US20130014950A1 - Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same - Google Patents

Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same Download PDF

Info

Publication number
US20130014950A1
US20130014950A1 US13/183,195 US201113183195A US2013014950A1 US 20130014950 A1 US20130014950 A1 US 20130014950A1 US 201113183195 A US201113183195 A US 201113183195A US 2013014950 A1 US2013014950 A1 US 2013014950A1
Authority
US
United States
Prior art keywords
well bore
well
production
combustion chamber
superheated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/183,195
Inventor
Theodore Elliot DICKINSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/183,195 priority Critical patent/US20130014950A1/en
Priority to PCT/US2011/050872 priority patent/WO2013009332A1/en
Publication of US20130014950A1 publication Critical patent/US20130014950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/16Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using gaseous fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
    • E21B36/025Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners the burners being above ground or outside the bore hole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing, limiting or eliminating the deposition of paraffins or like substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A thermal convertor is formed from a controlled combustion chamber selectively supplied by an appropriate fuel, preferably diesel, and compressed air. The control over the temperature of the combustion chamber is provided by regulating the flow of fuel, air and pressure into and out of the combustion chamber. Flow control valves open or close the inputs of fuel and water to, and the output of the superheated vapors from, the combustion chamber to specifically control the behavior of the combustion chamber and the composition and quality of the output from the combustion chamber. This assembly is then used to inject superheated nearly oxygen-free vapors including well treatment chemicals into a well bore cleaning the well, including the annulus and rathole, near-well bore and perforations of fines and asphaltenic particles, then stimulating an existing but newly cleaned well to produce additional oil. These methods can also be used to stimulate high paraffinic wells or wells with high viscosity crude oil, and for the maintenance of well pressure to enhance production rates.

Description

  • The present invention relates to a method for cleaning a producing oil well with a thermal convertor; and specifically, to a thermal convertor for the generation of vapors, including steam, for use in various well-treatment applications in the oil and gas production including well stimulation and corrosion inhibition.
  • BACKGROUND OF THE INVENTION
  • Oil producers have long known that existing wells clog over long periods of production and such clogging causes diminished flow to occur as normal well pressure declines with the production of oil. Solutions include chemical treatments, heating wells to temporarily reduce paraffins and high asphaltenic portions which may be clogging the well, and simple washing out the well bore to sweep away the offending particulates, These treatments clean the well bores or production tubing, modify the viscosity of oil, or prevent high molecular weight hydrocarbons from solidifying in a well bore thereby making the production of additional crude oil from such wells economically producible. Other uses of vapor streams described herein are similar to techniques well known to those in this industry but use novel methods and improved apparatus to achieve previously unachieved results. The usefulness of the present invention will be apparent after this disclosure. The present disclosures relates to an apparatus for delivery of superheated vapors, including saturated steam, if required, and treating chemicals for the purpose of well-stimulation and corrosion inhibition.
  • The present system can generate a useable stream of inert vapors using readily available fuels, such as—without limitation—diesel, propane or natural gas, for these uses. The system is small and light enough to permit trailering to the site of use by a regular towing hitch. The methods disclosed herein increase oil recovery from old existing wells without costly reworking of the wells or the expenditure of huge expenditures of money for energy to drive the system.
  • SUMMARY OF INVENTION
  • This method of cleaning a well bore including a rat hole below the perforations of the producing zone is accomplished by the operator removing all production equipment from the well; reinserting the open ended production tubing without the production equipment to a point below the perforations; circulating superheated vapor from a surface thermal convertor for at least thirty minutes through the annulus and returning up the production tubing until the returns are clean; step-wise lowering the production tubing into the well bore until the well bore including the rathole returns are clean; pressurizing the near well bore production formation by partially closing the wing valve on the return for a short or abbreviated period, typically about 15 seconds duration, then rapidly releasing the built-up pressure until the near well bore return is clean; and, incrementing the time of shut-in in similar abbreviated time increments, of again about 15 seconds, so that the second iteration would be approximately about 30 seconds, then 45 seconds, and repeatedly releasing pressure until the formation break-in pressure and permeable flow rate is established.
  • This well bore cleaning technology is preferably performed by pulling a production string and replacing the open or unattached tubing without the pump assembly to a position the greater of ten feet below the production perforation or three feet above resistance from well bore solids and build-up; injecting high-pressure superheated vapor in the annulus and allow a return up the production tubing for a period of at least thirty minutes; circulating superheated vapor to clean the well bore until the return is clean; incrementally adding subs to the production string to extend the string to the maximum depth and continuing the clean out of the well bore.
  • The injection of one or more selected vapors into a well bore to clean the well bore follows the similar steps of pulling all pumping rods and production equipment from the well bore; sweeping a wellbore by delivering the superheated gas and vapor-phase cleaning agents to the near and extended near wellbore formation; cleaning the wellbore by delivering the superheated gas for a short interval while inhibiting outflow from the wellbore, and rapidly relieving back pressure to induce movement of fines and sediment from the near and extended near well bore to a surface collection outlet; rinsing the well bore using saturated steam; dehydrating the well bore with the continued introduction of the superheated inert gas stream without additional water; connecting a thermal convertor comprised of a source of fuel providing a controlled flow of fuel, a source of compressed air providing a controlled flow of gas, a source of other liquids providing a controlled flow of such liquids to the thermal convertor, a mixer connected to both the source of fuel and the source of compressed air to combine the fuel and air flows in a homogeneous mixture, a water cooled combustion chamber with a controlled ignition source connected to the mixer to burn the homogeneous mixture of fuel and air at a specifically controlled temperature, and an outlet port from said combustion chamber providing a controlled outlet flow of near-oxygen free vapor, to a well bore; selecting one or more liquids to add to the controlled outlet flow of superheated vapor from the combustion chamber to vaporize said one or more liquids and injecting said selected combined vapor stream into a well bore for a period of time; and, disconnecting the thermal convertor and initiating production from the well after the period of time.
  • One liquid injected in its vapor phase is an alkali metal hydride and can additionally contain a non-ionic cleaning and wetting agent and selected environmentally safe or green terpenes or another naturally-occurring essential oils.
  • The thermal convertor additionally can provide a catalytic convertor at the outlet from the combustion chamber to provide all exhaust vapors are low in NOx gases. The flow through the outlet from the combustion chamber can regulated by a backpressure valve. The both permits the use of diesel as a fuel for the thermal convertor, making the use of the tool easily accomplished in remote locations and restricting the flow of superheated vapor into the well bore as the option of the operator. The thermal convertor of the present application can also and alternatively be operated on propane or methane gas or any other available and combustible gases.
  • A method of cleaning an oil well stimulates additional production by generating a superheated inert gas; sweeping a wellbore by delivering the superheated gas and one or more vapor-phase cleaning agents to the near and extended near wellbore formation; cleaning the wellbore by delivering the superheated gas for a short interval while inhibiting outflow from the wellbore, and rapidly relieving back pressure to induce movement of fines and sediment from the near and extended near well bore to a surface collection outlet; rinsing the well bore using saturated steam; dehydrating the well bore with the continued introduction of the superheated inert gas stream without additional water; and, continue pressurizing the formation to create a pressure drive to enable increased production of oil.
  • The cleaning of the wellbore of the present application also includes the rathole; that is, that extra hole drilled at the end of the well (beyond the last zone of interest) to ensure that the zone of interest can be fully evaluated. The rathole is typically below the perforations for producing wells and slowly fills with sand and corrosion products throughout the production from the well.
  • The treatment of well bore described foresees chemically treating the well through the introduction of an alkali metal hydride in a vapor phase in the amount of 0.00125% to 0.01% by weight into the well bore and extended well bore to treat formation surfaces to break up and clean out the production zone to increase the flow of oil from the formation and inhibit the production of carbonic acid from the carbon dioxide in the well bore minimizing acid corrosion of the well bore tubulars.
  • The application of a corrosion treatment to a well follows a similar process wherein the well is treated by generating a superheated inert gas; sweeping a wellbore by delivering the superheated gas and vapor-phase cleaning agents to the wellbore and production tubing; cleaning the wellbore and rathole by delivering the superheated gas for a short interval, and rapidly relieving back pressure to induce movement of fines and sediment from the well bore and rathole; rinsing the wellbore and production tubing with saturated steam to remove all chemical cleaning agents; drying the wellbore and production tubing with superheated inert gas; vapor phasing a solution of alkali metal hydride, such as sodium metasilicate from about 5 to 10% by volume and injecting down the annulus and up through the production tubing to coat the surfaces; and continuing injection of superheated inert gas to cure and set the alkali metal hydride in the well bore and production tubing for corrosion inhibition.
  • All of the treatment methods described herein are accomplished using a thermal convertor which is fashioned utilizing a source of fuel providing a controlled flow of fuel; a source of compressed air providing a controlled flow of air; a source of water providing a controlled flow of water; a mixer connected to both the source of fuel and the source of compressed air to combine the fuel and air flows into a homogeneous mixture; a water cooled combustion chamber with a controlled ignition source connected to the mixer to burn the homogeneous mixture of fuel and air at a specifically controlled temperature; and, an outlet port from said combustion chamber providing a controlled outlet flow of vapor.
  • The thermal convertor can further provide a source of chemicals connected to the outlet port from the combustion chamber to provide chemicals to the vapor stream produced by the combustion chamber. The outlet port from the combustion chamber can be directed to a catalytic convertor, which not only cleans the combustion products from the convertor but also raises and maintains the temperature of the outlet vapors.
  • A back-pressure valve can also be positioned on the outlet port to control the flow throughput of the combustion chamber allowing both the use of diesel as a fuel and precise control of the amount of superheated vapor flowing into the well bore.
  • The preferred chemical treatment of a cleaned well bore can further be accomplished by spotting the production tubing between six to eight feet below the lowest perforation of the production zone to permit a pump mechanism to occupy a space within the static fluid level of the well bore; injecting vapor phase well treatment chemicals into the well bore and into the producing zone; and, starting the prime mover to move oil up the production tubing to the surface.
  • Re-treatment of the previously cleaned well bore with additional chemicals is readily accomplished by stopping the prime mover in the producing well bore and allowing the pump mechanism to be covered in the static fluid level; attaching the thermal convertor and injecting well treatment chemicals in vapor phase into the well bore production zone at a pressure above the break-in pressure of the formation for the producing zone, and continuing to inject superheated gas and vaporized well treatment chemicals. After this treatment, further production can proceed as long as a gas-liquid seal is maintained in the near-well bore production zone. A gas-liquid seal is defined as the coverage of formation liquids, which may include both oil and water, over the perforations in the producing zone. The well treatment chemicals are a non-ionic surfactant and a solvent, wherein the non-ionic surfactant is no more than 20% and the solvent, such as a environmentally safe terpene or other essential oils, is at least 80% of the well treatment chemicals by weight.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic drawing of the thermal convertor assembly.
  • FIG. 2 is a schematic disassembled view of the thermal convertor combustion chamber.
  • FIG. 3 is a schematic diagram of a well bore showing the first stage of cleaning.
  • FIG. 4 is a schematic diagram of a well bore showing the movement of the production tubing into the rathole at the end of the first stage of cleaning involving the well bore.
  • FIG. 5 is a schematic diagram of a well bore showing the movement of the production tubing down in the well bore and the commencement of the cleaning of the near well bore.
  • FIG. 5A is a schematic diagram of a well bore showing the movement of fines and junk out of the near-well bore.
  • FIG. 6 is a schematic diagram of a well bore showing the placement of the artificial lift assembly in the well bore below the perforations.
  • FIG. 7 is a schematic diagram of a well bore showing the potential of using this disclosure to stimulate a well bore previously cleaned by the continued creation of a gas cap to drive production fluid into the rathole for recovery of the pump assembly maintained below the liquid level.
  • DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION AND METHODS OF USING SOME EMBODIMENTS
  • FIG. 1 is a schematic drawing of the thermal convertor assembly. Any fuel source 10, such as methane or natural gas or propane or the preferred diesel, for example, can be used to supply a combustion chamber 60 with a fuel to burn in the presence of compressed gas obtained from a standard compressor 20. A fuel supply line can be also connected to two valves. Diesel can be injected into the combustion chamber 60, and ignited with a glow plug 15 all in a manner well known by those skilled in this art, and continued combustion can be maintained by regulating the back-pressure by a valve 65 in the combustion chamber 60 thereby allowing all well site equipment to be serviced with diesel fuel. Overall control of the thermal convertor assembly 100 is maintained by an integrated controller 5
  • Irrespective of the source of the fuel, an electronically controlled shut down valve (not shown) can be activated to stop the flow of fuel from supply line 11 automatically because the fuel supply line is monitored for abnormal pressure or temperature before reaching another electronically controlled valve that can be throttled to open or close the fuel supply line 11 before reaching the combustion chamber 60. A check valve (not shown) prevents backpressure migration of the combustible fuel or hot vapor into the supply line 11.
  • The compressed air source 20 feeds in parallel with the fuel source line 11 to the combustion chamber 60. Built-in safeguards control the flow of compressed air into the combustion chamber. Shutdown valves (not shown) are electronically controlled by sensors (not shown) that signal the fuel line to immediately stop the flow of air through air supply line 21 to the combustion chamber 60 if required to prevent further burning. The compressed air line 21 can also provide a flow control valve arrangement (not shown) to vary as required the amount of gas reaching the gas/gas (not shown) mixer when utilizing alternative gaseous fuel mixes, immediately before the mixed air and fuel is introduced into the combustion chamber 60.
  • The water 30 supplied to the outlet side of the thermal convertor assembly 100 from source 30 receives a pressure boost from water pump driven by an electronically controlled motor, which can be activated if steam is desired to be used in the well bore. Since water cannot be used in some types of formations, steam may not be useful in all situations, especially in formations have water reactive clays and the like. This water source 30 can also provide coolant for the combustion chamber 60. A check valve can be provided to assure that water does not flow back into the water supply 30. The combustion chamber 60 is water cooled in a closed loop system similar to an automobile cooling system. Alternatively, the water could flow from source 30 through the line to the combustion chamber jacket (not shown in this view), then through a radiator or heat exchanger before being returned to the combustion-chamber water jacket for recirculation around the combustion chamber, all in a manner well known to those in this art. The outlet side of the combustion chamber 71 can additionally be supplied with a catalytic convertor 63, which both removes unwanted NOx pollutants and increases the heat of the output vapor stream 70 of the system.
  • In FIG. 2, as previously described and shown here in more detail, combustion chamber 60 accepts the fuel 11 injected by diesel injector 16 and compressed air 21 (or the compressed air and fuel from gas/gas mixer, not shown) where electronically controlled ignition controller 5 of FIG. 1 energizes the ignition system 15 or spark plug/glow plug in the chamber 60, commencing the combustion. Water from the closed loop cooling system 64 is pumped into the jacket 62 formed around the combustion chamber 60. The combustion chamber 60 provides a tapered interior surface 61 to minimize the turbulence in the chamber and to direct the vapor flow out to the process outlet stream 70 of this assembly. The flow of water through water jacket 62 which surrounds the combustion chamber 60 cools the chamber thereby preventing excessive heat build up in the combustion chamber body. The outlet port of the combustion chamber is fabricated as a bolted flange body from F9 Chrome, because of its heat tolerance.
  • Operating temperatures range from 200° F. to 800° F. under normal conditions, but the system can be increased to generate 1200° F., if required. If the combustion chamber 60 reaches or exceeds a predetermined set point, e.g., 650° F. (343° C.), air, fuel, chemical injection (if any) and water are all automatically shut off and a back-pressure valve 65 is fully opened. If flame out occurs in the combustion chamber 60 as determined by having the temperature fall below 250° F. (121° C.), or excessive pressure is sensed as indicated by a pressure sensor (not shown) experiencing a exhaust pressure above a set point of 390 psi (2.69 MPa), a similar shut down sequence is activated.
  • The exhaust side 69 of the combustion chamber 60 is directed to the well head flow line (not shown) to supply the superheated combustion gases to the well bore; and will be conducted to the well head by means well known to the oil field trade and process industries. The outlet side 69 of the combustion chamber 60 is monitored for pressure, temperature and rate of flow. If the pressure exceeds acceptable safety limits, it can be vented to the atmosphere through a safety valve (not shown, but well known in this art).
  • By careful regulation of the combustion, the amount of remaining oxygen in the outlet flow 70 of superheated gas is reduced to 0.1% to 0.3% oxygen, far less than the 3% to 5% oxygen found in most membrane injection systems. Programmable logic devices constantly monitor the O2 levels in the system 100 of FIG. 1. The nearly complete combustion minimizes unwanted NOx gases and the use of the alternative catalytic convertor 63 (as shown in FIG. 1) removes all remaining pollutants from the superheated stream 70 as well as further heats the vapor coming from the combustion chamber 60. Another benefit of the use of the chemical treatments more fully described below is the affect on free water vapor in the well bore. The use of the alkali metal hydride completely removes all free water vapor from the superheated vapor stream injected into the well bore, leaving only as later described herein, CO2 and N2. If the vapor output temperature is higher than required or above the desired preset at 650° F. (343° C.), e.g., an electronic sensor (not shown) signals the control system 5 in FIG. 1 to reduce the heat of the system 100 by reducing both compressed air and diesel fuel injection into the chamber 60.
  • Similarly, a control valve 65 can be preset at 390 psi (2.69 MPa) to relieve pressure on the system automatically. An electronically controlled back pressure control valve can provide further control over the system by opening or closing the outlet of the combustion chamber 60 thereby regulating the flow of vapors from the chamber 60. This valve 65 also permits the use of diesel fuel by supporting the auto-ignition sequence in the combustion chamber 60 from the glow plug 15 by substantially closing outlet 69 from the combustion increasing pressure in the combustion chamber 60.
  • A chemical supply valve (not shown) is opened allow the flow of chemicals from source 40 (as shown in FIG. 1) into the line to the outlet side of the combustion chamber 60 or at the wellhead, and can provide a shut down valve to immediate stop the flow of chemicals into the line as determined by the sensors of the electronic control circuitry. A pump can be driven, similarly to other pumps and compressors in this embodiment, by an electronically controlled motor which responds to signals from the automated control system herein. For safety, a check valve prevents the back flow of chemicals or hot vapors from the supply line. The injection of chemicals into the outlet side of the thermal convertor system 100 immediately vaporizes the chemicals allowing them to be carried into the well bore and into the near and extended near well bore production zones.
  • FIG. 3 shows a use for the described thermal convertor in a cleaning treatment of a single well bore. Most wells in the United States are produced with sucker rod pumping systems well known in this art. The present process starts by removing the downhole positive displacement pump, the sucker rods, the subsurface pump body assembly including any tubing anchors, gas or mud anchors and any other portions of the pumping assembly. The operator then commences cleaning the well bore re-inserting the production tubing 310 without the pumps, rods, etc. into the well bore until resistance from accumulated fines and asphaltenes 300 is reached. Then backing off this point two to three feet, the operator connects the thermal convertor system to the wellhead 315 and commences to circulate the superheated vapors 70 down the annulus 320. As this vapor stream moves across the fines and asphaltenes 300, these portions are lifted up the production tubing 310 scouring the interior of the casing, the area immediately below the production tubing 318 and the interior of the production tubing 310. Once clean returns are experienced at the surface after repeatedly opening and partially closing the wing valve 340 on the production string. The operator can then lower the production tubing 310 deeper into that portion of the well bore below the perforations commonly referred to as the rathole 360 by adding a short sub at the surface and running the production tubing 310 back down into the well bore WB, as shown in FIG. 4, with the continued circulation of superheated inert gas from the thermal convertor injected through the annulus and returned up the production tubing. This step is called the U-tube cleanout of the well bore. If the production tubing 310 cannot be inserted all the way into the rathole 360 to total well depth, the insertion of the tubing 310 must be staged and introduced incrementally into the well bore WB and flow maintained to remove the fines and solids 300 in the well bore WB before proceeding deeper into the well bore WB. Initially, superheated vapor should be introduced into the annulus 320 while substantially closing a wing-valve 340 on the production tubing 310 for about 15 seconds.
  • The accumulated pressure can then be dumped at the surface (not shown) and the process repeated until the return fines and lifted solids are clear. It is best to never completely close the wing-valve 340 to prevent the lifted fines and solids from resettling into the well bore WB and rathole 360 during these successive phases of activity. Subs can be added to the production tubing as shown in FIG. 4 at 410 and the tubing lowered deeper into the well until the entire well bore is cleaned.
  • As shown in FIGS. 4, 5 and 6, once the well bore has been cleaned and scoured from the abrasive effect of the lifted solids, the near well bore 510 can be cleaned by following the same process. The wing-valve (not shown in this view) on the production tubing 310 is again substantially closed and the superheated vapors are injected into the well bore, then the wing valve (not shown) is opened to dump the built-up pressure in the production tubing 310. This step is repeated in progressively longer periods of pressure buildup in approximately 15-second increments. As pressure is dumped, solids and fines from the near-well bore formation 510 will flow out and up the production tubing 310, each incremental step should be repeated until the fines and solids lifted are eliminated, at which time additional pressure is injected into the formation through the perforations and repeatedly released to loosen and remove the fines and asphaltenic residue until the pressure no longer builds in the annulus 320 indicating the formation break-in pressure limit has been reached, at which time the clean out is deemed complete.
  • FIG. 5A shows the movement of the superheated vapors from the thermal convertor 100 through the perforations 650 into the near well bore 510 and the removal of fines and asphaltenic particles back out of the near well bore formation 510 and movement into the production tubing 310.
  • It would not be unusual as this point is reached to start finding fracing particles returned upon the pressure release at the wing-valve on the surface (not shown in this view). This suggests the well has been cleaned to the production zone of all solidified particulate matter and is ready to flow.
  • The circulation of superheated inert gas in this manner cleans the wellbore WB, near-wellbore 510 and extended well bore 520 of paraffins, asphaltenes and other forms of accumulated sediment which may have clogged the well bore perforations 650 and restricted permeability of the formation.
  • As shown in FIG. 6, after the returns from this cleaning process appear clean, the downhole pumping assembly 610 is reinstalled in the well bore WB below the production perforations 650 and the liquid level 660 thereby permitting well drainage into the rathole 360.
  • The chemical treatment of the production formation is begun by injecting the superheated vapor into the newly cleaned well bore WB and near well bore 510 to reduce the interfacial surface tension of the production zone rock and to modify the wettability of the near 510 and extended wellbore 520. This cleaning process is done using a bio-degradeable cleaning/wetting agent, as well as other agents such as terpenes and other naturally occurring essential oils. This treatment customarily requires a fifty-five gallon drum for a twenty-foot production zone. Larger production zones may require additional drums of cleaning/wetting agent. Other non-bio-degradeable solvents could be substituted for this cleaning step. Then, steam can be injected into the well bore WB to rinse the wetting/cleaning agent from well bore WB. The steam is then terminated and the superheated inert gas is continued without the steam or chemical to dry or dehydrate the formation and prepare it for an alkali metal hydride solution similar to sodium meta-silicate, and an available product called FlowMorAH™ available from Fontus Chemicals of Houston, Tex. This treatment process also allows, in receptive geological formations, the accumulation of attic gas, which provides additional driving forces on the oil well. For example, in FIG. 7, the treatment and re-treatment of the well after cleaning helps maintain an attic gas cap 710 minimizing water flow back into the well bore WB and increases the production of oil from formerly marginal wells. As long as the pump assembly 610 remains below the liquid level 660, later re-stimulation with the superheated vapor 70 can increase flow from the well without damage to the elastomeric elements of the pump assembly 610 and can be readily accomplished by periodic treatments of the well bore WB by the thermal convertor of the present invention.
  • This treatment provides a film coating on the surface of the geologic formation and provides a hydrocarbon-phobic surface that resists oil rewetting or accumulation of the production zone. The superheated gas treatment is continued until the inert gas accumulating in the well bore WB creates sufficient pressure or attic gas 710 to sustain production of oil into the wellbore WB for removal in a manner well-known in the art using the standard artificial lift mechanism.
  • Re-treatment of the well is easily accomplished by returning to the well which has shown decline in the achieved production rate from the initial treatment. The superheated gas is again injected into the well bore WB with associated chemical treatment using a non-ionic surfactant aqueous wetting agent, such as FloMorAQ™ also available from Fontus Chemicals of Houston, Tex.
  • Well treatment, in highly corrosive wells, using the thermal convertor can be readily accomplished by cleaning the well using the process described herein for the clean-out process until the fines are removed. Using the same technique previously described, a silicon based metal hydride is vapor deposited on the annulus and production tubing by running at least a fifty-five (55) gallon drum of the material through the clean well bore string, containing no more than twenty percent (20%) by volume of the alkali metal hydride.
  • The fresh alkali metal hydride is then cured in the well annulus and production tubing by continuing the flow of superheated vapor from the thermal connector without steam to cure the product thereby forming a corrosion resistant surface on the annulus and production tubing.
  • The use of the superheated vapor delivery system of the present application can be used for limited periods of time to lift oil from the production zone to the surface by building pressure in the annulus and opening and closing the wing-valve at the production tubing repetitively. The adjustment of the pressure caused by the opening and closing of the wing-valve lifts the product to the wellhead.
  • The particular embodiments and uses disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

Claims (22)

1. A method of cleaning a well bore including a rat hole below the perforations of the producing zone comprising:
removing all production equipment from the well;
reinserting a production tubing without the production equipment to a point below the perforations;
circulating superheated vapor from a surface thermal convertor for a period of time through the annulus and returning up the production tubing until the returns are clean;
step-wise lowering the production tubing into the well bore until the well bore including the rathole returns are clean;
pressurizing the near well bore production formation by partially closing the wing valve on the return for an abbreviated period of time, then releasing the built-up pressure until the near well bore return is clean; and,
incrementing the time of shut-in in similar abbreviated time increments and rapidly releasing pressure until the formation break-in pressure and a permeable flow rate is established.
2. A method of cleaning a well bore comprising:
pulling a production string and replacing the tubing to a position the greater of ten feet below the production perforation or three feet above resistance from well bore solids and build-up;
injecting superheated vapor in the annulus and allow a return up the production tubing for a period of at least thirty minutes;
circulating superheated vapor to clean the well bore until the return is clean;
incrementally adding subs to the production string to extend the string to the maximum depth and continuing the clean out of the well bore
3. A method of injecting one or more selected vapors into a well bore to clean the well bore comprising:
pulling all pumping rods and production equipment from the well bore;
sweeping a wellbore by delivering the superheated gas and vapor-phase cleaning agents to the near and extended near wellbore formation;
cleaning the wellbore by delivering the superheated gas for a short interval while inhibiting outflow from the wellbore, and rapidly relieving back pressure to induce movement of fines and sediment from the near and extended near well bore to a surface collection outlet;
rinsing the well bore using saturated steam;
dehydrating the well bore with the continued introduction of the superheated inert gas stream without additional water;
connecting a thermal convertor comprised of a source of fuel providing a controlled flow of fuel, a source of compressed air providing a controlled flow of gas, a source of other liquids providing a controlled flow of such liquids to the thermal convertor, a mixer connected to both the source of fuel and the source of compressed air to combine the fuel and air flows in a homogeneous mixture, a water cooled combustion chamber with a controlled ignition source connected to the mixer to burn the homogeneous mixture of fuel and air at a specifically controlled temperature, and an outlet port from said combustion chamber providing a controlled outlet flow of near oxygen-free vapor, to a well bore;
selecting one or more liquids to add to the controlled outlet flow of superheated vapor from the combustion chamber to vaporize said one or more liquids and injecting said selected combined vapor stream into a well bore for a period of time; and,
disconnecting the thermal convertor and initiating production from the well after the period of time.
4. The method of claim 3 wherein the liquid is an alkali metal hydride.
5. The method of claim 3 wherein the liquid is a biodegradeable non-ionic cleaning and a solvent or wetting agent selected from environmentally safe terpenes or another naturally-occurring essential oils.
6. The method of claim 3 wherein the thermal convertor additionally provides a catalytic convertor at the outlet from the combustion chamber.
7. The method of claim 3 wherein the outlet provides a backpressure valve.
8. The method of claim 3 wherein the fuel is diesel.
9. The method of claim 3 wherein the fuel is propane.
10. The method of claim 3 wherein the fuel is methane.
11. A method of cleaning an oil well to stimulate additional production comprising:
generating a superheated inert gas;
sweeping a wellbore by delivering the superheated gas and one or more vapor-phase cleaning agents to the near and extended near wellbore formation;
cleaning the wellbore by delivering the superheated gas for a short interval while inhibiting outflow from the wellbore, and rapidly relieving back pressure to induce movement of fines and sediment from the near and extended near well bore to a surface collection outlet;
rinsing the well bore using saturated steam;
dehydrating the well bore with the continued introduction of the superheated inert gas stream without additional water; and,
continue pressurizing the formation to create a pressure drive to enable increased production of oil.
12. The method of claim 11 wherein the cleaning of the wellbore also includes the rathole.
13. The method of claim 11 wherein the treatment of well bore is accomplished chemically treating the well by introducing an alkali metal hydride in a vapor phase in the amount of 0.00125% to 0.01% by weight into the well bore and extended well bore to treat formation surfaces to break up and clean out the production zone to increase the flow of oil from the formation and to inhibit the production of carbonic acid from the carbon dioxide in the well bore, minimizing acid corrosion of the well bore.
14. The method of applying corrosion treating to a well comprising:
generating a superheated inert gas;
sweeping a wellbore by delivering the superheated gas and vapor-phase cleaning agents to the wellbore and production tubing;
cleaning the wellbore and rathole by delivering the superheated gas for a short interval, and rapidly relieving back pressure to induce movement of fines and sediment from the well bore and rathole;
rinsing the wellbore and production tubing with saturated steam to remove all chemical cleaning agents;
drying the wellbore and production tubing with superheated inert gas;
vapor phasing a solution of alkali metal hydride from about 5 to 10% by volume and injecting down the annulus and up through the production tubing to coat the surfaces; and
continue injecting superheated inert gas to cure and set the alkali metal hydride in the well bore and production tubing for corrosion inhibition.
15. A thermal convertor comprising:
a source of fuel providing a controlled flow of fuel;
a source of compressed air providing a controlled flow of air;
a source of water providing a controlled flow of water;
a mixer connected to both the source of fuel and the source of compressed air to combine the fuel and air flows into a homogeneous mixture;
a water cooled combustion chamber with a controlled ignition source connected to the mixer to burn the homogeneous mixture of fuel and air at a specifically controlled temperature and pressure; and,
an outlet port from said combustion chamber providing a controlled outlet flow of vapor.
16. The thermal convertor of claim 15 further comprising a source of chemicals connected to the outlet port from the combustion chamber to provide chemicals to the vapor stream produced by the combustion chamber.
17. The thermal convertor of claim 15 further comprising a catalytic convertor attached to the outlet port from the combustion chamber.
18. The thermal convertor of claim 15 further comprising a back-pressure valve positioned on the outlet port to control the flow throughput from, and pressure within, the combustion chamber.
19. A method for chemical treatment of a cleaned well bore comprising:
spotting the production tubing between six to eight feet below the lowest perforation of the production zone to permit a pump mechanism to be occupy a space within the static fluid level of the well bore;
injecting vapor phase well treatment chemicals into the well bore and into the producing zone; and,
starting the prime mover to move oil up the production tubing to the surface.
20. The method of re-treating a clean well bore with additional chemicals comprising:
stopping the prime mover in the producing well bore and allowing the pump mechanism to be covered in the static fluid level;
attaching the thermal convertor and injecting well treatment chemicals in vapor phase into the well bore production zone at a pressure above the break-in pressure of the formation for the producing zone, and
continuing to inject superheated gas and vaporized well treatment chemicals;
discontinuing treatment and commencing pumping operations at a rate which maintains a gas-liquid seal in the near well bore production zone.
21. The method of claim 20 wherein the well treatment chemicals are a non-ionic surfactant and an environmentally safe solvent.
22. The method of claim 21 wherein the non-ionic surfactant is no more than 20% and the solvent is at least 80% of the well treatment chemicals by weight.
US13/183,195 2011-07-14 2011-07-14 Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same Abandoned US20130014950A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/183,195 US20130014950A1 (en) 2011-07-14 2011-07-14 Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same
PCT/US2011/050872 WO2013009332A1 (en) 2011-07-14 2011-09-08 Methods of well cleanout, stimulation and remediation and thermal convertor assembly for accomplishing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/183,195 US20130014950A1 (en) 2011-07-14 2011-07-14 Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same

Publications (1)

Publication Number Publication Date
US20130014950A1 true US20130014950A1 (en) 2013-01-17

Family

ID=47506362

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/183,195 Abandoned US20130014950A1 (en) 2011-07-14 2011-07-14 Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same

Country Status (2)

Country Link
US (1) US20130014950A1 (en)
WO (1) WO2013009332A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535765C1 (en) * 2013-10-29 2014-12-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Treatment method of bottomhole zone
US20150308247A1 (en) * 2012-08-13 2015-10-29 Shandong Huaxi Petroleum Technology Service Co., Ltd. Method and apparatus for improving steam dryness of steam injection boiler
CN108590584A (en) * 2018-03-30 2018-09-28 中国石油集团川庆钻探工程有限公司工程技术研究院 A kind of online paraffin removal unit of self energy steam automatic heating washing oil wells and method
CN112647898A (en) * 2020-12-31 2021-04-13 胡克 Oil field interstation heat supply temperature compensation method and compensation system
CN114737918A (en) * 2021-01-07 2022-07-12 中国石油天然气股份有限公司 Molten wax unblocking device and method
US20230041390A1 (en) * 2021-08-09 2023-02-09 Exxonmobil Upstream Research Company Methods for In-Situ Application of a Coating Agent to Production Tubing Using a Plunger Lift System
US20230358117A1 (en) * 2016-11-16 2023-11-09 Subsurface Technologies, Inc. System for preventative water well maintenance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603329C1 (en) * 2016-01-28 2016-11-27 Андрей Леонидович Шпади Method of eliminating internal deposits of oil and gas equipment and device therefor

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2551434A (en) * 1949-04-05 1951-05-01 Shell Dev Subsurface pump for flooding operations
US3707193A (en) * 1971-10-01 1972-12-26 Shell Oil Co Gas-strengthened steam foam well cleaning
US4399868A (en) * 1981-09-30 1983-08-23 Shell Oil Company Unplugging brine-submerged perforations
US4671359A (en) * 1986-03-11 1987-06-09 Atlantic Richfield Company Apparatus and method for solids removal from wellbores
US4744420A (en) * 1987-07-22 1988-05-17 Atlantic Richfield Company Wellbore cleanout apparatus and method
US4765410A (en) * 1987-06-24 1988-08-23 Rogers William C Method and apparatus for cleaning wells
US4949784A (en) * 1989-12-15 1990-08-21 Atlantic Richfield Company Wellhead leak containment
US5209300A (en) * 1992-02-04 1993-05-11 Ayres Robert N Pressure regulated chemical injection system
US5211242A (en) * 1991-10-21 1993-05-18 Amoco Corporation Apparatus and method for unloading production-inhibiting liquid from a well
US5723423A (en) * 1993-12-22 1998-03-03 Union Oil Company Of California, Dba Unocal Solvent soaps and methods employing same
US5988280A (en) * 1996-12-23 1999-11-23 Ambar, Inc. Use of engine heat in treating a well bore
US6138753A (en) * 1998-10-30 2000-10-31 Mohaupt Family Trust Technique for treating hydrocarbon wells
US6143709A (en) * 2000-03-28 2000-11-07 Carey; Charles C. Well cleaning stimulation and purging method
US20010035302A1 (en) * 1998-03-13 2001-11-01 Desai Praful C Method for milling casing and drilling formation
US6328103B1 (en) * 1999-08-19 2001-12-11 Halliburton Energy Services, Inc. Methods and apparatus for downhole completion cleanup
US6343653B1 (en) * 1999-08-27 2002-02-05 John Y. Mason Chemical injector apparatus and method for oil well treatment
US6534449B1 (en) * 1999-05-27 2003-03-18 Schlumberger Technology Corp. Removal of wellbore residues
US20030121656A1 (en) * 1995-11-02 2003-07-03 Hershberger Michael D. Liquid level detection for artificial lift system control
US6666269B1 (en) * 2002-03-27 2003-12-23 Wood Group Esp, Inc. Method and apparatus for producing fluid from a well and for limiting accumulation of sediments in the well
US20050161216A1 (en) * 2001-10-30 2005-07-28 Zupanick Joseph A. Slant entry well system and method
US20060131029A1 (en) * 2004-12-21 2006-06-22 Zupanick Joseph A Method and system for cleaning a well bore
US20070062704A1 (en) * 2005-09-21 2007-03-22 Smith David R Method and system for enhancing hydrocarbon production from a hydrocarbon well
US7198103B2 (en) * 2004-04-21 2007-04-03 Campbell Gale J Method for stimulating a petroleum well
US20070289618A1 (en) * 2006-06-14 2007-12-20 Dana Wayne Lofton Thermal fluid stimulation Unit
US20090032263A1 (en) * 2007-08-03 2009-02-05 Zupanick Joseph A Flow control system utilizing an isolation device positioned uphole of a liquid removal device
US20100071899A1 (en) * 2008-09-22 2010-03-25 Laurent Coquilleau Wellsite Surface Equipment Systems
US20110056694A1 (en) * 2009-09-10 2011-03-10 Refined Technologies, Inc. Methods For Removing Paraffinic Hydrocarbon Or Bitumen In Oil Producing Or Disposal Wells
US7905291B2 (en) * 2006-05-03 2011-03-15 Schlumberger Technology Corporation Borehole cleaning using downhole pumps

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361205A (en) * 1965-07-28 1968-01-02 Hydrasearch Co Inc Method and system for dissolving paraffin
US4454917A (en) * 1979-11-06 1984-06-19 Carmel Energy, Inc. Thermal acidization and recovery process for recovering viscous petroleum
US4454918A (en) * 1982-08-19 1984-06-19 Shell Oil Company Thermally stimulating mechanically-lifted well production
US5727628A (en) * 1995-03-24 1998-03-17 Patzner; Norbert Method and apparatus for cleaning wells with ultrasonics
US6527050B1 (en) * 2000-07-31 2003-03-04 David Sask Method and apparatus for formation damage removal

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2551434A (en) * 1949-04-05 1951-05-01 Shell Dev Subsurface pump for flooding operations
US3707193A (en) * 1971-10-01 1972-12-26 Shell Oil Co Gas-strengthened steam foam well cleaning
US4399868A (en) * 1981-09-30 1983-08-23 Shell Oil Company Unplugging brine-submerged perforations
US4671359A (en) * 1986-03-11 1987-06-09 Atlantic Richfield Company Apparatus and method for solids removal from wellbores
US4765410A (en) * 1987-06-24 1988-08-23 Rogers William C Method and apparatus for cleaning wells
US4744420A (en) * 1987-07-22 1988-05-17 Atlantic Richfield Company Wellbore cleanout apparatus and method
US4949784A (en) * 1989-12-15 1990-08-21 Atlantic Richfield Company Wellhead leak containment
US5211242A (en) * 1991-10-21 1993-05-18 Amoco Corporation Apparatus and method for unloading production-inhibiting liquid from a well
US5209300A (en) * 1992-02-04 1993-05-11 Ayres Robert N Pressure regulated chemical injection system
US5723423A (en) * 1993-12-22 1998-03-03 Union Oil Company Of California, Dba Unocal Solvent soaps and methods employing same
US20030121656A1 (en) * 1995-11-02 2003-07-03 Hershberger Michael D. Liquid level detection for artificial lift system control
US5988280A (en) * 1996-12-23 1999-11-23 Ambar, Inc. Use of engine heat in treating a well bore
US20010035302A1 (en) * 1998-03-13 2001-11-01 Desai Praful C Method for milling casing and drilling formation
US6138753A (en) * 1998-10-30 2000-10-31 Mohaupt Family Trust Technique for treating hydrocarbon wells
US6534449B1 (en) * 1999-05-27 2003-03-18 Schlumberger Technology Corp. Removal of wellbore residues
US6328103B1 (en) * 1999-08-19 2001-12-11 Halliburton Energy Services, Inc. Methods and apparatus for downhole completion cleanup
US6343653B1 (en) * 1999-08-27 2002-02-05 John Y. Mason Chemical injector apparatus and method for oil well treatment
US6143709A (en) * 2000-03-28 2000-11-07 Carey; Charles C. Well cleaning stimulation and purging method
US20050161216A1 (en) * 2001-10-30 2005-07-28 Zupanick Joseph A. Slant entry well system and method
US6666269B1 (en) * 2002-03-27 2003-12-23 Wood Group Esp, Inc. Method and apparatus for producing fluid from a well and for limiting accumulation of sediments in the well
US7198103B2 (en) * 2004-04-21 2007-04-03 Campbell Gale J Method for stimulating a petroleum well
US20060131029A1 (en) * 2004-12-21 2006-06-22 Zupanick Joseph A Method and system for cleaning a well bore
US20070062704A1 (en) * 2005-09-21 2007-03-22 Smith David R Method and system for enhancing hydrocarbon production from a hydrocarbon well
US7905291B2 (en) * 2006-05-03 2011-03-15 Schlumberger Technology Corporation Borehole cleaning using downhole pumps
US20070289618A1 (en) * 2006-06-14 2007-12-20 Dana Wayne Lofton Thermal fluid stimulation Unit
US20090032263A1 (en) * 2007-08-03 2009-02-05 Zupanick Joseph A Flow control system utilizing an isolation device positioned uphole of a liquid removal device
US20100071899A1 (en) * 2008-09-22 2010-03-25 Laurent Coquilleau Wellsite Surface Equipment Systems
US20110056694A1 (en) * 2009-09-10 2011-03-10 Refined Technologies, Inc. Methods For Removing Paraffinic Hydrocarbon Or Bitumen In Oil Producing Or Disposal Wells

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150308247A1 (en) * 2012-08-13 2015-10-29 Shandong Huaxi Petroleum Technology Service Co., Ltd. Method and apparatus for improving steam dryness of steam injection boiler
US9650877B2 (en) * 2012-08-13 2017-05-16 Shandong Huaxi Petroleum Technology, Co., Ltd Method and apparatus for improving steam dryness of steam injection boiler
RU2535765C1 (en) * 2013-10-29 2014-12-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Treatment method of bottomhole zone
US20230358117A1 (en) * 2016-11-16 2023-11-09 Subsurface Technologies, Inc. System for preventative water well maintenance
CN108590584A (en) * 2018-03-30 2018-09-28 中国石油集团川庆钻探工程有限公司工程技术研究院 A kind of online paraffin removal unit of self energy steam automatic heating washing oil wells and method
CN112647898A (en) * 2020-12-31 2021-04-13 胡克 Oil field interstation heat supply temperature compensation method and compensation system
CN114737918A (en) * 2021-01-07 2022-07-12 中国石油天然气股份有限公司 Molten wax unblocking device and method
US20230041390A1 (en) * 2021-08-09 2023-02-09 Exxonmobil Upstream Research Company Methods for In-Situ Application of a Coating Agent to Production Tubing Using a Plunger Lift System
US11879308B2 (en) * 2021-08-09 2024-01-23 ExxonMobil Technology and Engineering Company Methods for in-situ application of a coating agent to production tubing using a plunger lift system

Also Published As

Publication number Publication date
WO2013009332A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
US20130014950A1 (en) Methods of Well Cleanout, Stimulation and Remediation and Thermal Convertor Assembly for Accomplishing Same
CA2643285C (en) Method for producing viscous hydrocarbon using steam and carbon dioxide
US4896725A (en) In-well heat exchange method for improved recovery of subterranean fluids with poor flowability
US20060162923A1 (en) Method for producing viscous hydrocarbon using incremental fracturing
US4456069A (en) Process and apparatus for treating hydrocarbon-bearing well formations
US8312924B2 (en) Method and apparatus to treat a well with high energy density fluid
US3948323A (en) Thermal injection process for recovery of heavy viscous petroleum
US20090071653A1 (en) Composition and method for cleaning formation faces
US7896978B2 (en) Thermal fluid stimulation unit
US3993135A (en) Thermal process for recovering viscous petroleum
CA2769067A1 (en) Dense slurry production methods and systems
US4121661A (en) Viscous oil recovery method
US11352854B2 (en) Injectivity and production improvement in oil and gas fields
McNeil et al. New hydraulic fracturing process enables far-field diversion in unconventional reservoirs
RU2535765C1 (en) Treatment method of bottomhole zone
US2871948A (en) Process of treating oil and gas wells to increase production
RU2746498C1 (en) Method of treatment of bottomhole zone of production well operated with downhole pump
Nguyen et al. Remediation of proppant flowback—laboratory and field studies
RU2731763C1 (en) Method of cleaning from paraffin deposits in well
RU2168619C1 (en) Method of heat treatment of bottom-hole zone of oil-gas well
RU2095546C1 (en) Method for treatment of wells
CA1056719A (en) Thermal process for recovering viscous petroleum
Shotts et al. Case histories of low-cost sand consolidation in thermal wells
RU2001247C1 (en) Method for extracting asphalt tar paraffin deposition from well
RU1781417C (en) Process of decomposition of paraffin-resinous deposits and device to implement it

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION