during any storage of the solution. The system further includes a pump for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress that transforms the stable elastic gel to liquid. A head of the proximity head system receives the solution that is configured to be applied to the surface of the substrate in the form of the meniscus. The meniscus can either be in a two-state form or a tri-state form, depending on the application.
  • In still another embodiment, a substrate cleaning system is disclosed. The system includes a jet application system for applying a solution to a surface of a substrate during a cleaning operation. A container holding the solution is provided. The solution is mixed from at least a continuous medium, a polymer material, and solid material, and the polymer material in the solution imparts a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form. The stable elastic gel form is configured to hold the solid material form in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress is imparted on the solution after synthesis of the solution and during any storage of the solution. A pump is provided for moving the solution from the container to the jet application system, and the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress that transforms the stable elastic gel to liquid. And, the jet sprays the solution to the surface of the substrate so as to remove unwanted contaminants.
  • Other aspects of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, and like reference numerals designate like structural elements.
  • FIGS. 1 and 2 illustrate mechanics of the solution, in accordance with one embodiment of the present invention.
  • FIG. 3 illustrates an example of the mixing of the main constituents of the solution, in accordance with one embodiment of the present invention.
  • FIG. 4 illustrates an example of several containers, which may be stably stored in an elastic gel-like form, in accordance with one embodiment of the present invention.
  • FIG. 5 illustrates an example use of the solution, which transforms the solution from the stable gel-like form to a low viscosity fluid through shear thinning, in accordance with one embodiment of the present invention.
  • FIG. 6 illustrates one example method of making the solution, in accordance with one embodiment of the present invention.
  • FIG. 7 illustrates one example method of using the solution, in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • An invention is described for methods, systems for use, and methods for making materials for use in preparation of substrates, which may be used in the semiconductor industry. In one embodiment, the material is defined as a solution that can be used in the preparation of substrates. “Preparation”, broadly defined, includes the cleaning, etching, depositing, removing, or altering of surfaces of substrates, and in particular, the cleaning of particulates, contaminants or unwanted materials, layers, or surfaces form a substrate. A “substrate,” as an example used herein, denotes without limitation, semiconductor wafers, hard drive disks, optical discs, glass substrates, and flat panel display surfaces, liquid crystal display surfaces, etc., which may become contaminated during manufacturing or handling operations. Depending on the actual substrate, a surface may become contaminated in different ways, and the acceptable level of contamination is defined in the particular industry in which the substrate is handled.
  • The solution, defined herein, is a suspended solution, that is engineered to suspend solids within a polymer network material. The polymer network defines a physical network that behaves as an elastic solid when deformed with stresses below its yield value. The solution includes at least a continuous medium (e.g., water), a polymer, and solids (e.g., fatty acids). The solids, although may have some buoyancy relative to the continuous medium of the solution, will be held in place, and thus will not be allowed to either sink or float. If the solids were to sink or float, the solution would have to be re-mixed before use, with may introduce downtime or uncertainty in the degree of mixing needed to produce a ready to use solution.
  • As will be described below, the polymer of the solution is configured to make the solution behave like a viscoplastic fluid (e.g., gel-like), which will suspend and hold the solids in place within the mixed solution. The solution, which in one embodiment acts like a physical gel, has a finite yield stress that is greater than the stress from the buoyancy force of the suspended solids, thus preventing sedimentation or creaming, which stabilizes the solution. In addition, the stabilizing macromolecules of the polymer give the solution elasticity, which enhances contamination removal.
  • It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
  • FIG. 1 illustrates a graph 100 which plots shear stress in the Y-axis versus shear rate in the X-axis. Graph 100 is provided to illustrate a plot 102 a and a plot 102 b, each of which define a different plastic viscosity. Plot 102 a will have a plastic viscosity A and plot 102 b will have a plastic viscosity B, which is distinguished by the graphed slope. As shown, each of plots 102 a and 102 b begin at X-axes, at zero. A viscoplastic fluid will therefore possess a yield stress, τy, that must be exceeded before the viscoplastic fluid will deform continuously. Below the yield stress, only elastic deformation occurs on the viscoplastic fluid. Once the yield stress is exceeded, the viscoplastic fluid will begin to deform continuously, and as additional shear stress is applied, the shear rate will increase proportionally; the proportionality constant is the viscosity of the viscoplastic fluid.
  • Examples of viscoplastic fluids may include materials, but not limited to, materials commonly referred to as “Bingham plastics.” Bingham plastics exhibit a linear behavior of shear stress versus the shear rate, as defined in FIG. 1. The higher the shear rate that is applied to the viscoplastic fluid, the more the viscosity drops, which allows the viscoplastic fluid to exhibit Newtonian characteristics. As used herein, Newtonian fluids are those that will adhere to the rheological definition of Newton's Law of viscosity.
  • A non-Newtonian fluid, as used herein, is a fluid in which the viscosity changes with an applied shear stress. A non-Newtonian fluid does not obey Newton's Law of viscosity. The shear stress is a non-linear function of the shear rate. Depending on how the apparent viscosity changes with shear rate, the flow behavior will also change. An example of a non-Newtonian fluid is a soft condensed matter which occupies a middle ground between the extremes of a solid and a liquid. The soft condensed matter is easily deformable by external stresses and examples of the soft condensed matter include emulsions, gels, colloids, foam, etc. It should be appreciated that an emulsion is a mixture of immiscible liquids such as, for example, toothpaste, mayonnaise, oil in water, etc.
  • For additional information regarding the functionality and constituents of Newtonian and non-Newtonian fluids, reference can be made to: (1) U.S. application Ser. No. 11/174,080, filed on Jun. 30, 2005 and entitled “METHOD FOR REMOVING MATERIAL FROM SEMICONDUCTOR WAFER AND APPARATUS FOR PERFORMING THE SAME”; (2) U.S. patent application Ser. No. 11/153,957, filed on Jun. 15, 2005, and entitled “METHOD AND APPARATUS FOR CLEANING A SUBSTRATE USING NON-NEWTONIAN FLUIDS”; and (3) U.S. patent application Ser. No. 11/154,129, filed on Jun. 15, 2005, and entitled “METHOD AND APPARATUS FOR TRANSPORTING A SUBSTRATE USING NON-NEWTONIAN FLUID,” each of which is incorporated herein by reference.
  • FIG. 2 illustrates a graph 120 that plots shear rate in the X-axes versus viscosity in the Y-axes. A curve 122 is shown to illustrate the mechanics of shear thinning when a viscoplastic fluid experiences an increase in shear rate. In essence, the viscosity of the viscoplastic fluid will drop along the curve 122 as the shear rate increases. As the shear thinning direction illustrates, the more shear rate that is applied to the viscoplastic fluid, the characteristic of a non-Newtonian behavior will change into a more Newtonian behavior, as the shear rate increases. Accordingly, the viscoplastic fluid will be in a substantially stable and substantially elastic solid form (i.e., substantially non-deformed state) when the shear rate is zero, as illustrated in both FIGS. 1 and 2. However, as the shear rate increases, the viscosity will drop, having crossed the critical yield stress point, to cause the transformation of the viscoplastic fluid from a substantially solid elastic form to a substantially fluid form. The shear thinning process is therefore one in which the apparent viscosity of the fluid decreases with increasing shear rate. This type of behavior may also be referred to as “pseudoplastic”, and no initial stress (yield stress) is required to initiate shearing.
  • With the mechanics of viscoplastic fluids in mind, one embodiment of the present invention will define a solution that is constructed so as to place the solution into a substantially stable suspended form. The substantially stable suspended form will be one that is substantially elastically solid and non-flowing. Some elastic movement may occur, similar to the movement of jelly. Further, the stable suspended form will hold in place (i.e., suspend) any constituents that define the solution. The solution will therefore exhibit a viscoplastic behavior, such that a minimum yield stress will be required to be applied to the solution before the solution can be used and applied in the form of a Newtonian fluid.
  • FIG. 3 illustrates a system diagram 300 identifying constituents that may be mixed together to define a suspended solution having a viscoplastic fluid characteristic, in accordance with one embodiment of the present invention. The basic components of the solution, in accordance with one embodiment of the present invention, will be three components. Other parts, fluids, chemicals, or additives may also be added, but the basic elements are defined by the three shown in FIG. 3. Thus, a first component will be a polymer network producing material 302, a second component will be a continuous media 304, and the third component will be a solid material 306. The polymer network producing material 302 is preferably a polymer, such as a poly (acrylic acid) that is capable of defining a polymer network when combined with the other components of the solution.
  • Examples of the polymer material used to define the polymer network producing material 302 is now provided. In one embodiment, without limitation, polymers capable of absorbing a yield stress without substantial deformation may include, without limitation, Carbapol, Stabileze, Rheovis ATA and Rheovis ATN, Poly(acrylic acid), Carageenan, Methylcellulose, Hydroxypropylmethylcellulose, Hydroxyethylcellulose, Gum Arabic (Acacia), Gum Tragacanth, Polyacrylates, Carbomer, etc. However, it should be understood that although different types of polymer material may be used, the selected polymer should be one that will allow the resulting solution to produce a network that will assist in stabilizing the solution into an elastic solid state.
  • Broadly, the continuous media 304 may be de-ionized water, a hydrocarbon, selected base fluids, hydrofluoric acid (HF), ammonia, and other chemicals and/or mixtures of chemicals in DI water, that may be useful in cleaning surfaces of semiconductor substrates. In specific examples, the continuous media 304 is an aqueous liquid defined by water (de-ionized or otherwise) alone. In another embodiment, an aqueous liquid is defined by water in combination with other constituents that are in solution with the water. In still another embodiment, a non-aqueous liquid is defined by a hydrocarbon, a fluorocarbon, a mineral oil, or an alcohol, among others. Irrespective of whether the liquid is aqueous or non-aqueous, it should be understood that the liquid can be modified to include ionic or non-ionic solvents and other chemical additives. For example, the chemical additives to the liquid can include any combination of co-solvents, pH modifiers (e.g., acids and bases), chelating agents, polar solvents, surfactants, ammonia hydroxide, hydrogen peroxide, hydrofluoric acid, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and rheology modifiers such as polymers, particulates, and polypeptides.
  • The solids material 306, in one embodiment, may be defined by aliphatic acids, carboxylic acids, paraffin, wax, polymers, polystyrene, resins, polypeptides, and other visco-elastic materials. In one embodiment, the solid portion 306 material should be present at a concentration that exceeds its solubility limit within the continuous media 304. Also, it should be understood that the cleaning effectiveness associated with a particular solid material may vary as a function of temperature, pH, and other environmental conditions.
  • The aliphatic acids represent essentially any acid defined by organic compounds in which carbon atoms form open chains. A fatty acid is an example of an aliphatic acid that can be used as the solid material. Examples of fatty acids that may be used as the solid include lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, gadoleic acid, eurcic acid, butyric acid, caproic acid, caprylic acid, myristic acid, margaric acid, behenic acid, lignoseric acid, myristoleic acid, palmitoleic acid, nervanic acid, parinaric acid, timnodonic acid, brassic acid, clupanodonic acid, lignoceric acid, cerotic acid, and mixtures thereof, among others. In one embodiment, the solids material 306 can represent a mixture of fatty acids defined by various carbon chain lengths extending from C-1 to about C-26 (fatty acids only have an even number of carbons). Carboxylic acids are defined by essentially any organic acid that includes one or more carboxyl groups (COOH). The carboxylic acids can include mixtures of various carbon chain lengths extending from C-1 through about C-100. Also, the carboxylic acids can include long-chain alcohols, ethers, and/or ketones, above the solubility limit in the continuous medium 304. In one embodiment, the fatty acid used as the solid acts as a surfactant when coming into contact with a contaminant particle on a surface of a substrate.
  • The polymer network producing material 302, the continuous media 304, and the solids material 306 are then passed through lines 308, by way of valves 310 a, 310 b, and 310 c, which provide the material to a synthesis container 320. Control may be by way of computer control or manual control. The lines 308 and the valves 310 are illustrated to show structure that can be used for transporting fluids and controlling access to fluids that may be delivered to a receiving source. However, it should be understood that any number for structures are possible, so long as the fluids can be communicated to their desired location for processing, storing, or use. In this example, synthesis container 320 may be a beaker, a tank, a mixing manifold, a staging pipe, a holding cylinder, a container capable of being pressurized, a temperature controlled tank, or any type of structural container that will hold at least the received materials from the polymer network producing material 302, the continuous media 304, and the solids material 306. The materials from 302, 304, and 306 may be provided directly through facilities, and may not necessarily be pre-stored in a container, but for ease of illustration, containers are shown providing their contents in a controlled manner, as dictated by a human or computer, to the synthesis container 320. The synthesis container 320 may be provider with a mixer 324, that will enable the synthesis container to mix the constituents, at given times, when introduced into the synthesis container 320.
  • The result of mixing and synthesizing the different constituents in the synthesis container 320 will be to produce a suspended solution 322. The suspended solution, when mixed and synthesized, is provided with a heat source 326, that is controlled so as to enable temperature specific mixing, blending, and/or dissolving of the various constituents at specific times. The resulting suspended solution 322 is then moved to a container 330, by way of an output flow line 328. The output flow line may be any type of conduit or conduits, that can transfer the suspended solution 322 from the synthesis container 320 to the container 330. Initially, when the suspended solution 322 is moved from the synthesis container 322, a minimum shear stress may be applied so as to cause the viscoplastic nature of the suspense solution 322 to flow along the output flow line 328 and into container 330.
  • Once the suspended solution 322 is transferred to the container 330, the suspended solution may continue to ripen over time, such that nucleation of the solids will occur, and the solids will either join or grow together so as to produce larger sized solids within the suspended solution 322. During the ripening process, however, the solids within the suspended solution 322 will be suspended by the polymer network material so that the solids do not either rise to the top of the container 330 or fall to the bottom of the container 330.
  • That is, although the buoyancy of each of the individual suspended solids (relative to the continuous medium) within the suspended solution 322 will impact the solids tendency to either float or sink, any tendency to move will be counter-acted by the polymer network of the suspended solution 322. The solids will therefore remain in a substantially elastic suspension until the solution needs to be used. When the suspended solution 322 is needed for use or needs to be transported, the yield stress of the suspended solution 322 will need to be overcome, so that the solution can experience shear thinning as the shear rate increases.
  • FIG. 4 illustrates a plurality of containers 330 having solids dispersed in a suspended solution, which will sit, hold and store in a substantially elastic state (e.g., a solid). As noted above, the solid state of the solution is therefore designed to function as a viscoplastic fluid that is elastic, and any buoyancy associated with solids within the continuous medium of the suspended solution 332 will remain substantially in place. As such, the suspended solution 332 will be ready for use in a well dispersed manner, and any storage associated with the solution will not require pre-use mixing, as the suspended solution and its constituents are already in a dispersed and mixed form.
  • Advantages of having the solution in a viscoplastic fluid state is that the solution may be pre-mixed in larger batches, and then stored and transported to their point of use. If use of the solution is not needed until a later point in time, the solution will continue to hold its dispersed and stable suspended form until its use is dictated.
  • FIG. 5 illustrates a system diagram for using the suspended solution from a container 330, when its use is required on substrate preparation systems 400. As illustrated, the container 330 will be holding the suspended solution 332. When use of the suspended solution 332 is needed, the solution may be pumped out of the container 330 using a pump 352. The pump 352 is shown connected to a conduit 350 that is placed within the suspended solution 332. The agitation provided by the pump 352 will therefore work to apply a shear stress to the suspended solution 332, which therefore causes a shear stress application zone 344 (somewhere in the container) to cause the solution (or at least part of the solution) to flow continuously. The lower viscosity fluid will thus freely move along the conduit 350, as shown by indicator 332 a. The flowing solution will then be transported by the pump 352, that directs the fluid to some destination.
  • Thus, the pump 352 acts to transport the suspended solution 332, and the shear thinning behavior of the suspended solids allows for easy transport through conduits 360 a and 362. In one embodiment, the pump 352 may be connected to flow the low viscosity solution through conduit 360 a into a foam generation system 370. The foam generation system 370 may include a gas pressure chamber 372 that is configured to allow a foaming process to occur to the solution before it is communicated through a conduit 360 b. Conduit 360 b will therefore carry the solution in a tri-state body form to one or more systems of the substrate preparation systems 400. A tri-state body is one where a “gas” component is added to the “fluid” component and the “solids” component of the solution. A tri-state body will be defined in greater detail below.
  • In another embodiment, the pump 352 may simply communicate the solution along conduit 362, in a two-state body to the substrate preparation system 400. A two-state body is one that has a “fluid” component and a “solids” component, but substantially no “gas” component. It is said that substantially no gas is part of a two state body solution, but some gas may be inherently in the solution.
  • The substrate preparation system 400 may include any number of systems, and a few are provided as an example. One example system may be a proximity head system 402, that uses a proximity head to apply a meniscus to the surface of a substrate between a head surface and the substrate surface. One proximity head on the top of the substrate may be used, or two proximity heads may be used, such that both the top and bottom of the substrate is processed at about the same time.
  • In one embodiment, the substrate is caused to move along a horizontal direction, such that the meniscus is caused to traverse the surface of the substrate. In another embodiment, the heads of the proximity head system may be moved across the surface of the substrate.
  • A “meniscus”, as used herein, may be a controlled fluid meniscus that forms between the surface of a proximity head and a substrate surface, and surface tension of the fluid holds the meniscus in place and in a controlled form. Controlling the meniscus is also ensured by the controlled delivery and removal of fluid, which enables the controlled definition of the meniscus, as defined by the fluid. The meniscus may be used to either clean, process, etch, or process the surface of the substrate. The processing on the surface may be such that particulates or unwanted materials are removed by the meniscus. In a related embodiment, the meniscus may be formed out of a tristate body (e.g., a foamed solution), and the solution may simply sit on the surface at the substrate, but mechanically function different than fluid solutions that are affected by surface tension. A foamed solution behaves more like a non-Newtonian fluid.
  • A Newtonian meniscus fluid, however, is controlled by supplying a fluid to the proximity heads while removing the fluid with a vacuum in a controlled manner. Optionally, a gas tension reducer may be provided to the proximity heads, so as to reduce the surface tension between the meniscus and the substrate. The gas tension reducer supplied to the proximity heads allow the meniscus to move over the surface of the substrate at an increased speed (thus increasing throughput). An example of a gas tension reducer may be isopropyl alcohol mixed with nitrogen (IPA/N2). Another example of a gas tension reducer may be carbon dioxide (CO2). Other types of gasses may also be used so long as the gasses do not interfere with the processing desired for the particular surface of the substrate.
  • For more information on the formation of a meniscus and the application to the surface of a substrate, reference may be made to: (1) U.S. Pat. No. 6,616,772, issued on Sep. 9, 2003 and entitled “METHODS FOR WAFER PROXIMITY CLEANING AND DRYING,”; (2) U.S. patent application Ser. No. 10/330,843, filed on Dec. 24, 2002 and entitled “MENISCUS, VACUUM, IPA VAPOR, DRYING MANIFOLD,” (3) U.S. Pat. No. 6,998,327, issued on Jan. 24, 2005 and entitled “METHODS AND SYSTEMS FOR PROCESSING A SUBSTRATE USING A DYNAMIC LIQUID MENISCUS,” (4) U.S. Pat. No. 6,998,326, issued on Jan. 24, 2005 and entitled “PHOBIC BARRIER MENISCUS SEPARATION AND CONTAINMENT,” and (5) U.S. Pat. No. 6,488,040, issued on Dec. 3, 2002 and entitled “CAPILLARY PROXIMITY HEADS FOR SINGLE WAFER CLEANING AND DRYING,” each is assigned to Lam Research Corporation, the assignee of the subject application, and each is incorporated herein by reference.
  • A next example is a proximity head-brush system 404. This example is provided to illustrate that the proximity head system may be combined with other types of cleaning systems, such brush rollers that are configured to scrub the surface of a wafer. The surface may be scrubbed either on top or bottom with a brush, and a proximity head system may be used either on the top or the bottom.
  • The brushes may be polyvinyl alcohol (PVA) brushes, that may provide fluids to the surface of the substrate while rotating. The fluids provided by the brushes may be provided through the brush (TTB) core and the fluids may be for cleaning, and/or etching, and/or configuring the surface of the substrate to be either hydrophobic or hydrophilic, depending on the application.
  • Another system may be a spray/jet system 406, which is configured to apply either the tri-state bodies or the two-state bodies to the surface of the substrate. Sprays and jets may be applied such that the solids in the tri-state bodies or two-state bodies can be efficiently dispensed so as to allow the appropriate preparation operation. For more information on jet application, reference may be made to U.S. application Ser. No. 11/543,365, filed on Oct. 4, 2006, entitled “Method and Apparatus for Particle Removal”, and is herein incorporated by reference. In still another embodiment, a module can be configured as a tank. The tank can be filled with the solution, and a substrate (or batches of substrates) can be lowered into the tank and then removed from the tank. This type of substrate processing may be referred to as dipping. When the dipping occurs, the solution can either be in an elastic state or in a fluid state. The movement of the substrate into the solution may provide the needed shear stresses that will overcome the yield stress of the suspended solution 332.
  • The preparation operation may be for cleaning, drying, etching, transformation of surface states (e.g., hydrophobic/hydrophilic), and/or general cleaning to remove particles with the assistance of the solids, that are applied using the systems of the substrate preparation system 400.
  • It should be understood, however, that the container 330 and the suspended solution 332 may be stored for a period of time and when used, can be transformed from a substantial solid state to a fluid flowing Newtonian state, by the application of shear stresses that will overcome the yield stress of the suspended solution 332 so that it can flow and be applied to the surface of a substrate for its application. An example amount of minimum sheer stress may be between about le-6 Pa and about 100 Pa. However, the exact amount will change depending on the combined elements of the particular solution.
  • By maintaining the suspended solution 332 in its suspended form, the problems associated with having solids either float to the surface, or sink to the bottom of a container, are avoided, and its dispersed and well mixed state will remain until the suspended solution is needed for application and use. Any downtime that would have been spent for re-adjusting the fluid to allow for a consistent distribution can now be avoided, and more throughput and efficient processing with the suspended solution can now be performed, and applied to substrates when needed.
  • FIG. 6 illustrates an example recipe 600 for generating a solution that will exhibit a substantial solid elastic state when stored, and then transformed to a substantial Newtonian fluid upon the application of shear stresses when the solution is needed. The recipe includes operation 602 where a continuous medium is supplied. As noted above, the continuous medium can be defined by a number of fluids and/or materials, but for this specific example, the continuous medium is de-ionized (DI) water.
  • The continuous medium is then supplied with a polymer, where it is mixed until it is substantially dissolved in the de-ionized water in operation 604. The mixed solution of 604 is them heated in operation 606. The heating of the solution should take place such that the temperature is between about 30° C. and about 100° C., and in one embodiment, between about 65° C., and about 85° C.
  • While the solution is heated, in operation 608, a surfactant is added to the mixture. The surfactant material is preferably one of ammonium lauryl sulfate, linear alkyl benzene sulfonic acic, triethanol amine lauryl sulfate, or a ionic surfactant. Once the surfactant has been added to the heated mixture in operation 608, the solution is continued to be mixed at a high RPM. An example of a high revolution per minute (RPM) may be between about 50 RPMs and about 1,500 RPMs. High RPM mixing should continue as long as possible, but without generating a noticeable froth layer. If some bubbles are created during this mixing operation, a minimum amount of bubbles would be allowable. In operation 612, a neutralizing base component will be added to the solution once the solution is again heated to a temperature range of between about 70° C. and about 80° C. In one embodiment, the neutralizing basic component is ammonia (i.e. NH4OH). Other neutralizing basic components may also work, for instance, tetramethyl ammonium hydroxide, triethanol amine, sodium hydroxide, potassium hydroxide can work.
  • In operation 614, immediately after the neutralizing basic component is added in operation 612, the solid component is added and mixed until the solid is substantially melted in the heated mixture. Mixing of the solid component in the solution in operation 614 will continue until the solid component is substantially dissolved in the solution. In operation 616, a chelating agent is added and then mixed. Other chelating agents may also work, for instance, EDTA, lactic acid, glycine, gluconic acid, citric acid may work. At this point, the solution is still preferably held at about a temperature range between 65° C. and about 85° C.
  • The solution will mix in operation 616, for between about 5 minutes and about 120 minutes. In operation 618, the solution is cool to about room temperature and then moved into a container, such as container 330 of FIG. 3. Alternatively, the solution will cool once moved to the container 330. During cooling, the solution will undergo nucleation until its end solid elastic state is reached and held. The final solution will appear to have a milky white color, and the viscosity of the solution. Further, during cooling, the solution will change in time, to a consistency having slightly more viscosity than water. At this point, the solution will behave like a viscoplastic, or equivalently like a Bingham plastic. In operation 620, the solution can be stored, having the solids (e.g., fatty acids) in a stable and substantial suspension.
  • In one embodiment, another example recipe for formulating a basic solution is defined in Table A. A beaker of having a size of about 1 liter, is used to illustrate an example formulation of the solution.
  • TABLE A
    (a) Add DI water to a beaker and begin to stir;
    (b) Add a rheology modifier (e.g., polymer) to the solution and mix at
    high RPM until the component is dissolved;
    (c) Begin to heat the solution to about 75° C.
    (d) Add a surfactant component once the solution is around 50° C.
    (e) Mix at a relatively high RPM (e.g., as high as possible without
    generating a noticeable froth layer), although it is fine if some bubbles
    are mixed into the solution.
    (f) After the solution reaches 75° C., add a neutralizing basic component
    (e.g., NH4OH).
    (g) Immediately after the base is added, add stearic acid (e.g., fatty
    acid).
    (h) Mix for about 10 minutes, so that the stearic acid has substantially
    melted (adjust stirring rate maximize mixing - decrease mixing rate if
    too many bubbles).
    (i) With the solution still at approximately 75° C., add a chelating agent.
    (j) Mix for an additional 10 minutes.
    (k) At this point the solution may be removed from the mixing source
    and cooled in a container (or stored for later use).
  • FIG. 7 illustrates a flowchart 700 defining example operations for using the suspended solution, in accordance with one embodiment of the present invention. The method begins at operation 720, where a container of the solution characterized as a stable suspended solution is obtained. The solution may have been stored for some time, or may have just been created, and allowed to cool.
  • In either case, the container will hold a viscoplastic fluid that holds the solids in a suspended form, thus not allowing the buoyancy of the solids relative to the continuous medium to be overcome. In operation 720, a shear stress is applied to the solution to transform its non-Newtonian character to a Newtonian character. The non-Newtonian character is that of the viscoplastic material with a yield stress (e.g., exhibits a substantially solid form).
  • Once the shear stress is applied, as noted with reference to FIGS. 1 and 2, the viscoplastic material will shear thin until Newtonian behavior dominates in operation 704. In operation 706, the solution is allowed to flow from the container to a next stage, before application to a substrate, through one or more application systems. In operation 708, the solution is optionally foamed so as to create a tri-state body. If a tri-state body is not desired, the method moves to operation 710 where the solution in two-state form is flowed to an application system.
  • The application system may be any system such as those described with reference to FIG. 5, or any other system that may be involved in the cleaning of parts, surfaces, or semiconductor substrates. In operation 712, the solution is applied to a surface of a substrate. The solution will then act to assist in the cleaning operation of a substrate, where the solids assist in removing of particles that may be present on the surface.
  • As used herein, a tri-state body cleaning material contains a plurality of tri-state bodies that include a gas phase, a liquid phase and a solid phase. In one embodiment, the gas phase and liquid phase provides an intermediary to bring the solid phase into close proximity with contaminant particles on a substrate surface
  • In one embodiment, the gas portion is defined to occupy 5% to 99.9% of the tri-state body cleaning material by volume. In another embodiment, the gas portion can occupy between about 15% and about 40% of the tri-state body, and still another embodiment, the gas portion can occupy between about 20% and about 30% of the tri-state body. The gas or gases defining a gas portion can be either inert, e.g., nitrogen (N2), argon (Ar), etc., or reactive, e.g., oxygen (O2), ozone (O3), hydrogen peroxide (H2O2), air, hydrogen (H2), ammonia (NH3), hydrogen fluoride (HF), hydrochloric acid (HCl), etc. In one embodiment, the gas portion includes only a single type of gas, for example, nitrogen (N2). In another embodiment, the gas portion is a gas mixture that includes mixtures of various types of gases, such as: ozone (O3), oxygen (O2), carbon dioxide (CO2), hydrochloric acid (HCl), hydrofluoric acid (HF), nitrogen (N2), and argon (Ar); ozone (O3) and nitrogen (N2); ozone (O3) and argon (Ar); ozone (O3), oxygen (O2) and nitrogen (N2); ozone (O3), oxygen (O2) and argon (Ar); ozone (O3), oxygen (O2), nitrogen (N2), and argon (Ar); and oxygen (O2), argon (Ar), and nitrogen (N2). It should be appreciated that the gas portion can include essentially any combination of gas types as long as the resulting gas mixture can be combined with a liquid portion and a solid portion to form a tri-state body that can be utilized in substrate cleaning or preparation operations.
  • It should be understood that depending on the particular embodiment, the solid portion of the tri-state body may possess physical properties representing essentially any sub-state, wherein the solid portion is defined as a portion other than the liquid or gas portions. For example, physical properties such as elasticity and plasticity can vary among different types of solid portions within the tri-state body. Additionally, it should be understood that in various embodiments the solid portion can be defined as crystalline solids or non-crystalline solids. Regardless of their particular physical properties, the solid portion of the tri-state body should be capable of avoiding adherence to the substrate surface when positioned in either close proximity to or in contact with the substrate surface or capable of being easily removed (e.g., hydrodynamic removal with rinse). Additionally, the physical properties of the solid portion should not cause damage to the substrate surface during the cleaning process. Furthermore, the solid portion should be capable of establishing an interaction with the contaminant particle present on the substrate surface when positioned in either close proximity to or contact with the particle. In one embodiment, the solid portion has foam inhibiting properties. In another embodiment, the solid portion has foam enhancing properties. Depending on the application and the apparatus used to handle the tristate body, the foam enhancing or inhibiting properties can be adjusted, either in a stepped manner or in accordance with a recipe.
  • In one embodiment, the solid portion avoids dissolution into the liquid portion and gas portions and has a surface functionality that enables dispersion throughout the liquid portion. In another embodiment, the solid portions does not have surface functionality that enables dispersion throughout the liquid portion, therefore requiring chemical dispersants to be added to the liquid portion to before the solid portions can be dispersed through the liquid portion. In one embodiment, the solid portions form through a precipitation reaction where a dissolved component in the liquid phase reacts by the addition of one or more components to form an insoluble compound. In one embodiment, the solid portion goes into suspension in the liquid portion when a base is added to the liquid portion (i.e., by altering the zeta potential). Depending on their specific chemical characteristics and their interaction with the surrounding liquid portion, the solid portion may take one or more of several different forms.
  • For example, in various embodiments the solid portion may form aggregates, colloids, gels, coalesced spheres, or essentially any other type of agglutination, coagulation, flocculation, agglomeration, or coalescence. It should be appreciated that the exemplary list of solid portion forms identified above is not intended to represent an inclusive list, and alternates or extensions falling within the spirit of the disclosed embodiments are possible. It should further be understood that the solid portion can be defined as essentially any solid material capable of functioning in the manner previously described with respect to their interaction with the substrate and the contaminant particle.
  • Although a few embodiments of the present invention have been described in detail herein, it should be understood, by those of ordinary skill, that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details provided therein, but may be modified and practiced within the scope of the appended claims.

Claims (12)

What is claimed is:
1. A substrate cleaning system, comprising:
a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation, the meniscus being defined by a solution;
a container holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form, the stable elastic gel form being configured to hold the solid material form in place and prevent the solid material from fluid flow in the solution if stresses less than the finite yield stress is imparted on the solid material after synthesis of the solution and during any storage of the solution;
a pump for moving the solution from the container to the proximity head system, the pump applies at least a minimum shear stress on the solution, and the pump provides agitation that exceeds the finite yield stress causing the solution to flow;
a head of the proximity head system receiving the solution that is configured to be applied to the surface of the substrate in the form of the meniscus.
2. A substrate cleaning system as recited in claim 1, wherein the meniscus is in a fluid form or a foam form.
3. A substrate cleaning system as recited in claim 1, further comprising,
a foam generation system that transforms the solution into tri-state bodies, the tri-state bodies being defined by a part fluid, a part gas, and a part solids.
4. A substrate cleaning system, comprising:
a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation, the proximity head system having a body and a surface with a plurality of conduits, the surface being configured for placement proximate to the substrate when present, the plurality of conduits of the proximity head system having an input for receiving a solution and moving the solution internally of the body within the proximity head and to the plurality of conduits for delivery of the solution to the substrate when present, the solution being delivered in a form of the meniscus disposed between the surface of the proximity head system and the substrate when present;
a container for holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form;
a pump coupled to the container for moving the solution from the container to the proximity head system, the pump applies at least a minimum shear stress on the solution, and the pump provides agitation that exceeds the finite yield stress causing the solution to flow; and
a conduit defined between the container and the proximity head system, such that the solution is provided to the input of the proximity head system for application to the surface of the substrate in the form of the meniscus.
5. A substrate cleaning system as recited in claim 4, wherein the meniscus is in a fluid form or a foam form.
6. A substrate cleaning system as recited in claim 4, further comprising,
a foam generation system that transforms the solution into tri-state bodies, the tri-state bodies being defined by a part fluid, a part gas, and a part solids.
7. A substrate cleaning system as recited in claim 4, further comprising,
a foam generation system disposed between the pump and the proximity head system, such that the foam generation system transforms the solution into tri-state bodies.
8. A substrate cleaning system as recited in claim 7, wherein the tri-state bodies are defined by a part fluid, a part gas, and a part solids.
9. A substrate cleaning system as recited in claim 4, wherein the pump includes a shear thinning mechanism.
10. A substrate cleaning system as recited in claim 4, wherein the stable elastic gel form being configured to hold the solid material form in place and prevent the solid material from fluid flow in the solution if stresses less than the finite yield stress is imparted on the solid material after synthesis of the solution and during any storage of the solution.
11. A substrate cleaning system, comprising:
a jet application system for applying a solution to a surface of a substrate during a cleaning operation;
a container holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form, the stable elastic gel form being configured to hold the solid material form in place and prevent the solid material from moving in the solution if stresses less than the finite yield stress is imparted on the solid material after synthesis of the solution and during any storage of the solution; and
a pump for moving the solution from the container to the jet application system, the pump applies at least a minimum shear stress on the solution, and the pump provides agitation that exceeds the finite yield stress causing the solution to flow;
wherein the jet sprays the solution to the surface of the substrate so as to remove unwanted contaminants.
12. A substrate cleaning system 11, wherein the jet applies a stream of the solution on the surface of the substrate.
US13/931,376 2005-12-30 2013-06-28 Substrate Cleaning System Using Stabilized Fluid Solutions Abandoned US20130284217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/931,376 US20130284217A1 (en) 2005-12-30 2013-06-28 Substrate Cleaning System Using Stabilized Fluid Solutions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US75537705P 2005-12-30 2005-12-30
US11/641,362 US8475599B2 (en) 2005-12-30 2006-12-18 Substrate preparation using stabilized fluid solutions and methods for making stable fluid solutions
US13/931,376 US20130284217A1 (en) 2005-12-30 2013-06-28 Substrate Cleaning System Using Stabilized Fluid Solutions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/641,362 Division US8475599B2 (en) 2005-12-30 2006-12-18 Substrate preparation using stabilized fluid solutions and methods for making stable fluid solutions

Publications (1)

Publication Number Publication Date
US20130284217A1 true US20130284217A1 (en) 2013-10-31

Family

ID=38228775

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/641,362 Expired - Fee Related US8475599B2 (en) 2005-12-30 2006-12-18 Substrate preparation using stabilized fluid solutions and methods for making stable fluid solutions
US13/931,376 Abandoned US20130284217A1 (en) 2005-12-30 2013-06-28 Substrate Cleaning System Using Stabilized Fluid Solutions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/641,362 Expired - Fee Related US8475599B2 (en) 2005-12-30 2006-12-18 Substrate preparation using stabilized fluid solutions and methods for making stable fluid solutions

Country Status (9)

Country Link
US (2) US8475599B2 (en)
EP (2) EP2428557A1 (en)
JP (4) JP4892565B2 (en)
KR (4) KR101426777B1 (en)
CN (10) CN101351282B (en)
MY (2) MY149848A (en)
SG (2) SG154438A1 (en)
TW (3) TWI330551B (en)
WO (1) WO2007078955A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031167A1 (en) * 2002-06-13 2004-02-19 Stein Nathan D. Single wafer method and apparatus for drying semiconductor substrates using an inert gas air-knife
US8388762B2 (en) * 2007-05-02 2013-03-05 Lam Research Corporation Substrate cleaning technique employing multi-phase solution
MY150211A (en) * 2007-12-07 2013-12-13 Fontana Technology Particle removal cleaning method and composition
US8084406B2 (en) * 2007-12-14 2011-12-27 Lam Research Corporation Apparatus for particle removal by single-phase and two-phase media
US9159593B2 (en) * 2008-06-02 2015-10-13 Lam Research Corporation Method of particle contaminant removal
US8828145B2 (en) * 2009-03-10 2014-09-09 Lam Research Corporation Method of particle contaminant removal
US8105997B2 (en) * 2008-11-07 2012-01-31 Lam Research Corporation Composition and application of a two-phase contaminant removal medium
US8739805B2 (en) * 2008-11-26 2014-06-03 Lam Research Corporation Confinement of foam delivered by a proximity head
US8317934B2 (en) * 2009-05-13 2012-11-27 Lam Research Corporation Multi-stage substrate cleaning method and apparatus
US8251223B2 (en) * 2010-02-08 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Cleaning system and a package carrier for a semiconductor package
US8595929B2 (en) * 2010-10-21 2013-12-03 Siemens Energy, Inc. Repair of a turbine engine surface containing crevices
CN102569013A (en) * 2010-12-17 2012-07-11 朗姆研究公司 System and method for detecting wafer stress
CN102315098B (en) * 2011-09-28 2016-03-30 上海华虹宏力半导体制造有限公司 The method of cleaning semiconductor base and formation gate dielectric layer
KR20130072664A (en) * 2011-12-22 2013-07-02 에스케이하이닉스 주식회사 Manufacturing method of semiconductor memory device
CN102744227A (en) * 2012-07-16 2012-10-24 安徽未来表面技术有限公司 Silicon wafer cleaning method on solar power generator
AU2014288933B2 (en) * 2013-07-05 2018-03-08 King Abdullah University Of Science And Technology System and method for conveying an assembly
CN103406322A (en) * 2013-07-22 2013-11-27 彩虹显示器件股份有限公司 Device and method for cleaning glass substrate
US10767143B2 (en) * 2014-03-06 2020-09-08 Sage Electrochromics, Inc. Particle removal from electrochromic films using non-aqueous fluids
DE102014206875A1 (en) 2014-04-09 2015-10-15 Wacker Chemie Ag Process for cleaning technical parts of metal halides
JP6615765B2 (en) * 2014-09-11 2019-12-04 株式会社トクヤマ Method for cleaning aluminum nitride single crystal substrate and polymer compound material
CN106111610B (en) * 2016-06-26 2018-07-17 河南盛达光伏科技有限公司 The dirty prerinse processing method of monocrystalline silicon wire cutting fractal surfaces adhesion
KR101955597B1 (en) * 2017-05-17 2019-05-31 세메스 주식회사 Apparatus and method for manufacturing cleaning solution
CN111212715B (en) * 2018-01-18 2022-05-03 株式会社 Ihi Method for stripping lining piece
GB2574179B (en) * 2018-03-12 2021-06-30 Illinois Tool Works Contact cleaning surface assembly
KR102072581B1 (en) 2018-05-04 2020-02-03 세메스 주식회사 Method and apparatus for substrate processing
JP7227757B2 (en) * 2018-05-31 2023-02-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP7227758B2 (en) 2018-05-31 2023-02-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
CN110883017B (en) * 2018-09-10 2020-12-29 北京石墨烯研究院 Method and device for statically cleaning graphene surface
CN110591832A (en) * 2019-09-26 2019-12-20 嘉兴瑞智光能科技有限公司 Efficient environment-friendly pollution-free silicon wafer cleaning agent and preparation method thereof
KR102281885B1 (en) 2019-11-06 2021-07-27 세메스 주식회사 Method and apparatus for substrate cleaning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090217A (en) * 1998-12-09 2000-07-18 Kittle; Paul A. Surface treatment of semiconductor substrates
US6532976B1 (en) * 1995-07-10 2003-03-18 Lg Semicon Co., Ltd. Semiconductor wafer cleaning apparatus
US20040069319A1 (en) * 2002-09-30 2004-04-15 Lam Research Corp. Method and apparatus for cleaning a substrate using megasonic power
US20050150822A1 (en) * 2004-01-03 2005-07-14 Timo Niitti Device for shear-thinning of solids containing material

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL251243A (en) 1959-05-04
US3212762A (en) 1960-05-23 1965-10-19 Dow Chemical Co Foam generator
US3360476A (en) * 1964-03-19 1967-12-26 Fmc Corp Liquid heavy duty cleaner and disinfectant
US3436262A (en) 1964-09-25 1969-04-01 Dow Chemical Co Cleaning by foam contact,and foam regeneration method
US3617095A (en) 1967-10-18 1971-11-02 Petrolite Corp Method of transporting bulk solids
GB1427341A (en) * 1972-05-22 1976-03-10 Unilever Ltd Liquid soap product
US3978176A (en) 1972-09-05 1976-08-31 Minnesota Mining And Manufacturing Company Sparger
GB1507472A (en) 1974-05-02 1978-04-12 Bunker Ramo Foamable coating remover composition
GB1447435A (en) * 1974-06-03 1976-08-25 Ferrara P J Barnes C A Gordon Soap composition and process of producing such
US4156619A (en) 1975-06-11 1979-05-29 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for cleaning semi-conductor discs
US4133773A (en) 1977-07-28 1979-01-09 The Dow Chemical Company Apparatus for making foamed cleaning solutions and method of operation
DE2823002B2 (en) * 1978-05-26 1981-06-04 Chemische Werke München Otto Bärlocher GmbH, 8000 München Process for the production of metal soap granules
US4238244A (en) 1978-10-10 1980-12-09 Halliburton Company Method of removing deposits from surfaces with a gas agitated cleaning liquid
US4387040A (en) * 1981-09-30 1983-06-07 Colgate-Palmolive Company Liquid toilet soap
US4838289A (en) 1982-08-03 1989-06-13 Texas Instruments Incorporated Apparatus and method for edge cleaning
US4911761A (en) 1984-05-21 1990-03-27 Cfm Technologies Research Associates Process and apparatus for drying surfaces
HU200703B (en) 1986-07-08 1990-08-28 Kohlensaeurewerk Deutschland Method for drying vegetal or animal materials
NL8601939A (en) 1986-07-28 1988-02-16 Philips Nv METHOD FOR REMOVING UNDESIRABLE PARTICLES FROM A SUBSTRATE SURFACE
US4817652A (en) 1987-03-26 1989-04-04 Regents Of The University Of Minnesota System for surface and fluid cleaning
US4962776A (en) 1987-03-26 1990-10-16 Regents Of The University Of Minnesota Process for surface and fluid cleaning
US4849027A (en) 1987-04-16 1989-07-18 Simmons Bobby G Method for recycling foamed solvents
US4753747A (en) * 1987-05-12 1988-06-28 Colgate-Palmolive Co. Process of neutralizing mono-carboxylic acid
US5105556A (en) 1987-08-12 1992-04-21 Hitachi, Ltd. Vapor washing process and apparatus
US4867896A (en) * 1988-02-17 1989-09-19 Lever Brothers Company Cleaning compositions containing cross-linked polymeric thickeners and hypochlorite bleach
US5048549A (en) 1988-03-02 1991-09-17 General Dynamics Corp., Air Defense Systems Div. Apparatus for cleaning and/or fluxing circuit card assemblies
US5181985A (en) 1988-06-01 1993-01-26 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for the wet-chemical surface treatment of semiconductor wafers
US5000795A (en) 1989-06-16 1991-03-19 At&T Bell Laboratories Semiconductor wafer cleaning method and apparatus
US5102777A (en) 1990-02-01 1992-04-07 Ardrox Inc. Resist stripping
US5271774A (en) 1990-03-01 1993-12-21 U.S. Philips Corporation Method for removing in a centrifuge a liquid from a surface of a substrate
EP0445728B1 (en) * 1990-03-07 1994-06-08 Hitachi, Ltd. Apparatus and method for cleaning solid surface
DE4038587A1 (en) 1990-12-04 1992-06-11 Hamatech Halbleiter Maschinenb Conveyor system for flat substrates - transports by liq. film flow along surface e.g. for handling at various work-stations
US5306350A (en) 1990-12-21 1994-04-26 Union Carbide Chemicals & Plastics Technology Corporation Methods for cleaning apparatus using compressed fluids
US5261966A (en) 1991-01-28 1993-11-16 Kabushiki Kaisha Toshiba Method of cleaning semiconductor wafers using mixer containing a bundle of gas permeable hollow yarns
US5147574A (en) * 1991-03-05 1992-09-15 The Procter & Gamble Company Stable liquid soap personal cleanser
US5175124A (en) 1991-03-25 1992-12-29 Motorola, Inc. Process for fabricating a semiconductor device using re-ionized rinse water
US5242669A (en) * 1992-07-09 1993-09-07 The S. A. Day Mfg. Co., Inc. High purity potassium tetrafluoroaluminate and method of making same
US5288332A (en) 1993-02-05 1994-02-22 Honeywell Inc. A process for removing corrosive by-products from a circuit assembly
US5336371A (en) 1993-03-18 1994-08-09 At&T Bell Laboratories Semiconductor wafer cleaning and rinsing techniques using re-ionized water and tank overflow
US5464480A (en) 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
US5911837A (en) 1993-07-16 1999-06-15 Legacy Systems, Inc. Process for treatment of semiconductor wafers in a fluid
US5472502A (en) 1993-08-30 1995-12-05 Semiconductor Systems, Inc. Apparatus and method for spin coating wafers and the like
US5656097A (en) 1993-10-20 1997-08-12 Verteq, Inc. Semiconductor wafer cleaning system
US5950645A (en) 1993-10-20 1999-09-14 Verteq, Inc. Semiconductor wafer cleaning system
US5518542A (en) 1993-11-05 1996-05-21 Tokyo Electron Limited Double-sided substrate cleaning apparatus
US5938504A (en) 1993-11-16 1999-08-17 Applied Materials, Inc. Substrate polishing apparatus
US5417768A (en) 1993-12-14 1995-05-23 Autoclave Engineers, Inc. Method of cleaning workpiece with solvent and then with liquid carbon dioxide
JP3380021B2 (en) * 1993-12-28 2003-02-24 株式会社エフティーエル Cleaning method
JP4031030B2 (en) * 1993-12-30 2008-01-09 エコラボ インコーポレイテッド Method for producing solid cleaning composition based on urea
DE69523208T2 (en) 1994-04-08 2002-06-27 Texas Instruments Inc Process for cleaning semiconductor wafers using liquefied gases
US5498293A (en) 1994-06-23 1996-03-12 Mallinckrodt Baker, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness
US6081650A (en) 1994-06-30 2000-06-27 Thomson Licensing S.A. Transport processor interface and video recorder/playback apparatus in a field structured datastream suitable for conveying television information
US5705223A (en) 1994-07-26 1998-01-06 International Business Machine Corp. Method and apparatus for coating a semiconductor wafer
US5772784A (en) 1994-11-14 1998-06-30 Yieldup International Ultra-low particle semiconductor cleaner
US5660642A (en) 1995-05-26 1997-08-26 The Regents Of The University Of California Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
JP3504023B2 (en) 1995-05-26 2004-03-08 株式会社ルネサステクノロジ Cleaning device and cleaning method
US6035483A (en) * 1995-06-07 2000-03-14 Baldwin Graphic Systems, Inc. Cleaning system and process for making and using same employing a highly viscous solvent
US5964958A (en) 1995-06-07 1999-10-12 Gary W. Ferrell Methods for drying and cleaning objects using aerosols
US5968285A (en) 1995-06-07 1999-10-19 Gary W. Ferrell Methods for drying and cleaning of objects using aerosols and inert gases
JP3590470B2 (en) * 1996-03-27 2004-11-17 アルプス電気株式会社 Cleaning water generation method and cleaning method, and cleaning water generation device and cleaning device
DE19622015A1 (en) 1996-05-31 1997-12-04 Siemens Ag Process for etching destruction zones on a semiconductor substrate edge and etching system
TW416987B (en) 1996-06-05 2001-01-01 Wako Pure Chem Ind Ltd A composition for cleaning the semiconductor substrate surface
JP3350627B2 (en) * 1996-07-03 2002-11-25 宮崎沖電気株式会社 Method and apparatus for removing foreign matter from semiconductor element
DE19631363C1 (en) * 1996-08-02 1998-02-12 Siemens Ag Aqueous cleaning solution for a semiconductor substrate
JPH1055993A (en) 1996-08-09 1998-02-24 Hitachi Ltd Semiconductor element manufacturing washing liquid and manufacture of semiconductor element using it
EP0893166A4 (en) 1996-09-25 2004-11-10 Shuzurifuresher Kaihatsukyodok Washing means using liquefied gas of high density
US5997653A (en) 1996-10-07 1999-12-07 Tokyo Electron Limited Method for washing and drying substrates
JP3286539B2 (en) * 1996-10-30 2002-05-27 信越半導体株式会社 Cleaning device and cleaning method
US5858283A (en) 1996-11-18 1999-01-12 Burris; William Alan Sparger
US5906021A (en) * 1996-12-06 1999-05-25 Coffey; Daniel Fluid-wetted or submerged surface cleaning apparatus
US6896826B2 (en) 1997-01-09 2005-05-24 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
US5900191A (en) 1997-01-14 1999-05-04 Stable Air, Inc. Foam producing apparatus and method
US5800626A (en) 1997-02-18 1998-09-01 International Business Machines Corporation Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
US20020157686A1 (en) * 1997-05-09 2002-10-31 Semitool, Inc. Process and apparatus for treating a workpiece such as a semiconductor wafer
US6701941B1 (en) 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
JPH10321572A (en) 1997-05-15 1998-12-04 Toshiba Corp Both-surface cleaning apparatus for semiconductor wafer and polishing method for semiconductor wafer
JPH1126423A (en) 1997-07-09 1999-01-29 Sugai:Kk Method and apparatus for processing semiconductor wafer and the like
US6152805A (en) 1997-07-17 2000-11-28 Canon Kabushiki Kaisha Polishing machine
US5932493A (en) 1997-09-15 1999-08-03 International Business Machines Corporaiton Method to minimize watermarks on silicon substrates
EP0905746A1 (en) 1997-09-24 1999-03-31 Interuniversitair Micro-Elektronica Centrum Vzw Method of removing a liquid from a surface of a rotating substrate
US5904156A (en) 1997-09-24 1999-05-18 International Business Machines Corporation Dry film resist removal in the presence of electroplated C4's
US6398975B1 (en) 1997-09-24 2002-06-04 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for localized liquid treatment of the surface of a substrate
US6491764B2 (en) 1997-09-24 2002-12-10 Interuniversitair Microelektronics Centrum (Imec) Method and apparatus for removing a liquid from a surface of a rotating substrate
US5807439A (en) * 1997-09-29 1998-09-15 Siemens Aktiengesellschaft Apparatus and method for improved washing and drying of semiconductor wafers
JP3039493B2 (en) * 1997-11-28 2000-05-08 日本電気株式会社 Substrate cleaning method and cleaning solution
US6270584B1 (en) 1997-12-03 2001-08-07 Gary W. Ferrell Apparatus for drying and cleaning objects using controlled aerosols and gases
US5865901A (en) * 1997-12-29 1999-02-02 Siemens Aktiengesellschaft Wafer surface cleaning apparatus and method
US6042885A (en) * 1998-04-17 2000-03-28 Abitec Corporation System and method for dispensing a gel
US6049996A (en) 1998-07-10 2000-04-18 Ball Semiconductor, Inc. Device and fluid separator for processing spherical shaped devices
US5944581A (en) 1998-07-13 1999-08-31 Ford Motor Company CO2 cleaning system and method
JP3003684B1 (en) 1998-09-07 2000-01-31 日本電気株式会社 Substrate cleaning method and substrate cleaning liquid
JP2000100801A (en) 1998-09-25 2000-04-07 Sumitomo Electric Ind Ltd Epitaxial wafer, its manufacture and surface cleaning method for compound semiconductor substrate used therefor
JP2000141215A (en) 1998-11-05 2000-05-23 Sony Corp Flattening grinding device and its method
JP2000265945A (en) * 1998-11-10 2000-09-26 Uct Kk Chemical supplying pump, chemical supplying device, chemical supplying system, substrate cleaning device, chemical supplying method, and substrate cleaning method
JP2000260739A (en) 1999-03-11 2000-09-22 Kokusai Electric Co Ltd Substrate treatment device and method
US6290780B1 (en) 1999-03-19 2001-09-18 Lam Research Corporation Method and apparatus for processing a wafer
US6849581B1 (en) * 1999-03-30 2005-02-01 Bj Services Company Gelled hydrocarbon compositions and methods for use thereof
US6272712B1 (en) 1999-04-02 2001-08-14 Lam Research Corporation Brush box containment apparatus
JP3624116B2 (en) * 1999-04-15 2005-03-02 東京エレクトロン株式会社 Processing apparatus and processing method
JP4247587B2 (en) 1999-06-23 2009-04-02 Jsr株式会社 Semiconductor component cleaning agent, semiconductor component cleaning method, polishing composition, and polishing method
FR2795960B1 (en) * 1999-07-05 2001-10-19 Sanofi Elf STABLE MICROEMULSIONS FOR THE DELIVERY OF FATTY ACIDS TO HUMANS OR ANIMALS, AND USE OF SUCH MICROEMULSIONS
US20020121290A1 (en) 1999-08-25 2002-09-05 Applied Materials, Inc. Method and apparatus for cleaning/drying hydrophobic wafers
US6734121B2 (en) 1999-09-02 2004-05-11 Micron Technology, Inc. Methods of treating surfaces of substrates
US6228563B1 (en) 1999-09-17 2001-05-08 Gasonics International Corporation Method and apparatus for removing post-etch residues and other adherent matrices
US7122126B1 (en) 2000-09-28 2006-10-17 Materials And Technologies Corporation Wet processing using a fluid meniscus, apparatus and method
US6858089B2 (en) 1999-10-29 2005-02-22 Paul P. Castrucci Apparatus and method for semiconductor wafer cleaning
US6881687B1 (en) * 1999-10-29 2005-04-19 Paul P. Castrucci Method for laser cleaning of a substrate surface using a solid sacrificial film
US6576066B1 (en) 1999-12-06 2003-06-10 Nippon Telegraph And Telephone Corporation Supercritical drying method and supercritical drying apparatus
US20020006767A1 (en) 1999-12-22 2002-01-17 Applied Materials, Inc. Ion exchange pad or brush and method of regenerating the same
US6286231B1 (en) 2000-01-12 2001-09-11 Semitool, Inc. Method and apparatus for high-pressure wafer processing and drying
US6705930B2 (en) * 2000-01-28 2004-03-16 Lam Research Corporation System and method for polishing and planarizing semiconductor wafers using reduced surface area polishing pads and variable partial pad-wafer overlapping techniques
US6276459B1 (en) 2000-02-01 2001-08-21 Bradford James Herrick Compressed air foam generator
US6594847B1 (en) 2000-03-28 2003-07-22 Lam Research Corporation Single wafer residue, thin film removal and clean
US6457199B1 (en) 2000-10-12 2002-10-01 Lam Research Corporation Substrate processing in an immersion, scrub and dry system
JP2004510838A (en) 2000-05-17 2004-04-08 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Detergent or cleaning product
US6927176B2 (en) 2000-06-26 2005-08-09 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
US6488040B1 (en) 2000-06-30 2002-12-03 Lam Research Corporation Capillary proximity heads for single wafer cleaning and drying
KR100366623B1 (en) 2000-07-18 2003-01-09 삼성전자 주식회사 Method for cleaning semiconductor substrate or LCD substrate
US6810887B2 (en) 2000-08-11 2004-11-02 Chemtrace Corporation Method for cleaning semiconductor fabrication equipment parts
US6328042B1 (en) * 2000-10-05 2001-12-11 Lam Research Corporation Wafer cleaning module and method for cleaning the surface of a substrate
BR0115088A (en) * 2000-11-03 2003-10-07 Unilever Nv Composition of abrasive and liquid hard surface, aqueous and translucent hard surface cleaning gel, and process for cleaning a hard surface
US20020094684A1 (en) 2000-11-27 2002-07-18 Hirasaki George J. Foam cleaning process in semiconductor manufacturing
US6525009B2 (en) 2000-12-07 2003-02-25 International Business Machines Corporation Polycarboxylates-based aqueous compositions for cleaning of screening apparatus
US20020081945A1 (en) * 2000-12-21 2002-06-27 Rod Kistler Piezoelectric platen design for improving performance in CMP applications
US6641678B2 (en) * 2001-02-15 2003-11-04 Micell Technologies, Inc. Methods for cleaning microelectronic structures with aqueous carbon dioxide systems
US6596093B2 (en) * 2001-02-15 2003-07-22 Micell Technologies, Inc. Methods for cleaning microelectronic structures with cyclical phase modulation
US6493902B2 (en) 2001-02-22 2002-12-17 Chung-Yi Lin Automatic wall cleansing apparatus
JP2002280343A (en) 2001-03-15 2002-09-27 Nec Corp Cleaning process apparatus and cutting work apparatus
JP2002280330A (en) 2001-03-21 2002-09-27 Lintec Corp Pickup method of chip-type component
US6627550B2 (en) 2001-03-27 2003-09-30 Micron Technology, Inc. Post-planarization clean-up
JP2002309638A (en) 2001-04-17 2002-10-23 Takiron Co Ltd Ventilable cleanout for use in drainage line of building
JP3511514B2 (en) 2001-05-31 2004-03-29 エム・エフエスアイ株式会社 Substrate purification processing apparatus, dispenser, substrate holding mechanism, substrate purification processing chamber, and substrate purification method using these
US6802911B2 (en) 2001-09-19 2004-10-12 Samsung Electronics Co., Ltd. Method for cleaning damaged layers and polymer residue from semiconductor device
WO2003044147A1 (en) * 2001-11-19 2003-05-30 Unilever N.V. Improved washing system
US20030171239A1 (en) 2002-01-28 2003-09-11 Patel Bakul P. Methods and compositions for chemically treating a substrate using foam technology
GB2385597B (en) * 2002-02-21 2004-05-12 Reckitt Benckiser Inc Hard surface cleaning compositions
JP2003282513A (en) 2002-03-26 2003-10-03 Seiko Epson Corp Organic substance separation method and organic substance separation equipment
JP4570008B2 (en) 2002-04-16 2010-10-27 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
US20040159335A1 (en) * 2002-05-17 2004-08-19 P.C.T. Systems, Inc. Method and apparatus for removing organic layers
US6846380B2 (en) 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
US20040002430A1 (en) 2002-07-01 2004-01-01 Applied Materials, Inc. Using a time critical wafer cleaning solution by combining a chelating agent with an oxidizer at point-of-use
JP4017463B2 (en) * 2002-07-11 2007-12-05 株式会社荏原製作所 Cleaning method
US6998327B2 (en) 2002-11-19 2006-02-14 International Business Machines Corporation Thin film transfer join process and multilevel thin film module
US6875286B2 (en) 2002-12-16 2005-04-05 International Business Machines Corporation Solid CO2 cleaning
US6733596B1 (en) * 2002-12-23 2004-05-11 Lam Research Corporation Substrate cleaning brush preparation sequence, method, and system
US20040163681A1 (en) 2003-02-25 2004-08-26 Applied Materials, Inc. Dilute sulfuric peroxide at point-of-use
US6951042B1 (en) * 2003-02-28 2005-10-04 Lam Research Corporation Brush scrubbing-high frequency resonating wafer processing system and methods for making and implementing the same
JP2004323840A (en) * 2003-04-10 2004-11-18 Sumitomo Chem Co Ltd Polishing and washing liquid composition and polishing and washing method
US7169192B2 (en) * 2003-05-02 2007-01-30 Ecolab Inc. Methods of using heterogeneous cleaning compositions
US20040261823A1 (en) 2003-06-27 2004-12-30 Lam Research Corporation Method and apparatus for removing a target layer from a substrate using reactive gases
KR100477810B1 (en) 2003-06-30 2005-03-21 주식회사 하이닉스반도체 Fabricating method of semiconductor device adopting nf3 high density plasma oxide layer
US6946396B2 (en) 2003-10-30 2005-09-20 Nissan Chemical Indusries, Ltd. Maleic acid and ethylene urea containing formulation for removing residue from semiconductor substrate and method for cleaning wafer
KR20050044085A (en) 2003-11-07 2005-05-12 삼성전자주식회사 Aqueous cleaning solution for integrated circuit device and cleaning method using the cleaning solution
US7353560B2 (en) 2003-12-18 2008-04-08 Lam Research Corporation Proximity brush unit apparatus and method
US8043441B2 (en) 2005-06-15 2011-10-25 Lam Research Corporation Method and apparatus for cleaning a substrate using non-Newtonian fluids
US7416370B2 (en) 2005-06-15 2008-08-26 Lam Research Corporation Method and apparatus for transporting a substrate using non-Newtonian fluid
US7568490B2 (en) 2003-12-23 2009-08-04 Lam Research Corporation Method and apparatus for cleaning semiconductor wafers using compressed and/or pressurized foams, bubbles, and/or liquids
US8323420B2 (en) 2005-06-30 2012-12-04 Lam Research Corporation Method for removing material from semiconductor wafer and apparatus for performing the same
JP2005194294A (en) 2003-12-26 2005-07-21 Nec Electronics Corp Cleaning liquid and method for producing semiconductor device
CN1654617A (en) * 2004-02-10 2005-08-17 捷时雅株式会社 Cleaning composition, method for cleaning semiconductor substrate, and process for manufacturing semiconductor device
JP4821122B2 (en) * 2004-02-10 2011-11-24 Jsr株式会社 Cleaning composition, semiconductor substrate cleaning method, and semiconductor device manufacturing method
US20050183740A1 (en) 2004-02-19 2005-08-25 Fulton John L. Process and apparatus for removing residues from semiconductor substrates
US20050202995A1 (en) * 2004-03-15 2005-09-15 The Procter & Gamble Company Methods of treating surfaces using surface-treating compositions containing sulfonated/carboxylated polymers
JP2005311320A (en) * 2004-03-26 2005-11-04 Sony Corp Foreign matter removing method and its apparatus
JPWO2005104202A1 (en) * 2004-04-21 2008-03-13 株式会社エフティーエル Substrate cleaning method
US8136423B2 (en) 2005-01-25 2012-03-20 Schukra of North America Co. Multiple turn mechanism for manual lumbar support adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532976B1 (en) * 1995-07-10 2003-03-18 Lg Semicon Co., Ltd. Semiconductor wafer cleaning apparatus
US6090217A (en) * 1998-12-09 2000-07-18 Kittle; Paul A. Surface treatment of semiconductor substrates
US20040069319A1 (en) * 2002-09-30 2004-04-15 Lam Research Corp. Method and apparatus for cleaning a substrate using megasonic power
US20050150822A1 (en) * 2004-01-03 2005-07-14 Timo Niitti Device for shear-thinning of solids containing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Also Published As

Publication number Publication date
KR20080085072A (en) 2008-09-22
MY149848A (en) 2013-10-31
JP2009522777A (en) 2009-06-11
CN101351282B (en) 2013-04-10
KR101426777B1 (en) 2014-08-07
TWI330551B (en) 2010-09-21
JP5237825B2 (en) 2013-07-17
US20070155640A1 (en) 2007-07-05
CN101512049A (en) 2009-08-19
KR101376911B1 (en) 2014-03-20
KR20080083196A (en) 2008-09-16
CN101512049B (en) 2014-04-16
CN101351281A (en) 2009-01-21
CN101009204A (en) 2007-08-01
CN101389414A (en) 2009-03-18
CN101351282A (en) 2009-01-21
JP2009522789A (en) 2009-06-11
CN101114569A (en) 2008-01-30
SG154438A1 (en) 2009-08-28
JP2009522783A (en) 2009-06-11
TW200740536A (en) 2007-11-01
EP1969114A2 (en) 2008-09-17
TWI335247B (en) 2011-01-01
CN101370885B (en) 2013-04-17
CN101034670B (en) 2010-11-17
CN101370885A (en) 2009-02-18
JP5148508B2 (en) 2013-02-20
KR101312973B1 (en) 2013-10-01
CN101009204B (en) 2012-05-30
TW200738361A (en) 2007-10-16
KR20080081364A (en) 2008-09-09
CN101034670A (en) 2007-09-12
WO2007078955A3 (en) 2008-02-07
CN101351540A (en) 2009-01-21
JP4892565B2 (en) 2012-03-07
WO2007078955A2 (en) 2007-07-12
KR20080091356A (en) 2008-10-10
JP2009522780A (en) 2009-06-11
CN101389414B (en) 2012-07-04
CN101029289A (en) 2007-09-05
SG169975A1 (en) 2011-04-29
US8475599B2 (en) 2013-07-02
EP2428557A1 (en) 2012-03-14
TWI410522B (en) 2013-10-01
JP5154441B2 (en) 2013-02-27
KR101401753B1 (en) 2014-05-30
MY143763A (en) 2011-07-15
CN101029289B (en) 2014-06-25
TW200801244A (en) 2008-01-01
CN101351281B (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US8475599B2 (en) Substrate preparation using stabilized fluid solutions and methods for making stable fluid solutions
US8716210B2 (en) Material for cleaning a substrate
US8555903B2 (en) Method and apparatus for removing contamination from substrate
US8608859B2 (en) Method for removing contamination from a substrate and for making a cleaning solution
US7799141B2 (en) Method and system for using a two-phases substrate cleaning compound
US8137474B2 (en) Cleaning compound and method and system for using the cleaning compound
US8388762B2 (en) Substrate cleaning technique employing multi-phase solution
KR101530394B1 (en) Method for cleaning semiconductor wafer surfaces by applying periodic shear stress to the cleaning solution
US20090101166A1 (en) Apparatus and methods for optimizing cleaning of patterned substrates

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION