US20120273927A1 - Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package - Google Patents

Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package Download PDF

Info

Publication number
US20120273927A1
US20120273927A1 US13/543,637 US201213543637A US2012273927A1 US 20120273927 A1 US20120273927 A1 US 20120273927A1 US 201213543637 A US201213543637 A US 201213543637A US 2012273927 A1 US2012273927 A1 US 2012273927A1
Authority
US
United States
Prior art keywords
base
semiconductor
insulating layer
semiconductor die
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/543,637
Inventor
Zigmund R. Camacho
Dioscoro A. Merilo
Henry D. Bathan
Emmanuel A. Espiritu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stats Chippac Pte Ltd
Original Assignee
Stats Chippac Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stats Chippac Pte Ltd filed Critical Stats Chippac Pte Ltd
Priority to US13/543,637 priority Critical patent/US20120273927A1/en
Publication of US20120273927A1 publication Critical patent/US20120273927A1/en
Assigned to CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT reassignment CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD., STATS CHIPPAC, INC.
Assigned to STATS CHIPPAC PTE. LTE. reassignment STATS CHIPPAC PTE. LTE. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD.
Assigned to STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., STATS CHIPPAC, INC. reassignment STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/24247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48229Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming wafer-level multi-row etched lead package.
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • LED light emitting diode
  • MOSFET power metal oxide semiconductor field effect transistor
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays.
  • Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials.
  • the atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • a semiconductor device contains active and passive electrical structures.
  • Active structures including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current.
  • Passive structures including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions.
  • the passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components.
  • Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products.
  • a smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • Semiconductor devices are often stacked for efficient integration.
  • the electrical interconnection between semiconductor devices, such as wafer level chip scale package (WLCSP) containing semiconductor die, on multiple levels (3-D device integration) and external devices can be accomplished with conductive through silicon vias (TSV), through hole vias (THV), Cu-plated conductive pillars, and conductive bumps.
  • TSV through silicon vias
  • TSV through hole vias
  • Cu-plated conductive pillars Cu-plated conductive pillars
  • conductive bumps conductive bumps.
  • the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads.
  • a first semiconductor die is mounted within the cavity of the base carrier.
  • a first insulating layer is formed in the cavity around the first semiconductor die and base leads.
  • a first conductive layer is formed over the first insulating layer and base leads.
  • a second insulating layer is formed over the first insulating layer and first conductive layer.
  • the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads.
  • a first semiconductor die is mounted within the cavity of the base carrier.
  • a first insulating layer is formed in the cavity around the first semiconductor die.
  • a conductive layer is formed over the first insulating layer and base leads.
  • the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads.
  • a first semiconductor die is mounted within the cavity of the base carrier.
  • a first insulating layer is formed in the cavity around the first semiconductor die.
  • a first conductive layer is formed over the first insulating layer and base leads.
  • a second conductive layer is formed over the base carrier.
  • the present invention is a semiconductor device comprising a first semiconductor die and plurality of base leads disposed around the first semiconductor die.
  • a first insulating layer is formed around the first semiconductor die and base leads.
  • a conductive layer is formed over the first insulating layer and base leads.
  • a second insulating layer is formed over the first insulating layer and conductive layer.
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface
  • FIGS. 2 a - 2 c illustrate further detail of the semiconductor packages mounted to the PCB
  • FIGS. 3 a - 3 f illustrate a process of forming a wafer-level multi-row etched lead package with two passivation layers
  • FIG. 4 illustrates the etched lead package with a shielding layer grounded to the vertical interconnect
  • FIG. 5 illustrates the etched lead package with a shielding layer grounded to the semiconductor die
  • FIGS. 6 a - 6 c illustrate a process of forming the wafer-level multi-row etched lead package with three passivation layers
  • FIGS. 7 a - 7 f illustrate a process of forming the wafer-level multi-row etched lead package with an additional electrical interconnect
  • FIGS. 8 a - 8 g illustrate a process of forming the multi-row etched lead package with UBM formed over the RDL;
  • FIG. 9 illustrates stacked semiconductor devices interconnected by multiple rows of base leads and bumps.
  • FIG. 10 illustrates a second semiconductor die attached to the first semiconductor die with adhesive and interconnected to the base leads by bond wires.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer.
  • Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits.
  • Active electrical components such as transistors and diodes, have the ability to control the flow of electrical current.
  • Passive electrical components such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization.
  • Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion.
  • the doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current.
  • Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties.
  • the layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • electrolytic plating electroless plating processes.
  • Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • the layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned.
  • a pattern is transferred from a photomask to the photoresist using light.
  • the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned.
  • the remainder of the photoresist is removed, leaving behind a patterned layer.
  • some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation.
  • the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes.
  • the wafer is singulated using a laser cutting tool or saw blade.
  • the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components.
  • Contact pads formed over the semiconductor die are then connected to contact pads within the package.
  • the electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds.
  • An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation.
  • the finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface.
  • Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer.
  • the semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB.
  • Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • a semiconductor device has two packaging levels.
  • First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier.
  • Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB.
  • a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • first level packaging including wire bond package 56 and flip chip 58
  • second level packaging including ball grid array (BGA) 60 , bump chip carrier (BCC) 62 , dual in-line package (DIP) 64 , land grid array (LGA) 66 , multi-chip module (MCM) 68 , quad flat non-leaded package (QFN) 70 , and quad flat package 72 .
  • BGA ball grid array
  • BCC bump chip carrier
  • DIP dual in-line package
  • LGA land grid array
  • MCM multi-chip module
  • QFN quad flat non-leaded package
  • quad flat package 72 quad flat package
  • electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages.
  • manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a - 2 c show exemplary semiconductor packages.
  • FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52 .
  • Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74 .
  • Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74 .
  • semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin.
  • the package body includes an insulative packaging material such as polymer or ceramic.
  • Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52 .
  • Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82 .
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52 .
  • Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92 .
  • Wire bonds 94 provide first level packaging interconnect between contact pads 96 and 98 .
  • Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device.
  • Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation.
  • Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52 .
  • Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52 .
  • semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging.
  • Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108 .
  • Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110 .
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112 .
  • Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110 , signal lines 114 , and bumps 112 .
  • a molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device.
  • the flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance.
  • the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106 .
  • FIGS. 3 a - 3 f illustrate, in relation to FIGS. 1 and 2 a - 2 c , a process of forming a wafer-level multi-row etched lead package with two passivation layers.
  • FIG. 3 a shows a wafer-level base carrier or lead frame 120 made with Cu, Al, or other suitable conductive material.
  • Base carrier 120 has surface 122 and opposite surface 124 .
  • Base carrier 120 is etched partially through surface 122 to form cavities 126 and 128 and multiple rows of base leads 120 a, 120 b, 120 d, and 120 e and remaining base carrier 120 c, as shown in FIG. 3 b .
  • Base leads 102 a, 120 b, 120 d, and 120 e extend between surfaces 122 and 124 for standoff.
  • the remaining base carrier 120 c is thinner as it represents the bottom of cavities 126 and 128 .
  • An electrically conductive layer 130 is formed on surface 124 of base carrier 120 below base leads 120 a, 120 b, 120 d, and 120 e using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • conductive layer 130 is nickel palladium (NiPd).
  • conductive layer 130 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • semiconductor die or component 132 is mounted within cavity 126 to remaining base carrier 120 c with die attach adhesive 134 .
  • Contact pads 136 on active surface 138 of semiconductor die 132 are oriented away from base carrier 120 .
  • Semiconductor die 132 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 138 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
  • DSP digital signal processor
  • Semiconductor die 132 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing.
  • a discrete semiconductor component can be mounted within cavity 126 to remaining base carrier 120 c.
  • an insulating or passivation layer 140 is formed over semiconductor die 132 and base carrier 120 , including into cavities 126 and 128 , by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 140 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), or other material having similar insulating and structural properties.
  • the insulating layer 140 extends above surface 122 of base carrier 120 .
  • an encapsulant or molding compound is deposited over semiconductor die 132 and base carrier 120 , including cavities 126 and 128 , using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • the encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • insulating layer 140 is removed by an etching process to expose surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 .
  • An electrically conductive layer 142 is formed over insulating layer 140 , surface 122 , and contact pads 136 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 142 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 142 is electrically connected to surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 and operates as a redistribution layer (RDL) to extend the electrical connectivity for semiconductor die 132 and base leads 120 a, 120 b, 120 d, and 120 e.
  • RDL redistribution layer
  • an insulating or passivation layer 144 is formed over insulating layer 140 and conductive layer 142 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 144 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
  • Base carrier 120 c is removed by an etching process to expose semiconductor die 132 and insulating layer 140 and electrically isolate base leads 120 a, 120 b, 120 d, and 120 e into multiple rows defined by the post-etching areas of base carrier 120 that extend between surfaces 122 and 124 .
  • Base leads 120 a, 120 b, 120 d, and 120 e provide vertical electrical connection between conductive layer 130 and conductive layer 142 .
  • the wafer-level structure shown in FIG. 3 f is singulated into individual embedded wafer level ball grid array (eWLB), WLCSP, and quad flat pack no-load (QFN) semiconductor packages for further integration.
  • eWLB embedded wafer level ball grid array
  • WLCSP WLCSP
  • QFN quad flat pack no-load
  • the multiple rows of base leads 120 a, 120 b, 120 d, and 120 e of wafer-level base carrier 120 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • FIG. 4 shows an embodiment similar to FIG. 3 with a portion of insulating layer 144 over conductive layer 142 and base lead 120 a is removed by an etching process to expose conductive layer 142 .
  • a shielding layer 146 is formed over insulating layer 144 and conductive layer 142 .
  • Shielding layer 146 can be Cu, Al, ferrite or carbonyl iron, stainless steel, nickel silver, low-carbon steel, silicon-iron steel, foil, epoxy, conductive resin, and other metals and composites capable of blocking or absorbing electromagnetic interference (EMI), radio frequency interference (RFI), and other inter-device interference.
  • Shielding layer 146 can also be a non-metal material such as carbon-black or aluminum flake to reduce the effects of EMI and RFI.
  • Shielding layer 146 is grounded through conductive layer 142 , base lead 120 a, and conductive layer 130 .
  • FIG. 5 shows an embodiment similar to FIG. 3 with a portion of insulating layer 144 over conductive layer 142 and semiconductor die 130 is removed by an etching process to expose conductive layer 142 .
  • Shielding layer 148 is formed over insulating layer 144 and conductive layer 142 .
  • Shielding layer 148 can be Cu, Al, ferrite or carbonyl iron, stainless steel, nickel silver, low-carbon steel, silicon-iron steel, foil, epoxy, conductive resin, and other metals and composites capable of blocking or absorbing EMI, RFI, and other inter-device interference.
  • Shielding layer 148 can also be a non-metal material such as carbon-black or aluminum flake to reduce the effects of EMI and RFI.
  • Shielding layer 148 is grounded through conductive layer 142 and contact pad 136 .
  • an insulating or passivation layer 150 is formed over semiconductor die 132 and base carrier 120 , including into cavities 126 and 128 , by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation, as shown in FIG. 6 a .
  • the insulating layer 150 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
  • the insulating layer 150 is planarized with surface 122 of base carrier 120 and active surface 138 of semiconductor die 132 .
  • the insulating layer 150 is substantially coplanar with surface 122 of base carrier 120 .
  • an encapsulant or molding compound is deposited over semiconductor die 132 and base carrier 120 , including cavities 126 and 128 , using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • the encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • an insulating or passivation layer 152 is formed over base carrier 120 , semiconductor die 132 , and insulating layer 150 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 152 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 152 is removed by an etching process to expose surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 .
  • An electrically conductive layer 154 is formed over insulating layer 152 , surface 122 , and contact pads 136 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 154 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 154 is electrically connected to surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 and operates as an RDL to extend the electrical connectivity for semiconductor die 132 and base leads 120 a, 120 b, 120 d, and 120 e.
  • an insulating or passivation layer 156 is formed over insulating layer 152 and conductive layer 154 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 156 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
  • Base carrier 120 c is removed by an etching process to expose semiconductor die 132 and insulating layer 150 and electrically isolate base leads 120 a, 120 b, 120 d, and 120 e into multiple rows defined by the post-etching areas of base carrier 120 that extend between surfaces 122 and 124 .
  • Base leads 120 a, 120 b, 120 d, and 120 e provide vertical electrical connection between conductive layer 130 and conductive layer 154 .
  • FIGS. 7 a - 7 f illustrate, in relation to FIGS. 1 and 2 a - 2 c , another process of forming a wafer-level multi-row etched lead package with two passivation layers.
  • FIG. 7 a shows a wafer-level base carrier or lead frame 160 made with Cu, Al, or other suitable conductive material.
  • Base carrier 160 has surface 162 and opposite surface 164 .
  • Base carrier 160 is etched partially through surface 162 to form cavities 166 and 168 and multiple rows of base leads 160 a, 160 b, 160 d, and 160 e and remaining base carrier 160 c, as shown in FIG. 7 b .
  • Base leads 160 a, 160 b, 160 d, and 160 e extend between surfaces 162 and 164 for standoff.
  • the remaining base carrier 160 c is thinner as it represents the bottom of cavities 166 and 168 .
  • An electrically conductive layer 170 is formed on surface 164 of base carrier 160 below base leads 160 a, 160 b, 160 d, and 160 e and remaining base carrier 160 c using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • conductive layer 170 is NiPd.
  • conductive layer 170 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • semiconductor die or component 172 is mounted within cavity 166 to remaining base carrier 160 c with die attach adhesive 174 .
  • Contact pads 176 on active surface 178 of semiconductor die 172 are oriented away from base carrier 160 .
  • Semiconductor die 172 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 178 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 172 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing.
  • a discrete semiconductor component can be mounted within cavity 166 to remaining base carrier 160 c.
  • an insulating or passivation layer 180 is formed over semiconductor die 172 and base carrier 160 , including into cavities 166 and 168 , by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 180 can be one or more layers of SiO2, Si3N4, SiON, Ta2O, Al2O3, or other material having similar insulating and structural properties.
  • the insulating layer 180 extends above surface 162 of base carrier 160 .
  • an encapsulant or molding compound is deposited over semiconductor die 172 and base carrier 160 , including cavities 166 and 168 , using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • the encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • insulating layer 180 is removed by an etching process to expose surface 162 of base carrier 160 and contact pads 176 of semiconductor die 172 .
  • An electrically conductive layer 182 is formed over insulating layer 180 , surface 162 , and contact pads 176 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 182 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 182 is electrically connected to surface 162 of base carrier 160 and contact pads 176 of semiconductor die 172 and operates as an RDL to extend the electrical connectivity for semiconductor die 172 and base leads 160 a, 160 b, 160 d, and 160 e.
  • an insulating or passivation layer 184 is formed over insulating layer 180 and conductive layer 182 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 184 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties.
  • a portion of base carrier 160 c is removed by an etching process to expose insulating layer 180 and electrically isolate base leads 160 a, 160 b, 160 d, and 160 e into multiple rows defined by the post-etching areas of base carrier 160 that extend between surfaces 162 and 164 .
  • Base leads 160 a, 160 b, 160 d, and 160 e provide vertical electrical connection between conductive layer 170 and conductive layer 182 .
  • the remaining portion of base carrier 160 c and associated conductive layer 170 not removed by the etching process provide additional electrical interconnect.
  • the wafer-level structure shown in FIG. 7 f is singulated into individual eWLB, WLCSP, and QFN semiconductor packages for further integration.
  • the multiple rows of base leads 160 a, 160 b, 160 d, and 160 e of wafer-level base carrier 160 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • FIGS. 8 a - 8 f illustrate another process of forming a wafer-level multi-row etched lead package with two passivation layers.
  • FIG. 8 a shows a wafer-level base carrier or lead frame 190 made with Cu, Al, or other suitable conductive material.
  • Base carrier 190 has surface 192 and opposite surface 194 .
  • Base carrier 190 is etched partially through surface 192 to form cavities 196 and 198 and multiple rows of base leads 190 a, 190 b, 190 d, and 190 e and remaining base carrier 190 c, as shown in FIG. 8 b .
  • Base leads 190 a, 190 b, 190 d, and 190 e extend between surfaces 192 and 194 for standoff.
  • the remaining base carrier 190 c is thinner as it represents the bottom of cavities 196 and 198 .
  • An electrically conductive layer 200 is formed on surface 194 of base carrier 190 below base leads 190 a, 190 b, 190 d, and 190 e using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • conductive layer 200 is NiPd.
  • conductive layer 200 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • semiconductor die or component 202 is mounted within cavity 196 to remaining base carrier 190 c with die attach adhesive 204 .
  • Contact pads 206 on active surface 208 of semiconductor die 202 are oriented away from base carrier 190 .
  • Semiconductor die 202 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 208 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 202 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing.
  • a discrete semiconductor component can be mounted within cavity 196 to remaining base carrier 190 c.
  • an insulating or passivation layer 210 is formed over semiconductor die 202 and base carrier 190 , including cavities 196 and 198 , by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 210 can be one or more layers of SiO2, Si3N4, SiON, Ta2O, Al2O3, or other material having similar insulating and structural properties.
  • the insulating layer 210 extends above surface 192 of base carrier 190 .
  • an encapsulant or molding compound is deposited over semiconductor die 202 and base carrier 190 , including cavities 196 and 198 , using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • the encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • insulating layer 210 is removed by an etching process to expose surface 192 of base carrier 190 and contact pads 206 of semiconductor die 202 .
  • An electrically conductive layer 212 is formed over insulating layer 210 , surface 192 , and contact pads 206 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 212 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 212 is electrically connected to surface 192 of base carrier 190 and contact pads 206 of semiconductor die 202 and operates as an RDL to extend the electrical connectivity for semiconductor die 202 and base leads 190 a, 190 b, 190 d, and 190 e.
  • an insulating or passivation layer 214 is formed over insulating layer 210 and conductive layer 212 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation.
  • the insulating layer 214 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 214 is removed by an etching process to expose conductive layer 212 .
  • An electrically conductive layer 216 is formed over conductive layer 212 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 216 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • Conductive layer 216 forms a multi-layer under bump metallization (UBM) including a barrier layer and adhesion layer.
  • the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd).
  • the adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN).
  • UBM 216 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
  • Base carrier 190 c is removed by an etching process to expose insulating layer 210 and electrically isolate base leads 190 a, 190 b, 190 d, and 190 e into multiple rows defined by the post-etching areas of base carrier 190 that extend between surfaces 192 and 194 .
  • Base leads 190 a, 190 b, 190 d, and 190 e provide vertical electrical connection between conductive layer 200 and conductive layer 212 and UBM 216 .
  • an electrically conductive bump material is deposited over UBM 216 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process.
  • the bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution.
  • the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder.
  • the bump material is bonded to UBM 216 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 218 .
  • bumps 218 are reflowed a second time to improve electrical contact to UBM 216 .
  • the bumps can also be compression bonded to UBM 216 .
  • Bumps 218 represent one type of interconnect structure that can be formed over UBM 216 .
  • the interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • the wafer-level structure shown in FIG. 8 g is singulated into individual eWLB, WLCSP, and QFN semiconductor devices 220 for further integration.
  • the multiple rows of base leads 190 a, 190 b, 190 d, and 190 e of wafer-level base carrier 190 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • Semiconductor devices 220 are stackable as shown in FIG. 9 . Each semiconductor device 220 is electrically connected to upper and lower devices through conductive layers 200 and 212 , UBM 216 , bumps 218 , and base leads 190 a, 190 b, 190 d, and 190 e. The stacked semiconductor devices 220 are mounted to conductive traces 221 on printed circuit board 222 .
  • FIG. 10 shows semiconductor die 224 mounted to semiconductor die 202 with die attach adhesive 226 .
  • Semiconductor die 224 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die.
  • the circuit may include one or more transistors, diodes, and other circuit elements formed within its active surface to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit.
  • Semiconductor die 224 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing.
  • a discrete semiconductor component can be mounted to semiconductor die 202 . Bond wires 228 are formed between contact pads 230 on semiconductor die 224 and conductive layer 200 .
  • An encapsulant or molding compound 232 is deposited over semiconductor device 220 and semiconductor die 224 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator.
  • Encapsulant 232 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • Encapsulant 232 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.

Abstract

A semiconductor device has a base carrier having first and second opposing surfaces. The first surface of the base carrier is etched to form a plurality of cavities and multiple rows of base leads between the cavities extending between the first and second surfaces. A second conductive layer is formed over the second surface of the base carrier. A semiconductor die is mounted within a cavity of the base carrier. A first insulating layer is formed over the die and first surface of the base carrier and into the cavities. A first conductive layer is formed over the first insulating layer and first surface of the base carrier. A second insulating layer is formed over the first insulating layer and first conductive layer. A portion of the second surface of the base carrier is removed to expose the first insulating layer and electrically isolate the base leads.

Description

    CLAIM TO DOMESTIC PRIORITY
  • The present application is a division of U.S. patent application Ser. No. 12/719,476, filed Mar. 8, 2010, which application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming wafer-level multi-row etched lead package.
  • BACKGROUND OF THE INVENTION
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • Semiconductor devices are often stacked for efficient integration. The electrical interconnection between semiconductor devices, such as wafer level chip scale package (WLCSP) containing semiconductor die, on multiple levels (3-D device integration) and external devices can be accomplished with conductive through silicon vias (TSV), through hole vias (THV), Cu-plated conductive pillars, and conductive bumps. These vertical interconnect structures are costly and time consuming during the manufacturing process, and susceptible to defects during formation.
  • SUMMARY OF THE INVENTION
  • A need exists to provide simple and cost-effective vertical interconnect structure for stackable semiconductor devices. Accordingly, in one embodiment, the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads. A first semiconductor die is mounted within the cavity of the base carrier. A first insulating layer is formed in the cavity around the first semiconductor die and base leads. A first conductive layer is formed over the first insulating layer and base leads. A second insulating layer is formed over the first insulating layer and first conductive layer.
  • In another embodiment, the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads. A first semiconductor die is mounted within the cavity of the base carrier. A first insulating layer is formed in the cavity around the first semiconductor die. A conductive layer is formed over the first insulating layer and base leads.
  • In another embodiment, the present invention is a semiconductor device comprising a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads. A first semiconductor die is mounted within the cavity of the base carrier. A first insulating layer is formed in the cavity around the first semiconductor die. A first conductive layer is formed over the first insulating layer and base leads. A second conductive layer is formed over the base carrier.
  • In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die and plurality of base leads disposed around the first semiconductor die. A first insulating layer is formed around the first semiconductor die and base leads. A conductive layer is formed over the first insulating layer and base leads. A second insulating layer is formed over the first insulating layer and conductive layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface;
  • FIGS. 2 a-2 c illustrate further detail of the semiconductor packages mounted to the PCB;
  • FIGS. 3 a-3 f illustrate a process of forming a wafer-level multi-row etched lead package with two passivation layers;
  • FIG. 4 illustrates the etched lead package with a shielding layer grounded to the vertical interconnect;
  • FIG. 5 illustrates the etched lead package with a shielding layer grounded to the semiconductor die;
  • FIGS. 6 a-6 c illustrate a process of forming the wafer-level multi-row etched lead package with three passivation layers;
  • FIGS. 7 a-7 f illustrate a process of forming the wafer-level multi-row etched lead package with an additional electrical interconnect;
  • FIGS. 8 a-8 g illustrate a process of forming the multi-row etched lead package with UBM formed over the RDL;
  • FIG. 9 illustrates stacked semiconductor devices interconnected by multiple rows of base leads and bumps; and
  • FIG. 10 illustrates a second semiconductor die attached to the first semiconductor die with adhesive and interconnected to the base leads by bond wires.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface. Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • In FIG. 1, PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flip chip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a-2 c show exemplary semiconductor packages. FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52. Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74. Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74. During assembly of DIP 64, semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin. The package body includes an insulative packaging material such as polymer or ceramic. Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52. Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82.
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52. Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92. Wire bonds 94 provide first level packaging interconnect between contact pads 96 and 98. Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device. Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation. Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.
  • In FIG. 2 c, semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106.
  • FIGS. 3 a-3 f illustrate, in relation to FIGS. 1 and 2 a-2 c, a process of forming a wafer-level multi-row etched lead package with two passivation layers. FIG. 3 a shows a wafer-level base carrier or lead frame 120 made with Cu, Al, or other suitable conductive material. Base carrier 120 has surface 122 and opposite surface 124. Base carrier 120 is etched partially through surface 122 to form cavities 126 and 128 and multiple rows of base leads 120 a, 120 b, 120 d, and 120 e and remaining base carrier 120 c, as shown in FIG. 3 b. Base leads 102 a, 120 b, 120 d, and 120 e extend between surfaces 122 and 124 for standoff. The remaining base carrier 120 c is thinner as it represents the bottom of cavities 126 and 128.
  • An electrically conductive layer 130 is formed on surface 124 of base carrier 120 below base leads 120 a, 120 b, 120 d, and 120 e using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. In one embodiment, conductive layer 130 is nickel palladium (NiPd). Alternatively, conductive layer 130 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • In FIG. 3 c, semiconductor die or component 132 is mounted within cavity 126 to remaining base carrier 120 c with die attach adhesive 134. Contact pads 136 on active surface 138 of semiconductor die 132 are oriented away from base carrier 120. Semiconductor die 132 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 138 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit. Semiconductor die 132 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing. In another embodiment, a discrete semiconductor component can be mounted within cavity 126 to remaining base carrier 120 c.
  • In FIG. 3 d, an insulating or passivation layer 140 is formed over semiconductor die 132 and base carrier 120, including into cavities 126 and 128, by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 140 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), or other material having similar insulating and structural properties. The insulating layer 140 extends above surface 122 of base carrier 120.
  • In another embodiment, an encapsulant or molding compound is deposited over semiconductor die 132 and base carrier 120, including cavities 126 and 128, using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. The encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • In FIG. 3 e, a portion of insulating layer 140 is removed by an etching process to expose surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132. An electrically conductive layer 142 is formed over insulating layer 140, surface 122, and contact pads 136 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 142 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 142 is electrically connected to surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 and operates as a redistribution layer (RDL) to extend the electrical connectivity for semiconductor die 132 and base leads 120 a, 120 b, 120 d, and 120 e.
  • In FIG. 3 f, an insulating or passivation layer 144 is formed over insulating layer 140 and conductive layer 142 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 144 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. Base carrier 120 c is removed by an etching process to expose semiconductor die 132 and insulating layer 140 and electrically isolate base leads 120 a, 120 b, 120 d, and 120 e into multiple rows defined by the post-etching areas of base carrier 120 that extend between surfaces 122 and 124. Base leads 120 a, 120 b, 120 d, and 120 e provide vertical electrical connection between conductive layer 130 and conductive layer 142.
  • The wafer-level structure shown in FIG. 3 f is singulated into individual embedded wafer level ball grid array (eWLB), WLCSP, and quad flat pack no-load (QFN) semiconductor packages for further integration. The multiple rows of base leads 120 a, 120 b, 120 d, and 120 e of wafer-level base carrier 120 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • FIG. 4 shows an embodiment similar to FIG. 3 with a portion of insulating layer 144 over conductive layer 142 and base lead 120 a is removed by an etching process to expose conductive layer 142. A shielding layer 146 is formed over insulating layer 144 and conductive layer 142. Shielding layer 146 can be Cu, Al, ferrite or carbonyl iron, stainless steel, nickel silver, low-carbon steel, silicon-iron steel, foil, epoxy, conductive resin, and other metals and composites capable of blocking or absorbing electromagnetic interference (EMI), radio frequency interference (RFI), and other inter-device interference. Shielding layer 146 can also be a non-metal material such as carbon-black or aluminum flake to reduce the effects of EMI and RFI. Shielding layer 146 is grounded through conductive layer 142, base lead 120 a, and conductive layer 130.
  • FIG. 5 shows an embodiment similar to FIG. 3 with a portion of insulating layer 144 over conductive layer 142 and semiconductor die 130 is removed by an etching process to expose conductive layer 142. Shielding layer 148 is formed over insulating layer 144 and conductive layer 142. Shielding layer 148 can be Cu, Al, ferrite or carbonyl iron, stainless steel, nickel silver, low-carbon steel, silicon-iron steel, foil, epoxy, conductive resin, and other metals and composites capable of blocking or absorbing EMI, RFI, and other inter-device interference. Shielding layer 148 can also be a non-metal material such as carbon-black or aluminum flake to reduce the effects of EMI and RFI. Shielding layer 148 is grounded through conductive layer 142 and contact pad 136.
  • In another embodiment, continuing with the structure described up to FIG. 3 c, an insulating or passivation layer 150 is formed over semiconductor die 132 and base carrier 120, including into cavities 126 and 128, by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation, as shown in FIG. 6 a. The insulating layer 150 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. The insulating layer 150 is planarized with surface 122 of base carrier 120 and active surface 138 of semiconductor die 132. The insulating layer 150 is substantially coplanar with surface 122 of base carrier 120.
  • In another embodiment, an encapsulant or molding compound is deposited over semiconductor die 132 and base carrier 120, including cavities 126 and 128, using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. The encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • In FIG. 6 b, an insulating or passivation layer 152 is formed over base carrier 120, semiconductor die 132, and insulating layer 150 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 152 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 152 is removed by an etching process to expose surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132. An electrically conductive layer 154 is formed over insulating layer 152, surface 122, and contact pads 136 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 154 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 154 is electrically connected to surface 122 of base carrier 120 and contact pads 136 of semiconductor die 132 and operates as an RDL to extend the electrical connectivity for semiconductor die 132 and base leads 120 a, 120 b, 120 d, and 120 e.
  • In FIG. 6 c, an insulating or passivation layer 156 is formed over insulating layer 152 and conductive layer 154 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 156 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. Base carrier 120 c is removed by an etching process to expose semiconductor die 132 and insulating layer 150 and electrically isolate base leads 120 a, 120 b, 120 d, and 120 e into multiple rows defined by the post-etching areas of base carrier 120 that extend between surfaces 122 and 124. Base leads 120 a, 120 b, 120 d, and 120 e provide vertical electrical connection between conductive layer 130 and conductive layer 154.
  • FIGS. 7 a-7 f illustrate, in relation to FIGS. 1 and 2 a-2 c, another process of forming a wafer-level multi-row etched lead package with two passivation layers. FIG. 7 a shows a wafer-level base carrier or lead frame 160 made with Cu, Al, or other suitable conductive material. Base carrier 160 has surface 162 and opposite surface 164. Base carrier 160 is etched partially through surface 162 to form cavities 166 and 168 and multiple rows of base leads 160 a, 160 b, 160 d, and 160 e and remaining base carrier 160 c, as shown in FIG. 7 b. Base leads 160 a, 160 b, 160 d, and 160 e extend between surfaces 162 and 164 for standoff. The remaining base carrier 160 c is thinner as it represents the bottom of cavities 166 and 168.
  • An electrically conductive layer 170 is formed on surface 164 of base carrier 160 below base leads 160 a, 160 b, 160 d, and 160 e and remaining base carrier 160 c using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. In one embodiment, conductive layer 170 is NiPd. Alternatively, conductive layer 170 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • In FIG. 7 c, semiconductor die or component 172 is mounted within cavity 166 to remaining base carrier 160 c with die attach adhesive 174. Contact pads 176 on active surface 178 of semiconductor die 172 are oriented away from base carrier 160. Semiconductor die 172 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 178 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 172 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing. In another embodiment, a discrete semiconductor component can be mounted within cavity 166 to remaining base carrier 160 c.
  • In FIG. 7 d, an insulating or passivation layer 180 is formed over semiconductor die 172 and base carrier 160, including into cavities 166 and 168, by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 180 can be one or more layers of SiO2, Si3N4, SiON, Ta2O, Al2O3, or other material having similar insulating and structural properties. The insulating layer 180 extends above surface 162 of base carrier 160.
  • In another embodiment, an encapsulant or molding compound is deposited over semiconductor die 172 and base carrier 160, including cavities 166 and 168, using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. The encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • In FIG. 7 e, a portion of insulating layer 180 is removed by an etching process to expose surface 162 of base carrier 160 and contact pads 176 of semiconductor die 172. An electrically conductive layer 182 is formed over insulating layer 180, surface 162, and contact pads 176 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 182 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 182 is electrically connected to surface 162 of base carrier 160 and contact pads 176 of semiconductor die 172 and operates as an RDL to extend the electrical connectivity for semiconductor die 172 and base leads 160 a, 160 b, 160 d, and 160 e.
  • In FIG. 7 f, an insulating or passivation layer 184 is formed over insulating layer 180 and conductive layer 182 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 184 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of base carrier 160 c is removed by an etching process to expose insulating layer 180 and electrically isolate base leads 160 a, 160 b, 160 d, and 160 e into multiple rows defined by the post-etching areas of base carrier 160 that extend between surfaces 162 and 164. Base leads 160 a, 160 b, 160 d, and 160 e provide vertical electrical connection between conductive layer 170 and conductive layer 182. The remaining portion of base carrier 160 c and associated conductive layer 170 not removed by the etching process provide additional electrical interconnect.
  • The wafer-level structure shown in FIG. 7 f is singulated into individual eWLB, WLCSP, and QFN semiconductor packages for further integration. The multiple rows of base leads 160 a, 160 b, 160 d, and 160 e of wafer-level base carrier 160 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • FIGS. 8 a-8 f illustrate another process of forming a wafer-level multi-row etched lead package with two passivation layers. FIG. 8 a shows a wafer-level base carrier or lead frame 190 made with Cu, Al, or other suitable conductive material. Base carrier 190 has surface 192 and opposite surface 194. Base carrier 190 is etched partially through surface 192 to form cavities 196 and 198 and multiple rows of base leads 190 a, 190 b, 190 d, and 190 e and remaining base carrier 190 c, as shown in FIG. 8 b. Base leads 190 a, 190 b, 190 d, and 190 e extend between surfaces 192 and 194 for standoff. The remaining base carrier 190 c is thinner as it represents the bottom of cavities 196 and 198.
  • An electrically conductive layer 200 is formed on surface 194 of base carrier 190 below base leads 190 a, 190 b, 190 d, and 190 e using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. In one embodiment, conductive layer 200 is NiPd. Alternatively, conductive layer 200 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • In FIG. 8 c, semiconductor die or component 202 is mounted within cavity 196 to remaining base carrier 190 c with die attach adhesive 204. Contact pads 206 on active surface 208 of semiconductor die 202 are oriented away from base carrier 190. Semiconductor die 202 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 208 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 202 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing. In another embodiment, a discrete semiconductor component can be mounted within cavity 196 to remaining base carrier 190 c.
  • In FIG. 8 d, an insulating or passivation layer 210 is formed over semiconductor die 202 and base carrier 190, including cavities 196 and 198, by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 210 can be one or more layers of SiO2, Si3N4, SiON, Ta2O, Al2O3, or other material having similar insulating and structural properties. The insulating layer 210 extends above surface 192 of base carrier 190.
  • In another embodiment, an encapsulant or molding compound is deposited over semiconductor die 202 and base carrier 190, including cavities 196 and 198, using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. The encapsulant can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler.
  • In FIG. 8 e, a portion of insulating layer 210 is removed by an etching process to expose surface 192 of base carrier 190 and contact pads 206 of semiconductor die 202. An electrically conductive layer 212 is formed over insulating layer 210, surface 192, and contact pads 206 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 212 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 212 is electrically connected to surface 192 of base carrier 190 and contact pads 206 of semiconductor die 202 and operates as an RDL to extend the electrical connectivity for semiconductor die 202 and base leads 190 a, 190 b, 190 d, and 190 e.
  • In FIG. 8 f, an insulating or passivation layer 214 is formed over insulating layer 210 and conductive layer 212 by PVD, CVD, printing, spin coating, spray coating, or thermal oxidation. The insulating layer 214 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having similar insulating and structural properties. A portion of insulating layer 214 is removed by an etching process to expose conductive layer 212.
  • An electrically conductive layer 216 is formed over conductive layer 212 using patterning and PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 216 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 216 forms a multi-layer under bump metallization (UBM) including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd). The adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN). UBM 216 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
  • Base carrier 190 c is removed by an etching process to expose insulating layer 210 and electrically isolate base leads 190 a, 190 b, 190 d, and 190 e into multiple rows defined by the post-etching areas of base carrier 190 that extend between surfaces 192 and 194. Base leads 190 a, 190 b, 190 d, and 190 e provide vertical electrical connection between conductive layer 200 and conductive layer 212 and UBM 216.
  • In FIG. 8 g, an electrically conductive bump material is deposited over UBM 216 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to UBM 216 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 218. In some applications, bumps 218 are reflowed a second time to improve electrical contact to UBM 216. The bumps can also be compression bonded to UBM 216. Bumps 218 represent one type of interconnect structure that can be formed over UBM 216. The interconnect structure can also use bond wires, conductive paste, stud bump, micro bump, or other electrical interconnect.
  • The wafer-level structure shown in FIG. 8 g is singulated into individual eWLB, WLCSP, and QFN semiconductor devices 220 for further integration. The multiple rows of base leads 190 a, 190 b, 190 d, and 190 e of wafer-level base carrier 190 simplifies the vertical interconnection and integration of stacked semiconductor devices in a cost effective manner.
  • Semiconductor devices 220 are stackable as shown in FIG. 9. Each semiconductor device 220 is electrically connected to upper and lower devices through conductive layers 200 and 212, UBM 216, bumps 218, and base leads 190 a, 190 b, 190 d, and 190 e. The stacked semiconductor devices 220 are mounted to conductive traces 221 on printed circuit board 222.
  • FIG. 10 shows semiconductor die 224 mounted to semiconductor die 202 with die attach adhesive 226. Semiconductor die 224 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within its active surface to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 224 may also contain IPDS, such as inductors, capacitors, and resistors, for RF signal processing. In another embodiment, a discrete semiconductor component can be mounted to semiconductor die 202. Bond wires 228 are formed between contact pads 230 on semiconductor die 224 and conductive layer 200.
  • An encapsulant or molding compound 232 is deposited over semiconductor device 220 and semiconductor die 224 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 232 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 232 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
  • While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.

Claims (25)

1. A semiconductor device, comprising:
a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads;
a first semiconductor die mounted within the cavity of the base carrier;
a first insulating layer formed in the cavity around the first semiconductor die and base leads;
a conductive layer formed over the first insulating layer and base leads; and
a second insulating layer formed over the first insulating layer and conductive layer.
2. The semiconductor device of claim 1, wherein a portion of the base carrier is removed to electrically isolate the base leads.
3. The semiconductor device of claim 1, wherein a portion of the base carrier is disposed under the first semiconductor die.
4. The semiconductor device of claim 1, further including a shielding layer formed over the second insulating layer.
5. The semiconductor device of claim 1, further including a second semiconductor die mounted over the first semiconductor die and electrically connected to the first semiconductor die through the base leads.
6. The semiconductor device of claim 1, further including a plurality of the semiconductor devices electrically connected through the conductive layer and base leads.
7. A semiconductor device, comprising:
a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads;
a first semiconductor die mounted within the cavity of the base carrier;
a first insulating layer formed in the cavity around the first semiconductor die; and
a conductive layer formed over the first insulating layer and base leads.
8. The semiconductor device of claim 7, further including a second insulating layer formed over the first insulating layer and conductive layer.
9. The semiconductor device of claim 8, further including a shielding layer formed over the second insulating layer.
10. The semiconductor device of claim 7, wherein a portion of the base carrier is removed to electrically isolate the base leads.
11. The semiconductor device of claim 7, wherein a portion of the base carrier is disposed under the first semiconductor die.
12. The semiconductor device of claim 7, further including a second semiconductor die mounted over the first semiconductor die and electrically connected to the first semiconductor die through the base leads.
13. The semiconductor device of claim 7, further including a plurality of the semiconductor devices electrically connected through the conductive layer and base leads.
14. A semiconductor device, comprising:
a base carrier including a plurality of base leads and a cavity in the base carrier disposed between the base leads;
a first semiconductor die mounted within the cavity of the base carrier;
a first insulating layer formed in the cavity around the first semiconductor die;
a first conductive layer formed over the first insulating layer and base leads; and
a second conductive layer formed over the base carrier.
15. The semiconductor device of claim 14, further including a second insulating layer formed over the first insulating layer and first conductive layer.
16. The semiconductor device of claim 15, further including a shielding layer formed over the second insulating layer.
17. The semiconductor device of claim 14, wherein a portion of the base carrier is removed to electrically isolate the base leads.
18. The semiconductor device of claim 14, wherein a portion of the base carrier is disposed under the first semiconductor die.
19. The semiconductor device of claim 14, further including a second semiconductor die mounted over the first semiconductor die and electrically connected to the first semiconductor die through the base leads.
20. The semiconductor device of claim 14, further including a plurality of the semiconductor devices electrically connected through the first conductive layer and base leads.
21. A semiconductor device, comprising:
a first semiconductor die;
a plurality of base leads disposed around the first semiconductor die;
a first insulating layer formed around the first semiconductor die and base leads;
a conductive layer formed over the first insulating layer and base leads; and
a second insulating layer formed over the first insulating layer and conductive layer.
22. The semiconductor device of claim 21, further including a shielding layer formed over the second insulating layer.
23. The semiconductor device of claim 21, further including a second semiconductor die mounted over the first semiconductor die and electrically connected to the first semiconductor die through the base leads.
24. The semiconductor device of claim 21, further including a plurality of the semiconductor devices electrically connected through the conductive layer and base leads.
25. The semiconductor device of claim 21, further including a plurality of bumps formed over the base leads.
US13/543,637 2010-03-08 2012-07-06 Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package Abandoned US20120273927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/543,637 US20120273927A1 (en) 2010-03-08 2012-07-06 Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/719,476 US8241956B2 (en) 2010-03-08 2010-03-08 Semiconductor device and method of forming wafer level multi-row etched lead package
US13/543,637 US20120273927A1 (en) 2010-03-08 2012-07-06 Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/719,476 Division US8241956B2 (en) 2010-03-08 2010-03-08 Semiconductor device and method of forming wafer level multi-row etched lead package

Publications (1)

Publication Number Publication Date
US20120273927A1 true US20120273927A1 (en) 2012-11-01

Family

ID=44530602

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/719,476 Active 2030-12-10 US8241956B2 (en) 2010-03-08 2010-03-08 Semiconductor device and method of forming wafer level multi-row etched lead package
US13/543,637 Abandoned US20120273927A1 (en) 2010-03-08 2012-07-06 Semiconductor Device and Method of Forming Wafer Level Multi-Row Etched Lead Package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/719,476 Active 2030-12-10 US8241956B2 (en) 2010-03-08 2010-03-08 Semiconductor device and method of forming wafer level multi-row etched lead package

Country Status (1)

Country Link
US (2) US8241956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469687A (en) * 2015-08-20 2017-03-01 爱思开海力士有限公司 There is its manufacture method of base plate for packaging and the semiconductor packages of flush type circuit pattern
CN106971988A (en) * 2015-12-11 2017-07-21 爱思开海力士有限公司 Wafer-level packaging part and its manufacture method

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269691B2 (en) 2010-05-26 2016-02-23 Stats Chippac, Ltd. Semiconductor device and method of making an embedded wafer level ball grid array (EWLB) package on package (POP) device with a slotted metal carrier interposer
US8349658B2 (en) * 2010-05-26 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming conductive posts and heat sink over semiconductor die using leadframe
US8435835B2 (en) * 2010-09-02 2013-05-07 Stats Chippac, Ltd. Semiconductor device and method of forming base leads from base substrate as standoff for stacking semiconductor die
US8409922B2 (en) * 2010-09-14 2013-04-02 Stats Chippac, Ltd. Semiconductor device and method of forming leadframe interposer over semiconductor die and TSV substrate for vertical electrical interconnect
US9324673B2 (en) * 2011-06-23 2016-04-26 Stats Chippac Ltd. Integrated circuit packaging system with wafer level reconfiguration and method of manufacture thereof
US9177832B2 (en) 2011-09-16 2015-11-03 Stats Chippac, Ltd. Semiconductor device and method of forming a reconfigured stackable wafer level package with vertical interconnect
US9966319B1 (en) 2011-10-27 2018-05-08 Global Circuit Innovations Incorporated Environmental hardening integrated circuit method and apparatus
US10002846B2 (en) 2011-10-27 2018-06-19 Global Circuit Innovations Incorporated Method for remapping a packaged extracted die with 3D printed bond connections
US10177054B2 (en) 2011-10-27 2019-01-08 Global Circuit Innovations, Inc. Method for remapping a packaged extracted die
US9935028B2 (en) * 2013-03-05 2018-04-03 Global Circuit Innovations Incorporated Method and apparatus for printing integrated circuit bond connections
US10109606B2 (en) 2011-10-27 2018-10-23 Global Circuit Innovations, Inc. Remapped packaged extracted die
US10147660B2 (en) 2011-10-27 2018-12-04 Global Circuits Innovations, Inc. Remapped packaged extracted die with 3D printed bond connections
US10128161B2 (en) 2011-10-27 2018-11-13 Global Circuit Innovations, Inc. 3D printed hermetic package assembly and method
US9870968B2 (en) 2011-10-27 2018-01-16 Global Circuit Innovations Incorporated Repackaged integrated circuit and assembly method
TWI490960B (en) * 2012-01-17 2015-07-01 Chipmos Technologies Inc Semiconductor package structure and manufacturing method thereof
US8778733B2 (en) 2012-03-19 2014-07-15 Infineon Technologies Ag Semiconductor package and methods of formation thereof
US9117715B2 (en) * 2012-07-18 2015-08-25 Hong Kong Applied Science and Technology Research Institute Company Limited Wafer-level device packaging
TWI499013B (en) 2013-01-22 2015-09-01 矽品精密工業股份有限公司 Semiconductor package and method of manufacturing the same
US9035461B2 (en) * 2013-01-30 2015-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Packaged semiconductor devices and packaging methods
US9368423B2 (en) * 2013-06-28 2016-06-14 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using substrate with conductive posts and protective layers to form embedded sensor die package
US10074581B2 (en) * 2013-08-30 2018-09-11 Mediatek Inc. Chip package having a patterned conducting plate and a conducting pad with a recess
US9437457B2 (en) * 2013-08-30 2016-09-06 Mediatek Inc. Chip package having a patterned conducting plate and method for forming the same
US9718678B2 (en) 2014-09-25 2017-08-01 Infineon Technologies Ag Package arrangement, a package, and a method of manufacturing a package arrangement
WO2016148726A1 (en) * 2015-03-19 2016-09-22 Intel Corporation Radio die package with backside conductive plate
KR101809521B1 (en) * 2015-09-04 2017-12-18 주식회사 네패스 Semiconductor package and method of manufacturing the same
WO2017189224A1 (en) 2016-04-26 2017-11-02 Linear Technology Corporation Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits
US10420211B2 (en) * 2017-08-09 2019-09-17 Advanced Semiconductor Engineering, Inc. Semiconductor package device
US10636775B2 (en) * 2017-10-27 2020-04-28 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and manufacturing method thereof
US10115645B1 (en) 2018-01-09 2018-10-30 Global Circuit Innovations, Inc. Repackaged reconditioned die method and assembly
US10497635B2 (en) 2018-03-27 2019-12-03 Linear Technology Holding Llc Stacked circuit package with molded base having laser drilled openings for upper package
US11410977B2 (en) 2018-11-13 2022-08-09 Analog Devices International Unlimited Company Electronic module for high power applications
US20200161206A1 (en) * 2018-11-20 2020-05-21 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and semiconductor manufacturing process
DE102020130638A1 (en) * 2019-12-11 2021-06-17 Infineon Technologies Ag SOLDER MATERIAL, LAYERED STRUCTURE, CHIP HOUSING, METHOD FOR FORMING A LAYERED STRUCTURE, METHOD FOR FORMING A CHIP HOUSING, CHIP ARRANGEMENT AND METHOD FOR FORMING A CHIP ARRANGEMENT
US11844178B2 (en) 2020-06-02 2023-12-12 Analog Devices International Unlimited Company Electronic component
US11824031B2 (en) * 2020-06-10 2023-11-21 Advanced Semiconductor Engineering, Inc. Semiconductor package structure with dielectric structure covering upper surface of chip
US11508680B2 (en) 2020-11-13 2022-11-22 Global Circuit Innovations Inc. Solder ball application for singular die

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495914B1 (en) * 1997-08-19 2002-12-17 Hitachi, Ltd. Multi-chip module structure having conductive blocks to provide electrical connection between conductors on first and second sides of a conductive base substrate
US20030133274A1 (en) * 2002-01-16 2003-07-17 Kuo-Tso Chen Integrated circuit package and method of manufacture
US20040080025A1 (en) * 2002-09-17 2004-04-29 Shinko Electric Industries Co., Ltd. Lead frame, method of manufacturing the same, and semiconductor device manufactured with the same
US20050161833A1 (en) * 2004-01-20 2005-07-28 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing the same
US20090026594A1 (en) * 2007-07-25 2009-01-29 Carsem (M) Sdn.Bhd. Thin Plastic Leadless Package with Exposed Metal Die Paddle
US20090065920A1 (en) * 2007-09-06 2009-03-12 Eun-Chul Ahn Semiconductor package embedded in substrate, system including the same and associated methods
US20090072379A1 (en) * 2007-09-14 2009-03-19 Infineon Technologies Ag Semiconductor device
US20090289356A1 (en) * 2008-05-23 2009-11-26 Stats Chippac, Ltd. Wirebondless Wafer Level Package with Plated Bumps and Interconnects
US20100044843A1 (en) * 2008-08-21 2010-02-25 Advanced Semiconductor Engineering, Inc. Advanced quad flat non-leaded package structure and manufacturing method thereof
US20100167436A1 (en) * 2008-03-25 2010-07-01 Bridge Semiconductor Corporation Method of making a semiconductor chip assembly with a post/base heat spreader and a signal post

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049177B1 (en) 2004-01-28 2006-05-23 Asat Ltd. Leadless plastic chip carrier with standoff contacts and die attach pad
TWI233172B (en) 2003-04-02 2005-05-21 Siliconware Precision Industries Co Ltd Non-leaded semiconductor package and method of fabricating the same
DE102005046737B4 (en) 2005-09-29 2009-07-02 Infineon Technologies Ag Benefits for the production of an electronic component, component with chip-through contacts and methods
KR100827667B1 (en) * 2007-01-16 2008-05-07 삼성전자주식회사 Semiconductor package having semiconductor chip in substrate and method of fabricating the same
US8084302B2 (en) 2008-03-07 2011-12-27 Stats Chippac, Ltd. Semiconductor package having semiconductor die with internal vertical interconnect structure and method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495914B1 (en) * 1997-08-19 2002-12-17 Hitachi, Ltd. Multi-chip module structure having conductive blocks to provide electrical connection between conductors on first and second sides of a conductive base substrate
US20030133274A1 (en) * 2002-01-16 2003-07-17 Kuo-Tso Chen Integrated circuit package and method of manufacture
US20040080025A1 (en) * 2002-09-17 2004-04-29 Shinko Electric Industries Co., Ltd. Lead frame, method of manufacturing the same, and semiconductor device manufactured with the same
US20050161833A1 (en) * 2004-01-20 2005-07-28 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing the same
US20090026594A1 (en) * 2007-07-25 2009-01-29 Carsem (M) Sdn.Bhd. Thin Plastic Leadless Package with Exposed Metal Die Paddle
US9190385B2 (en) * 2007-07-25 2015-11-17 Carsem (M) Sdn. Bhd. Thin plastic leadless package with exposed metal die paddle
US20090065920A1 (en) * 2007-09-06 2009-03-12 Eun-Chul Ahn Semiconductor package embedded in substrate, system including the same and associated methods
US20090072379A1 (en) * 2007-09-14 2009-03-19 Infineon Technologies Ag Semiconductor device
US20100167436A1 (en) * 2008-03-25 2010-07-01 Bridge Semiconductor Corporation Method of making a semiconductor chip assembly with a post/base heat spreader and a signal post
US20090289356A1 (en) * 2008-05-23 2009-11-26 Stats Chippac, Ltd. Wirebondless Wafer Level Package with Plated Bumps and Interconnects
US20100044843A1 (en) * 2008-08-21 2010-02-25 Advanced Semiconductor Engineering, Inc. Advanced quad flat non-leaded package structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469687A (en) * 2015-08-20 2017-03-01 爱思开海力士有限公司 There is its manufacture method of base plate for packaging and the semiconductor packages of flush type circuit pattern
CN106971988A (en) * 2015-12-11 2017-07-21 爱思开海力士有限公司 Wafer-level packaging part and its manufacture method

Also Published As

Publication number Publication date
US20110215449A1 (en) 2011-09-08
US8241956B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
US8241956B2 (en) Semiconductor device and method of forming wafer level multi-row etched lead package
US9443829B2 (en) Semiconductor device and method of dual-molding die formed on opposite sides of build-up interconnect structure
USRE47923E1 (en) Semiconductor device and method of forming PIP with inner known good die interconnected with conductive bumps
US9177901B2 (en) Semiconductor device and method of stacking die on leadframe electrically connected by conductive pillars
US8076184B1 (en) Semiconductor device and method of forming wafer-level multi-row etched leadframe with base leads and embedded semiconductor die
US8878359B2 (en) Semiconductor device and method of forming insulating layer around semiconductor die
US9048306B2 (en) Semiconductor device and method of forming open cavity in TSV interposer to contain semiconductor die in WLCSMP
US8349658B2 (en) Semiconductor device and method of forming conductive posts and heat sink over semiconductor die using leadframe
US9324672B2 (en) Semiconductor device and method of forming dual-active sided semiconductor die in fan-out wafer level chip scale package
US8138014B2 (en) Method of forming thin profile WLCSP with vertical interconnect over package footprint
US9735113B2 (en) Semiconductor device and method of forming ultra thin multi-die face-to-face WLCSP
US9312218B2 (en) Semiconductor device and method of forming leadframe with conductive bodies for vertical electrical interconnect of semiconductor die
US20120049334A1 (en) Semiconductor Device and Method of Forming Leadframe as Vertical Interconnect Structure Between Stacked Semiconductor Die
US8916452B2 (en) Semiconductor device and method of forming WLCSP using wafer sections containing multiple die
US8901734B2 (en) Semiconductor device and method of forming column interconnect structure to reduce wafer stress

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT, HONG KONG

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

AS Assignment

Owner name: STATS CHIPPAC PTE. LTE., SINGAPORE

Free format text: CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:038378/0427

Effective date: 20160329

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., SINGAPORE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053511/0298

Effective date: 20190503

Owner name: STATS CHIPPAC, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053511/0298

Effective date: 20190503