US20130061845A1 - Radiant energy driven orientation system - Google Patents

Radiant energy driven orientation system Download PDF

Info

Publication number
US20130061845A1
US20130061845A1 US13/230,285 US201113230285A US2013061845A1 US 20130061845 A1 US20130061845 A1 US 20130061845A1 US 201113230285 A US201113230285 A US 201113230285A US 2013061845 A1 US2013061845 A1 US 2013061845A1
Authority
US
United States
Prior art keywords
actuator
distal end
frame
proximal end
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/230,285
Inventor
Kevin Tan
Original Assignee
Zomeworks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zomeworks Corp filed Critical Zomeworks Corp
Priority to US13/230,285 priority Critical patent/US20130061845A1/en
Publication of US20130061845A1 publication Critical patent/US20130061845A1/en
Assigned to RODEFER, BENJAMIN reassignment RODEFER, BENJAMIN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZOMEWORKS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the embodiments of the present invention satisfy the needs of having a passive solar tracker that does not depend on refrigerants.
  • the present invention is a radiant energy driven orientation system comprising an autonomous passive solar tracker having a thermal actuator that is connected through a cable and pulley and drum to a spring.
  • the drum and spring are mounted on a cross beam of the tracker frame.
  • the cable is attached on one end to the actuator push rod. It then threads through the pulley and wraps around the drum.
  • the spring biases the tracker to pivot towards one direction, and the actuator when heated and extended forces the tracker to pivot in the opposite direction.
  • the tracker is oriented so that the spring has a bias to pivot the tracker to the east, and the outward force of the actuator rod against the cable causes the actuator to pivot to the west.
  • One may take advantage of this tracking by attaching a solar collector to the frame of the tracker.
  • the actuator is enhanced with a shade fin, which fin enables the tracker to follow the sun more closely by amplifying the thermal effects on the actuator of the position errors of the tracker.
  • the wax in the actuator is in thermal equilibrium with its environment (its immediate environment is the actuator cylinder).
  • the wax in the actuator is instantaneously heating and expanding, or instantaneously cooling and contracting, in equilibrium with the temperature of the actuator cylinder at that instant.
  • the wax is expanding, which forces the rod out, resulting in a force from the actuator that either matches or exceeds that of the spring, causing the tracker either to remain in place or to pivot more westward so that the shadow of the fin is falling onto a portion of the actuator.
  • the wax is contracting, resulting in a force from the actuator that is less than that of the spring, causing the tracker to pivot more eastward so that there is no fin shadow on the actuator or so that the fin is reflecting radiant heat onto the actuator.
  • a relatively tall shade fin casts a long shadow onto the actuator cylinder or reflects much sun onto the actuator jacket at even a slight angle from the sun, that is, at even a slight tracker position error (In fact, by simple trigonometry it can be shown that the amount of shadow from the fin onto the actuator cylinder varies linearly with the height of the fin.).
  • the fin amplifies the thermal effects on the actuator of a slight tracker position error by increasing or decreasing the changes in temperature of the actuator relative to the changes in temperature of the actuator had there been no fin.
  • the fin is a mechanical generator of amplified tracking error signals.
  • Error signal generators and amplifiers are generally circuits, whether analog or digital. See e.g., U.S. Pat. Nos. 3,739,154 and 5,142,518. However, the error signal generator in the present invention is mechanical. Some spacecraft inventions use radiant heat errors to drive the tracking of solar collectors without converting the heat to electronic control signals, but they exclusively use bimetallic elements.
  • U.S. Pat. No. 3,630,020 is a servomechanical invention in which a plurality of bimetallic elements are connected to a crank on an orientation shaft in a manner such that as the elements individually deform under radiant heating, they will actuate the crank and rotate the orientation shaft in a direction corresponding to the direction of movement of the moving heat source.
  • 3,311,322 is a heat-sensitive device that use bimetallic elements to generate torque as a function of exposure to solar radiation.
  • U.S. Pat. No. 6,062,511 is a heat-sensitive drive mechanism made of a double-acting shape-memory alloy, the drive mechanism being suitable for causing a panel to be displaced relative to a body of the spacecraft as a function of the direction of incidence of the solar radiation on the spacecraft.
  • the fin is related to the shadow bar or sun shield in your U.S. Pat. Nos. 4,175,391 and 4,476,854.
  • '391 and '854 use the fin to create heat differences between two counter-posed cylinders between which flows a low boiling-point liquid such as Freon®.
  • the present invention in contrast uses the fin to exaggerate the response of the wax-filled actuator to the sun.
  • the present invention utilizes a wax-filled or similar thermal actuator.
  • One type of thermal actuator comprises a straight cylinder containing a substance such as paraffin wax, petroleum jelly, seed oil, or a combination of these. To the substance there is connected a rod, either by immersion or by an intermediate movable close-fitting seal.
  • the majority of systems using thermal actuators rely on convection to trigger the actuator, for example, U.S. Pat. No. 7,143,762. These systems are designed so that the actuator responds to changes in ambient temperature.
  • a few systems using wax-filled thermal actuators rely on conduction to trigger the actuator, but as a supplement to convection.
  • 4,219,009 for example utilizes a thermal actuator to drive flexible linkages, which vent the plenum inside a solar panel. Though the actuator is in full contact with the solar collector, allowing for conduction, the actuator is fine tuned for convection. Ever fewer systems using thermal actuators rely on radiant heat transfer or direct sunlight to trigger the actuator. U.S. Pat. No. 7,138,960 depends on incident solar radiation to trigger a wax actuator, which deploys a payload on a space vehicle. '009 utilizes convention, conduction and radiant heat transfer.
  • wax-filled actuators are used exclusively to open and close vents. It uses a radiant energy-driven expansive fluid-filled actuator to open and close shutters to the solar panel.
  • U.S. Pat. No. 4,219,009 places wax thermal actuators in conductive contact with a solar collector, so that when the collector overheats, the heat will conduct into the actuator, at some point melting the wax and allowing the actuators to act on vent gates through the action of flexible linkages.
  • 4,809,592 connects a wax-filled actuator to a vent flap inside of a cold frame, so that when the ambient temperature in the cold frame overheats, the wax in the actuator will melt though convention and open the flap to cool the interior of the cold frame.
  • the Window Vent Opener Model 92192 distributed by Harbor Freight Tools is commonly used for that purpose.
  • U.S. Pat. No. 7,143,762 uses a wax-filled actuator in a manner analogous to U.S. Pat. No. 4,809,592.
  • EP1744006 uses the wax actuator to passively control a sun shade. Rather than using the wax actuator to open and close a vent, '006 uses the actuator to directly push and pull an attached sun shade. Except for this simple linear motion, patent '006 does not otherwise track the sun.
  • the present invention is a solar invention that uses a wax-filled actuator not to open and close a vent, but rather to oppose a spring, for the purpose of tracking the sun.
  • the design operates the actuator with radiant heat, moderated by shadow bars or shade fins as disclosed for example in U.S. Pat. No. 4,476,854.
  • the actuator is a paraffin filled cylinder that extends a piston when the paraffin melts. Paraffin expands over 10% in volume when it melts.
  • a paraffin actuator can be made to operate a sun tracker.
  • a spring turns the tracker toward the east; the actuator, when heated, turns the tracker west by means of a linkage straining against the spring.
  • the actuator is placed to the west of a vertical reflecting fin aligned parallel to the axis of rotation. Its motion stops or slows to be imperceptible when it has moved far enough to shade itself in the shadow of the fin. It seems to have stopped. That is deceiving since the motion of the sun persists and the tracker again receives heat and creeps on.
  • the actuator is blind and only feels its way by warmth. During cold or dim weather it falls behind progress during warm or bright weather.
  • the blind actuator is helped to follow the sun closely by having a tall shade fin which casts a long shadow or reflects much sun even at a slight angle. If the weather becomes cloudy the spring causes the tracker to return to the east as paraffin cools and freezes and the piston retracts.
  • the actuator is blind, but forceful. It can be helped to feel its way to the correct position by a guide that assists in determining which way to move.
  • Freon gravity trackers are accurate and reliable, but neither versatile nor compact. A small gravity tracker can ride along with a tracker powered by an actuator. The gravity tracker notices whether the blind actuator has felt its way ahead or behind where it should be and tips the shade fin accordingly to guide the actuator to more perfect tracking.
  • the paraffin tracker works well on sunny days. It stays with the others. Clouds cause it to lose the sun and not quickly recover on the sun's reappearance. If, instead of cooling and returning to the east in a matter of an hour, this took 4 hours, the tracker would be more effective.
  • the tracker can be fitted so that it warms quickly in the sun, but cools slowly when the sun is absent.
  • An insulated water jacket about the actuator is connected to a solar collector placed at the base of a shadow fin parallel with the axis of rotation.
  • the solar collector can be longer than the actuators body and thus a tracking device can be made that finds the sun quickly when the sun appears and loses interest in the sun slowly.
  • the sun sensor for a tracker is best long and thin in the direction of the axis. In this orientation a long shade fin can take away or return a large area of sun with a small change of orientation.
  • An actuator fed heat by a separate collector can be mounted perpendicular to the axis and operate a simple crank to turn the tracker. This is an advantage.
  • paraffin has a different range of melting temperatures.
  • a carefully refined paraffin is solid below this temperature and a liquid above. None have exact melting points, the ranges are several degrees. Poorly refined paraffin melts the blend of its several components.
  • Vaseline a mix of paraffins, is partly melted at body temperature, but not completely melted until it is above 120° F.
  • the extension of the actuator piston is a function of the actuator temperature.
  • the Paraffin is unlike ice. It takes heat to melt ice, but no temperatures higher than 32° F. To melt paraffin in an actuator you add heat and raise temperatures. Different paraffins melt through different temperature ranges. This makes it difficult to closely track the sun. Sometimes you need more sun on the actuator to reach a given temperature than at others.
  • a proper paraffin for a tracker is one that melts in the sunlight and freezes in the shade in all seasons.
  • the push of an actuator can cause the turn of a tracker if pushing pulls a cable that travels about a wheel, then over or under a fixed drum.
  • Another way for pushing to cause turning is a twisted bar through a slot as the devices to loft toy helicopters.
  • the twisted bar requires a spring to push back against the actuator, but has an advantage over the cable. With the right pitch to the twisted bar, wind could not disturb the position of the tracker.
  • the actuator or its heat collector should see the sky.
  • a tracker must be able to find the sun whenever it appears.
  • a shadow fin blocks the view of half the sky, but normally the half the sun has passed through and cannot appear in until the next morning.
  • a spring or the balance of weight volunteersly, if slowly, returns the tracker for the next day.
  • the actuator expecting to drive farther west might correctly argue, “wait, there will be more sun”. While the spring tells it, “time to go east, time to go home and be ready for tomorrow's sunrise”.
  • the position of the tracker is the outcome of the battle of the two forces.
  • the fin may be formed as a partial paraboloid. Should the tracker fall behind the sun, the paraboloid concentrates the errant sunlight onto the actuator to hurry the melting of more paraffin and a return to better focus.
  • FIG. 1 shows a perspective view of the preferred embodiment of the invention
  • FIG. 2 shows a perspective view of the fin formed as a partial paraboloid
  • FIG. 3 shows a perspective view of an alternate embodiment of the invention
  • FIG. 4 shows a perspective view of the actuator with pulley.
  • the preferred embodiment and best mode present invention comprises a radiant energy driven orientation system comprising, as shown in FIG. 1 : a support beam 20 with base; a pivotable frame 27 having an axis and comprising two parallel main beams 22 , two end cross beams 24 and one center cross beam 26 ; a thermal actuator 28 with actuator rod 30 , said actuator 28 having a medial side and a lateral side and a proximal end and a distal end, said actuator 28 mounted at the end of one of said end cross beams 24 , said actuator rod 30 having an actuator rod proximal end immersed in said actuator 28 distal end and an actuator rod distal end not immersed in said actuator 28 ; a fin 32 for shading and illuminating said actuator 28 , said fin 32 attached to said medial side of said actuator 28 and at right angles to said end cross beam 24 ; an extension rod 34 having a proximal end and a distal end, said extension rod proximal end attached to said actuator rod distal end, said extension rod distal end attached to
  • the frame 27 may also comprise a flat mounting surface for solar panels.
  • the pivoting of the frame 27 is limited to .+ ⁇ .55.degree. from vertical.
  • the axis of the frame 27 is inclined to horizontal to direct the frame 27 toward the path of the sun.
  • the frame 27 is oriented so that it is pivotable about a generally north/south axis, and where said actuator 28 is located at the west end of the frame 27 so that movement of the sun from east to west during the day heats the actuator 28 and causes it to extend its actuator rod 30 and tilt the frame 27 eastward to follow the sun, the spring 42 forcing the device at nightfall to pivot eastwards in preparation for the morning sunrise.
  • the axis of the frame 27 is inclined to horizontal to direct the frame 27 toward the path of the sun. Because clouds cause these trackers to lose the sun and not quickly recover on the sun's appearance, the actuator 28 may also be covered with an insulated water jacket to make it warm quickly but cool slowly.
  • the actuator 28 is placed on the east end cross beam 24 and the reflective fin 32 is situated to the actuators 28 west.
  • the spring 42 biases the tracker to pivot west, so that the tracker spends the night at rest pointing east. In the morning the tracker quickly pivots west to the east as the sun warms the actuator. The spring 42 forces the slowly cooling actuator 28 to travel west as the progress of the sun's shadow allows the actuator 28 to cool. Notice that it is more difficult to have something cool as a day warms than to have it warm.
  • the fin 32 can also be formed as a partial paraboloid.
  • the radiant energy driven orientation system also comprises:
  • FIG. 4 shows the actuator 28 with pulley 38 .
  • the advantages of the embodiments of the invention include but are not limited to providing a solar tracker that has the utility of being both passive and autonomous, and not using refrigerants. Every advantageous feature does not need to be incorporated into every embodiment of the apparatus and/or methods.
  • paraffin wax undergoes volumetric expansion of approximately 15%. Most of this occurs during the solid to liquid phase change, although some expansion also occurs within the solid and liquid phases. This effect is used in thermostats, linear actuators (of relatively short stroke), valves and other devices. To further increase the usefulness and adaptability of this process, a device consisting of a cable doubled over a pulley mounted to the piston is used. This modification achieves several things:

Abstract

An autonomous passive solar tracker having a thermal actuator that is connected through a cable and pulley and drum to a spring. The drum and spring are mounted on a cross beam of the tracker frame. The cable is attached on one end to the actuator push rod. It then threads through the pulley and wraps around the drum. The spring biases the tracker to pivot towards one direction, and the actuator when heated and extended forces the tracker to pivot in the opposite direction. The tracker is oriented so that the spring has a bias to pivot the tracker to the east, and the outward force of the actuator rod against the cable causes the actuator to pivot to the west. One may take advantage of this tracking by attaching a solar collector to the frame of the tracker.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not applicable.
  • STATEMENTS REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
  • Not applicable.
  • BACKGROUND
  • The embodiments of the present invention satisfy the needs of having a passive solar tracker that does not depend on refrigerants.
  • Information relevant to attempts to address these problems can be found in U.S. Pat. Nos. 3,635,015; 4,175,391; 4,476,854, and European Patent 1744006; which patents are not admitted to be prior art with respect to the present invention by its mention in this Background Section. However, it is desirable to have a better device than is disclosed in the references.
  • In overview, the present invention is a radiant energy driven orientation system comprising an autonomous passive solar tracker having a thermal actuator that is connected through a cable and pulley and drum to a spring. The drum and spring are mounted on a cross beam of the tracker frame. The cable is attached on one end to the actuator push rod. It then threads through the pulley and wraps around the drum. The spring biases the tracker to pivot towards one direction, and the actuator when heated and extended forces the tracker to pivot in the opposite direction. The tracker is oriented so that the spring has a bias to pivot the tracker to the east, and the outward force of the actuator rod against the cable causes the actuator to pivot to the west. One may take advantage of this tracking by attaching a solar collector to the frame of the tracker.
  • The actuator is enhanced with a shade fin, which fin enables the tracker to follow the sun more closely by amplifying the thermal effects on the actuator of the position errors of the tracker. At any given instant the wax in the actuator is in thermal equilibrium with its environment (its immediate environment is the actuator cylinder). The wax in the actuator is instantaneously heating and expanding, or instantaneously cooling and contracting, in equilibrium with the temperature of the actuator cylinder at that instant. Sometimes the wax is expanding, which forces the rod out, resulting in a force from the actuator that either matches or exceeds that of the spring, causing the tracker either to remain in place or to pivot more westward so that the shadow of the fin is falling onto a portion of the actuator. Sometimes the wax is contracting, resulting in a force from the actuator that is less than that of the spring, causing the tracker to pivot more eastward so that there is no fin shadow on the actuator or so that the fin is reflecting radiant heat onto the actuator. Now, a relatively tall shade fin casts a long shadow onto the actuator cylinder or reflects much sun onto the actuator jacket at even a slight angle from the sun, that is, at even a slight tracker position error (In fact, by simple trigonometry it can be shown that the amount of shadow from the fin onto the actuator cylinder varies linearly with the height of the fin.). By means of this long shadow or long reflecting surface, the fin amplifies the thermal effects on the actuator of a slight tracker position error by increasing or decreasing the changes in temperature of the actuator relative to the changes in temperature of the actuator had there been no fin. In other words, the fin is a mechanical generator of amplified tracking error signals.
  • Error signal generators and amplifiers are generally circuits, whether analog or digital. See e.g., U.S. Pat. Nos. 3,739,154 and 5,142,518. However, the error signal generator in the present invention is mechanical. Some spacecraft inventions use radiant heat errors to drive the tracking of solar collectors without converting the heat to electronic control signals, but they exclusively use bimetallic elements. U.S. Pat. No. 3,630,020 is a servomechanical invention in which a plurality of bimetallic elements are connected to a crank on an orientation shaft in a manner such that as the elements individually deform under radiant heating, they will actuate the crank and rotate the orientation shaft in a direction corresponding to the direction of movement of the moving heat source. U.S. Pat. No. 3,311,322 is a heat-sensitive device that use bimetallic elements to generate torque as a function of exposure to solar radiation. U.S. Pat. No. 6,062,511 is a heat-sensitive drive mechanism made of a double-acting shape-memory alloy, the drive mechanism being suitable for causing a panel to be displaced relative to a body of the spacecraft as a function of the direction of incidence of the solar radiation on the spacecraft.
  • The fin is related to the shadow bar or sun shield in your U.S. Pat. Nos. 4,175,391 and 4,476,854. However, '391 and '854 use the fin to create heat differences between two counter-posed cylinders between which flows a low boiling-point liquid such as Freon®. The present invention in contrast uses the fin to exaggerate the response of the wax-filled actuator to the sun.
  • The present invention utilizes a wax-filled or similar thermal actuator. One type of thermal actuator comprises a straight cylinder containing a substance such as paraffin wax, petroleum jelly, seed oil, or a combination of these. To the substance there is connected a rod, either by immersion or by an intermediate movable close-fitting seal. The majority of systems using thermal actuators rely on convection to trigger the actuator, for example, U.S. Pat. No. 7,143,762. These systems are designed so that the actuator responds to changes in ambient temperature. A few systems using wax-filled thermal actuators rely on conduction to trigger the actuator, but as a supplement to convection. U.S. Pat. No. 4,219,009 for example utilizes a thermal actuator to drive flexible linkages, which vent the plenum inside a solar panel. Though the actuator is in full contact with the solar collector, allowing for conduction, the actuator is fine tuned for convection. Ever fewer systems using thermal actuators rely on radiant heat transfer or direct sunlight to trigger the actuator. U.S. Pat. No. 7,138,960 depends on incident solar radiation to trigger a wax actuator, which deploys a payload on a space vehicle. '009 utilizes convention, conduction and radiant heat transfer.
  • Outside of the solar arts, wax-filled actuators are used almost exclusively to control thermostats. See, for example, U.S. Pat. Nos. 6,046,666 and 6,742,716. One exception is U.S. Pat. No. 7,138,960, which depends on incident solar radiation to trigger a wax actuator to deploy a payload on a space vehicle.
  • Except for two counter-examples, within the solar arts wax-filled actuators are used exclusively to open and close vents. It uses a radiant energy-driven expansive fluid-filled actuator to open and close shutters to the solar panel. U.S. Pat. No. 4,219,009 places wax thermal actuators in conductive contact with a solar collector, so that when the collector overheats, the heat will conduct into the actuator, at some point melting the wax and allowing the actuators to act on vent gates through the action of flexible linkages. U.S. Pat. No. 4,809,592 connects a wax-filled actuator to a vent flap inside of a cold frame, so that when the ambient temperature in the cold frame overheats, the wax in the actuator will melt though convention and open the flap to cool the interior of the cold frame. The Window Vent Opener Model 92192 distributed by Harbor Freight Tools is commonly used for that purpose. U.S. Pat. No. 7,143,762 uses a wax-filled actuator in a manner analogous to U.S. Pat. No. 4,809,592.
  • One counter-example in the solar arts is EP1744006, which uses the wax actuator to passively control a sun shade. Rather than using the wax actuator to open and close a vent, '006 uses the actuator to directly push and pull an attached sun shade. Except for this simple linear motion, patent '006 does not otherwise track the sun.
  • The other counter-example in the solar arts is U.S. Pat. No. 3,635,015, which is a heat-sensitive device actuated by solar radiation that is suitable for generating torque for angularly positioning solar panels. The invention uses bimetallics to control the thermal environment of a thermal actuator. The thermal actuator rotates solar panels on wings.
  • The present invention is a solar invention that uses a wax-filled actuator not to open and close a vent, but rather to oppose a spring, for the purpose of tracking the sun. The design operates the actuator with radiant heat, moderated by shadow bars or shade fins as disclosed for example in U.S. Pat. No. 4,476,854.
  • SUMMARY
  • The actuator is a paraffin filled cylinder that extends a piston when the paraffin melts. Paraffin expands over 10% in volume when it melts. A paraffin actuator can be made to operate a sun tracker. A spring turns the tracker toward the east; the actuator, when heated, turns the tracker west by means of a linkage straining against the spring. The actuator is placed to the west of a vertical reflecting fin aligned parallel to the axis of rotation. Its motion stops or slows to be imperceptible when it has moved far enough to shade itself in the shadow of the fin. It seems to have stopped. That is deceiving since the motion of the sun persists and the tracker again receives heat and creeps on.
  • The actuator is blind and only feels its way by warmth. During cold or dim weather it falls behind progress during warm or bright weather. The blind actuator is helped to follow the sun closely by having a tall shade fin which casts a long shadow or reflects much sun even at a slight angle. If the weather becomes cloudy the spring causes the tracker to return to the east as paraffin cools and freezes and the piston retracts.
  • The actuator is blind, but forceful. It can be helped to feel its way to the correct position by a guide that assists in determining which way to move. Freon gravity trackers are accurate and reliable, but neither versatile nor compact. A small gravity tracker can ride along with a tracker powered by an actuator. The gravity tracker notices whether the blind actuator has felt its way ahead or behind where it should be and tips the shade fin accordingly to guide the actuator to more perfect tracking.
  • We have observed a paraffin tracker operating among Freon gravity trackers in our yard. The paraffin tracker works well on sunny days. It stays with the others. Clouds cause it to lose the sun and not quickly recover on the sun's reappearance. If, instead of cooling and returning to the east in a matter of an hour, this took 4 hours, the tracker would be more effective. The tracker can be fitted so that it warms quickly in the sun, but cools slowly when the sun is absent. An insulated water jacket about the actuator is connected to a solar collector placed at the base of a shadow fin parallel with the axis of rotation. The solar collector can be longer than the actuators body and thus a tracking device can be made that finds the sun quickly when the sun appears and loses interest in the sun slowly. The sun sensor for a tracker is best long and thin in the direction of the axis. In this orientation a long shade fin can take away or return a large area of sun with a small change of orientation.
  • When the actuator must be parallel with its sun sensor the piston moves parallel as well. Its motion must be converted by a linkage, cable or twist bar to turn the tracker.
  • An actuator fed heat by a separate collector can be mounted perpendicular to the axis and operate a simple crank to turn the tracker. This is an advantage.
  • Each paraffin has a different range of melting temperatures. A carefully refined paraffin is solid below this temperature and a liquid above. None have exact melting points, the ranges are several degrees. Poorly refined paraffin melts the blend of its several components. Vaseline, a mix of paraffins, is partly melted at body temperature, but not completely melted until it is above 120° F.
  • The extension of the actuator piston is a function of the actuator temperature. The Paraffin is unlike ice. It takes heat to melt ice, but no temperatures higher than 32° F. To melt paraffin in an actuator you add heat and raise temperatures. Different paraffins melt through different temperature ranges. This makes it difficult to closely track the sun. Sometimes you need more sun on the actuator to reach a given temperature than at others.
  • A proper paraffin for a tracker is one that melts in the sunlight and freezes in the shade in all seasons. A suitable actuator and paraffin for extreme climates like North Dakota, with very hot days in summer and very cold days in winter, will likely employ a high temperature paraffin (melts above 130° F.), a selective surface on the actuator and a clear tube about it.
  • For a certain design example, we know that extending the piston to point the tracker exactly at an 11:06 sun the temperature must be 124.5° F. While, to point at a 15:31 sun it must be 139.6° F. Position and temperature are locked together, but time of day has leeway. If it is bright and warm we get to the position early. If it is dim or cold, we get there late. A tall shadow fin makes a tracker more accurate than a short one. The sun moves 1° every four minutes. A shadow at the base of a 12″ tall shade fin is 0.21″ wide if the tracker is off 1° (late or early by four minutes). If the fin were 6″ tall it would only cast a 0.1″ shadow when off by 1° while a 24″ shade fin cast a wide 0.42″ wide shadow. Two trackers of the same design, but different shade fin heights would have the same pattern of sun and shade each moment as the day's weather changed. The tracker with the tall shade fin would follow the sun with half the error of the other. The actuator with the taller fin is always closer to a target in the ratio as the height of its fin.
  • The push of an actuator can cause the turn of a tracker if pushing pulls a cable that travels about a wheel, then over or under a fixed drum. Another way for pushing to cause turning is a twisted bar through a slot as the devices to loft toy helicopters. The twisted bar requires a spring to push back against the actuator, but has an advantage over the cable. With the right pitch to the twisted bar, wind could not disturb the position of the tracker.
  • The actuator or its heat collector should see the sky. A tracker must be able to find the sun whenever it appears. A shadow fin blocks the view of half the sky, but normally the half the sun has passed through and cannot appear in until the next morning. A spring or the balance of weight tirelessly, if slowly, returns the tracker for the next day. As mentioned earlier, during intermittent sun, a slow return is an advantage. The actuator, expecting to drive farther west might correctly argue, “wait, there will be more sun”. While the spring tells it, “time to go east, time to go home and be ready for tomorrow's sunrise”. The position of the tracker is the outcome of the battle of the two forces.
  • The fin may be formed as a partial paraboloid. Should the tracker fall behind the sun, the paraboloid concentrates the errant sunlight onto the actuator to hurry the melting of more paraffin and a return to better focus.
  • DRAWINGS
  • These and other features, aspects and advantages of the embodiments of the device and/or methods will become better understood with reference to the following description, appended claim and accompanying drawings where:
  • FIG. 1 shows a perspective view of the preferred embodiment of the invention;
  • FIG. 2 shows a perspective view of the fin formed as a partial paraboloid;
  • FIG. 3 shows a perspective view of an alternate embodiment of the invention;
  • FIG. 4 shows a perspective view of the actuator with pulley.
  • REFERENCE NUMERALS FOR DRAWINGS
    • 20 support beam
    • 21 base
    • 22 main beam
    • 24 end cross beam
    • 26 center cross beam
    • 27 frame
    • 28 actuator
    • 30 actuator rod
    • 32 fin
    • 34 extension rod
    • 36 cable
    • 38 pulley
    • 40 drum
    • 42 spring
    • 50 bracket
    • 52 t-shaped frame
    • 54 center beam
    • 56 cross beam
    • 60 first end beam
    • 62 second end beam
    • 64 hole
    • 66 shelf
    • 68 first hole
    • 70 second hole
    • 72 ring bracket
    DESCRIPTION Best Mode
  • The preferred embodiment and best mode present invention comprises a radiant energy driven orientation system comprising, as shown in FIG. 1: a support beam 20 with base; a pivotable frame 27 having an axis and comprising two parallel main beams 22, two end cross beams 24 and one center cross beam 26; a thermal actuator 28 with actuator rod 30, said actuator 28 having a medial side and a lateral side and a proximal end and a distal end, said actuator 28 mounted at the end of one of said end cross beams 24, said actuator rod 30 having an actuator rod proximal end immersed in said actuator 28 distal end and an actuator rod distal end not immersed in said actuator 28; a fin 32 for shading and illuminating said actuator 28, said fin 32 attached to said medial side of said actuator 28 and at right angles to said end cross beam 24; an extension rod 34 having a proximal end and a distal end, said extension rod proximal end attached to said actuator rod distal end, said extension rod distal end attached to a cable 36; a pulley 38 attached to said frame around which pulley 38 said cable 36 is threaded; a drum 40 rotatably mounted on said center cross beam 26 around which drum 40 said cable 36 wraps; a spring 42 for biasing the pivot of said frame away from the end cross beam 24 on which said actuator 28 is mounted, such that when said actuator 28 is cool and said actuator rod 30 is retracted said spring 42 causes said frame to pivot away from the end cross beam 24 on which said actuator 28 is mounted; and as said actuator 28 heats and said actuator rod 30 extends said actuator 28 causes said frame to pivot towards the end cross beam 24 on which said actuator 28 is mounted; and the opposite when said actuator 28 cools.
  • The frame 27 may also comprise a flat mounting surface for solar panels. The pivoting of the frame 27 is limited to .+−.55.degree. from vertical. The axis of the frame 27 is inclined to horizontal to direct the frame 27 toward the path of the sun.
  • To render the device operable, the frame 27 is oriented so that it is pivotable about a generally north/south axis, and where said actuator 28 is located at the west end of the frame 27 so that movement of the sun from east to west during the day heats the actuator 28 and causes it to extend its actuator rod 30 and tilt the frame 27 eastward to follow the sun, the spring 42 forcing the device at nightfall to pivot eastwards in preparation for the morning sunrise.
  • To optimize the performance, the axis of the frame 27 is inclined to horizontal to direct the frame 27 toward the path of the sun. Because clouds cause these trackers to lose the sun and not quickly recover on the sun's appearance, the actuator 28 may also be covered with an insulated water jacket to make it warm quickly but cool slowly.
  • It is also possible to engineer a reverse tracker. Here the actuator 28 is placed on the east end cross beam 24 and the reflective fin 32 is situated to the actuators 28 west. The spring 42 biases the tracker to pivot west, so that the tracker spends the night at rest pointing east. In the morning the tracker quickly pivots west to the east as the sun warms the actuator. The spring 42 forces the slowly cooling actuator 28 to travel west as the progress of the sun's shadow allows the actuator 28 to cool. Notice that it is more difficult to have something cool as a day warms than to have it warm.
  • As shown in FIG. 2, the fin 32 can also be formed as a partial paraboloid.
  • As shown in FIG. 3, the radiant energy driven orientation system also comprises:
    • A. a support beam 20 having a proximal end and a distal end, with a base 21 connected to support beam 20 proximal end;
    • B. a bracket 50 having a body and a distal end and a proximal end, the bracket body pivotably connected to the support beam distal end;
    • C. a t-shaped frame 52 having a center beam 54 and a cross beam 56, the center beam 54 having a proximal end and a distal end, the center beam 54 proximal end pivotably connected to the bracket 50 proximal end, the cross beam 56 having a body and a proximal end and a distal end, the center beam 54 distal end connected to the cross beam 56 body;
    • D. a first end beam 60 and a second end beam 62, each end beam having a body and a proximal end and a distal end, the first end beam 60 body attached to the cross beam proximal end, the first end beam 60 body having a hole 64 adjacent the cross beam 56 proximal end, the second end beam 62 body attached to the cross beam 56 distal end;
    • E. a thermal actuator 28 with actuator rod 30, said actuator 28 having a medial side and a lateral side a proximal end and a distal end, said actuator rod 30 having an actuator rod proximal end immersed in said actuator distal end and an actuator rod distal end not immersed in said actuator 28, a shelf 66 perpendicularly attached to the actuator rod 30 distal end, the shelf 66 having a shelf first hole 68 and a shelf second hole 70;
    • F. a fin 32 for shading and illuminating said actuator 28, said fin 32 attached to said medial side of said actuator 28, said actuator 28 mounted on the first end beam 60 body and at right angles to said cross beam 56;
    • G. a pulley 38 attached to the actuator rod 30 distal end;
    • H. a cable 36 having a distal end and a proximal end, the cable 36 proximal end attached to the shelf first hole 68, the cable 36 threaded on the pulley 38, the cable 36 threaded through the shelf second hole 70, the cable 36 threaded through the first end beam body hole 64, the cable 36 distal end attached to the bracket 50 distal end;
    • I. a spring 42 for biasing the pivot of said frame 27 away from the first end beam 60 on which said actuator 28 is mounted, the spring 60 having a distal end and a proximal end, the spring 60 proximal end attached to the bracket 50 body, the spring 60 distal end attached to a ring bracket 72 positioned on the cross beam 56, the ring bracket 72 adjacent the second end beam 62, such that when said actuator 28 is cool and said actuator rod 30 is retracted said spring 42 causes said frame 27 to pivot away from the first end beam 60, and as said actuator 28 heats and said actuator rod 30 extends said actuator 28 causes said frame 27 to pivot towards the first end beam 60 on which said actuator 28 is mounted.
  • FIG. 4 shows the actuator 28 with pulley 38.
  • Some Advantages of the Embodiments of the Invention
  • The advantages of the embodiments of the invention include but are not limited to providing a solar tracker that has the utility of being both passive and autonomous, and not using refrigerants. Every advantageous feature does not need to be incorporated into every embodiment of the apparatus and/or methods.
  • In response to an increase in absolute temperature, paraffin wax undergoes volumetric expansion of approximately 15%. Most of this occurs during the solid to liquid phase change, although some expansion also occurs within the solid and liquid phases. This effect is used in thermostats, linear actuators (of relatively short stroke), valves and other devices. To further increase the usefulness and adaptability of this process, a device consisting of a cable doubled over a pulley mounted to the piston is used. This modification achieves several things:
      • 1) The significant force derived from the expansion of the wax can be completely isolated from the body of the actuator. This allows the actuator the body to be placed for 1) direct solar or thermal gain, 2) to be used as a control sensor on an otherwise low-strength structural member, and 3) to simply address complex geometrical relationships that may exist between the thermal target and the intended motion of the mechanism.
      • 2) The work performed by the device can be easily re-directed by way of a cable of sufficient strength and a section of compression-less housing. Because the force generated by the actuator is converted from compression to tension, the components used to transmit the work can be lightened substantially.
      • 3) The relatively short stroke of a typical actuator can be multiplied, with high efficiency, to perform a wider variety of mechanical tasks.
  • Although these versions of the invention have been described in considerable detail, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained therein.

Claims (15)

1. A radiant energy driven orientation system comprising:
A. a support beam with base;
B. a pivotable frame having an axis and comprising two parallel beams, two end cross beams and one center cross beam;
C. a thermal actuator with actuator rod, said actuator having a medial side and a lateral side a proximal end and a distal end, said actuator mounted at the end of one of said end cross beams, said actuator rod having an actuator rod proximal end immersed in said actuator distal end and an actuator rod distal end not immersed in said actuator;
D. a fin for shading and illuminating said actuator, said fin attached to said medial side of said actuator and at right angles to said end cross beam;
E. an extension rod having a proximal end and a distal end, said extension rod proximal end attached to said actuator rod distal end, said extension rod distal end attached to a cable;
F. a pulley attached to said frame around which pulley said cable is threaded;
G. a drum rotatably mounted on said center cross beam around which drum said cable wraps;
H. a spring for biasing a pivot of said frame away from the end cross beam on which said actuator is mounted, such that when said actuator is cool and said actuator rod is retracted said spring causes said frame to pivot away from the end cross beam on which said actuator is mounted, and as said actuator heats and said actuator rod extends said actuator causes said frame to pivot towards the end cross beam on which said actuator is mounted.
2. The apparatus of claim 1, wherein the frame is pivotable about a generally north/south axis, and where said actuator is located at the west end of the frame so that movement of the sun from east to west during the day heats the actuator and causes it to extend its rod and tilt the frame eastward to follow the sun, the spring forcing the tracker at nightfall to pivot eastwards in preparation for the morning sunrise.
3. The apparatus of claim 1, wherein the axis of the frame is inclined to horizontal to direct the frame toward the path of the sun.
4. The apparatus of claim 1, wherein the frame includes a flat mounting surface for solar panels.
5. The apparatus of claim 1, wherein pivoting of the frame is limited to ±55 degrees from vertical.
6. The apparatus of claim 1, wherein said actuator employs a paraffin that melts above 130 degrees Fahrenheit.
7. The apparatus of claim 1, wherein said actuator is covered with an insulated water jacket.
8. The apparatus of claim 1, wherein said fin is formed as a partial paraboloid.
9. A radiant energy driven orientation system comprising:
A. a support beam having a proximal end and a distal end, with a base connected to support beam proximal end;
B. a bracket having a body and a distal end and a proximal end, the bracket body pivotably connected to the support beam distal end;
C. a t-shaped frame having a center beam and a cross beam, the center beam having a proximal end and a distal end, the center beam proximal end pivotably connected to the bracket proximal end, the cross beam having a body and a proximal end and a distal end, the center beam distal end connected to the cross beam body;
D. a first end beam and a second end beam, each end beam having a body and a proximal end and a distal end, the first end beam body attached to the cross beam proximal end, the first end beam body having a hole adjacent the cross beam proximal end, the second end beam body attached to the cross beam distal end;
E. a thermal actuator with actuator rod, said actuator having a medial side and a lateral side a proximal end and a distal end, said actuator rod having an actuator rod proximal end immersed in said actuator distal end and an actuator rod distal end not immersed in said actuator, a shelf perpendicularly attached to the actuator rod distal end, the shelf having a shelf first hole and a shelf second hole;
F. a fin for shading and illuminating said actuator, said fin attached to said medial side of said actuator, said actuator mounted on the first end beam body and at right angles to said cross beam;
G. a pulley attached to the actuator rod distal end;
H. a cable having a distal end and a proximal end, the cable proximal end attached to the shelf first hole, the cable threaded on the pulley, the cable threaded through the shelf second hole, the cable threaded through the first end beam body hole, the cable distal end attached to the bracket distal end;
I. a spring for biasing a pivot of said frame away from the first end beam on which said actuator is mounted, the spring having a distal end and a proximal end, the spring proximal end attached to the bracket body, the spring distal end attached to a ring bracket positioned on the cross beam, the ring bracket adjacent the second end beam, such that when said actuator is cool and said actuator rod is retracted said spring causes said frame to pivot away from the first end beam, and as said actuator heats and said actuator rod extends said actuator causes said frame to pivot towards the first end beam on which said actuator is mounted.
10. The apparatus of claim 9, wherein the axis of the frame is inclined to horizontal to direct the frame toward the path of the sun.
11. The apparatus of claim 9, wherein the frame includes a flat mounting surface for solar panels.
12. The apparatus of claim 9, wherein pivoting of the frame is limited to ±55 degrees from vertical.
13. The apparatus of claim 9, wherein said actuator employs a paraffin that melts above 130 degrees Fahrenheit.
14. The apparatus of claim 9, wherein said actuator is covered with an insulated water jacket.
15. The apparatus of claim 9, wherein said fin is formed as a partial paraboloid.
US13/230,285 2011-09-12 2011-09-12 Radiant energy driven orientation system Abandoned US20130061845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/230,285 US20130061845A1 (en) 2011-09-12 2011-09-12 Radiant energy driven orientation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/230,285 US20130061845A1 (en) 2011-09-12 2011-09-12 Radiant energy driven orientation system

Publications (1)

Publication Number Publication Date
US20130061845A1 true US20130061845A1 (en) 2013-03-14

Family

ID=47828696

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/230,285 Abandoned US20130061845A1 (en) 2011-09-12 2011-09-12 Radiant energy driven orientation system

Country Status (1)

Country Link
US (1) US20130061845A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100354A1 (en) * 2009-10-29 2011-05-05 Cn-J Technology Co., Ltd. Non-electrically-powered sun-tracking solar system
US8763601B2 (en) 2011-12-29 2014-07-01 Sulas Industries, Inc. Solar tracker for solar energy devices
CN103941758A (en) * 2014-03-27 2014-07-23 夏之秋 Novel dual-axis solar light tracking device
US20150007869A1 (en) * 2013-05-30 2015-01-08 Howard Stein Portable solar tracker
CN107807672A (en) * 2017-11-01 2018-03-16 五华初旭科技有限公司 Solar automatic tracking device
WO2018128942A1 (en) * 2017-01-03 2018-07-12 Oveson Ivyann Solar energy harvesting systems including at least one thermal-mechanical actuator for solar tracking

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159710A (en) * 1976-09-20 1979-07-03 U.S. Philips Corporation Solar collector comprising solar tracking means
US4159712A (en) * 1977-10-20 1979-07-03 Legg Howard W Solar energy conversion unit
US4174704A (en) * 1978-03-10 1979-11-20 Nelson Terry L Support system
US4175391A (en) * 1977-12-12 1979-11-27 Dow Corning Corporation Self reorienting solar tracker
US4204214A (en) * 1978-11-06 1980-05-20 Datron Systems, Inc. Slewing and tracking mechanism for dish structure
US4262654A (en) * 1979-08-24 1981-04-21 Ward Carter J Solar-energy-powered sun tracker
US4263892A (en) * 1977-09-29 1981-04-28 Little Frederick A Heat sensing means, particularly for solar water heating apparatus
US4304221A (en) * 1975-07-11 1981-12-08 Vulcan Australia Limited Solar tracking device
US4321909A (en) * 1975-07-11 1982-03-30 Vulcan Australia Limited Servo-controlled solar tracking apparatus
US4324225A (en) * 1975-07-11 1982-04-13 Trihey John M Solar tracking device
US4480677A (en) * 1976-11-01 1984-11-06 Henson H Keith Method for processing and fabricating metals in space
US4512336A (en) * 1982-10-14 1985-04-23 The Babcock & Wilcox Company Panel of vapor generating and superheating tubes
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
US4986255A (en) * 1989-06-12 1991-01-22 Ryohei Ito Apparatus pursuing the sun
US5253637A (en) * 1992-03-12 1993-10-19 Maiden Miles M Hyperfocal tracking solar thermal collector
US5542409A (en) * 1995-01-06 1996-08-06 Sampayo; Eduardo A. Solar concentrator system
US5622078A (en) * 1995-08-21 1997-04-22 Mattson; Brad A. Linear/helix movement support/solar tracker
US5730117A (en) * 1993-06-01 1998-03-24 Berger; Alexander Sun tracker
US6058930A (en) * 1999-04-21 2000-05-09 Shingleton; Jefferson Solar collector and tracker arrangement
US6123067A (en) * 1999-03-31 2000-09-26 Amonix, Inc. Solar collector tracking system
US6552257B1 (en) * 2001-10-16 2003-04-22 American Signal Company Nonrotating pivotable solar panel
US20040074490A1 (en) * 2001-03-07 2004-04-22 David Mills Solar energy reflector array
US6857426B2 (en) * 2002-09-25 2005-02-22 Dirk Besier Absorber element for solar high-temperature heat generation, and a method for its production
US6953038B1 (en) * 2000-05-22 2005-10-11 Andreas Nohrig Concentrating solar energy system
US20050284467A1 (en) * 2002-10-17 2005-12-29 Patterson Michael T Solar tracking apparatus
US20060044511A1 (en) * 2004-08-10 2006-03-02 Mackamul Kevin K Tracker drive system and solar energy collection system
US20060207589A1 (en) * 2005-03-18 2006-09-21 Atlas Material Testing Technology, L.L.C. Variably controlled accelerated weathering test apparatus
US20070215199A1 (en) * 2006-03-16 2007-09-20 United Technologies Corporation Solar tracker
US20090007901A1 (en) * 2007-06-08 2009-01-08 Gregg Luconi Solar collector system for solar thermal applications
US20090032089A1 (en) * 2007-08-03 2009-02-05 Atomic Energy Council - Institute Of Nuclear Energy Research Solar tracker having louver frames
US20090101137A1 (en) * 2007-10-17 2009-04-23 Hsi-Hsun Tsai Sun tracking system pressure differential driving system
US20090173335A1 (en) * 2006-05-19 2009-07-09 Cunyi Wanag Upright-Plate Type Sunlight Generator
US20090301466A1 (en) * 2006-06-19 2009-12-10 Jesus Angel Humanes Asensio Solar tracker with movement in two axes and actuation in only one of them
US20100139645A1 (en) * 2008-12-01 2010-06-10 Sun-A-Ray, Llc. Balanced support and solar tracking system for panels of photovoltaic cells
US20100180884A1 (en) * 2009-01-22 2010-07-22 Kenneth Oosting Actuated solar tracker
US20100201600A1 (en) * 2007-07-30 2010-08-12 Stephen Kaneff Support frame for the dish of a large dish antenna
US20110017273A1 (en) * 2008-03-13 2011-01-27 Sahar G.N. International Ltd. Concentrated Solar Heating
US20110073161A1 (en) * 2010-03-29 2011-03-31 Sedona Energy Labs, Limited Company High efficiency counterbalanced dual axis solar tracking array frame system
US20110073102A1 (en) * 2009-09-29 2011-03-31 Hanson Gordon N Solar collector with non-honey sandwich core
US20110108019A1 (en) * 2008-08-18 2011-05-12 Pratt & Whitney Rocketdyne., Inc. Heliostat joint
US20110114080A1 (en) * 2008-02-29 2011-05-19 Peter Childers Multi-Axis Metamorphic Actuator and Drive System and Method
US20110132353A1 (en) * 2009-12-04 2011-06-09 SunPOD,S INC. Transportable multi-configurable self-ballasted modular solar power unit
US20110226232A1 (en) * 2010-03-18 2011-09-22 Grip Robert E Solar Energy System With Wind Vane
US20110284055A1 (en) * 2010-05-24 2011-11-24 Cogenra Solar, Inc. Concentrating solar energy collector
US20120097149A1 (en) * 2011-12-29 2012-04-26 Doyle Fintan J Solar Tracker for Solar Energy Devices
US20120102949A1 (en) * 2009-02-26 2012-05-03 David Hugo Boyle Apparatus for the utilisation of thermal radiation
US20120125401A1 (en) * 2010-11-24 2012-05-24 Devillier William J Solar Collector Positioning Apparatus
US20120125399A1 (en) * 2010-11-24 2012-05-24 Kurt Schatz Solar panel system
US20120186626A1 (en) * 2011-01-26 2012-07-26 International Business Machines Corporation Solar energy collection system
US20130048048A1 (en) * 2011-08-22 2013-02-28 Kent Flanery System and methods for controlling solar module trackers
US8426721B2 (en) * 2009-03-20 2013-04-23 Savio S.P.A. Ventilated photovoltaic receiver
US20130180568A1 (en) * 2011-01-21 2013-07-18 First Solar, Inc. Photovoltaic module support system

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304221A (en) * 1975-07-11 1981-12-08 Vulcan Australia Limited Solar tracking device
US4321909A (en) * 1975-07-11 1982-03-30 Vulcan Australia Limited Servo-controlled solar tracking apparatus
US4324225A (en) * 1975-07-11 1982-04-13 Trihey John M Solar tracking device
US4159710A (en) * 1976-09-20 1979-07-03 U.S. Philips Corporation Solar collector comprising solar tracking means
US4480677A (en) * 1976-11-01 1984-11-06 Henson H Keith Method for processing and fabricating metals in space
US4263892A (en) * 1977-09-29 1981-04-28 Little Frederick A Heat sensing means, particularly for solar water heating apparatus
US4159712A (en) * 1977-10-20 1979-07-03 Legg Howard W Solar energy conversion unit
US4175391A (en) * 1977-12-12 1979-11-27 Dow Corning Corporation Self reorienting solar tracker
US4174704A (en) * 1978-03-10 1979-11-20 Nelson Terry L Support system
US4204214A (en) * 1978-11-06 1980-05-20 Datron Systems, Inc. Slewing and tracking mechanism for dish structure
US4262654A (en) * 1979-08-24 1981-04-21 Ward Carter J Solar-energy-powered sun tracker
US4512336A (en) * 1982-10-14 1985-04-23 The Babcock & Wilcox Company Panel of vapor generating and superheating tubes
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
US4986255A (en) * 1989-06-12 1991-01-22 Ryohei Ito Apparatus pursuing the sun
US5253637A (en) * 1992-03-12 1993-10-19 Maiden Miles M Hyperfocal tracking solar thermal collector
US5730117A (en) * 1993-06-01 1998-03-24 Berger; Alexander Sun tracker
US5542409A (en) * 1995-01-06 1996-08-06 Sampayo; Eduardo A. Solar concentrator system
US5622078A (en) * 1995-08-21 1997-04-22 Mattson; Brad A. Linear/helix movement support/solar tracker
US6123067A (en) * 1999-03-31 2000-09-26 Amonix, Inc. Solar collector tracking system
US6058930A (en) * 1999-04-21 2000-05-09 Shingleton; Jefferson Solar collector and tracker arrangement
US6953038B1 (en) * 2000-05-22 2005-10-11 Andreas Nohrig Concentrating solar energy system
US20040074490A1 (en) * 2001-03-07 2004-04-22 David Mills Solar energy reflector array
US6552257B1 (en) * 2001-10-16 2003-04-22 American Signal Company Nonrotating pivotable solar panel
US6857426B2 (en) * 2002-09-25 2005-02-22 Dirk Besier Absorber element for solar high-temperature heat generation, and a method for its production
US20050284467A1 (en) * 2002-10-17 2005-12-29 Patterson Michael T Solar tracking apparatus
US20060044511A1 (en) * 2004-08-10 2006-03-02 Mackamul Kevin K Tracker drive system and solar energy collection system
US20060207589A1 (en) * 2005-03-18 2006-09-21 Atlas Material Testing Technology, L.L.C. Variably controlled accelerated weathering test apparatus
US20070215199A1 (en) * 2006-03-16 2007-09-20 United Technologies Corporation Solar tracker
US20090173335A1 (en) * 2006-05-19 2009-07-09 Cunyi Wanag Upright-Plate Type Sunlight Generator
US20090301466A1 (en) * 2006-06-19 2009-12-10 Jesus Angel Humanes Asensio Solar tracker with movement in two axes and actuation in only one of them
US20090007901A1 (en) * 2007-06-08 2009-01-08 Gregg Luconi Solar collector system for solar thermal applications
US20100201600A1 (en) * 2007-07-30 2010-08-12 Stephen Kaneff Support frame for the dish of a large dish antenna
US20090032089A1 (en) * 2007-08-03 2009-02-05 Atomic Energy Council - Institute Of Nuclear Energy Research Solar tracker having louver frames
US20090101137A1 (en) * 2007-10-17 2009-04-23 Hsi-Hsun Tsai Sun tracking system pressure differential driving system
US20110114080A1 (en) * 2008-02-29 2011-05-19 Peter Childers Multi-Axis Metamorphic Actuator and Drive System and Method
US20110017273A1 (en) * 2008-03-13 2011-01-27 Sahar G.N. International Ltd. Concentrated Solar Heating
US20110108019A1 (en) * 2008-08-18 2011-05-12 Pratt & Whitney Rocketdyne., Inc. Heliostat joint
US20100139645A1 (en) * 2008-12-01 2010-06-10 Sun-A-Ray, Llc. Balanced support and solar tracking system for panels of photovoltaic cells
US20100180884A1 (en) * 2009-01-22 2010-07-22 Kenneth Oosting Actuated solar tracker
US20100180883A1 (en) * 2009-01-22 2010-07-22 Kenneth Oosting Actuated feedforward controlled solar tracking system
US20120102949A1 (en) * 2009-02-26 2012-05-03 David Hugo Boyle Apparatus for the utilisation of thermal radiation
US8426721B2 (en) * 2009-03-20 2013-04-23 Savio S.P.A. Ventilated photovoltaic receiver
US20110073102A1 (en) * 2009-09-29 2011-03-31 Hanson Gordon N Solar collector with non-honey sandwich core
US20110132353A1 (en) * 2009-12-04 2011-06-09 SunPOD,S INC. Transportable multi-configurable self-ballasted modular solar power unit
US20110226232A1 (en) * 2010-03-18 2011-09-22 Grip Robert E Solar Energy System With Wind Vane
US20110073161A1 (en) * 2010-03-29 2011-03-31 Sedona Energy Labs, Limited Company High efficiency counterbalanced dual axis solar tracking array frame system
US20110284055A1 (en) * 2010-05-24 2011-11-24 Cogenra Solar, Inc. Concentrating solar energy collector
US20120125401A1 (en) * 2010-11-24 2012-05-24 Devillier William J Solar Collector Positioning Apparatus
US20120125399A1 (en) * 2010-11-24 2012-05-24 Kurt Schatz Solar panel system
US20130180568A1 (en) * 2011-01-21 2013-07-18 First Solar, Inc. Photovoltaic module support system
US20120186626A1 (en) * 2011-01-26 2012-07-26 International Business Machines Corporation Solar energy collection system
US20130048048A1 (en) * 2011-08-22 2013-02-28 Kent Flanery System and methods for controlling solar module trackers
US20120097149A1 (en) * 2011-12-29 2012-04-26 Doyle Fintan J Solar Tracker for Solar Energy Devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100354A1 (en) * 2009-10-29 2011-05-05 Cn-J Technology Co., Ltd. Non-electrically-powered sun-tracking solar system
US8763601B2 (en) 2011-12-29 2014-07-01 Sulas Industries, Inc. Solar tracker for solar energy devices
US20150007869A1 (en) * 2013-05-30 2015-01-08 Howard Stein Portable solar tracker
US9784476B2 (en) * 2013-05-30 2017-10-10 Howard Stein Portable solar tracker
CN103941758A (en) * 2014-03-27 2014-07-23 夏之秋 Novel dual-axis solar light tracking device
WO2018128942A1 (en) * 2017-01-03 2018-07-12 Oveson Ivyann Solar energy harvesting systems including at least one thermal-mechanical actuator for solar tracking
CN107807672A (en) * 2017-11-01 2018-03-16 五华初旭科技有限公司 Solar automatic tracking device

Similar Documents

Publication Publication Date Title
US20130061845A1 (en) Radiant energy driven orientation system
US4351319A (en) Radiant energy tracker
US8763601B2 (en) Solar tracker for solar energy devices
US9146044B2 (en) Solar panel system and methods of passive tracking
US4226502A (en) Self-contained solar tracking device
US8499756B2 (en) Thermal-mechanical positioning for radiation tracking
US7836879B2 (en) Tracker drive system and solar energy collection system
US20080257525A1 (en) Thermal control apparatus
CN102393750A (en) Method for automatically tracking solar energy by using temperature variation
Poulek Testing the new solar tracker with shape memory alloy actors
US9897344B2 (en) Solar collector having Fresnel mirrors
JP5057412B1 (en) Solar energy collection system with automatic solar tracker
EP0001493B1 (en) Apparatus and method for temperature detecting and use for solar collectors
CA3100975C (en) A solar tracking system
US4262654A (en) Solar-energy-powered sun tracker
JP2015094534A (en) Trough solar thermal collector
AU2006348550A1 (en) A heliostat support and drive mechanism
US4332240A (en) Solar-energy-powered sun tracker
US10591186B2 (en) Mechanical solar tracking and solar concentrating system
ES2281990B1 (en) SOLAR FOLLOWER IN TWO AXES.
WO2013144388A1 (en) Solar concentration plant with optimized flat absorber
CN209044272U (en) A kind of passive thermal control type lunar surface camera
RU47496U1 (en) HELIOTROPE
JPS6410400B2 (en)
JPH02130875A (en) Solar cell light receiving angle automatic regulator

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: RODEFER, BENJAMIN, NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZOMEWORKS;REEL/FRAME:051435/0158

Effective date: 20191220