US20120128903A1 - Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions - Google Patents

Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions Download PDF

Info

Publication number
US20120128903A1
US20120128903A1 US13/358,690 US201213358690A US2012128903A1 US 20120128903 A1 US20120128903 A1 US 20120128903A1 US 201213358690 A US201213358690 A US 201213358690A US 2012128903 A1 US2012128903 A1 US 2012128903A1
Authority
US
United States
Prior art keywords
composition
approximately
container
sterilization
cyanoacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/358,690
Inventor
Carlos R. Morales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemence Medical Inc
Original Assignee
Chemence Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemence Medical Inc filed Critical Chemence Medical Inc
Priority to US13/358,690 priority Critical patent/US20120128903A1/en
Publication of US20120128903A1 publication Critical patent/US20120128903A1/en
Priority to US13/616,947 priority patent/US20130095262A2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/22Testing for sterility conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the invention relates to compositions of cyanoacrylate monomer and polymer adhesive compositions, a process for sterilizing them for application in the medical and veterinary fields, and a method of assaying the sterilization of cyanoacrylate compositions.
  • 2-cyanoacrylate esters As adhesives for bonding tissue in medical or surgical procedures performed upon the human or animal body. 2-cyanoacrylate esters polymerize rapidly, and often instantaneously, upon contact with tissue or body fluid. In these applications, the adhesive composition can be used to close wounds, as well as for covering and protecting surface injuries such as lacerations, abrasions, burns, sores and other open surface wounds.
  • 2-cyanoacrylates must be sterilized. This is generally done in sealed containers to provide sterility, and from a practical perspective, to protect the compositions from moisture and premature polymerization. Previous sterilization methods involved either the use of ionizing radiation, including e-beam and gamma ray irradiation, dry heat at elevated temperatures (160° C.), or chemical sterilization such as with ethylene oxide.
  • an adhesive composition When an adhesive composition is applied to a surface to be closed or protected, it is usually in its monomeric form, and the resultant polymerization produces the desired adhesive bond.
  • the monomeric form of the adhesive has a low viscosity which results in the adhesive spreading into undesired areas. Therefore, it is desirable to increase the viscosity of the composition to prevent this unwanted flow.
  • thickening agents can be added to the monomeric composition.
  • the present invention is directed to a method of sterilizing 2-cyanoacrylate compositions, including heating the composition in a device at a temperature of from about 70° C. to about 140° C. for an effective amount of time.
  • the invention includes sterilized 2-cyanoacrylate ester compositions for use in medicine or surgery, the compositions being disposed in sealed aluminum containers and being sterilized at a temperature of between about 70° C. and about 140° C.
  • the compositions can be disposed in sealed aluminum, tin, stainless steel tubes or pouches or glass containers.
  • the 2-cyanoacrylate compositions are adjusted to an initial viscosity of 400 to 600 centipoises by the addition of polycyanoacrylate thickeners, and are sterilized in a preferred method by heating them at a temperature of no greater than about 110° C. for no more than about 120 minutes.
  • Articles of manufacture are vials or squeezable tubes made of compatible glass, aluminum, or plastic.
  • the invention is directed to a method for assaying the sterilization of cyanoacrylate compositions.
  • the present invention provides a novel method of sterilizing 2-cyanoacrylate ester compositions using a combination of chemical and heating means, and the resulting novel compositions.
  • the combination of monomeric 2-cyanoacrylate, heat and time have a lethal effect on microbials, rendering sterilized compositions when the appropriate sterilization condition is achieved and when the method is applied to 2-cyanoacrylates in sealed containers.
  • cyanoacrylate adhesive composition or “cyanoacrylate adhesive compositions” refers to polymerizable formulations comprising polymerizable cyanoacrylate ester monomers.
  • aldose is intended to refer to both common disaccharides and monosaccharides.
  • 2-cyanoacrylate adhesive compositions are sterilized through an unexpected and heretofore unknown combination of heat and time, sterilizing at temperatures significantly lower than previously thought to be effective.
  • Previous dry heat sterilization methods have required temperatures of at least 160° C. to 180° C. Heating times at these temperatures were from 2 hours at 160° C. to 30 minutes at 180° C.
  • the 2-cyanoacrylate adhesive compositions can be sterilized at temperatures from about 70° C. to about 140° C.
  • the time required to effect sterilization will vary depending on the temperature selected to accomplish the sterilization. At 140° C., sterilization requires approximately 30 minutes. At 70° C., sterilization requires about 600 minutes. Required heating times for intermediate temperatures are reported in Tables 2 and 3.
  • sterilization times for any composition can be readily determined by one skilled in the art by standard test methods without undue experimentation.
  • sterilization of cyanoacrylate compositions can be assayed for the effectiveness of a given temperature and sterilization time.
  • Samples containing formulated n-butyl cyanoacrylate and 2-octyl cyanoacrylate in sealed borosilicate glass and aluminum tubes were inoculated with Bacillus subtilis lyophilized spores at a concentration of 1 ⁇ 10 +6 per ml of formulation.
  • spores can be introduced into the cyanocrylate adhesive compositions prior to sterilization using commercially available biological indicators or spore test strips.
  • bacterial spores on a stainless steel disc bacterial spores on a steel wire
  • bacterial spores on steel coupons bacterial spores on borosilicate paper
  • bacterial spores on woven cotton threads bacterial spores on woven cotton threads.
  • species of spores which may be chosen for use in the commercially available biological indicators are Bacillus subtilis and Geobacillus stearothermophilus .
  • Commercially available biological indicators may be obtained from any commercial supplier, such as Raven Labs. Some inoculated glass vials and tubes samples were kept at room temperature without sterilization as positive controls, while the rest of the samples were sterilized at temperatures ranging from 70 to 140° C. with different time exposures. Samples were sent to a microbiology laboratory for determination of the presence or absence of growth after the sterilization procedure was completed to assay the effectiveness of the process conditions.
  • microorganisms which may be killed by the sterilization process but which show significant resistance to this process.
  • microorganism refers to bacteria, fungi, yeast, protozoa algae, viruses and protozoa. Bacterial spores are very resistant to heat and chemicals; more so than vegetative bacterial cells, therefore the spores are often used to monitor sterilization procedures.
  • a preferred organism for monitoring dry heat sterilization is Bacillus subtilis.
  • the spores represent a resting stage in the life cycle of the Bacillus genus.
  • the resting spore contains a large number of active enzymes which allow the transformation from dormant cell to vegetative cell.
  • the germination process, or the return to the vegetative state has been described as a time-ordered sequence involving activation, triggering, initiation and outgrowth.
  • Activation is reversible and involves an increase in the rate and extent of germination.
  • Triggering is irreversible and is the result of spore contact with the germinant. Initiation involves the loss of heat resistance, release of dipicolinic acid and calcium, loss of refractility and absorbance. Outgrowth results in formation of the vegetative cell.
  • a cyanoacrylate composition test sample comprising at least one sterility test strip, or lyophilized spores is utilized. While reference is made to “spores” as a test microorganism it should be understood that microorganisms other than spore formers may be used in conjunction with the present invention.
  • the spore strips utilized with the present invention are preferably constructed of materials which are inert to the microorganisms and inert to cyanoacrylate monomer. A variety of commercial spore strips is readily available and can be utilized with the present invention.
  • the spore strips can contain more than one type of microorganism.
  • the compositions including the biological indicators are transferred into containers filled with an aqueous aldose solution, shaken, and transferred into a quantity of nutrient medium in an aseptic container. Transferring the samples to an aldose solution serves to emulsify the cyanoacrylate monomer without causing it to polymerize as it would upon exposure to water alone.
  • Aldoses which act to emulsify the cyanoacrylate include without limitation, dextrose, lactose, arabinose, mannose, galactose, rhamnose, fructose, sucrose and glucose. In one embodiment of the invention, the aldose is dextrose.
  • the concentration of the aldose solution may be from about 2% to about 50% on a weight/weight basis. A preferred range for the concentration of the aldose solution is from about 3% to about 15%. A more preferred aldose concentration is from about 5% to about 10% weight/weight.
  • the nutrient medium supports the germination of spores and growth of any viable microorganisms.
  • the nutrient medium contains a protein substrate for the proteases liberated during spore germination and during subsequent microbial growth.
  • the nutrient medium preferably comprises an aqueous solution or suspension of nutrient components (including the protein substrate) needed in order to promote the growth of viable microorganisms that may exist after the sterilization process.
  • a suitable culture medium is a protein-containing microbiological broth such as tryptic soy broth (TSB) and/or TSB with specific protein additives, such as, for example, casein.
  • TSB tryptic soy broth
  • specific protein additives such as, for example, casein.
  • the mixture of microorganisms, cyanoacrylate, aldose and nutrient medium are then sealed within a containing means.
  • the samples are then incubated for a predetermined period of time at from about 28° C. to about 37° C. Any microorganisms not killed during the sterilization process begin to germinate and grow during the incubation period. In a preferred embodiment the microorganisms are incubated for at least about seven days. Thereafter the sample is examined to detect the presence of growth by different methods, such as visual examination of the samples followed by microscope Gram stain examination, addition of an enzymatic indicator such as tetrazolium salts followed by UV spectrophotometric analysis, or direct UV spectrophotometric analysis of incubated samples.
  • a gram stain smear is prepared to look for gram positive rods which would confirm growth.
  • growth can be determined by the addition of enzymatic biological indicator such as tetrazolium salts, wherein bacterial activity is determined by development of color which may be measured quantitatively with an ultraviolet spectrophotometer at 257 nm.
  • enzymatic biological indicator such as tetrazolium salts
  • bacterial activity is determined by development of color which may be measured quantitatively with an ultraviolet spectrophotometer at 257 nm.
  • a sample without enzymatic indicator is analyzed under a spectrophotometer at a wavelength of 480 nm to determine growth.
  • the method of the invention can be applied in principle to any 2-cyanoacrylate ester monomer.
  • the 2-cyanoacrylate is preferably an aliphatic cyanoacrylate ester and preferably an alkyl, cycloalkyl, alkenyl, alkoxyalkyl, fluoroalkyl, fluorocyclic alkyl or fluoroalkoxy 2-cyanoacrylate ester.
  • the alkyl group may contain from 2 to 12 carbon atoms, and is preferably a C 2 to C 8 alkyl ester, and is most preferably a C 4 to C 8 alkyl ester.
  • Suitable 2-cyanoacrylate esters include without limitation, the ethyl, n-propyl, iso-propyl, n-butyl, pentyl, hexyl, cyclohexyl, heptyl, n-octyl, 2-ethylhexyl, 2-methoxyethyl and 2-ethoxyethyl esters. Any of these 2-cyanoacrylate monomers may be used alone, or they may be used in mixtures.
  • the 2-cyanoacrylate monomers of the invention can be prepared by any of the methods known in the art.
  • cyanoacrylates for the instant invention were prepared by reacting cyanoacetate with formaldehyde in the presence of heat and a basic condensation catalyst to give a low molecular weight polymer. A depolymerization step followed under heat and vacuum in the presence of acidic and anionic inhibitors, yielding a crude monomer that could be distilled under vacuum and in the presence of radical and acidic inhibitors. The distilled 2-cyanoacrylate monomers are then formulated with radical and acidic inhibitors depending upon their application and to provide the necessary stability.
  • the 2-cyanoacrylate compositions of the invention may in some embodiments contain a thickening agent to increase the viscosity of the composition.
  • This thickening agent may be a polymer.
  • the thickening agent may be selected from the group consisting of without limitation, poly alkyl-2-cyanoacrylates, poly cycloalkyl-2-cyanoacrylates, poly fluoroalkyl-2-cyanoacrylates, poly fluorocycloalkyl-2-cyanoacrylates, poly alkoxyalkyl-2-cyanoacrylates, poly alkoxycycloalkyl-2-cyanoacrylates, poly fluoroalkoxyalkyl-2-cyanoacrylates, polyalkoxycyclofluoroalkyl-2-cyanoacrylates, poly vinylacetate, poly lactic acid and poly glycolic acid.
  • the polymer is often chosen to be a polymer of the monomer or one of the monomers which comprise the 2-cyanoacrylate composition.
  • the polymer is soluble in the monomer composition at ambient temperature.
  • Preferred polymers include polymers of octyl 2-cyanoacrylate, vinyl acetate lactic acid, or glycolic acid.
  • the preferred weight average molecular weight of the polymers is from about 300,000 to about 2,000,000. More preferably, the polymer molecular weight is from about 500,000 to about 1,600,000.
  • Cyanoacrylate polymers of the invention can be prepared by slow addition of the monomer to a mixer containing 0.1% bicarbonate deionized water. Water is then decanted away, and the polymer is rinsed several times with deionized water and decanted again. Following steps include neutralizing the polymer with 0.1 N HCl, rinsing with deionized water, drying on a vacuum heated oven at temperature of less than 80° C. and grinding the polymer to fine particles.
  • the amount of thickening agent that is added to the monomer composition is dependent upon the molecular weight of the polymer and the desired viscosity for the adhesive composition.
  • the thickening agent typically is added at from about 1% to about 25% by weight of the composition. Preferably it is added at from about 1% to about 10%. More preferably it is added at from about 1% to about 5%.
  • a typical viscosity of the composition is from about 25 to about 3000 centipoise, as measured by a Brookfield viscometer at 25° C. Preferably, the viscosity is between from about 50 to 600 centipoise at 25° C.
  • the specific amount of a given thickening agent to be added can be determined by one of ordinary skill in the art without undue experimentation.
  • the 2-cyanoacrylate compositions may contain one or more acidic inhibitors in the range from 1 to 1,000 ppm.
  • acidic inhibitors include without limitation: sulfur dioxide, nitrogen oxide, boron oxide, phosphoric acid, ortho, meta, or para-phosphoric acid, acetic acid, benzoic acid, cyanoacetic acid, tri-fluoroacetic acid, tribromoacetic acid, trichloroacetic acid, boron trifluoride, hydrogen fluoride, perchloric acid, hydrochloric acid, hydrobromic acid, sulfonic acid, fluorosulfonic acid, chlorosulfonic acid, sulfuric acid, and toluenesulfonic acid.
  • the 2-cyanoacrylate compositions may contain one or more free radical polymerization inhibitors in the range from 0 to 10,000 ppm.
  • radical inhibitors include, without limitation, catechol, hydroquinone, hydroquinone monomethyl ether and hindered phenols such as butylated hydroxyanisol, butylated hydroxytoluene (2,6-di-tert-butyl butylphenol and 4methoxyphenol), 4-ethoxyphenol, 3 methoxyphenol, 2-tert-butyl-4methoxyphenol, and 2,2 methylene-bis-(4-methyl-6-tert-butylphenol).
  • the 2-cyanoacrylate compositions may contain single or mixtures of plasticizers such as tributyl acetyl citrate, dimethyl sebacate, diethyl sebacate, try-ethyl phosphate, tri-(2ethylhexyl)phosphate, tri-cresyl phosphate, glyceryl triacetate, glyceryl tributyrate, dioctyl adipate, isopropyl myristate, butyl stearate, trioctyl trimellitate, and dioctyl glutarate.
  • the plasticizers may be added to the compositions in proportions of less than 50% w/w of the formulation.
  • the 2-cyanoacrylate compositions may contain small amounts of dyes like the derivatives of anthracene and other complex structures.
  • Some of these dyes include, without limitation, 1-hydroxy-4-[4-methylphenylamino]-9,10 anthracenedione (D&C violet No.2), disodium salt of 6-hydroxy-5-[(4-sulfophenyl)axo]-2-naphthalene-sulfonic acid (FD&C Yellow No.6,), 9-(o-carboxyphenyl)-6-hydroxy-2,4,5,7-tetraiodo-3H-xanthen-3-one disodium salt monohydrate (FD&C Red No.3), 2-(1,3dihydro-3-oxo-5-sulfo-2 -indole-2-ylidine)-2,3-dihydro-3-oxo-IH-indole-5-sulfonic acid disodium salt (FD&C Blue No.2), and [phthalocyaninato
  • the sterilized cyanoacrylate adhesive compositions of the invention may be packaged in a container made of any suitable material. Suitable materials must be heat stable and resistant up to the sterilization temperature, must provide an adequate barrier to atmospheric moisture and be compatible with the cyanoacrylate monomer or monomers. Materials meeting these requirements include metals and borosilicate type I glass. Suitable metals can include without limitation aluminum, tin, and stainless steel. Metals can have different forms like pouches and tubes. Glass can be used as vials, breakable tubes or any other shape, and contained inside tubes made out of the same material, or combinations or materials including plastics. Particularly preferred materials are aluminum and type I glass.
  • Preferred aluminum tubes comprise a nozzle which is hermetically sealed by a pierceable membrane of aluminum and are filled at their end remote from the nozzle prior to closure of the open end by tight crimping.
  • the glass vials used in this invention are made out of borosilicate type I glass and sealed with a threaded phenolic cap with a silicone/Teflon septum or sealed with an aluminum crimp cap and a silicone/Teflon septum.
  • preferred embodiments of the invention reside in a substantially hermetically sealed aluminum container, e.g. an aluminum tube, containing a sterile 2-cyanoacrylate composition or type I glass vials hermetically sealed with a phenolic threaded cap and a silicone/Teflon septum.
  • the method was tested by first performing the USP bacteriostasis and fungi stasis test on glass vials and aluminum tubes.
  • the sterility test was performed by obtaining spores of Bacillus subtilis var. niger suspended in irrigation water at a concentration of 2.3 ⁇ 10 +8 /ml. Aliquots of 0.48 ml of these spores were placed in glass serum bottles, lyophilized and then reconstituted with 50 ml of n-butyl or 2-octylcyanoacrylate compositions to obtain a volume of 50 ml of inoculated spore solution with a concentration of 2 ⁇ 10 +6 /ml.
  • cyanoacrylate spore solutions were used to fill the tubes and vials for the sterilization trials at different temperatures and time and for the non-sterilized (standard biological indicators) control vials and tubes.
  • Each tube and vial was filled with a volume of 0.5 to 0.6 ml of a cyanoacrylate composition that rendered a spore concentration of 2 ⁇ 10 +6 /ml.
  • Non-sterilized biological indicators and sterilized spores inoculated samples at different temperatures and time were transferred to a 5% dextrose USP solution, shaken and transferred to soy casein digested broth (SCDB) and incubated at 35-37° C. for at least seven days.
  • SCDB soy casein digested broth
  • a vial of lyophilized spores with no cyanoacrylate was tested for population verification.
  • the vial was transferred to sterile purified water and vortexed for 10 minutes.
  • Serial dilutions of 10 +4 , 10 +5 , and 10 +6 were plated in duplicate using soy casein digested broth (SCDB) and incubated for 48 hours at 35-37° C.
  • SCDB soy casein digested broth
  • the 10 +6 dilution yielded duplicate plates in the countable range.
  • the final calculations showed there were 6.1 ⁇ 10 +6 CFU/ml, or 3.1 ⁇ 10 +7 CFU/vial.
  • 2-OCA polymer was made by adding drop by drop 30 grams of 2-OCA monomer to a blender containing 1000 ml of 0.1% sodium bicarbonate deionized water while swirling. Bicarbonate water with the polymer was vacuum filtered on a Kitasato with a Fisherbrand #Q5 quantitative filter paper, rinsed five times with 500 ml aliquots of deionized water and decanted. The polymer was neutralized with 500 ml of 0.1 N hydrochloric acid. The neutralized polymer was rinsed with three aliquots of 500 ml, decanted, dried in a vacuum oven at 80° C., and after drying was finely ground with a mixer.
  • the sample of 2-OCA containing polymer was made by mixing 2-octyl cyanoacrylate (stabilized with 100 ppm of SO 2 , 1000 ppm of butylated hydroxyanisole) with 3.5% of 2-OCA polymer.
  • the polymer was dissolved in the formulated 2-OCA by heating and mixing in a round glass flask equipped with a paddle shaft and mixer at a temperature no higher than 80° C. and obtaining a viscosity of 567 cp (measured with a Brookfield DV-III at 25° C.).
  • the composition was inoculated with lyophilized Bacillus subtilis spores to produce a minimum concentration of 1 ⁇ 10 +6 which were filled in aluminum tubes and glass type I glass threaded vials. Tubes were sealed by crimping with a Kentex automatic tubes filler and sealer. The glass vials were filled with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass and tube samples were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated and sealed tubes and vials were exposed to the experimental temperatures and time stipulated in the sterilization testing protocol conditions.
  • n-butyl cyanoacrylate with a viscosity of 2.8 cp (measured with a Brookfield DV-II at 25° C.) containing 100 ppm of SO 2 and 1000 ppm of butylated hydroxyanisole (BHA) was prepared for this example. Then, the composition was inoculated with biological indicator standards such as borosilicate spore discs, cotton threads and spore wires with a spore concentration of 1 ⁇ 10 +6 Geobacillus stearothermophilus .
  • biological indicator standards such as borosilicate spore discs, cotton threads and spore wires with a spore concentration of 1 ⁇ 10 +6 Geobacillus stearothermophilus .
  • the spore inoculated composition was filled in type I glass threaded vials with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass vials were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated sealed vials were exposed to the experimental temperatures and times stipulated in the sterilization testing protocol conditions.
  • n-butyl cyanoacrylate with a viscosity of 2.8 cp (measured with a Brookfield DV-II at 25° C.) containing 100 ppm of SO 2 and 1000 ppm of butylated hydroxyanisole (BHA) was prepared for this example.
  • the composition was inoculated with biological indicator standards cotton threads with a spore concentration of 1 ⁇ 10 +6 Bacillus subtilis .
  • the spore inoculated composition was filled in type I glass threaded vials with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass vials were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated sealed vials were exposed to the experimental temperatures and times stipulated in the sterilization testing protocol conditions.

Abstract

Adhesive 2-cyanoacrylate compositions are adjusted to a preferred initial viscosity of 400 to 600 centipoises by the addition of polycyanoacrylate thickeners, and are sterilized in a preferred method by heating them at a temperature of no greater than about 110° C. for no more than about 120 minutes. Articles of manufacture are vials or squeezable tubes made of compatible glass, aluminum, or plastic.

Description

    PRIORITY CLAIM
  • This U.S. application for utility patent is a divisional of U.S. patent application Ser. No. 10/944,635, filed Sep. 17, 2004.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to compositions of cyanoacrylate monomer and polymer adhesive compositions, a process for sterilizing them for application in the medical and veterinary fields, and a method of assaying the sterilization of cyanoacrylate compositions.
  • 2. Background
  • It is known to use 2-cyanoacrylate esters as adhesives for bonding tissue in medical or surgical procedures performed upon the human or animal body. 2-cyanoacrylate esters polymerize rapidly, and often instantaneously, upon contact with tissue or body fluid. In these applications, the adhesive composition can be used to close wounds, as well as for covering and protecting surface injuries such as lacerations, abrasions, burns, sores and other open surface wounds. To be used in medical and veterinary fields, 2-cyanoacrylates must be sterilized. This is generally done in sealed containers to provide sterility, and from a practical perspective, to protect the compositions from moisture and premature polymerization. Previous sterilization methods involved either the use of ionizing radiation, including e-beam and gamma ray irradiation, dry heat at elevated temperatures (160° C.), or chemical sterilization such as with ethylene oxide.
  • When an adhesive composition is applied to a surface to be closed or protected, it is usually in its monomeric form, and the resultant polymerization produces the desired adhesive bond. However, at ordinary temperatures, the monomeric form of the adhesive has a low viscosity which results in the adhesive spreading into undesired areas. Therefore, it is desirable to increase the viscosity of the composition to prevent this unwanted flow. In order to achieve an increased viscosity, thickening agents can be added to the monomeric composition.
  • The previous methods of sterilization are undesirable in that the high temperatures required for the previous dry heat sterilization processes or irradiation could cause premature polymerization of the monomers. In addition, many polymers that could be used as thickeners underwent degradation resulting in loss of viscosity when exposed to typical dry heat conditions of 160° C. This significantly limits the formulators ability to formulate adhesive compositions which have the desirable stability and flow characteristics, and which can be sterilized.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to a method of sterilizing 2-cyanoacrylate compositions, including heating the composition in a device at a temperature of from about 70° C. to about 140° C. for an effective amount of time. In another aspect, the invention includes sterilized 2-cyanoacrylate ester compositions for use in medicine or surgery, the compositions being disposed in sealed aluminum containers and being sterilized at a temperature of between about 70° C. and about 140° C. The compositions can be disposed in sealed aluminum, tin, stainless steel tubes or pouches or glass containers. Preferably, the 2-cyanoacrylate compositions are adjusted to an initial viscosity of 400 to 600 centipoises by the addition of polycyanoacrylate thickeners, and are sterilized in a preferred method by heating them at a temperature of no greater than about 110° C. for no more than about 120 minutes. Articles of manufacture are vials or squeezable tubes made of compatible glass, aluminum, or plastic.
  • In yet another aspect, the invention is directed to a method for assaying the sterilization of cyanoacrylate compositions.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As embodied and described herein, the present invention provides a novel method of sterilizing 2-cyanoacrylate ester compositions using a combination of chemical and heating means, and the resulting novel compositions. The combination of monomeric 2-cyanoacrylate, heat and time have a lethal effect on microbials, rendering sterilized compositions when the appropriate sterilization condition is achieved and when the method is applied to 2-cyanoacrylates in sealed containers.
  • As used herein, the following terms have the following meanings:
  • The term “cyanoacrylate adhesive composition” or “cyanoacrylate adhesive compositions” refers to polymerizable formulations comprising polymerizable cyanoacrylate ester monomers. The term aldose is intended to refer to both common disaccharides and monosaccharides.
  • In the method of the invention, 2-cyanoacrylate adhesive compositions are sterilized through an unexpected and heretofore unknown combination of heat and time, sterilizing at temperatures significantly lower than previously thought to be effective. Previous dry heat sterilization methods have required temperatures of at least 160° C. to 180° C. Heating times at these temperatures were from 2 hours at 160° C. to 30 minutes at 180° C. Under the present invention, the 2-cyanoacrylate adhesive compositions can be sterilized at temperatures from about 70° C. to about 140° C. As would be expected, the time required to effect sterilization will vary depending on the temperature selected to accomplish the sterilization. At 140° C., sterilization requires approximately 30 minutes. At 70° C., sterilization requires about 600 minutes. Required heating times for intermediate temperatures are reported in Tables 2 and 3. Ultimately sterilization times for any composition can be readily determined by one skilled in the art by standard test methods without undue experimentation.
  • Typical sterilization times are listed in Table 1.
  • TABLE #1
    sterilization heating times
     70° C. 600 minutes
     80° C. 480 minutes
     90° C. 300 minutes
    100° C. 120 minutes
    110° C.  90 minutes
    120° C.  60 minutes
    130° C.  60 minutes
    140° C.  30 minutes
  • According to the assay method of the invention, sterilization of cyanoacrylate compositions can be assayed for the effectiveness of a given temperature and sterilization time. Samples containing formulated n-butyl cyanoacrylate and 2-octyl cyanoacrylate in sealed borosilicate glass and aluminum tubes were inoculated with Bacillus subtilis lyophilized spores at a concentration of 1×10+6 per ml of formulation. In other embodiments, spores can be introduced into the cyanocrylate adhesive compositions prior to sterilization using commercially available biological indicators or spore test strips. Among the commercially available biological indicators which may be used are: bacterial spores on a stainless steel disc, bacterial spores on a steel wire, bacterial spores on steel coupons, bacterial spores on borosilicate paper and bacterial spores on woven cotton threads. Among the species of spores which may be chosen for use in the commercially available biological indicators are Bacillus subtilis and Geobacillus stearothermophilus. Commercially available biological indicators may be obtained from any commercial supplier, such as Raven Labs. Some inoculated glass vials and tubes samples were kept at room temperature without sterilization as positive controls, while the rest of the samples were sterilized at temperatures ranging from 70 to 140° C. with different time exposures. Samples were sent to a microbiology laboratory for determination of the presence or absence of growth after the sterilization procedure was completed to assay the effectiveness of the process conditions.
  • In accordance with the present invention it is preferred to utilize microorganisms which may be killed by the sterilization process but which show significant resistance to this process. The term microorganism refers to bacteria, fungi, yeast, protozoa algae, viruses and protozoa. Bacterial spores are very resistant to heat and chemicals; more so than vegetative bacterial cells, therefore the spores are often used to monitor sterilization procedures. A preferred organism for monitoring dry heat sterilization is Bacillus subtilis.
  • The spores represent a resting stage in the life cycle of the Bacillus genus. The resting spore contains a large number of active enzymes which allow the transformation from dormant cell to vegetative cell. The germination process, or the return to the vegetative state, has been described as a time-ordered sequence involving activation, triggering, initiation and outgrowth. Activation is reversible and involves an increase in the rate and extent of germination. Triggering is irreversible and is the result of spore contact with the germinant. Initiation involves the loss of heat resistance, release of dipicolinic acid and calcium, loss of refractility and absorbance. Outgrowth results in formation of the vegetative cell.
  • In accordance with the present invention a cyanoacrylate composition test sample comprising at least one sterility test strip, or lyophilized spores is utilized. While reference is made to “spores” as a test microorganism it should be understood that microorganisms other than spore formers may be used in conjunction with the present invention. The spore strips utilized with the present invention are preferably constructed of materials which are inert to the microorganisms and inert to cyanoacrylate monomer. A variety of commercial spore strips is readily available and can be utilized with the present invention. The spore strips can contain more than one type of microorganism.
  • To assay the sterilized samples and controls, the compositions including the biological indicators are transferred into containers filled with an aqueous aldose solution, shaken, and transferred into a quantity of nutrient medium in an aseptic container. Transferring the samples to an aldose solution serves to emulsify the cyanoacrylate monomer without causing it to polymerize as it would upon exposure to water alone. Aldoses which act to emulsify the cyanoacrylate include without limitation, dextrose, lactose, arabinose, mannose, galactose, rhamnose, fructose, sucrose and glucose. In one embodiment of the invention, the aldose is dextrose. The concentration of the aldose solution may be from about 2% to about 50% on a weight/weight basis. A preferred range for the concentration of the aldose solution is from about 3% to about 15%. A more preferred aldose concentration is from about 5% to about 10% weight/weight. The nutrient medium supports the germination of spores and growth of any viable microorganisms. The nutrient medium contains a protein substrate for the proteases liberated during spore germination and during subsequent microbial growth. The nutrient medium preferably comprises an aqueous solution or suspension of nutrient components (including the protein substrate) needed in order to promote the growth of viable microorganisms that may exist after the sterilization process. One example of a suitable culture medium is a protein-containing microbiological broth such as tryptic soy broth (TSB) and/or TSB with specific protein additives, such as, for example, casein. Formulations for culture media are well-known to those in the art.
  • The mixture of microorganisms, cyanoacrylate, aldose and nutrient medium are then sealed within a containing means. The samples are then incubated for a predetermined period of time at from about 28° C. to about 37° C. Any microorganisms not killed during the sterilization process begin to germinate and grow during the incubation period. In a preferred embodiment the microorganisms are incubated for at least about seven days. Thereafter the sample is examined to detect the presence of growth by different methods, such as visual examination of the samples followed by microscope Gram stain examination, addition of an enzymatic indicator such as tetrazolium salts followed by UV spectrophotometric analysis, or direct UV spectrophotometric analysis of incubated samples. In one embodiment, after visual examination a gram stain smear is prepared to look for gram positive rods which would confirm growth. In another embodiment, growth can be determined by the addition of enzymatic biological indicator such as tetrazolium salts, wherein bacterial activity is determined by development of color which may be measured quantitatively with an ultraviolet spectrophotometer at 257 nm. In yet another embodiment, a sample without enzymatic indicator is analyzed under a spectrophotometer at a wavelength of 480 nm to determine growth.
  • The method of the invention can be applied in principle to any 2-cyanoacrylate ester monomer. The 2-cyanoacrylate is preferably an aliphatic cyanoacrylate ester and preferably an alkyl, cycloalkyl, alkenyl, alkoxyalkyl, fluoroalkyl, fluorocyclic alkyl or fluoroalkoxy 2-cyanoacrylate ester. The alkyl group may contain from 2 to 12 carbon atoms, and is preferably a C2 to C8 alkyl ester, and is most preferably a C4 to C8 alkyl ester. Suitable 2-cyanoacrylate esters include without limitation, the ethyl, n-propyl, iso-propyl, n-butyl, pentyl, hexyl, cyclohexyl, heptyl, n-octyl, 2-ethylhexyl, 2-methoxyethyl and 2-ethoxyethyl esters. Any of these 2-cyanoacrylate monomers may be used alone, or they may be used in mixtures.
  • The 2-cyanoacrylate monomers of the invention can be prepared by any of the methods known in the art. U.S. Pat. Nos. 2,721,858, 3,254,111 and 4,364,876, each of which is hereby incorporated in its entirety by reference, disclose methods for preparing 2-cyanoacrylates. For example, cyanoacrylates for the instant invention were prepared by reacting cyanoacetate with formaldehyde in the presence of heat and a basic condensation catalyst to give a low molecular weight polymer. A depolymerization step followed under heat and vacuum in the presence of acidic and anionic inhibitors, yielding a crude monomer that could be distilled under vacuum and in the presence of radical and acidic inhibitors. The distilled 2-cyanoacrylate monomers are then formulated with radical and acidic inhibitors depending upon their application and to provide the necessary stability.
  • The 2-cyanoacrylate compositions of the invention may in some embodiments contain a thickening agent to increase the viscosity of the composition. This thickening agent may be a polymer. The thickening agent may be selected from the group consisting of without limitation, poly alkyl-2-cyanoacrylates, poly cycloalkyl-2-cyanoacrylates, poly fluoroalkyl-2-cyanoacrylates, poly fluorocycloalkyl-2-cyanoacrylates, poly alkoxyalkyl-2-cyanoacrylates, poly alkoxycycloalkyl-2-cyanoacrylates, poly fluoroalkoxyalkyl-2-cyanoacrylates, polyalkoxycyclofluoroalkyl-2-cyanoacrylates, poly vinylacetate, poly lactic acid and poly glycolic acid. In order to obtain optimum solubility of the polymer in the monomer, the polymer is often chosen to be a polymer of the monomer or one of the monomers which comprise the 2-cyanoacrylate composition. Preferably, the polymer is soluble in the monomer composition at ambient temperature. Preferred polymers include polymers of octyl 2-cyanoacrylate, vinyl acetate lactic acid, or glycolic acid. The preferred weight average molecular weight of the polymers is from about 300,000 to about 2,000,000. More preferably, the polymer molecular weight is from about 500,000 to about 1,600,000.
  • Cyanoacrylate polymers of the invention can be prepared by slow addition of the monomer to a mixer containing 0.1% bicarbonate deionized water. Water is then decanted away, and the polymer is rinsed several times with deionized water and decanted again. Following steps include neutralizing the polymer with 0.1 N HCl, rinsing with deionized water, drying on a vacuum heated oven at temperature of less than 80° C. and grinding the polymer to fine particles.
  • The amount of thickening agent that is added to the monomer composition is dependent upon the molecular weight of the polymer and the desired viscosity for the adhesive composition. The thickening agent typically is added at from about 1% to about 25% by weight of the composition. Preferably it is added at from about 1% to about 10%. More preferably it is added at from about 1% to about 5%. A typical viscosity of the composition is from about 25 to about 3000 centipoise, as measured by a Brookfield viscometer at 25° C. Preferably, the viscosity is between from about 50 to 600 centipoise at 25° C. The specific amount of a given thickening agent to be added can be determined by one of ordinary skill in the art without undue experimentation.
  • The 2-cyanoacrylate compositions may contain one or more acidic inhibitors in the range from 1 to 1,000 ppm. Such acidic inhibitors include without limitation: sulfur dioxide, nitrogen oxide, boron oxide, phosphoric acid, ortho, meta, or para-phosphoric acid, acetic acid, benzoic acid, cyanoacetic acid, tri-fluoroacetic acid, tribromoacetic acid, trichloroacetic acid, boron trifluoride, hydrogen fluoride, perchloric acid, hydrochloric acid, hydrobromic acid, sulfonic acid, fluorosulfonic acid, chlorosulfonic acid, sulfuric acid, and toluenesulfonic acid.
  • The 2-cyanoacrylate compositions may contain one or more free radical polymerization inhibitors in the range from 0 to 10,000 ppm. Examples such radical inhibitors include, without limitation, catechol, hydroquinone, hydroquinone monomethyl ether and hindered phenols such as butylated hydroxyanisol, butylated hydroxytoluene (2,6-di-tert-butyl butylphenol and 4methoxyphenol), 4-ethoxyphenol, 3 methoxyphenol, 2-tert-butyl-4methoxyphenol, and 2,2 methylene-bis-(4-methyl-6-tert-butylphenol).
  • The 2-cyanoacrylate compositions may contain single or mixtures of plasticizers such as tributyl acetyl citrate, dimethyl sebacate, diethyl sebacate, try-ethyl phosphate, tri-(2ethylhexyl)phosphate, tri-cresyl phosphate, glyceryl triacetate, glyceryl tributyrate, dioctyl adipate, isopropyl myristate, butyl stearate, trioctyl trimellitate, and dioctyl glutarate. The plasticizers may be added to the compositions in proportions of less than 50% w/w of the formulation.
  • The 2-cyanoacrylate compositions may contain small amounts of dyes like the derivatives of anthracene and other complex structures. Some of these dyes include, without limitation, 1-hydroxy-4-[4-methylphenylamino]-9,10 anthracenedione (D&C violet No.2), disodium salt of 6-hydroxy-5-[(4-sulfophenyl)axo]-2-naphthalene-sulfonic acid (FD&C Yellow No.6,), 9-(o-carboxyphenyl)-6-hydroxy-2,4,5,7-tetraiodo-3H-xanthen-3-one disodium salt monohydrate (FD&C Red No.3), 2-(1,3dihydro-3-oxo-5-sulfo-2 -indole-2-ylidine)-2,3-dihydro-3-oxo-IH-indole-5-sulfonic acid disodium salt (FD&C Blue No.2), and [phthalocyaninato (2)] copper added in proportions of less than 50,000 ppm.
  • The sterilized cyanoacrylate adhesive compositions of the invention may be packaged in a container made of any suitable material. Suitable materials must be heat stable and resistant up to the sterilization temperature, must provide an adequate barrier to atmospheric moisture and be compatible with the cyanoacrylate monomer or monomers. Materials meeting these requirements include metals and borosilicate type I glass. Suitable metals can include without limitation aluminum, tin, and stainless steel. Metals can have different forms like pouches and tubes. Glass can be used as vials, breakable tubes or any other shape, and contained inside tubes made out of the same material, or combinations or materials including plastics. Particularly preferred materials are aluminum and type I glass. Preferred aluminum tubes comprise a nozzle which is hermetically sealed by a pierceable membrane of aluminum and are filled at their end remote from the nozzle prior to closure of the open end by tight crimping. The glass vials used in this invention, are made out of borosilicate type I glass and sealed with a threaded phenolic cap with a silicone/Teflon septum or sealed with an aluminum crimp cap and a silicone/Teflon septum. In the result, therefore, preferred embodiments of the invention reside in a substantially hermetically sealed aluminum container, e.g. an aluminum tube, containing a sterile 2-cyanoacrylate composition or type I glass vials hermetically sealed with a phenolic threaded cap and a silicone/Teflon septum.
  • EXAMPLES Example 1 Sample Testing: (Sterility Test Method for All Samples)
  • The method was tested by first performing the USP bacteriostasis and fungi stasis test on glass vials and aluminum tubes. The sterility test was performed by obtaining spores of Bacillus subtilis var. niger suspended in irrigation water at a concentration of 2.3×10+8/ml. Aliquots of 0.48 ml of these spores were placed in glass serum bottles, lyophilized and then reconstituted with 50 ml of n-butyl or 2-octylcyanoacrylate compositions to obtain a volume of 50 ml of inoculated spore solution with a concentration of 2×10+6/ml. These cyanoacrylate spore solutions were used to fill the tubes and vials for the sterilization trials at different temperatures and time and for the non-sterilized (standard biological indicators) control vials and tubes. Each tube and vial was filled with a volume of 0.5 to 0.6 ml of a cyanoacrylate composition that rendered a spore concentration of 2×10+6/ml. Non-sterilized biological indicators and sterilized spores inoculated samples at different temperatures and time were transferred to a 5% dextrose USP solution, shaken and transferred to soy casein digested broth (SCDB) and incubated at 35-37° C. for at least seven days. A vial of lyophilized spores with no cyanoacrylate was tested for population verification. The vial was transferred to sterile purified water and vortexed for 10 minutes. Serial dilutions of 10+4, 10+5, and 10+6 were plated in duplicate using soy casein digested broth (SCDB) and incubated for 48 hours at 35-37° C. The 10+6 dilution yielded duplicate plates in the countable range. The final calculations showed there were 6.1×10+6 CFU/ml, or 3.1×10+7 CFU/vial.
  • Polymer Preparation: (Polymer Method for Samples Containing Polymer)
  • 2-OCA polymer was made by adding drop by drop 30 grams of 2-OCA monomer to a blender containing 1000 ml of 0.1% sodium bicarbonate deionized water while swirling. Bicarbonate water with the polymer was vacuum filtered on a Kitasato with a Fisherbrand #Q5 quantitative filter paper, rinsed five times with 500 ml aliquots of deionized water and decanted. The polymer was neutralized with 500 ml of 0.1 N hydrochloric acid. The neutralized polymer was rinsed with three aliquots of 500 ml, decanted, dried in a vacuum oven at 80° C., and after drying was finely ground with a mixer.
  • Sample Composition Preparation:
  • The sample of 2-OCA containing polymer was made by mixing 2-octyl cyanoacrylate (stabilized with 100 ppm of SO2, 1000 ppm of butylated hydroxyanisole) with 3.5% of 2-OCA polymer. The polymer was dissolved in the formulated 2-OCA by heating and mixing in a round glass flask equipped with a paddle shaft and mixer at a temperature no higher than 80° C. and obtaining a viscosity of 567 cp (measured with a Brookfield DV-III at 25° C.). Then, the composition was inoculated with lyophilized Bacillus subtilis spores to produce a minimum concentration of 1×10+6 which were filled in aluminum tubes and glass type I glass threaded vials. Tubes were sealed by crimping with a Kentex automatic tubes filler and sealer. The glass vials were filled with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass and tube samples were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated and sealed tubes and vials were exposed to the experimental temperatures and time stipulated in the sterilization testing protocol conditions.
  • Tables #2-3 shows example results.
  • TABLE #2
    2-OCA sterilization example packed in glass vials with pre-sterilization viscosity of 567 cp
    Sterilization Type of Incubation Number Number of
    Sterilization time Media temperature samples days of Number of Viscosity @
    ° C. minutes 400 ml ° C. tested incubated positives 25° C. sterile
    90 240 SCDB 30-35 3 7 1 566
    100 120 SCDB 30-35 3 7 0 569
    100 180 SCDB 30-35 3 7 0 562
    110 60 SCDB 30-35 3 7 0 526
    110 120 SCDB 30-35 3 7 0 452
    120 60 SCDB 30-35 3 7 0 418
    120 90 SCDB 30-35 3 7 0 N/A
    130 60 SCDB 30-35 3 7 0 343
    130 120 SCDB 30-35 3 7 0 N/A
    140 30 SCDB 30-35 3 7 0 110
    140 45 SCDB 30-35 3 7 0 N/A

    Table #2 above shows minimum sterilization temperatures, incubation temperature, incubation time and the results obtained for samples of Bacillus subtilis spores inoculated 2-OCA containing 3.5% 2-OCA polymer (567 cp), 100 ppm SO2 and 1000 ppm BHA.
  • TABLE #3
    2-OCA sterilization example packed in aluminum tubes with pre-sterilization viscosity of 567 cp
    Sterilization Type of Incubation Number Number of
    Sterilization time Media temperature samples days of Number of Viscosity @
    ° C. minutes 400 ml ° C. tested incubated positives 25° C. sterile
    90 240 SCDB 30-35 3 7 2 565
    100 120 SCDB 30-35 3 7 0 566
    100 180 SCDB 30-35 3 7 0 570
    110 60 SCDB 30-35 3 7 0 526
    110 120 SCDB 30-35 3 7 0 435
    120 60 SCDB 30-35 3 7 0 405
    120 90 SCDB 30-35 3 7 0 N/A
    130 60 SCDB 30-35 3 7 0 351
    130 120 SCDB 30-35 3 7 0 N/A
    140 30 SCDB 30-35 3 7 0 102
    140 45 SCDB 30-35 3 7 0 N/A

    Table #3 above shows minimum sterilization temperatures, incubation temperature, incubation time and the results obtained for samples of Bacillus subtilis spores inoculated 2-OCA containing 3.5% 2-OCA polymer (567 cp), 100 ppm SO2 and 1000 ppm BHA. Note the sharp drop in the viscosities of the compositions tested and shown in Tables 2 and 3 as temperature passes 110° C. The average viscosity drop from the base viscosity (567 cp) in the last column in each table going from row 4 to row 5 is 14.45%.
  • Example II Sample Composition Preparation: Sample IIA:
  • A sample of n-butyl cyanoacrylate (n-BCA) with a viscosity of 2.8 cp (measured with a Brookfield DV-II at 25° C.) containing 100 ppm of SO2 and 1000 ppm of butylated hydroxyanisole (BHA) was prepared for this example. Then, the composition was inoculated with biological indicator standards such as borosilicate spore discs, cotton threads and spore wires with a spore concentration of 1×10+6 Geobacillus stearothermophilus. The spore inoculated composition was filled in type I glass threaded vials with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass vials were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated sealed vials were exposed to the experimental temperatures and times stipulated in the sterilization testing protocol conditions.
  • Table #4 shows example results.
  • TABLE #4
    n-BCA monomer sterilization example in glass vials with pre-sterilization viscosity of 2.8 cp
    Sterilization Type of Incubation Number Number of
    Sterilization time Media temperature samples days of Number of Viscosity @
    100° C. minutes 400 ml ° C. tested incubated positives 25° C. sterile
    Borosilicate 240 SCDB 55-60 3 7 0 2.9
    disc
    Cotton 240 SCDB 55-60 3 7 0 2.8
    threads
    SS wires 240 SCDB 55-60 3 7 0 2.8
    Positive NO SCDB 55-60 3 2 3 2.8
    control
    borosilicate
    disc
    Positive NO SCDB 55-60 3 2 3 2.9
    Control
    cotton
    threads
    SS wires NO SCDB 55-60 3 2 3 2.8

    Table #4 above shows sterilization temperatures, incubation temperature, incubation time and the results obtained for samples of Geobacillus stearothermophilus spores inoculated n-BCA containing, 100 ppm SO2 and 1000 ppm BHA.
  • Sample IIB:
  • A sample of n-butyl cyanoacrylate (n-BCA) with a viscosity of 2.8 cp (measured with a Brookfield DV-II at 25° C.) containing 100 ppm of SO2 and 1000 ppm of butylated hydroxyanisole (BHA) was prepared for this example. Then, the composition was inoculated with biological indicator standards cotton threads with a spore concentration of 1×10+6 Bacillus subtilis. The spore inoculated composition was filled in type I glass threaded vials with an Eppendorf automatic pipette and sealed with threaded phenol caps and silicone/Teflon septa. Some inoculated glass vials were not sterilized and were used as positive standard biological indicators to indicate livable spores. The rest of the inoculated sealed vials were exposed to the experimental temperatures and times stipulated in the sterilization testing protocol conditions.
  • Tables #5 shows example results.
  • TABLE #5
    n-BCA monomer sterilization example in glass vials with pre-sterilization viscosity of 2.8 cp
    Sterilization Type of Incubation Number Number of
    Sterilization time Media temperature samples days of Number of Viscosity @
    100° C. minutes 400 ml ° C. tested incubated positives 25° C. sterile
    Cotton 240 SCDB 55-60 3 7 1 2.8
    threads
    Positive NO SCDB 55-60 3 2 3 2.8
    Control
    cotton
    threads

    Table #5 above shows sterilization temperatures, incubation temperature, incubation time and the results obtained for samples of Bacillus subtilis spores inoculated n-BCA containing 100 ppm SO2 and 1000 ppm BHA.

Claims (17)

1. A cyanoacrylate adhesive composition, comprising:
at least one 2-cyanoacrylate monomer; and
at least one polymeric thickener homologous to at least one of the monomers in an amount establishing an initial viscosity that will not increase when the composition is sterilized at a temperature no greater than approximately 110° C. for a period of time sufficient to sterilize the composition.
2. The composition of claim 1, in which:
said initial viscosity is in the range of about 400 to about 600 centipoises.
3. The composition of claim 1, in which:
said period of time is no greater than about 120 minutes.
4. A method of sterilization of a composition of claim 1, comprising the steps of:
(a) placing the composition in a container;
(b) sealing the container; and
(c) heating the composition in the container at a temperature of no greater than approximately 110° C. for a period of time sufficient to sterilize the composition.
5. The method of claim 4, in which:
said period of time is no greater than about 120 minutes.
6. The method of claim 4, in which:
said container is comprised of a material taken from the list of:
(a) type I glass;
(b) aluminum; and
(c) plastic.
7. A method of sterilization of a 2-cyanoacrylate adhesive composition comprising the steps of:
(a) placing in a container comprised of type I glass at least one 2-cyanoacrylate monomer with at least one polymeric thickener homologous to at least one of the monomers, establishing an initial viscosity that will not increase when the composition is sterilized at a temperature no greater than approximately 110 ° C.;
(b) sealing the container; and
(c) heating the composition in the container at a temperature of no greater than approximately 110 ° C. for a period of time sufficient to sterilize the composition.
8. The method of claim 7, further comprising, between said steps (a) and (b), the additional steps of:
(a)(1) dissolving approximately 100 to 1000 ppm by weight of SO2 and approximately 100 to 10,000 ppm by weight of butylated hydroxyanisole (BHA) in the composition; and
(a)(2) dissolving up to approximately 50% by weight of plasticizer in the resulting liquid.
9. The method of claim 8, in which:
said initial viscosity is in the range of about 400 to about 600 centipoises.
10. A method of sterilization of a 2-cyanoacrylate adhesive composition comprising the steps of:
(a) placing in a container comprised of aluminum at least one 2-cyanoacrylate monomer with at least one polymeric thickener homologous to at least one of the monomers, establishing an initial viscosity that will not increase when the composition is sterilized at a temperature no greater than approximately 110 ° C.;
(b) sealing the container; and
(c) heating the composition in the container at a temperature of no greater than approximately 110 ° C. for a period of time sufficient to sterilize the composition.
11. The method of claim 10, further comprising, between said steps (a) and (b), the additional steps of:
(a)(1) dissolving approximately 100 to 1000 ppm by weight of SO2 and approximately 100 to 10,000 ppm by weight of butylated hydroxyanisole (BHA) in the composition; and
(a)(2) dissolving up to approximately 50% by weight of plasticizer in the resulting liquid.
12. The method of claim 11, in which:
said initial viscosity is in the range of about 400 to about 600 centipoises.
13. A method of sterilization of a 2-cyanoacrylate adhesive composition comprising the steps of:
(a) placing in a container comprised of plastic at least one 2-cyanoacrylate monomer with at least one polymeric thickener homologous to at least one of the monomers, establishing an initial viscosity that will not increase when the composition is sterilized at a temperature no greater than approximately 110 ° C.;
(b) sealing the container; and
(c) heating the composition in the container at a temperature of no greater than approximately 110 ° C. for a period of time sufficient to sterilize the composition.
14. The method of claim 13, further comprising, between said steps (a) and (b), the additional steps of:
(a)(1) dissolving approximately 100 to 1000 ppm by weight of SO2 and approximately 100 to 10,000 ppm by weight of butylated hydroxyanisole (BHA) in the composition; and
(a)(2) dissolving up to approximately 50% by weight of plasticizer in the resulting liquid.
15. The method of claim 14, in which:
said initial viscosity is in the range of about 400 to about 600 centipoises.
16. An article of manufacture, comprising:
a container packed with a mixture of about 3.5% by weight of polyoctyl-2-cyanoacrylate, about 100 ppm SO2, and about 1000 ppm butylated hydroxyanisole (BHA), all dissolved in the balance percentage by weight of octyl-2-cyanoacrylate monomer, then sealed; and
the sealed vial heated to a temperature of between about 100° C. and about 110° C. for a period of time between about 60 minutes and 120 minutes, establishing a sterile adhesive having a viscosity of in the range of about 400 centipoises to about 600 centipoises.
17. The article of manufacture of claim 16, in which:
said container is comprised of a material taken from the list of:
(a) type I glass;
(b) aluminum; and
(c) plastic.
US13/358,690 2004-09-17 2012-01-26 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions Abandoned US20120128903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/358,690 US20120128903A1 (en) 2004-09-17 2012-01-26 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions
US13/616,947 US20130095262A2 (en) 2004-09-17 2012-09-14 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/944,635 US8110144B2 (en) 2004-09-17 2004-09-17 Process for sterilization of and cyanoacrylate adhesives compositions and devices
US13/358,690 US20120128903A1 (en) 2004-09-17 2012-01-26 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/944,635 Division US8110144B2 (en) 2004-09-17 2004-09-17 Process for sterilization of and cyanoacrylate adhesives compositions and devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/616,947 Division US20130095262A2 (en) 2004-09-17 2012-09-14 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions

Publications (1)

Publication Number Publication Date
US20120128903A1 true US20120128903A1 (en) 2012-05-24

Family

ID=36074206

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/944,635 Expired - Fee Related US8110144B2 (en) 2004-09-17 2004-09-17 Process for sterilization of and cyanoacrylate adhesives compositions and devices
US13/358,690 Abandoned US20120128903A1 (en) 2004-09-17 2012-01-26 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions
US13/616,947 Abandoned US20130095262A2 (en) 2004-09-17 2012-09-14 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/944,635 Expired - Fee Related US8110144B2 (en) 2004-09-17 2004-09-17 Process for sterilization of and cyanoacrylate adhesives compositions and devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/616,947 Abandoned US20130095262A2 (en) 2004-09-17 2012-09-14 Cyanoacrylate Adhesive Compositions, Methods of Sterilization of the Compositions, and Articles of Manufacture Containing Such Compositions

Country Status (3)

Country Link
US (3) US8110144B2 (en)
EP (1) EP1807121A4 (en)
WO (1) WO2006034064A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808620B1 (en) 2012-02-22 2014-08-19 Sapheon, Inc. Sterilization process design for a medical adhesive
US9561023B2 (en) 2009-02-20 2017-02-07 Covidien Lp Enhanced ultrasound visualization of intravascular devices
US9592037B2 (en) 2009-02-20 2017-03-14 Covidien Lp Systems for venous occlusion for the treatment of venous insufficiency

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416883B2 (en) 2005-05-24 2008-08-26 Steris Inc. Biological indicator
CN101160330B (en) * 2005-05-30 2011-07-27 东亚合成株式会社 2-cyanoacrylate composition
US20080021392A1 (en) * 2006-07-20 2008-01-24 Lurvey Kent L Medical fluid access site with antiseptic indicator
US20080107564A1 (en) * 2006-07-20 2008-05-08 Shmuel Sternberg Medical fluid access site with antiseptic indicator
JP5118389B2 (en) * 2007-05-26 2013-01-16 中村製作所株式会社 Method for forming recess in workpiece
US20080311323A1 (en) * 2007-06-12 2008-12-18 Chemence, Inc. Cyanoacrylate Adhesive Compositions and Devices and Process for Sterilization Thereof
WO2010008822A2 (en) 2008-06-23 2010-01-21 Adhezion Biomedical, Llc Cyanoacrylate tissue adhesives with desirable permeability and tensile strength
US8729121B2 (en) * 2007-06-25 2014-05-20 Adhezion Biomedical, Llc Curing accelerator and method of making
USRE47452E1 (en) 2007-07-20 2019-06-25 Baxter International Inc. Antimicrobial housing and cover for a medical device
US9125973B2 (en) 2007-07-20 2015-09-08 Baxter International Inc. Antimicrobial housing and cover for a medical device
KR20100106966A (en) * 2007-11-12 2010-10-04 밸러 메디컬, 인코포레이티드 Single vial formulation for medical grade cyanoacrylate
US8613952B2 (en) * 2007-11-14 2013-12-24 Adhezion Biomedical, Llc Cyanoacrylate tissue adhesives
US8293838B2 (en) * 2008-06-20 2012-10-23 Adhezion Biomedical, Llc Stable and sterile tissue adhesive composition with a controlled high viscosity
US8198344B2 (en) 2008-06-20 2012-06-12 Adhezion Biomedical, Llc Method of preparing adhesive compositions for medical use: single additive as both the thickening agent and the accelerator
CN102245217A (en) * 2008-10-17 2011-11-16 3M创新有限公司 Sterility indicating biological compositions, articles and methods
US8652510B2 (en) 2008-10-31 2014-02-18 Adhezion Biomedical, Llc Sterilized liquid compositions of cyanoacrylate monomer mixtures
US8609128B2 (en) * 2008-10-31 2013-12-17 Adhezion Biomedical, Llc Cyanoacrylate-based liquid microbial sealant drape
US9254133B2 (en) 2008-10-31 2016-02-09 Adhezion Biomedical, Llc Sterilized liquid compositions of cyanoacrylate monomer mixtures
US9309019B2 (en) 2010-05-21 2016-04-12 Adhezion Biomedical, Llc Low dose gamma sterilization of liquid adhesives
US8927603B2 (en) 2010-06-07 2015-01-06 Adhezion Biomedical, Llc X-ray sterilization of liquid adhesive compositions
CN102178978B (en) * 2011-03-18 2013-12-11 广州白云医用胶有限公司 Medical adhesive and preparation method of medical adhesive
US20140311941A1 (en) 2013-04-19 2014-10-23 Adhezion Biomedical, Llc Package system for sterilizing and storing cyanoacrylate adhesive compositions
US9867973B2 (en) 2013-06-17 2018-01-16 Medline Industries, Inc. Skin antiseptic applicator and methods of making and using the same
US9511156B2 (en) 2014-01-08 2016-12-06 Carefusion 2200, Inc. Systems, methods, and devices for sterilizing antiseptic solutions
US11027032B2 (en) 2014-01-08 2021-06-08 Carefusion 2200, Inc. Systems, methods, and devices for sterilizing antiseptic solutions
US9421297B2 (en) 2014-04-02 2016-08-23 Adhezion Biomedical, Llc Sterilized compositions of cyanoacrylate monomers and naphthoquinone 2,3-oxides
US9895455B2 (en) 2015-06-30 2018-02-20 Carefusion 2200, Inc Systems, methods, and devices for sterilizing antiseptic solutions
US10988274B2 (en) 2017-02-07 2021-04-27 Adhezion Biomedical, Llc Packaging for adhesive compositions
US20190106726A1 (en) * 2017-10-11 2019-04-11 American Sterilizer Company Biological indicator
CN111458453B (en) * 2020-05-12 2022-07-12 万华化学(四川)有限公司 Method for testing hydroxyl value in lactide-containing polylactic acid and application thereof
US11603551B2 (en) 2020-12-02 2023-03-14 Steritec Products Mfg. Co., Inc. Biological indicators, and systems and methods for determining efficacy of sterilization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360124A (en) * 1966-05-18 1967-12-26 Ethicon Inc Sterile alkyl ester of 2-cyanoacrylate
US4038345A (en) * 1971-01-06 1977-07-26 Loctite (Ireland), Limited High viscosity cyanoacrylate adhesive compositions, and process for their preparation
US20020065336A1 (en) * 1999-08-12 2002-05-30 Closure Medical Corporation Sterilized cyanoacrylate solutions containing thickeners
US6579469B1 (en) * 1999-10-29 2003-06-17 Closure Medical Corporation Cyanoacrylate solutions containing preservatives
US20050042196A1 (en) * 2003-06-03 2005-02-24 Ian Askill Antimicrobial phenol containing cyanoacrylate compositions

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721858A (en) * 1954-03-10 1955-10-25 Eastman Kodak Co Method of making alpha-cyanoacrylates
US2816093A (en) * 1954-06-02 1957-12-10 Eastman Kodak Co Mixed adhesive compositions including alpha-cyanoacrylate esters
US3178379A (en) * 1961-06-14 1965-04-13 Eastman Kodak Co Method for preparing cyanoacrylate monomer adhesive compositions
GB1159548A (en) * 1965-12-09 1969-07-30 Eastman Kodak Co Surgical Adhesives
US3527841A (en) * 1968-04-10 1970-09-08 Eastman Kodak Co Alpha-cyanoacrylate adhesive compositions
US3654239A (en) * 1970-11-20 1972-04-04 Eastman Kodak Co Process for the preparation of poly-(alpha-cyanoacrylates)
US4291122A (en) * 1980-08-14 1981-09-22 American Sterilizer Company Biological indicator for sterilization processes
SE460518B (en) * 1988-02-17 1989-10-23 Diffchamb Ab GEL BODY CONTAINING MICRO-ORGANISMS FOR STERILIZATION CONTROL AND PROCEDURE FOR IMPLEMENTING A STERILIZATION CONTROL
US5252484A (en) * 1988-11-29 1993-10-12 Minnesota Mining And Manufacturing Company Rapid read-out biological indicator
CA2031757A1 (en) 1989-12-14 1991-06-15 George J. Hageage Rapid biological sterility detection method and apparatus therefor
GB9107751D0 (en) * 1991-04-12 1991-05-29 Elopak Systems Treatment of material
KR940002140A (en) * 1992-07-03 1994-02-16 히로세 유끼하루 Low viscosity liquid composite container and its manufacturing method
TW359683B (en) 1993-12-23 1999-06-01 Loctite Ireland Ltd Sterilized cyanoacrylate adhesive composition, and a method of making such composition
CN1140470A (en) 1994-02-15 1997-01-15 美国3M公司 Rapid read-out biological indicator
US5795730A (en) * 1995-02-15 1998-08-18 Minnesota Mining And Manufacturing Company Rapid read-out biological indicator
US5981621A (en) * 1996-02-29 1999-11-09 Closure Medical Corporation Monomeric compositions effective as wound closure devices
US5928611A (en) * 1995-06-07 1999-07-27 Closure Medical Corporation Impregnated applicator tip
EP0863994B1 (en) * 1995-07-28 2002-02-20 Minnesota Mining And Manufacturing Company Multi-zone sterility indicator
GB2306469B (en) * 1995-11-02 1998-05-13 Chemence Ltd Sterilising cyanoacrylate preparations
US5770393A (en) * 1997-04-01 1998-06-23 Steris Corporation Biological indicator for detection of early metabolic activity
US6512023B1 (en) * 1998-06-18 2003-01-28 Closure Medical Corporation Stabilized monomer adhesive compositions
ES2267290T3 (en) 1998-09-18 2007-03-01 Medlogic Global Limited METHOD FOR STERILIZING CIANOACRYLATE COMPOSITIONS.
GB9820457D0 (en) * 1998-09-18 1998-11-11 Medlogic Global Corp Methods for sterilizing cyanoacrylate compositions
US6451254B1 (en) * 1998-12-30 2002-09-17 Ethicon, Inc. Sterilization of diffusion-restricted area by revaporizing the condensed vapor
US6579916B1 (en) * 2000-11-21 2003-06-17 Medlogic Global Corporation Methods for sterilizing cyanoacrylate compositions
WO2002054934A2 (en) 2000-11-21 2002-07-18 Medlogic Global Limited Method for sterilizing cyanoacrylate compositions
JP3576111B2 (en) * 2001-03-12 2004-10-13 株式会社東芝 Magnetoresistance effect element
US7459142B2 (en) * 2002-06-06 2008-12-02 Micro Therapeutics, Inc. High viscosity embolizing compositions comprising prepolymers
US7371345B2 (en) * 2002-12-23 2008-05-13 Closure Medical Corporation Sterilization of medical adhesive kits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360124A (en) * 1966-05-18 1967-12-26 Ethicon Inc Sterile alkyl ester of 2-cyanoacrylate
US4038345A (en) * 1971-01-06 1977-07-26 Loctite (Ireland), Limited High viscosity cyanoacrylate adhesive compositions, and process for their preparation
US20020065336A1 (en) * 1999-08-12 2002-05-30 Closure Medical Corporation Sterilized cyanoacrylate solutions containing thickeners
US6579469B1 (en) * 1999-10-29 2003-06-17 Closure Medical Corporation Cyanoacrylate solutions containing preservatives
US20050042196A1 (en) * 2003-06-03 2005-02-24 Ian Askill Antimicrobial phenol containing cyanoacrylate compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561023B2 (en) 2009-02-20 2017-02-07 Covidien Lp Enhanced ultrasound visualization of intravascular devices
US9592037B2 (en) 2009-02-20 2017-03-14 Covidien Lp Systems for venous occlusion for the treatment of venous insufficiency
US10702276B2 (en) 2009-02-20 2020-07-07 Covidien Lp Systems for venous occlusion for the treatment of venous insufficiency
US11369384B2 (en) 2009-02-20 2022-06-28 Covidien Lp Systems for venous occlusion for the treatment of venous insufficiency
US10143455B2 (en) 2011-07-20 2018-12-04 Covidien LLP Enhanced ultrasound visualization of intravascular devices
US8808620B1 (en) 2012-02-22 2014-08-19 Sapheon, Inc. Sterilization process design for a medical adhesive
US9084835B2 (en) 2012-02-22 2015-07-21 Covidien Lp Sterilization process design for a medical adhesive
US9339575B2 (en) 2012-02-22 2016-05-17 Covidien Lp Sterilization process design for a medical adhesive

Also Published As

Publication number Publication date
WO2006034064A3 (en) 2006-09-21
EP1807121A4 (en) 2009-04-01
WO2006034064A2 (en) 2006-03-30
US20130011589A1 (en) 2013-01-10
US20130095262A2 (en) 2013-04-18
EP1807121A2 (en) 2007-07-18
US20060062687A1 (en) 2006-03-23
US8110144B2 (en) 2012-02-07

Similar Documents

Publication Publication Date Title
US8110144B2 (en) Process for sterilization of and cyanoacrylate adhesives compositions and devices
US20100213096A1 (en) Cyanoacrylate Adhesive Compositions and Devices and Process for Sterilization Thereof
US20070248486A1 (en) Process for Sterilization of Cyanoacrylate Adhesive Compositions and Devices
US6579469B1 (en) Cyanoacrylate solutions containing preservatives
EP1443973B1 (en) Kits and methods for determining the effectiveness of sterilization or disinfection processes
US20080311323A1 (en) Cyanoacrylate Adhesive Compositions and Devices and Process for Sterilization Thereof
CA1279245C (en) Method and device for disinfecting biological fluids and container for same
US5620656A (en) Packaging systems for peracid sterilization processes
Gopal Radiation sterilization of pharmaceuticals and polymers
US5530037A (en) Sterilized cyanoacrylate adhesive composition, and a method of making such a composition
EP1056480B1 (en) Electron beam sterilization of liquid adhesive compositions
CA1291928C (en) Frangible container with rupturing device
EP0984792B1 (en) Sterilization indicator
US5498526A (en) Bacillus circulans based biological indicator for gaseous sterilants
US10350327B2 (en) Method and composition for sterilization of a polymerizable monomer
US20020119184A1 (en) Flavored cyanoacrylate compositions
EP1064845A1 (en) Virucidal and sporicidal composition
US20140370535A1 (en) Sterility indicating biological compositions, articles and methods
KR20070087554A (en) Cyanoacrylate monomer formulation containing diiodomethyl-p-tolylsulfone and hydroxydiphenyl ether
US20110028709A1 (en) Methods for sterilizing glucans
WO1995024933A1 (en) Packaging systems for peracid sterilization processes
CN114075560A (en) Stable composition of beta-lactamase
KR20060079802A (en) Cyanoacrylate monomer formulation containing diiodomethyl-p-tolylsulfone
Mukhopadhayay et al. Sterilization of Biomaterials and Medical Devices with Supercritical CO2
Polli et al. Sterile topical dosage forms I: Laboratory phase

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION