US20120158105A1 - Cooling of localized areas of the body for cerebral blood flow augmentation - Google Patents

Cooling of localized areas of the body for cerebral blood flow augmentation Download PDF

Info

Publication number
US20120158105A1
US20120158105A1 US13/331,977 US201113331977A US2012158105A1 US 20120158105 A1 US20120158105 A1 US 20120158105A1 US 201113331977 A US201113331977 A US 201113331977A US 2012158105 A1 US2012158105 A1 US 2012158105A1
Authority
US
United States
Prior art keywords
cooling
blood flow
artery
nose
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/331,977
Inventor
Denise Barbut
Wanchung Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BeneChill Inc
Original Assignee
BeneChill Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BeneChill Inc filed Critical BeneChill Inc
Priority to US13/331,977 priority Critical patent/US20120158105A1/en
Publication of US20120158105A1 publication Critical patent/US20120158105A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0002Head or parts thereof
    • A61F2007/0006Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0002Head or parts thereof
    • A61F2007/0017Mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0029Arm or parts thereof
    • A61F2007/003Shoulder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0029Arm or parts thereof
    • A61F2007/0036Hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0029Arm or parts thereof
    • A61F2007/0037Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0039Leg or parts thereof
    • A61F2007/0045Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0039Leg or parts thereof
    • A61F2007/0046Toe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body

Definitions

  • Embodiments of the invention relate to methods of altering sympathetic nerve firing and augmenting cerebral blood flow. Methods are described for treatment of individuals in need of augmented cerebral blood flow, such as during and after stroke, transient ischemic attack and myocardial infarction.
  • Therapeutic hypothermia is the use of hypothermia to cool the brain to provide neuroprotection.
  • Therapeutic hypothermias have potential for treating ischemic insult when the brain is deprived of oxygen by cardiac arrest, stroke or brain trauma
  • Therapeutic hypothermia has been endorsed by the American Heart Association (AHA) and International Liason Committee on Resuscitation (ILCOR) for use after cardiac arrest.
  • AHA American Heart Association
  • ILCOR International Liason Committee on Resuscitation
  • body cooling is generally accomplished by either an invasive method such as a catheter or a non-invasive method such as a water blanket. There are problems with these techniques.
  • Cooling catheters are placed in an appropriate vein or artery.
  • a catheter placed into the femoral vein near the heart can cool the entire body by circulating a saline solution through the catheter that is controlled by an exterior control unit.
  • the technique is invasive and potentially may induce bleeding, vascular puncture, infection and deep vein thrombosis.
  • a non-invasive technique for lowering of body temperature is a water blanket.
  • Water blankets may be applied by non-physician hospital personnel and do not require any insertion into the patient body.
  • the drawbacks include danger of electric shock, freezer burns to the patient and difficulty in precisely controlling temperature.
  • cbf cerebral blood flow
  • hypothermia leads to a progressive diminution of cbf, such that 1 degree reduction of body temperature results in a 10% reduction in cbf.
  • cerebrovascular response to cold may be biphasic and possibly even dependent on the mode of cooling.
  • U.S. Pat. No. 6,942,686 discloses regulation of cerebral blood flow by cooling or heating of an artery of the patient.
  • U.S. Pat. No. 6,942,686 teaches relatively large temperature changes (cooling to 30° C. or below) in order to enhance cerebral blood flow.
  • Embodiments of the invention are directed to methods of augmenting cerebral blood flow, altering sympathetic nerve firing, and/or decreasing catecholamine levels by cooling a part of the body of a patient in need thereof.
  • OCT optical coherence tomography
  • FIGS. 2A-2D show that carotid artery diameter and carotid blood flow measured using ultrasonography increase steadily from baseline to 30 minutes post restoration of flow, corresponding to the increased capillary caliber and density seen in the cortex using OCT. Once a critical temperature reduction is surpassed, the reverse occurs, carotid flow falling well below baseline value.
  • FIG. 4 shows changes in blood flow (as % of baseline) and temperature as a result of cooling the nose to 2° C. Measurements were taken before cardiac arrest (baseline), and at 5, 10, 30 and 60 minutes post-resuscitation.
  • (upper dashed line, - ⁇ -) temperature, control group;
  • (bottom solid line, - ⁇ -) carotid artery internal diameter, control group;
  • (bottom dashed line, - ⁇ -) temperature, cooled group;
  • upper solid line, - ⁇ -) carotid artery internal diameter, cooled group.
  • FIG. 5 shows catecholamine levels (norepinephrine, ng/ml) during cardiac arrest and reduction of catecholamine levels with nasal and oral cooling. Measurements were taken at baseline (before cardiac arrest), 15 minutes after ventricular fibrillation (VF) and at 5 and 10 minutes post-cardiac arrest.
  • Embodiments of the invention are directed to where, a part of the body is cooled to a temperature of 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C.
  • the part of the body to be cooled is selected from mouth, nose, ear, pharyngeal area, head, neck, shoulders, arm, hand, finger(s), feet, toe(s), leg, body core or selected areas of any of the above.
  • more than one selected body part may be cooled simultaneously or sequentially.
  • the body part to be cooled is selected from the nose, mouth, pharynx, or a combination thereof
  • the nasopharyngeal cavity is cooled using a commercially available device for this purpose.
  • a commercially available device for this purpose.
  • such devices spray a volatile liquid coolant into the nasal cavity to achieve a desired temperature.
  • a commercially available device for this purpose.
  • such devices spray a volatile liquid coolant into the nasal cavity to achieve a desired temperature.
  • One such device is the RhinoChill System® (BeneChill, San Diego, Calif.).
  • the RhinoChill System is a battery-operated, non-invasive, portable, and easy-to-use medical device for rapid therapeutic patient cooling through the nasal cavity.
  • the advantages of using the nasal cavity are that it is a natural orifice into the body, that it is in close proximity to the brain and that the nasal cavity is a natural heat exchanger.
  • the cooling may be initiated before, during or after an ischemic event and maintained for as long as determined to be beneficial to the patient.
  • the treatment may be either continuous or discontinuous. Typically, the time of cooling is from 1 hour to 24 hours. In preferred embodiments the treatment is maintained sufficient to obtain the desired effect of augmented cbf. That is, cooling the mouth, nose and/or nasopharyngeal cavity to 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. may be performed for 1-120 minutes, preferably 1-60 minutes, more preferably 1-30 minutes, yet more preferably 1-20 minutes, yet more preferably 1-10 minutes, yet more preferably 1-5 minutes and yet more preferably 1-2 minutes to achieve augmented cbf. When the cbf decreases, the treatment may again be applied.
  • the effects on cbf are observed without depression of either the brain temperature or the body temperature. It is not essential that the brain temperature or body temperature be lowered during the cooling treatment. In some embodiments, there is no change in brain or body temperature as a result of cooling the selected body part. In some embodiments, the temperature of 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. is maintained in the nose, mouth, or nasopharyngeal area for a longer period such as 30 minutes or more. In some embodiments, the brain temperature and body temperature eventually will drop. The standard of care for therapeutic hypothermia is to keep the patient at a body temperature of 33-34° C. for 12-24 hours. In embodiments of the invention, cooling of the nose, mouth and/or nasopharyngeal area is monitored such that body temperature remains above 33° C. and the body is not continuously cooled for more than 24 hours.
  • the body may be cooled in other areas to enhance cerebral blood flow.
  • the effect of relatively short treatment of cooling to 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. for 1-120 minutes, preferably 1-60 minutes, more preferably 1-30 minutes, yet more preferably 1-20 minutes, yet more preferably 1-10 minutes, yet more preferably 1-5 minutes and yet more preferably 1-2 minutes is to alter the sympathetic nerve firing rate to increase or decrease blood flow.
  • the nose or mouth is cooled, thereby inhibiting the sympathetic system and increasing cbf.
  • norepinephrine By inhibiting the sympathetic nervous system, secretion of norepinephrine is also inhibited. The level of norepinephrine is indicative of sympathetic activity. If sympathetic activity is depressed or inhibited, then constriction of blood vessels will be inhibited.
  • catecholamine storm An immediate effect of cardiac arrest is the “catecholamine storm” which is the body's reaction when the heart stops beating, increasing sympathetic activity, increasing constriction of blood vessels in an attempt to raise blood pressure.
  • the “catecholamine storm” has very negative effects on final outcome for the patient which include brain death. Cooling of the nose, mouth and/or nasopharyngeal area reduces the catecholamine storm and reduces these deleterious effects.
  • cooling of a body part alters sympathetic activity, blood flow and catecholamine levels.
  • the body part is selected from mouth, nose, ear, pharyngeal area, head, neck, shoulders, arm, hand, finger(s), feet, toe(s), leg, body core or selected areas of any of the above.
  • more than one selected body part may be cooled simultaneously or sequentially.
  • the body part to be cooled is selected from the nose, mouth, pharynx, or a combination thereof.
  • mouth, nose, pharynx or combinations thereof are cooled, and sympathetic activity and catecholamine levels are inhibited.
  • Catecholamine include norepinephrine and epinephrine.
  • catecholamine levels are inhibited by at least 10%, preferably at least 20%, more preferably at least 30%, more preferably at least 40%, more preferably at least 50%, more preferably at least 60%, more preferably at least 70% and more preferably at least 80% compared to the level expected for an individual under the same conditions but without treatment to cool selected body part(s).
  • Enhanced cerebral blood flow improves the chances of resuscitation after heart attack, protects heart function after ischemic insult, protects the brain after ischemic insult and has utility in treatment of any condition in which cbf is inadequate including but not limited to stroke, head injury, cardiac arrest, transient ischemic attack, Alzheimer's, and dementia.
  • Embodiments of the invention directed to administration of cooling to a body part such as nose or mouth provide a big advantage for the patient.
  • the treatment may be administered immediately, by non-trained individuals.
  • the physiological response is obtained very quickly, as soon as the body part is cooled.
  • it is not necessary to cool the entire body, it is not necessary to use a water blanket or cooling catheter, thus avoiding the disadvantages of these techniques such as the potential for electric shock and freezer bums (water blankets) and avoidance of bleeding, infection, vascular puncture, and deep vein thrombosis (cooling catheters).
  • VF Ventricular fibrillation
  • ROSC return of spontaneous circulation
  • FIG. 1 shows cortical microvasculature assessed using optical coherence tomography (OCT) at baseline showing few vessels (upper left panel).
  • the upper right panel shows blood vessels 5 minutes after initiation of chest compression (post compression, PC) and cooling of the nose. Following restoration of circulation, with a 0.5 degree temperature reduction, vessel caliber and capillary density is increased.
  • the lower panels show 10 and 30 minutes post resuscitation (PR), respectively. Further increase is seen bottom left, at 1 degree temperature reduction. At bottom right, at 4 degree temperature reduction, the vessel density is reduced compared to baseline.
  • OCT optical coherence tomography
  • FIGS. 2A-D show ultrasound images of the carotid artery in the neck.
  • vessel internal diameter is 0.33 cm and the flow is 427 ml/min.
  • FIG. 2B At 5 minutes post resuscitation ( FIG. 2B ), the body temperature has dropped by 1° C. Both the internal diameter of the vessel and blood flow have increased (0.48 cm and 560 ml/min respectively).
  • FIG. 2C At 10 minutes post resuscitation ( FIG. 2C ) internal diameter of vessel continues to increase and blood flow remains high at 0.50 cm and 518 ml/min, respectively. Body temperature has now lowered by 1.4° compared to baseline. However, at 30 minutes post resuscitation, upon further cooling to 33° C. ( FIG. 2D ), the vessel diameter now begins to decrease as does blood flow (0.48 cm and 150, respectively).
  • FIG. 3 plots carotid diameter and brain temperature at different time points before cardiac arrest (baseline) and post-resuscitation (PR).
  • FIG. 4 shows blood flow over the same time course and plots blood flow and brain temperature before cardiac arrest (baseline) and post-resuscitation (PR).
  • carotid diameter FIG. 3
  • blood flow FIG. 4
  • brain temperature drops only slightly, 1.5° C. or less.
  • Example 2 Experiments were performed as described above for Example 1 except that in some cases the nose was cooled and in some cases the mouth was cooled. The control subjects did not receive a cooling treatment. As an indication of sympathetic nerve firing, levels of the catecholamine, norepinephrine, were measured ( FIG. 5 ).
  • the controls have low levels of norepinephrine and the cooled subjects have virtually no norepinephrine.
  • the levels of norepinephrine in the controls spikes up above 200 ng/ml, while the levels in the cooled subjects (both mouth cooling and nasopharyngeal cooling) remain much lower.
  • Cooling of either the mouth or nasopharyngeal area inhibits that catecholamine surge that is observed during cardiac arrest.
  • FIG. 6 shows data in comparison with cutting of the cervical sympathetic nerve. Severing of the cervical sympathetic nerve cuts off norepinephrine release. Experiments were performed as described above. It can be seen from FIG. 6 that by cooling either the mouth or nasopharyngeal area, release of norepinephrine is even less than observed by cutting of the cervical nerve. Cooling of the nose or mouth is a surprisingly effective inhibitor of norepinephrine release, more effective then cutting of the cervical sympathetic nerve.

Abstract

Methods are described for augmenting cerebral blood flow and altering sympathetic nerve firing and catecholamine release by cooling a part of the body. In particular localized cooling of the nose or mouth is used to augment cerebral blood flow and alter sympathetic nerve firing. By cooling a localized area such as nose or mouth, release of norepinephrine after an ischemic event is inhibited. The methods described may be applied to augment cerebral blood flow and alter catecholamine release, particularly in treatment of stroke, heart attack and transient ischemic event.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 12/578,135, filed Oct. 13, 2009 which claims priority to U.S. Provisional Application No. 61/104,619, filed Oct. 10, 2008. Both applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • Embodiments of the invention relate to methods of altering sympathetic nerve firing and augmenting cerebral blood flow. Methods are described for treatment of individuals in need of augmented cerebral blood flow, such as during and after stroke, transient ischemic attack and myocardial infarction.
  • 2. Description of the Related Art
  • Therapeutic hypothermia is the use of hypothermia to cool the brain to provide neuroprotection. Therapeutic hypothermias have potential for treating ischemic insult when the brain is deprived of oxygen by cardiac arrest, stroke or brain trauma
  • Animal studies have shown therapeutic hypothermia to be an effective neuroprotectant (Krieger, Derk. et al. “Cooling for Acute Ischemic Brain Damage.” American Heart Association. May 25, 2001, pg. 1847-1854) and that cooling the ischemic brain can provide neuroprotection (Polderman, Kees H. “Application of therapeutic hypothermia in the ICU.” Intensive Care Med. (2004) 30:556-575).
  • Therapeutic hypothermia has been endorsed by the American Heart Association (AHA) and International Liason Committee on Resuscitation (ILCOR) for use after cardiac arrest. In one study, patients resuscitated 5-15 min. after collapse were cooled over a 24 hour period at a target temperature of 32-34° C. The group receiving the therapeutic hypothermia had a death rate that was 14% lower than the group receiving standard care (Holzer, Michael “Mild Hypothermia to Improve the Neurologic Outcome After Cardiac Arrest.” New England Journal of Medicine. (2002) Vol. 346, No. 8).
  • While it is known that mild hypothermia (32-34° C. (89.6-93.2° F.)) is effective in treatment of ischemia, there are problems with lowering body temperature to 32-34° C. One problem is that normally at around 36° C. (96.8° F.) the patient will begin to shiver and drugs such as Desflurane and Demerol must be administered to inhibit the shiver response. Other side effects include arrhythmia, decreased clotting threshold, increased risk of infection, and electrolyte imbalance. Furthermore, the physician must take care to rewarm the patient gradually to avoid spikes in intracranial pressure.
  • Furthermore, body cooling is generally accomplished by either an invasive method such as a catheter or a non-invasive method such as a water blanket. There are problems with these techniques.
  • Cooling catheters are placed in an appropriate vein or artery. A catheter placed into the femoral vein near the heart can cool the entire body by circulating a saline solution through the catheter that is controlled by an exterior control unit. However, the technique is invasive and potentially may induce bleeding, vascular puncture, infection and deep vein thrombosis.
  • A non-invasive technique for lowering of body temperature is a water blanket. Water blankets may be applied by non-physician hospital personnel and do not require any insertion into the patient body. The drawbacks include danger of electric shock, freezer burns to the patient and difficulty in precisely controlling temperature.
  • While cold anywhere in the body can be neuroprotective, part of the neuroprotection may be due to enhanced cerebral blood flow (cbf). According to dogma, hypothermia leads to a progressive diminution of cbf, such that 1 degree reduction of body temperature results in a 10% reduction in cbf. However, several pieces of evidence suggest that the cerebrovascular response to cold may be biphasic and possibly even dependent on the mode of cooling.
  • U.S. Pat. No. 6,942,686 discloses regulation of cerebral blood flow by cooling or heating of an artery of the patient. U.S. Pat. No. 6,942,686 teaches relatively large temperature changes (cooling to 30° C. or below) in order to enhance cerebral blood flow.
  • It has been found by the inventors that very small decreases in body temperature (up to 1.5° C.) produce unexpectedly large increases in cbf. Furthermore, the increase in cbf was achieved without the necessity of lowering basal body temperature. Augmentation of cbf was achieved by selectively cooling only a part of the body such as the nose and/or mouth. Methods of enhancing cbf are disclosed with implications for treatment of ischemia.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention are directed to methods of augmenting cerebral blood flow, altering sympathetic nerve firing, and/or decreasing catecholamine levels by cooling a part of the body of a patient in need thereof.
  • Further embodiments are directed to methods of increasing cerebral blood flow during or after an ischemic event by cooling the nose and/or mouth of a patient in need thereof, whereby cerebral blood flow is increased.
  • Further aspects, features and advantages of this invention will become apparent from the detailed description of the preferred embodiments which follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows cortical microvasculature assessed using optical coherence tomography (OCT) at baseline showing few vessels (Top left, Baseline, temperature=38.0° C.). Top right (post-cardiac 5 minutes, temperature=37.5° C.), following restoration of circulation, with a 0.5 degree temperature reduction, vessel caliber and capillary density is increased. Further increase is seen bottom left (post-resuscitation 10 minutes; temperature=36.6° C.), at 1 degree temperature reduction. At bottom right (post-resuscitation 30 minutes, temperature=32.5° C.), at 4 degree temperature reduction, the vessel density is reduced compared to baseline.
  • FIGS. 2A-2D show that carotid artery diameter and carotid blood flow measured using ultrasonography increase steadily from baseline to 30 minutes post restoration of flow, corresponding to the increased capillary caliber and density seen in the cortex using OCT. Once a critical temperature reduction is surpassed, the reverse occurs, carotid flow falling well below baseline value. FIG. 2A: baseline, temperature=38.0° C., internal diameter of artery=0.33 cm, flow=427 ml/min; FIG. 2B: 5 minutes post-resuscitation, temperature=37.0° C., internal diameter of artery=0.48 cm, flow=560 ml/min; FIG. 2C: 10 minutes post-resuscitation, temperature=36.6° C., internal diameter of artery=0.50 cm, flow=518 ml/min; FIG. 2D: 30 minutes post-resuscitation, temperature=33.0° C., internal diameter of artery=0.48 cm, flow=150 ml/min.
  • FIG. 3 shows changes in carotid diameter (as % of baseline) and temperature as a result of cooling the nose to 2° C. Measurements were taken before cardiac arrest (baseline), and at 5, 10, 30 and 60 minutes post-resuscitation. (top dashed line, --)=temperature, control group; (bottom solid line, -▴-)=carotid artery internal diameter, control group; (bottom dashed line, -▪-)=temperature, cooled group; (top solid line, -▾-)=carotid artery internal diameter, cooled group.
  • FIG. 4 shows changes in blood flow (as % of baseline) and temperature as a result of cooling the nose to 2° C. Measurements were taken before cardiac arrest (baseline), and at 5, 10, 30 and 60 minutes post-resuscitation. (upper dashed line, --)=temperature, control group; (bottom solid line, -▴-)=carotid artery internal diameter, control group; (bottom dashed line, -▪-)=temperature, cooled group; (upper solid line, -▾-)=carotid artery internal diameter, cooled group.
  • FIG. 5 shows catecholamine levels (norepinephrine, ng/ml) during cardiac arrest and reduction of catecholamine levels with nasal and oral cooling. Measurements were taken at baseline (before cardiac arrest), 15 minutes after ventricular fibrillation (VF) and at 5 and 10 minutes post-cardiac arrest.
  • FIG. 6 shows catecholamine levels during cardiac arrest: reduction with nasal cooling, oral cooling and cervical nerve section. Measurements were taken at baseline (before cardiac arrest), 15 minutes after ventricular fibrillation (VF) and at 5 and 10 minutes post-cardiac arrest. Control top line () (n=3); Cervical nerve cut (▴) (n=4); Nasopharyngeal (nose) cooling (▪) (n=4); and mouth cooling (▾) (n=3).
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • While the described embodiment represents the preferred embodiment of the present invention, it is to be understood that modifications will occur to those skilled in the art without departing from the spirit of the invention. The scope of the invention is therefore to be determined solely by the appended claims.
  • External cooling, as might occur during exposure to cold air, causes a peripheral vasoconstriction, but an increase in cardiac output and dilatation of the carotid arteries. The changes in systemic temperature, if any, accompanying this phenomenon have never been documented. Cross-sectional slices of carotid arteries in a Petri dish have also been shown to dilate upon cooling of the bathing fluid.
  • It has been found unexpectedly that cooling of a part of the body such as the nose and/or mouth increases cerebral blood flow (cbf) and may produce a beneficial treatment for ischemic insult without the risks associated with therapeutic hypothermia described above.
  • We have shown that minimal reduction of brain temperature (up to 1.5 degrees) induced by nasopharyngeal cooling, increases not just carotid flow but cerebral blood flow, whereas more dramatic reductions (5.5 degrees) decrease cerebral blood flow. This is attributable to the nasopharyngeal cooling because in uncooled control animals the opposite physiological response is observed. In the control animals, carotid diameter and cbf progressively diminish following restoration of circulation.
  • Embodiments of the invention are directed to where, a part of the body is cooled to a temperature of 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. In some embodiments, the part of the body to be cooled is selected from mouth, nose, ear, pharyngeal area, head, neck, shoulders, arm, hand, finger(s), feet, toe(s), leg, body core or selected areas of any of the above. In some embodiments, more than one selected body part may be cooled simultaneously or sequentially. Preferably, the body part to be cooled is selected from the nose, mouth, pharynx, or a combination thereof
  • In a preferred embodiment, the nasopharyngeal cavity is cooled using a commercially available device for this purpose. Typically, such devices spray a volatile liquid coolant into the nasal cavity to achieve a desired temperature. One such device is the RhinoChill System® (BeneChill, San Diego, Calif.). The RhinoChill System is a battery-operated, non-invasive, portable, and easy-to-use medical device for rapid therapeutic patient cooling through the nasal cavity. The advantages of using the nasal cavity are that it is a natural orifice into the body, that it is in close proximity to the brain and that the nasal cavity is a natural heat exchanger.
  • The cooling may be initiated before, during or after an ischemic event and maintained for as long as determined to be beneficial to the patient. The treatment may be either continuous or discontinuous. Typically, the time of cooling is from 1 hour to 24 hours. In preferred embodiments the treatment is maintained sufficient to obtain the desired effect of augmented cbf. That is, cooling the mouth, nose and/or nasopharyngeal cavity to 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. may be performed for 1-120 minutes, preferably 1-60 minutes, more preferably 1-30 minutes, yet more preferably 1-20 minutes, yet more preferably 1-10 minutes, yet more preferably 1-5 minutes and yet more preferably 1-2 minutes to achieve augmented cbf. When the cbf decreases, the treatment may again be applied.
  • It is an advantage of the present invention that the benefits observed with respect to increased cbf and dilation of arteries are obtained within minutes of applying the cold treatment to the nose, mouth and/or pharyngeal area. Within 1-2 minutes, carotid artery diameter increases and blood flow increases. As flow in brain cortex increases, collateral vessels increase also in density and number. Sympathetic nerves that end on carotid artery fire less often resulting in inhibition of the sympathetic nervous system.
  • In some embodiments, the effects on cbf are observed without depression of either the brain temperature or the body temperature. It is not essential that the brain temperature or body temperature be lowered during the cooling treatment. In some embodiments, there is no change in brain or body temperature as a result of cooling the selected body part. In some embodiments, the temperature of 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. is maintained in the nose, mouth, or nasopharyngeal area for a longer period such as 30 minutes or more. In some embodiments, the brain temperature and body temperature eventually will drop. The standard of care for therapeutic hypothermia is to keep the patient at a body temperature of 33-34° C. for 12-24 hours. In embodiments of the invention, cooling of the nose, mouth and/or nasopharyngeal area is monitored such that body temperature remains above 33° C. and the body is not continuously cooled for more than 24 hours.
  • The body may be cooled in other areas to enhance cerebral blood flow. The effect of relatively short treatment of cooling to 0.5 to 4° C., preferably from 1-3° C., most preferably about 2° C. for 1-120 minutes, preferably 1-60 minutes, more preferably 1-30 minutes, yet more preferably 1-20 minutes, yet more preferably 1-10 minutes, yet more preferably 1-5 minutes and yet more preferably 1-2 minutes is to alter the sympathetic nerve firing rate to increase or decrease blood flow. In a preferred embodiment, the nose or mouth is cooled, thereby inhibiting the sympathetic system and increasing cbf.
  • By inhibiting the sympathetic nervous system, secretion of norepinephrine is also inhibited. The level of norepinephrine is indicative of sympathetic activity. If sympathetic activity is depressed or inhibited, then constriction of blood vessels will be inhibited.
  • An immediate effect of cardiac arrest is the “catecholamine storm” which is the body's reaction when the heart stops beating, increasing sympathetic activity, increasing constriction of blood vessels in an attempt to raise blood pressure. However, the “catecholamine storm” has very negative effects on final outcome for the patient which include brain death. Cooling of the nose, mouth and/or nasopharyngeal area reduces the catecholamine storm and reduces these deleterious effects.
  • In preferred embodiments, cooling of a body part alters sympathetic activity, blood flow and catecholamine levels. Preferably, the body part is selected from mouth, nose, ear, pharyngeal area, head, neck, shoulders, arm, hand, finger(s), feet, toe(s), leg, body core or selected areas of any of the above. In some embodiments, more than one selected body part may be cooled simultaneously or sequentially. Preferably, the body part to be cooled is selected from the nose, mouth, pharynx, or a combination thereof.
  • In preferred embodiments, mouth, nose, pharynx or combinations thereof are cooled, and sympathetic activity and catecholamine levels are inhibited. Catecholamine include norepinephrine and epinephrine. Preferably, catecholamine levels are inhibited by at least 10%, preferably at least 20%, more preferably at least 30%, more preferably at least 40%, more preferably at least 50%, more preferably at least 60%, more preferably at least 70% and more preferably at least 80% compared to the level expected for an individual under the same conditions but without treatment to cool selected body part(s).
  • Enhanced cerebral blood flow improves the chances of resuscitation after heart attack, protects heart function after ischemic insult, protects the brain after ischemic insult and has utility in treatment of any condition in which cbf is inadequate including but not limited to stroke, head injury, cardiac arrest, transient ischemic attack, Alzheimer's, and dementia.
  • Embodiments of the invention directed to administration of cooling to a body part such as nose or mouth, provide a big advantage for the patient. For example, the treatment may be administered immediately, by non-trained individuals. The physiological response is obtained very quickly, as soon as the body part is cooled. As it is not necessary to cool the entire body, it is not necessary to use a water blanket or cooling catheter, thus avoiding the disadvantages of these techniques such as the potential for electric shock and freezer bums (water blankets) and avoidance of bleeding, infection, vascular puncture, and deep vein thrombosis (cooling catheters).
  • EXAMPLES Example 1
  • Effect of Cooling on Cerebral Blood Flow
  • Experiments were done with anesthetized live pigs. The brain was exposed so that blood vessels and blood flow could be viewed using an IR probe. Ventricular fibrillation (VF) was electrically induced to stop the heart. After 10 minutes, chest compression and defibrillation were initiated to resuscitate. The nose was cooled at a temperature of 2° C.; cooling was initiated 5 minutes prior to attempted defibrillation. Chest compression and defibrillation were continued for 15 minutes or until return of spontaneous circulation (ROSC). The nose was maintained at a temperature of 2° C. for 1 hour after initiation of CPR.
  • FIG. 1 shows cortical microvasculature assessed using optical coherence tomography (OCT) at baseline showing few vessels (upper left panel). The upper right panel shows blood vessels 5 minutes after initiation of chest compression (post compression, PC) and cooling of the nose. Following restoration of circulation, with a 0.5 degree temperature reduction, vessel caliber and capillary density is increased. The lower panels show 10 and 30 minutes post resuscitation (PR), respectively. Further increase is seen bottom left, at 1 degree temperature reduction. At bottom right, at 4 degree temperature reduction, the vessel density is reduced compared to baseline.
  • FIGS. 2A-D show ultrasound images of the carotid artery in the neck. At baseline (FIG. 2A), vessel internal diameter is 0.33 cm and the flow is 427 ml/min. At 5 minutes post resuscitation (FIG. 2B), the body temperature has dropped by 1° C. Both the internal diameter of the vessel and blood flow have increased (0.48 cm and 560 ml/min respectively). At 10 minutes post resuscitation (FIG. 2C) internal diameter of vessel continues to increase and blood flow remains high at 0.50 cm and 518 ml/min, respectively. Body temperature has now lowered by 1.4° compared to baseline. However, at 30 minutes post resuscitation, upon further cooling to 33° C. (FIG. 2D), the vessel diameter now begins to decrease as does blood flow (0.48 cm and 150, respectively).
  • The data of FIGS. 2A-2D is shown graphically in FIGS. 3 and 4. FIG. 3 plots carotid diameter and brain temperature at different time points before cardiac arrest (baseline) and post-resuscitation (PR).
  • FIG. 4 shows blood flow over the same time course and plots blood flow and brain temperature before cardiac arrest (baseline) and post-resuscitation (PR).
  • As can be seen from FIGS. 3 and 4, increases in carotid diameter (FIG. 3) and blood flow (FIG. 4) are greatest within the first 10 minutes post-resuscitation. during the time period, brain temperature drops only slightly, 1.5° C. or less. As cooling of the mouth continues and brain temperature continues to drop, carotid diameter and blood flow decrease and approach levels of uncooled control.
  • The data has several important implications. First, positive physiological effects are observed after cooling only the nose to 2° C. for a short period of time (5-10 minutes PR). Important physiological effects are increased diameter of carotid artery and augmented cerebral blood flow. Moreover, these effects are accompanied by very slight changes in overall brain temperature (up to 1-1.4° C.). Further decreases in brain temperature (to 5.5° C.) reversed the effect. Cerebral blood flow decreased. We conclude that very small changes in brain temperature can produce dramatic increase in cerebral blood flow. Indeed, changes in brain and/or body temperature may not be necessary at all. By cooling only the nose, increased artery diameter and cerebral blood flow are observed.
  • Example 2
  • Effect of Cooling on Sympathetic Nerve Firing
  • The mechanism by which changes in nasopharyngeal temperature induce changes in cerebral blood flow may be secondary to sympathetic inhibition. We have documented reduction in the catecholamine surge which accompanies cardiac arrest. (FIG. 5).
  • Experiments were performed as described above for Example 1 except that in some cases the nose was cooled and in some cases the mouth was cooled. The control subjects did not receive a cooling treatment. As an indication of sympathetic nerve firing, levels of the catecholamine, norepinephrine, were measured (FIG. 5).
  • At VF15, before commencement of resuscitation, the controls have low levels of norepinephrine and the cooled subjects have virtually no norepinephrine. At 5 and 10 minutes post cardiac arrest, the levels of norepinephrine in the controls spikes up above 200 ng/ml, while the levels in the cooled subjects (both mouth cooling and nasopharyngeal cooling) remain much lower.
  • Cooling of either the mouth or nasopharyngeal area inhibits that catecholamine surge that is observed during cardiac arrest.
  • FIG. 6 shows data in comparison with cutting of the cervical sympathetic nerve. Severing of the cervical sympathetic nerve cuts off norepinephrine release. Experiments were performed as described above. It can be seen from FIG. 6 that by cooling either the mouth or nasopharyngeal area, release of norepinephrine is even less than observed by cutting of the cervical nerve. Cooling of the nose or mouth is a surprisingly effective inhibitor of norepinephrine release, more effective then cutting of the cervical sympathetic nerve.
  • It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims (25)

1. A method of altering sympathetic nerve firing comprising cooling part of the body of a patient in need thereof.
2. The method of claim 1, wherein cooling is to 0.5 to 4° C.
3. The method of claim 1, wherein cooling is to 1-3° C.
4. The method of claim 1, wherein cooling is to about 2° C.
5. The method of claim 1, wherein cooling is continuous or discontinuous.
6. The method of claim 1, wherein cooling is for 1-60 minutes.
7. The method of claim 1, wherein the part of the body is selected from nose, mouth, hands, feet, finger(s), toe(s), neck, shoulders and combinations thereof.
8. The method of claim 7, wherein the part of the body comprises the nose.
9. The method of claim 8, wherein cooling is by a nasopharyngeal device.
10. The method of claim 1, wherein altering sympathetic firing in the patient comprises altering levels of catecholamines.
11. The method of claim 10, wherein the catecholamine is epinephrine, norepinephrine or combination thereof.
12. The method of claim 10, wherein sympathetic nerve firing is inhibited, the catecholamine is norepinephrine and the norepinephrine levels are decreased.
13. The method of claim 1, whereby sympathetic tone is augmented in the part of the body that is cooled.
14. A method of decreasing catecholamine levels comprising cooling a part of the body of a patient in need thereof, in an amount sufficient to decrease levels of one or more catecholamines.
15. The method of claim 14, wherein the body part is cooled to 0.5 to 4° C.
16. The method of claim 14, wherein the body part is cooled to 1-3° C.
17. The method of claim 14, wherein the body part is cooled to about 2° C.
18. The method of claim 14, wherein the levels of catecholamines are decreased by 20-80%.
19. The method of claim 14, wherein the cooling occurs in the nose or mouth.
20. The method of claim 14, wherein the cooling occurs in an artery of the patient.
21. The method of claim 20, wherein the artery is selected from the group consisting of left or right common artery, left or right internal carotid artery, left or right middle carotid artery, anterior cerebral artery, left or right vertebral artery, and basilar artery.
22. The method of claim 19, wherein the cooling is accomplished by a nasopharyngeal device.
23. The method of claim 14, wherein the cooling is transcutaneous or endovascular.
24. The method of claim 14, wherein the cooling is maintained for 1-60 minutes.
25. The method of claim 14, wherein cooling is continuous or discontinuous.
US13/331,977 2008-10-10 2011-12-20 Cooling of localized areas of the body for cerebral blood flow augmentation Abandoned US20120158105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/331,977 US20120158105A1 (en) 2008-10-10 2011-12-20 Cooling of localized areas of the body for cerebral blood flow augmentation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10461908P 2008-10-10 2008-10-10
US12/578,135 US8167923B2 (en) 2008-10-10 2009-10-13 Cooling of localized areas of the body for cerebral blood flow augmentation
US13/331,977 US20120158105A1 (en) 2008-10-10 2011-12-20 Cooling of localized areas of the body for cerebral blood flow augmentation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/578,135 Division US8167923B2 (en) 2008-10-10 2009-10-13 Cooling of localized areas of the body for cerebral blood flow augmentation

Publications (1)

Publication Number Publication Date
US20120158105A1 true US20120158105A1 (en) 2012-06-21

Family

ID=42109282

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/578,135 Active 2030-09-30 US8167923B2 (en) 2008-10-10 2009-10-13 Cooling of localized areas of the body for cerebral blood flow augmentation
US13/331,977 Abandoned US20120158105A1 (en) 2008-10-10 2011-12-20 Cooling of localized areas of the body for cerebral blood flow augmentation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/578,135 Active 2030-09-30 US8167923B2 (en) 2008-10-10 2009-10-13 Cooling of localized areas of the body for cerebral blood flow augmentation

Country Status (1)

Country Link
US (2) US8167923B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103826689B (en) 2011-07-25 2016-04-13 纳鲁萨夫有限公司 For non-invasive system, the apparatus and method of the cooling of selectivity brain
US20130273179A1 (en) 2012-04-16 2013-10-17 Astuce, Inc. System and method for improving outcome of cerebral ischemia
EP3737344A4 (en) 2018-01-08 2021-10-13 Vivonics, Inc. System and method for cooling the brain of a human subject

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719779B2 (en) * 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US20060276552A1 (en) * 2005-05-13 2006-12-07 Denise Barbut Methods and devices for non-invasive cerebral and systemic cooling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942686B1 (en) 2002-11-01 2005-09-13 Coaxia, Inc. Regulation of cerebral blood flow by temperature change-induced vasodilatation
US7189253B2 (en) * 2004-03-16 2007-03-13 Quickcool Ab Cerebral temperature control
WO2008094509A1 (en) * 2007-01-26 2008-08-07 William Cook Europe Aps Apparatus and method for cooling the brain using a liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719779B2 (en) * 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US20060276552A1 (en) * 2005-05-13 2006-12-07 Denise Barbut Methods and devices for non-invasive cerebral and systemic cooling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kawada, T., H. Kitagawa, T. Yamazaki, T. Akiyama, A. Kamiya, K. Uemura, H. Mori, and M. Sugimachi. "Hypothermia Reduces Ischemia- and Stimulation-induced Myocardial Interstitial Norepinephrine and Acetylcholine Releases." Journal of Applied Physiology 102.2 (2006): 622-27. Web. *
Kil, H., Zhang, J., & Piantadosi, C. (1996). Brain Temperature Alters Hydroxyl Radical Production During Cerebral Ischemia/Reperfusion in Rats. Journal of Cerebral Blood Flow and Metabolism, 16(1), 100-106. *

Also Published As

Publication number Publication date
US20100100161A1 (en) 2010-04-22
US8167923B2 (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5124724B2 (en) Local cooling catheter and local cooling device using the same
US20100174278A1 (en) Methods of nasopharyngeal cooling for augmenting coronary perfusion pressure
Schubert Side effects of mild hypothermia
Lazorthes et al. Hypothermia in the treatment of craniocerebral traumatism
Wang et al. Intra-arrest selective brain cooling improves success of resuscitation in a porcine model of prolonged cardiac arrest
Blalock et al. A comparison of the effects of heat and those of cold in the prevention and treatment of shock
Qona’ah et al. Management of shivering in post-spinal anesthesia using warming blankets and warm fluid therapy
US8167923B2 (en) Cooling of localized areas of the body for cerebral blood flow augmentation
EBMEYER et al. Moderate hypothermia for 48 hours after temporary epidural brain compression injury in a canine outcome model
Franchimont et al. Hydrotherapy-mechanisms and indications
Holden et al. Clinically induced hypothermia: why chill your patient?
Lanier et al. The effects of convective cooling and rewarming on systemic and central nervous system physiology in isoflurane-anesthetized dogs
Carli et al. Post‐surgery epidural blockade with local anaesthetics attenuates the catecholamine and thermogenic response to perioperative hypothermia
Jeung et al. Rapidly induced selective cerebral hypothermia using a cold carotid arterial flush during cardiac arrest in a dog model
Oshorov et al. The use of intravascular hypothermia to correct intracranial hypertension in patients with severe traumatic brain injury
Polderman Inducing Hypothermia in the ICU: Practical Aspects and Cooling Methods
Šulla et al. Hypothermia as a potential remedy for canine and feline acute spinal cord injury: a review
Licker et al. Relation between systemic oxygen uptake and tissue oxygen extraction following cardiac surgery
Delacerda Ultrasonic techniques for treatment of plantar warts in athletes
Shepley Fever therapy
Valencia et al. Therapeutic hypothermia after cardiac arrest during craniotomy
Belopavlovic et al. Cardiac arrest during moderate hypothermia for cerebrovascular surgery
Part JamesW. JonesandPiyushMathur
FRIETSCH Controlled Mild Hypothermia
Steiner et al. Complications of rewarming

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION