US20130119574A1 - Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s) - Google Patents

Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s) Download PDF

Info

Publication number
US20130119574A1
US20130119574A1 US13/732,660 US201313732660A US2013119574A1 US 20130119574 A1 US20130119574 A1 US 20130119574A1 US 201313732660 A US201313732660 A US 201313732660A US 2013119574 A1 US2013119574 A1 US 2013119574A1
Authority
US
United States
Prior art keywords
cellular
thermoset
thermoset material
unitary composite
thermoplastic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/732,660
Inventor
Michael Allman
Bangshu Cao
Andrew Costas Yiannaki
Ivan Sobran
Randal Lee Henderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/732,660 priority Critical patent/US20130119574A1/en
Publication of US20130119574A1 publication Critical patent/US20130119574A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/125Cushioning devices with a padded structure, e.g. foam
    • A42B3/128Cushioning devices with a padded structure, e.g. foam with zones of different density
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/001Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with several cushions, mattresses or the like, to be put together in one cover
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/04Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
    • A47C27/05Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers
    • A47C27/053Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers with only one layer of foamed material
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/04Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
    • A47C27/05Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers
    • A47C27/056Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers with different layers of foamed material
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/04Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
    • A47C27/06Spring inlays
    • A47C27/065Spring inlays of special shape
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/142Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities
    • A47C27/144Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities inside the mattress or cushion
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/148Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays of different resilience
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/15Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays consisting of two or more layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/20Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with springs moulded in, or situated in cavities or openings in foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/569Shaping and joining components with different densities or hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/233Foamed or expanded material encased
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24496Foamed or cellular component
    • Y10T428/24504Component comprises a polymer [e.g., rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • Y10T428/249984Adhesive or bonding component contains voids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers

Definitions

  • the technology of this disclosure relates generally to cushioning structures.
  • the cushioning structures can be used for any cushion applications desired, including but not limited to mattresses, seats, foot and back support, and upholstery, as examples.
  • Cushioning structures are employed in support applications. Cushioning structures can be employed in bedding and seating applications, as examples, to provide cushioning and support. Cushioning structures may also be employed in devices for safety applications, such as helmets and automobiles for example.
  • the design of a cushioning structure may be required to have both high and low stiffness. For example, it may be desirable to provide a cushioning material or device in which a body or object will easily sink into the cushion a given distance before the applied weight is supported. As another example, it may be desired to provide surfaces having low stiffness initially during application of weight, while the underlying structure needs to have high stiffness for support. These surfaces may be provided in safety applications, such as helmets and automobile dashboards as examples. In this regard, a cushioning structure may be designed that provides an initial large deflection at a low applied force with nonlinearly increasing stiffness at increasing deflection.
  • cushioning structures can be composed of layers of varying thicknesses and properties. Each of these components has different physical properties, and as a result of these properties and variations in thicknesses and location of the components, the cushioning structure has a certain complex response to applied pressure.
  • cushioning structures generally include components made from various types of foam, cloth, fibers and/or steel to provide a general response to pressure that is perceived as comfortable to the individual seeking a place to lie, sit, or rest either the body as a whole or portions thereof.
  • General foam plastic materials can also be used as materials of choice for cushion applications. Foam plastic materials provide a level of cushionability in and of themselves, unlike a steel spring or the like structure. Generally accepted foams fall within two categories: thermosets and thermoplastics.
  • Thermoset materials exhibit the ability to recover after repeated deformations and provide a generally excepted sleep surface.
  • Thermoplastic materials including thermoplastic foams, and specifically closed cell thermoplastic foams, on the other hand, while not having the long time frame repeatable deformation capabilities of the thermoset foams, typically provide greater firmness and support. Further, thermoplastic materials are suitable to lower density, less weight, and therefore less costly production while maintaining a more structurally stable aspect to their construction.
  • a mattress innerspring 12 (also called “innerspring 12 ”) is provided.
  • the innerspring 12 is comprised of a plurality of traditional coils 14 arranged in an interconnected matrix to form a flexible core structure and support surfaces of the mattress 10 .
  • the coils 14 are also connected to each other through interconnection helical wires 16 .
  • Upper and lower border wires 18 , 20 are attached to upper and lower end turns of the coils 14 at the perimeter of the array to create a frame for the innerspring 12 .
  • the upper and lower border wires 18 , 20 also create firmness for edge support on the perimeter of the innerspring 12 where an individual may disproportionally place force on the innerspring 12 , such as during mounting onto and dismounting from the mattress 10 .
  • the innerspring 12 is disposed on top of a box spring 22 to provide base support.
  • the coils 14 located proximate to an edge 23 of the innerspring 12 are subjected to concentrated loads as opposed to coils 14 located in an interior 24 .
  • support members 25 may be disposed around the coils 14 proximate to the edge 23 of the innerspring 12 between the box spring 22 and the upper and lower border wires 18 , 20 .
  • the support members 25 may be extruded from polymer-foam as an example.
  • various layers of sleeping surface or padding material 26 can be disposed on top of the innerspring 12 .
  • the padding material 26 provides a cushioning structure for a load placed on the mattress 10 .
  • the padding material 26 may be made from various types of foam, cloth, fibers and/or steel to provide a generally repeatable comfortable feel to the individual seeking a place to either lie, sit, or rest, either the body as a whole or portions thereof.
  • the padding material 26 may consist of multiple layers of materials that may exhibit different physical properties.
  • an uppermost layer 28 may be a soft layer comprised of a thermoset material.
  • the uppermost layer 28 being provided as a thermoset material allows a load to sink into the mattress 10 while exhibiting the ability to recover after repeated deformations.
  • One or more intermediate layers 30 underneath the uppermost layer 28 may be provided to have greater stiffness than the uppermost layer 28 to provide support and pressure spreading that limits the depth to which a load sinks.
  • the intermediate layers 30 may also include a thermoset material, such as latex as an example.
  • a bottom layer 32 may be provided below the intermediate layers 30 and uppermost layer 28 .
  • the uppermost layer 28 , the intermediate layers 30 , and the bottom layer 32 serve to provide a combination of desired cushioning characteristics.
  • An upholstery 34 is placed around the entire padding material 26 , innerspring 12 , and box spring 22 to provide a fully assembled mattress 10 .
  • the material selection and thicknesses of the uppermost layer 28 , the intermediate layers 30 , and the bottom layer 32 of the mattress 10 can be designed to control and provide the desired cushioning characteristics. However, it may be desired to also provide support characteristics in the padding material 26 . However, the disposition of layers in the padding material 26 does not easily allow for providing variations in both cushioning and support characteristics. For example, a thermoplastic foam could be included in the padding material 26 to provide greater firmness. However, compression will occur in the thermoplastic foam over time. Regardless, further complications that can occur as a result of including an additional thermoplastic material include the separate manufacturing and stocking for assembly of the mattress 10 , thus adding inventory and storage costs. Further, an increase in the number of structures provided in the padding material 26 during assembly of the mattress 10 increases labor costs.
  • Embodiments disclosed in the detailed description include a unitary or monolithic composite (or hybrid) cushioning structure(s) and profile(s) comprised of a cellular thermoplastic foam and a thermoset material.
  • the thermoset material may also be provided as cellular foam as well.
  • the unitary composite or hybrid cushioning structure is formed from a cellular thermoplastic foam and a thermoset material.
  • the cellular thermoplastic foam provides support characteristics to the unitary composite cushioning structure.
  • the thermoset material provides a resilient structure with cushioning characteristics to the cushioning structure.
  • a stratum is disposed between at least a portion of the cellular thermoplastic foam and at least a portion of the thermoset material to secure the at least a portion of the thermoset material to the at least a portion of the cellular thermoplastic foam to provide a unitary composite cushioning structure.
  • the stratum includes a cohesive or adhesive bond, such as a mechanical or chemical bond, as examples.
  • the stratum may provide an intimate engagement between at least a portion of the thermoset material and at least a portion of the cellular thermoplastic foam to provide the unitary composite cushioning structure.
  • the cellular thermoplastic foam may also be provided as a custom engineered profile to provide a custom engineered profile for engagement of the thermoset material and thus the unitary composite cushioning structure.
  • a unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated.
  • composite or hybrid within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • the unitary composite cushioning structure is provided as a unitary structure as opposed to providing disparate, non-bonded structures each comprised exclusively of thermoplastic or thermoset materials. This allows the tactile cushioning and resiliency benefits of thermoset materials and the supportive and structural capabilities of the cellular thermoplastic foams to create a cushioning structure combining the desired characteristics and features of both material types into one unitary composite cushioning structure.
  • thermoset material provided as part of the unitary composite cushioning structure allows the cellular thermoplastic foam to exhibit excellent offset of compression set while retaining support characteristics to provide stability to the unitary composite cushioning structure.
  • Thermoset materials can be selected that exhibit the desired offset of compression set. Without the employment of the thermoset material, the thermoplastic profile may not be able to provide the desired support characteristics without the undesired effects of compression set, also known as “sagging.” This engagement of a thermoset material with a cellular thermoplastic foam utilizes the thermoset material's ability to recover over long periods of repeated deformations. Another advantage can be cost savings.
  • the cellular thermoplastic foam may be less expensive than the thermoset material while still providing a suitable composite cushioning structure exhibiting desired stability and offset of compression set.
  • TPOs thermoplastic olefins
  • TPOs thermoplastic polyester
  • TPVs thermoplastic vulcanizates
  • PVCs polyvinyl chlorides
  • EMAs ethylene methyl acrylates
  • EBAs ethylene butyl acrylates
  • the density of the thermoplastic material may be provided to any density desired to provide the desired weight and support characteristics for the unitary composite cushioning structure. Further, a thermoplastic material can be selected that is inherently resistant to microbes and bacteria, making such desirable for use in the application of cushioning structures. These thermoplastic materials can also be made biodegradable and fire retardant through the use of additive master batches.
  • thermoset materials include polyurethanes, natural and synthetic rubbers, such as latex, silicones, EPDM, isoprene, chloroprene, neoprene, melamine-formaldehyde, and polyester, and derivatives thereof.
  • the density of the thermoset material may be provided to any density desired to provide the desired resiliency and cushioning characteristics to the unitary composite cushioning structure.
  • the thermoset material and can be soft or firm depending on formulations and density selections. Further, if the thermoset material selected is a natural material, such as latex for example, it may be considered biodegradable. Further, bacteria, mildew, and mold cannot live in certain thermoset foams.
  • the cellular thermoplastic foam may be closed-cell foam, open-cell foam, or partially open or closed-cell foam.
  • the cellular thermoplastic foam may be provided or engineered as a cellular foam profile with desired geometrical configurations to provide controlled deformation support characteristics.
  • one or more open or closed channels can be disposed in a cellular thermoplastic foam profile, wherein the thermoset material is disposed within the channels to provide the resiliency and cushioning characteristics of the thermoset material to the support characteristics of the cellular thermoplastic foam profile.
  • a cellular thermoplastic profile may be encapsulated fully or partially by a thermoset material to provide the resiliency and cushioning characteristics of the thermoset material to the support characteristics of the cellular thermoplastic foam profile.
  • thermoset material may be produced by any method or process desired including but not limited to direct continuous extrusion, extrusion injection molding, blow molding, casting, thermal forming, and the like.
  • the unitary composite cushioning structure may be used as a cushion structure for any application desired. Examples include, but are not limited to, cushions, pillows, mattress assemblies, seat assemblies, helmet assemblies, mats, grips, packagings, and bolsters. Specifically in regard to mattress assemblies, the unitary composite cushioning structure could be employed in any part or component of the mattress assembly, including but not limited to bases, edge supports, side supports, corner supports, support components, and padding materials, and as coil-like structures to replace or be used in combination with traditional metal coils to provide support. Further, the unitary composite cushioning structures could be provided in particular regions or zones of a support structure to provide different zones of cushioning characteristics. For example, the unitary composite cushioning structures could be deployed to areas where heavier loads are supported to provide increased support, such as lumbar, head, and/or foot support, as examples.
  • FIG. 1 is an exemplary prior art mattress employing an innerspring of wire coils
  • FIG. 2 is an exemplary chart of performance curves showing strain (i.e., deflection) under a given stress (i.e., pressure) for an exemplary thermoplastic material and thermoset material to illustrate their individual support characteristics and resiliency and cushioning characteristics, and the combined support characteristics of the thermoplastic material and the resilient structure with cushioning characteristics of the thermoset material when provided in a unitary composite cushioning structure;
  • FIG. 3 is an exemplary unitary composite cushioning structure comprised of a thermoset material cohesively or adhesively bonded to a thermoplastic material with a stratum disposed therebetween;
  • FIG. 4 is an exemplary chart of performance curves showing strain (i.e., deflection) under a given stress (i.e., pressure) for different types of thermoplastic foam structures to show the ability to engineer a cellular thermoplastic foam profile to provide for manufacturing a unitary composite cushioning structure;
  • FIG. 5 is a side view of a cross-section of another exemplary cellular thermoset foam profile substantially surrounded by and cohesively or adhesively bonded to a cellular thermoplastic foam and a stratum disposed therebetween, to form a unitary composite cushioning structure;
  • FIG. 6 is an exemplary chart illustrating the recovery characteristics of the unitary composite cushioning structure of FIG. 5 versus the recovery characteristics of the cellular thermoplastic foam profile of FIG. 5 over elapsed time to illustrate the improved compression set characteristics of the unitary composite cushioning structure over the cellular thermoplastic foam profile;
  • FIG. 7 is a cross-section of an exemplary mattress illustrating various cushioning layers where a unitary composite cushioning structure according to exemplary embodiments disclosed herein may be deployed;
  • FIGS. 8A and 8B are perspective and side views, respectively, of an exemplary unitary composite cushioning structure comprised of an extruded thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 9 is a perspective view of the unitary composite cushioning structure of FIGS. 8A and 8B disposed on top of a mattress innerspring to provide a padding material for the mattress innerspring;
  • FIG. 10 is a perspective view of another exemplary unitary composite cushioning structure comprised of a molded thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween, with a top surface of the thermoset material including convolutions to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 11 is an exemplary cross-section profile of another exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween, and that may be employed to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 12 is an exemplary cross-section profile of another exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile having extruded closed chambers with a thermoset material disposed in the chambers and a stratum provided therebetween that may be employed to provide a cushioning structure, including but not limited to a sleep or seat surface and edge or side supports;
  • FIG. 13 is a top view of an exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile surrounded by a thermoset material;
  • FIG. 14 is a top perspective view of exemplary unitary composite cushioning structure comprised of a coil-shaped cellular thermoplastic foam profile having an internal chamber with a thermoset material disposed in the chamber of the cellular thermoplastic foam profile;
  • FIG. 15 is a top perspective view of the unitary composite cushioning structure in FIG. 14 with an additional filler material in the form of core dust mixed with the thermoset material to provide stability to the thermoset material;
  • FIG. 16 is a top view of a plurality of exemplary unitary composite cushioning structures provided in an array
  • FIG. 17 is a side perspective view of a mattress innerspring employing exemplary coil-shaped unitary composite cushioning structures, which may include the composite coil structures of FIGS. 13-15 ;
  • FIGS. 18A-18I are side perspective views of alternative cellular thermoplastic foam profiles that can either be encapsulated or filled with a thermoset material to provide unitary composite cushioning structures.
  • Embodiments disclosed in the detailed description include a unitary or monolithic composite (or hybrid) cushioning structure(s) and profile(s) comprised of a cellular thermoplastic foam and a thermoset material.
  • the thermoset material may also be provided as cellular foam as well.
  • the unitary composite or hybrid cushioning structure is formed from a cellular thermoplastic foam and a thermoset material.
  • the cellular thermoplastic foam provides support characteristics to the unitary composite cushioning structure.
  • the thermoset material provides a resilient structure with cushioning characteristics to the cushioning structure.
  • a stratum is disposed between at least a portion of the cellular thermoplastic foam and at least a portion of the thermoset material to secure the at least a portion of the thermoset material to the at least a portion of the cellular thermoplastic foam to provide a unitary composite cushioning structure.
  • the stratum includes a cohesive or adhesive bond, such as a mechanical or chemical bond, as examples.
  • the stratum may provide an intimate engagement between at least a portion of the thermoset material and at least a portion of the cellular thermoplastic foam to provide the unitary composite cushioning structure.
  • the cellular thermoplastic foam may also be provided as a custom engineered profile to provide a custom engineered profile for engagement of the thermoset material and thus the unitary composite cushioning structure.
  • a unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated.
  • composite or hybrid within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • the unitary composite cushioning structure is provided as a unitary structure as opposed to providing disparate, non-bonded structures each comprised exclusively of thermoplastic or thermoset materials. This allows the tactile cushioning and resiliency benefits of thermoset materials and the supportive and structural capabilities of the cellular thermoplastic foams to create a cushioning structure combining the desired characteristics and features of both material types into one unitary composite cushioning structure.
  • thermoset material provided as part of the unitary composite cushioning structure allows the cellular thermoplastic foam to exhibit excellent offset of compression set while retaining support characteristics to provide stability to the unitary composite cushioning structure.
  • Thermoset materials can be selected that exhibit the desired offset of compression set. Without the employment of the thermoset material, the thermoplastic profile may not be able to provide the desired support characteristics without the undesired effects of compression set, also known as “sagging.” This engagement of a thermoset material with a cellular thermoplastic foam utilizes the thermoset material's ability to recover over long periods of repeated deformations. Another advantage can be cost savings.
  • the cellular thermoplastic foam may be less expensive than the thermoset material while still providing a suitable composite cushioning structure exhibiting desired stability and offset of compression set.
  • FIG. 2 illustrates an exemplary chart 40 of performance curves 42 , 44 , 46 showing compressive strain or deflection for given stress or pressure levels for different types of cushioning materials.
  • the performance curve 42 illustrates strain versus stress for an exemplary thermoplastic material used as a cushioning structure.
  • thermoplastic material represented by the performance curve 42 when a low stress or pressure is placed on the thermoplastic material represented by the performance curve 42 , the thermoplastic material exhibits a large strain as a percentage of stress. As stress increases, as shown in Section II of the chart 40 , the thermoplastic material represented by the performance curve 42 continues to strain or deflect, but the strain is smaller as a percentage of stress than the strain in Section I of the chart 40 . This represents the firmer structural properties of the thermoplastic material providing a greater role in response to increased stress, thus decreasing the softness feel. As the stress further increases, as shown in Section III of the chart 40 , eventually, the thermoplastic material represented by the performance curve 42 will exhibit even greater firmness where strain or deflection is very small as a percentage of stress, or non-existent.
  • thermoplastic material represented by the performance curve 42 in FIG. 2 does not exhibit enough softness or cushioning to a load as stress increases.
  • the thermoplastic material may provide a greater firmness more quickly as a function of stress than desired, thereby not providing the desired softness or cushioning characteristic desired.
  • a thermoset material may be selected for the cushioning structure in lieu of a thermoplastic material.
  • the performance curve 44 in FIG. 2 illustrates strain versus stress for an exemplary thermoset material.
  • Section I of the chart 40 when a low stress or pressure is placed on the thermoset material represented by the performance curve 44 , the thermoplastic material exhibits a large strain as a percentage of stress similar to the thermoplastic material represented by performance curve 42 .
  • Section II of the chart 40 As stress increases, as provided in Section II of the chart 40 , the thermoset material represented by the performance curve 44 continues to strain, but only slightly greater than the strain in Section I of the chart 40 .
  • the thermoset material is continuing to exhibit softness even as the stress of a load disposed thereon increases, as opposed to the thermoplastic material represented by the performance curve 42 in FIG. 2 .
  • thermoset material represented by the performance curve 44 does not provide the support or firmness characteristics as provided by the thermoplastic material represented by the performance curve 42 , thereby providing a spongy or lack of support feel to a load. As the stress further increases, as shown in Section III of the chart 40 , eventually, the thermoset material represented by the performance curve 44 will reach a point where it will exhibit greater firmness where strain or deflection is very small as a percentage of stress, or non-existent.
  • Embodiments disclosed herein provide a cushioning structure that has a hybrid or combined strain versus stress characteristic of the performance curves 42 and 44 . This is illustrated by the performance curve 46 in FIG. 2 .
  • the performance curve 46 in FIG. 2 illustrates a unitary composite or hybrid cushioning structure comprised of the thermoplastic material represented by the performance curve 42 and the thermoset material represented by the performance curve 44 .
  • FIG. 3 illustrates an example of a unitary composite cushioning structure that can provide the performance according to the performance curve 46 in FIG. 2 .
  • a profile of a unitary composite cushioning structure 48 is provided.
  • the unitary composite cushioning structure 48 is a hybrid that includes both a thermoplastic material 50 and a thermoset material 52 .
  • a unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated.
  • a composite or hybrid structure within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • thermoplastic material 50 and the thermoset material 52 are cohesively or adhesively bonded together to provide a unitary or monolithic cushioning structure.
  • the unitary composite cushioning structure 48 exhibits combined characteristics of the support characteristics of the thermoplastic material 50 and the resiliency and cushioning characteristics of the thermoset material 52 .
  • the thermoplastic material 50 is provided to provide support characteristics desired for the unitary composite cushioning structure 48 .
  • the thermoplastic material 50 could be selected to provide a high degree of stiffness to provide structural support for the unitary composite cushioning structure 48 .
  • the thermoset material 52 can provide resiliency and softer cushioning characteristics to the unitary composite cushioning structure 48 .
  • a stratum 54 is disposed between at least a portion of the thermoplastic material 50 and at least a portion of the thermoset material 52 that includes a cohesive or adhesive bond between at least a portion of the thermoset material 52 to the at least a portion of the thermoplastic material 50 to provide the unitary composite cushioning structure 48 .
  • thermoplastic materials that can be used to provide the thermoplastic material 50 in the unitary composite cushioning structure 48 include polypropylene, polypropylene copolymers, polystyrene, polyethylenes, ethylene vinyl acetates (EVAs), polyolefins, including metallocene catalyzed low density polyethylene, thermoplastic olefins (TPOs), thermoplastic polyester, thermoplastic vulcanizates (TPVs), polyvinyl chlorides (PVCs), chlorinated polyethylene, styrene block copolymers, ethylene methyl acrylates (EMAs), ethylene butyl acrylates (EBAs), and the like, and derivatives thereof.
  • TPOs thermoplastic olefins
  • TPOs thermoplastic polyester
  • TPVs thermoplastic vulcanizates
  • PVCs polyvinyl chlorides
  • EMAs ethylene methyl acrylates
  • EBAs ethylene butyl acrylates
  • the density of the thermoplastic material 50 may be provided to any density desired to provide the desired weight and support characteristics for the unitary composite cushioning structure 48 . Further, the thermoplastic material 50 may be selected to also be inherently resistant to microbes and bacteria, making the thermoplastic material 50 desirable for use in cushioning structures and related applications. The thermoplastic material 50 can also be made biodegradable and fire retardant through the use of additive master batches.
  • thermoset materials that can be used to provide thermoset material 52 in the unitary composite cushioning structure 48 include polyurethanes, natural and synthetic rubbers, such as latex, silicones, ethylene propylene diene Monomer (M-class) (EPDM) rubber, isoprene, chloroprene, neoprene, melamine-formaldehyde, and polyester, and derivatives thereof.
  • the density of the thermoset material 52 may be provided to any density desired to provide the desired resiliency and cushioning characteristics to the unitary composite cushioning structure 48 , and can be soft or firm depending on formulations and density.
  • the thermoset material 52 could also be foamed.
  • thermoset material 52 selected is a natural material, such as latex for example, it may be considered biodegradable. Further, bacteria, mildew, and mold cannot live in certain thermoset foams. Also note that although the unitary composite cushioning structure 48 illustrated in FIG. 3 is comprised of at least two materials, the thermoplastic material 50 and the thermoset material 52 , more than two different types of thermoplastic and/or thermoset materials may be provided in the unitary composite cushioning structure 48 .
  • latex is a naturally derived biodegradable product that comes from the rubber tree. Latex is hypo-allergenic, and breathes to retain heat in the winter and not absorb heat in the summer. Bacteria, mildew, and mold cannot live in latex foam. Tests have shown that latex foam can be three times more resistant to dust mites and bacteria than ordinary cushioning structures, and thus may be desirable, especially as it would pertain to being natural and biodegradable. There are also synthetic versions of latex that do not fit into the natural category, but could also be used either solely or in combination with a natural product.
  • thermoplastic material 50 is provided.
  • a bottom surface 56 of the thermoset material 52 disposed on a top surface 58 of the thermoplastic material 50 .
  • the stratum 54 is formed where the bottom surface 56 of the thermoset material 52 contacts or rests on and is cohesively or adhesively bonded to the top surface 58 of the thermoplastic material 50 .
  • the thermoplastic material 50 may be provided in a solid phase, such as a cellular foam for example.
  • the thermoset material 52 may be provided initially in the unitary composite cushioning structure 48 as a non-solid phase, such as in a liquid form. The thermoplastic material 50 and the thermoset material 52 are not mixed together.
  • thermoset material 52 will undergo a transition into a solid form, thereby forming a cohesive or adhesive union with the thermoset material 52 at the stratum 54 , as illustrated in FIG. 3 .
  • the thermoplastic material 50 and the thermoset material 52 cohesively or adhesively bond together to form a unitary structure that provides combined properties of the support characteristics of the thermoplastic material 50 and the resiliency and cushioning characteristics of the thermoset material 52 that may not otherwise be possible by providing the thermoplastic material 50 and thermoset material 52 in separate, non-unified structures or layers.
  • Advantages in this example include, but are not limited to, compression recovery, reduced weight, fewer layers of cushioning material, less labor in assembly, smaller form factor of the cushioning structure, less inventory, and/or antimicrobial features.
  • thermoset material 52 is mechanically bonded to the thermoplastic material 50 in this embodiment, but chemical bonding can be provided. Further, a chemical bonding agent can be mixed in with the thermoplastic material 50 , such as before or during a foaming process for example, to produce the thermoplastic material 50 , or when the thermoset material 52 is disposed in contact with the thermoplastic material 50 to provide a chemical bond with the thermoset material 52 during the curing process.
  • thermoplastic material 50 is provided as a solid block of height H 1 , as illustrated in FIG. 3 .
  • the thermoset material 52 is provided of height H 2 , as also illustrated in FIG. 3 .
  • the relative volume of the thermoplastic material 50 as compared to the thermoset material 52 can control the combined cushioning properties, namely the combined support characteristics and the resiliency and cushioning characteristics, in response to a load. These combined characteristics can also be represented as a unitary strain or deflection for a given stress or pressure, as previously discussed.
  • the same combined cushioning properties may be able to be provided in a smaller overall volume or area.
  • the individual heights H 1 and H 2 may be less important in providing the combined cushioning characteristics of the unitary composite cushioning structure 48 than the ratio of the respective heights H 1 and H 2
  • the overall height H 3 (i.e., H 1 +H 2 ) of the unitary composite cushioning structure 48 may be able to be reduced over providing distinct, non-bonded layers of cushioning structures.
  • a relative density ⁇ 1 of the thermoplastic material 50 as compared to a density ⁇ 2 of the thermoset material 52 can control the responsiveness of the combined cushioning properties.
  • the density ⁇ 1 of the thermoplastic material 50 could be in the range between one-half pound (lb.) per cubic foot (ft 3 ) to 30 lbs./ft 3 (i.e., 8 kilograms (kg) per cubic meter (m 3 ) to 480 kg/m 3 ), as an example.
  • the density ⁇ 2 of the thermoset material 52 could be in the range between one pound (lb.) per cubic foot (ft 3 ) to 15 lbs./ft 3 (i.e., 16 kilograms (kg) per cubic meter (m 3 ) to 240 kg/m 3 ), as an example.
  • the variability of densities ⁇ 1 of the thermoplastic material 50 relative to ⁇ 2 of the thermoset material 52 can be selected to customize the resultant properties of the unitary composite cushioning structure 48 that may not otherwise be possible by providing the thermoset material 52 as a distinct, non-unitary component or structure from the thermoplastic material 50 .
  • thermoplastic material 50 and thermoset material 52 may each have different indentation load deflections (ILDs).
  • ILD is a measurement of foam firmness. Firmness is independent of foam density, although it is often thought that higher density foams are firmer. It is possible to have high density foams that are soft—or low density foams that are firm, depending on the ILD specification. ILD specification relates to comfort. It is a measurement of the surface feel of the foam. ILD may be measured by indenting (compressing) a foam sample twenty-five (25) percent of its original height. The amount of force required to indent the foam is its twenty-five (25) percent ILD measurement. The more force required, the firmer the foam. Flexible foam ILD measurements can range from ten (10) pounds (supersoft) to about eighty (80) pounds (very firm).
  • the thermoplastic material 50 of the unitary composite cushioning structure 48 can be provided as a cellular thermoplastic foam profile, if desired.
  • control of the shape and geometry of the unitary composite cushioning structure 48 can be provided, as desired.
  • the extrusion foaming art with the ability to continuously produce and utilize specific die configurations having the ability to geometrically design and profile elements for cushioning support is a method to obtain the desired thermoplastic engineered geometry foam profiles to be used with a thermoset material or materials to provide the unitary composite cushioning structure 48 . In this manner, the unitary composite cushioning structure 48 can be provided for different applications based on the desired geometric requirements of the cushioning structure.
  • Machine direction (MD) attributes as well as transverse direction (TD) attributes may be employed to extrude a thermoplastic foam profile.
  • TD transverse direction
  • other methods of providing thermoplastic foam profiles may also be employed, including molding, casting, thermal forming, and other processes known to those skilled in the art.
  • Thermoset foam profiles can be obtained in emulsified form and are frothed to introduce air into the emulsion to reduce density, and are then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration.
  • Thermoset materials can also be further cost reduced through the addition of fillers such as ground foam reclaim materials, nano clays, carbon nano tubes, calcium carbonate, flyash and the like, but also core dust as this material can provide for increased stability to reduce the overall density and weight of the thermoset material.
  • fillers such as ground foam reclaim materials, nano clays, carbon nano tubes, calcium carbonate, flyash and the like, but also core dust as this material can provide for increased stability to reduce the overall density and weight of the thermoset material.
  • thermoplastic foams when used in combination with a thermoset foam, will consume space within a cushion structure, thereby displacing the heavier-weight, more expensive thermoset materials, such as latex rubber foam, as an example.
  • FIG. 4 provides an exemplary chart 60 of performance curves showing strain (deflection) under a given stress (pressure) for different types of thermoplastic foam cushioning structures to show the ability to engineer a cellular thermoplastic foam profile to provide the desired firmness and support characteristics in the unitary composite cushioning structure 48 .
  • a performance curve 62 illustrates the result of testing of strain for a given stress of an exemplary solid block of low density polyethylene foam before being engineered into a particular profile.
  • Performance curves 64 , 66 represent the result of testing of strain for a given stress of two exemplary polyethylene foam extrusion profiles formed from the low density polyethylene foam represented by the performance curve 62 . As illustrated in FIG.
  • the low density polyethylene foam represented by the performance curve 62 supports a higher load or stress than the two polyethylene foam extrusion profiles represented by the performance curves 64 , 66 of the same or similar density.
  • the polyethylene foam extrusion profile represented by the performance curve 64 illustrates strain for a given stress that has a greater propensity to support a higher loading than the exemplary polyethylene foam extrusion profile represented by the performance curve 66 .
  • a thermoplastic foam profile can be engineered to be less supportive in the unitary composite cushioning structure 48 depending on the support characteristics for the unitary composite cushioning structure 48 desired.
  • FIG. 5 is a side view of a cross-section of another exemplary unitary composite cushioning structure 68 to further illustrate, by example, providing an engineered cellular thermoplastic foam profile to provide the desired support characteristics and so that the geometry of the unitary composite cushioning structure 48 can be provided, as desired. As illustrated in FIG.
  • the unitary composite cushioning structure 68 includes a cellular thermoplastic foam profile 70 profiled in the form of a C-shaped structure having an open chamber 72 disposed therein formed as a result of extruding a solid block of cellular thermoplastic foam.
  • a base 82 is also extruded with the C-shaped structure as part of the cellular thermoplastic foam profile 70 in this embodiment.
  • the base 82 may provide a firm lower support layer for the unitary composite cushioning structure 68 , although such as is not required. Note, however, there is not a requirement to provide the base 82 as part of the thermoplastic foam profile 70 .
  • thermoset material 74 is disposed in the open chamber 72 to provide the unitary composite cushioning structure 68 .
  • the thermoset material 74 may be disposed in the open chamber 72 when in a non-solid phase, as previously discussed.
  • the thermoset material 74 will eventually transform into a solid phase and cohesively or adhesively bond with the cellular thermoplastic foam profile 70 to form the unitary composite cushioning structure 68 .
  • a stratum 76 is formed where an outer surface 78 of the thermoset material 74 contacts or rests against an inner surface 80 of the cellular thermoplastic foam profile 70 to cohesively or adhesively bond the thermoset material 74 to the cellular thermoplastic foam profile 70 .
  • the cellular thermoplastic foam profile 70 may be a closed-cell foam, open-cell foam, or partially open or closed-cell foam.
  • the material selected for providing the cellular thermoplastic foam profile 70 may be from any thermoplastic material desired, including those previously described.
  • the thermoset material 74 may also be a cellular foam, and may be closed-cell foam, open-cell foam, or partially open or closed-cell foam.
  • the material selected for providing the cellular thermoset foam may be from any thermoset material desired, including those previously described above.
  • the cellular thermoplastic foam profile 70 , the thermoset material 74 , and the unitary composite cushioning structure 68 may have the responses represented by the performance curves 42 , 44 , and 46 in FIG. 2 , respectively, as an example.
  • the response shown by the performance curve 42 in Section I of FIG. 2 may be the response curve of the cellular thermoplastic foam profile 70 illustrating an initial soft segment generated from the lack of resistance exhibited by C-shaped legs 84 of the cellular thermoplastic foam profile 70 .
  • the supportive segments of the C-shaped legs 84 begin to engage with the bottom of the cellular thermoplastic foam profile 70 and therefore are able to tolerate a large load or pressure factor, as illustrated by the performance curve 42 in Sections II and III in FIG. 2 .
  • thermoset material 74 in the unitary composite cushioning structure 68 shows an extremely soft segment in the performance curve 44 in Section I of FIG. 2 , with a lower loading factor, until it becomes fully compressed or collapsed onto itself in Section III in FIG. 2 .
  • the unitary composite cushioning structure 68 shows an overall smooth transition between a smaller pressure or load, as illustrated in Section I of FIG. 2 , progressing into a harder, more supportive structure, as illustrated in Sections II and III of FIG. 2 .
  • FIG. 6 is an exemplary chart 90 illustrating the recovery characteristics of the unitary composite cushioning structure 68 of FIG. 5 versus the recovery characteristics of the cellular thermoplastic foam profile 70 of FIG. 5 individually over elapsed time to illustrate the improved compression set characteristics of the unitary composite cushioning structure 68 .
  • the test protocol was to approximate the load exerted by a person lying prone on a cushion structure, then apply this constant strain for up to eight (8) hours, then measure the height recovery of the unitary composite cushioning structure 68 over time.
  • the cellular thermoplastic foam profile 70 does not recover within the same time frame as the unitary composite cushioning structure 68 in this example, it is important to note when the cellular thermoplastic foam profile 70 is used in combination with the thermoset material 74 , not only is there less initial set, but the rate of recovery is more rapid.
  • the rate of recovery feature of the unitary composite cushioning structure 68 is important from the standpoint of assuring that the unitary composite cushioning structure 68 returned or substantially returned to its original positioning, and that sag of the unitary composite cushioning structure 68 was not evident.
  • the unitary composite cushioning structure disclosed herein can be disposed in any number of applications for providing support to a load. Examples include seat assemblies, cushions, helmets, mats, grips, packagings, and bolsters. The remainder of this disclosure provides exemplary applications in which the unitary composite cushioning structure or structures can be disposed to provide the desired combined support and resiliency and cushioning characteristics.
  • FIG. 7 illustrates a block diagram of an exemplary mattress 100 .
  • the mattress 100 is a well known example of a loading bearing structure.
  • the unitary composite cushioning structures disclosed herein may be incorporated as replacements into any of the components of the mattress 100 (also referred to as “mattress components”), which are described below. Further, the unitary composite cushioning structures disclosed herein may form a portion of any of the components of the mattress 100 .
  • the mattress 100 may include a foundation 102 .
  • a base 104 may be disposed on top of the foundation 102 .
  • the base 104 in this embodiment is a horizontal mattress component, meaning it extends in the horizontal or X direction extending generally parallel to an expected load displaced in the mattress 100 .
  • the foundation 102 and the base 104 may be selected to provide a firm support for a load disposed on the mattress 100 .
  • Additional support layers 106 A, 106 B which may also be horizontal mattress components, may be disposed on top of the base 104 to provide an internal support area.
  • side or edge supports 108 may be disposed around the perimeter of the base 104 and foundation 102 and located adjacent to the support layers 106 A, 106 B and a spring set or core 109 .
  • the side or edge supports 108 may be characterized as vertical mattress components in this embodiment, since the side or edge supports 108 extend upward in a Y direction towards an expected load disposed on the mattress 100 and do not extend substantially in the horizontal or X direction of the mattress.
  • the spring set or core 109 which may also be characterized as vertical mattress components, may be provided as an innerspring comprised of coils, which may be secured by a border wire (not shown), or may be pocketed coils, as examples.
  • a core such as comprised of latex or memory foam, may be disposed on the support layers 106 A, 106 B.
  • One or more comfort layers 110 A- 110 E may be disposed on top of the spring set or core 109 to complete the mattress 100 .
  • FIGS. 8A and 8B are perspective and side views, respectively, of an exemplary unitary composite cushioning structure 120 provided in a comfort layer that can be disposed in a mattress or mattress assembly.
  • the unitary composite cushioning structure 120 is comprised of a plurality of extruded cellular thermoplastic foam profiles 122 A- 122 J.
  • the material choices and support characteristics of the cellular thermoplastic foam profiles 122 A- 122 J can be varied, if desired, to provide different support characteristics in the unitary composite cushioning structure 120 to provide different zones or regions of support characteristics.
  • the unitary composite cushioning structure 120 may be designed to support different loads in different portions of the unitary composite cushioning structure 120 such that it may be desired to provide firmer or greater support in certain cellular thermoplastic foam profiles 122 A- 122 J than others.
  • certain cellular thermoplastic foam profiles 122 A- 122 J may be located where head, torso, and foot loads will likely be displaced.
  • the cellular thermoplastic foam profiles 122 A- 122 J in this embodiment each include open chambers 124 that are configured to receive a thermoset material 126 to provide the unitary composite cushioning structure 120 , as illustrated in FIG. 8A and 8B .
  • Stratums 128 are disposed therebetween where the thermoset material 126 is cohesively or adhesively bonded to the cellular thermoplastic foam profiles 122 A- 122 J.
  • the cushioning properties of the thermoset material 126 can be selected and be different for the cellular thermoplastic foam profiles 122 A- 122 J, if desired, to provide variations in cushioning characteristics of the unitary composite cushioning structure 120 .
  • FIG. 9 illustrates the unitary composite cushioning structure 120 provided as a support layer disposed on top of an innerspring 130 as part of a mattress assembly 132 .
  • certain of the cellular thermoplastic foam profiles 122 D, 122 E are designed to provide lumbar support for the mattress assembly 132 .
  • Other variations can be provided.
  • convolutions 134 can be disposed in the thermoset material 126 to provide designed resiliency and support characteristics. The convolutions 134 are not disposed at the stratum 128 in this embodiment.
  • FIG. 11 is another exemplary cross-section profile of a mattress 140 employing a unitary composite cushioning structure 142 for a bedding or seating cushioning application.
  • a base 144 is extruded as part of a cellular thermoplastic foam profile 148 provided in the unitary composite cushioning structure 142 for the mattress 140 .
  • the unitary composite cushioning structure 142 is provided from a composite of the cellular thermoplastic foam profile 148 and a thermoset material 150 disposed in open channels 152 of the cellular thermoplastic foam profile 148 , with a stratum 154 disposed therebetween.
  • the open channels 152 are provided as extensions 155 that extend generally orthogonally from a longitudinal plane P 1 of the cellular thermoplastic foam profile 148 .
  • thermoset material 150 is provided in the thermoset material 150 , similar to those provided in FIG. 10 (element 134 ).
  • the cellular thermoplastic foam profile 148 and the thermoset material 150 may be provided according to any of the previously described examples and materials.
  • the unitary composite cushioning structure 142 may be provided according to any of the examples and processes described above.
  • FIG. 12 illustrates a portion of the base 144 in FIG. 11 , but provided as a unitary composite cushioning structure 160 comprised of a cellular thermoplastic foam profile 162 comprised of a thermoplastic material 163 having closed channels 164 disposed therein.
  • a thermoset material 166 is disposed in the closed channels 164 and cohesively or adhesively bonded to the cellular thermoplastic foam profile 162 at a stratum 168 disposed therebetween.
  • the unitary composite cushioning structure 160 and the cellular thermoplastic foam profile 162 and thermoset material 166 may be provided according to any of the previously described examples and materials.
  • the unitary composite cushioning structure 160 could be provided as other supports in the mattress 100 , including but not limited to side, edge, or corner supports.
  • thermoset material disposed therein.
  • the unitary composite cushioning structure could be formed such that a thermoset material is disposed on the outside, partially or fully, of a thermoplastic material.
  • the thermoset material could partially or fully encapsulate the thermoplastic material.
  • FIG. 13 illustrates an exemplary embodiment of a unitary composite cushioning structure 170 comprised of one or more thermoplastic closed and/or open cell foam 172 embedded in and/or substantially surrounded by a closed and/or open cell thermoset foam 174 .
  • the unitary composite cushioning structure 170 may be used as a cushion structure.
  • the thermoplastic foam 172 is provided as an engineered cylindrically-shaped cellular thermoplastic foam profile 176 geometrically designed in a vertical profile.
  • the cellular thermoplastic foam profile 176 provides a controlled deformation support characteristic and stability to the unitary composite cushioning structure 170 .
  • the cellular thermoplastic foam profile 176 is surrounded by the thermoset foam 174 , which in this example is a foamed latex rubber.
  • the thermoset foam 174 may be elastomeric.
  • the foamed latex rubber as the thermoset foam 174 may be manufactured from an emulsion of latex rubber as one possible example.
  • An inner cylindrical chamber 175 is left in the cellular thermoplastic foam profile 176 , which can either be left void or a thermoset material (not shown), such as foamed latex rubber for example, poured inside the inner cylindrical chamber 175 to provide additional offset of compression.
  • thermoset foam 174 is not chemically bonded to the thermoplastic foam 172 in this embodiment, but chemical bonding can be provided. Further, a chemical bonding agent can be mixed in with a thermoplastic material before or during the foaming process to produce the thermoplastic foam 172 , or when the thermoset foam 174 is poured into the inner cylindrical chamber 175 to provide a chemical bond with the thermoset foam 174 during the curing process.
  • the unitary composite cushioning structure 170 has a geometry that can be used in a vertical position relative to an overall structure providing individual spring qualities to an otherwise unitary or monolithic structure that is both stable due to the thermoplastic foam 172 and exhibits excellent offset of compression set due to the thermoset foam 174 .
  • the unitary composite cushioning structure 170 may be used like a spring and in place of metal or other types of springs or coils.
  • a thermoplastic foam may be provided to encapsulate the thermoset foam 174 to provide additional support to the unitary composite cushioning structure 170 .
  • the unitary composite cushioning structure 170 may be used as a foam spring for use in a knock down or buildable mattress. Also, this unitary composite cushioning structure 170 can be used to add support into specific regions of a cushion structure to satisfy individual demands, such as lumbar and/or head and foot support as examples, depending on the type of cushion structure used while providing the tactile cushioning characteristic desired.
  • the thermoset foam 174 has cushioning abilities and can be soft or firm depending on formulations and density, but without individualized resilient support zones as can be obtained from using the engineered geometrically supportive profiles of the thermoplastic foam 172 . This engagement of the thermoplastic foam 172 and the thermoset foam 174 has the ability to recover over long periods of repeated deformations.
  • the thermoplastic foam 172 could be a foamed polymer from including, but not limited to polyethylene, an EVA, a TPO, a TPV, a PVC, a chlorinated polyethylene, a styrene block copolymer, an EMA, an ethylene butyl acrylate (EBA), and the like, as examples.
  • These thermoplastic materials may also be inherently resistant to microbes and bacteria, making them desirable for use in the application of cushioning structures. These materials can be also made biodegradable and fire retardant through the use of additive master batches.
  • the thermoplastic could be foamed to an approximate cell size of 0.25 to 2.0 mm, although such is not required or limiting to the scope of the embodiments disclosed herein.
  • thermoset foam 174 in this example is foamed latex rubber and is hypo-allergenic, and breathes to keep you warm in the winter and cool in the summer. Further, bacteria, mildew, and mold cannot live in the foamed latex rubber.
  • the thermoset foam 174 is generally obtained in emulsified form and is frothed to introduce air into the emulsion to reduce density, and is then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration. Latex, however, may only be possible to be foamed (density reduction) down to a 5 lb. or 80 kg/ m3 range without sacrificing other desirable features, such as tear and tensile strength.
  • the inner foam when engineered with the inner foam, which can be foamed to densities down to 1 lb. and/or 16 kg/ m3 effectively, the inner foam is used in combination with the foamed latex rubber and can displace the heavier weight of the foamed latex rubber.
  • the foamed latex rubber can also be further cost reduced through the addition of fillers such as ground foam reclaim materials, nano clays, carbon nano tubes, calcium carbonate, flyash and the like, but also core dust as this material can provide for increased stability to the thermoset material to while reducing the overall density, weight, and /or cost of the thermoset material.
  • another unitary composite cushioning structure 190 may be manufactured.
  • the unitary composite cushioning structure 190 also has a vertical geometric profile similar to the unitary composite cushioning structure 170 of FIG. 13 . This allows for controlled deformation relative to the unitary composite cushioning structure 190 providing individual spring qualities to an otherwise monolithic structure.
  • an inner thermoset foam 192 is provided and geometrically designed in a vertical profile surrounded by an outer thermoplastic foam 194 provided in a cellular thermoplastic foam profile 196 .
  • a stratum 198 is disposed therebetween wherein the outer thermoplastic foam 194 is cohesively or adhesively bonded to the inner thermoset foam 192 .
  • the inner thermoset foam 192 may be manufactured from an emulsion of latex rubber as an example.
  • the unitary composite cushioning structure 190 has a geometry that can be used in a vertical position relative to an overall structure providing individual spring qualities to an otherwise monolithic structure.
  • the unitary composite cushioning structure 190 may be used like a spring and in place of metal or other types of springs.
  • one aspect would be the use of the unitary composite cushioning structure 190 as a pocketed coil assembly for a mattress or other application in a similar fashion to the current metal coil spring variety and covered with the appropriate cloth structure in similar fashion to the metal coil spring design.
  • the materials and application possibilities discussed for the unitary composite cushioning structure 170 of FIG. 13 are also possible for the unitary composite cushioning structure 190 of FIG. 14 and thus will not be repeated here.
  • the outer thermoplastic foam 194 can be hypo-allergenic, and breathes to retain heat in the winter and to release heat in the summer.
  • the inner thermoset foam 192 can be obtained in emulsified form and is frothed to introduce air into the emulsion to reduce density, and is then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration.
  • the other possibilities discussed for the thermoset foams discussed above are also possible for the inner thermoset foam 192 of FIG. 14 and thus will not be repeated here.
  • the inner thermoset foam 192 could be a foamed polymer from a polyethylene, an EVA, a TPO, a TPV, a PVC, a chlorinated polyethylene, a styrene block copolymer, an EMA, an ethylene butyl acrylate (EBA), and the like, as examples, or any of the other recited thermoplastics previously discussed.
  • These thermoplastic materials may also be inherently resistant to microbes and bacteria, making them desirable for use in the application of cushioning structures. These materials can be also made biodegradable and fire retardant through the use of additive master batches.
  • thermoplastic could be foamed to an approximate cell size of 0.25 to 2.0 mm, although such is not required or limiting to the scope of the embodiments disclosed herein.
  • foam springs of thermoplastic open or closed cell foam can be interspersed at some frequency throughout the cushion structure.
  • the foam springs may be formed as an array.
  • a thermoset material including but not limited to latex rubber, may also be provided to encapsulate the cellular thermoplastic foam profile 196 of the unitary composite cushioning structure 190 to provide additional offset of compression.
  • FIG. 15 illustrates the unitary composite cushioning structure 190 of FIG. 14 , but the inner thermoset foam 192 additionally includes a filler material, which in this example is core dust 200 .
  • the core dust 200 adds stability to the inner thermoset foam 192 without changing the cushioning characteristics and benefits of the thermoplastic material and reduces weight of the unitary composite cushioning structure 190 .
  • the amount of core dust 200 added per unit of latex rubber may be 25% to 75%, although this range is only exemplary and is not limiting to the scope of the embodiments disclosed herein.
  • FIG. 16 illustrates yet another embodiment of a structure 210 that can be used to form one or more unitary composite cushioning structures 212 , including according to any of the embodiments disclosed herein.
  • a plurality of unitary composite cushioning structures 212 is provided in an array 214 .
  • Each unitary composite cushioning structure 212 is comprised of an outer foam piece 216 comprised of a foamed thermoplastic material.
  • the outer foam pieces 216 have internal chambers 218 that can be filled with a thermoset material. Further, core dust or other filler may be added to the thermoset material poured inside the internal chambers 218 of the outer foam pieces 216 to provide the unitary composite cushioning structure 212 .
  • the outer foam pieces 216 can also be encapsulated either internally, externally, or both with a cellular thermoset foam or other thermoset material.
  • FIG. 17 illustrates yet another embodiment of a mattress assembly 220 that can incorporate the unitary composite cushioning structures like the unitary composite cushioning structures 170 or 190 previously described above.
  • the unitary composite cushioning structures 170 or 190 are used to replace traditional coils or springs in an innerspring 222 as part of the mattress assembly 220 .
  • the unitary composite cushioning structures 170 or 190 are disposed inside and adjacent edge or side support profiles 224 .
  • the edge or side support profiles 224 may also be provided as a unitary composite cushioning structure according to any of the embodiments described herein and may also be encapsulated either internally, externally, or both with a thermoset material or foam.
  • the edge or side support profiles 224 may provide an anti-roll off feature on a mattress or other bedding, as illustrated in the example in FIG. 17 .
  • thermoplastic foam profiles 230 A- 230 I may be constructed out of a thermoplastic material including a foam.
  • the thermoplastic foam profiles 230 A- 230 I may have one or more chambers 232 A- 232 I, which may be open or closed and which can either be left void or filled with a thermoset material to provide a unitary composite cushioning structure.
  • the thermoplastic foam profiles 230 A- 230 I can also be encapsulated with a thermoset material in addition to or in lieu of being filled with a thermoset material as part of a composite structure. All other possibilities for thermoplastic foam profiles, thermoset materials, and unitary composite cushioning structures discussed above are also possible for the thermoplastic foam profiles 230 A- 230 I in FIG. 18 .
  • thermoplastic engineered foam profiles may be used in concert with the thermoset materials either singularly and/or in combination with each other to provide unitary composite cushioning structures.
  • a thermoset material can be encapsulated by a thermoplastic material, filled inside the thermoset material, or both.
  • a thermoplastic material can be encapsulated by a thermoset material, filled inside the thermoplastic material, or both. Chemical bonding can be provided between the thermoset and thermoplastic materials.
  • One aspect would be the use of the foam spring profile in concert with the thermoset material as an internal fill to be used in a pocketed coil assembly in a similar fashion to the current metal coil spring variety and covered with the appropriate cloth structure in similar fashion to the metal coil spring design.
  • These composite structure profiles may be produced by direct continuous extrusion, extrusion injection molding, blow molding, casting, thermal forming, and the like, with the most efficient method being one of direct continuous extrusion.

Abstract

Embodiments disclosed in the detailed description include a unitary or monolithic composite or hybrid cushioning structure(s) and profile(s) comprised of a cellular thermoplastic foam and a thermoset material. The thermoset material may also be provided as cellular foam as well. In one embodiment disclosed herein, the unitary composite cushioning structure is formed from a cellular thermoplastic foam and a thermoset material. The cellular thermoplastic foam provides support characteristics to the unitary composite cushioning structure. The thermoset material provides a resilient structure with cushioning characteristics to the cushioning structure. A stratum is disposed between at least a portion of the cellular thermoplastic foam and at least a portion of the thermoset material to secure the at least a portion of the thermoset material to the at least a portion of the cellular thermoplastic foam to provide a unitary composite cushioning structure.

Description

    RELATED APPLICATION
  • This application is a divisional application of and claims priority to co-pending U.S. patent application Ser. No. 12/716,804, filed on Mar. 3, 2010, entitled “UNITARY COMPOSITE/HYBRID CUSHIONING STRUCTURE(S) AND PROFILE(S) COMPRISED OF A THERMOPLASTIC FOAM(S) AND A THERMOSET MATERIAL(S),” which claims priority to U.S. Provisional Patent Application No. 61/157,970, filed on Mar. 6, 2009, entitled “COMPOSITE/HYBRID STRUCTURES AND FORMULATIONS OF THERMOSET ELASTOMER FOAMS AND THERMOPLASTIC ENGINEERED GEOMETRIC FOAM PROFILE,” both of which are incorporated herein by reference in their entireties.
  • BACKGROUND
  • 1. Field of the Disclosure
  • The technology of this disclosure relates generally to cushioning structures. The cushioning structures can be used for any cushion applications desired, including but not limited to mattresses, seats, foot and back support, and upholstery, as examples.
  • 2. Technical Background
  • Cushioning structures are employed in support applications. Cushioning structures can be employed in bedding and seating applications, as examples, to provide cushioning and support. Cushioning structures may also be employed in devices for safety applications, such as helmets and automobiles for example.
  • The design of a cushioning structure may be required to have both high and low stiffness. For example, it may be desirable to provide a cushioning material or device in which a body or object will easily sink into the cushion a given distance before the applied weight is supported. As another example, it may be desired to provide surfaces having low stiffness initially during application of weight, while the underlying structure needs to have high stiffness for support. These surfaces may be provided in safety applications, such as helmets and automobile dashboards as examples. In this regard, a cushioning structure may be designed that provides an initial large deflection at a low applied force with nonlinearly increasing stiffness at increasing deflection.
  • To provide a cushioning structure with high and low stiffness features, cushioning structures can be composed of layers of varying thicknesses and properties. Each of these components has different physical properties, and as a result of these properties and variations in thicknesses and location of the components, the cushioning structure has a certain complex response to applied pressure. For example, cushioning structures generally include components made from various types of foam, cloth, fibers and/or steel to provide a general response to pressure that is perceived as comfortable to the individual seeking a place to lie, sit, or rest either the body as a whole or portions thereof. General foam plastic materials can also be used as materials of choice for cushion applications. Foam plastic materials provide a level of cushionability in and of themselves, unlike a steel spring or the like structure. Generally accepted foams fall within two categories: thermosets and thermoplastics.
  • Thermoset materials exhibit the ability to recover after repeated deformations and provide a generally excepted sleep surface. Thermoplastic materials including thermoplastic foams, and specifically closed cell thermoplastic foams, on the other hand, while not having the long time frame repeatable deformation capabilities of the thermoset foams, typically provide greater firmness and support. Further, thermoplastic materials are suitable to lower density, less weight, and therefore less costly production while maintaining a more structurally stable aspect to their construction.
  • One example of a cushioning structure employing layers of varying thicknesses and properties for discussion purposes is provided in a mattress 10 of FIG. 1. As illustrated therein, a mattress innerspring 12 (also called “innerspring 12”) is provided. The innerspring 12 is comprised of a plurality of traditional coils 14 arranged in an interconnected matrix to form a flexible core structure and support surfaces of the mattress 10. The coils 14 are also connected to each other through interconnection helical wires 16. Upper and lower border wires 18, 20 are attached to upper and lower end turns of the coils 14 at the perimeter of the array to create a frame for the innerspring 12. The upper and lower border wires 18, 20 also create firmness for edge support on the perimeter of the innerspring 12 where an individual may disproportionally place force on the innerspring 12, such as during mounting onto and dismounting from the mattress 10. The innerspring 12 is disposed on top of a box spring 22 to provide base support.
  • The coils 14 located proximate to an edge 23 of the innerspring 12 are subjected to concentrated loads as opposed to coils 14 located in an interior 24. To provide further perimeter structure and edge support for the innerspring 12, support members 25 may be disposed around the coils 14 proximate to the edge 23 of the innerspring 12 between the box spring 22 and the upper and lower border wires 18, 20. The support members 25 may be extruded from polymer-foam as an example.
  • To provide a cushioning structure with high and low stiffness features, various layers of sleeping surface or padding material 26 can be disposed on top of the innerspring 12. The padding material 26 provides a cushioning structure for a load placed on the mattress 10. In this regard, the padding material 26 may be made from various types of foam, cloth, fibers and/or steel to provide a generally repeatable comfortable feel to the individual seeking a place to either lie, sit, or rest, either the body as a whole or portions thereof. To provide the cushioning structure with high and low stiffness features, the padding material 26 may consist of multiple layers of materials that may exhibit different physical properties.
  • For example, foam plastic materials can be used as materials of choice for the padding material 26. Foam plastic materials provide a level of cushionability in and of themselves, unlike a steel spring, or the like structure. For example, an uppermost layer 28 may be a soft layer comprised of a thermoset material. Thus, in the example of FIG. 1, the uppermost layer 28 being provided as a thermoset material allows a load to sink into the mattress 10 while exhibiting the ability to recover after repeated deformations. One or more intermediate layers 30 underneath the uppermost layer 28 may be provided to have greater stiffness than the uppermost layer 28 to provide support and pressure spreading that limits the depth to which a load sinks. For example, the intermediate layers 30 may also include a thermoset material, such as latex as an example. A bottom layer 32 may be provided below the intermediate layers 30 and uppermost layer 28. The uppermost layer 28, the intermediate layers 30, and the bottom layer 32 serve to provide a combination of desired cushioning characteristics. An upholstery 34 is placed around the entire padding material 26, innerspring 12, and box spring 22 to provide a fully assembled mattress 10.
  • The material selection and thicknesses of the uppermost layer 28, the intermediate layers 30, and the bottom layer 32 of the mattress 10 can be designed to control and provide the desired cushioning characteristics. However, it may be desired to also provide support characteristics in the padding material 26. However, the disposition of layers in the padding material 26 does not easily allow for providing variations in both cushioning and support characteristics. For example, a thermoplastic foam could be included in the padding material 26 to provide greater firmness. However, compression will occur in the thermoplastic foam over time. Regardless, further complications that can occur as a result of including an additional thermoplastic material include the separate manufacturing and stocking for assembly of the mattress 10, thus adding inventory and storage costs. Further, an increase in the number of structures provided in the padding material 26 during assembly of the mattress 10 increases labor costs.
  • SUMMARY OF THE DETAILED DESCRIPTION
  • Embodiments disclosed in the detailed description include a unitary or monolithic composite (or hybrid) cushioning structure(s) and profile(s) comprised of a cellular thermoplastic foam and a thermoset material. The thermoset material may also be provided as cellular foam as well. In one embodiment disclosed herein, the unitary composite or hybrid cushioning structure is formed from a cellular thermoplastic foam and a thermoset material. The cellular thermoplastic foam provides support characteristics to the unitary composite cushioning structure. The thermoset material provides a resilient structure with cushioning characteristics to the cushioning structure. A stratum is disposed between at least a portion of the cellular thermoplastic foam and at least a portion of the thermoset material to secure the at least a portion of the thermoset material to the at least a portion of the cellular thermoplastic foam to provide a unitary composite cushioning structure. The stratum includes a cohesive or adhesive bond, such as a mechanical or chemical bond, as examples. The stratum may provide an intimate engagement between at least a portion of the thermoset material and at least a portion of the cellular thermoplastic foam to provide the unitary composite cushioning structure. The cellular thermoplastic foam may also be provided as a custom engineered profile to provide a custom engineered profile for engagement of the thermoset material and thus the unitary composite cushioning structure.
  • A unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated. The term composite or hybrid within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • There are several non-limiting and non-required advantages of the unitary composite cushioning structures disclosed herein. For example, the unitary composite cushioning structure is provided as a unitary structure as opposed to providing disparate, non-bonded structures each comprised exclusively of thermoplastic or thermoset materials. This allows the tactile cushioning and resiliency benefits of thermoset materials and the supportive and structural capabilities of the cellular thermoplastic foams to create a cushioning structure combining the desired characteristics and features of both material types into one unitary composite cushioning structure.
  • Further, the thermoset material provided as part of the unitary composite cushioning structure allows the cellular thermoplastic foam to exhibit excellent offset of compression set while retaining support characteristics to provide stability to the unitary composite cushioning structure. Thermoset materials can be selected that exhibit the desired offset of compression set. Without the employment of the thermoset material, the thermoplastic profile may not be able to provide the desired support characteristics without the undesired effects of compression set, also known as “sagging.” This engagement of a thermoset material with a cellular thermoplastic foam utilizes the thermoset material's ability to recover over long periods of repeated deformations. Another advantage can be cost savings. The cellular thermoplastic foam may be less expensive than the thermoset material while still providing a suitable composite cushioning structure exhibiting desired stability and offset of compression set.
  • Non-limiting examples of thermoplastic materials that can be used to provide a cellular thermoplastic foam in the unitary composite cushioning structure include polypropylene, polypropylene copolymers, polystyrene, polyethylenes, ethylene vinyl acetates (EVAs), polyolefins, including metallocene catalyzed low density polyethylene, thermoplastic olefins (TPOs), thermoplastic polyester, thermoplastic vulcanizates (TPVs), polyvinyl chlorides (PVCs), chlorinated polyethylene, styrene block copolymers, ethylene methyl acrylates (EMAs), ethylene butyl acrylates (EBAs), and the like, and derivatives thereof. The density of the thermoplastic material may be provided to any density desired to provide the desired weight and support characteristics for the unitary composite cushioning structure. Further, a thermoplastic material can be selected that is inherently resistant to microbes and bacteria, making such desirable for use in the application of cushioning structures. These thermoplastic materials can also be made biodegradable and fire retardant through the use of additive master batches.
  • Non-limiting examples of thermoset materials include polyurethanes, natural and synthetic rubbers, such as latex, silicones, EPDM, isoprene, chloroprene, neoprene, melamine-formaldehyde, and polyester, and derivatives thereof. The density of the thermoset material may be provided to any density desired to provide the desired resiliency and cushioning characteristics to the unitary composite cushioning structure. The thermoset material and can be soft or firm depending on formulations and density selections. Further, if the thermoset material selected is a natural material, such as latex for example, it may be considered biodegradable. Further, bacteria, mildew, and mold cannot live in certain thermoset foams.
  • Numerous variations of the unitary composite cushioning structure and its thermoplastic and thermoset components are disclosed. For example, the cellular thermoplastic foam may be closed-cell foam, open-cell foam, or partially open or closed-cell foam. The cellular thermoplastic foam may be provided or engineered as a cellular foam profile with desired geometrical configurations to provide controlled deformation support characteristics. For example, one or more open or closed channels can be disposed in a cellular thermoplastic foam profile, wherein the thermoset material is disposed within the channels to provide the resiliency and cushioning characteristics of the thermoset material to the support characteristics of the cellular thermoplastic foam profile. Alternatively, a cellular thermoplastic profile may be encapsulated fully or partially by a thermoset material to provide the resiliency and cushioning characteristics of the thermoset material to the support characteristics of the cellular thermoplastic foam profile. These cellular thermoplastic foam profiles may be produced by any method or process desired including but not limited to direct continuous extrusion, extrusion injection molding, blow molding, casting, thermal forming, and the like.
  • The unitary composite cushioning structure may be used as a cushion structure for any application desired. Examples include, but are not limited to, cushions, pillows, mattress assemblies, seat assemblies, helmet assemblies, mats, grips, packagings, and bolsters. Specifically in regard to mattress assemblies, the unitary composite cushioning structure could be employed in any part or component of the mattress assembly, including but not limited to bases, edge supports, side supports, corner supports, support components, and padding materials, and as coil-like structures to replace or be used in combination with traditional metal coils to provide support. Further, the unitary composite cushioning structures could be provided in particular regions or zones of a support structure to provide different zones of cushioning characteristics. For example, the unitary composite cushioning structures could be deployed to areas where heavier loads are supported to provide increased support, such as lumbar, head, and/or foot support, as examples.
  • Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, as well as the appended drawings.
  • It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an exemplary prior art mattress employing an innerspring of wire coils;
  • FIG. 2 is an exemplary chart of performance curves showing strain (i.e., deflection) under a given stress (i.e., pressure) for an exemplary thermoplastic material and thermoset material to illustrate their individual support characteristics and resiliency and cushioning characteristics, and the combined support characteristics of the thermoplastic material and the resilient structure with cushioning characteristics of the thermoset material when provided in a unitary composite cushioning structure;
  • FIG. 3 is an exemplary unitary composite cushioning structure comprised of a thermoset material cohesively or adhesively bonded to a thermoplastic material with a stratum disposed therebetween;
  • FIG. 4 is an exemplary chart of performance curves showing strain (i.e., deflection) under a given stress (i.e., pressure) for different types of thermoplastic foam structures to show the ability to engineer a cellular thermoplastic foam profile to provide for manufacturing a unitary composite cushioning structure;
  • FIG. 5 is a side view of a cross-section of another exemplary cellular thermoset foam profile substantially surrounded by and cohesively or adhesively bonded to a cellular thermoplastic foam and a stratum disposed therebetween, to form a unitary composite cushioning structure;
  • FIG. 6 is an exemplary chart illustrating the recovery characteristics of the unitary composite cushioning structure of FIG. 5 versus the recovery characteristics of the cellular thermoplastic foam profile of FIG. 5 over elapsed time to illustrate the improved compression set characteristics of the unitary composite cushioning structure over the cellular thermoplastic foam profile;
  • FIG. 7 is a cross-section of an exemplary mattress illustrating various cushioning layers where a unitary composite cushioning structure according to exemplary embodiments disclosed herein may be deployed;
  • FIGS. 8A and 8B are perspective and side views, respectively, of an exemplary unitary composite cushioning structure comprised of an extruded thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 9 is a perspective view of the unitary composite cushioning structure of FIGS. 8A and 8B disposed on top of a mattress innerspring to provide a padding material for the mattress innerspring;
  • FIG. 10 is a perspective view of another exemplary unitary composite cushioning structure comprised of a molded thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween, with a top surface of the thermoset material including convolutions to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 11 is an exemplary cross-section profile of another exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile incorporating chambers with a thermoset material disposed in the chambers and a stratum provided therebetween, and that may be employed to provide zoned cushioning characteristics in a sleep or seat surface;
  • FIG. 12 is an exemplary cross-section profile of another exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile having extruded closed chambers with a thermoset material disposed in the chambers and a stratum provided therebetween that may be employed to provide a cushioning structure, including but not limited to a sleep or seat surface and edge or side supports;
  • FIG. 13 is a top view of an exemplary unitary composite cushioning structure comprised of a cellular thermoplastic foam profile surrounded by a thermoset material;
  • FIG. 14 is a top perspective view of exemplary unitary composite cushioning structure comprised of a coil-shaped cellular thermoplastic foam profile having an internal chamber with a thermoset material disposed in the chamber of the cellular thermoplastic foam profile;
  • FIG. 15 is a top perspective view of the unitary composite cushioning structure in FIG. 14 with an additional filler material in the form of core dust mixed with the thermoset material to provide stability to the thermoset material;
  • FIG. 16 is a top view of a plurality of exemplary unitary composite cushioning structures provided in an array;
  • FIG. 17 is a side perspective view of a mattress innerspring employing exemplary coil-shaped unitary composite cushioning structures, which may include the composite coil structures of FIGS. 13-15; and
  • FIGS. 18A-18I are side perspective views of alternative cellular thermoplastic foam profiles that can either be encapsulated or filled with a thermoset material to provide unitary composite cushioning structures.
  • DETAILED DESCRIPTION
  • Embodiments disclosed in the detailed description include a unitary or monolithic composite (or hybrid) cushioning structure(s) and profile(s) comprised of a cellular thermoplastic foam and a thermoset material. The thermoset material may also be provided as cellular foam as well. In one embodiment disclosed herein, the unitary composite or hybrid cushioning structure is formed from a cellular thermoplastic foam and a thermoset material. The cellular thermoplastic foam provides support characteristics to the unitary composite cushioning structure. The thermoset material provides a resilient structure with cushioning characteristics to the cushioning structure. A stratum is disposed between at least a portion of the cellular thermoplastic foam and at least a portion of the thermoset material to secure the at least a portion of the thermoset material to the at least a portion of the cellular thermoplastic foam to provide a unitary composite cushioning structure. The stratum includes a cohesive or adhesive bond, such as a mechanical or chemical bond, as examples. The stratum may provide an intimate engagement between at least a portion of the thermoset material and at least a portion of the cellular thermoplastic foam to provide the unitary composite cushioning structure. The cellular thermoplastic foam may also be provided as a custom engineered profile to provide a custom engineered profile for engagement of the thermoset material and thus the unitary composite cushioning structure.
  • A unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated. The term composite or hybrid within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • There are several non-limiting and non-required advantages of the unitary composite cushioning structures disclosed herein. For example, the unitary composite cushioning structure is provided as a unitary structure as opposed to providing disparate, non-bonded structures each comprised exclusively of thermoplastic or thermoset materials. This allows the tactile cushioning and resiliency benefits of thermoset materials and the supportive and structural capabilities of the cellular thermoplastic foams to create a cushioning structure combining the desired characteristics and features of both material types into one unitary composite cushioning structure.
  • Further, the thermoset material provided as part of the unitary composite cushioning structure allows the cellular thermoplastic foam to exhibit excellent offset of compression set while retaining support characteristics to provide stability to the unitary composite cushioning structure. Thermoset materials can be selected that exhibit the desired offset of compression set. Without the employment of the thermoset material, the thermoplastic profile may not be able to provide the desired support characteristics without the undesired effects of compression set, also known as “sagging.” This engagement of a thermoset material with a cellular thermoplastic foam utilizes the thermoset material's ability to recover over long periods of repeated deformations. Another advantage can be cost savings. The cellular thermoplastic foam may be less expensive than the thermoset material while still providing a suitable composite cushioning structure exhibiting desired stability and offset of compression set.
  • Before discussing examples of unitary composite cushioning structures comprised of a cellular thermoplastic foam cohesively or adhesively bonded to a thermoset material at a stratum, a discussion of strains (i.e., deflections) over given stresses (i.e., pressures) for cushioning structures not included in a unitary composite cushioning structure, as provided herein, is first discussed. In this regard, FIG. 2 illustrates an exemplary chart 40 of performance curves 42, 44, 46 showing compressive strain or deflection for given stress or pressure levels for different types of cushioning materials. The performance curve 42 illustrates strain versus stress for an exemplary thermoplastic material used as a cushioning structure. As illustrated in Section I of the chart 40, when a low stress or pressure is placed on the thermoplastic material represented by the performance curve 42, the thermoplastic material exhibits a large strain as a percentage of stress. As stress increases, as shown in Section II of the chart 40, the thermoplastic material represented by the performance curve 42 continues to strain or deflect, but the strain is smaller as a percentage of stress than the strain in Section I of the chart 40. This represents the firmer structural properties of the thermoplastic material providing a greater role in response to increased stress, thus decreasing the softness feel. As the stress further increases, as shown in Section III of the chart 40, eventually, the thermoplastic material represented by the performance curve 42 will exhibit even greater firmness where strain or deflection is very small as a percentage of stress, or non-existent.
  • It may be determined that the thermoplastic material represented by the performance curve 42 in FIG. 2 does not exhibit enough softness or cushioning to a load as stress increases. In other words, the thermoplastic material may provide a greater firmness more quickly as a function of stress than desired, thereby not providing the desired softness or cushioning characteristic desired. Thus, a thermoset material may be selected for the cushioning structure in lieu of a thermoplastic material.
  • In this regard, the performance curve 44 in FIG. 2 illustrates strain versus stress for an exemplary thermoset material. As illustrated in Section I of the chart 40, when a low stress or pressure is placed on the thermoset material represented by the performance curve 44, the thermoplastic material exhibits a large strain as a percentage of stress similar to the thermoplastic material represented by performance curve 42. As stress increases, as provided in Section II of the chart 40, the thermoset material represented by the performance curve 44 continues to strain, but only slightly greater than the strain in Section I of the chart 40. Thus, the thermoset material is continuing to exhibit softness even as the stress of a load disposed thereon increases, as opposed to the thermoplastic material represented by the performance curve 42 in FIG. 2. However, the thermoset material represented by the performance curve 44 does not provide the support or firmness characteristics as provided by the thermoplastic material represented by the performance curve 42, thereby providing a spongy or lack of support feel to a load. As the stress further increases, as shown in Section III of the chart 40, eventually, the thermoset material represented by the performance curve 44 will reach a point where it will exhibit greater firmness where strain or deflection is very small as a percentage of stress, or non-existent.
  • Embodiments disclosed herein provide a cushioning structure that has a hybrid or combined strain versus stress characteristic of the performance curves 42 and 44. This is illustrated by the performance curve 46 in FIG. 2. The performance curve 46 in FIG. 2 illustrates a unitary composite or hybrid cushioning structure comprised of the thermoplastic material represented by the performance curve 42 and the thermoset material represented by the performance curve 44. FIG. 3 illustrates an example of a unitary composite cushioning structure that can provide the performance according to the performance curve 46 in FIG. 2.
  • As illustrated in FIG. 3, a profile of a unitary composite cushioning structure 48 is provided. The unitary composite cushioning structure 48 is a hybrid that includes both a thermoplastic material 50 and a thermoset material 52. A unitary structure within the context of this disclosure is a structure having the character of a unit, undivided and integrated. A composite or hybrid structure within the context of this disclosure is a complex structure having two or more distinct structural properties provided by two or more distinct material structures that are cohesively or adhesively bonded together to provide the combined functional properties of the two or more distinct structural properties which are not present in combination in any individual material structure.
  • The thermoplastic material 50 and the thermoset material 52 are cohesively or adhesively bonded together to provide a unitary or monolithic cushioning structure. In this regard, the unitary composite cushioning structure 48 exhibits combined characteristics of the support characteristics of the thermoplastic material 50 and the resiliency and cushioning characteristics of the thermoset material 52. The thermoplastic material 50 is provided to provide support characteristics desired for the unitary composite cushioning structure 48. The thermoplastic material 50 could be selected to provide a high degree of stiffness to provide structural support for the unitary composite cushioning structure 48. The thermoset material 52 can provide resiliency and softer cushioning characteristics to the unitary composite cushioning structure 48. A stratum 54 is disposed between at least a portion of the thermoplastic material 50 and at least a portion of the thermoset material 52 that includes a cohesive or adhesive bond between at least a portion of the thermoset material 52 to the at least a portion of the thermoplastic material 50 to provide the unitary composite cushioning structure 48.
  • Non-limiting examples of thermoplastic materials that can be used to provide the thermoplastic material 50 in the unitary composite cushioning structure 48 include polypropylene, polypropylene copolymers, polystyrene, polyethylenes, ethylene vinyl acetates (EVAs), polyolefins, including metallocene catalyzed low density polyethylene, thermoplastic olefins (TPOs), thermoplastic polyester, thermoplastic vulcanizates (TPVs), polyvinyl chlorides (PVCs), chlorinated polyethylene, styrene block copolymers, ethylene methyl acrylates (EMAs), ethylene butyl acrylates (EBAs), and the like, and derivatives thereof. The density of the thermoplastic material 50 may be provided to any density desired to provide the desired weight and support characteristics for the unitary composite cushioning structure 48. Further, the thermoplastic material 50 may be selected to also be inherently resistant to microbes and bacteria, making the thermoplastic material 50 desirable for use in cushioning structures and related applications. The thermoplastic material 50 can also be made biodegradable and fire retardant through the use of additive master batches.
  • Non-limiting examples of thermoset materials that can be used to provide thermoset material 52 in the unitary composite cushioning structure 48 include polyurethanes, natural and synthetic rubbers, such as latex, silicones, ethylene propylene diene Monomer (M-class) (EPDM) rubber, isoprene, chloroprene, neoprene, melamine-formaldehyde, and polyester, and derivatives thereof. The density of the thermoset material 52 may be provided to any density desired to provide the desired resiliency and cushioning characteristics to the unitary composite cushioning structure 48, and can be soft or firm depending on formulations and density. The thermoset material 52 could also be foamed. Further, if the thermoset material 52 selected is a natural material, such as latex for example, it may be considered biodegradable. Further, bacteria, mildew, and mold cannot live in certain thermoset foams. Also note that although the unitary composite cushioning structure 48 illustrated in FIG. 3 is comprised of at least two materials, the thermoplastic material 50 and the thermoset material 52, more than two different types of thermoplastic and/or thermoset materials may be provided in the unitary composite cushioning structure 48.
  • Taking the example of latex as the thermoset material 52 that may be used in providing the unitary composite cushioning structure 48, latex is a naturally derived biodegradable product that comes from the rubber tree. Latex is hypo-allergenic, and breathes to retain heat in the winter and not absorb heat in the summer. Bacteria, mildew, and mold cannot live in latex foam. Tests have shown that latex foam can be three times more resistant to dust mites and bacteria than ordinary cushioning structures, and thus may be desirable, especially as it would pertain to being natural and biodegradable. There are also synthetic versions of latex that do not fit into the natural category, but could also be used either solely or in combination with a natural product.
  • In the example of the unitary composite cushioning structure 48 of FIG. 3, the thermoplastic material 50 is provided. A bottom surface 56 of the thermoset material 52 disposed on a top surface 58 of the thermoplastic material 50. The stratum 54 is formed where the bottom surface 56 of the thermoset material 52 contacts or rests on and is cohesively or adhesively bonded to the top surface 58 of the thermoplastic material 50. The thermoplastic material 50 may be provided in a solid phase, such as a cellular foam for example. The thermoset material 52 may be provided initially in the unitary composite cushioning structure 48 as a non-solid phase, such as in a liquid form. The thermoplastic material 50 and the thermoset material 52 are not mixed together. The thermoset material 52 will undergo a transition into a solid form, thereby forming a cohesive or adhesive union with the thermoset material 52 at the stratum 54, as illustrated in FIG. 3. Thus, the thermoplastic material 50 and the thermoset material 52 cohesively or adhesively bond together to form a unitary structure that provides combined properties of the support characteristics of the thermoplastic material 50 and the resiliency and cushioning characteristics of the thermoset material 52 that may not otherwise be possible by providing the thermoplastic material 50 and thermoset material 52 in separate, non-unified structures or layers. Advantages in this example include, but are not limited to, compression recovery, reduced weight, fewer layers of cushioning material, less labor in assembly, smaller form factor of the cushioning structure, less inventory, and/or antimicrobial features.
  • A curing process can be performed on the unitary composite cushioning structure 48 to set and cohesively or adhesively bond the thermoset material 52 to the thermoplastic material 50. The thermoset material 52 is mechanically bonded to the thermoplastic material 50 in this embodiment, but chemical bonding can be provided. Further, a chemical bonding agent can be mixed in with the thermoplastic material 50, such as before or during a foaming process for example, to produce the thermoplastic material 50, or when the thermoset material 52 is disposed in contact with the thermoplastic material 50 to provide a chemical bond with the thermoset material 52 during the curing process.
  • It may be desired to control the combined cushioning properties of the unitary composite cushioning structure 48 in FIG. 3. For example, it may be desired to control the degree of support or firmness provided by the thermoplastic material 50 as compared to the resiliency and cushioning characteristics of the thermoset material 52. In this regard, as an example, the thermoplastic material 50 is provided as a solid block of height H1, as illustrated in FIG. 3. The thermoset material 52 is provided of height H2, as also illustrated in FIG. 3. The relative volume of the thermoplastic material 50 as compared to the thermoset material 52 can control the combined cushioning properties, namely the combined support characteristics and the resiliency and cushioning characteristics, in response to a load. These combined characteristics can also be represented as a unitary strain or deflection for a given stress or pressure, as previously discussed.
  • Further, by being able to control the volume of the thermoplastic material 50 and the thermoset material 52, the same combined cushioning properties may be able to be provided in a smaller overall volume or area. For example, with reference to FIG. 3, the individual heights H1 and H2 may be less important in providing the combined cushioning characteristics of the unitary composite cushioning structure 48 than the ratio of the respective heights H1 and H2 Thus, the overall height H3 (i.e., H1+H2) of the unitary composite cushioning structure 48 may be able to be reduced over providing distinct, non-bonded layers of cushioning structures.
  • Further, a relative density ρ1 of the thermoplastic material 50 as compared to a density ρ2 of the thermoset material 52 can control the responsiveness of the combined cushioning properties. For example, the density ρ1 of the thermoplastic material 50 could be in the range between one-half pound (lb.) per cubic foot (ft3) to 30 lbs./ft3 (i.e., 8 kilograms (kg) per cubic meter (m3) to 480 kg/m3), as an example. The density ρ2 of the thermoset material 52 could be in the range between one pound (lb.) per cubic foot (ft3) to 15 lbs./ft3 (i.e., 16 kilograms (kg) per cubic meter (m3) to 240 kg/m3), as an example. The variability of densities ρ1 of the thermoplastic material 50 relative to ρ2 of the thermoset material 52 can be selected to customize the resultant properties of the unitary composite cushioning structure 48 that may not otherwise be possible by providing the thermoset material 52 as a distinct, non-unitary component or structure from the thermoplastic material 50.
  • Further, the thermoplastic material 50 and thermoset material 52 may each have different indentation load deflections (ILDs). ILD is a measurement of foam firmness. Firmness is independent of foam density, although it is often thought that higher density foams are firmer. It is possible to have high density foams that are soft—or low density foams that are firm, depending on the ILD specification. ILD specification relates to comfort. It is a measurement of the surface feel of the foam. ILD may be measured by indenting (compressing) a foam sample twenty-five (25) percent of its original height. The amount of force required to indent the foam is its twenty-five (25) percent ILD measurement. The more force required, the firmer the foam. Flexible foam ILD measurements can range from ten (10) pounds (supersoft) to about eighty (80) pounds (very firm).
  • The thermoplastic material 50 of the unitary composite cushioning structure 48 can be provided as a cellular thermoplastic foam profile, if desired. By providing the thermoplastic material 50 of the unitary composite cushioning structure 48 as a cellular foam profile, control of the shape and geometry of the unitary composite cushioning structure 48 can be provided, as desired. For example, the extrusion foaming art, with the ability to continuously produce and utilize specific die configurations having the ability to geometrically design and profile elements for cushioning support is a method to obtain the desired thermoplastic engineered geometry foam profiles to be used with a thermoset material or materials to provide the unitary composite cushioning structure 48. In this manner, the unitary composite cushioning structure 48 can be provided for different applications based on the desired geometric requirements of the cushioning structure. Machine direction (MD) attributes as well as transverse direction (TD) attributes may be employed to extrude a thermoplastic foam profile. However, other methods of providing thermoplastic foam profiles may also be employed, including molding, casting, thermal forming, and other processes known to those skilled in the art.
  • Thermoset foam profiles can be obtained in emulsified form and are frothed to introduce air into the emulsion to reduce density, and are then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration. Thermoset materials can also be further cost reduced through the addition of fillers such as ground foam reclaim materials, nano clays, carbon nano tubes, calcium carbonate, flyash and the like, but also core dust as this material can provide for increased stability to reduce the overall density and weight of the thermoset material. Further, thermoplastic foams, when used in combination with a thermoset foam, will consume space within a cushion structure, thereby displacing the heavier-weight, more expensive thermoset materials, such as latex rubber foam, as an example.
  • In this regard, FIG. 4 provides an exemplary chart 60 of performance curves showing strain (deflection) under a given stress (pressure) for different types of thermoplastic foam cushioning structures to show the ability to engineer a cellular thermoplastic foam profile to provide the desired firmness and support characteristics in the unitary composite cushioning structure 48. A performance curve 62 illustrates the result of testing of strain for a given stress of an exemplary solid block of low density polyethylene foam before being engineered into a particular profile. Performance curves 64, 66 represent the result of testing of strain for a given stress of two exemplary polyethylene foam extrusion profiles formed from the low density polyethylene foam represented by the performance curve 62. As illustrated in FIG. 4, the low density polyethylene foam represented by the performance curve 62 supports a higher load or stress than the two polyethylene foam extrusion profiles represented by the performance curves 64, 66 of the same or similar density. Further, as illustrated in FIG. 4, the polyethylene foam extrusion profile represented by the performance curve 64 illustrates strain for a given stress that has a greater propensity to support a higher loading than the exemplary polyethylene foam extrusion profile represented by the performance curve 66. Thus, a thermoplastic foam profile can be engineered to be less supportive in the unitary composite cushioning structure 48 depending on the support characteristics for the unitary composite cushioning structure 48 desired.
  • In this regard, embodiments disclosed herein allow a unitary composite cushioning structure to be provided in a customized engineered profile by providing a customized engineered thermoplastic foam profile. A thermoset material is provided in the engineered thermoplastic foam profile to provide the unitary composite cushioning structure. In this manner, the shape and resulting characteristics of the unitary composite cushioning structure can be designed and customized to provide the desired combination of resiliency and cushioning, and support characteristics for any application desired. In this regard, FIG. 5 is a side view of a cross-section of another exemplary unitary composite cushioning structure 68 to further illustrate, by example, providing an engineered cellular thermoplastic foam profile to provide the desired support characteristics and so that the geometry of the unitary composite cushioning structure 48 can be provided, as desired. As illustrated in FIG. 5, the unitary composite cushioning structure 68 includes a cellular thermoplastic foam profile 70 profiled in the form of a C-shaped structure having an open chamber 72 disposed therein formed as a result of extruding a solid block of cellular thermoplastic foam. A base 82 is also extruded with the C-shaped structure as part of the cellular thermoplastic foam profile 70 in this embodiment. The base 82 may provide a firm lower support layer for the unitary composite cushioning structure 68, although such as is not required. Note, however, there is not a requirement to provide the base 82 as part of the thermoplastic foam profile 70.
  • A thermoset material 74 is disposed in the open chamber 72 to provide the unitary composite cushioning structure 68. The thermoset material 74 may be disposed in the open chamber 72 when in a non-solid phase, as previously discussed. The thermoset material 74 will eventually transform into a solid phase and cohesively or adhesively bond with the cellular thermoplastic foam profile 70 to form the unitary composite cushioning structure 68. A stratum 76 is formed where an outer surface 78 of the thermoset material 74 contacts or rests against an inner surface 80 of the cellular thermoplastic foam profile 70 to cohesively or adhesively bond the thermoset material 74 to the cellular thermoplastic foam profile 70.
  • The cellular thermoplastic foam profile 70 may be a closed-cell foam, open-cell foam, or partially open or closed-cell foam. The material selected for providing the cellular thermoplastic foam profile 70 may be from any thermoplastic material desired, including those previously described. The thermoset material 74 may also be a cellular foam, and may be closed-cell foam, open-cell foam, or partially open or closed-cell foam. The material selected for providing the cellular thermoset foam may be from any thermoset material desired, including those previously described above.
  • The cellular thermoplastic foam profile 70, the thermoset material 74, and the unitary composite cushioning structure 68 may have the responses represented by the performance curves 42, 44, and 46 in FIG. 2, respectively, as an example. For example, the response shown by the performance curve 42 in Section I of FIG. 2 may be the response curve of the cellular thermoplastic foam profile 70 illustrating an initial soft segment generated from the lack of resistance exhibited by C-shaped legs 84 of the cellular thermoplastic foam profile 70. The supportive segments of the C-shaped legs 84 begin to engage with the bottom of the cellular thermoplastic foam profile 70 and therefore are able to tolerate a large load or pressure factor, as illustrated by the performance curve 42 in Sections II and III in FIG. 2. The thermoset material 74 in the unitary composite cushioning structure 68 shows an extremely soft segment in the performance curve 44 in Section I of FIG. 2, with a lower loading factor, until it becomes fully compressed or collapsed onto itself in Section III in FIG. 2. As illustrated by performance curve 44 in FIG. 2, the unitary composite cushioning structure 68 shows an overall smooth transition between a smaller pressure or load, as illustrated in Section I of FIG. 2, progressing into a harder, more supportive structure, as illustrated in Sections II and III of FIG. 2.
  • FIG. 6 is an exemplary chart 90 illustrating the recovery characteristics of the unitary composite cushioning structure 68 of FIG. 5 versus the recovery characteristics of the cellular thermoplastic foam profile 70 of FIG. 5 individually over elapsed time to illustrate the improved compression set characteristics of the unitary composite cushioning structure 68. The test protocol was to approximate the load exerted by a person lying prone on a cushion structure, then apply this constant strain for up to eight (8) hours, then measure the height recovery of the unitary composite cushioning structure 68 over time. While the cellular thermoplastic foam profile 70 does not recover within the same time frame as the unitary composite cushioning structure 68 in this example, it is important to note when the cellular thermoplastic foam profile 70 is used in combination with the thermoset material 74, not only is there less initial set, but the rate of recovery is more rapid. The rate of recovery feature of the unitary composite cushioning structure 68 is important from the standpoint of assuring that the unitary composite cushioning structure 68 returned or substantially returned to its original positioning, and that sag of the unitary composite cushioning structure 68 was not evident.
  • The unitary composite cushioning structure disclosed herein can be disposed in any number of applications for providing support to a load. Examples include seat assemblies, cushions, helmets, mats, grips, packagings, and bolsters. The remainder of this disclosure provides exemplary applications in which the unitary composite cushioning structure or structures can be disposed to provide the desired combined support and resiliency and cushioning characteristics.
  • In this regard, FIG. 7 illustrates a block diagram of an exemplary mattress 100. The mattress 100 is a well known example of a loading bearing structure. The unitary composite cushioning structures disclosed herein may be incorporated as replacements into any of the components of the mattress 100 (also referred to as “mattress components”), which are described below. Further, the unitary composite cushioning structures disclosed herein may form a portion of any of the components of the mattress 100. In this regard, the mattress 100 may include a foundation 102. A base 104 may be disposed on top of the foundation 102. The base 104 in this embodiment is a horizontal mattress component, meaning it extends in the horizontal or X direction extending generally parallel to an expected load displaced in the mattress 100. The foundation 102 and the base 104 may be selected to provide a firm support for a load disposed on the mattress 100. Additional support layers 106A, 106B, which may also be horizontal mattress components, may be disposed on top of the base 104 to provide an internal support area. In order to provide a firmer outer edge of the mattress 100, side or edge supports 108 may be disposed around the perimeter of the base 104 and foundation 102 and located adjacent to the support layers 106A, 106B and a spring set or core 109. The side or edge supports 108 may be characterized as vertical mattress components in this embodiment, since the side or edge supports 108 extend upward in a Y direction towards an expected load disposed on the mattress 100 and do not extend substantially in the horizontal or X direction of the mattress. The spring set or core 109, which may also be characterized as vertical mattress components, may be provided as an innerspring comprised of coils, which may be secured by a border wire (not shown), or may be pocketed coils, as examples. Alternatively, a core, such as comprised of latex or memory foam, may be disposed on the support layers 106A, 106B. One or more comfort layers 110A-110E may be disposed on top of the spring set or core 109 to complete the mattress 100.
  • As another example, FIGS. 8A and 8B are perspective and side views, respectively, of an exemplary unitary composite cushioning structure 120 provided in a comfort layer that can be disposed in a mattress or mattress assembly. In this embodiment, the unitary composite cushioning structure 120 is comprised of a plurality of extruded cellular thermoplastic foam profiles 122A-122J. The material choices and support characteristics of the cellular thermoplastic foam profiles 122A-122J can be varied, if desired, to provide different support characteristics in the unitary composite cushioning structure 120 to provide different zones or regions of support characteristics. For example, the unitary composite cushioning structure 120 may be designed to support different loads in different portions of the unitary composite cushioning structure 120 such that it may be desired to provide firmer or greater support in certain cellular thermoplastic foam profiles 122A-122J than others. For example, certain cellular thermoplastic foam profiles 122A-122J may be located where head, torso, and foot loads will likely be displaced.
  • The cellular thermoplastic foam profiles 122A-122J in this embodiment each include open chambers 124 that are configured to receive a thermoset material 126 to provide the unitary composite cushioning structure 120, as illustrated in FIG. 8A and 8B. Stratums 128 are disposed therebetween where the thermoset material 126 is cohesively or adhesively bonded to the cellular thermoplastic foam profiles 122A-122J. The cushioning properties of the thermoset material 126 can be selected and be different for the cellular thermoplastic foam profiles 122A-122J, if desired, to provide variations in cushioning characteristics of the unitary composite cushioning structure 120. FIG. 9 illustrates the unitary composite cushioning structure 120 provided as a support layer disposed on top of an innerspring 130 as part of a mattress assembly 132. In this example, certain of the cellular thermoplastic foam profiles 122D, 122E are designed to provide lumbar support for the mattress assembly 132. Other variations can be provided. For example, as illustrated in FIG. 10, convolutions 134 can be disposed in the thermoset material 126 to provide designed resiliency and support characteristics. The convolutions 134 are not disposed at the stratum 128 in this embodiment.
  • FIG. 11 is another exemplary cross-section profile of a mattress 140 employing a unitary composite cushioning structure 142 for a bedding or seating cushioning application. In this embodiment, a base 144 is extruded as part of a cellular thermoplastic foam profile 148 provided in the unitary composite cushioning structure 142 for the mattress 140. The unitary composite cushioning structure 142 is provided from a composite of the cellular thermoplastic foam profile 148 and a thermoset material 150 disposed in open channels 152 of the cellular thermoplastic foam profile 148, with a stratum 154 disposed therebetween. The open channels 152 are provided as extensions 155 that extend generally orthogonally from a longitudinal plane P1 of the cellular thermoplastic foam profile 148. Further, in this embodiment, convolutions 153 are provided in the thermoset material 150, similar to those provided in FIG. 10 (element 134). The cellular thermoplastic foam profile 148 and the thermoset material 150 may be provided according to any of the previously described examples and materials. The unitary composite cushioning structure 142 may be provided according to any of the examples and processes described above.
  • As previously discussed above, other components of a mattress may also be provided with a unitary composite cushioning structure according to embodiments disclosed herein. For example, FIG. 12 illustrates a portion of the base 144 in FIG. 11, but provided as a unitary composite cushioning structure 160 comprised of a cellular thermoplastic foam profile 162 comprised of a thermoplastic material 163 having closed channels 164 disposed therein. A thermoset material 166 is disposed in the closed channels 164 and cohesively or adhesively bonded to the cellular thermoplastic foam profile 162 at a stratum 168 disposed therebetween. The unitary composite cushioning structure 160 and the cellular thermoplastic foam profile 162 and thermoset material 166 may be provided according to any of the previously described examples and materials. The unitary composite cushioning structure 160 could be provided as other supports in the mattress 100, including but not limited to side, edge, or corner supports.
  • The embodiments of unitary composite cushioning structures described thus far have provided an outer thermoplastic material with a thermoset material disposed therein. However, the embodiments disclosed herein are not limited to this configuration. The unitary composite cushioning structure could be formed such that a thermoset material is disposed on the outside, partially or fully, of a thermoplastic material. For example, the thermoset material could partially or fully encapsulate the thermoplastic material.
  • In this regard, FIG. 13 illustrates an exemplary embodiment of a unitary composite cushioning structure 170 comprised of one or more thermoplastic closed and/or open cell foam 172 embedded in and/or substantially surrounded by a closed and/or open cell thermoset foam 174. The unitary composite cushioning structure 170 may be used as a cushion structure. As illustrated therein, the thermoplastic foam 172 is provided as an engineered cylindrically-shaped cellular thermoplastic foam profile 176 geometrically designed in a vertical profile. The cellular thermoplastic foam profile 176 provides a controlled deformation support characteristic and stability to the unitary composite cushioning structure 170. To form the unitary composite cushioning structure 170, the cellular thermoplastic foam profile 176 is surrounded by the thermoset foam 174, which in this example is a foamed latex rubber. The thermoset foam 174 may be elastomeric. The foamed latex rubber as the thermoset foam 174 may be manufactured from an emulsion of latex rubber as one possible example. An inner cylindrical chamber 175 is left in the cellular thermoplastic foam profile 176, which can either be left void or a thermoset material (not shown), such as foamed latex rubber for example, poured inside the inner cylindrical chamber 175 to provide additional offset of compression.
  • A curing process can be performed on the unitary composite cushioning structure 170 to set and cohesively or adhesively bond the thermoplastic foam 172 and the thermoset foam 174 to each other. The thermoset foam 174 is not chemically bonded to the thermoplastic foam 172 in this embodiment, but chemical bonding can be provided. Further, a chemical bonding agent can be mixed in with a thermoplastic material before or during the foaming process to produce the thermoplastic foam 172, or when the thermoset foam 174 is poured into the inner cylindrical chamber 175 to provide a chemical bond with the thermoset foam 174 during the curing process.
  • The unitary composite cushioning structure 170 has a geometry that can be used in a vertical position relative to an overall structure providing individual spring qualities to an otherwise unitary or monolithic structure that is both stable due to the thermoplastic foam 172 and exhibits excellent offset of compression set due to the thermoset foam 174. For example, the unitary composite cushioning structure 170 may be used like a spring and in place of metal or other types of springs or coils. Further, a thermoplastic foam may be provided to encapsulate the thermoset foam 174 to provide additional support to the unitary composite cushioning structure 170.
  • For example, the unitary composite cushioning structure 170 may be used as a foam spring for use in a knock down or buildable mattress. Also, this unitary composite cushioning structure 170 can be used to add support into specific regions of a cushion structure to satisfy individual demands, such as lumbar and/or head and foot support as examples, depending on the type of cushion structure used while providing the tactile cushioning characteristic desired. The thermoset foam 174 has cushioning abilities and can be soft or firm depending on formulations and density, but without individualized resilient support zones as can be obtained from using the engineered geometrically supportive profiles of the thermoplastic foam 172. This engagement of the thermoplastic foam 172 and the thermoset foam 174 has the ability to recover over long periods of repeated deformations.
  • In this unitary composite cushioning structure 170, the thermoplastic foam 172 could be a foamed polymer from including, but not limited to polyethylene, an EVA, a TPO, a TPV, a PVC, a chlorinated polyethylene, a styrene block copolymer, an EMA, an ethylene butyl acrylate (EBA), and the like, as examples. These thermoplastic materials may also be inherently resistant to microbes and bacteria, making them desirable for use in the application of cushioning structures. These materials can be also made biodegradable and fire retardant through the use of additive master batches. The thermoplastic could be foamed to an approximate cell size of 0.25 to 2.0 mm, although such is not required or limiting to the scope of the embodiments disclosed herein.
  • The thermoset foam 174 in this example is foamed latex rubber and is hypo-allergenic, and breathes to keep you warm in the winter and cool in the summer. Further, bacteria, mildew, and mold cannot live in the foamed latex rubber. The thermoset foam 174 is generally obtained in emulsified form and is frothed to introduce air into the emulsion to reduce density, and is then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration. Latex, however, may only be possible to be foamed (density reduction) down to a 5 lb. or 80 kg/m3 range without sacrificing other desirable features, such as tear and tensile strength. However, when engineered with the inner foam, which can be foamed to densities down to 1 lb. and/or 16 kg/m3 effectively, the inner foam is used in combination with the foamed latex rubber and can displace the heavier weight of the foamed latex rubber. The foamed latex rubber can also be further cost reduced through the addition of fillers such as ground foam reclaim materials, nano clays, carbon nano tubes, calcium carbonate, flyash and the like, but also core dust as this material can provide for increased stability to the thermoset material to while reducing the overall density, weight, and /or cost of the thermoset material.
  • In another embodiment, as illustrated in FIG. 14, another unitary composite cushioning structure 190 may be manufactured. In this embodiment, the unitary composite cushioning structure 190 also has a vertical geometric profile similar to the unitary composite cushioning structure 170 of FIG. 13. This allows for controlled deformation relative to the unitary composite cushioning structure 190 providing individual spring qualities to an otherwise monolithic structure. However, in this embodiment, an inner thermoset foam 192 is provided and geometrically designed in a vertical profile surrounded by an outer thermoplastic foam 194 provided in a cellular thermoplastic foam profile 196. A stratum 198 is disposed therebetween wherein the outer thermoplastic foam 194 is cohesively or adhesively bonded to the inner thermoset foam 192.
  • The inner thermoset foam 192 may be manufactured from an emulsion of latex rubber as an example. The unitary composite cushioning structure 190 has a geometry that can be used in a vertical position relative to an overall structure providing individual spring qualities to an otherwise monolithic structure. For example, the unitary composite cushioning structure 190 may be used like a spring and in place of metal or other types of springs. For example, one aspect would be the use of the unitary composite cushioning structure 190 as a pocketed coil assembly for a mattress or other application in a similar fashion to the current metal coil spring variety and covered with the appropriate cloth structure in similar fashion to the metal coil spring design. The materials and application possibilities discussed for the unitary composite cushioning structure 170 of FIG. 13 are also possible for the unitary composite cushioning structure 190 of FIG. 14 and thus will not be repeated here.
  • In the unitary composite cushioning structure 190 of FIG. 14, the outer thermoplastic foam 194 can be hypo-allergenic, and breathes to retain heat in the winter and to release heat in the summer. The inner thermoset foam 192 can be obtained in emulsified form and is frothed to introduce air into the emulsion to reduce density, and is then cured (vulcanized) to remove additional waters and volatiles as well as to set the material to its final configuration. The other possibilities discussed for the thermoset foams discussed above are also possible for the inner thermoset foam 192 of FIG. 14 and thus will not be repeated here.
  • The inner thermoset foam 192 could be a foamed polymer from a polyethylene, an EVA, a TPO, a TPV, a PVC, a chlorinated polyethylene, a styrene block copolymer, an EMA, an ethylene butyl acrylate (EBA), and the like, as examples, or any of the other recited thermoplastics previously discussed. These thermoplastic materials may also be inherently resistant to microbes and bacteria, making them desirable for use in the application of cushioning structures. These materials can be also made biodegradable and fire retardant through the use of additive master batches. The thermoplastic could be foamed to an approximate cell size of 0.25 to 2.0 mm, although such is not required or limiting to the scope of the embodiments disclosed herein. These foam springs of thermoplastic open or closed cell foam can be interspersed at some frequency throughout the cushion structure. The foam springs may be formed as an array. Further, a thermoset material, including but not limited to latex rubber, may also be provided to encapsulate the cellular thermoplastic foam profile 196 of the unitary composite cushioning structure 190 to provide additional offset of compression.
  • FIG. 15 illustrates the unitary composite cushioning structure 190 of FIG. 14, but the inner thermoset foam 192 additionally includes a filler material, which in this example is core dust 200. The core dust 200 adds stability to the inner thermoset foam 192 without changing the cushioning characteristics and benefits of the thermoplastic material and reduces weight of the unitary composite cushioning structure 190. For example, the amount of core dust 200 added per unit of latex rubber may be 25% to 75%, although this range is only exemplary and is not limiting to the scope of the embodiments disclosed herein.
  • FIG. 16 illustrates yet another embodiment of a structure 210 that can be used to form one or more unitary composite cushioning structures 212, including according to any of the embodiments disclosed herein. In this embodiment, a plurality of unitary composite cushioning structures 212 is provided in an array 214. Each unitary composite cushioning structure 212 is comprised of an outer foam piece 216 comprised of a foamed thermoplastic material. The outer foam pieces 216 have internal chambers 218 that can be filled with a thermoset material. Further, core dust or other filler may be added to the thermoset material poured inside the internal chambers 218 of the outer foam pieces 216 to provide the unitary composite cushioning structure 212. The outer foam pieces 216 can also be encapsulated either internally, externally, or both with a cellular thermoset foam or other thermoset material.
  • FIG. 17 illustrates yet another embodiment of a mattress assembly 220 that can incorporate the unitary composite cushioning structures like the unitary composite cushioning structures 170 or 190 previously described above. In this embodiment, the unitary composite cushioning structures 170 or 190 are used to replace traditional coils or springs in an innerspring 222 as part of the mattress assembly 220. The unitary composite cushioning structures 170 or 190 are disposed inside and adjacent edge or side support profiles 224. The edge or side support profiles 224 may also be provided as a unitary composite cushioning structure according to any of the embodiments described herein and may also be encapsulated either internally, externally, or both with a thermoset material or foam. The edge or side support profiles 224 may provide an anti-roll off feature on a mattress or other bedding, as illustrated in the example in FIG. 17.
  • Other examples for the thermoplastic foam profiles that may be provided according to any of the embodiments disclosed herein for providing a unitary composite cushioning structure are illustrated in FIG. 18. As illustrated therein, thermoplastic foam profiles 230A-230I may be constructed out of a thermoplastic material including a foam. The thermoplastic foam profiles 230A-230I may have one or more chambers 232A-232I, which may be open or closed and which can either be left void or filled with a thermoset material to provide a unitary composite cushioning structure. The thermoplastic foam profiles 230A-230I can also be encapsulated with a thermoset material in addition to or in lieu of being filled with a thermoset material as part of a composite structure. All other possibilities for thermoplastic foam profiles, thermoset materials, and unitary composite cushioning structures discussed above are also possible for the thermoplastic foam profiles 230A-230I in FIG. 18.
  • Many modifications and other embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. The thermoplastic engineered foam profiles may be used in concert with the thermoset materials either singularly and/or in combination with each other to provide unitary composite cushioning structures. A thermoset material can be encapsulated by a thermoplastic material, filled inside the thermoset material, or both. A thermoplastic material can be encapsulated by a thermoset material, filled inside the thermoplastic material, or both. Chemical bonding can be provided between the thermoset and thermoplastic materials. One aspect would be the use of the foam spring profile in concert with the thermoset material as an internal fill to be used in a pocketed coil assembly in a similar fashion to the current metal coil spring variety and covered with the appropriate cloth structure in similar fashion to the metal coil spring design. These composite structure profiles may be produced by direct continuous extrusion, extrusion injection molding, blow molding, casting, thermal forming, and the like, with the most efficient method being one of direct continuous extrusion.
  • Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (18)

What is claimed is:
1. A method for providing a unitary composite cushioning structure, comprising:
continuously extruding a cellular thermoplastic material having at least one chamber and providing support and cushioning characteristics; and
disposing a non-solid phase of a cellular thermoset material providing a resilient structure with cushioning characteristics into the at least one chamber of the cellular thermoplastic material, such that a stratum is formed between at least a portion of the cellular thermoplastic material and at least a portion of the cellular thermoset material undergoing a transition into a solid phase to form a bond with the cellular thermoplastic material to secure the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material to form the unitary composite cushioning structure exhibiting a combination of the support and cushioning characteristics and the resilient structure with cushioning characteristics when the unitary composite cushioning structure is placed under a load.
2. The method of claim 1, wherein disposing the non-solid phase of the cellular thermoset material comprises thermally forming a foamed thermoplastic material to form the cellular thermoplastic material.
3. The method of claim 1, wherein disposing the non-solid phase of the cellular thermoset material comprises pouring the non-solid phase of the cellular thermoset material into the at least one chamber of the cellular thermoplastic material.
4. The method of claim 1, further comprising curing the unitary composite cushioning structure to bond the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material.
5. The method of claim 1, further comprising providing an adhesive in the stratum to adhere the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material.
6. The method of claim 1, further comprising:
foaming the thermoset material to provide a cellular thermoset foam,
wherein disposing the non-solid phase of the thermoset material into the at least one chamber comprises disposing the non-solid phase of the cellular thermoset foam into the at least one chamber.
7. The method of claim 1, further comprising mixing at least one filler material into the cellular thermoset material to provide stability to the cellular thermoset material.
8. The method of claim 1, further comprising encapsulating the unitary composite cushioning structure with a second cellular thermoset material.
9. A method for providing a unitary composite cushioning structure, comprising:
continuously extruding a cellular thermoplastic material providing support and cushioning characteristics; and
disposing a non-solid phase of a cellular thermoset material providing a resilient structure with cushioning characteristics on at least a portion of an external surface of the cellular thermoplastic material, such that a stratum is formed between at least a portion of the cellular thermoplastic material and at least a portion of the cellular thermoset material undergoing a transition into a solid phase to form a bond with the cellular thermoplastic material to secure the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material to form the unitary composite cushioning structure exhibiting a combination of the support and cushioning characteristics and the resilient structure with cushioning characteristics when the unitary composite cushioning structure is placed under a load.
10. The method of claim 9, further comprising curing the unitary composite cushioning structure to bond the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material.
11. The method of claim 9, further comprising providing an adhesive in the stratum to adhere the at least a portion of the cellular thermoset material to the at least a portion of the cellular thermoplastic material.
12. The method of claim 9, further comprising mixing at least one filler material into the cellular thermoset material to provide stability to the cellular thermoset material.
13. The method of claim 9, further comprising encapsulating the unitary composite cushioning structure with a second cellular thermoplastic material.
14. The method of claim 1, wherein the disposing further comprises disposing the non-solid phase of the cellular thermoset material into the at least one chamber of the cellular thermoplastic material, such that the stratum is formed between the at least a portion of the cellular thermoplastic material and the at least a portion of the cellular thermoset material undergoing the transition into the solid phase to intermix with and form a chemical bond with the cellular thermoplastic material to secure the at least a portion of the cellular thermoset material directly to the at least a portion of the cellular thermoplastic material.
15. The method of claim 14, wherein the chemical bond comprises a direct chemical bond.
16. The method of claim 14, further comprising mixing a chemical bonding agent in the cellular thermoplastic material to provide the chemical bond between the at least a portion of the cellular thermoplastic material and the at least a portion of the cellular thermoset material.
17. The method of claim 1, wherein the disposing further comprises disposing the non-solid phase of the cellular thermoset material into the at least one chamber of the cellular thermoplastic material, such that the stratum is formed between the at least a portion of the cellular thermoplastic material and the at least a portion of the cellular thermoset material undergoing the transition into the solid phase to intermix with and form a mechanical bond with the cellular thermoplastic material to secure the at least a portion of the cellular thermoset material directly to the at least a portion of the cellular thermoplastic material.
18. The method of claim 1, further comprising forming the cellular thermoplastic material as a cellular thermoplastic material profile having the at least one chamber before disposing the non-solid phase of the cellular thermoset material into the at least one chamber of the cellular thermoplastic material profile.
US13/732,660 2009-03-06 2013-01-02 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s) Abandoned US20130119574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/732,660 US20130119574A1 (en) 2009-03-06 2013-01-02 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15797009P 2009-03-06 2009-03-06
US12/716,804 US8356373B2 (en) 2009-03-06 2010-03-03 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
US13/732,660 US20130119574A1 (en) 2009-03-06 2013-01-02 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/716,804 Division US8356373B2 (en) 2009-03-06 2010-03-03 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)

Publications (1)

Publication Number Publication Date
US20130119574A1 true US20130119574A1 (en) 2013-05-16

Family

ID=42676948

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/716,804 Expired - Fee Related US8356373B2 (en) 2009-03-06 2010-03-03 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
US13/732,660 Abandoned US20130119574A1 (en) 2009-03-06 2013-01-02 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/716,804 Expired - Fee Related US8356373B2 (en) 2009-03-06 2010-03-03 Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)

Country Status (5)

Country Link
US (2) US8356373B2 (en)
EP (1) EP2403718A4 (en)
CA (1) CA2753914A1 (en)
MX (1) MX2011009080A (en)
WO (1) WO2010102091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081209A1 (en) * 2011-09-30 2013-04-04 Nomaco Inc. Cellular mattress assemblies and related methods
US10045633B2 (en) 2013-04-26 2018-08-14 Noel Group Llc Cushioning assemblies with thermoplastic elements encapsulated in thermoset providing customizable support and airflow, and related methods

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913467B2 (en) * 2006-07-25 2011-03-29 Zephyros, Inc. Structural reinforcements
US8356373B2 (en) 2009-03-06 2013-01-22 Noel Group Llc Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
US8561236B2 (en) * 2009-06-22 2013-10-22 Nomaco Inc. Stepped-edge and side-support members, assemblies, systems, and related methods, particularly for bedding and seating
US8261558B2 (en) 2009-06-25 2012-09-11 Nomaco Inc. Self-adjusting insulation, including insulation particularly suited for pipe or duct
US8235461B2 (en) * 2010-01-21 2012-08-07 Cohen Elie Ventilated seat using shock absorbing material
USD693148S1 (en) * 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD688492S1 (en) 2010-03-03 2013-08-27 Noel Group Llc Mattress bed cushion
USD693145S1 (en) * 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD693144S1 (en) * 2010-03-03 2013-11-12 Noel Group Llc Mattress bed cushion
USD694553S1 (en) 2010-03-03 2013-12-03 Noel Group Llc Mattress bed cushion
WO2012177321A2 (en) * 2011-04-29 2012-12-27 Nomaco Inc. Unitary composite/hybrid cushioning structures(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material (s) and related mothods
GB2492574B (en) * 2011-07-06 2013-05-22 Neills Irish Internat Sports Company Ltd O Improvements in and relating to an energy dispersing liner for a helmet
CA2783982A1 (en) * 2011-07-29 2013-01-29 Dreamwell, Ltd. Mattress assembly with high airflow
US8832888B2 (en) 2011-07-29 2014-09-16 Dreamwell, Ltd. Mattress and side rail assemblies having high airflow
USD691400S1 (en) 2012-02-10 2013-10-15 Nomaco Inc. Stackable base for mattress assembly
US8918934B2 (en) * 2012-04-18 2014-12-30 Otis Bed Manufacturing Company, Inc. Linked coil mattress assembly
USD694552S1 (en) * 2012-04-27 2013-12-03 Noel Group Llc Mattress bed cushion
USD693147S1 (en) * 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD693149S1 (en) * 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD693146S1 (en) * 2012-04-27 2013-11-12 Noel Group Llc Mattress bed cushion
USD692693S1 (en) * 2012-04-27 2013-11-05 Noel Group Llc Mattress bed cushion
EP2847508A4 (en) 2012-05-11 2016-01-20 Nomaco Inc Insulation systems employing expansion features to insulate elongated containers subject to extreme temperature fluctuations, and related components and methods
USD697337S1 (en) 2012-07-03 2014-01-14 Nomaco, Inc. Stackable base for mattress assembly
USD690536S1 (en) 2012-07-26 2013-10-01 Nomaco Inc. Motion isolation insulator pad
USD688069S1 (en) 2012-09-28 2013-08-20 Noel Group Llc Mattress bed cushion
USD694041S1 (en) 2012-09-28 2013-11-26 Noel Group Llc Mattress bed cushion
USD692694S1 (en) * 2012-09-28 2013-11-05 Noel Group Llc Mattress bed cushion
USD709301S1 (en) 2012-11-09 2014-07-22 Noel Group Llc Mattress bed cushion
USD707468S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
CA2885063A1 (en) * 2012-11-09 2014-05-15 Noel Group Llc All-foam mattress assemblies with foam engineered cores having thermoplastic and thermoset materials, and related assemblies and methods
USD707467S1 (en) 2012-11-09 2014-06-24 Noel Group Llc Mattress bed cushion
USD701713S1 (en) 2012-11-09 2014-04-01 Noel Group, Llc Mattress bed cushion
US9848711B2 (en) * 2012-12-28 2017-12-26 Tempur-Pedic Management, Llc Mattress assembly
US9326616B2 (en) 2013-01-10 2016-05-03 Dreamwell, Ltd. Active airflow temperature controlled bedding systems
US9259099B1 (en) 2013-04-30 2016-02-16 Sound Sleep Products, Inc. Foam mattress with resilient reinforcing members and air channels
USD740053S1 (en) 2013-07-03 2015-10-06 Nomaco Inc. Foam cushion base
USD737074S1 (en) 2013-07-03 2015-08-25 Nomaco Inc. Foam cushion base
USD704962S1 (en) 2013-09-09 2014-05-20 Noel Group Llc Mattress bed cushion
US10327482B1 (en) * 2014-10-14 2019-06-25 Helmet Technologies LLC Apparatus and method for dissipating force
US9332799B1 (en) * 2014-10-14 2016-05-10 Helmet Technologies LLC Protective apparatus and method for dissipating force
GB201501834D0 (en) * 2015-02-04 2015-03-18 Isis Innovation An impact absorbing structure
USD785167S1 (en) 2015-10-14 2017-04-25 Emd Millipore Corporation Cut disc membrane container
DE102016004311B4 (en) * 2016-04-12 2018-03-15 Dräger Safety AG & Co. KGaA A method of manufacturing a cushioning device for a riser system for a respirator, cushioning device, riser system and respirator
USD840175S1 (en) * 2017-05-08 2019-02-12 Amerisleep International Limited Foam pad for a mattress
WO2020082053A1 (en) * 2018-10-19 2020-04-23 Nike Innovate C.V. Footwear sole structure having a composite element and methods for manufacturing same
CN110059370B (en) * 2019-03-28 2022-03-08 中铁第四勘察设计院集团有限公司 Base load calculation method suitable for tunnel penetrating through composite stratum
US20210177158A1 (en) * 2019-12-12 2021-06-17 Safe Dreams Ltd. Lightweight and fireproof mattress
US11751694B2 (en) 2020-09-29 2023-09-12 Craftsman Upholstery & Interiors, Llc Method and apparatus for creating a kneeler pad using a thermoforming process
US20220167753A1 (en) * 2020-12-02 2022-06-02 Advanced Comfort Technologies, Inc. Mattresses including a zoned cushioning layer and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050192365A1 (en) * 2004-02-27 2005-09-01 Strandburg Gary M. Durable foam of olefin polymers, methods of making foam and articles prepared from same
WO2008100728A2 (en) * 2007-02-16 2008-08-21 Graebe Robert H Shape matching cushion

Family Cites Families (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604642A (en) 1950-06-19 1952-07-29 Marco Company Inc Foam rubber mattresses, cushions, seats, and the like
US2659418A (en) 1952-02-09 1953-11-17 Oscar A Berman Cushion or the like
US2835906A (en) 1954-05-07 1958-05-27 Robbins Ralph Foam rubber mattress
GB804094A (en) 1955-08-03 1958-11-05 Dunlop Rubber Co Improvements relating to upholstery
US2917807A (en) 1956-03-27 1959-12-22 William M Scholl Bonded fleece laminated cushioning insole
GB896623A (en) 1958-05-03 1962-05-16 Erich Schickedanz Thermoplastic foam materials
US3114722A (en) 1958-08-07 1963-12-17 Stauffer Hewitt Inc Preparation of a composition containing expanded polymeric materials
US2955056A (en) 1959-02-27 1960-10-04 Du Pont Polyurethane foams coated with a polyurethane elastomer
US3047888A (en) 1960-12-05 1962-08-07 George O Shecter Cushioning structure
US3287748A (en) 1964-03-02 1966-11-29 Dayco Corp Foam rubber product and method of manufacture
US3188665A (en) 1964-08-31 1965-06-15 Suyder Paper Corp Cushion structure
US3283357A (en) 1964-10-06 1966-11-08 Michigan Tool Co Disinfecting cleansing pad
US3813462A (en) 1965-05-14 1974-05-28 A Roberts Process for the manufacture of molded articles
US3483069A (en) 1965-08-23 1969-12-09 Little Inc A Polyurethane foam reinforced fibrous article and method of forming the same
US3531552A (en) 1967-05-04 1970-09-29 Eaton Yale & Towne Method of making composite load supporting structure
AT296622B (en) 1967-07-04 1972-02-25 Bayer Ag Heavy-duty foam body
US3627622A (en) 1967-09-29 1971-12-14 Dow Chemical Co Partial resin coated foamed resinous articles
US3607596A (en) 1968-07-10 1971-09-21 Fmc Corp Cellular article
US3691569A (en) 1968-12-28 1972-09-19 Takeo Ikada Cushion
BE792626Q (en) 1969-02-20 1973-06-12 Dow Chemical Co COMPOSITE CELLULAR MATERIALS
US3551924A (en) 1969-05-19 1971-01-05 James R Frye Sr Variable firmness sleep unit
US3728206A (en) 1970-11-23 1973-04-17 Johnson & Johnson Thermoplastic supportive structure
US3989781A (en) 1971-08-17 1976-11-02 Shell Oil Company Process for producing a fibrous reinforced thermosetting resin impregnated foamed polymeric resin article
US3922429A (en) 1971-11-03 1975-11-25 Gen Tire & Rubber Co Composite impact absorbing safety structure
US3846857A (en) 1972-03-10 1974-11-12 Neurological Res And Dev Group Multi-section variable density mattress
US3878133A (en) 1972-08-17 1975-04-15 Dow Chemical Co Cushioning and materials therefor
US3904470A (en) 1973-05-02 1975-09-09 Mitsui Petrochemical Ind Method for bonding rubber to plastics
US4169184A (en) 1973-05-07 1979-09-25 Joseph Pufahl Adhesive coated impregnated polyurethane foam
US4051210A (en) 1975-05-27 1977-09-27 E. I. Du Pont De Nemours And Company Process for comolding a composite cushioning structure from a pneumacel fiber batt and synthetic elastomeric foam
US4073020A (en) 1976-04-19 1978-02-14 The Goodyear Tire & Rubber Company Contoured foam mattress
GB1542585A (en) 1976-06-22 1979-03-21 Sumitomo Chemical Co Method of extrusion coating with polyolefin foam
US4260660A (en) 1978-03-14 1981-04-07 The United States Of America As Represented By The Secretary Of Commerce Use of sulphur as an additive to inhibit the smoldering combustion of materials
US4159355A (en) 1977-11-14 1979-06-26 Scott Paper Company Foam bonding
US4276107A (en) 1977-12-14 1981-06-30 Joseph Pufahl Adhesive-coated impregnated polyurethane foam
US4224374A (en) 1978-11-21 1980-09-23 Reeves Brothers, Inc. Polyether-derived polyurethane foam impregnant and method of application
US4213214A (en) 1978-12-26 1980-07-22 Gilhooly James E Multiple firmness multiple sleeper mattress
US4230521A (en) 1979-04-26 1980-10-28 Composite Technology Corporation Foam impregnating apparatus
US4281197A (en) 1979-06-18 1981-07-28 Ford Motor Company Hydrolytic decomposition method
SE453584B (en) 1979-07-24 1988-02-15 Adini Ltd PROCEDURE FOR SHAPING A SOFT PERMEABLE MATERIAL COATED WITH A PREPOLYMER WITH LATENT ADHESIVE FORM AND SUCH COATED MATERIAL
US4279953A (en) 1980-04-28 1981-07-21 The General Tire & Rubber Company Method for treating polyurethane foam
US4350734A (en) 1980-10-23 1982-09-21 Colamco, Inc. Integral composite foam product and method
US4438221A (en) 1981-06-18 1984-03-20 Wm. T. Burnett & Co., Inc. Polyurethane foam-filled foams and method of producing same
US4525386A (en) 1982-09-03 1985-06-25 Morey Weisman Technique for property enhancement of open-cell foam material
IN157880B (en) 1982-10-27 1986-07-12 Dunlop Ltd
FR2547768B1 (en) 1983-06-24 1986-01-10 Ugine Kuhlmann THERMOPLASTIC POLYMER LIGHT THERMOSETTING POLYMER COMPOSITE MATERIAL AND METHODS OF MANUFACTURE
US4631768A (en) 1984-02-29 1986-12-30 C. R. Diffen Transport Pty. Ltd. Composite bed mattress
US4569861A (en) 1984-06-18 1986-02-11 Creative Products Resource Associates, Ltd. Composite foam-textile cleaning pad
FR2584975B1 (en) 1985-07-19 1987-11-20 Hutchinson PROCESS FOR OBTAINING CO-EXTRUSION OF PROFILES COMPRISING AT LEAST TWO PARTS HAVING DIFFERENT PROPERTIES AND PROFILES THUS OBTAINED
US4683246A (en) 1986-03-14 1987-07-28 Wm. T. Burnett & Co., Inc. Polyurethane foam-fiber composites
US4828325A (en) 1986-05-16 1989-05-09 University Of Tennessee Research Corporation Method of making a custom fitted composite foamed cushion, a preform kit and the resultant product of the process
JPH056824Y2 (en) 1986-12-02 1993-02-22
US4780167A (en) 1987-10-23 1988-10-25 Hill Francis V Method of making polyimide foam structures of controlled density and increased rigidity
CA1320595C (en) 1987-12-02 1993-07-20 Robert A. Bexton Gel-filled, variably-adjustable cushioning system for supporting a person
US5114773A (en) 1988-03-02 1992-05-19 Resilient Systems, Inc. Resilient composite open-cell foam structure and method of making same
US4957798A (en) 1988-03-02 1990-09-18 Resilient System, Inc. Composite open-cell foam structure
US5869172A (en) 1988-03-14 1999-02-09 Nextec Applications, Inc. Internally-coated porous webs with controlled positioning of modifiers therein
US5876792A (en) 1988-03-14 1999-03-02 Nextec Applications, Inc. Methods and apparatus for controlled placement of a polymer composition into a web
US4997804A (en) 1988-05-26 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
GB8827180D0 (en) 1988-11-21 1988-12-29 Schlegel Uk Holdings Composite extrusion
GB8900434D0 (en) 1989-01-10 1989-03-08 Allan Peter S Improvements in or relating to methods and apparatus for the continuous formation of an extruded product
US5248550A (en) 1989-02-13 1993-09-28 Lockheed Corporation Encapsulation of thermoplastic particles for production of composites
US5037859A (en) 1989-06-20 1991-08-06 The United States Of America As Represented By The United States Department Of Energy Composite foams
US4966919A (en) 1989-06-20 1990-10-30 The United States Of America As Represented By The United States Department Of Energy Composite foams
US5047436A (en) 1989-06-30 1991-09-10 Sorrento Engineering Corporation Method of improving foam fire resistance through the introduction of inorganic particles thereinto
US5086084A (en) 1989-08-29 1992-02-04 Lee H. Ambrose Polyvinyl chloride/polyurethane hybrid foams
US5087514A (en) 1989-08-30 1992-02-11 Intellex Corporation Thermoplastic resin layer chemically bonded to thermoset resin layer
DE3937214A1 (en) 1989-11-08 1991-05-16 Walter Prof Dr Kuehnegger Therapeutic mattress for patients - has main elastic body with many bores running through its thickness with e.g. foam in-fillings to produce desired pattern of softer areas
US5031261A (en) 1990-03-15 1991-07-16 E. R. Carpenter Company, Inc. Mattress overlay for avoidance of decubitus ulcers
US5098778A (en) 1990-04-24 1992-03-24 General Electric Company Plastic based laminates comprising outer fiber-reinforced thermoset sheets, lofted fiber-reinforced thermoplastic sheets and a foam core layer
US4999868A (en) 1990-05-11 1991-03-19 Eugene Kraft Varying firmness mattress
US5945461A (en) 1991-03-21 1999-08-31 Illinois Tool Works Inc. Foamed acrylic polymer compositions
US5206082A (en) 1991-03-25 1993-04-27 The Dow Chemical Company Nondistorted polyethylene foam structures and process for making
CA2101613A1 (en) 1992-08-14 1994-02-15 Siusun K. Leung Flexible polyurethane foams using chlorinated alkanes
US5366999A (en) 1992-11-12 1994-11-22 Bayer Aktiengesellschaft Filler-modified polyurethane foam supports for bioconversion processes
US5418257A (en) 1993-04-08 1995-05-23 Weisman; Morey Modified low-density polyurethane foam body
US5272001A (en) 1993-04-08 1993-12-21 Morey Weisman Modified low-density polyurethane foam body
US5430901A (en) 1993-06-10 1995-07-11 Farley; David L. Anatomically conformable therapeutic mattress overlay
US5389317A (en) 1993-08-19 1995-02-14 Davidson Textron Inc. Method for molding composite articles including a shaped foam cushion by spraying foamable components
US5544908A (en) 1994-05-06 1996-08-13 K-2 Corporation Thermoplastic composite ski and method of manufacture
US8025964B2 (en) 1994-06-03 2011-09-27 Tempur World, Llc Laminated visco-elastic support
US5977271A (en) 1994-09-02 1999-11-02 The Dow Chemical Company Process for preparing thermoset interpolymers and foams
US5883144A (en) 1994-09-19 1999-03-16 Sentinel Products Corp. Silane-grafted materials for solid and foam applications
US5494627A (en) 1994-10-17 1996-02-27 Kargol; James A. Method for making a vehicle seat component with improved resistance to permanent deformation
US5492662A (en) 1994-10-17 1996-02-20 Kargol; James A. Process for forming multiple density body from fibrous polymeric material and vehicle seat component formed thereby
GB9504372D0 (en) 1995-03-04 1995-04-26 British Aerospace A composite laminate
JPH08323748A (en) 1995-05-29 1996-12-10 Toho Rayon Co Ltd Molding material and manufacture thereof
US5686167A (en) 1995-06-05 1997-11-11 Robert C. Bogert Fatigue resistant fluid containing cushioning device for articles of footwear
US6115861A (en) 1997-10-09 2000-09-12 Patmark Company, Inc. Mattress structure
US5740574A (en) 1995-12-13 1998-04-21 Piraino; Mario Hybrid mattress having portions with different support characteristics
US5755901A (en) 1996-05-08 1998-05-26 Lear Corporation Method and apparatus for controlling an assembly for bonding a cover material to foam
US5749111A (en) * 1996-02-14 1998-05-12 Teksource, Lc Gelatinous cushions with buckling columns
US5701623A (en) 1996-03-11 1997-12-30 Latex Foam Products, Inc. Composite mattress and mattress topper having a latex foam core
US5876652A (en) 1996-04-05 1999-03-02 The Boeing Company Method for improving pulloff strength in pin-reinforced sandwich structure
US5832594A (en) 1996-05-31 1998-11-10 The Boeing Company Tooling for inserting Z-pins
DE69725074T2 (en) 1996-08-02 2004-06-17 Bridgestone Corp. Seat cushion and process for its manufacture
US5960497A (en) 1997-08-22 1999-10-05 Kci-Rik Acquisition, Corp. Pressure relieving pad with graduated pillars
US5801211A (en) 1996-10-04 1998-09-01 Cinco, Inc. Resilient fiber mass and method
US5721035A (en) 1996-11-01 1998-02-24 The Goodyear Tire & Rubber Company Foam structure
AUPO379496A0 (en) 1996-11-22 1996-12-19 Dominion Plastic Industries A process for coating foam
US6008286A (en) 1997-07-18 1999-12-28 3M Innovative Properties Company Primer composition and bonding of organic polymeric substrates
US6306235B1 (en) 1997-10-16 2001-10-23 Nomaco, Inc. Spiral formed products and method of manufacture
US6319441B1 (en) 1998-06-03 2001-11-20 Paul M. Yates Resilient cushion and method of manufacture
US6720362B1 (en) 1998-09-17 2004-04-13 The Dow Chemical Company Perforated foams
US6132323A (en) 1998-12-22 2000-10-17 Callaway Golf Company Thermoplastic/thermoset hybrid golf club shafts and methods of manufacturing the same
US6258310B1 (en) 1999-03-18 2001-07-10 Basf Corporation Cross-linking thermoplastic polyurethane
US6108835A (en) * 1999-06-23 2000-08-29 Goodway Corporation Camping mat arrangement
US6323251B1 (en) 1999-09-24 2001-11-27 3M Innovative Properties Co Thermoplastic/thermoset hybrid foams and methods for making same
DE60041028D1 (en) 1999-10-18 2009-01-22 Armstrong World Ind Inc Foamed composite panel
AU2459101A (en) 1999-12-28 2001-07-09 Webcore Technologies, Inc. Fiber reinforced composite cores and panels
US6317912B1 (en) 2000-03-08 2001-11-20 Kurtis F. Graebe Bed mattress with air cells and spring pockets
US6212720B1 (en) 2000-03-08 2001-04-10 Steven J. Antinori Mattress tub
WO2001068358A1 (en) 2000-03-14 2001-09-20 L & P Property Management Company Posturized foam ply for use in a bedding or seating product
US6574814B2 (en) 2000-03-14 2003-06-10 L&P Property Management Company Bedding or seating product having filled tube topper
AT410509B (en) 2000-03-27 2003-05-26 Franz Ing Kutschi MATERIAL CORE MADE OF FOAM
US7045206B1 (en) 2000-07-10 2006-05-16 Visteon Global Technologies, Inc. Molded panels having a soft pad armrest
US7452585B1 (en) 2000-07-21 2008-11-18 Henkel Corporation Monolithic structures, methods of manufacture and composite structures
US6920287B1 (en) 2000-08-01 2005-07-19 Nortel Networks Limited Smart connect
ATE374546T1 (en) 2000-08-23 2007-10-15 Mario Piraino IMPROVED BED MATTRESS
DE60127977T2 (en) 2000-09-14 2008-01-17 Rohm And Haas Co. PROCESS FOR THE MANUFACTURE OF TEETH, HEAT-HARDENING OBJECTS AND THERMAL-HARDENING OBJECTS MADE THEREFOR
US20020185905A1 (en) 2000-09-18 2002-12-12 Cassinelli Jorge A. Cushions and foam material for use in aircraft seats, and associated methods of manufacture
DE60134519D1 (en) 2000-09-29 2008-08-07 Lancastria Ltd mattress
US7173070B2 (en) 2001-02-23 2007-02-06 Phat Cushion Llc Foam cushion and method of making and using the same
US6743830B2 (en) 2001-03-07 2004-06-01 Innovative Construction And Building Materials Construction board materials with engineered microstructures
US20040172766A1 (en) 2001-04-27 2004-09-09 Fabio Formenti Mattress made of latex foam including a structure of sacked springs, and mold for its manufacturing
ITMI20010891A1 (en) 2001-04-27 2002-10-27 Fabio Formenti LATEX FOAM MATTRESS INTEGRATING A STRUCTURE WITH BAGS SPRINGS OR IN OTHER SUPPORTING MATERIAL
US6908950B2 (en) 2001-10-25 2005-06-21 Owens Corning Fiberglas Technology, Inc. Asphalt filled polymer foam
GB0130834D0 (en) 2001-12-22 2002-02-06 Design Blue Ltd Energy absorbing material
US6662393B2 (en) 2002-03-19 2003-12-16 Dennis Boyd Composite mattress
US6773756B2 (en) 2002-03-20 2004-08-10 Bayer Polymers Llc Process to manufacture three dimensionally shaped substrate for sound abatement
US20030194546A1 (en) 2002-04-11 2003-10-16 Mccabe Brock Foam composite material
US20030207634A1 (en) 2002-05-03 2003-11-06 Holeschovsky Ulrich B. Composite structure made of urethane and woven backing materials
US20030225172A1 (en) 2002-05-31 2003-12-04 Miller Larry M. To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
US6807698B2 (en) 2002-06-01 2004-10-26 Sleepadvantage, Llc Bed having low body pressure and alignment
US20050115003A1 (en) 2002-06-01 2005-06-02 Torbet Philip A. Internal contour foam mattress
US6967833B2 (en) 2002-06-20 2005-11-22 Integrian, Inc. Protective apparatus for sensitive components
US6701551B1 (en) 2002-09-25 2004-03-09 Steven J. Antinori Upholstered slat box spring/bed
US6799344B2 (en) 2002-10-10 2004-10-05 Dreamwell Ltd. Titanium mattress member
US20040126558A1 (en) 2002-10-11 2004-07-01 Williams Lendell J. Composite sponge foam
US7036173B2 (en) 2002-10-17 2006-05-02 Dreamwell,Ltd. Channel-cut cushion supports
US20040137212A1 (en) 2003-01-14 2004-07-15 Sealed Air Corporation (Us) Composite mat
CA2519866C (en) 2003-03-28 2012-05-22 Webcore Technologies, Inc. Fiber reinforced composite cores and panels
US7082635B2 (en) 2003-03-28 2006-08-01 Sealy Technology Llc Unitized thermoplastic foam structures
US7491753B2 (en) 2003-07-03 2009-02-17 Mallard Creek Polymers, Inc. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
ES2234410B1 (en) 2003-07-31 2006-06-01 Philopatent, S.A. FOAM SPRING MATTRESS.
JP4467936B2 (en) * 2003-09-19 2010-05-26 ミドリ安全株式会社 Anti-slip sole
US20070221890A1 (en) 2004-05-28 2007-09-27 Joseph Gan Phosphorus Containing Compounds Useful for Making Halogen-Free, Ignition-Resistant Polymer
US20060068169A1 (en) 2004-09-17 2006-03-30 Sumitomo Chemical Company, Limited Thermoplastic resin foamed sheet
US20100221521A1 (en) 2004-10-27 2010-09-02 University of Delaware Office of the Vice Provost for Research Shear thickening fluid containment in polymer composites
US7281917B2 (en) 2004-12-01 2007-10-16 Patwin Plastics, Inc. Extrusion/reaction injection molding system
DE102004059806A1 (en) 2004-12-10 2006-06-14 Thomas Gmbh + Co. Technik + Innovation Kg Underlay for the human body and method of making the same
US20070061978A1 (en) 2005-03-21 2007-03-22 Technogel Italia Srl Support apparatus with gel layer
WO2006127533A1 (en) 2005-05-20 2006-11-30 Charlie Hubbs Silicone-impregnated foam product and method for producing same
US7386903B2 (en) 2005-06-03 2008-06-17 American Pacific Plastic Fabricators, Inc. Composite mattress assembly and method for adjusting the same
US7191483B2 (en) 2005-06-03 2007-03-20 American Pacific Plastic Fabricators Composite foam mattress assembly
BRPI0614035A2 (en) 2005-06-17 2011-03-09 Nomaco Inc load support / damping / support elements and manufacturing method
GB0513286D0 (en) 2005-06-29 2005-08-03 Seating Design & Dev Ltd A mattress
PL1904570T3 (en) 2005-07-01 2019-01-31 Latexco Nv Latex based composite foams
KR100804762B1 (en) 2005-07-15 2008-02-19 유켄가이샤 산 살라 코포레이션 Sustained-release thermoplastic polymer composition and product comprising the same
US6990701B1 (en) 2005-08-05 2006-01-31 Vera Litvak Sectional non-slip mattress
US20070044906A1 (en) 2005-08-31 2007-03-01 Freudenberg-Nok General Partnership Multilayer polymeric composites having a layer of dispersed fluoroelastomer in thermoplastic
US20070199210A1 (en) * 2006-02-24 2007-08-30 The Timberland Company Compression molded footwear and methods of manufacture
DE502007001310D1 (en) 2006-03-10 2009-09-24 Basf Se MULTILAYER FOAM COMPOSITE ELEMENT WITH SAVINGS
US20070226911A1 (en) 2006-04-03 2007-10-04 Dreamwell, Ltd Mattress or mattress pad with gel section
US7607911B2 (en) 2006-04-26 2009-10-27 Sealed Air Corporation (Us) Method and apparatus for making foam-in-place cushions with selective distribution of foam
US20080014386A1 (en) 2006-06-01 2008-01-17 Andover Healthcare, Inc. Cohesive articles with a foam layer
US7454810B2 (en) 2006-06-20 2008-11-25 Wells Thomas J Divided support mattress
US7334280B1 (en) 2006-08-11 2008-02-26 Swartzburg Rick T Ventilated mattress and method
WO2008108888A2 (en) 2006-10-05 2008-09-12 Holden Charles S Separation of radium and rare earth elements from monazite
EP2109637B1 (en) 2007-01-16 2018-07-25 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
CN101679911B (en) 2007-02-12 2012-02-08 陶氏环球技术有限责任公司 Composite
MX2009013140A (en) 2007-06-04 2010-01-18 Dow Global Technologies Inc Energy absorbing member.
US7845035B2 (en) 2007-10-09 2010-12-07 Sealy Technology Llc Pressure dispersion support systems
US20100325806A1 (en) 2007-10-09 2010-12-30 Sealy Technology, Llc Pressure dispersion support systems
US8512854B2 (en) 2007-11-29 2013-08-20 Polyworks, Inc. Composite material, method of making and articles formed thereby
JP4628416B2 (en) 2007-11-30 2011-02-09 日東電工株式会社 Viscoelastic member having an unevenly distributed elastomer layer
EP2095745A1 (en) 2008-02-26 2009-09-02 Technogel Italia S.R.L. Modular supporting element to make mattresses and the like
CN101585435B (en) 2008-05-20 2012-07-18 深圳富泰宏精密工业有限公司 Packing material and preparation method thereof
US7793372B2 (en) 2008-05-23 2010-09-14 Latex Foam International Holdings, Inc. Latex foam bedding products including phase change microcapsules
US20100021690A1 (en) 2008-07-25 2010-01-28 Mccarthy Kevin Protective Pad and Method for Manufacturing Foam Structures with Uniform Pegs and Voids
EP2373197B1 (en) 2008-12-22 2013-10-09 Tempur-Pedic Management, LLC Thin-layered alternating material body support and method of manufacturing same
CN101822467A (en) 2009-03-04 2010-09-08 际诺思(厦门)轻工制品有限公司 Sponge mattress structure
US8356373B2 (en) 2009-03-06 2013-01-22 Noel Group Llc Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
US20100237082A1 (en) 2009-03-20 2010-09-23 Products Of Tomorrow, Inc. Gel cushion mat
US20120284928A1 (en) 2009-04-21 2012-11-15 Nomaco Inc. Extendable and/or expandable foam panel constructions
US8561236B2 (en) * 2009-06-22 2013-10-22 Nomaco Inc. Stepped-edge and side-support members, assemblies, systems, and related methods, particularly for bedding and seating
US8646136B2 (en) 2009-08-27 2014-02-11 Nomaco Inc. Assemblies, systems, and related methods employing interlocking components to provide at least a portion of an encasement, particularly for bedding and seating applications
US20110179579A1 (en) * 2010-01-27 2011-07-28 Nomaco Inc. Expandable edge-support members, assemblies, and related methods, suitable for bedding and seating applications and innersprings
MX2012007869A (en) * 2010-02-12 2012-08-03 Noel Group Llc Composite cushioning structure(s) with spatially variable cushioning properties and related materials, cushioning assemblies, and methods for producing same.
US20110252572A1 (en) 2010-04-19 2011-10-20 Leigh Morrison Multi-layer multi-material foam mattresses
WO2011150080A1 (en) 2010-05-25 2011-12-01 Kingsdown, Inc. Independent mattress units with transition zone
US20120233784A1 (en) 2011-03-15 2012-09-20 Wood Robert L Multiple zone gel cushion
WO2012177321A2 (en) * 2011-04-29 2012-12-27 Nomaco Inc. Unitary composite/hybrid cushioning structures(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material (s) and related mothods
JP2014512936A (en) 2011-05-12 2014-05-29 シーリー テクノロジー エルエルシー Tension reducing foam and mattress structure
US8857799B2 (en) 2011-05-12 2014-10-14 Sealy Technology, Llc Advanced conformance encased coil spring units

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050192365A1 (en) * 2004-02-27 2005-09-01 Strandburg Gary M. Durable foam of olefin polymers, methods of making foam and articles prepared from same
WO2008100728A2 (en) * 2007-02-16 2008-08-21 Graebe Robert H Shape matching cushion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081209A1 (en) * 2011-09-30 2013-04-04 Nomaco Inc. Cellular mattress assemblies and related methods
US10045633B2 (en) 2013-04-26 2018-08-14 Noel Group Llc Cushioning assemblies with thermoplastic elements encapsulated in thermoset providing customizable support and airflow, and related methods

Also Published As

Publication number Publication date
CA2753914A1 (en) 2010-09-10
US8356373B2 (en) 2013-01-22
EP2403718A4 (en) 2012-11-28
US20100223732A1 (en) 2010-09-09
MX2011009080A (en) 2011-09-30
WO2010102091A1 (en) 2010-09-10
EP2403718A1 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
US8356373B2 (en) Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
US20120272457A1 (en) Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s) and related methods
US20130081209A1 (en) Cellular mattress assemblies and related methods
CN107454827B (en) Mattress assembly including thermally conductive foam layer
US8646136B2 (en) Assemblies, systems, and related methods employing interlocking components to provide at least a portion of an encasement, particularly for bedding and seating applications
US20140130265A1 (en) All-foam mattress assemblies with foam engineered cores having thermoplastic and thermoset materials, and related assemblies and methods
CA2839603C (en) Component with multiple layers
EP1904570B1 (en) Latex based composite foams
US9456696B2 (en) Foam furniture molded around a core with a lumbar support protrusion
EP2034870B1 (en) Foams formulated with rubber composition based springs
KR20070116120A (en) Support apparatus with gel layer
US9420891B2 (en) Foam furniture molded around a rigid foam core
WO2010135550A2 (en) Cushions comprising deformable members and related methods
US20130000045A1 (en) Support apparatus with gel layer
EP2373198A1 (en) Body support with non-planar top surface
US11103082B2 (en) Mattress assemblies including a hybrid posture support system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION