US20120238184A1 - Method for providing an edge preparation on a cutting edge of a tool and a control and a processing machine for carrying out the method - Google Patents

Method for providing an edge preparation on a cutting edge of a tool and a control and a processing machine for carrying out the method Download PDF

Info

Publication number
US20120238184A1
US20120238184A1 US13/399,202 US201213399202A US2012238184A1 US 20120238184 A1 US20120238184 A1 US 20120238184A1 US 201213399202 A US201213399202 A US 201213399202A US 2012238184 A1 US2012238184 A1 US 2012238184A1
Authority
US
United States
Prior art keywords
edge
tool
processing machine
preparation
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/399,202
Inventor
Jürgen Schwägerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Assigned to KENNAMETAL INC. reassignment KENNAMETAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHWAGERL, JURGEN
Publication of US20120238184A1 publication Critical patent/US20120238184A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/005Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/16Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of broaches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/24Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of drills
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37602Material removal rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

A method for providing an edge preparation on a cutting edge of a tool by means of an edge processing operation includes clamping the tool in a processing machine for providing the edge preparation, recording as a reference value the position of the cutting edge to be processed by means of a sensor arranged on the processing machine, carrying out an edge processing operation by means of a preparation tool, recording the position of the cutting edge again by means of the sensor arranged on the processing machine and storing the position as an actual value, monitoring the edge processing operation on the basis of a comparison between the reference value and the actual value, and comparing the actual value with a desired value for material removed on the cutting edge.

Description

    BACKGROUND
  • 1. Field of the Invention
  • The invention relates to a method for providing a defined edge preparation on a cutting edge of a tool for machining metals by means of a rounding operation, in particular for providing a defined edge preparation on a drilling, reaming, threading and/or milling tool. The invention also relates to a control and to a processing machine for carrying out the method.
  • 2. Background Information
  • Both drilling and milling tools are produced, inter alia, in a plurality of production steps from a rough round bar. In this case, modern high performance tools are produced from solid carbide. In the process, the desired geometry with main cutting edges is normally formed at the end face by a special point grinding method. In continuation of the tool, flutes with secondary cutting edges are often provided. The selection of the special point grinding, the configuration of the cutting edge geometry and of the flutes depend on the respective requirements. The cutting properties of the tool are considerably influenced by the cutting edge geometry. After the grinding operation, the cutting edges are normally of very sharp design, and so the cutting edges are regularly rounded via “edge rounding”. This edge rounding, referred to below as rounding operation, is carried out using a suitable rounding tool, in particular by means of brushes. A high-precision rounding process is important here in order to achieve the desired cutting properties. The material removal is normally only within a range of a few um. A deviation from desired material removal leads to a deterioration in the cutting properties.
  • On account of the very hard material when using solid carbide drills, the brushes are subjected to high wear during the rounding operation, such that, during the processing of a multiplicity of tools, the result of the rounding operation often varies in an undesirable manner at the same machine settings.
  • A further conventional edge preparation in addition to such edge rounding is the provision of a bevel on a cutting edge. Here, too, reproducible high precision of the edge preparation is important.
  • Accordingly, a need exists for a simple, reliable method for producing a defined edge preparation, in particular during a multiplicity of successive edge processing operations, and for a processing machine for carrying out this method.
  • SUMMARY OF THE INVENTION
  • The present invention addresses such needs by providing a method for providing an edge preparation on a cutting edge of a tool by means of an edge processing operation, in particular for providing edge rounding or a bevel. Accordingly, for providing a defined edge preparation on a cutting edge of a tool, in particular a drilling, reaming, threading and/or milling tool, the tool is first of all clamped in place in a processing machine. The position of the cutting edge to be processed is then recorded by means of a sensor arranged on the processing machine and is stored as a reference value. In the next method step, the edge preparation operation is carried out by means of a preparation tool and the position, which has then changed, of the cutting edge is then recorded again by means of the sensor and stored as an actual value. Finally, the edge preparation operation is monitored on the basis of a comparison between the reference value and the actual value and is compared with a desired value for the material removal on the cutting edge. As a result, the edge preparation is controlled overall in a simple and efficient manner.
  • In previous methods, it was regularly necessary for this purpose to check the result of the edge preparation in a complicated manner in separate measuring devices. To this end, unclamping of the tool was necessary.
  • With the method now described herein, it is now possible to determine the result of the edge processing operation directly at the machine tool, and therefore no separate measuring operation in a separate measuring device has to be carried out. The recording of the relative change between the recorded reference value and the actual value recorded after the edge processing operation is especially important. It is therefore not important to determine the actual absolute situation and position of the cutting edge in the coordinate system of the processing machine. As a result of the recording of the relative change, the material removal actually effected can be determined in a highly precise manner.
  • In this way, in particular online process monitoring is made possible and provided by the simple measuring operation. Normally, a multiplicity of tools are processed one after the other on the processing machine and are subjected to the edge processing operation. The expression “online process monitoring” refers to the fact that, in the course of this process, that is to say the edge preparation of a multiplicity of tools, the result of a respective edge processing operation is regularly monitored. The expression “regularly” refers here to the fact that the edge processing operation itself is monitored by the described comparison in each case after a defined number of edge processing operations, for example after 3 to 5 rounding operations (tools). In principle, it is also possible, and provision is also made for this, to carry out the measurement and monitoring and also to log the data at each tool to be processed.
  • The edge preparation provided is in particular a rounding operation. Alternatively, a bevel is provided using this method. The invention is explained in more detail below with reference to the rounding operation. The advantages and method features cited also likewise apply to the provision of a bevel.
  • According to an expedient configuration, wear of the preparation tool, designated below as a rounding tool, is deduced on the basis of the progression of the difference between actual value and reference value. Online monitoring of the wear of the rounding tool is therefore also made possible by this measuring method. When wear which exceeds an admissible tolerance value is detected, provision is accordingly also made for a desired control value for the rounding tool to be corrected in a control unit of the machine tool. The wear is therefore taken into account for the infeed movement of the rounding tool in order to ensure the desired result, that is to say the desired material removal, for subsequent rounding operations.
  • In an expedient configuration, the preparation tool is in this case a brush and furthermore provision is made in particular for the sensor to be a probe. Such probes are present in modern processing machines, and therefore no additional measuring devices have to be attached to a conventional processing machine.
  • As an alternative to the brush, other preparation tools or preparation methods can also be provided, such as, for example, a grinding tool or a blasting method, in which the edge to be processed is processed in a wet blasting process, with abrasive particles if required.
  • The processing machine is preferably a multi-axis, for example 5- or 6-axis, CNC machine. Such machines are distinguished by universal use for the most varied tool processing operations. In particular, such machines are also used as universal machines for the further production processes, such as, for example, grinding, etc. It is therefore also possible to carry out a plurality of production steps, in particular all the production steps, such as the flute grinding or the end point grinding for producing the tool, without resetting the tool on the processing machine.
  • In a preferred development, in the event of an inadmissible deviation from the desired value being detected on account of wear of the rounding tool, a rounding operation is carried out again before the tool is unclamped. However, this is expediently avoided by a timely correction of the desired control value for the rounding tool.
  • The present invention further addresses such needs by providing a processing machine for carrying out the methods described herein. The machine includes a clamping unit for clamping the tool in place, a preparation tool for carrying out the edge processing operation, a sensor for recording the position of the cutting edge, and a control unit structured to monitor the edge processing operation on the basis of a comparison between the reference value and the actual value.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • An exemplary embodiment of the invention is explained in more detail below with reference to the drawings, in which:
  • FIG. 1 shows a greatly simplified illustration of a processing machine for carrying out edge rounding on a tool; and
  • FIG. 2 shows a greatly simplified schematic illustration of a cutting edge before and after the edge rounding.
  • Equivalent parts are provided with the same reference numerals in the figures.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • According to FIG. 1, a processing machine 2 has a clamping unit 4 which is designed for clamping a tool 6 in place. The processing machine 2 is shown in its entirety in FIG. 1 by the dot-dash line. Furthermore, the processing machine 2 comprises a tool unit 8 for the defined guidance of a tool, in particular a rounding tool, which in the exemplary embodiment is designed as a brush 10. Finally, the processing machine 2 comprises a control unit 12 which controls the individual processes of the processing machine 2. A sensor designed in particular as a probe 14 is arranged on the tool unit 8. The individual components of the processing machine 2, which in particular is designed as a CNC machine tool, are adjustable in a controlled manner along various axes, as indicated by the arrows. In addition to linear adjustments in the direction of axes, rotary adjustments about axes of rotation are also possible. The individual adjusting movements can be superimposed in a suitable manner if required.
  • To carry out the actual rounding operation, first of all, in a first step, the probe 14 is brought up to a cutting edge 16 (shown in solid lines in FIG. 2), in particular a main cutting edge of the tool 6. In this initial state, the cutting edge 16, as shown, is still of extremely sharp design. As soon as the probe 14 touches the tip of the cutting edge 16, this position is established as a reference position. The corresponding measured values define reference values of the reference position.
  • The reference position is expediently recorded at an appropriate point on the main cutting edge or also on a secondary cutting edge of the tool 6. The position is preferably merely recorded at one point, since the rounding operation over the cutting edge length leads within sufficient tolerances to identical material removal d.
  • The probe 14 is then retracted again and the brush 10 for carrying out the rounding operation is advanced to the tool 6 in a manner known per se. A desired control value, up to which the brush 10 is advanced to the tool 6, is stored in the control unit 12.
  • After the rounding process is carried out, which is carried out according to a process sequence stored in the control unit 12, the probe 14 is again brought up to the then rounded cutting edge 16 (shown in dashed line in FIG. 2). The (rounded) position, then recorded by the probe 14, is evaluated as an actual position and the associated actual value is compared with the reference value recorded beforehand. The difference between the actual value and the reference value in this case determines the material removal d effected during the rounding operation. If material removal d is within a desired range, that is to say corresponding to a desired value with predetermined tolerances of, for example, ±5%, the rounding operation is all right. In a preferred configuration, if the material removal d effected is too little, a rounding operation is carried out once again by advancing the brush 10 again.
  • Preferably provided within the control unit 12 is a comparison module which continuously compares the recorded reference and actual values with one another and deduces the wear of the brush 10 on the basis of the progression of the difference between the reference values and actual values (during successive rounding operations on various tools 6). If the wear exceeds a predetermined tolerance value, the desired control value stored in the control unit is accordingly corrected. During the next rounding process, the brush 10 is then brought up to the tool in accordance with the new desired control value. As a result of this measure, online process monitoring is made possible and provided overall in a continuous manner during the rounding operation.
  • Instead of carrying out the rounding operation by means of a brush 10, other rounding tools, such as, for example, blasting methods, etc., can also be used. The rounding operation itself, with the online process monitoring described, can be carried out on a special processing machine 2 provided only for the rounding.
  • Further measures, such as, for example, coating measures, etc., can also be carried out if required.
  • The method described here and the processing machine 2 with the control algorithm stored in the control unit 12 in accordance with the method are distinguished by reliable edge rounding and online monitoring of the same during a multiplicity of successive edge rounding operations without the need for a separate external measuring operation for recording the result of the respective edge rounding operation.

Claims (9)

1. A method for providing an edge preparation on a cutting edge of a tool by means of an edge processing operation, the method comprising:
clamping the tool in a processing machine for providing the edge preparation;
recording as a reference value the position of the cutting edge to be processed by means of a sensor arranged on the processing machine;
carrying out an edge processing operation by means of a preparation tool;
recording the position of the cutting edge again by means of the sensor arranged on the processing machine and storing the position as an actual value;
monitoring the edge processing operation on the basis of a comparison between the reference value and the actual value; and
comparing the actual value with a desired value for material removed on the cutting edge.
2. The method of claim 1, wherein a plurality of tools are successively processed on the processing machine and wherein wear of the preparation tool is deduced on the basis of the progression of the difference between actual value and reference value.
3. The method of claim 2, wherein when wear of the preparation tool is detected, a desired control value for the preparation tool is corrected in a control unit of the processing machine.
4. The method of claim 1, wherein desired value for the material removal is within the range of 3 μm to 200 μm.
5. The method of claim 1, wherein the sensor is a probe.
6. The method of claim 1, wherein the preparation tool comprises a brush.
7. The method of claim 1, wherein the processing machine comprises a 5-axis CNC machine.
8. The method of claim 1, wherein an edge preparation is carried out again in the event of an inadmissible deviation from the desired value.
9. A processing machine for carrying out the method of claim 1, the processing machine comprising:
a clamping unit for clamping the tool in place;
a preparation tool for carrying out the edge processing operation;
a sensor for recording the position of the cutting edge; and
a control unit structured to monitor the edge processing operation on the basis of a comparison between the reference value and the actual value.
US13/399,202 2011-02-18 2012-02-17 Method for providing an edge preparation on a cutting edge of a tool and a control and a processing machine for carrying out the method Abandoned US20120238184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011011754.7-14 2011-02-18
DE102011011754A DE102011011754A1 (en) 2011-02-18 2011-02-18 Method for applying an edge preparation to a cutting edge of a tool and control and processing machine for carrying out the method

Publications (1)

Publication Number Publication Date
US20120238184A1 true US20120238184A1 (en) 2012-09-20

Family

ID=46604901

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/399,202 Abandoned US20120238184A1 (en) 2011-02-18 2012-02-17 Method for providing an edge preparation on a cutting edge of a tool and a control and a processing machine for carrying out the method

Country Status (3)

Country Link
US (1) US20120238184A1 (en)
CN (1) CN102642158B (en)
DE (1) DE102011011754A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510965A (en) * 2012-12-21 2014-08-20 Hexcel Composites Sarl Method of producing a shaped component
CN114113319A (en) * 2021-11-12 2022-03-01 昆山市镁富康精密自动化设备有限公司 Nondestructive testing device and method for hob holder for numerical control machining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932386B (en) * 2022-04-24 2023-12-22 维克多精密工业技术(苏州)有限责任公司 High-yield cutter preparation process

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605531A (en) * 1968-08-29 1971-09-20 Ikegai Iron Works Ltd Automatic tool position compensating system for a numerically controlled machine tool
US3628002A (en) * 1967-11-21 1971-12-14 Gen Electric On-machine inspection systems
US3902811A (en) * 1973-06-27 1975-09-02 Vsi Corp Electro-optical scanning system for dimensional gauging of parts
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
US4620281A (en) * 1981-09-22 1986-10-28 General Electric Company In-process cutting tool condition compensation and part inspection
US4967365A (en) * 1987-12-12 1990-10-30 SKODA koncern Plyzen Prvni brnenska strojirna koncernoy podnik Method and apparatus for adaptive control of the trajectory of a working process
US4974165A (en) * 1988-11-28 1990-11-27 Mechanical Technology Incorporated Real time machining control system including in-process part measuring and inspection
US5241792A (en) * 1991-02-08 1993-09-07 Yamaha Hatsudoki Kabushiki Kaisha Method and apparatus for surface finishing
US5309646A (en) * 1991-12-02 1994-05-10 General Electric Company Tool point compensation for hardware displacement and inclination
DE4312199A1 (en) * 1993-04-14 1994-10-20 Reinecker Masch Kg J E Method for grinding the tooth cutting edges of a milling cutter
US5387061A (en) * 1990-12-14 1995-02-07 The United States Of America As Represented By The United States Department Of Energy Parameter monitoring compensation system and method
US5490307A (en) * 1991-10-19 1996-02-13 Index-Werke Gmbh & Co. Kg Hahn & Tessky Lathe
US5919081A (en) * 1996-09-04 1999-07-06 Unova Ip Corporation Method and apparatus for computer numerically controlled pin grinder gauge
US6105467A (en) * 1998-06-26 2000-08-22 Baker; David A. Method for preparing a cutting edge on an end mill
US6210307B1 (en) * 1998-11-27 2001-04-03 Charles A. Van Horssen Apparatus for automatic machining
US20040182840A1 (en) * 2003-03-18 2004-09-23 Denney Paul E. Method and apparatus for material processing
DE102006007356A1 (en) * 2006-02-17 2007-08-23 E. Zoller GmbH & Co. KG Einstell- und Messgeräte Tool holding and measuring and setting apparatus with means for clamping a tool having a cutting edge and a unit for treating the cutting edge
US20090018694A1 (en) * 2006-04-21 2009-01-15 Oliver Stammen Method for compensating wear of a finishing tool
US20090209180A1 (en) * 2008-01-17 2009-08-20 Peter Lenard Device for machining, in particular eroding and grinding, rotational work-pieces provided with cutting edges
US20100188035A1 (en) * 2009-01-29 2010-07-29 Jtekt Corporation Machine tool and controlling method thereof
US20100204814A1 (en) * 2009-02-09 2010-08-12 Deckel Maho Pfronten Gmbh Process and apparatus for generating control data for controlling a tool on a machine tool comprising at least 5 axes
US20100228384A1 (en) * 2009-02-09 2010-09-09 Deckel Maho Pfronten Gmbh Method and device for generating transformed control data for controlling a tool on a machine tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2850809Y (en) * 2005-11-18 2006-12-27 邱博洪 Borer grinding machine with detector

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628002A (en) * 1967-11-21 1971-12-14 Gen Electric On-machine inspection systems
US3605531A (en) * 1968-08-29 1971-09-20 Ikegai Iron Works Ltd Automatic tool position compensating system for a numerically controlled machine tool
US3902811A (en) * 1973-06-27 1975-09-02 Vsi Corp Electro-optical scanning system for dimensional gauging of parts
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
US4620281A (en) * 1981-09-22 1986-10-28 General Electric Company In-process cutting tool condition compensation and part inspection
US4967365A (en) * 1987-12-12 1990-10-30 SKODA koncern Plyzen Prvni brnenska strojirna koncernoy podnik Method and apparatus for adaptive control of the trajectory of a working process
US4974165A (en) * 1988-11-28 1990-11-27 Mechanical Technology Incorporated Real time machining control system including in-process part measuring and inspection
US5387061A (en) * 1990-12-14 1995-02-07 The United States Of America As Represented By The United States Department Of Energy Parameter monitoring compensation system and method
US5241792A (en) * 1991-02-08 1993-09-07 Yamaha Hatsudoki Kabushiki Kaisha Method and apparatus for surface finishing
US5490307A (en) * 1991-10-19 1996-02-13 Index-Werke Gmbh & Co. Kg Hahn & Tessky Lathe
US5309646A (en) * 1991-12-02 1994-05-10 General Electric Company Tool point compensation for hardware displacement and inclination
DE4312199A1 (en) * 1993-04-14 1994-10-20 Reinecker Masch Kg J E Method for grinding the tooth cutting edges of a milling cutter
US5919081A (en) * 1996-09-04 1999-07-06 Unova Ip Corporation Method and apparatus for computer numerically controlled pin grinder gauge
US6105467A (en) * 1998-06-26 2000-08-22 Baker; David A. Method for preparing a cutting edge on an end mill
US6210307B1 (en) * 1998-11-27 2001-04-03 Charles A. Van Horssen Apparatus for automatic machining
US20040182840A1 (en) * 2003-03-18 2004-09-23 Denney Paul E. Method and apparatus for material processing
DE102006007356A1 (en) * 2006-02-17 2007-08-23 E. Zoller GmbH & Co. KG Einstell- und Messgeräte Tool holding and measuring and setting apparatus with means for clamping a tool having a cutting edge and a unit for treating the cutting edge
US20090018694A1 (en) * 2006-04-21 2009-01-15 Oliver Stammen Method for compensating wear of a finishing tool
US20090209180A1 (en) * 2008-01-17 2009-08-20 Peter Lenard Device for machining, in particular eroding and grinding, rotational work-pieces provided with cutting edges
US20100188035A1 (en) * 2009-01-29 2010-07-29 Jtekt Corporation Machine tool and controlling method thereof
US20100204814A1 (en) * 2009-02-09 2010-08-12 Deckel Maho Pfronten Gmbh Process and apparatus for generating control data for controlling a tool on a machine tool comprising at least 5 axes
US20100228384A1 (en) * 2009-02-09 2010-09-09 Deckel Maho Pfronten Gmbh Method and device for generating transformed control data for controlling a tool on a machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510965A (en) * 2012-12-21 2014-08-20 Hexcel Composites Sarl Method of producing a shaped component
CN114113319A (en) * 2021-11-12 2022-03-01 昆山市镁富康精密自动化设备有限公司 Nondestructive testing device and method for hob holder for numerical control machining

Also Published As

Publication number Publication date
CN102642158A (en) 2012-08-22
DE102011011754A1 (en) 2012-08-23
CN102642158B (en) 2016-11-02

Similar Documents

Publication Publication Date Title
CN109465502B (en) Method and apparatus for shaving teeth
US10788807B2 (en) Method for compensating milling cutter deflection
US10775765B2 (en) Device and method for measuring and controlling a rotary-driven tool in a machine tool
US20220134459A1 (en) Method for automatic process monitoring in continuous generation grinding
US4329096A (en) Gear cutter
JP2000512378A (en) Multifunctional measuring device
EP3130971A1 (en) Machine toolpath compensation using vibration sensing
CN105500113B (en) Machine tool chief axis folder bits warning device and method based on non-contact displacement sensor
KR102502138B1 (en) Method and grinding machine for manufacturing a workpiece containing a spiral groove
JP2009006447A (en) Grinding method for workpiece and machining device
JP2007000945A (en) Grinding method and device
US9952582B2 (en) Method of controlling feed axes in machine tool, and machine tool performing machining by using the method of controlling feed axes
Tsutsumi et al. Evaluation of synchronous motion in five-axis machining centers with a tilting rotary table
US20120238184A1 (en) Method for providing an edge preparation on a cutting edge of a tool and a control and a processing machine for carrying out the method
CN102331747B (en) Method for machining and detecting slender axle-like part with continuous conical surfaces
JP2019188540A (en) Determination device and machine tool system
JP2008272861A (en) Tool position measuring method, tool position measuring system and machining method
JP5023919B2 (en) Machine Tools
CN104128851B (en) Engineering ceramics screw thread processing method
CN107263319B (en) One kind tracks method grinding wheel presetting cutter method and system
Shchurov et al. Metric buttress thread milling and turning on CNC machines
JP6590711B2 (en) Manufacturing system and manufacturing method
JP5395570B2 (en) Cylindrical grinding method and apparatus
JP4940904B2 (en) Bulk quantity measuring device
CN205519701U (en) Adjustable device of lathe boring cutter depth of cut

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENNAMETAL INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHWAGERL, JURGEN;REEL/FRAME:028317/0268

Effective date: 20120605

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION