US20130079824A1 - Frictional screw-rod connection having an indirect form-locking portion - Google Patents

Frictional screw-rod connection having an indirect form-locking portion Download PDF

Info

Publication number
US20130079824A1
US20130079824A1 US13/596,888 US201213596888A US2013079824A1 US 20130079824 A1 US20130079824 A1 US 20130079824A1 US 201213596888 A US201213596888 A US 201213596888A US 2013079824 A1 US2013079824 A1 US 2013079824A1
Authority
US
United States
Prior art keywords
connection element
spinal column
implant according
receptacle
column implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/596,888
Inventor
Stefan Freudiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bird Biedermann AG
Original Assignee
Bird Biedermann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36406026&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130079824(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bird Biedermann AG filed Critical Bird Biedermann AG
Priority to US13/596,888 priority Critical patent/US20130079824A1/en
Publication of US20130079824A1 publication Critical patent/US20130079824A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7031Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other made wholly or partly of flexible material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor

Definitions

  • the present disclosure relates to a dynamic stabilizing system for spinal columns capable of stabilizing the spinal column without spinal fusion.
  • rod/screw connections is available for metallic rods and used mainly in fusion operations (spinal fusion).
  • spinal fusion There are only a few elastic systems that only support and stabilize, but do not fuse, the spinal segments and, thus, there are only a few devices for attaching the elastic connection elements to the pedicle screws.
  • rod/screw connections that are suitable for metallic rods are not necessarily also suitable for elastic connection elements since elastic rods made of plastic material, for example, possess different properties than rods made of metal that are stiffer by comparison. Accordingly, elastic rods made of plastic material cannot be simply clamped in a lasting fashion by means of frictional or force-fit connection since they usually are capable of reducing the clamping force by flowing. Consequently, there is a need for connection concepts comprising, aside from a possible frictional-type clamping, a contribution by form-fit which they attain for example by local elastic or plastic deformation.
  • WO 95/01132 can achieve increased pressure in the contact zone by means of a sphere in the clamping screw.
  • DE 4234118 A1 Harms et al.
  • U.S. Pat. No. 5,005,562 can achieve increased pressure in the contact zone by means of a circular toothed profile on the clamping screw.
  • WO 03/015648 A1 can achieve increased pressure in the contact zone by means of teeth under the hat-shaped clamping screw.
  • U.S. Pat. No. 6,117,137 (Halm et al.) comprises grooves at the lower rod receptacle in the screw head but these only serve to provide additional support against longitudinal displacements. Moreover, the side opposite from these grooves does not possess a matching complementary structure.
  • EP 0 689 798 B1 (Sebastián Bueno et al.) comprises a receptacle that is non-congruent (“egg-shaped”) to a round rod which can increase the clamping force of a metal rod. Since this profile does not comprise a specifically matching shape on the opposite side, it is unsuitable for an elastic rod made of plastic material due to the risk of flowing and reduction of tension.
  • EP 1 364 622 B1 (Freudiger) and EP 1 527 742 A1 (Freudiger) comprise mutually geometrically matching form-fit anchorings and thus are suitable for connecting an elastic rod made of plastic material rod to a pedicle screw.
  • the positioning of the grooved surfaces requires very precise insertion in order to prevent canting.
  • grooved surfaces do not allow for continuous positioning.
  • FR 2739548 (Huitema) comprises a grooved connection on part of the circumference of the metal rod. Since the bushing with the groove must be applied to the rod by pushing, the bushing is not suitable for an elastic rod made of plastic material due to the risk of jamming.
  • the present disclosure is based on the tasks to connect an elastic rod made of plastic material with a continuous smooth surface in continuous and secure fashion to a bone or pedicle screw and, in the process, transfer tensile and compressive as well as shearing and torsional forces between neighboring vertebrae.
  • connection is a combination of a direct frictional or force-fit connection and an indirect form-fit connection.
  • the indirect form-fit is attained by local elastic or plastic deformation (by flowing, for example) of the plastic material.
  • the expansion of the form-fit may be larger than the constriction of the elastic rod made of plastic material under the expected tensile forces.
  • the volumes of prominences and recesses may be of similar or equal size such that the volume of the plastic rod in the connection zone approximately re-attains its original value upon completion of the flow process.
  • the contact surface of the screw connection and the rod is a cage that can prevent the rod material from uncontrolled flowing-out and prevent an associated uncontrolled positional change of the rod.
  • the disclosed frictional screw/rod connection with indirect form-fit portion allows a smooth elastic rod made of plastic material to be connected to the head of a bone or pedicle screw such that the expected forces can be transferred lastingly and securely due to its application as a dynamic stabilization of the lumbar spinal column.
  • the present disclosure combines a frictional connection, which can be positioned easily and continuously, with the reliability of a form-fit portion to the connection.
  • the form-fit is generated only upon connection by utilizing the flow properties of an elastic plastic material. The present disclosure thus provides simple and secure handling of the system under surgical conditions.
  • FIG. 1 a shows a round cross-section not exposed to load and an oval cross-section exposed to load.
  • FIG. 1 b shows a square cross-section not exposed to load and a rectangular cross-section exposed to load.
  • FIG. 1 c shows a triangular cross-section not exposed to load and a triangular cross-section with broadened base exposed to load.
  • FIG. 2 shows an example of a round connection element in the receptacle of a pedicle screw with a filling piece and a clamping element.
  • FIG. 3 shows a side view of FIG. 2 .
  • FIG. 4 shows a sectional view of FIG. 2 with local deviations from the cross-section of the connection element along the receptacle.
  • FIG. 5 shows a sectional view of FIG. 2 with peg-shaped deviations from the cross-section of the connection element along the receptacle on the screw and on the filling piece.
  • FIG. 6 a shows a filling piece with an exemplary receptacle for a counter-pressure device.
  • a spinal column implant which includes a plurality of bone screws 1 (only one screw is shown in FIGS. 2 and 3 ) and an elastic connection element 2 constructed from a plastic material that connects the bone screws 1 .
  • Each bone screw 1 includes a screw head portion 1 a and a receptacle 1 b for receiving the connection element 2 therein.
  • the screw head portion 1 a functions as a seat for the connection element when the connection element 2 is in the receptacle 1 b.
  • Each bone screw 1 further includes a filling piece 3 and a clamping element 4 .
  • the filling piece 3 can be guided in the receptacle 1 b so as to be placed over the connection element 2 .
  • the clamping element 4 may be any type of clamping element 4 that is known to those of ordinary skill in the art.
  • the clamping element 4 may be a threaded nut that can be screwed onto the upper part of the screw 1 .
  • the filling piece 3 may be in any shape so as to provide the clamping of the connection element 2 .
  • the lower part of the filling piece 3 is receptacle shaped or recess shaped to receive the connection element 2 .
  • the filling piece 3 may also include lateral guides 7 that can engage corresponding recesses (not shown) in the receptacle lb to guide the filling piece 3 in the receptacle 1 b.
  • a holding instrument may be provided to hold the filling piece 3 .
  • the filling piece 3 may include a receptacle for a holding instrument 10 .
  • the contour deviations of the space 1 c may be prominent deviations or recessed deviations.
  • the space 1 c may have prominent upper and lower deviations and recessed lateral deviations.
  • the prominent deviations may be formed by ribs, pegs, and/or other projections on the screw head portion 1 a, the receptacle 1 b and/or the filling piece 3 .
  • the recessed deviations in the contour of the space 1 c may be formed by recessed portions of the space 1 c.
  • FIG. 4 shows a sectional view of FIG. 2 , in which one or more portions of the contour of the space 1 c include deviations. In FIG.
  • FIGS. 7 a and 7 b A modification of the filling piece is shown in FIGS. 7 a and 7 b .
  • the filling piece 30 of FIGS. 7 a and 7 b differs from the filling piece 3 as described above in that a plurality of projecting ribs 31 are provided on the bottom of the filling piece 30 , which is the side of the filling piece 30 that faces the connection element 2 .
  • the ribs 31 extend in a direction which is perpendicular to the longitudinal axis (not shown) of the connection element 2 .
  • the ribs 31 may be parallel to each other and may have the same distance from each other.
  • connection of the connection element 2 in the space 1 c of each screw 1 which is attached to a corresponding vertebrae, provides the transfer of tensile and compressive as well as shearing and torsional forces between neighboring vertebrae.
  • the connection of the connection element 2 to each screw 1 is a combination of a direct frictional or force-fit connection and an indirect form-fit connection.
  • the indirect form-fit connection is attained by local elastic or plastic deformation (by flowing, for example) of the plastic material.
  • the expansion of the form-fit may be larger than the constriction of the elastic connection element 2 made of plastic material under the expected tensile forces.
  • the above-described frictional connection with indirect form-fit contribution allows a smooth elastic connection element made of plastic material to be connected to a plurality of bone or pedicle screws of a spinal implant such that the expected forces generated by dynamic stabilization of the lumbar spinal column can be continuously and securely transferred to the elastic connection element made of plastic material.
  • the indirect form-fit contribution to the connection is generated upon utilizing the plastic flow properties of the elastic connection element made of plastic material. The present disclosure thus provides simple and secure handling of the spinal implant system under surgical conditions.

Abstract

A spinal column implant for elastic stabilization of vertebrae, includes a pedicle screw and an elastic rod which is anchored in a frictional fashion in a receptacle of pedicle screws by means of a filling piece, and a clamping element. The frictional connection is supported additionally by an indirect form-fit portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a continuation of allowed U.S. patent application Ser. No. 11/512,461, filed Aug. 29, 2006, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/738,695, filed Nov. 21, 2005, and claims priority from Swiss Patent Application 1409/05, filed Aug. 29, 2005, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND
  • The present disclosure relates to a dynamic stabilizing system for spinal columns capable of stabilizing the spinal column without spinal fusion.
  • A multitude of rod/screw connections is available for metallic rods and used mainly in fusion operations (spinal fusion). There are only a few elastic systems that only support and stabilize, but do not fuse, the spinal segments and, thus, there are only a few devices for attaching the elastic connection elements to the pedicle screws.
  • As a matter of principle, rod/screw connections that are suitable for metallic rods are not necessarily also suitable for elastic connection elements since elastic rods made of plastic material, for example, possess different properties than rods made of metal that are stiffer by comparison. Accordingly, elastic rods made of plastic material cannot be simply clamped in a lasting fashion by means of frictional or force-fit connection since they usually are capable of reducing the clamping force by flowing. Consequently, there is a need for connection concepts comprising, aside from a possible frictional-type clamping, a contribution by form-fit which they attain for example by local elastic or plastic deformation.
  • WO 95/01132 (Schläpfer et al.) can achieve increased pressure in the contact zone by means of a sphere in the clamping screw. DE 4234118 A1 (Harms et al.) can achieve increased pressure in the contact zone by means of the edge of the hollow fixation screw. U.S. Pat. No. 5,005,562 (Cotrel) can achieve increased pressure in the contact zone by means of a circular toothed profile on the clamping screw. WO 03/015648 A1 (McKinley) can achieve increased pressure in the contact zone by means of teeth under the hat-shaped clamping screw. Even though the special features of the above-noted references can achieve increased pressure in the contact zone and therefore elastic or plastic, as it may be, flowing locally at the rod surface, such increased pressure would be insufficient in the case of an elastic rod made of plastic material.
  • U.S. Pat. No. 6,117,137 (Halm et al.) comprises grooves at the lower rod receptacle in the screw head but these only serve to provide additional support against longitudinal displacements. Moreover, the side opposite from these grooves does not possess a matching complementary structure.
  • EP 0 689 798 B1 (Sebastián Bueno et al.) comprises a receptacle that is non-congruent (“egg-shaped”) to a round rod which can increase the clamping force of a metal rod. Since this profile does not comprise a specifically matching shape on the opposite side, it is unsuitable for an elastic rod made of plastic material due to the risk of flowing and reduction of tension.
  • EP 1 364 622 B1 (Freudiger) and EP 1 527 742 A1 (Freudiger) comprise mutually geometrically matching form-fit anchorings and thus are suitable for connecting an elastic rod made of plastic material rod to a pedicle screw. However, the positioning of the grooved surfaces requires very precise insertion in order to prevent canting. Moreover, grooved surfaces do not allow for continuous positioning.
  • U.S. Pat. No. 6,478,797 B1 (Paul) and US 2003/0125742 A1 (Yuan et al.) both comprise filling pieces that allow for all-around clamping of the metal rod when inserted from above. However, neither of the two systems comprises surface structures in the area of clamping that would be suitable for an elastic rod made of plastic material by means of a sufficient form-fit contribution.
  • FR 2739548 (Huitema) comprises a grooved connection on part of the circumference of the metal rod. Since the bushing with the groove must be applied to the rod by pushing, the bushing is not suitable for an elastic rod made of plastic material due to the risk of jamming.
  • SUMMARY
  • The present disclosure is based on the tasks to connect an elastic rod made of plastic material with a continuous smooth surface in continuous and secure fashion to a bone or pedicle screw and, in the process, transfer tensile and compressive as well as shearing and torsional forces between neighboring vertebrae.
  • The solution to this task is characterized in that the connection is a combination of a direct frictional or force-fit connection and an indirect form-fit connection. The indirect form-fit is attained by local elastic or plastic deformation (by flowing, for example) of the plastic material. The expansion of the form-fit may be larger than the constriction of the elastic rod made of plastic material under the expected tensile forces. The volumes of prominences and recesses may be of similar or equal size such that the volume of the plastic rod in the connection zone approximately re-attains its original value upon completion of the flow process. The contact surface of the screw connection and the rod is a cage that can prevent the rod material from uncontrolled flowing-out and prevent an associated uncontrolled positional change of the rod.
  • Accordingly, the disclosed frictional screw/rod connection with indirect form-fit portion allows a smooth elastic rod made of plastic material to be connected to the head of a bone or pedicle screw such that the expected forces can be transferred lastingly and securely due to its application as a dynamic stabilization of the lumbar spinal column. As a result, the present disclosure combines a frictional connection, which can be positioned easily and continuously, with the reliability of a form-fit portion to the connection. However, the form-fit is generated only upon connection by utilizing the flow properties of an elastic plastic material. The present disclosure thus provides simple and secure handling of the system under surgical conditions.
  • In the following, the present disclosure is illustrated in more detail by means of the appended drawings, in which exemplary embodiments are shown. In the figures, the following is shown schematically:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a shows a round cross-section not exposed to load and an oval cross-section exposed to load.
  • FIG. 1 b shows a square cross-section not exposed to load and a rectangular cross-section exposed to load.
  • FIG. 1 c shows a triangular cross-section not exposed to load and a triangular cross-section with broadened base exposed to load.
  • FIG. 2 shows an example of a round connection element in the receptacle of a pedicle screw with a filling piece and a clamping element.
  • FIG. 3 shows a side view of FIG. 2.
  • FIG. 4 shows a sectional view of FIG. 2 with local deviations from the cross-section of the connection element along the receptacle.
  • FIG. 5 shows a sectional view of FIG. 2 with peg-shaped deviations from the cross-section of the connection element along the receptacle on the screw and on the filling piece.
  • FIG. 6 a shows a filling piece with an exemplary receptacle for a counter-pressure device.
  • FIG. 6 b is a top view of FIG. 6 a.
  • FIG. 6 c is the same top view as FIG. 6 b though with an alternative lateral guidance.
  • FIG. 7 a is a perspective view of a filling piece according to an embodiment of the present disclosure.
  • FIG. 7 b is a bottom view of the filling piece of FIG. 7 a.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 2 and 3, a spinal column implant is shown which includes a plurality of bone screws 1 (only one screw is shown in FIGS. 2 and 3) and an elastic connection element 2 constructed from a plastic material that connects the bone screws 1. Each bone screw 1 includes a screw head portion 1 a and a receptacle 1 b for receiving the connection element 2 therein. The screw head portion 1 a functions as a seat for the connection element when the connection element 2 is in the receptacle 1 b. Each bone screw 1 further includes a filling piece 3 and a clamping element 4. The filling piece 3 can be guided in the receptacle 1 b so as to be placed over the connection element 2. The connection element 2 can then be frictionally clamped in a space 1 c in the receptacle 1 b between the filling piece 3 and the screw head portion la by the clamping element 4. The contour of the space 1 c deviates from the contour of the connection element 2.
  • Referring to FIGS. 1 a-1 c, the connection element 2 may be a rod that can have any cross sectional shape. For example, the connection element 2 may have a circular cross section as shown in FIG. 1 a, a square cross section as shown in FIG. 1 b, or a triangular cross section as shown in FIG. 1 c. The connection element 2 can be constructed from an elastic plastic material so as to provide the herein described contour deviation. An example of an elastic plastic material is PCU (Polycarbonate Urethane). However, other elastic-plastic materials may be used for the connection element 2. Additionally, the connection element 2 can have a smooth and continuous outer surface. FIG. 1 a shows, for example, a round cross-section for the connection element 2 that is converted into an oval cross section due to the opposing forces shown. FIG. 1 b shows, for example, a square cross-section for the connection element 2 that is converted into a rectangular cross section due to the opposing forces shown. FIG. 1 c shows, for example, a triangular cross section for the connection element 2 that is converted into a triangular cross section with a more acute base angle due to the opposing forces shown. Thus, the elastic plastic construction of the connection element 2 provides for deformation of the connection element 2 due to the difference between the contour of the space 1 c and the contour of the connection element 2 when the connection element 2 is clamped in the receptacle 1 b between the screw head portion 1 a and the filling piece 3.
  • The clamping element 4 may be any type of clamping element 4 that is known to those of ordinary skill in the art. For example, the clamping element 4 may be a threaded nut that can be screwed onto the upper part of the screw 1. The filling piece 3 may be in any shape so as to provide the clamping of the connection element 2. In the disclosed example, the lower part of the filling piece 3 is receptacle shaped or recess shaped to receive the connection element 2. As shown in FIGS. 6 a-6 c, the filling piece 3 may also include lateral guides 7 that can engage corresponding recesses (not shown) in the receptacle lb to guide the filling piece 3 in the receptacle 1 b. A holding instrument may be provided to hold the filling piece 3. The filling piece 3 may include a receptacle for a holding instrument 10.
  • The deviation in the contour of the space 1 c may be near the lower part of the receptacle 1 b on the screw head portion 1 a and near the upper part of the receptacle 1 b on the filling piece 3. The deviation in the contour of the space 1 c may be in the area near the lateral portions of the receptacle 1 b. Furthermore, the deviations in the contour of the space 1 c may be in one or more other portions of the space 1 c transverse to the longitudinal axis of the connection element 2 in the same plane or in different planes. Additionally, the entire contour of the space 1 c may deviate rather than local deviations to provide overall deformation of the connection element 2 as shown in FIGS. 1 a-1 c due to clamping forces exerted on the connection element 2.
  • The contour deviations of the space 1 c may be prominent deviations or recessed deviations. For example, the space 1 c may have prominent upper and lower deviations and recessed lateral deviations. The prominent deviations may be formed by ribs, pegs, and/or other projections on the screw head portion 1 a, the receptacle 1 b and/or the filling piece 3. The recessed deviations in the contour of the space 1 c may be formed by recessed portions of the space 1 c. FIG. 4 shows a sectional view of FIG. 2, in which one or more portions of the contour of the space 1 c include deviations. In FIG. 4, the space 1 c at the bottom of the receptacle 1 b at the screw head portion 1 a includes an elevated rib 5 a and the bottom of the filling piece 3 inside the receptacle 1 b includes an elevated rib 5 b. In FIG. 4, the ribs 5 a and 5 b provide prominent deviations of the contour of the space 1 c. The contour of the space 1 c can also include recessed deviations along the lateral portions of the space 1 c, which are shown as a left recess 6 a and a right recess 6 b in FIG. 4. The contour of the space 1 c could have both prominent deviations and recessed deviations.
  • The connection element 2 can be compressed in the space 1 c upon fastening the clamping element 4. Before fastening of the clamping element 4 the filling piece 3 is guided downward in the receptacle 1 b along the lateral guides 7 and onto the connection element 2. Then, the clamping element 4 can be fastened. Accordingly, the downward pressing by the filling piece 3 causes the rib 5 a and the rib 5 b to impinge upon the connection element 2 to provide recessed compression of the connection element 2 around the area of the ribs 5 a and 5 b. The compression of the connection element 2 by the filling piece 3 provides displacing of the material of the connection element 2 (e.g. by plastic flow), which can fill the recesses 6 a and 6 b. Accordingly, the deformation of the connection element 2 can provide a form-fit connection of the connection element 2 in the receptacle 1 b.
  • FIG. 5 shows a sectional view of FIG. 2, in which instead of the ribs 5 a and 5 b of FIG. 4, conical pegs 8 in the receptacle 1 b at the screw head portion 1 a and conical peg 9 on the filling piece 3 provide prominent deviations in the contour of the space 1 c. The pegs 8 and 9 impinge upon the elastic plastic material of the connection element 2 to provide the recessed deformations of the connection element 2 around the pegs 8 and 9. Furthermore, as described above, the compression, i.e., recessed deformation, of the connection element 2 provides prominent deformation of the connection element to provide a form-fit connection in the space 1 c. Although only two ribs and three pegs are shown in FIGS. 4 and 5, respectively, any number of pegs and/or ribs can be provided inside the receptacle 1 b, on the screw head portion 1 a and/or on the filling piece 3 to provide the above-described deviations in the contour of the space 1 c and a resulting form-fit connection of the connection element 2 in the space 1 c. Any projections, such as the ribs 5 a, 5 b and pegs 8,9 can have similar or equal volume as the recesses 6 a,6 b such that the clamped portion of the connection element 4 retains approximately the same volume before and after deformation upon completion of the flow process (i.e., plastic flow). Upon clamping of the connection element the frictional contact between the connection element 4 and the screw 1 in combination with the above-described form-fit connection prevents the material of the connection element 4 from uncontrolled flowing-out and any associated uncontrolled positional change of the connection element 4.
  • A modification of the filling piece is shown in FIGS. 7 a and 7 b. The filling piece 30 of FIGS. 7 a and 7 b differs from the filling piece 3 as described above in that a plurality of projecting ribs 31 are provided on the bottom of the filling piece 30, which is the side of the filling piece 30 that faces the connection element 2. The ribs 31 extend in a direction which is perpendicular to the longitudinal axis (not shown) of the connection element 2. The ribs 31 may be parallel to each other and may have the same distance from each other.
  • The receptacle 1 b can also have at the screw head portion 1 a, which is the seat of the connection element 2, a plurality of projecting ribs (not shown). The ribs also extend in a direction perpendicular to the longitudinal direction of the connection element 2. A plurality of ribs can be provided to create a smooth load distribution on the surface of the connection element 2. The number of the ribs can vary as compared to the ribs 31 of the filling piece.
  • The connection of the connection element 2 in the space 1 c of each screw 1, which is attached to a corresponding vertebrae, provides the transfer of tensile and compressive as well as shearing and torsional forces between neighboring vertebrae. The connection of the connection element 2 to each screw 1 is a combination of a direct frictional or force-fit connection and an indirect form-fit connection. The indirect form-fit connection is attained by local elastic or plastic deformation (by flowing, for example) of the plastic material. The expansion of the form-fit may be larger than the constriction of the elastic connection element 2 made of plastic material under the expected tensile forces.
  • The above-described frictional connection with indirect form-fit contribution allows a smooth elastic connection element made of plastic material to be connected to a plurality of bone or pedicle screws of a spinal implant such that the expected forces generated by dynamic stabilization of the lumbar spinal column can be continuously and securely transferred to the elastic connection element made of plastic material. The indirect form-fit contribution to the connection is generated upon utilizing the plastic flow properties of the elastic connection element made of plastic material. The present disclosure thus provides simple and secure handling of the spinal implant system under surgical conditions.
  • While a particular form of the disclosure has been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the disclosure. Accordingly, it is not intended that the disclosure be limited, except as by the appended claims.

Claims (28)

What is claimed is:
1. A spinal column implant comprising:
an elastic connection element;
a plurality of bone screws, each bone screw having a screw head portion, one receptacle for the connection element, a filling piece, and a clamping element;
wherein the connection element is clamped by the clamping element in a space in the receptacle between the screw head portion and the filling piece; and
wherein in an area of the lower receptacle on the screw head portion and in an area of the upper receptacle on the filling piece, a contour of the space deviates from a contour of the connection element.
2. A spinal column implant according to claim 1, wherein the contour of the space also deviates from the contour of the connection element around lateral portions of the receptacle between the screw head portion and the filling piece.
3. A spinal column implant according to claim 1, wherein the deviations of the contour of the space are situated in one or more sections transverse to the longitudinal axis of the connection element, in the same plane or in different planes.
4. A spinal column implant according to claim 1, wherein the deviations in the contour of the space are prominent or recessed.
5. A spinal column implant according to claim 2, wherein the upper and lower deviations of the space are prominent and the lateral deviations are recessed.
6. A spinal column implant according to claim 1, wherein the deviations in the contour of the space are rib-shaped or peg-shaped.
7. A spinal column implant according to claim 1, wherein the connection element is a rod.
8. A spinal column implant according to claim 7, wherein the rod is round.
9. A spinal column implant according to claim 1, wherein the connection element comprises a plastic material.
10. A spinal column implant according to claim 9, wherein the connection element is made of Polycarbonate Urethane.
11. A spinal column implant according to claim 1, wherein the clamping element is a screw nut.
12. A spinal column implant according to claim 1, wherein the filling piece comprises a receptacle for a holding instrument.
13. A spinal column implant comprising:
an elastic connection element comprising a plastic material;
a plurality of bone screws, each bone screw having a screw head portion, one receptacle for the connection element, a filling piece, and a clamping element;
wherein the connection element is clamped by the clamping element in a space in the receptacle between the screw head portion and the filling piece; and
wherein at least a portion of a contour of the space deviates from a contour of the connection element.
14. A spinal column implant according to claim 13, wherein the deviations in the contour of the space are situated in one or more sections transverse to the longitudinal axis of the connection element, in the same plane or in different planes.
15. A spinal column implant according to claim 13, wherein the deviations in the contour of the space are prominent or recessed.
16. A spinal column implant according to claim 13, wherein the connection element is made of Polycarbonate Urethane.
17. A spinal column implant comprising:
a deformable connection element; and
a bone screw comprising a screw head portion, a receptacle configured to receive a section of the connection element, a filling piece, and a clamping element configured to clamp the section of the connection element in a space in the receptacle between the screw head portion and the filling piece;
wherein at least a portion of a contour of the space deviates from a contour of the connection element; and
wherein at least a portion of the section of the connection element deforms to substantially correspond to a contour of a corresponding portion of the space in the receptacle when the clamping element is clamped to provide a connection of the section of the connection element with the bone screw.
18. A spinal column implant according to claim 17, wherein the connection element comprises Polycarbonate Urethane.
19. A spinal column implant according to claim 17, wherein the section of the connection element deforms around an upper portion of the receptacle at the filling piece and a lower portion of the receptacle at the screw head portion.
20. A spinal column implant according to claim 17, wherein the section of the connection element deforms around lateral portions of the receptacle between the screw head portion and the filling piece.
21. A spinal column implant according to claim 17, wherein the section of the connection element deforms by any one of prominent deformation and recessed deformation.
22. A spinal column implant according to claim 17, wherein a cross section of the connection element is any one of circular, square and triangular shaped.
23. A spinal column implant according to claim 1, wherein the filling piece is laterally guided in the receptacle.
24. A spinal column implant according to claim 13, wherein the filling piece is laterally guided in the receptacle.
25. A spinal column implant according to claim 17, wherein the filling piece is laterally guided in the receptacle.
26. A spinal column implant according to claim 1, wherein the clamping element clamps the connection element in a force-fit fashion.
27. A spinal column implant according to claim 13, wherein the clamping element clamps the connection element in a force-fit fashion.
28. A spinal column implant according to claim 17, wherein the clamping element clamps the connection element in a force-fit fashion.
US13/596,888 2005-08-29 2012-08-28 Frictional screw-rod connection having an indirect form-locking portion Abandoned US20130079824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/596,888 US20130079824A1 (en) 2005-08-29 2012-08-28 Frictional screw-rod connection having an indirect form-locking portion

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CHSZ1409/05 2005-08-29
CH01409/05A CH705709B1 (en) 2005-08-29 2005-08-29 Spinal implant.
US73869505P 2005-11-21 2005-11-21
US11/512,461 US8282672B2 (en) 2005-08-29 2006-08-29 Frictional screw-rod connection having an indirect form-locking portion
US13/596,888 US20130079824A1 (en) 2005-08-29 2012-08-28 Frictional screw-rod connection having an indirect form-locking portion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/512,461 Continuation US8282672B2 (en) 2005-08-29 2006-08-29 Frictional screw-rod connection having an indirect form-locking portion

Publications (1)

Publication Number Publication Date
US20130079824A1 true US20130079824A1 (en) 2013-03-28

Family

ID=36406026

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/512,461 Expired - Fee Related US8282672B2 (en) 2005-08-29 2006-08-29 Frictional screw-rod connection having an indirect form-locking portion
US13/596,888 Abandoned US20130079824A1 (en) 2005-08-29 2012-08-28 Frictional screw-rod connection having an indirect form-locking portion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/512,461 Expired - Fee Related US8282672B2 (en) 2005-08-29 2006-08-29 Frictional screw-rod connection having an indirect form-locking portion

Country Status (8)

Country Link
US (2) US8282672B2 (en)
EP (1) EP1759646B2 (en)
JP (1) JP4813293B2 (en)
KR (1) KR101280008B1 (en)
CN (1) CN101011289B (en)
CH (1) CH705709B1 (en)
ES (1) ES2312071T5 (en)
TW (1) TWI436755B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114404A1 (en) * 2006-09-15 2008-05-15 Wilfried Matthis Bone anchoring device
US20090318969A1 (en) * 2008-06-19 2009-12-24 Wilfried Matthis Bone anchoring assembly

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006002049D1 (en) * 2005-09-13 2008-12-24 Bird Biedermann Ag Dynamic clamping device for spinal implant
DE602005008752D1 (en) * 2005-11-17 2008-09-18 Biedermann Motech Gmbh Polyaxial screw for flexible rod
US7819899B2 (en) * 2006-01-03 2010-10-26 Zimmer Spine, Inc. Instrument for pedicle screw adhesive materials
EP1815812B1 (en) * 2006-02-03 2009-07-29 Spinelab AG Spinal implant
US20080058808A1 (en) 2006-06-14 2008-03-06 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
ES2453196T3 (en) * 2006-08-24 2014-04-04 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device
EP2117451A1 (en) * 2006-12-29 2009-11-18 Zimmer Spine Austin, Inc. Spinal stabilization systems and methods
US8636783B2 (en) * 2006-12-29 2014-01-28 Zimmer Spine, Inc. Spinal stabilization systems and methods
EP2301456B1 (en) * 2007-02-23 2013-04-17 Biedermann Technologies GmbH & Co. KG Rod connector for stabilizing vertebrae
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US7985243B2 (en) 2007-06-05 2011-07-26 Spartek Medical, Inc. Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US7635380B2 (en) 2007-06-05 2009-12-22 Spartek Medical, Inc. Bone anchor with a compressor element for receiving a rod for a dynamic stabilization and motion preservation spinal implantation system and method
ES2348336T3 (en) * 2007-07-20 2010-12-02 Biedermann Motech Gmbh BONE ANCHORAGE DEVICE.
US20090105756A1 (en) 2007-10-23 2009-04-23 Marc Richelsoph Spinal implant
ES2359756T3 (en) 2008-01-28 2011-05-26 Spinelab Ag PEDICULAR SCREW WITH CLOSURE DEVICE.
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
EP2105101B2 (en) 2008-03-28 2013-09-11 BIEDERMANN MOTECH GmbH Bone anchoring device
US20090326582A1 (en) * 2008-04-10 2009-12-31 Marcus Songer Dynamic Rod
ES2387829T3 (en) 2008-04-28 2012-10-02 Biedermann Technologies Gmbh & Co. Kg Element for the stabilization of the spine in the form of a rod and method for its production
EP2116205B1 (en) * 2008-05-06 2010-12-29 BIEDERMANN MOTECH GmbH Rod-shaped implant, in particular for the dynamic stabilization of the spine
EP2160988B1 (en) * 2008-09-04 2012-12-26 Biedermann Technologies GmbH & Co. KG Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant
US9603629B2 (en) 2008-09-09 2017-03-28 Intelligent Implant Systems Llc Polyaxial screw assembly
WO2010030772A1 (en) * 2008-09-10 2010-03-18 Life Spine, Inc. Spinal rod
RU2565484C2 (en) 2009-07-16 2015-10-20 Спайнсэйв А Г Fixation assembly for joint bar for spine stabilisation
CN102695465A (en) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
BR112013019837B1 (en) * 2011-02-04 2020-12-01 Spinesave Ag bone screw and fixing element
ES2569854T3 (en) 2011-09-28 2016-05-12 Biedermann Technologies Gmbh & Co. Kg Bone anchor set
EP2747670A4 (en) 2011-10-05 2015-06-24 Mark A Dodson Modular retractor and related method
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
ES2603204T3 (en) 2013-07-19 2017-02-24 Biedermann Technologies Gmbh & Co. Kg Polyaxial bone anchoring device
US9044273B2 (en) 2013-10-07 2015-06-02 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
CN106137471B (en) * 2015-04-24 2020-02-18 施鲁孙 Stress dispersion type artificial intervertebral disc
CN105455927B (en) * 2016-01-13 2017-06-20 李海明 A kind of spinal implant two dimension prestressing clamping device and its installation method
CN105496540B (en) * 2016-01-20 2019-04-26 北京大学深圳医院 Ilium nail and spinal fixing device with bone induction material coating
CN107007341B (en) * 2017-05-22 2020-02-11 浙江德康医疗器械有限公司 Cobalt chromium molybdenum chest waist way of escape nail stick system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US6077262A (en) * 1993-06-04 2000-06-20 Synthes (U.S.A.) Posterior spinal implant
US20030220642A1 (en) * 2002-05-21 2003-11-27 Stefan Freudiger Elastic stabilization system for vertebral columns
US20040172025A1 (en) * 2001-10-30 2004-09-02 Drewry Troy D. Flexible spinal stabilization system and method
US20050203518A1 (en) * 2004-03-05 2005-09-15 Biedermann Motech Gmbh Stabilization device for the dynamic stabilization of vertebrae or bones and rod like element for such a stabilization device
US20070161999A1 (en) * 2005-11-17 2007-07-12 Lutz Biedermann Bone anchoring device

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US172025A (en) 1876-01-11 Improvement in sulky-plows
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
FR2633177B1 (en) * 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
FR2658414B1 (en) * 1990-02-19 1992-07-31 Sofamor IMPLANT FOR OSTEOSYNTHESIS DEVICE IN PARTICULAR OF THE RACHIS.
CH681853A5 (en) * 1990-08-21 1993-06-15 Synthes Ag
US5257993A (en) * 1991-10-04 1993-11-02 Acromed Corporation Top-entry rod retainer
DE59301618D1 (en) * 1992-06-04 1996-03-28 Synthes Ag Osteosynthetic fastener
US5545165A (en) * 1992-10-09 1996-08-13 Biedermann Motech Gmbh Anchoring member
DE4234118C2 (en) 1992-10-09 2002-09-19 Biedermann Motech Gmbh anchoring element
ZA937672B (en) * 1992-10-22 1994-05-16 Danek Medical Inc Spinal rod transverse connector for supporting vertebral fixation elements
DE4307576C1 (en) * 1993-03-10 1994-04-21 Biedermann Motech Gmbh Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod
EP0659062B1 (en) 1993-07-02 2009-05-27 Synthes GmbH Posterior vertebral column implant
EP0669109B1 (en) 1994-02-28 1999-05-26 Sulzer Orthopädie AG Stabilizer for adjacent vertebrae
EP0689798B1 (en) * 1994-06-30 2000-10-18 Sulzer Orthopädie AG Device for connecting vertebrae
DE4425357C2 (en) * 1994-07-18 1996-07-04 Harms Juergen Anchoring element
US5562663A (en) * 1995-06-07 1996-10-08 Danek Medical, Inc. Implant interconnection mechanism
FR2739548A1 (en) 1995-10-05 1997-04-11 Huitema Jean Pierre Locking assembly for pedicular screws or hooks and spinal rods
US5782833A (en) 1996-12-20 1998-07-21 Haider; Thomas T. Pedicle screw system for osteosynthesis
US6749361B2 (en) * 1997-10-06 2004-06-15 Werner Hermann Shackle element for clamping a fixation rod, a method for making a shackle element, a hook with a shackle element and a rode connector with a shackle element
DE19818765A1 (en) * 1998-04-07 1999-10-14 Schaefer Micomed Gmbh Synthetic bone device for fixing bone fractures
US6565565B1 (en) * 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
IT1310423B1 (en) * 1999-07-29 2002-02-13 Giovanni Zaccherotti MEANS OF FEMORAL FIXATION OF SEMITENDINOUS AND DELGRAGILE TENDONS FOR RECONSTRUCTION OF THE ANTERIOR CROSS LIGAMENT.
WO2001022893A1 (en) * 1999-09-27 2001-04-05 Blackstone Medical, Inc. A surgical screw system and related methods
US6554834B1 (en) * 1999-10-07 2003-04-29 Stryker Spine Slotted head pedicle screw assembly
US6302410B1 (en) * 1999-10-22 2001-10-16 Earth Tool Company, L.L.C. Rod gripping jaw
US6224598B1 (en) * 2000-02-16 2001-05-01 Roger P. Jackson Bone screw threaded plug closure with central set screw
US6478797B1 (en) * 2001-05-16 2002-11-12 Kamaljit S. Paul Spinal fixation device
CA2456892A1 (en) 2001-08-13 2003-02-27 Laurence M. Mckinley Vertebral alignment and fixation assembly
US6520963B1 (en) * 2001-08-13 2003-02-18 Mckinley Lawrence M. Vertebral alignment and fixation assembly
US6652526B1 (en) * 2001-10-05 2003-11-25 Ruben P. Arafiles Spinal stabilization rod fastener
DE10213855A1 (en) * 2002-03-27 2003-10-16 Biedermann Motech Gmbh Bone anchoring device for stabilizing bone segments and receiving part of a bone anchoring device
US20030220643A1 (en) * 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US6843791B2 (en) * 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
DE50304374D1 (en) * 2003-10-31 2006-09-07 Spinelab Ag Locking device for pedicle screws for fixing elastic rod elements
TW200518711A (en) * 2003-12-11 2005-06-16 A Spine Holding Group Corp Rotation buckling ball-head spine restoring equipment
DE502006002049D1 (en) * 2005-09-13 2008-12-24 Bird Biedermann Ag Dynamic clamping device for spinal implant
DE602005008265D1 (en) * 2005-12-23 2008-08-28 Biedermann Motech Gmbh Flexible stabilization device for the dynamic stabilization of bones or vertebrae
ES2336815T5 (en) * 2006-09-15 2013-05-16 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US6077262A (en) * 1993-06-04 2000-06-20 Synthes (U.S.A.) Posterior spinal implant
US20040172025A1 (en) * 2001-10-30 2004-09-02 Drewry Troy D. Flexible spinal stabilization system and method
US20030220642A1 (en) * 2002-05-21 2003-11-27 Stefan Freudiger Elastic stabilization system for vertebral columns
US20050203518A1 (en) * 2004-03-05 2005-09-15 Biedermann Motech Gmbh Stabilization device for the dynamic stabilization of vertebrae or bones and rod like element for such a stabilization device
US20070161999A1 (en) * 2005-11-17 2007-07-12 Lutz Biedermann Bone anchoring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114404A1 (en) * 2006-09-15 2008-05-15 Wilfried Matthis Bone anchoring device
US8568458B2 (en) 2006-09-15 2013-10-29 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device
US20090318969A1 (en) * 2008-06-19 2009-12-24 Wilfried Matthis Bone anchoring assembly
US9144437B2 (en) * 2008-06-19 2015-09-29 Biedermann Technologies Gmbh & Co. Kg Bone anchoring assembly

Also Published As

Publication number Publication date
JP4813293B2 (en) 2011-11-09
EP1759646B1 (en) 2008-07-30
CN101011289B (en) 2010-05-19
CH705709B1 (en) 2013-05-15
US20070093820A1 (en) 2007-04-26
TWI436755B (en) 2014-05-11
EP1759646B2 (en) 2011-03-16
TW200718390A (en) 2007-05-16
US8282672B2 (en) 2012-10-09
ES2312071T3 (en) 2009-02-16
KR20070026058A (en) 2007-03-08
KR101280008B1 (en) 2013-06-28
EP1759646A1 (en) 2007-03-07
CN101011289A (en) 2007-08-08
JP2007061615A (en) 2007-03-15
ES2312071T5 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US8282672B2 (en) Frictional screw-rod connection having an indirect form-locking portion
US8419773B2 (en) Stabilization device for stabilizing bones of a vertebra and rod connector used therefor
US8277494B2 (en) Bone anchoring device
US8317833B2 (en) Elongated stabilization member and bone anchor useful in bone and especially spinal repair processes
US6117135A (en) Device for bone surgery
US8252025B2 (en) Vertebral fixation system
EP1769761B1 (en) Bone anchoring device
US8870925B2 (en) Dynamic clamping device for spinal implant
JP5345144B2 (en) Transverse spinal connection device and system
EP2070485B1 (en) Anchoring device for anchoring a rod in bones or vertebrae
AU704134B2 (en) Spine construct with band clamp
US9451988B2 (en) Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant
KR20090018062A (en) Connector apparatus
US8211152B2 (en) Tension fixation system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION