US20130272922A1 - Antimicrobial composition and methods for using same - Google Patents

Antimicrobial composition and methods for using same Download PDF

Info

Publication number
US20130272922A1
US20130272922A1 US13/847,876 US201313847876A US2013272922A1 US 20130272922 A1 US20130272922 A1 US 20130272922A1 US 201313847876 A US201313847876 A US 201313847876A US 2013272922 A1 US2013272922 A1 US 2013272922A1
Authority
US
United States
Prior art keywords
composition
bacteria
osm
acid
biofilm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/847,876
Inventor
Matthew Franco Myntti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next Science IP Holdings Pty Ltd
Original Assignee
Next Science LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next Science LLC filed Critical Next Science LLC
Priority to US13/847,876 priority Critical patent/US20130272922A1/en
Assigned to NEXT SCIENCE, LLC reassignment NEXT SCIENCE, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MICROBIAL DEFENSE SYSTEMS LLC
Assigned to MICROBIAL DEFENSE SYSTEMS LLC reassignment MICROBIAL DEFENSE SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MYNTTI, MATTHEW F., DR.
Publication of US20130272922A1 publication Critical patent/US20130272922A1/en
Assigned to Next Science IP Holdings Pty Ltd reassignment Next Science IP Holdings Pty Ltd NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: NEXT SCIENCE, LLC
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids

Definitions

  • Bacteria is found virtually everywhere and is responsible for a significant amount of disease and infection. Ridding surfaces of bacteria is desirable to reduce human exposure. Bacteria in normal environments have developed self preservation mechanisms and are therefore extremely difficult to remove and/or eradicate.
  • Bacteria can be found in both planktonic and biofilm forms. In the biofilm form, they interact with surfaces and form surface colonies which adhere to a surface and continue to grow.
  • the bacteria produce exopolysaccharide (EPS) and/or extracellularpoly-saccharide (ECPS) macromolecules that keep them attached to the surface and form a protective film that is effective against many forms of attack. Protection most likely can be attributed to the small diameter of the flow channels in the matrix, which restricts the size of molecules that can transport to the underlying bacteria, and consumption of biocides through interactions with portions of the EPS/ECPS macromolecular matrix.
  • EPS exopolysaccharide
  • ECPS extracellularpoly-saccharide
  • the bacteria in biofilm form are down-regulated (sessile) and not actively dividing. This makes them resistant to attack by a large group of antibiotics and antimicrobials, which attack the bacteria during the active parts of their lifecycle, e.g., cell division.
  • biocides and antimicrobials that are effective in treating bacteria in this form are strongly acidic, oxidizing, and toxic, often involving halogen atoms, oxygen atoms, or both.
  • Common examples include concentrated bleach, strong mineral acids (e.g., HCl) and hydrogen peroxide.
  • concentrated bleach strong mineral acids (e.g., HCl) and hydrogen peroxide.
  • large dosages of such chemicals are allowed to contact the biofilm for extended amounts of time (up to 24 hours in some circumstances), which makes them impractical for many applications.
  • Such a solution that is not particularly acidic or caustic (i.e., about 3 ⁇ pH ⁇ 9) and has little to no toxicity would be particularly advantageous.
  • an aqueous composition adapted to kill bacteria in both planktonic and biofilm states.
  • the composition also exhibits lethality toward other microbes such as viruses, fungi, molds, yeasts, and bacterial spores.
  • the aqueous composition includes a significant amount of one or more surfactants and large amounts of osmotically active solutes.
  • the pH of the composition preferably is moderately low (about 4 ⁇ pH ⁇ 6), although higher concentrations of acidic components can be employed.
  • At least some of the osmotically active solutes include the dissociation product(s) of one or more acids that are effective at interrupting or breaking ionic crosslinks in the macromolecular matrix of the biofilm, which facilitates passage of the solutes and surfactant through the matrix to the bacteria entrained therein and/or protected thereby.
  • the antimicrobial composition which is adapted for use against bacteria in a biofilm that includes a macromolecular matrix, can consist essentially of water, dissociation product(s) of one or more organic acids, and at least 1% by weight of one or more surfactants (based on the total weight of the composition).
  • the composition can have an osmolarity of at least 3 Osm and a pH of no more than 6.5.
  • the acid(s) can include or consist of one or more organic polyacids.
  • a portion of the osmotically active solutes result from dissociation of one or more alkali metal salts of the one or more polyacids, the use of which can provide a buffered composition, i.e., a composition which resists significant changes in pH when, for example, some of the hydronium ions are consumed in the crosslink interruption just described.
  • the composition includes no biocidal additives; in other words, the ingredients just described alone are sufficient to provide significant biocidal activity. Additionally or alternatively, the composition can contain no active ingredients other than acid(s) and surfactant(s).
  • the aqueous composition is lethal toward planktonic and bacterial cells with high efficacy.
  • it is non-toxic or, at worst, has low toxicity.
  • compositions of the type described above can provide at least a 3 log reduction in the number of live bacteria after a residence time of 5 minutes.
  • pH values are those which can be obtained from any of a variety of potentiometric techniques employing a properly calibrated electrode.
  • a composition according to the present invention can result, after no more than 10 minutes residence time, in at least 6 log (99.9999%) reductions in the number of bacteria in an entrenched biofilm.
  • Embodiments of the composition which are non-toxic if ingested can result, after no more than 10 minutes residence time, in at least 4 log (99.99%) reductions in the number of bacteria in an entrenched biofilm.
  • the foregoing compare to commercially available bactericides, where non-toxic versions show less than a 1 log (90%) reduction and toxic versions show 1 to 2 log (90-99%) reductions, with the latter exhibiting a much higher level of toxicity levels than any embodiment of the presently provided composition.
  • the composition can contain as few as three ingredients: water, the dissociation product(s) of at least one acid, and at least one surfactant, each of which generally is considered to be biocompatible.
  • the dissociation product(s) of one or more alkali metal salts of organic acids can be included in some embodiments. Certain embodiments of the composition employ no active biocides.
  • any source of water can be used, although those that are relatively free of bacteria without advance treatment are preferred.
  • the water need not be distilled, deionized, etc., although such treatments certainly are not excluded.
  • the water can be heated.
  • composition has a pH less than 7.
  • acidic protons i.e., hydronium ions
  • hydronium ions are believed to be involved in breaking ionic cross-links in the macromolecular matrix of a biofilm.
  • Increases in the concentration of hydronium ions generally correspond with enhanced efficacy of the composition. This effect may not be linear, i.e., the enhancement in efficacy may be asymptotic past a certain hydronium ion concentration.
  • the pH of the composition is greater than ⁇ 3, the composition generally will be biocompatible; specifically, external exposure will result in no long-term negative dermal effects and ingestion can result biodegradation and/or biosorption, particularly if diluted with water soon after ingestion.
  • the pH is greater than ⁇ 4
  • accidental inhalation or exposure to an aerosolized version of the composition should not result in laryngospasms or other throat-related damage.
  • even those embodiments of the composition having a pH below ⁇ 4 are believed to be significantly less toxic than presently available commercial products.
  • the pH of the composition is less than 7 . 0 , generally less than 6 . 6 , less than 6.4, less than 6.2, less than 6.0, less than 5.8, less than 5.6, less than 5.4, less than 5.2, less than 5.0, less than 4.8, less than 4.6, less than 4.4, less than 4.2, less than 4.0, less than 3.8, less than 3.6, less than 3.6, less than 3.4, less than 3.2, or even less than 3.0; in terms of ranges, the pH of the composition can be from ⁇ 2 to ⁇ 6.7, from ⁇ 2.5 to ⁇ 6.5, from ⁇ 2.7 to ⁇ 6.3, from ⁇ 3 to ⁇ 6, from ⁇ 3.3 to ⁇ 5.7, or from ⁇ 3.5 to ⁇ 5.5.
  • Acidity is achieved by adding to water (or vice versa) one or more acids, specifically strong (mineral) acids such as HCl, H 2 SO 4 , H 3 PO 4 , HNO 3 , H 3 BO 3 , and the like or, preferably, organic acids, particularly organic polyacids.
  • acids specifically strong (mineral) acids such as HCl, H 2 SO 4 , H 3 PO 4 , HNO 3 , H 3 BO 3 , and the like or, preferably, organic acids, particularly organic polyacids.
  • organic acids include monoprotic acids such as formic acid, acetic acid and substituted variants (e.g., hydroxy-acetic acid, chloroacetic acid, dichloroacetic acid, phenylacetic acid, and the like), propanoic acid and substituted variants (e.g., lactic acid, pyruvic acid, and the like), any of a variety of benzoic acids (e.g., mandelic acid, chloromandelic acid, salicylic acid, and the like), glucuronic acid, and the like; diprotic acids such as oxalic acid and substituted variants (e.g., oxamic acid), butanedioic acid and substituted variants (e.g., malic acid, aspartic acid, tartaric acid, citramalic acid, and the like), pentanedioic acid and substituted variants (e.g., glutamic acid, 2-ketoglutaric acid, and the like), hexanedio
  • preference can be given to those organic acids which can act to chelate the metallic cations ionic involved in crosslinking the macromolecular matrix of the biofilm.
  • the surfactant component can be added to water before, after or at the same time as the acid(s).
  • any material having surface active properties in water can be employed, although those that bear some type of ionic charge are expected to have enhanced antimicrobial efficacy because such charges, when brought into contact with a bacteria, are believed to lead to more effective cell membrane disruption and, ultimately, to cell leakage and lysis.
  • This type of antimicrobial process can kill even sessile bacteria because it does not involve or entail disruption of a cellular process.
  • anionic surfactants include, but are not limited to, sodium chenodeoxycholate, N-lauroylsarcosine sodium salt, lithium dodecyl sulfate, 1-octane-sulfonic acid sodium salt, sodium cholate hydrate, sodium deoxycholate, sodium dodecyl sulfate, sodium glycodeoxycholate, sodium lauryl sulfate, and the alkyl phosphates set forth in U.S. Pat. No. 6,610,314.
  • Potentially useful cationic surfactants include, but are not limited to, hexadecylpyridinium chloride monohydrate and hexadecyltrimethylammonium bromide, with the latter being a preferred material.
  • Potentially useful nonionic surfactants include, but are not limited to, polyoxyethyleneglycol dodecyl ether, N-decanoyl-N-methyl-glucamine, digitonin, n-dodecyl B-D-maltoside, octyl B-D-glucopyranoside, octylphenol ethoxylate, polyoxyethylene (8) isooctyl phenyl ether, polyoxyethylene sorbitan mono-laurate, and polyoxyethylene (20) sorbitan monooleate.
  • Useful zwitterionic surfactants include but are not limited to 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate, 3-(decyldimethylammonio) propanesulfonate inner salt, and N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate.
  • the interested reader is directed to any of a variety of other sources including, for example, U.S. Pat. Nos. 4,107,328 and 6,953,772 as well as U.S. Pat. Publ. No. 2007/0264310.
  • the composition contains a sufficient amount (expressed in terms of weight/moles or concentration) of surfactant to interrupt or rupture bacterial cell walls.
  • This amount can vary widely based on a variety of factors including, for example, the age of the biofilm (particularly whether it is entrenched, a factor which relates to the type of proteins and mass of the macromolecular matrix), size of the biofilm, amount of surface soiling, the species of bacteria, whether more than one type of bacteria is present, the solubility of the surfactant(s), and the like.
  • the amount of surfactant generally constitutes greater than ⁇ 0.2%, typically at least ⁇ 0.5%, more typically at least ⁇ 0.7%, often at least ⁇ 0.9%, and preferably at least 1% of the composition (with all being weight percentages based on the total weight of the composition), with the upper limit being defined by the solubility limits of the particular surfactant(s) chosen.
  • Some surfactants can permit extremely high loading levels, e.g., at least 5%, at least 10%, at least 12%, at least 15%, at least 17%, at least 20%, or even on the order of ⁇ 25% or more (with all being weight percentages based on the total weight of the composition). Any of the foregoing minimum amounts can be combined with any of the foregoing maximum amounts to provide an exemplary range of potential amounts of surfactant.
  • the surfactant(s) can be the only antimicrobial agents in the composition, specifically, the composition can be free of active antimicrobial agents.
  • the lethality of the surfactant component(s) is increased and/or enhanced when the composition has at least moderate effective solute concentrations (tonicity).
  • tonicity effective solute concentrations
  • compositions having higher tonicities may exert higher osmotic pressure to the bacterial cell wall, which increases its susceptibility to interruption by surfactant.
  • the osmolarity of the composition generally increases in proportion with the amount of acid(s) employed, with the osmolarity maximum for a given composition primarily being a function of the solubility limits of the specific acid, i.e., the point at which the acid(s) begin to no longer be soluble.
  • An obvious corollary to increased levels of acid(s) in the composition is higher concentrations of hydronium ions, i.e., low pH values.
  • hydronium ions i.e., low pH values.
  • some end-use applications can call for a composition with only a moderately low pH.
  • one or more types of other water soluble compounds can be included. Such compounds, upon dissociation, increase the effective amount of solutes in the composition without greatly impacting the molar concentration of hydronium ions while, simultaneously, providing a buffer system in the composition.
  • One approach to achieve increased tonicity of the composition is by adding large amounts of ionic compounds (salts); see, e.g., U.S. Pat. No. 7,090,882.
  • ionic compounds salts
  • a preferred approach to increasing tonicity involves inclusion of salt(s) of one or more the acid(s) or the salt(s) of one or more other organic acids.
  • a many fold excess e.g., 3x-10x, preferably at least 5x or even at least 8x
  • the identity of the countercation portion of the salt is not believed to be particularly critical, with common examples including ammonium ions and alkali metals.
  • a polyacid where a polyacid is used, all or fewer than all of the carboxyl H atoms can be replaced with cationic atoms or groups, which can be the same or different.
  • mono-, di- and trisodium citrate all constitute potentially useful buffer precursors.
  • trisodium citrate has three available basic sites, it has a theoretical buffering capacity up to 50% greater than that of disodium citrate (which has two such sites) and up to 200% greater than that of sodium citrate (which has only one such site).
  • the tonicity of the composition is at least moderately high, with an osmolarity of at least about 1 Osm being preferred for most applications.
  • the composition can have any of the following concentrations: at least ⁇ 1.5 Osm, at least ⁇ 1.75 Osm, at least ⁇ 2.0 Osm, at least ⁇ 2.25 Osm, at least ⁇ 2.5 Osm, at least ⁇ 2.75 Osm, at least ⁇ 3.0 Osm, at least ⁇ 3.25 Osm, at least ⁇ 3.5 Osm, at least ⁇ 3.75 Osm, at least ⁇ 4.0 Osm, and even at least ⁇ 4.25 Osm.
  • compositions can exhibit solute concentrations of 1 to 5 Osm, 1.2 to 4.5 Osm, 1.4 to 4.4 Osm, 1.6 to 4.3 Osm, 1.8 to 4.2 Osm, 1.9 to 4.1 Osm, and 2 to 4 Osm; other potentially useful ranges include 3-5 Osm, 2.5-4.5 Osm, 3-4.5 Osm, 3.5-5 Osm, 3.25-4.5 Osm, and the like.
  • a biocompatible composition i.e., minimal toxicity
  • a biocompatible composition can entail a pH maintained above ⁇ 4, an effective solute concentration of at least ⁇ 0.10 Osm, and large amounts of one or more surfactant(s).
  • Increasing the pH to ⁇ 6 or higher can increase biocompatibility of the composition but, simultaneously, decrease its efficacy in killing microbes; conversely, decreasing the pH below ⁇ 4 and/or increasing the osmolarity of the composition can increase its antimicrobial capacity while, simultaneously, reducing its biocompatibility.
  • no particular benefit is seen from reducing the amount of surfactant employed, although too high of an amount can present toxicity concerns in some circumstances.
  • composition can be prepared in a number of ways. Description of an exemplary method follows.
  • Acid e.g., anhydrous citric acid
  • optional buffer precursor e.g., a citric acid salt such as sodium citrate dihydrate
  • sufficient water to constitute ⁇ 80% of the calculated desired volume.
  • This solution can be stirred and/or heated to promote solution of the acid and optional buffer precursor.
  • the desired amount of surfactant(s) then can be added before additional water is added to bring the composition close to the calculated volume.
  • stirring, if used, is complete sufficient water is added so as to bring the composition to the calculated value.
  • no special conditions or containers are needed to store the composition for an extended time, although refrigeration can be used if desired.
  • additives and adjuvants can be included to make a composition more amenable for use in a particular end-use application with negatively affecting its efficacy in a substantial manner.
  • examples include, but are not limited to, emollients, fungicides, fragrances, pigments, dyes, defoamers, foaming agents, flavors, abrasives, bleaching agents, preservatives (e.g., antioxidants) and the like.
  • composition does not require inclusion of an active antimicrobial agent for efficacy, but such materials can be included in certain embodiments.
  • an active antimicrobial agent for efficacy, but such materials can be included in certain embodiments.
  • one or more of bleach, any of a variety of phenols, aldehydes, quaternary ammonium compounds, etc. can be added.
  • composition conveniently can be provided as a solution, although other forms might be desirable for certain end-use applications. Accordingly, the composition can provided as a soluble powder (for subsequent dilution, an option which can reduce transportation costs), a slurry, or a thicker form such as a gel or paste (which might be particularly useful for providing increased residence times).
  • the composition can include additional ingredients such as a coalescent (e.g., polyvinylpyrrolidone).
  • Embodiments of the composition can provide very large reductions in the number of bacteria, even with extremely short residence times.
  • a composition having high concentrations of surfactant (e.g., 1.5-2.5% by wt.) and total solutes (e.g., 3-4 Osm) can provide a 2, 3 or 4 log (99.99%) reduction in the number of bacteria in an entrenched biofilm with a 3, 4, 5, 7, 8, 9, or 10 minute residence time and a 3, 4, 5, or 6 log (99.9999%) reduction in the number of planktonic bacteria with a mere 30-second residence time.
  • Quantitative Carrier Testing (ASTM E2197) is designed to determine the contact time necessary to eradicate from a surface (e.g., countertops, sinks, bathroom fixtures, and the like) bacteria in a soil-loaded inoculum.
  • a surface e.g., countertops, sinks, bathroom fixtures, and the like
  • bacteria combined with a soil loading and a 10 ⁇ L inoculum is placed on a stainless steel carrier disk.
  • 50 ⁇ L of antimicrobial treatment composition is applied and allowed to stay in place for the desired treatment time, after which dilution with a saline dilution is performed.
  • the following are results achieved from Quantitative Carrier Testing using 5% soil load and a 3 minute residence time (with TDTMAB representing tetradecyltrimethylammonium bromide):
  • An alternative test designed to show efficacy against an entrenched biofilm involves treatment of biofilm-forming bacterial strains grown over several days (typically in an incubator at 37° C. and aerobic conditions) in a drip-flow reactor, designed to model growth in a low shear environment.
  • Bacteria are inoculated (e.g., on glass slides, optionally coated with hydroxyapatite) pre-coated with a sterile medium (e.g., trypticase soy broth).
  • a coated slide then is inoculated with a culture of the biofilm-forming microbe of interest.
  • the reactor is placed in a horizontal position (typically ⁇ 2 hours) to promote bacterial attachment to the substrate before being inclined (e.g., to a 10° angle), with sterile medium dripping on the slides (typically at a rate of ⁇ 2.78 ⁇ 10 ⁇ 3 mL/sec). After a desired number of days of growth, flow of the sterile medium is halted, and the reactor is raised to horizontal. Antimicrobial composition is applied, while a control slide is treated with saline solution. After an amount of time (typically 5-10 minutes), the slides are rinsed with saline solution.
  • the foregoing data includes much of interest including, for example, a potential indication that pseudomonas, a gram negative bacteria, is more affected by the osmolarity of the composition than by the type or concentration of surfactant employed, while the opposite might be true for staph.
  • the composition can be employed in a variety of ways. For example, when used to treat a biofilm on a surface (e.g., cutting board, counter, desk, etc.), the composition can be applied directly to the biofilm, optionally followed by physical rubbing or buffing, or the composition can be applied to the rubbing/buffing medium, e.g., cloth. Where a biofilm in an inaccessible area is to be treated, soaking or immersion of the biofilm in an excess of the composition can be performed for a time sufficient to essentially solvate the biofilm, which then can be flushed from the affected area. Regardless of contact method, the surfactant component(s) are believed to kill significant numbers of bacteria without a need for the bacteria to be removed from the biofilm or vice versa.
  • the composition may find utility in a large number of potential uses including, but not limited to, household applications including non-compromised skin (hand, hair, and body washing), kitchen cleaning (countertop and surface cleaning, cleaning of food preparation utensils, dish washing, produce washing, etc.), bathroom cleaning (countertop and surface cleaning, fixture cleaning, toilet bowl cleaning and shower mildew eradication), and laundry area cleaning (including laundry detergent and diaper sterilization); commercial applications include livestock care (facility and equipment sterilization and dairy teat dip), produce sterilization (an alternative to irradiation, which can be particularly useful against e-coli, listeria, salmonella, Botulism , etc.), commercial kitchen (countertop and surface cleaning, food preparation utensil cleaning, storage equipment and facilities cleaning, dish washing and produce washing), mass food and beverage processing (processing and storage equipment cleaning, tank sterilization, cleaning of liquid transport lines, etc.), cleaning of water lines (e.g., for drinking water, dental offices, plumbing, and the like), and food and beverage transport
  • household applications including non-comprom

Abstract

An aqueous composition adapted to kill bacteria in both planktonic and biofilm states is lethal toward a wide spectrum of gram positive and gram negative bacteria as well as other microbes. The composition, which is slightly to moderately acidic, includes a significant amount of one or more surfactants and large amounts of osmotically active solutes. The composition can be applied directly to a site of bacterial growth. Even when the bacteria is in biofilm form, the surfactant component(s) begin to kill the bacteria before the macro-molecular matrix is removed or dislodged from the site.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 13/679,994 filed 16 Nov. 2012, presently pending, which is a continuation of U.S. patent application Ser. No. 12/573,340 filed 5 Oct. 2009, presently pending, which claimed the benefit of U.S. provisional application no. 61/103,214 filed 6 Oct. 2008, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND INFORMATION
  • Bacteria is found virtually everywhere and is responsible for a significant amount of disease and infection. Ridding surfaces of bacteria is desirable to reduce human exposure. Bacteria in normal environments have developed self preservation mechanisms and are therefore extremely difficult to remove and/or eradicate.
  • Bacteria can be found in both planktonic and biofilm forms. In the biofilm form, they interact with surfaces and form surface colonies which adhere to a surface and continue to grow. The bacteria produce exopolysaccharide (EPS) and/or extracellularpoly-saccharide (ECPS) macromolecules that keep them attached to the surface and form a protective film that is effective against many forms of attack. Protection most likely can be attributed to the small diameter of the flow channels in the matrix, which restricts the size of molecules that can transport to the underlying bacteria, and consumption of biocides through interactions with portions of the EPS/ECPS macromolecular matrix.
  • Additionally, the bacteria in biofilm form are down-regulated (sessile) and not actively dividing. This makes them resistant to attack by a large group of antibiotics and antimicrobials, which attack the bacteria during the active parts of their lifecycle, e.g., cell division.
  • Due to the protection afforded by the macromolecular matrix and their down-regulated state, bacteria in a biofilm are very difficult to treat. The types of biocides and antimicrobials that are effective in treating bacteria in this form are strongly acidic, oxidizing, and toxic, often involving halogen atoms, oxygen atoms, or both. Common examples include concentrated bleach, strong mineral acids (e.g., HCl) and hydrogen peroxide. Commonly, large dosages of such chemicals are allowed to contact the biofilm for extended amounts of time (up to 24 hours in some circumstances), which makes them impractical for many applications.
  • Recent developments have involved formulations intended for use against compromised animal/human tissue which, accordingly, are intentionally gentle so as to prevent damage or irritation to compromised tissue. These formulations solvate the bio-film matrix so that still-living bacteria can be rinsed or otherwise removed from infected tissue. The concentrations of active ingredients in these formulations are too low to effectively kill the bacteria in the biofilm, and are thus ill suited for surface disinfection.
  • A solution that can disrupt the macromolecular matrix, or bypass and/or disable the defenses inherent in these matrices, allowing lethal doses of the antimicrobial ingredients in the solution to access and kill the bacteria in their biofilm and sessile states, remains desirable. Such a solution that is not particularly acidic or caustic (i.e., about 3≦pH≦9) and has little to no toxicity would be particularly advantageous.
  • SUMMARY OF THE INVENTION
  • Provided herein is an aqueous composition adapted to kill bacteria in both planktonic and biofilm states. In addition to being lethal toward a wide spectrum of gram positive and gram negative bacteria, the composition also exhibits lethality toward other microbes such as viruses, fungi, molds, yeasts, and bacterial spores.
  • Broadly, the aqueous composition includes a significant amount of one or more surfactants and large amounts of osmotically active solutes. The pH of the composition preferably is moderately low (about 4≦pH≦6), although higher concentrations of acidic components can be employed. At least some of the osmotically active solutes include the dissociation product(s) of one or more acids that are effective at interrupting or breaking ionic crosslinks in the macromolecular matrix of the biofilm, which facilitates passage of the solutes and surfactant through the matrix to the bacteria entrained therein and/or protected thereby.
  • The antimicrobial composition, which is adapted for use against bacteria in a biofilm that includes a macromolecular matrix, can consist essentially of water, dissociation product(s) of one or more organic acids, and at least 1% by weight of one or more surfactants (based on the total weight of the composition). The composition can have an osmolarity of at least 3 Osm and a pH of no more than 6.5.
  • In certain embodiments of the foregoing, the acid(s) can include or consist of one or more organic polyacids.
  • In at least some embodiments, a portion of the osmotically active solutes result from dissociation of one or more alkali metal salts of the one or more polyacids, the use of which can provide a buffered composition, i.e., a composition which resists significant changes in pH when, for example, some of the hydronium ions are consumed in the crosslink interruption just described.
  • In at least some embodiments, the composition includes no biocidal additives; in other words, the ingredients just described alone are sufficient to provide significant biocidal activity. Additionally or alternatively, the composition can contain no active ingredients other than acid(s) and surfactant(s).
  • Without wishing to be bound by theory, the combination of high tonicity (high osmolar concentration) and large amounts of surfactant is believed to induce bacterial membrane leakage, leading to cell lysis. While the ingredients used to prepare such compositions typically are ineffective as bactericides when used at concentrations commonly employed in commercial products, an appropriately formulated composition has been found to be very effective at breaking down or bypassing and disabling biofilm defenses, thereby allowing the composition to access and kill the bacteria, even when it is in a sessile state.
  • The aqueous composition is lethal toward planktonic and bacterial cells with high efficacy. Advantageously, in many embodiments, it is non-toxic or, at worst, has low toxicity.
  • Also provided are methods of making and using the foregoing composition. In at least one such method, application of a composition of the type described above to a biofilm can provide at least a 3 log reduction in the number of live bacteria after a residence time of 5 minutes.
  • To assist in understanding the following description of various embodiments, certain definitions are provided immediately below. These are intended to apply through-out unless the surrounding text explicitly indicates a contrary intention:
      • “microbe” means any type of microorganism including, but not limited to, bacteria, viruses, fungi, viroids, prions, and the like;
      • “antimicrobial agent” means a substance having the ability to cause greater than a 90% (1 log) reduction, preferably at least a 99% (2 log) reduction in the number of one or more of microbes including, but not limited to, bacteria selected from Staphylococcus aureus and Pseudomonas aeruginosa;
      • “active antimicrobial agent” means an antimicrobial agent that is effective only or primarily during the active parts of the lifecycle, e.g., cell division, of a microbe;
      • “biofilm” means a community of microbes, particularly bacteria and fungi, attached to a surface with the community members being contained in and/or protected by a self-generated macromolecular matrix;
      • “residence time” means the amount of time that an antimicrobial agent is allowed to contact a bacterial biofilm;
      • “entrenched biofilm” is a biofilm that has reached a steady state mass after a growth period of two or more days;
      • “buffer” means a compound or mixture of compounds having an ability to maintain the pH of a solution to which it is added within relatively narrow limits;
      • “buffer precursor” means a compound that, when added to a mixture containing an acid, results in a buffer;
      • “polyacid” means a compound having at least two carboxyl groups and specifically includes dicarboxylic acids, tricarboxylic acids, etc.;
      • “biocompatible” means presenting no significant, long-term deleterious effects on or in a mammalian species;
      • “biodegradation” means transformation, via enzymatic, chemical or physical in vivo processes, of a chemical into smaller chemical species;
      • “biosorption” means absorption of a material into the body of a mammalian species;
      • “soil load” means a solution of one or more organic and/or inorganic substances added to the suspension of a test organism to simulate the presence of body secretions, excretions, and the like; and
      • “inoculum” means a solution containing bacteria, growth solution (e.g., tryptic soy broth) and protein soil load.
  • Hereinthroughout, pH values are those which can be obtained from any of a variety of potentiometric techniques employing a properly calibrated electrode.
  • The relevant portion(s) of any specifically referenced patent and/or published patent application is/are incorporated herein by reference.
  • DETAILED DESCRIPTION
  • A composition according to the present invention can result, after no more than 10 minutes residence time, in at least 6 log (99.9999%) reductions in the number of bacteria in an entrenched biofilm. Embodiments of the composition which are non-toxic if ingested can result, after no more than 10 minutes residence time, in at least 4 log (99.99%) reductions in the number of bacteria in an entrenched biofilm. The foregoing compare to commercially available bactericides, where non-toxic versions show less than a 1 log (90%) reduction and toxic versions show 1 to 2 log (90-99%) reductions, with the latter exhibiting a much higher level of toxicity levels than any embodiment of the presently provided composition.
  • The composition can contain as few as three ingredients: water, the dissociation product(s) of at least one acid, and at least one surfactant, each of which generally is considered to be biocompatible. The dissociation product(s) of one or more alkali metal salts of organic acids can be included in some embodiments. Certain embodiments of the composition employ no active biocides.
  • Essentially any source of water can be used, although those that are relatively free of bacteria without advance treatment are preferred. The water need not be distilled, deionized, etc., although such treatments certainly are not excluded. To enhance solubility of one or more of the other components of the composition, the water can be heated.
  • The composition has a pH less than 7. Without wishing to be bound by theory, acidic protons (i.e., hydronium ions) are believed to be involved in breaking ionic cross-links in the macromolecular matrix of a biofilm.
  • Increases in the concentration of hydronium ions, i.e., reductions in pH, generally correspond with enhanced efficacy of the composition. This effect may not be linear, i.e., the enhancement in efficacy may be asymptotic past a certain hydronium ion concentration. As long as the pH of the composition is greater than ˜3, the composition generally will be biocompatible; specifically, external exposure will result in no long-term negative dermal effects and ingestion can result biodegradation and/or biosorption, particularly if diluted with water soon after ingestion. If the pH is greater than ˜4, accidental inhalation or exposure to an aerosolized version of the composition should not result in laryngospasms or other throat-related damage. However, even those embodiments of the composition having a pH below ˜4 are believed to be significantly less toxic than presently available commercial products.
  • The pH of the composition is less than 7.0, generally less than 6.6, less than 6.4, less than 6.2, less than 6.0, less than 5.8, less than 5.6, less than 5.4, less than 5.2, less than 5.0, less than 4.8, less than 4.6, less than 4.4, less than 4.2, less than 4.0, less than 3.8, less than 3.6, less than 3.6, less than 3.4, less than 3.2, or even less than 3.0; in terms of ranges, the pH of the composition can be from ˜2 to ˜6.7, from ˜2.5 to ˜6.5, from ˜2.7 to ˜6.3, from ˜3 to ˜6, from ˜3.3 to ˜5.7, or from ˜3.5 to ˜5.5.
  • Acidity is achieved by adding to water (or vice versa) one or more acids, specifically strong (mineral) acids such as HCl, H2SO4, H3PO4, HNO3, H3BO3, and the like or, preferably, organic acids, particularly organic polyacids. Examples of organic acids include monoprotic acids such as formic acid, acetic acid and substituted variants (e.g., hydroxy-acetic acid, chloroacetic acid, dichloroacetic acid, phenylacetic acid, and the like), propanoic acid and substituted variants (e.g., lactic acid, pyruvic acid, and the like), any of a variety of benzoic acids (e.g., mandelic acid, chloromandelic acid, salicylic acid, and the like), glucuronic acid, and the like; diprotic acids such as oxalic acid and substituted variants (e.g., oxamic acid), butanedioic acid and substituted variants (e.g., malic acid, aspartic acid, tartaric acid, citramalic acid, and the like), pentanedioic acid and substituted variants (e.g., glutamic acid, 2-ketoglutaric acid, and the like), hexanedioic acid and substituted variants (e.g., mucic acid), butenedioic acid (both cis and trans isomers), iminodiacetic acid, phthalic acid, and the like; triprotic acids such as citric acid, 2-methylpropane-1,2,3-tricarboxylic acid, benzenetricarboxylic acid, nitrilotriacetic acid, and the like; tetraprotic acids such as prehnitic acid, pyromellitic acid, and the like; and even higher degree acids (e.g., penta-, hexa-, heptaprotic, etc.). Where a tri-, tetra-, or higher acid is used, one or more of the carboxyl protons can be replaced by cationic atoms or groups (e.g., alkali metal ions), which can be the same or different.
  • In certain embodiments, preference can be given to those organic acids which are, or can be made to be, highly soluble in water; acids that include groups that enhance solubility in water (e.g., hydroxyl groups), examples of which include tartaric acid, citric acid, and citramalic acid, can be preferred in some circumstances. In these and/or other embodiments, preference can be given to those organic acids which are biocompatible; many of the organic acids listed above are used in preparing or treating food products, personal care products, and the like. Alternatively or additionally, preference can be given to those organic acids which can act to chelate the metallic cations ionic involved in crosslinking the macromolecular matrix of the biofilm.
  • The surfactant component can be added to water before, after or at the same time as the acid(s).
  • Essentially any material having surface active properties in water can be employed, although those that bear some type of ionic charge are expected to have enhanced antimicrobial efficacy because such charges, when brought into contact with a bacteria, are believed to lead to more effective cell membrane disruption and, ultimately, to cell leakage and lysis. This type of antimicrobial process can kill even sessile bacteria because it does not involve or entail disruption of a cellular process.
  • Potentially useful anionic surfactants include, but are not limited to, sodium chenodeoxycholate, N-lauroylsarcosine sodium salt, lithium dodecyl sulfate, 1-octane-sulfonic acid sodium salt, sodium cholate hydrate, sodium deoxycholate, sodium dodecyl sulfate, sodium glycodeoxycholate, sodium lauryl sulfate, and the alkyl phosphates set forth in U.S. Pat. No. 6,610,314. Potentially useful cationic surfactants include, but are not limited to, hexadecylpyridinium chloride monohydrate and hexadecyltrimethylammonium bromide, with the latter being a preferred material. Potentially useful nonionic surfactants include, but are not limited to, polyoxyethyleneglycol dodecyl ether, N-decanoyl-N-methyl-glucamine, digitonin, n-dodecyl B-D-maltoside, octyl B-D-glucopyranoside, octylphenol ethoxylate, polyoxyethylene (8) isooctyl phenyl ether, polyoxyethylene sorbitan mono-laurate, and polyoxyethylene (20) sorbitan monooleate. Useful zwitterionic surfactants include but are not limited to 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate, 3-(decyldimethylammonio) propanesulfonate inner salt, and N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate. For other potentially useful materials, the interested reader is directed to any of a variety of other sources including, for example, U.S. Pat. Nos. 4,107,328 and 6,953,772 as well as U.S. Pat. Publ. No. 2007/0264310.
  • The composition contains a sufficient amount (expressed in terms of weight/moles or concentration) of surfactant to interrupt or rupture bacterial cell walls. This amount can vary widely based on a variety of factors including, for example, the age of the biofilm (particularly whether it is entrenched, a factor which relates to the type of proteins and mass of the macromolecular matrix), size of the biofilm, amount of surface soiling, the species of bacteria, whether more than one type of bacteria is present, the solubility of the surfactant(s), and the like. The amount of surfactant generally constitutes greater than ˜0.2%, typically at least ˜0.5%, more typically at least ˜0.7%, often at least ˜0.9%, and preferably at least 1% of the composition (with all being weight percentages based on the total weight of the composition), with the upper limit being defined by the solubility limits of the particular surfactant(s) chosen. Some surfactants can permit extremely high loading levels, e.g., at least 5%, at least 10%, at least 12%, at least 15%, at least 17%, at least 20%, or even on the order of ˜25% or more (with all being weight percentages based on the total weight of the composition). Any of the foregoing minimum amounts can be combined with any of the foregoing maximum amounts to provide an exemplary range of potential amounts of surfactant.
  • In certain embodiments, the surfactant(s) can be the only antimicrobial agents in the composition, specifically, the composition can be free of active antimicrobial agents.
  • The lethality of the surfactant component(s) is increased and/or enhanced when the composition has at least moderate effective solute concentrations (tonicity). (In biological applications, a 0.9% (by wt.) saline solution, which is ˜0.3 Osm, typically is considered to be have moderate tonicity, while a 3% (by wt.) saline solution, which is ˜0.9 Osm, generally is considered to be hypertonic.) Without wishing to be bound by theory, compositions having higher tonicities may exert higher osmotic pressure to the bacterial cell wall, which increases its susceptibility to interruption by surfactant.
  • The osmolarity of the composition generally increases in proportion with the amount of acid(s) employed, with the osmolarity maximum for a given composition primarily being a function of the solubility limits of the specific acid, i.e., the point at which the acid(s) begin to no longer be soluble. An obvious corollary to increased levels of acid(s) in the composition is higher concentrations of hydronium ions, i.e., low pH values. As noted previously, some end-use applications can call for a composition with only a moderately low pH. To increase the osmolarity of a composition without depressing its pH past a desired target, one or more types of other water soluble compounds can be included. Such compounds, upon dissociation, increase the effective amount of solutes in the composition without greatly impacting the molar concentration of hydronium ions while, simultaneously, providing a buffer system in the composition.
  • One approach to achieve increased tonicity of the composition is by adding large amounts of ionic compounds (salts); see, e.g., U.S. Pat. No. 7,090,882. Where one or more organic acids are used in the composition, a preferred approach to increasing tonicity involves inclusion of salt(s) of one or more the acid(s) or the salt(s) of one or more other organic acids. For example, where the composition includes x moles of an acid, a many fold excess (e.g., 3x-10x, preferably at least 5x or even at least 8x) of one or more salts of that acid also can be included. The identity of the countercation portion of the salt is not believed to be particularly critical, with common examples including ammonium ions and alkali metals. Where a polyacid is used, all or fewer than all of the carboxyl H atoms can be replaced with cationic atoms or groups, which can be the same or different. For example, mono-, di- and trisodium citrate all constitute potentially useful buffer precursors. However, because trisodium citrate has three available basic sites, it has a theoretical buffering capacity up to 50% greater than that of disodium citrate (which has two such sites) and up to 200% greater than that of sodium citrate (which has only one such site).
  • Regardless of how achieved, the tonicity of the composition is at least moderately high, with an osmolarity of at least about 1 Osm being preferred for most applications. Depending on particular end-use application, the composition can have any of the following concentrations: at least ˜1.5 Osm, at least ˜1.75 Osm, at least ˜2.0 Osm, at least ˜2.25 Osm, at least ˜2.5 Osm, at least ˜2.75 Osm, at least ˜3.0 Osm, at least ˜3.25 Osm, at least ˜3.5 Osm, at least ˜3.75 Osm, at least ˜4.0 Osm, and even at least ˜4.25 Osm. Certain embodiments of the composition can exhibit solute concentrations of 1 to 5 Osm, 1.2 to 4.5 Osm, 1.4 to 4.4 Osm, 1.6 to 4.3 Osm, 1.8 to 4.2 Osm, 1.9 to 4.1 Osm, and 2 to 4 Osm; other potentially useful ranges include 3-5 Osm, 2.5-4.5 Osm, 3-4.5 Osm, 3.5-5 Osm, 3.25-4.5 Osm, and the like.
  • While the characteristics of the acid(s), surfactant(s) and optional (non-acid) water soluble compounds have been described in isolation, combinations of individual values or ranges for one component can be provided in conjunction with values or ranges for one or both of the other components. For example, a biocompatible composition (i.e., minimal toxicity) can entail a pH maintained above ˜4, an effective solute concentration of at least ˜0.10 Osm, and large amounts of one or more surfactant(s). Increasing the pH to ˜6 or higher can increase biocompatibility of the composition but, simultaneously, decrease its efficacy in killing microbes; conversely, decreasing the pH below ˜4 and/or increasing the osmolarity of the composition can increase its antimicrobial capacity while, simultaneously, reducing its biocompatibility. Generally, no particular benefit is seen from reducing the amount of surfactant employed, although too high of an amount can present toxicity concerns in some circumstances.
  • The composition can be prepared in a number of ways. Description of an exemplary method follows.
  • Acid (e.g., anhydrous citric acid), optional buffer precursor (e.g., a citric acid salt such as sodium citrate dihydrate), and sufficient water to constitute ˜80% of the calculated desired volume. This solution can be stirred and/or heated to promote solution of the acid and optional buffer precursor. The desired amount of surfactant(s) then can be added before additional water is added to bring the composition close to the calculated volume. Once stirring, if used, is complete, sufficient water is added so as to bring the composition to the calculated value. Advantageously, no special conditions or containers are needed to store the composition for an extended time, although refrigeration can be used if desired.
  • A variety of additives and adjuvants can be included to make a composition more amenable for use in a particular end-use application with negatively affecting its efficacy in a substantial manner. Examples include, but are not limited to, emollients, fungicides, fragrances, pigments, dyes, defoamers, foaming agents, flavors, abrasives, bleaching agents, preservatives (e.g., antioxidants) and the like.
  • The composition does not require inclusion of an active antimicrobial agent for efficacy, but such materials can be included in certain embodiments. For example, one or more of bleach, any of a variety of phenols, aldehydes, quaternary ammonium compounds, etc., can be added.
  • The composition conveniently can be provided as a solution, although other forms might be desirable for certain end-use applications. Accordingly, the composition can provided as a soluble powder (for subsequent dilution, an option which can reduce transportation costs), a slurry, or a thicker form such as a gel or paste (which might be particularly useful for providing increased residence times). For the latter, the composition can include additional ingredients such as a coalescent (e.g., polyvinylpyrrolidone).
  • Embodiments of the composition can provide very large reductions in the number of bacteria, even with extremely short residence times. For example, a composition having high concentrations of surfactant (e.g., 1.5-2.5% by wt.) and total solutes (e.g., 3-4 Osm) can provide a 2, 3 or 4 log (99.99%) reduction in the number of bacteria in an entrenched biofilm with a 3, 4, 5, 7, 8, 9, or 10 minute residence time and a 3, 4, 5, or 6 log (99.9999%) reduction in the number of planktonic bacteria with a mere 30-second residence time.
  • Quantitative Carrier Testing (ASTM E2197) is designed to determine the contact time necessary to eradicate from a surface (e.g., countertops, sinks, bathroom fixtures, and the like) bacteria in a soil-loaded inoculum. In this test, bacteria combined with a soil loading and a 10 μL inoculum is placed on a stainless steel carrier disk. After the inoculate is allowed to dry completely, 50 μL of antimicrobial treatment composition is applied and allowed to stay in place for the desired treatment time, after which dilution with a saline dilution is performed. The following are results achieved from Quantitative Carrier Testing using 5% soil load and a 3 minute residence time (with TDTMAB representing tetradecyltrimethylammonium bromide):
      • 0.021 M caprylyl sulfobetaine, 3.2 Osm, 6.5 pH—5.2 log reduction of pseudomonas
      • 0.028 M caprylyl sulfobetaine, 3.6 Osm, 5.5 pH—3.1 log reduction of staph and 5.9 log reduction of pseudomonas
      • 0.041 M TDTMAB, 3.5 Osm, 6.5 pH—5.1 log reduction of staph and 7.5 log reduction of pseudomonas
      • 0.027 M TDTMAB, 3.5 Osm, 6.5 pH—4.9 log reduction of staph and 5.2 log reduction of pseudomonas
      • 0.041 M TDTMAB, 1.8 Osm, 6.5 pH—3.2 log reduction of staph and 5.2 log reduction of pseudomonas
      • 0.027 M TDTMAB, 1.8 Osm, 6.5 pH—3.2 log reduction of staph and 4.7 log reduction of pseudomonas
      • 0.014 M TDTMAB, 1.8 Osm, 6.5 pH—2.9 log reduction of staph and 4.5 log reduction of pseudomonas
        Where the third composition was used again at a one-minute residence time, the results were a 5.1 log reduction of staph (i.e., no change, indicating that much of the killing of staph bacteria may occur in the first minute), and a 6.8 log reduction of pseudomonas.
  • An alternative test designed to show efficacy against an entrenched biofilm involves treatment of biofilm-forming bacterial strains grown over several days (typically in an incubator at 37° C. and aerobic conditions) in a drip-flow reactor, designed to model growth in a low shear environment. Bacteria are inoculated (e.g., on glass slides, optionally coated with hydroxyapatite) pre-coated with a sterile medium (e.g., trypticase soy broth). A coated slide then is inoculated with a culture of the biofilm-forming microbe of interest. The reactor is placed in a horizontal position (typically ˜2 hours) to promote bacterial attachment to the substrate before being inclined (e.g., to a 10° angle), with sterile medium dripping on the slides (typically at a rate of ˜2.78×10−3 mL/sec). After a desired number of days of growth, flow of the sterile medium is halted, and the reactor is raised to horizontal. Antimicrobial composition is applied, while a control slide is treated with saline solution. After an amount of time (typically 5-10 minutes), the slides are rinsed with saline solution. Each slide is removed and placed in a sterile container, scraped, vortexed, and sonicated multiple times to harvest bacteria which are then incubated on plates for counting. Efficacy is calculated by subtracting the bacterial count on a treated slide from the bacterial count on a control (non-treated) slide. The following are results achieved from this test using a 5 minute residence time:
      • 0.028 M caprylyl sulfobetaine, 3.5 Osm, 6.5 pH—2.8 log reduction of staph and 6.0 log reduction of pseudomonas
      • 0.023 M octyl sulfobetaine, 3.5 Osm, 6.5 pH—1.4 log reduction of staph and 6.2 log reduction of pseudomonas
      • 0.016 M TDTMAB, 0.8 Osm, 6.5 pH—3.0 log reduction of staph and 2.2 log reduction of pseudomonas
      • 0.041 M TDTMAB, 3.5 Osm, 6.5 pH—8.9 log reduction of staph and 6.7 log reduction of pseudomonas
  • The foregoing data includes much of interest including, for example, a potential indication that pseudomonas, a gram negative bacteria, is more affected by the osmolarity of the composition than by the type or concentration of surfactant employed, while the opposite might be true for staph.
  • The foregoing levels of bactericidal activity are greater than for most strong chemical treatments in current use, even though the composition is far less toxic (i.e., more biocompatible) than those treatments. Generally, longer residence times can result in greater reductions in the number of bacteria, although the effect may be asymptotic.
  • The composition can be employed in a variety of ways. For example, when used to treat a biofilm on a surface (e.g., cutting board, counter, desk, etc.), the composition can be applied directly to the biofilm, optionally followed by physical rubbing or buffing, or the composition can be applied to the rubbing/buffing medium, e.g., cloth. Where a biofilm in an inaccessible area is to be treated, soaking or immersion of the biofilm in an excess of the composition can be performed for a time sufficient to essentially solvate the biofilm, which then can be flushed from the affected area. Regardless of contact method, the surfactant component(s) are believed to kill significant numbers of bacteria without a need for the bacteria to be removed from the biofilm or vice versa.
  • Due to the abundance of microbial contamination, the composition may find utility in a large number of potential uses including, but not limited to, household applications including non-compromised skin (hand, hair, and body washing), kitchen cleaning (countertop and surface cleaning, cleaning of food preparation utensils, dish washing, produce washing, etc.), bathroom cleaning (countertop and surface cleaning, fixture cleaning, toilet bowl cleaning and shower mildew eradication), and laundry area cleaning (including laundry detergent and diaper sterilization); commercial applications include livestock care (facility and equipment sterilization and dairy teat dip), produce sterilization (an alternative to irradiation, which can be particularly useful against e-coli, listeria, salmonella, Botulism, etc.), commercial kitchen (countertop and surface cleaning, food preparation utensil cleaning, storage equipment and facilities cleaning, dish washing and produce washing), mass food and beverage processing (processing and storage equipment cleaning, tank sterilization, cleaning of liquid transport lines, etc.), cleaning of water lines (e.g., for drinking water, dental offices, plumbing, and the like), and food and beverage transport (cleaning of tanker units for semi transport, cleaning of tanker cars for railroad transport, and cleaning of pipelines); and non-traditional uses such as denture cleaning, acne treatment, spermicides, laboratory equipment cleaning, laboratory surface cleaning, oil pipeline cleaning, and test article processing for biofilm attachment.
  • While various embodiments of the present invention have been provided, they are presented by way of example and not limitation. The following claims and their equivalents define the breadth and scope of the inventive methods and compositions, and the same are not to be limited by or to any of the foregoing exemplary embodiments.

Claims (20)

That which is claimed is:
1. A method for treating a surface intended for contact with food, said method comprising applying to said surface a composition that comprises
1) water,
2) dissociation product of one or more biocompatible organic acids,
3) dissociation product of a buffer precursor, and
4) cationic surfactant,
said composition having a pH of from about 3.5 to about 5.5 inclusive and an effective solute concentration of from 1.8 to 4.2 Osm.
2. The method of claim 1 further comprising removing said composition.
3. The method of claim 1 wherein said applying step is accomplished by delivering said composition in or on a rubbing or buffing medium.
4. The method of claim 1 wherein said surface, prior to said applying step, comprises live bacteria, said bacteria optionally being present in a biofilm.
5. The method of claim 4 wherein said composition is capable of reducing the amount of live bacteria by at least 99.9% when said composition is permitted a 5-minute residence time on an entrenched biofilm tested in accordance with a drip-flow reactor test.
6. The method of claim 1 wherein said composition has a pH of less than 5.0.
7. The method of claim 1 wherein said composition has a pH of less than 4.6.
8. The method of claim 1 wherein said composition has a pH of less than 4.2.
9. The method of claim 1 wherein said composition has a solute concentration of from 2 to 4 Osm.
10. The method of claim 9 wherein said composition has an effective solute concentration of at least about 2.25 Osm.
11. The method of claim 1 wherein said one or more biocompatible organic acids comprises a polyacid.
12. The method of claim 11 wherein said buffer precursor is a salt of said polyacid.
13. The method of claim 1 wherein said buffer precursor comprises a salt of an organic acid.
14. A method for treating a surface intended for contact with food, said method comprising applying to said surface a composition that consists essentially of
1) water,
2) dissociation product of one or more biocompatible organic acids comprising citric acid,
3) dissociation product of a sodium salt of citric acid, and
4) cationic surfactant,
said composition having a pH of from about 3.5 to about 5.5 inclusive and an effective solute concentration of from 1.8 to 4.2 Osm.
15. The method of claim 14 further comprising removing said composition.
16. The method of claim 14 wherein said applying step is accomplished by delivering said composition in or on a rubbing or buffing medium.
17. The method of claim 14 wherein said surface, prior to said applying step, comprises live bacteria, said bacteria optionally being present in a biofilm.
18. The method of claim 17 wherein said composition is capable of reducing the amount of live bacteria by at least 99.9% when said composition is permitted a 5-minute residence time on an entrenched biofilm tested in accordance with a drip-flow reactor test.
19. The method of claim 14 wherein said composition has a pH of less than 5.0.
20. The method of claim 14 wherein said composition has a pH of less than 4.6.
US13/847,876 2008-10-06 2013-03-20 Antimicrobial composition and methods for using same Abandoned US20130272922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/847,876 US20130272922A1 (en) 2008-10-06 2013-03-20 Antimicrobial composition and methods for using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10321408P 2008-10-06 2008-10-06
US12/573,340 US20100086576A1 (en) 2008-10-06 2009-10-05 Antimicrobial composition and methods of making and using same
US13/679,994 US8940792B2 (en) 2008-10-06 2012-11-16 Antimicrobial composition and methods for using same
US13/847,876 US20130272922A1 (en) 2008-10-06 2013-03-20 Antimicrobial composition and methods for using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/679,994 Division US8940792B2 (en) 2008-10-06 2012-11-16 Antimicrobial composition and methods for using same

Publications (1)

Publication Number Publication Date
US20130272922A1 true US20130272922A1 (en) 2013-10-17

Family

ID=42076001

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/573,340 Abandoned US20100086576A1 (en) 2008-10-06 2009-10-05 Antimicrobial composition and methods of making and using same
US13/679,994 Active US8940792B2 (en) 2008-10-06 2012-11-16 Antimicrobial composition and methods for using same
US13/847,876 Abandoned US20130272922A1 (en) 2008-10-06 2013-03-20 Antimicrobial composition and methods for using same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/573,340 Abandoned US20100086576A1 (en) 2008-10-06 2009-10-05 Antimicrobial composition and methods of making and using same
US13/679,994 Active US8940792B2 (en) 2008-10-06 2012-11-16 Antimicrobial composition and methods for using same

Country Status (3)

Country Link
US (3) US20100086576A1 (en)
EP (1) EP2346324A4 (en)
WO (1) WO2010042427A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069820A2 (en) 2015-07-17 2017-04-27 Next Science, Llc Antimicrobial composition having efficacy against endospores
WO2022147055A1 (en) * 2020-12-29 2022-07-07 Next Science IP Holdings Pty Ltd Cancer treatment composition and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2346324A4 (en) 2008-10-06 2012-10-10 Microbial Defense Systems Llc Antimicrobial composition and methods of making and using same
EP3456200B1 (en) * 2011-05-10 2023-05-03 Next Science IP Holdings Pty Ltd Article having an antimicrobial solid and use thereof
ES2756848T3 (en) * 2011-10-08 2020-04-27 Next Science IP Holdings Pty Ltd Antimicrobial compositions and methods that employ them
US9707520B2 (en) 2012-01-18 2017-07-18 Nch Corporation Composition, system, and method for treating water systems
WO2014155147A2 (en) 2012-01-18 2014-10-02 Nch Corporation Composition, system, and method for treating water systems
US20130338227A1 (en) 2012-06-13 2013-12-19 Marie-Esther Saint Victor Green Glycine Betaine Derivative Compounds And Compositions Containing Same
CA2911464C (en) * 2013-05-02 2021-06-08 Next Science, Llc High osmolarity antimicrobial composition containing one or more organic solvents
US9506016B2 (en) 2013-11-06 2016-11-29 Nch Corporation Composition and method for treating water systems
US9441190B2 (en) 2013-11-06 2016-09-13 Nch Corporation Composition and method for treating water systems
EP3331977A4 (en) * 2015-08-07 2019-03-27 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
CA3029601A1 (en) 2016-06-30 2018-01-04 Next Science IP Holdings Pty Ltd Antimicrobial compositions and methods employing same
CA3094529A1 (en) 2017-11-19 2019-05-23 Next Science IP Holdings Pty Ltd Compositions and methods for treating intervertebral discs
US11419333B2 (en) * 2018-01-19 2022-08-23 Championx Usa Inc. Compositions and methods for biofilm removal
EP4228762A1 (en) * 2020-10-14 2023-08-23 Next Science IP Holdings Pty Ltd Methods and compositions useful for reducing bioburden in wounds
US11672773B2 (en) * 2020-12-13 2023-06-13 Next Science IP Holdings Pty Ltd Methods for treating ciliated cavities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149822A (en) * 1999-03-01 2000-11-21 Polymer Ventures, Inc. Bio-film control
US6701940B2 (en) * 2001-10-11 2004-03-09 S. C. Johnson & Son, Inc. Hard surface cleaners containing ethylene oxide/propylene oxide block copolymer surfactants
US20080274932A1 (en) * 2007-05-04 2008-11-06 Ecolab Inc. Composition for in situ manufacture of insoluble hydroxide when cleaning hard surfaces and for use in automatic warewashing machines and methods for manufacturing and using

Family Cites Families (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB983130A (en) * 1962-08-06 1965-02-10 Mundipharma Ag Improvements in preparations for the removal of wax from the ear
US4002775A (en) * 1973-07-09 1977-01-11 Kabara Jon J Fatty acids and derivatives of antimicrobial agents
US4067997A (en) * 1975-05-21 1978-01-10 Med-Chem Laboratories Synergistic microbecidal composition and method
JPS527428A (en) * 1975-07-09 1977-01-20 Riken Vitamin Co Ltd Method for preserving foods
CA1052273A (en) * 1975-12-18 1979-04-10 Edwin B. Michaels Antimicrobial compositions
US4323551A (en) * 1981-02-19 1982-04-06 The Procter & Gamble Company Mouthwash compositions
US5166331A (en) * 1983-10-10 1992-11-24 Fidia, S.P.A. Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
US5208257A (en) * 1986-04-21 1993-05-04 Kabara Jon J Topical antimicrobial pharmaceutical compositions and methods
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
US5290552A (en) * 1988-05-02 1994-03-01 Matrix Pharmaceutical, Inc./Project Hear Surgical adhesive material
IT1219587B (en) * 1988-05-13 1990-05-18 Fidia Farmaceutici SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES
US5575815A (en) * 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
CA2019719A1 (en) * 1990-06-25 1991-12-25 William J. Thompson Mouthwash
EP0466397A3 (en) * 1990-07-10 1992-05-06 Kabushikikaisha Ueno Seiyaku Oyo Kenkyujo Treatment of inflammatory diseases with polyoxyethylenesorbitan mono-higher-fatty acid esters
DE69229548T2 (en) * 1991-04-10 2000-02-17 Christopher C Capelli ANTIMICROBIAL COMPOSITIONS FOR MEDICAL APPLICATIONS
US5662913A (en) * 1991-04-10 1997-09-02 Capelli; Christopher C. Antimicrobial compositions useful for medical applications
US5326492A (en) 1991-11-18 1994-07-05 Medical Polymers, Inc. Disinfectant mixture containing water soluble lubricating and cleaning agents and method
US5229103A (en) * 1992-04-30 1993-07-20 Hydrodent Laboratories, Inc. Antiplaque mouthwash concentrate
IT1260154B (en) * 1992-07-03 1996-03-28 Lanfranco Callegaro HYALURONIC ACID AND ITS DERIVATIVES IN INTERPENETRATING POLYMERS (IPN)
GB9218834D0 (en) 1992-09-05 1992-10-21 Procter & Gamble Nasal spray products
CN1091315A (en) * 1992-10-08 1994-08-31 E·R·斯奎布父子公司 Fibrin sealant compositions and using method thereof
US5362442A (en) * 1993-07-22 1994-11-08 2920913 Canada Inc. Method for sterilizing products with gamma radiation
US5480658A (en) * 1993-07-23 1996-01-02 Melman; Steven A. Ear and skin cleanser
FR2710529A1 (en) 1993-09-29 1995-04-07 Zirinis Phedon Aqueous gel for nasal use, pellets, and process for preparing them
US5534544A (en) 1994-08-19 1996-07-09 New England Medical Center Hospitals, Inc. Surfactants and emulsifying agents to inhibit Helicobacter
US5543383A (en) 1994-12-30 1996-08-06 Hampshire Chemical Corp. Herbicidal compositions comprising solutions of glyphosate and polyurea and/or polyurethane
US6086921A (en) * 1995-04-25 2000-07-11 Wintrop-University Hospital Metal/thiol biocides
US5817303A (en) 1995-05-05 1998-10-06 Protein Polymer Technologies, Inc. Bonding together tissue with adhesive containing polyfunctional crosslinking agent and protein polymer
HU226962B1 (en) * 1995-08-29 2010-03-29 Fidia Advanced Biopolymers Srl Biomaterials for preventing post-surgical adhesions comprised of hyaluronic acid derivatives
FI955389A0 (en) * 1995-11-09 1995-11-09 Antti Sakari Aaltonen Prophylactic prophylactic preparations and administration of breast cancer pathogens
US6423694B1 (en) * 1996-02-21 2002-07-23 Inspire Pharmaceuticals, Inc. Method of treating otitis media with uridine triphosphates and related compounds
US6541460B2 (en) * 1996-08-07 2003-04-01 George D. Petito Method for use of hyaluronic acid in wound management
US5910420A (en) * 1996-08-16 1999-06-08 Orion-Yhtyma Oy Orion Diagnostica Method and test kit for pretreatment of object surfaces
US6063061A (en) 1996-08-27 2000-05-16 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US6203822B1 (en) * 1996-09-03 2001-03-20 University Of Iowa Research Foundation Gallium-containing compounds for the treatment of infections caused by intracellular pathogens and pathogens causing chronic pulmonary infection
TR199900733T2 (en) 1996-10-01 1999-07-21 Smithkline Beecham Corporation Use of mupirocin in the manufacture of a medicament for the treatment of bacterial infections associated with colonization of the nasopharynx by pathogenic organisms.
CO4910145A1 (en) 1996-10-01 2000-04-24 Smithkline Beecham Corp USE
IT1287967B1 (en) * 1996-10-17 1998-09-10 Fidia Spa In Amministrazione S PHARMACEUTICAL PREPARATIONS FOR LOCAL ANESTHETIC USE
US5709546A (en) * 1996-11-27 1998-01-20 Waggoner; Mark B. Water sanitizing system and process
FR2756739B1 (en) * 1996-12-05 2000-04-28 Astra Ab NEW BUDESONIDE FORMULATION
EP0975790B1 (en) * 1997-01-24 2004-09-29 Schweiz. Serum-&Impfinstitut Bern New method for isolating polysaccharides
US6869938B1 (en) * 1997-06-17 2005-03-22 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use in reducing adhesions
US5925334A (en) * 1997-08-27 1999-07-20 Rubin; Bruce K. Use of surface active agents to promote mucus clearance
US6638621B2 (en) * 2000-08-16 2003-10-28 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
EP1035833B1 (en) * 1997-12-02 2005-08-31 Archimedes Development Limited Compositions for nasal administration
US5895781A (en) * 1997-12-22 1999-04-20 S. C. Johnson & Son, Inc. Cleaning compositions for ceramic and porcelain surfaces and related methods
WO1999033472A1 (en) * 1997-12-24 1999-07-08 Britannia Pharmaceuticals Limited Use of surface active agent for the manufacture of a medicament for treatment of disorders of the middle ear
IL123143A (en) * 1998-02-02 2001-08-26 Agis Ind 1983 Ltd Pharmaceutical compositions containing mupirocin
US7691829B2 (en) * 1998-03-24 2010-04-06 Petito George D Composition and method for healing tissues
JP2002509981A (en) * 1998-03-27 2002-04-02 ノボザイムス アクティーゼルスカブ Acid detergent containing acidic protease
US6824793B1 (en) * 1998-06-01 2004-11-30 Chiron Corporation Use of hyaluronic acid polymers for mucosal delivery of vaccine antigens and adjuvants
US20030079758A1 (en) * 1998-06-03 2003-05-01 Siegel Phyllis B. Process and composition for removing biofilm
US6706290B1 (en) * 1998-07-06 2004-03-16 Olvai E. Kajander Methods for eradication of nanobacteria
US6395746B1 (en) * 1998-09-30 2002-05-28 Alcon Manufacturing, Ltd. Methods of treating ophthalmic, otic and nasal infections and attendant inflammation
GB9822170D0 (en) 1998-10-13 1998-12-02 Danbioyst Uk Ltd Novel formulations of fexofenadine
CA2350245A1 (en) * 1998-11-06 2000-05-18 Universite De Montreal Improved bactericidal and non-bactericidal solutions for removing biofilms
US8197461B1 (en) * 1998-12-04 2012-06-12 Durect Corporation Controlled release system for delivering therapeutic agents into the inner ear
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US6576224B1 (en) * 1999-07-06 2003-06-10 Sinuspharma, Inc. Aerosolized anti-infectives, anti-inflammatories, and decongestants for the treatment of sinusitis
US6533749B1 (en) * 1999-09-24 2003-03-18 Medtronic Xomed, Inc. Angled rotary tissue cutting instrument with flexible inner member
AU776609B2 (en) * 1999-09-24 2004-09-16 Novartis Ag Topical suspension formulations containing ciprofloxacin and dexamethasone
US6156294A (en) 1999-11-28 2000-12-05 Scientific Development And Research, Inc. Composition and method for treatment of otitis media
US6676930B2 (en) * 1999-11-28 2004-01-13 Scientific Development And Research, Inc. Composition and method for treatment of otitis media
GB0002229D0 (en) * 2000-02-01 2000-03-22 Reckitt & Colman Inc Improvements in or relating to organic compositions
WO2001064035A2 (en) * 2000-02-28 2001-09-07 The Procter & Gamble Company Acidic antimicrobial compositions for treating food and food contact surfaces and methods of use thereof
NZ522970A (en) * 2000-06-05 2004-05-28 S Biocidal cleaner composition
US6953772B2 (en) * 2000-07-18 2005-10-11 Lopes John A Concentrated sanitizing compositions for cleaning food and food contact surfaces
AUPQ893200A0 (en) * 2000-07-21 2000-08-17 Whiteley, Reginald K. Medical residue treatment
US20030133883A1 (en) * 2001-06-14 2003-07-17 Finnegan Mary Beth Oral care compositions containing grapefruit seed extract
WO2002089750A2 (en) * 2001-01-19 2002-11-14 Advanced Photodynamic Technologies, Inc. Apparatus and method of photodynamic eradication of organisms utilizing pyrrolnitrin
US6610314B2 (en) * 2001-03-12 2003-08-26 Kimberly-Clark Worldwide, Inc. Antimicrobial formulations
AU2002303832A1 (en) 2001-05-21 2002-12-03 Beth Israel Deaconess Medical Center, Inc. P.aeruginosa mucoid exopolysaccharide specific binding peptides
CN1231218C (en) * 2001-09-21 2005-12-14 爱尔康公司 Method of treating middle ear infections
US20030064000A1 (en) * 2001-09-24 2003-04-03 Wilson Burgess Methods of sterilizing biological mixtures using stabilizer mixtures
US20030095890A1 (en) * 2001-09-24 2003-05-22 Shirley Miekka Methods for sterilizing biological materials containing non-aqueous solvents
AU2003205227A1 (en) 2002-01-18 2003-09-02 Emory University Phthalocyanine and porphyrazine pharmaceutical compositions
US20050042240A1 (en) * 2002-01-28 2005-02-24 Utterberg David S. High viscosity antibacterials
AU2003225073A1 (en) 2002-04-18 2003-11-03 The University Of Iowa Research Foundation Methods of inhibiting and treating bacterial biofilms by metal chelators
US6919348B2 (en) * 2002-05-02 2005-07-19 Edward T. Wei Therapeutic 1,2,3,6-tetrahydropyrimidine-2-one compositions and methods therewith
EP1374856A1 (en) 2002-06-18 2004-01-02 Impetus AG Oily thixotropic nasal spray
US7045492B2 (en) * 2002-07-30 2006-05-16 Earl Jenevein Cleaning composition comprising cationic surfactants, chelant, and an alcohol solvent mixture
US7714011B2 (en) * 2002-09-13 2010-05-11 Zicam, Llc Compositions to reduce congestion and methods for application thereof to the nasal membrane
US20050064508A1 (en) * 2003-09-22 2005-03-24 Semzyme Peptide mediated synthesis of metallic and magnetic materials
AU2003279067A1 (en) * 2002-09-23 2004-04-08 Genta Inc. Tri(alkylcarboxylato) gallium (iii) products and pharmaceutical compositions containing them
US20040101506A1 (en) * 2002-11-25 2004-05-27 Fust Charles A. Composition for the prevention and treatment of inflammation of the ear
US7220431B2 (en) * 2002-11-27 2007-05-22 Regents Of The University Of Minnesota Methods and compositions for applying pharmacologic agents to the ear
GB2397067B (en) * 2002-12-23 2005-05-11 Destiny Pharma Ltd Porphin & azaporphin derivatives with at least one cationic-nitrogen-containing meso-substituent for use in photodynamic therapy & in vitro sterilisation
AU2004222340B2 (en) * 2003-03-14 2009-11-12 Intersect Ent, Inc. Sinus delivery of sustained release therapeutics
US20040214753A1 (en) * 2003-03-20 2004-10-28 Britten Nancy Jean Dispersible pharmaceutical composition for treatment of mastitis and otic disorders
US7090882B2 (en) * 2003-06-12 2006-08-15 Cargill, Incorporated Antimicrobial salt solutions for food safety applications
US20050003007A1 (en) * 2003-07-02 2005-01-06 Michele Boix Method of sterilization of polymeric microparticles
US7341983B2 (en) * 2003-08-04 2008-03-11 Ecolab Inc. Antimicrobial compositions including carboxylic acids and alkoxylated amines
EP1660056A4 (en) * 2003-08-15 2008-12-17 Arius Two Inc Adhesive bioerodible transmucosal drug delivery system
US20050080396A1 (en) * 2003-10-03 2005-04-14 Michael Rontal Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces
EP1691614B1 (en) * 2003-12-04 2013-02-13 University Of Iowa Research Foundation Gallium inhibits biofilm formation
ZA200605583B (en) * 2003-12-17 2009-06-24 Titan Pharmaceuticals Inc Use of gallium to treat inflammatory arthritis
WO2005067889A1 (en) * 2003-12-30 2005-07-28 Durect Corporation Polymeric implants, preferably containing a mixture of peg and plg, for controlled release of active agents, preferably a gnrh
WO2005089670A1 (en) * 2004-03-15 2005-09-29 Durect Corporation Pharmaceutical compositions for administration to a sinus
WO2005096990A2 (en) * 2004-04-02 2005-10-20 Baylor College Of Medicine Novel modification of medical prostheses
US7410480B2 (en) * 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US7803150B2 (en) * 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20050282722A1 (en) 2004-06-16 2005-12-22 Mcreynolds Kent B Two part cleaning composition
US7494963B2 (en) * 2004-08-11 2009-02-24 Delaval Holding Ab Non-chlorinated concentrated all-in-one acid detergent and method for using the same
US20060045850A1 (en) * 2004-08-30 2006-03-02 Qpharma, Llc Nasal delivery of cyclodextrin complexes of anti-inflammatory steroids
US9028852B2 (en) * 2004-09-07 2015-05-12 3M Innovative Properties Company Cationic antiseptic compositions and methods of use
CN103181400B (en) * 2004-09-10 2016-08-10 诺维信北美公司 Prevent, remove, reduce or the method for disrupting biofilm
US8476319B2 (en) * 2005-03-10 2013-07-02 3M Innovative Properties Company Methods of treating ear infections
WO2006099386A2 (en) * 2005-03-11 2006-09-21 Massachusetts Institute Of Technology Synthesis and use of colloidal iii-v nanoparticles
US8486472B2 (en) * 2006-01-18 2013-07-16 Cargill, Incorporated Antimicrobial salt solutions for food safety applications
US7976873B2 (en) * 2006-05-10 2011-07-12 Medtronic Xomed, Inc. Extracellular polysaccharide solvating system for treatment of bacterial ear conditions
US7959943B2 (en) * 2006-05-10 2011-06-14 Medtronics Xomed, Inc. Solvating system and sealant for medical use in the middle or inner ear
US7993675B2 (en) * 2006-05-10 2011-08-09 Medtronic Xomed, Inc. Solvating system and sealant for medical use in the sinuses and nasal passages
US20070264296A1 (en) 2006-05-10 2007-11-15 Myntti Matthew F Biofilm extracellular polysachharide solvating system
JP5151429B2 (en) 2007-12-05 2013-02-27 住友化学株式会社 Aqueous suspension pesticide composition
CA2727432C (en) 2008-06-12 2016-10-11 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
EP2346324A4 (en) 2008-10-06 2012-10-10 Microbial Defense Systems Llc Antimicrobial composition and methods of making and using same
EP3456200B1 (en) 2011-05-10 2023-05-03 Next Science IP Holdings Pty Ltd Article having an antimicrobial solid and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149822A (en) * 1999-03-01 2000-11-21 Polymer Ventures, Inc. Bio-film control
US6701940B2 (en) * 2001-10-11 2004-03-09 S. C. Johnson & Son, Inc. Hard surface cleaners containing ethylene oxide/propylene oxide block copolymer surfactants
US20080274932A1 (en) * 2007-05-04 2008-11-06 Ecolab Inc. Composition for in situ manufacture of insoluble hydroxide when cleaning hard surfaces and for use in automatic warewashing machines and methods for manufacturing and using

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069820A2 (en) 2015-07-17 2017-04-27 Next Science, Llc Antimicrobial composition having efficacy against endospores
WO2017069820A3 (en) * 2015-07-17 2017-05-26 Next Science, Llc Antimicrobial composition having efficacy against endospores
CN107920532A (en) * 2015-07-17 2018-04-17 贴近科学Ip控股私人有限公司 Antimicrobial compositions with anti-endospore effect
US20190014777A1 (en) * 2015-07-17 2019-01-17 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
EP3337325A4 (en) * 2015-07-17 2019-02-13 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
US10827750B2 (en) * 2015-07-17 2020-11-10 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
US20210176987A1 (en) * 2015-07-17 2021-06-17 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
EP4011210A1 (en) 2015-07-17 2022-06-15 Next Science IP Holdings Pty Ltd Use of an antimicrobial composition having efficacy against endospores
US11723361B2 (en) * 2015-07-17 2023-08-15 Next Science IP Holdings Pty Ltd Antimicrobial composition having efficacy against endospores
WO2022147055A1 (en) * 2020-12-29 2022-07-07 Next Science IP Holdings Pty Ltd Cancer treatment composition and method

Also Published As

Publication number Publication date
WO2010042427A2 (en) 2010-04-15
EP2346324A2 (en) 2011-07-27
US8940792B2 (en) 2015-01-27
EP2346324A4 (en) 2012-10-10
US20100086576A1 (en) 2010-04-08
US20130079407A1 (en) 2013-03-28
WO2010042427A3 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US8940792B2 (en) Antimicrobial composition and methods for using same
US20220125045A1 (en) High Osmolarity Antimicrobial Composition Containing One or More Organic Solvents
CN109561694B (en) Antimicrobial compositions
JP7058490B2 (en) Antibacterial composition that suppresses viruses, bacteria and fungi
TW202044992A (en) Sterilization or virus-inactivating agent composition, and method for enhancing efficacy of sterilization or virus inactivation
US20070286907A1 (en) Germicide composition
CN104434994A (en) Mucocutaneous disinfectant
JPH07252105A (en) Liquid disinfectant
US20140314738A1 (en) Disinfecting composition
WO2014060755A1 (en) Cleaning, sanitizing and sterilizing preparations
CZ36799U1 (en) Disinfectant
CN1565196A (en) Safe and environment-friendly type surface disinfector
US20210176995A1 (en) Disinfection Composition Comprising Tartaric Acid and Lactic Acid
WO2022079626A1 (en) Antimicrobial composition, particularly bactericidal, virucidal, fungicidal and mycobacterial for the cleaning of contaminated surfaces and its use
PL244085B1 (en) Disinfectant with long-term effect

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROBIAL DEFENSE SYSTEMS LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MYNTTI, MATTHEW F., DR.;REEL/FRAME:030725/0340

Effective date: 20120317

Owner name: NEXT SCIENCE, LLC, FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:MICROBIAL DEFENSE SYSTEMS LLC;REEL/FRAME:030715/0702

Effective date: 20130501

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: NEXT SCIENCE IP HOLDINGS PTY LTD, AUSTRALIA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:NEXT SCIENCE, LLC;REEL/FRAME:045344/0297

Effective date: 20180116