US20130188549A1 - Method and Telecommunications Network for Controlling Activation of at Least One Terminal in a Machine-Type Communication Application - Google Patents

Method and Telecommunications Network for Controlling Activation of at Least One Terminal in a Machine-Type Communication Application Download PDF

Info

Publication number
US20130188549A1
US20130188549A1 US13/729,491 US201213729491A US2013188549A1 US 20130188549 A1 US20130188549 A1 US 20130188549A1 US 201213729491 A US201213729491 A US 201213729491A US 2013188549 A1 US2013188549 A1 US 2013188549A1
Authority
US
United States
Prior art keywords
terminal
identifier
broadcast message
location
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/729,491
Other versions
US9913072B2 (en
Inventor
Bryan Jerrel Busropan
Johannes Maria Van Loon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Koninklijke KPN NV
Original Assignee
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Koninklijke KPN NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO, Koninklijke KPN NV filed Critical Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Priority to US13/729,491 priority Critical patent/US9913072B2/en
Assigned to KONINKLIJKE KPN N.V., NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPLIJK ONDERZOEK TNO reassignment KONINKLIJKE KPN N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAN LOON, JOHANNES MARIA, BUSROPAN, BRYAN JERREL
Publication of US20130188549A1 publication Critical patent/US20130188549A1/en
Application granted granted Critical
Publication of US9913072B2 publication Critical patent/US9913072B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H04W4/005
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the invention relates to the field of telecommunications. More specifically, the invention relates to the field of controlling activation of a number of terminals in a machine-type communication wireless access communications environment.
  • Wireless access telecommunications networks e.g. GSM, UMTS, LTE
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Telecommunications
  • LTE Long Term Evolution
  • voice and data services can be provided to terminals having a high mobility, i.e. the terminals move freely through the area covered by the network.
  • the network For mobile-terminated calls, i.e. calls made to the mobile terminal, it is essential for the network to locate the terminal in order to set up the connection. To that end, the network has a location management procedure in place.
  • the telecommunications network is divided into a plurality of location areas (LA).
  • Location areas generally comprise a large number of cells, one or more cells being associated with a base station.
  • the terminal moving through the area keeps the network informed if there is a change of its current location area.
  • the knowledge of the location area is generally insufficient for setting up a mobile-terminated call.
  • more detailed information about the location of the terminal should be obtained.
  • an incoming call request arrives on a gateway mobile switching centre (GMSC) and contains the MSISDN number of the mobile terminal to be contacted.
  • the MSISDN number is used to obtain location information from a Home Location Register (HLR).
  • HLR uses the MSISDN to identify the address of the Mobile Switching Centre (MSC) currently serving the mobile terminal.
  • the GMSC uses the MSC address to route the call request to the MSC currently serving the mobile terminal.
  • the MSC determines the location area where the mobile station is registered and sends a message to all base station controllers (BSCs) controlling cells in this location area.
  • BSCs base station controllers
  • the message contains the network identity (TMSI or IMSI) of the mobile terminal and is broadcast in all cells of the location area as a paging message on a paging channel PCH.
  • the mobile terminal regularly (e.g. several times per second) monitors the paging channel PCH and receives the paging message and responds to it when it finds that the TMSI or IMSI in the paging message matches its own TMSI or IMSI.
  • the TMSI or IMSI is known to the terminal; the IMSI is typically stored on the subscriber identity module (SIM) of the mobile terminal.
  • SIM subscriber identity module
  • the mobile terminal generally needs to respond quickly to the paging message, since otherwise the caller may hang up. Therefore, the mobile terminal will respond to the paging message by sending a channel request on a random access channel (RACH).
  • RACH random access channel
  • MTC machine-type communication
  • 3GPP 3rd Generation Partnership Project
  • MTC applications typically involve hundreds, thousands or millions of communication modules. Some applications only rarely require access to a telecommunications network.
  • An example involves collecting information by a server from e.g. smart electricity meters at the homes of a large customer base.
  • Other examples include sensors, meters, coffee machines etc. that can be equipped with communication modules that allow for reporting status information to a data processing centre over the telecommunications network.
  • Such devices may also be monitored from a server.
  • the data processing centre may e.g. store the data and/or provide a schedule for maintenance people to repair a machine, meter, sensor etc.
  • a method for controlling activation of at least one terminal in a machine-type communication application using a wireless access network comprises a number of location areas, each of the location areas comprising a plurality of cells.
  • the terminal has been assigned an identifier.
  • a location identifier is received from a location provider, the location identifier indicating a subset of cells of at least one of the location areas.
  • Activation of the at least one terminal is then controlled by transmitting at least one broadcast message on at least one cell broadcast channel in the cells of the subset indicated by the location identifier.
  • the broadcast message contains the identifier assigned to the terminal, such that the at least one terminal is signalled that the broadcast message is intended for it.
  • an activation control system configured for controlling activation of at least one terminal in a machine-type communication application using such a wireless access network.
  • the system comprises a receiver configured for receiving a location identifier from a location provider, the location identifier indicating a subset of cells of at least one of the location areas.
  • an activation controller is provided that is configured for controlling activation of the at least one terminal by transmitting at least one broadcast message on at least one cell broadcast channel in the cells of the subset indicated by the location identifier, wherein the broadcast message contains the identifier assigned to the at least one terminal.
  • a machine-type communication terminal configured for operating in the method and system as defined in the present disclosure is also disclosed.
  • the terminal comprises a receiver for receiving the broadcast message on the cell broadcast channel and a processor for processing the broadcast message when the identifier assigned to the terminal contained in the broadcast message matches a terminal identifier, the identifier optionally being a network-unrelated identifier.
  • the terminal has a controller for controlling activation of the terminal, particularly establishing a connection with the wireless access network, following processing of the broadcast message.
  • the activation control method and system may apply multiple cell broadcast channels of the wireless access network. Different terminals, possibly owned by different MTC providers, may be programmed to tune to different cell broadcast channels.
  • the terminals are generally activated with the aim of establishing a connection with the wireless access network.
  • Activation control of the terminals may include the possibility to delay activation of the terminals after receiving the broadcast message and the possibility to schedule activation of the terminal.
  • the location area LA is typically referred to as Routing Area (RA).
  • RA Routing Area
  • LA location area
  • RA routing area
  • MTC machine-type communication
  • the location of the MTC terminal may be substantially fixed, i.e. the terminal will normally not move out of a cell, or may most likely be in a limited subset of cells.
  • the (approximately) known location can be used to advantage to determine in which cell(s) the activation control message for triggering the terminal should be broadcast without retrieving routing information from the Home Location Register (HLR) and/or the Visitor Location Register (VLR).
  • HLR Home Location Register
  • VLR Visitor Location Register
  • the broadcast message is broadcast over the cell broadcast channel CBCH as opposed to the paging channel PCH currently used for transmitting activation messages. In this manner, the load for the paging channels is considerably reduced. Transmitting a broadcast message to a terminal via the cell broadcast channel CBCH may be slower than transmitting a paging message to a terminal via the dedicated paging channel PCH, but the applicant has realized that this aspect may be of less relevance for many MTC applications. By omitting the need to page terminals over the paging channel PCH, various limitations from conventional wireless telephony can be circumvented.
  • restrictions include the type of instructions that may be provided, the restriction of using a network-related identifier (such as TMSI or IMSI), the strict time regime for responding to a page and the requirement of frequently monitoring the paging channel.
  • a network-related identifier such as TMSI or IMSI
  • the restrictions are avoided include the wide range of activation parameters that can be used in the broadcast message (see claim 2 ), not limiting response by the terminal to an access request on the random access channel (RACH), the use of network-unrelated identifiers (claim 3 ) for indicating the terminal for which the broadcast message is intended and not requiring direct responses to the broadcast message.
  • the terminals may be programmed to monitor the cell broadcast channel less frequently or only during particular periods of time of the day or week.
  • the location identifier of a subsets of cells may be received from the location provider and stored in the wireless access telecommunications network prior to the instruction for sending broadcast messages. The stored location identifier may then be used for identifying the cells of the subset in which the broadcast message for controlling activation of the terminals should be transmitted.
  • the number of cells in the subset is usually small. Ideally, a terminal is located within one cell. However, the cell boundaries are generally not entirely fixed but may be subject to reconfiguration by the network operator and also may fluctuate to some extent, dependent on e.g. environmental conditions, such that terminals at a substantially fixed location near a cell boundary may find themselves in different cells now and then. Therefore, the number of cells of the subset may be set greater than 1, e.g. 2, 3, 5 or 10.
  • the location identifier or identifiers are selected such that they correspond to the cells of the subset where the terminals are expected to be located. In principle, however, the location identifier only designates the subset(s) of the cells where the broadcast message should be transmitted over the cell broadcast channel.
  • an organization owns a plurality of terminals distributed over an area, such as a country, but does not have detailed information about the exact location of the terminals. Groups of terminals have been assigned group identifiers and terminals with a common group identifier have been appropriately distributed over the area, i.e. terminals with a common group identifier are not located in the same cell.
  • activation of the terminals having been assigned the group identifier is controlled. In such an example, the number of cells of the subset may be considerably large.
  • the identifier assigned to the terminal for determining whether the broadcast message is destined for it is not necessarily the same identifier used for establishing a connection with the wireless access network.
  • the identifier assigned to the terminals are not necessarily network related identifiers, such as TMSI or IMSI, i.e. identifiers that the network uses to distinguish between terminals.
  • network-unrelated identifiers include application identifiers on which basis the owners of the terminals can distinguish between terminals. The use of a network-unrelated identifier obviates the need to register such identifiers by the operator of the wireless access network.
  • Several terminals may have been assigned a common group identifier, network-related or network-unrelated, on the basis of which the activation of groups of terminals may be controlled.
  • the use of a common network-related group identifier may require measures, such as subsequent activation of terminals, in order for the network to appropriately process the received request for establishing a connection from the terminals, particularly when the terminals are located in the same cell.
  • the activation control is such that during the connection period of one terminal, a connection request by another terminal with the same network-related identifier does not occur when these terminals are in the same cell.
  • the control may be extended to terminals in neighbouring cells.
  • multiple terminals may be addressed on the cell broadcast channel at once by a single broadcast message, e.g. by indicating a part of the terminal identifier in combination with a indication that the remainder of the identifier is not relevant, e.g. an asterisk (*).
  • An alternative includes the use of ranges. These types of identifiers are considered to be group identifiers as well.
  • the identifier assigned to a terminal may also be a terminal condition, e.g. a software version applied by a terminal or a subscription specified for the terminal.
  • FIG. 1 depicts a schematic illustration of a wireless access telecommunications network containing components of an activation control system for a MTC application according to an embodiment of the present invention
  • FIG. 2 shows a schematic illustration of an MTC terminal according to an embodiment of the example.
  • FIG. 3 is a schematic illustration of a cell configuration of the wireless access telecommunications network of FIG. 1 .
  • FIG. 4 is a signal-time chart indicating some steps of the method for controlling activation of the MTC terminal of FIG. 2 .
  • FIG. 1 shows a schematic illustration of a wireless access telecommunications network 1 for MTC applications.
  • the telecommunications network 1 allows data sessions between a server 2 and terminals 3 over a packet data network 4 , wherein access of the terminal to the telecommunications network 1 is wireless.
  • a single server 2 normally is used for communication with a large number of terminals 3 .
  • FIG. 1 depicts a GPRS or UMTS telecommunications network comprising a Gateway GPRS Support Node (GGSN), a Serving GPRS Support Node (SGSN) and a Radio Access Network (RAN or UTRAN).
  • GGSN Gateway GPRS Support Node
  • SGSN Serving GPRS Support Node
  • RAN Radio Access Network
  • GERAN GSM/EDGE radio access network
  • BSC Base Station Controller
  • BTSs Base Station Transceivers
  • UTRAN the Radio Network Controller
  • the GGSN and the SGSN are conventionally connected to a Home Location Register (HLR) that may contain subscription information of the terminals 3 .
  • HLR Home Location Register
  • the SGSN typically controls the connection between the telecommunications network 1 and the terminals 3 .
  • the telecommunications network 1 generally comprises a plurality of SGSNs, wherein each of the SGSNs is connected typically to several BSCs/RNCs to provide a packet service for terminals 3 via several base stations/NodeBs.
  • the GGSN is connected to the packet data network 4 , e.g. the internet, a corporate network or a network of another operator. On the other side, the GGSN is connected to one or more SGSNs.
  • the packet data network 4 e.g. the internet, a corporate network or a network of another operator.
  • the GGSN is connected to one or more SGSNs.
  • the GGSN is configured for receiving a data unit for the terminal 3 from the server 2 over the network 4 and for transmitting a data unit to the server 2 received from the terminal 3 .
  • the network 1 comprises a cell broadcast centre CBC, also referred to a Short Message Service Cell Broadcast (SMSCB).
  • SMSCB Short Message Service Cell Broadcast
  • TCB Short Message Service Cell Broadcast
  • TS 23.041 The geographic area wherein a cell broadcast message is transmitted is indicated by a Geographical Scope (GS) indicator.
  • GS Geographical Scope
  • FIG. 2 is a schematic illustration of an MTC terminal 3 according to an embodiment of the invention.
  • the terminal 3 comprises a receiver 10 for receiving a cell broadcast channel upon instruction by a controller 11 .
  • a processor 12 processes the broadcast message as to whether an identifier contained in the message corresponds to a terminal identifier that is locally available.
  • the terminal identifier may be a network related ID, e.g. an IMSI stored in a storage module of the terminal 3 , but is advantageously a network-unrelated identifier, e.g. an application identifier or a terminal identifier assigned by the MTC service provider and stored in a storage module of the terminal 3 .
  • the processor 12 further processes the broadcast message. This may include analysing the broadcast message for particular instructions, such as activation parameters, and storing and/or executing these instructions at some point in time.
  • the broadcast message does not necessarily contain further instructions.
  • the terminal 3 may be programmed such that when a broadcast message is received over the cell broadcast channel, the mere receipt of this message triggers further actination, possibly after some pre-programmed time delay, of the terminal 3 .
  • One example of the activation includes the transmitting of a request, using transmitter 13 , for establishing a connection with the radio access network RAN and, possibly, the setting up of a PDP context in order to exchange data with the server 2 .
  • FIG. 3 shows a schematic example of a routing area RA of a telecommunications network 1 showing base stations BS of the RAN defining cells C.
  • MTC communication terminals 3 A- 3 D are provided in a subset S, indicated by the darker cells C.
  • Terminals 3 A, 3 B are located in the same cell C 1 .
  • Terminals 3 C, 3 D are located in further cells C 2 , C 3 , respectively.
  • terminals 3 A- 3 D have the same IMSI and are programmed to use the IMSI to establish a connection with the wireless access network 3 .
  • the terminals 3 A- 3 D have been assigned identifiers ID_A, ID_B, ID_C and ID_D, respectively for controlling activation of the terminals on a cell broadcast channel. It will be assumed that these identifiers are network-unrelated identifiers, i.e. identifiers which need not to be registered within the telecommunications network 1 , e.g. application identifiers.
  • the exact location of terminal 3 C is not known, but it is, for example based on historic data, more likely to be located in one of the cells C 2 , C 3 , C 4 .
  • a cell broadcast request is sent from server 2 to the CBC comprising a location identifier indicating in which cells C (viz. C 1 , C 2 , C 3 , C 4 ) the broadcast message should be transmitted on the cell broadcast channel.
  • terminals 3 are programmed to listen to the cell broadcast channel.
  • Server 2 also sends the identifiers assigned to the terminals to be activated by providing a range ID_A . . . C in order to indicate terminals 3 A- 3 C and to exclude terminal 3 D.
  • step 41 CBC sends the request to the RAN, particularly the base stations BS thereof, to transmit the broadcast message on the cell broadcast channel of the cells C of subset S, the broadcast message including the identifier ID_A . . . C for indicating the terminals for which the broadcast message is intended.
  • terminals 3 A- 3 D receive the broadcast message.
  • terminals 3 A- 3 C will further process the broadcast message when determining that an identifier in the received broadcast message (e.g. ID_A . . . C) corresponds to the local application identifier (e.g. ID_A, ID_B, ID_C for terminals 3 A, 3 B, 3 C, respectively).
  • Terminal 3 D will not further process the broadcast message (indicated by the cross in FIG. 4 at terminal 3 D), since the broadcast message does not contain an identifier corresponding to the local application identifier, such as ID_D.
  • Terminals 3 A and 3 C may be activated substantially simultaneously and request establishment of a PDP context using the same IMSI, shown in step 43 .
  • a data exchange may now be performed, as depicted by the exchange of several messages in step 44 .
  • Terminal 3 B being in the same cell C 1 as terminal 3 A, cannot be activated and cannot have a connection simultaneously with terminal 3 A, since both terminals use the same IMSI. Therefore, activation of terminal 3 B is controlled such that terminal 3 B only sends a request to establish a PDP context after some time delay ⁇ T after receiving and processing the broadcast message, illustrated by step 45 .
  • Step 46 represents the data exchange messages between terminal 3 B and server 2 .
  • the difference in activation behaviour between terminals 3 A and 3 B may be obtained by including activation parameters, e.g. indicating time delay ⁇ T, in the broadcast message received over the cell broadcast channel.
  • activation parameters e.g. indicating time delay ⁇ T
  • terminals 3 A, 3 B are pre-programmed such that terminal 3 B waits a pre-determined time ⁇ T after receiving and processing the broadcast message whereas terminal 3 A responds immediately. Random time intervals may also be used in order to reduce the statistic chance of conflicting activation of terminals.
  • the area in which terminals of the organization applying server 2 are present may be larger than indicated in FIG. 3 .
  • a broadcast message may subsequently transmitted in a further subset S of cells C to control activation of terminals 3 in this further subset of cells. In this manner, the number of activated terminals 3 can also be controlled.
  • Location information may change due to reconfiguration of cells C by an operator or at times when a terminal 3 moves.
  • a mechanism may be put in place wherein the location of terminals 3 is updated, for example based on a recording of one or more cell identifiers via which a given terminal in a recent past has submitted a request to establish a connection and has exchanged data with server 2 .
  • This can be further supplemented by introducing a periodic, occasional or opportunistic request in eventually all cells of a network to trace lost terminals or to program the terminal to send an update of its location.
  • This information may be stored in server 2 or in the telecommunications network.
  • the above-described embodiment allows to reduce the need for terminals to be provisioned with unique MSISDN numbers and for the telecommunications network operator to register the location of the terminals in order to activate these terminals.
  • the addressing of multiple terminals such as by the use of group identifiers, the use of (partial) wildcards and the use of ranges, reduces the load of broadcast messages to be transmitted on the cell broadcast channel in order to activate a population of terminals. Broadcasting can be targeted to those cells where the terminals are expected to be located. Knowledge of these cells may also be obtained from historic data. Whereas the activation request is made via the telecommunications network using the cell broadcast channel, establishing the data connection is initiated by the terminal.
  • One embodiment of the invention may be implemented as a program product for use with a computer system.
  • the program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media.
  • Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.
  • non-writable storage media e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM

Abstract

The invention relates to a method for controlling activation of at least one terminal in a machine-type communication application using a wireless access network. The wireless access network comprises a number of location areas, each of the location areas comprising a plurality of cells. The terminal has been assigned an identifier. First, a location identifier is received from a location provider, the location identifier indicating a subset of cells of at least one of the location areas. Activation of the at least one terminal is then controlled by transmitting at least one broadcast message on at least one cell broadcast channel in the cells of the subset indicated by the location identifier. The broadcast message contains the identifier or identifier part assigned to the terminal, such that the at least one terminal is signalled that the broadcast message is intended for him. An activation control system and a mobile terminal for use with such a system are also disclosed.

Description

    FIELD OF THE INVENTION
  • The invention relates to the field of telecommunications. More specifically, the invention relates to the field of controlling activation of a number of terminals in a machine-type communication wireless access communications environment.
  • BACKGROUND OF THE INVENTION
  • Wireless access telecommunications networks (e.g. GSM, UMTS, LTE) have developed tremendously over the past years. In such networks, voice and data services can be provided to terminals having a high mobility, i.e. the terminals move freely through the area covered by the network.
  • For mobile-terminated calls, i.e. calls made to the mobile terminal, it is essential for the network to locate the terminal in order to set up the connection. To that end, the network has a location management procedure in place.
  • The telecommunications network is divided into a plurality of location areas (LA). Location areas generally comprise a large number of cells, one or more cells being associated with a base station. The terminal moving through the area keeps the network informed if there is a change of its current location area. However, the knowledge of the location area is generally insufficient for setting up a mobile-terminated call. Thus, prior to setting up a mobile-terminated call, more detailed information about the location of the terminal should be obtained.
  • As an example, an incoming call request arrives on a gateway mobile switching centre (GMSC) and contains the MSISDN number of the mobile terminal to be contacted. The MSISDN number is used to obtain location information from a Home Location Register (HLR). The HLR uses the MSISDN to identify the address of the Mobile Switching Centre (MSC) currently serving the mobile terminal. The GMSC then uses the MSC address to route the call request to the MSC currently serving the mobile terminal. The MSC determines the location area where the mobile station is registered and sends a message to all base station controllers (BSCs) controlling cells in this location area. The message contains the network identity (TMSI or IMSI) of the mobile terminal and is broadcast in all cells of the location area as a paging message on a paging channel PCH. The mobile terminal regularly (e.g. several times per second) monitors the paging channel PCH and receives the paging message and responds to it when it finds that the TMSI or IMSI in the paging message matches its own TMSI or IMSI. The TMSI or IMSI is known to the terminal; the IMSI is typically stored on the subscriber identity module (SIM) of the mobile terminal.
  • The mobile terminal generally needs to respond quickly to the paging message, since otherwise the caller may hang up. Therefore, the mobile terminal will respond to the paging message by sending a channel request on a random access channel (RACH). The base station receiving the channel request now knows in which cell the mobile terminal is located and the network assigns radio resources for establishing the connection.
  • While the above example is based on the establishment of a mobile terminated call in a GSM network, similar steps are taken in other wireless access telecommunications networks, such as UMTS and LTE.
  • The availability of the above-mentioned wireless access networks has resulted in demands for further services using these networks, including services that relate to so-called machine-type communication (MTC) services. Machine-type communication is currently being standardised in 3GPP, e.g. see TS 22.368. MTC applications typically involve hundreds, thousands or millions of communication modules. Some applications only rarely require access to a telecommunications network. An example involves collecting information by a server from e.g. smart electricity meters at the homes of a large customer base. Other examples include sensors, meters, coffee machines etc. that can be equipped with communication modules that allow for reporting status information to a data processing centre over the telecommunications network. Such devices may also be monitored from a server. The data processing centre may e.g. store the data and/or provide a schedule for maintenance people to repair a machine, meter, sensor etc.
  • SUMMARY OF THE INVENTION
  • A method is disclosed for controlling activation of at least one terminal in a machine-type communication application using a wireless access network. The wireless access network comprises a number of location areas, each of the location areas comprising a plurality of cells. The terminal has been assigned an identifier. First, a location identifier is received from a location provider, the location identifier indicating a subset of cells of at least one of the location areas. Activation of the at least one terminal is then controlled by transmitting at least one broadcast message on at least one cell broadcast channel in the cells of the subset indicated by the location identifier. The broadcast message contains the identifier assigned to the terminal, such that the at least one terminal is signalled that the broadcast message is intended for it.
  • Furthermore, an activation control system configured for controlling activation of at least one terminal in a machine-type communication application using such a wireless access network is disclosed. The system comprises a receiver configured for receiving a location identifier from a location provider, the location identifier indicating a subset of cells of at least one of the location areas. Also, an activation controller is provided that is configured for controlling activation of the at least one terminal by transmitting at least one broadcast message on at least one cell broadcast channel in the cells of the subset indicated by the location identifier, wherein the broadcast message contains the identifier assigned to the at least one terminal.
  • A machine-type communication terminal configured for operating in the method and system as defined in the present disclosure is also disclosed. The terminal comprises a receiver for receiving the broadcast message on the cell broadcast channel and a processor for processing the broadcast message when the identifier assigned to the terminal contained in the broadcast message matches a terminal identifier, the identifier optionally being a network-unrelated identifier. The terminal has a controller for controlling activation of the terminal, particularly establishing a connection with the wireless access network, following processing of the broadcast message.
  • It should be noted that the activation control method and system may apply multiple cell broadcast channels of the wireless access network. Different terminals, possibly owned by different MTC providers, may be programmed to tune to different cell broadcast channels.
  • The terminals are generally activated with the aim of establishing a connection with the wireless access network. Activation control of the terminals may include the possibility to delay activation of the terminals after receiving the broadcast message and the possibility to schedule activation of the terminal.
  • It should be appreciated that for GPRS, the location area LA is typically referred to as Routing Area (RA). For the present application, location area (LA) and routing area (RA) are taken as synonyms.
  • The applicant has acknowledged that for many machine-type communication (MTC) applications the terminal mobility is considerably lower than for normal wireless telephony. The location of the MTC terminal may be substantially fixed, i.e. the terminal will normally not move out of a cell, or may most likely be in a limited subset of cells. The (approximately) known location can be used to advantage to determine in which cell(s) the activation control message for triggering the terminal should be broadcast without retrieving routing information from the Home Location Register (HLR) and/or the Visitor Location Register (VLR). This in turn obviates the need to store terminal location information in the HLR and/or the VLR and obviates the need for location management procedures. This provides considerable savings since the number of MTC terminals may be rather high.
  • The broadcast message is broadcast over the cell broadcast channel CBCH as opposed to the paging channel PCH currently used for transmitting activation messages. In this manner, the load for the paging channels is considerably reduced. Transmitting a broadcast message to a terminal via the cell broadcast channel CBCH may be slower than transmitting a paging message to a terminal via the dedicated paging channel PCH, but the applicant has realized that this aspect may be of less relevance for many MTC applications. By omitting the need to page terminals over the paging channel PCH, various limitations from conventional wireless telephony can be circumvented. Examples of restrictions include the type of instructions that may be provided, the restriction of using a network-related identifier (such as TMSI or IMSI), the strict time regime for responding to a page and the requirement of frequently monitoring the paging channel. Examples of embodiments of the present invention wherein the restrictions are avoided include the wide range of activation parameters that can be used in the broadcast message (see claim 2), not limiting response by the terminal to an access request on the random access channel (RACH), the use of network-unrelated identifiers (claim 3) for indicating the terminal for which the broadcast message is intended and not requiring direct responses to the broadcast message. Furthermore, the terminals may be programmed to monitor the cell broadcast channel less frequently or only during particular periods of time of the day or week.
  • It should be appreciated that the location identifier of a subsets of cells may be received from the location provider and stored in the wireless access telecommunications network prior to the instruction for sending broadcast messages. The stored location identifier may then be used for identifying the cells of the subset in which the broadcast message for controlling activation of the terminals should be transmitted.
  • It should further be appreciated that the number of cells in the subset is usually small. Ideally, a terminal is located within one cell. However, the cell boundaries are generally not entirely fixed but may be subject to reconfiguration by the network operator and also may fluctuate to some extent, dependent on e.g. environmental conditions, such that terminals at a substantially fixed location near a cell boundary may find themselves in different cells now and then. Therefore, the number of cells of the subset may be set greater than 1, e.g. 2, 3, 5 or 10.
  • Generally, the location identifier or identifiers are selected such that they correspond to the cells of the subset where the terminals are expected to be located. In principle, however, the location identifier only designates the subset(s) of the cells where the broadcast message should be transmitted over the cell broadcast channel. As an example, an organization owns a plurality of terminals distributed over an area, such as a country, but does not have detailed information about the exact location of the terminals. Groups of terminals have been assigned group identifiers and terminals with a common group identifier have been appropriately distributed over the area, i.e. terminals with a common group identifier are not located in the same cell. By transmitting broadcast messages for a particular group identifier on a cell broadcast channel of the area, or subsequent parts thereof, activation of the terminals having been assigned the group identifier is controlled. In such an example, the number of cells of the subset may be considerably large.
  • The identifier assigned to the terminal for determining whether the broadcast message is destined for it is not necessarily the same identifier used for establishing a connection with the wireless access network.
  • As mentioned, the identifier assigned to the terminals are not necessarily network related identifiers, such as TMSI or IMSI, i.e. identifiers that the network uses to distinguish between terminals. Examples of network-unrelated identifiers include application identifiers on which basis the owners of the terminals can distinguish between terminals. The use of a network-unrelated identifier obviates the need to register such identifiers by the operator of the wireless access network.
  • Several terminals may have been assigned a common group identifier, network-related or network-unrelated, on the basis of which the activation of groups of terminals may be controlled. The use of a common network-related group identifier may require measures, such as subsequent activation of terminals, in order for the network to appropriately process the received request for establishing a connection from the terminals, particularly when the terminals are located in the same cell. In particular, the activation control is such that during the connection period of one terminal, a connection request by another terminal with the same network-related identifier does not occur when these terminals are in the same cell. The control may be extended to terminals in neighbouring cells.
  • Even when terminals have been assigned individual identifiers, multiple terminals may be addressed on the cell broadcast channel at once by a single broadcast message, e.g. by indicating a part of the terminal identifier in combination with a indication that the remainder of the identifier is not relevant, e.g. an asterisk (*). An alternative includes the use of ranges. These types of identifiers are considered to be group identifiers as well.
  • The identifier assigned to a terminal may also be a terminal condition, e.g. a software version applied by a terminal or a subscription specified for the terminal.
  • Hereinafter, an embodiment of the invention will be described in further detail. It should be appreciated, however, that these embodiments may not be construed as limiting the scope of protection for the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1 depicts a schematic illustration of a wireless access telecommunications network containing components of an activation control system for a MTC application according to an embodiment of the present invention;
  • FIG. 2 shows a schematic illustration of an MTC terminal according to an embodiment of the example.
  • FIG. 3 is a schematic illustration of a cell configuration of the wireless access telecommunications network of FIG. 1, and
  • FIG. 4 is a signal-time chart indicating some steps of the method for controlling activation of the MTC terminal of FIG. 2.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic illustration of a wireless access telecommunications network 1 for MTC applications. The telecommunications network 1 allows data sessions between a server 2 and terminals 3 over a packet data network 4, wherein access of the terminal to the telecommunications network 1 is wireless. In an MTC environment, a single server 2 normally is used for communication with a large number of terminals 3.
  • Particularly, FIG. 1 depicts a GPRS or UMTS telecommunications network comprising a Gateway GPRS Support Node (GGSN), a Serving GPRS Support Node (SGSN) and a Radio Access Network (RAN or UTRAN). For a GSM/EDGE radio access network (GERAN), the RAN comprises a Base Station Controller (BSC) connected to a plurality of Base Station Transceivers (BTSs), both not shown. For a UMTS radio access network (UTRAN), the RAN comprises a Radio Network Controller (RNC) connected to a plurality of NodeBs), also not shown. The GGSN and the SGSN are conventionally connected to a Home Location Register (HLR) that may contain subscription information of the terminals 3.
  • For such a network, the SGSN typically controls the connection between the telecommunications network 1 and the terminals 3. It should be appreciated that the telecommunications network 1 generally comprises a plurality of SGSNs, wherein each of the SGSNs is connected typically to several BSCs/RNCs to provide a packet service for terminals 3 via several base stations/NodeBs.
  • The GGSN is connected to the packet data network 4, e.g. the internet, a corporate network or a network of another operator. On the other side, the GGSN is connected to one or more SGSNs.
  • The GGSN is configured for receiving a data unit for the terminal 3 from the server 2 over the network 4 and for transmitting a data unit to the server 2 received from the terminal 3.
  • The network 1 comprises a cell broadcast centre CBC, also referred to a Short Message Service Cell Broadcast (SMSCB). Cell broadcast technical information is disclosed in TS 23.041, which is incorporated in the present application in its entirety. The geographic area wherein a cell broadcast message is transmitted is indicated by a Geographical Scope (GS) indicator.
  • FIG. 2 is a schematic illustration of an MTC terminal 3 according to an embodiment of the invention. The terminal 3 comprises a receiver 10 for receiving a cell broadcast channel upon instruction by a controller 11. Once a broadcast message is received, a processor 12 processes the broadcast message as to whether an identifier contained in the message corresponds to a terminal identifier that is locally available. The terminal identifier may be a network related ID, e.g. an IMSI stored in a storage module of the terminal 3, but is advantageously a network-unrelated identifier, e.g. an application identifier or a terminal identifier assigned by the MTC service provider and stored in a storage module of the terminal 3. Once the identifier contained in the broadcast message corresponds to terminal identifier, the processor 12 further processes the broadcast message. This may include analysing the broadcast message for particular instructions, such as activation parameters, and storing and/or executing these instructions at some point in time.
  • The broadcast message does not necessarily contain further instructions. The terminal 3 may be programmed such that when a broadcast message is received over the cell broadcast channel, the mere receipt of this message triggers further actination, possibly after some pre-programmed time delay, of the terminal 3.
  • One example of the activation includes the transmitting of a request, using transmitter 13, for establishing a connection with the radio access network RAN and, possibly, the setting up of a PDP context in order to exchange data with the server 2.
  • The operation of the telecommunication network 1 will now be described in further detail with reference to FIGS. 3 and 4.
  • FIG. 3 shows a schematic example of a routing area RA of a telecommunications network 1 showing base stations BS of the RAN defining cells C. MTC communication terminals 3A-3D are provided in a subset S, indicated by the darker cells C. Terminals 3A, 3B are located in the same cell C1. Terminals 3C, 3D are located in further cells C2, C3, respectively.
  • In the exemplary embodiment, it is assumed that terminals 3A-3D have the same IMSI and are programmed to use the IMSI to establish a connection with the wireless access network 3. This requires the HLR to store a single IMSI entry for all terminals 3A-3D.
  • Furthermore, the terminals 3A-3D have been assigned identifiers ID_A, ID_B, ID_C and ID_D, respectively for controlling activation of the terminals on a cell broadcast channel. It will be assumed that these identifiers are network-unrelated identifiers, i.e. identifiers which need not to be registered within the telecommunications network 1, e.g. application identifiers.
  • The organization applying server 2 knows that terminals 3A-3D are in the indicated cells of subset S={C1, C2, C3, C4} and requires to exchange date with terminals 3A, 3B and 3C, but not with 3D. The exact location of terminal 3C is not known, but it is, for example based on historic data, more likely to be located in one of the cells C2, C3, C4. To that end, in step 40 a cell broadcast request is sent from server 2 to the CBC comprising a location identifier indicating in which cells C (viz. C1, C2, C3, C4) the broadcast message should be transmitted on the cell broadcast channel. Of course, terminals 3 are programmed to listen to the cell broadcast channel. Server 2 also sends the identifiers assigned to the terminals to be activated by providing a range ID_A . . . C in order to indicate terminals 3A-3C and to exclude terminal 3D. Alternatively, the broadcast message could have been sent in the subset S={C1, C2} to exclude a response from terminal 3D and if terminal 3C would have been known to be most likely located in cell C2.
  • In step 41, CBC sends the request to the RAN, particularly the base stations BS thereof, to transmit the broadcast message on the cell broadcast channel of the cells C of subset S, the broadcast message including the identifier ID_A . . . C for indicating the terminals for which the broadcast message is intended.
  • In step 42, terminals 3A-3D receive the broadcast message. Upon processing the received broadcast message, terminals 3A-3C will further process the broadcast message when determining that an identifier in the received broadcast message (e.g. ID_A . . . C) corresponds to the local application identifier (e.g. ID_A, ID_B, ID_C for terminals 3A, 3B, 3C, respectively). Terminal 3D will not further process the broadcast message (indicated by the cross in FIG. 4 at terminal 3D), since the broadcast message does not contain an identifier corresponding to the local application identifier, such as ID_D.
  • Terminals 3A and 3C, not being in the same cell C of the subset S, may be activated substantially simultaneously and request establishment of a PDP context using the same IMSI, shown in step 43. A data exchange may now be performed, as depicted by the exchange of several messages in step 44.
  • Terminal 3B, being in the same cell C1 as terminal 3A, cannot be activated and cannot have a connection simultaneously with terminal 3A, since both terminals use the same IMSI. Therefore, activation of terminal 3B is controlled such that terminal 3B only sends a request to establish a PDP context after some time delay ΔT after receiving and processing the broadcast message, illustrated by step 45. Step 46 represents the data exchange messages between terminal 3B and server 2.
  • The difference in activation behaviour between terminals 3A and 3B may be obtained by including activation parameters, e.g. indicating time delay ΔT, in the broadcast message received over the cell broadcast channel. Alternatively, terminals 3A, 3B are pre-programmed such that terminal 3B waits a pre-determined time ΔT after receiving and processing the broadcast message whereas terminal 3A responds immediately. Random time intervals may also be used in order to reduce the statistic chance of conflicting activation of terminals.
  • The area in which terminals of the organization applying server 2 are present may be larger than indicated in FIG. 3. In that case, a broadcast message may subsequently transmitted in a further subset S of cells C to control activation of terminals 3 in this further subset of cells. In this manner, the number of activated terminals 3 can also be controlled.
  • Location information may change due to reconfiguration of cells C by an operator or at times when a terminal 3 moves. A mechanism may be put in place wherein the location of terminals 3 is updated, for example based on a recording of one or more cell identifiers via which a given terminal in a recent past has submitted a request to establish a connection and has exchanged data with server 2. This can be further supplemented by introducing a periodic, occasional or opportunistic request in eventually all cells of a network to trace lost terminals or to program the terminal to send an update of its location. This information may be stored in server 2 or in the telecommunications network.
  • The above-described embodiment allows to reduce the need for terminals to be provisioned with unique MSISDN numbers and for the telecommunications network operator to register the location of the terminals in order to activate these terminals. The addressing of multiple terminals, such as by the use of group identifiers, the use of (partial) wildcards and the use of ranges, reduces the load of broadcast messages to be transmitted on the cell broadcast channel in order to activate a population of terminals. Broadcasting can be targeted to those cells where the terminals are expected to be located. Knowledge of these cells may also be obtained from historic data. Whereas the activation request is made via the telecommunications network using the cell broadcast channel, establishing the data connection is initiated by the terminal.
  • One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.

Claims (19)

1-18. (canceled)
19. A method for controlling activation of at least one terminal in a machine-type communication application using a wireless access network, the wireless access network including a number of location areas, each of the location areas including a plurality of cells, the terminal having been assigned an identifier, the method comprising:
receiving a location identifier from a location provider, the location identifier indicating a subset of cells of at least one of the location areas; and
controlling activation of the at least one terminal by transmitting at least one broadcast message on at least one cell broadcast channel in the indicated cells of the subset, wherein the broadcast message contains the identifier or identifier part assigned to the at least one terminal.
20. The method according to claim 19, wherein the identifier is unrelated to the wireless access network.
21. The method according to claim 20, wherein the broadcast message contains at least one activation parameter.
22. The method according to claim 21, further comprising controlling activation of a plurality of terminals by transmitting the broadcast message, the broadcast message containing a group identifier or group identifier part as the identifier shared by the plurality of terminals.
23. The method according to claim 22, wherein the group identifier is a group network-related identifier, and further comprising receiving terminal-initiated request messages at the wireless access network for establishing a connection with the wireless access network from at least two of the plurality of terminals in a cell of the subset at different points in time, wherein the points in time are different in that a connection of a first terminal is terminated before the terminal-initiated request message of a second terminal is received.
24. The method according to claim 22, wherein the group identifier is a group network-related identifier, and further comprising receiving terminal-initiated request messages at the wireless access network for establishing a connection with the wireless access network from at least two of the plurality of terminals in different cells of the subset.
25. The method according to claim 22, further comprising transmitting a subsequent broadcast message in different subsets of at least one location area.
26. The method according to claim 25, further comprising:
receiving a terminal-initiated request message for establishing a connection with the wireless access network from the at least one terminal following the transmitting of the broadcast message; and
exchanging data over the established connection with the at least one terminal from which the terminal-initiated request message is received.
27. The method according to claim 26, further comprising receiving terminal location information from the terminal at the location provider.
28. An activation control system configured for controlling activation of at least one terminal in a machine-type communication application using a wireless access network, the wireless access network including a number of location areas, each of the location areas including a plurality of cells, the terminal having been assigned an identifier, the system comprising:
a receiver configured for receiving a location identifier from a location provider, the location identifier indicating a subset of cells of at least one of the location areas; and
an activation controller configured for controlling activation of the at least one terminal by transmitting at least one broadcast message on at least one cell broadcast channel in the indicated cells of the subset, wherein the broadcast message contains the identifier or an identifier part assigned to the at least one terminal.
29. The activation control system according to claim 28, wherein the broadcast message contains at least one activation parameter.
30. The activation control system according to claim 29, wherein the identifier is a network-unrelated identifier.
31. The activation control system according to claim 29, wherein the system is configured for controlling activation of a plurality of terminals by transmitting the broadcast message, wherein the activation controller is configured for containing in the broadcast message a group identifier or group identifier part as the identifier shared by the plurality of terminals.
32. The activation control system according to claim 31, further comprising a receiver configured for receiving terminal-initiated request messages for establishing a connection with the wireless access network from at least two of the plurality of terminals in a cell of the subset at different points in time.
33. The activation control system according to claim 29, wherein the system is further configured for receiving terminal-initiated request messages for establishing a connection with the wireless access network from at least two of the plurality of terminals in different cells of the subset.
34. The activation control system according to claim 33, wherein the system further contains at least one of the following:
a transmission system configured for transmitting a subsequent broadcast message in different subsets of at least one location area;
a receiver configured for receiving a terminal-initiated request message for establishing a connection with the wireless access network from the at least one terminal following the transmitting of the broadcast message in combination with a data exchanger configured for exchanging data over the established connection with the at least one terminal from which the terminal-initiated request message is received; or
a receiver configured for receiving terminal location information from the terminal at the location provider.
35. A machine-type communication terminal configured for operating in the method according to claim 27, the terminal comprising:
a receiver for receiving the broadcast message on the cell broadcast channel;
a processor for verifying whether an identifier contained in the broadcast message matches a terminal identifier; and
a controller for controlling activation of the terminal, particularly establishing a connection with the wireless access network, when the identifier contained in the broadcast message matches the terminal identifier.
36. The machine-type communication terminal according to claim 35, wherein the identifier is a network-unrelated identifier.
US13/729,491 2009-10-05 2012-12-28 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application Active 2032-11-02 US9913072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/729,491 US9913072B2 (en) 2009-10-05 2012-12-28 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP09172248 2009-10-05
EP09172248.8 2009-10-05
EP09172248 2009-10-05
PCT/EP2010/064797 WO2011042417A2 (en) 2009-10-05 2010-10-05 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application
US201213500250A 2012-05-10 2012-05-10
US13/729,491 US9913072B2 (en) 2009-10-05 2012-12-28 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2010/064797 Continuation WO2011042417A2 (en) 2009-10-05 2010-10-05 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application
US13/500,250 Continuation US20120214488A1 (en) 2009-10-05 2010-10-05 Method and Telecommunications Network for Controlling Activation Of At Least One Terminal In a Machine-Type Communication Application
US201213500250A Continuation 2009-10-05 2012-05-10

Publications (2)

Publication Number Publication Date
US20130188549A1 true US20130188549A1 (en) 2013-07-25
US9913072B2 US9913072B2 (en) 2018-03-06

Family

ID=41820496

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/500,250 Abandoned US20120214488A1 (en) 2009-10-05 2010-10-05 Method and Telecommunications Network for Controlling Activation Of At Least One Terminal In a Machine-Type Communication Application
US13/729,491 Active 2032-11-02 US9913072B2 (en) 2009-10-05 2012-12-28 Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/500,250 Abandoned US20120214488A1 (en) 2009-10-05 2010-10-05 Method and Telecommunications Network for Controlling Activation Of At Least One Terminal In a Machine-Type Communication Application

Country Status (6)

Country Link
US (2) US20120214488A1 (en)
EP (2) EP2566263B1 (en)
JP (2) JP5562425B2 (en)
ES (1) ES2640769T3 (en)
PL (1) PL2566263T3 (en)
WO (1) WO2011042417A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003372A1 (en) * 2012-06-29 2014-01-02 International Business Machines Corporation Activating a mobile terminal from mobile network side
KR20160081962A (en) * 2013-11-05 2016-07-08 퀄컴 인코포레이티드 Diversity enhancement in a multiple carrier system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562425B2 (en) * 2009-10-05 2014-07-30 コニンクリーケ・ケイピーエヌ・ナムローゼ・フェンノートシャップ Method and communication network for activation control of at least one terminal when applying machine type communication
CN102932748B (en) * 2011-08-08 2019-04-26 中兴通讯股份有限公司 A kind of method and system of triggering terminal group
HUE029183T2 (en) * 2011-08-11 2017-02-28 Intel Corp Methods for switching between a mbms download and an http-based delivery of dash formatted content over an ims network
GB2496179B (en) 2011-11-04 2014-01-22 Renesas Mobile Corp Reducing signaling Overhead in Wireless Communications Networks
WO2013065027A1 (en) * 2011-11-04 2013-05-10 Renesas Mobile Corporation Controlling detach and detach time of a machine -type communication device for saving signaling and reducing storage of registration information
CN102413546A (en) 2011-12-01 2012-04-11 大唐移动通信设备有限公司 Method and equipment for selecting core network equipment
WO2013167146A1 (en) * 2012-05-07 2013-11-14 Deutsche Telekom Ag Method for determining the number and/or capabilities of user equipments in a geographic area of an access network, user equipment for use in a geographic area of an access network, base transceiver station for determining the number of user equipments in a geographic area of an access network, program and computer program product
US9288784B2 (en) 2012-05-18 2016-03-15 Bose Corporation Controlling communication mode changes in a communication system
GB2505900B (en) * 2012-09-13 2015-03-04 Broadcom Corp Methods, apparatus and computer programs for operating a wireless communications device
US9173089B2 (en) * 2013-01-10 2015-10-27 Samsung Electronics Co., Ltd. Allocation of device id in device to device communications
CA2854637C (en) * 2013-06-18 2019-06-18 IntraGrain Technologies Inc. Cellular network communication between assets and a central server
US9451487B2 (en) * 2014-06-05 2016-09-20 Mediatek Inc. Method for adaptively monitoring paging messages with reduced power consumption and communications apparatuses utilizing the same
US10493936B1 (en) 2016-01-22 2019-12-03 State Farm Mutual Automobile Insurance Company Detecting and responding to autonomous vehicle collisions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040313A1 (en) * 2001-08-21 2003-02-27 Hogan William Damian Method and apparatus for location area updating in cellular communications
US20050181767A1 (en) * 2003-06-30 2005-08-18 Lucent Technologies Inc. System for reducing paging channel occupancy for message waiting indication in mobile switching centers
US20100151813A1 (en) * 2007-04-02 2010-06-17 Michael Faerber , network and device for information provision by using paging and cell broadcast services

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175743B1 (en) * 1998-05-01 2001-01-16 Ericsson Inc. System and method for delivery of short message service messages to a restricted group of subscribers
US6600917B1 (en) * 1999-10-04 2003-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications network broadcasting of service capabilities
US7292848B2 (en) * 2002-07-31 2007-11-06 General Motors Corporation Method of activating an in-vehicle wireless communication device
US20050096102A1 (en) 2003-11-05 2005-05-05 Motorola, Inc Remotely initiated low power mode
KR100890060B1 (en) * 2004-08-27 2009-03-25 삼성전자주식회사 System and Method for Controlling Congestion of Group Call Response Message On Access Channel
JP2006340168A (en) * 2005-06-03 2006-12-14 Osaka Univ Method, system, and device for information collection, information transmitting device, and computer program
EP1753251B1 (en) * 2005-08-10 2010-12-29 Alcatel Lucent Method of transmitting urgent alarm messages to mobile terminals being located in cells of a mobile communication network and a correponding network controller
JP2007235224A (en) * 2006-02-27 2007-09-13 Toshiba Corp Telemeter system and information gathering method
US8150403B2 (en) * 2006-05-30 2012-04-03 Motorola Mobility, Inc. Reservation of mobile station communication resources
WO2008031268A1 (en) * 2006-09-08 2008-03-20 Huawei Technologies Co., Ltd. Wireless paging method,wireless network component, and wireless network
JP2008077421A (en) * 2006-09-21 2008-04-03 Oki Electric Ind Co Ltd Context information acquisition system
US7774008B2 (en) * 2006-12-22 2010-08-10 Cellco Partnership MDN-less SMS messaging (network solution) for wireless M2M application
JP2009130558A (en) * 2007-11-22 2009-06-11 Nec Commun Syst Ltd Information delivery system and information delivery method
US8200285B2 (en) * 2008-04-30 2012-06-12 Nokia Siemens Network Oy Initial eNode-B configuration over-the-air
JP5069666B2 (en) * 2008-11-11 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ Information collection system, communication terminal, and information collection method
JP5562425B2 (en) * 2009-10-05 2014-07-30 コニンクリーケ・ケイピーエヌ・ナムローゼ・フェンノートシャップ Method and communication network for activation control of at least one terminal when applying machine type communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040313A1 (en) * 2001-08-21 2003-02-27 Hogan William Damian Method and apparatus for location area updating in cellular communications
US20050181767A1 (en) * 2003-06-30 2005-08-18 Lucent Technologies Inc. System for reducing paging channel occupancy for message waiting indication in mobile switching centers
US20100151813A1 (en) * 2007-04-02 2010-06-17 Michael Faerber , network and device for information provision by using paging and cell broadcast services

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003372A1 (en) * 2012-06-29 2014-01-02 International Business Machines Corporation Activating a mobile terminal from mobile network side
US9148778B2 (en) * 2012-06-29 2015-09-29 International Business Machines Corporation Activating a mobile terminal from mobile network side
US9565635B2 (en) 2012-06-29 2017-02-07 International Business Machines Corporation Activating a mobile terminal from mobile network side
KR20160081962A (en) * 2013-11-05 2016-07-08 퀄컴 인코포레이티드 Diversity enhancement in a multiple carrier system
KR102003879B1 (en) 2013-11-05 2019-07-25 퀄컴 인코포레이티드 Diversity enhancement in a multiple carrier system

Also Published As

Publication number Publication date
EP2566263B1 (en) 2016-12-14
JP5847067B2 (en) 2016-01-20
EP2486767B1 (en) 2017-08-02
WO2011042417A2 (en) 2011-04-14
US9913072B2 (en) 2018-03-06
JP5562425B2 (en) 2014-07-30
EP2486767A2 (en) 2012-08-15
JP2013123225A (en) 2013-06-20
EP2566263A3 (en) 2013-07-24
US20120214488A1 (en) 2012-08-23
ES2640769T3 (en) 2017-11-06
WO2011042417A3 (en) 2011-07-14
PL2566263T3 (en) 2017-07-31
JP2013507081A (en) 2013-02-28
EP2566263A2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US9913072B2 (en) Method and telecommunications network for controlling activation of at least one terminal in a machine-type communication application
JP6698850B2 (en) Method for enhanced machine-type communication between a mobile communication network and a group of machine-type communication devices, on the other hand, mobile communication networks, machine-type communication devices, user equipment, programs and computer program products
RU2556463C2 (en) Method of accessing group of terminal devices in communication network, apparatus and terminal device in communication network
CN107836127B (en) Paging method, device and system
EP2553979B1 (en) Post access policing in a mobile communication network
EP2630832B1 (en) Communication scheduling based on priority and resource utilization
RU2527743C2 (en) Method, apparatus and system for accessing wireless network and sending paging message
EP2632213B1 (en) Method and apparatus for performing network entry/reentry in wireless communication system
WO2021131902A1 (en) Methods and devices of detection of misbehaving ues using data analysis
EP2733966A1 (en) Method for enhancing machine type communication between a mobile communication network and a machine type communication device
KR101906416B1 (en) Network acceing method and apparatus thereof
EP2533554B1 (en) Access method and device for service based on geographic location information
US9661607B2 (en) Paging area control apparatus, paging area control method, transfer apparatus, mobile communication system, mobile station, and computer readable medium
EP2663033A1 (en) Method and system for service data transmission
US9144089B2 (en) Access method and system for MTC device, and MTC device
EP2785085B1 (en) A system and method for providing incoming call to a remote device sharing a MSISDN with other remote devices
US20080026698A1 (en) Method, apparatus, network element and software product for location area update optimization
US10375535B2 (en) SMS-IWF reassignment for SMS link outage
US20220312414A1 (en) SYSTEM AND METHOD FOR DYNAMIC MULTICARRIER ALLOCATION TO NB-IoT DEVICES
CN107426796B (en) Method for terminal to perform state transition, paging method, terminal and network side equipment
CN102754472A (en) Method and system for machine-to-machine data transmission, and mobility management entity device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUSROPAN, BRYAN JERREL;VAN LOON, JOHANNES MARIA;SIGNING DATES FROM 20120410 TO 20120414;REEL/FRAME:029570/0602

Owner name: KONINKLIJKE KPN N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUSROPAN, BRYAN JERREL;VAN LOON, JOHANNES MARIA;SIGNING DATES FROM 20120410 TO 20120414;REEL/FRAME:029570/0602

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4