US20120128879A1 - Abradable layer including a rare earth silicate - Google Patents

Abradable layer including a rare earth silicate Download PDF

Info

Publication number
US20120128879A1
US20120128879A1 US13/359,232 US201213359232A US2012128879A1 US 20120128879 A1 US20120128879 A1 US 20120128879A1 US 201213359232 A US201213359232 A US 201213359232A US 2012128879 A1 US2012128879 A1 US 2012128879A1
Authority
US
United States
Prior art keywords
substrate
abradable coating
multilayer
blade
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/359,232
Inventor
Michael Cybulsky
Kang N. Lee
Raymond J. Sinatra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Corp
Original Assignee
Rolls Royce Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Corp filed Critical Rolls Royce Corp
Priority to US13/359,232 priority Critical patent/US20120128879A1/en
Publication of US20120128879A1 publication Critical patent/US20120128879A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/211Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249961With gradual property change within a component

Definitions

  • the disclosure relates to abradable coatings for use in high temperature mechanical systems.
  • high-temperature mechanical systems such as, for example, gas-turbine engines
  • gas-turbine engines must operate in severe environments.
  • the high-pressure turbine blades, vanes, blade tracks and blade shrouds exposed to hot gases in commercial aeronautical engines typically experience metal surface temperatures of about 1000° C., with short-term peaks as high as 1100° C.
  • Components of high-temperature mechanical systems may include a Ni- or Co-based superalloy substrate.
  • the substrate can be coated with a thermal barrier coating (TBC) to reduce surface temperatures.
  • TBC thermal barrier coating
  • the thermal barrier coating may include a thermally insulative ceramic topcoat, and may be bonded to the substrate by an underlying metallic bond coat.
  • the TBC is most often a layer of yttria-stabilized zirconia (YSZ) with a thickness of about 100-500 ⁇ m.
  • YSZ yttria-stabilized zirconia
  • the properties of YSZ include low thermal conductivity, high oxygen permeability, and a relatively high coefficient of thermal expansion.
  • the YSZ TBC is also typically made “strain tolerant” and the thermal conductivity further lowered by depositing a structure that contains numerous pores and/or pathways.
  • Silicon-based ceramics or CMCs possess excellent high temperature mechanical, physical and chemical properties, and may allow gas turbine engines to operate at higher temperatures than gas turbine engines having superalloy components.
  • silicon-based ceramics and CMCs suffer from recession in combustion environments due to the volatilization of silica by water vapor.
  • silicon-based ceramic and CMC substrates may be coated by a substantially non-porous environmental barrier coating (EBC), which protects the substrate from environmental degradation, such as water vapor attack or corrosion.
  • EBC environmental barrier coating
  • gas turbine power and efficiency also may be improved by reducing the gap between a gas turbine blade and a surrounding blade track or blade shroud.
  • One method of reducing the gap between blade and track or shroud includes coating the blade track or blade shroud with an abradable coating. As the turbine blade rotates, the tip of the turbine blade intentionally contacts the abradable coating and wears away a portion of the coating to form a groove in the abradable coating corresponding to the path of the turbine blade. The intimate fit between the blade and abradable coating provides a seal, which may reduce or eliminate leakage of gas around the blade tip and increase the efficiency of the gas turbine engine by up to 5% in some cases.
  • the present disclosure is directed to an abradable coating that may be applied over a blade track or blade shroud.
  • the abradable coating includes a rare earth silicate, and in some embodiments, may consist essentially of a rare earth silicate.
  • the abradable coating may be deposited over at least one of an environmental barrier coating (EBC) and a thermal barrier coating (TBC), or may be deposited over a substrate without an EBC or TBC.
  • EBC environmental barrier coating
  • TBC thermal barrier coating
  • the abradable coating may include a plurality of layers.
  • the abradable coating may include a first layer including a rare earth silicate and a second layer including stabilized zirconia (zirconium oxide) or stabilized hafnia (hafnium oxide).
  • the first and second layers may alternate within the abradable coating, and the abradable coating may include one or more pair of first and second layers.
  • the disclosure is directed to a multilayer environmental barrier coating and abradable system including an environmental barrier coating (EBC) and an abradable coating deposited over the EBC.
  • the abradable coating includes a rare earth silicate, and may consist essentially of a rare earth silicate.
  • the disclosure is directed to an article including a substrate and an abradable coating deposited over the EBC.
  • the abradable coating includes a rare earth silicate, and may consist essentially of a rare earth silicate.
  • the disclosure is directed to a method including depositing over a substrate an abradable coating including a rare earth silicate.
  • the abradable layer may be deposited by thermal spraying.
  • FIG. 1 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over a substrate.
  • FIG. 2 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited over a bond coat.
  • FIG. 3 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited over an intermediate layer and a bond coat.
  • FIG. 4 is cross-sectional diagram illustrating another example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited directly on a substrate.
  • FIG. 5 is a cross-sectional diagram illustrating an exemplary article that includes an abradable coating deposited over a thermal barrier coating.
  • FIG. 6 is a conceptual diagram illustrating an example gas turbine blade and a gas turbine blade track or gas turbine blade shroud.
  • FIG. 7 is a cross-sectional diagram of an abradable coating, which includes a first layer and a second layer, deposited over a substrate.
  • FIG. 8 is a cross-sectional micrograph of an example article including a CMC substrate coated with a silicon bond coat and an abradable coating.
  • FIG. 9 is a cross-sectional micrograph of another example article including a CMC substrate coated with a silicon bond coat and an abradable coating.
  • FIG. 10 is a cross-sectional micrograph of an example article including a CMC substrate coated with a silicon bond coat and a multilayer abradable coating.
  • FIG. 11 is a cross-sectional micrograph of another example article including a substrate coated with a silicon bond coat and a multilayer abradable coating.
  • the present disclosure is directed to an abradable coating that may be applied over a component of a high temperature mechanical system, such as a gas turbine blade track or blade shroud.
  • the abradable coating includes a rare earth silicate, and in some embodiments, may consist essentially of a rare earth silicate.
  • the abradable coating may be deposited over at least one of an environmental barrier coating, a thermal barrier coating, and a substrate, and may be deposited as a porous layer.
  • the abradable coating may include a plurality of layers.
  • the abradable coating may include a first layer including a rare earth silicate and a second layer including stabilized zirconia (zirconium oxide) or stabilized hafnia (hafnium oxide).
  • the first and second layers may alternate within the abradable coating, and the abradable coating may include one or more pair of first and second layers.
  • the abradable coating may provide a seal between the blade track or blade shroud and a gas turbine blade.
  • the gas turbine blade may intentionally contact and abrade at least a portion of the abradable coating to form a groove in the abradable coating corresponding to the path of the turbine blade. This allows contact between the turbine blade and abradable coating while also allowing the turbine blade to rotate freely.
  • the abradable coating may be usable in high temperature systems where rubber or other polymeric seals would degrade.
  • FIG. 1 illustrates a cross-sectional view of an exemplary article 100 used in a high-temperature mechanical system.
  • Article 100 includes an abradable coating 108 deposited over a substrate 102 .
  • Article 100 may be a component of a high temperature mechanical system, such as, for example, a gas turbine engine or the like.
  • article 100 may include a gas turbine blade track or gas turbine blade shroud.
  • abradable coating 108 may be deposited over any article which requires or may benefit from an abradable coating.
  • abradable coating 108 may be deposited on a cylinder of an internal combustion engine, an industrial pump, a housing or internal seal ring of an air compressor, or an electric power turbine.
  • abradable coating 108 may be deposited directly on substrate 102 . In other embodiments, abradable coating 108 may be deposited over substrate 102 , with one or more intermediate layer between abradable coating 108 and substrate 102 , as illustrated in FIGS. 2-5 .
  • “deposited over” is defined as a layer or coating that is deposited on top of another layer or coating, and encompasses both a first layer or coating deposited immediately adjacent a second layer or coating and a first layer or coating deposited on top of a second layer or coating with one or more intermediate layer or coating present between the first and second layers or coatings.
  • “deposited directly on” denotes a layer or coating that is deposited immediately adjacent another layer or coating, i.e., there are no intermediate layers or coatings.
  • substrate 102 may include a superalloy, such as a superalloy based on Ni, Co, Ni/Fe, or the like.
  • a substrate 102 including a superalloy may include other additive elements to alter its mechanical properties, such as toughness, hardness, temperature stability, corrosion resistance, oxidation resistance, and the like, as is well known in the art. Any useful superalloy may be utilized for substrate 102 , including, for example, those available from Martin-Marietta Corp., Bethesda, Md., under the trade designation MAR-M247; those available from Cannon-Muskegon Corp., Muskegon, Mich., under the trade designation CMSX-4 or CMXS-10; and the like.
  • substrate 102 may include a ceramic or ceramic matrix composite (CMC).
  • CMC ceramic or ceramic matrix composite
  • a substrate 102 including a ceramic or CMC may include any useful ceramic material, including, for example, silicon carbide, silicon nitride, alumina, silica, and the like.
  • the CMC may further include any desired filler material, and the filler material may include a continuous reinforcement or a discontinuous reinforcement.
  • the filler material may include discontinuous whiskers, platelets, or particulates.
  • the filler material may include a continuous monofilament or multifilament weave.
  • the filler composition, shape, size, and the like may be selected to provide the desired properties to the CMC.
  • the filler material may be chosen to increase the toughness of a brittle ceramic matrix.
  • the filler may also be chosen to modify a thermal conductivity, electrical conductivity, thermal expansion coefficient, hardness, or the like of the CMC.
  • the filler composition may be the same as the ceramic matrix material.
  • a silicon carbide matrix may surround silicon carbide whiskers.
  • the filler material may include a different composition than the ceramic matrix, such as aluminum silicate fibers in an alumina matrix, or the like.
  • One preferred CMC includes silicon carbide continuous fibers embedded in a silicon carbide matrix.
  • Some example ceramics and CMCs which may be used for substrate 102 include ceramics containing Si, such as SiC and Si 3 N 4 ; composites of SiC or Si 3 N 4 and silicon oxynitride or silicon aluminum oxynitride; metal alloys that include Si, such as a molybdenum-silicon alloy (e.g., MoSi 2 ) or niobium-silicon alloys (e.g., NbSi 2 ); and oxide-oxide ceramics, such as an alumina or aluminosilicate matrix with a NEXTELTM Ceramic Oxide Fiber 720 (available from 3M Co., St. Paul, Minn.).
  • Si such as SiC and Si 3 N 4
  • metal alloys that include Si such as a molybdenum-silicon alloy (e.g., MoSi 2 ) or niobium-silicon alloys (e.g., NbSi 2 )
  • oxide-oxide ceramics such as an a
  • Abradable coating 108 may include a material that provides at least one of erosion resistance, abradability, corrosion resistance, thermal shock resistance, manufacturability and high temperature capability.
  • abradability may include a disposition to break into relatively small pieces when exposed to a sufficient physical force.
  • Abradability may be influenced by the material characteristics of abradable coating 108 , such as fracture toughness and fracture mechanism (e.g., brittle fracture), as well as the porosity of abradable coating 108 .
  • Thermal shock resistance and high temperature capability may be important for use in a gas turbine engine, in which abradable coating 108 is exposed to wide temperature variations from high operating temperatures to low environmental temperatures when the gas turbine engine is not operating.
  • abradable coating 108 may include at least one rare earth silicate.
  • the rare earth silicate may include a silicate of at least one of Lu (lutetium), Yb (ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium), Sm (samarium), Pm (promethium), Nd (neodymium), Pr (praseodymium), Ce (cerium) La (lanthanum), Y (yttrium), and Sc (scandium).
  • the rare earth silicate may include a rare earth monosilicate, which has the chemical formula RE 2 O 3 —SiO 2 or, equivalently, RE 2 SiO 5 , where RE is a rare earth element, may include a rare earth disilicate, which has the formula RE 2 O 3 -2SiO 2 or, equivalently, RE 2 Si 2 O 7 , where RE is a rare earth element, or may include a mixture of both rare earth monosilicate and rare earth disilicate.
  • a rare earth monosilicate may be formed by a chemical reaction between one silica molecule and one rare earth oxide molecule, while a rare earth disilicate may be formed by a chemical reaction between two silica molecules and one rare earth oxide molecule.
  • abradable coating 108 may include a mixture of rare earth monosilicate and rare earth disilicate.
  • abradable coating 108 may include a predominance of rare earth monosilicate when a rare earth oxide and silica are present in approximately a 1:1 molar ratio, but may still include some rare earth disilicate.
  • abradable coating 108 may include a predominance of rare earth disilicate when a rare earth oxide and silica are present in approximately a 1:2 molar ratio, but may still include some rare earth monosilicate.
  • abradable coating 108 may further include a silica (SiO 2 ) molecule that is not associated with a rare earth oxide molecule, a rare earth oxide molecule that is not associated with a silica molecule, or both.
  • a silica (SiO 2 ) molecule that is not associated with a rare earth oxide molecule
  • a rare earth oxide molecule that is not associated with a silica molecule, or both.
  • abradable coating 108 may include solitary silica (i.e., silica not associated with a rare earth oxide).
  • the ratio of rare earth oxide-to-silica is less than approximately 1:1
  • abradable coating 108 may include solitary rare earth oxide (i.e., rare earth oxide not associated with silica).
  • Abradable coating 108 may further include other, optional, additive elements or compounds.
  • the additive elements or compounds may modify the mechanical and/or chemical properties of abradable coating 108 , such as, for example, a coefficient of thermal expansion of abradable coating, or a chemical or mechanical compatibility of abradable coating 108 with an adjacent layer, such as substrate 102 .
  • the additive elements may include, for example, alumina, Ta 2 O 5 , HfSiO 4 , alkali oxides, alkali earth oxides, or mixtures thereof.
  • abradable coating 108 may be deposited over substrate 102 with one or more layers or coatings between abradable coating 108 and substrate 102 .
  • abradable coating 108 may be deposited over a bond coat, which is deposited over substrate 102 . Further details regarding exemplary bond coats will be described with reference to FIGS. 2 and 3 below, and any bond coat described in reference to those figures may be deposited over substrate 102 , with abradable coating 108 deposited over the bond coat.
  • FIG. 2 illustrates a cross-sectional view of an example article 200 including a bond coat 204 deposited over substrate 102 , an environmental barrier coating (EBC) 206 deposited over bond coat 204 , and abradable coating 108 deposited over EBC 206 .
  • Abradable coating 108 may also be deposited directly over bond coat 204 , without EBC 206 being present.
  • Bond coat 204 may be deposited over or deposited directly on substrate 102 . Bond coat 204 may improve adhesion between EBC 106 and substrate 102 .
  • bond coat 204 may include an alloy, such as a MCrAlY alloy (where M is Ni, Co, or NiCo), a ⁇ -NiAl nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof), a ⁇ -Ni+ ⁇ ′-Ni 3 Al nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof), or the like.
  • M is Ni, Co, or NiCo
  • a ⁇ -NiAl nickel aluminide alloy either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof
  • a ⁇ -Ni+ ⁇ ′-Ni 3 Al nickel aluminide alloy either un
  • bond coat 204 may include a ceramic or other material that is compatible with a substrate 102 that includes a ceramic or CMC.
  • bond coat 204 may include mullite (aluminum silicate, Al 6 Si 2 O 13 ), silica, silicides, silicon, or the like.
  • Bond coat 204 may further include other ceramics, such as rare earth silicates including silicates of Lu (lutetium), Yb (ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium), Sm (samarium), Pm (promethium), Nd (neodymium), Pr (praseodymium), Ce (cerium) La (lanthanum), Y (yttrium), and Sc (scandium).
  • Some preferred compositions of a bond coat 204 for depositing over a CMC substrate 102 include silicon, mullite, and ytterbium silicate.
  • Bond coat 204 may be selected based on a number of considerations, including the chemical composition and phase constitution of EBC 206 and substrate 102 .
  • bond coat 204 when substrate 102 includes a superalloy with a ⁇ -Ni+ ⁇ ′-Ni 3 Al phase constitution, bond coat 204 preferably includes a ⁇ -Ni+ ⁇ ′-Ni 3 Al phase constitution to better match the coefficient of thermal expansion and/or chemistry of substrate 102 , and therefore increase the mechanical and/or chemical stability (e.g., adhesion, chemical compatibility, or the like) of bond coat 204 to substrate 102 .
  • bond coat 204 when substrate 102 includes a CMC, bond coat 204 preferably includes silicon and/or a ceramic, such as, for example, mullite or a rare earth silicate.
  • an article 300 may include multiple layers between substrate 102 and EBC 206 .
  • bond coat 204 may be deposited over or deposited directly on substrate 102
  • an intermediate layer 304 may be deposited over or deposited directly on bond coat 204 .
  • Bond coat 204 and intermediate layer 304 may be desirable because each layer may perform a separate function.
  • substrate 102 is a CMC including silicon carbide
  • a bond coat 204 including silicon may be deposited on substrate 102 , followed by the deposition of intermediate layer 304 including mullite.
  • the silicon layer may provide bonding while the mullite provides a gradual transition of thermal expansion and prevents water vapor from reaching the silicon bond coat 204 .
  • article 100 may not include a bond coat 204 .
  • an article 400 may include EBC 206 deposited directly on substrate 102 .
  • Bond coat 204 may not be required or desired when EBC 206 and substrate 102 are chemically and/or mechanically compatible.
  • bond coat 204 may not be necessary.
  • EBC 206 may include any layer which prevents environmental degradation of substrate 102 .
  • EBC 206 may include materials that are resistant to oxidation or water vapor attack, and provide at least one of water vapor stability, chemical stability and environmental durability to substrate 102 .
  • EBC 206 may include, for example, mullite; glass ceramics such as barium strontium alumina silicate (BaO x —SrO 1-x —Al 2 O 3 -2SiO 2 ; BSAS), barium alumina silicate (BaO—Al 2 O 3 -2SiO 2 ; BAS), calcium alumina silicate (CaO—Al 2 O 3 -2SiO 2 ), strontium alumina silicate (SrO—Al 2 O 3 -2SiO 2 ; SAS), lithium alumina silicate (Li 2 O—Al 2 O 3 -2SiO 2 ; LAS) and magnesium alumina silicate (2MgO-2Al 2 O 3 -5SiO 2 ; MAS); rare earth silicates and the like.
  • glass ceramics such as barium strontium alumina silicate (BaO x —SrO 1-x —Al 2 O 3 -2SiO 2 ; BSAS
  • EBC 206 may be applied by any useful technique, such as plasma spraying, physical vapor deposition (PVD), including electron beam physical vapor deposition (EB-PVD) and directed vapor deposition (DVD), chemical vapor deposition, cathodic arc deposition, slurry dipping, sol-gel coating, electrophoretic deposition and the like, and may be deposited as a substantially non-porous structure, which prevents water vapor or other gases from contacting substrate 102 .
  • PVD physical vapor deposition
  • EB-PVD electron beam physical vapor deposition
  • DVD directed vapor deposition
  • chemical vapor deposition cathodic arc deposition
  • sol-gel coating sol-gel coating
  • electrophoretic deposition electrophoretic deposition and the like
  • substrate 102 may include a patterned or etched surface 402 .
  • Patterned surface 402 may improve adhesion between EBC 206 and substrate 102 by compartmentalizing the strain on the interface between EBC 206 and substrate 102 due to any thermal expansion coefficient mismatch between EBC 206 and substrate 102 .
  • Patterned surface 402 may include a pattern that extends in substantially one dimension along surface 402 , such as an array of parallel grooves or ridges, or may include a pattern that extends in two dimensions along surface 402 , such as an array of parallel lines extending in two or more directions and forming an array of rectangles, triangles, diamonds, or other shapes.
  • Patterned surface 402 may be formed by, for example, chemical or mechanical etching, laser ablation, or laser cladding.
  • a TBC 506 may be substituted for EBC 206 .
  • TBC 506 may be deposited over bond coat 204 , as illustrated in FIG. 5 , or may be deposited over substrate 102 without bond coat 204 .
  • TBC 506 may provide thermal insulation to substrate 102 to lower the temperature experienced by substrate 102 .
  • TBC 506 may include any useful insulative layer, including, for example, ceramic layers comprising zirconia or hafnia.
  • TBC 506 may include other elements or compounds to modify a desired characteristic of the TBC 506 , such as, for example, phase stability, thermal conductivity, or the like. Exemplary additive elements or compounds include, for example, rare earth oxides.
  • TBC 506 may be applied by any useful technique, including, for example, plasma spraying, electron beam physical vapor deposition, chemical vapor deposition, and the like.
  • TBC 506 may be deposited as a porous structure, which reduces the effective thermal conductivity (by both radiation and conduction) of TBC 506 .
  • the porous structure may reduce the thermal conductivity of TBC 506 by reducing the area through which heat is conducted and by providing a large refractive index difference between the pores and the material from which TBC 506 is made, which can reduce heat transfer by radiation.
  • an EBC 206 /TBC 506 bilayer or multilayer coating may be desired to provide thermal protection and resistance to oxidation, water vapor attack, or the like.
  • TBC 506 may be deposited over EBC 206
  • EBC 206 may be deposited over TBC 506 .
  • the EBC 206 /TBC 506 bilayer or multilayer coating may be applied over substrate 102 with or without bond coat 204 .
  • abradable coating 108 may be deposited over or deposited directly on TBC 506 or EBC 206 .
  • the article may not include an EBC 206 or TBC 506 , and abradable coating 108 may be deposited over or directly on substrate 102 .
  • abradable coating 108 may be deposited as a porous layer, which is configured to abrade when contacted by a gas turbine blade tip. For example, as depicted in the conceptual diagram illustrated in FIG.
  • a gas turbine blade track or gas turbine blade shroud 600 may include substrate 102 , EBC 206 deposited over substrate 102 , and abradable coating 108 deposited over EBC 106 .
  • FIG. 6 also illustrates a gas turbine blade 612 , which includes a blade tip 614 which contacts abradable coating 108 .
  • Blade tip 614 may include an abrasive coating or may not include an abrasive coating.
  • the abrasive coating may facilitate abrasion of abradable coating 108 , and may protect blade tip 614 from damage from abradable coating 108 .
  • the abrasive coating may include, for example, cubic boron nitride or another coating with high fracture toughness and acceptable high temperature performance.
  • a blade tip 614 including an abrasive coating may be more complex and thus more expensive than a blade tip 614 that does not include an abrasive coating. Accordingly, in some embodiments, blade tip 614 may not include an abrasive coating.
  • the contact between blade tip 614 and abradable coating 108 may be intentional for at least some of the temperatures experienced by blade track 600 and blade 612 .
  • gas turbine blade 612 may experience thermal expansion when heated to its operating temperature from the temperature when the gas turbine engine is not in use.
  • the blade track 600 may also undergo thermal expansion when heated to the operating temperature.
  • the thermal expansion experienced by turbine blade 612 and blade track 600 may result in a change in distance between substrate 102 of blade track 600 and blade tip 614 .
  • the thickness of abradable layer 108 may be selected such that blade tip 614 approximately contacts surface 618 of abradable coating 108 at a low temperature, such as a minimum operating temperature or a temperature of the surrounding environment when the gas turbine engine is not operating.
  • the thickness of abradable coating 108 may also be selected such that when turbine blade 612 and turbine track or turbine shroud 600 are at an operating temperature, blade tip 614 contacts and abrades at least a portion of abradable coating 108 , but does not contact EBC 206 .
  • blade tip 614 may contact abradable coating 108 and abrade a portion of coating 108 to form a groove 610 in abradable coating 108 .
  • the depth of groove 610 corresponds to the extent to which blade 612 extends into abradable coating 108 .
  • the depth of groove 610 may not be constant, as variations in fit between blade track 600 and turbine blade 612 may exist along the length of blade track 600 .
  • groove 610 may be essentially a superposition of the grooves formed by each turbine blade 612 . Because of this, the seal between a turbine blade 612 and abradable layer 108 may not be perfect, but may be improved compared to a seal between a turbine blade 612 and blade track 600 that does not include an abradable coating 108 .
  • Abradable coating 108 may be deposited over or deposited directly on substrate 102 , EBC 206 or TBC 506 using, for example, a thermal spraying technique, such as, for example, plasma spraying. Porosity of abradable coating 108 may be controlled by the use of coating material additives and/or processing techniques to create the desired porosity. In some embodiments, substantially closed pores may be desired.
  • a coating material additive that melts or burns at the use temperatures of the component (e.g., blade track 600 ) may be incorporated into the coating material that forms abradable coating 108 .
  • the coating material additive may include, for example, graphite, hexagonal boron nitride, or a polymer such as a polyester, and may be incorporated into the coating material prior to deposition of the coating material over EBC 206 or TBC 506 to form abradable coating 108 .
  • the coating material additive then may be melted or burned off in a post-deposition heat treatment, or during operation of the gas turbine engine, to form pores in abradable coating 108 .
  • the post-deposition heat-treatment may be performed at up to about 1150° C. for a component having a substrate 102 including a superalloy, or at up to about 1500° C. for a component having a substrate 102 including a CMC or other ceramic.
  • the coating material additive may be exposed to various processing techniques to improve the amount of additive that remains entrapped within abradable coating 108 after thermal spraying.
  • the coating material and coating material additive may undergo attrition ball milling to attach the particles of the coating material additive to particles of the coating material.
  • the coating material additive may be attached to the coating material with an organic binder, such as, for example, a cellular methyl carbonate (CMC), which may also contain sodium or carbon.
  • CMC cellular methyl carbonate
  • the use or processing techniques to improve the amount of additive that remains entrapped within abradable coating 108 after thermal spraying may improve at least one of the extent of porosity and the uniformity of porosity in abradable coating 108 .
  • the porosity of abradable coating 108 can also be created and/or controlled by plasma spraying the coating material using a co-spray process technique in which the coating material and coating material additive are fed into the plasma stream with two radial powder feed injection ports.
  • the feed pressures and flow rates of the coating material and coating material additive may be adjusted to inject the material on the outer edge of the plasma plume using direct 90 degree angle injection. This may permit the coating material particles to soften but not completely melt and the coating material additive to not burn off but rather soften sufficiently for adherence in abradable coating 108 .
  • the porosity of abradable coating 108 may be controlled to vary throughout at least a portion of abradable coating 108 .
  • the porosity of abradable layer may be controlled to be greater adjacent surface 618 than adjacent EBC 206 . This may be particularly advantageous when EBC 206 and abradable coating 108 are deposited in a unitary structure with varying porosity, instead of two separate layers, as will be described in further detail below.
  • abradable coating 108 may be deposited to a range of thicknesses depending on various considerations.
  • One consideration may be a predicted size change of components (e.g., blade 612 and blade track 600 ) at a low operating temperature or temperatures when the turbine engine is not operating and a maximum operating temperature.
  • thermal expansion of blade 612 may be expected to reduce the distance between blade tip 614 and substrate 102 .
  • the thickness of abradable coating 108 may be selected to be substantially equal to or greater than the predicted difference in the distance between blade tip 614 and substrate 102 at low operating temperatures and high operating temperatures. This may allow contact and formation of a seal between blade 612 and blade track or blade shroud 610 at substantially all operating temperatures, which may improve efficiency of the gas turbine engine throughout its operational temperature range.
  • abradable coating 108 may be deposited to a thickness of up to approximately 0.1 inches (about 2.5 mm). In other embodiments, abradable coating 108 may be deposited to a thickness of approximately 0.030 to approximately 0.040 inches (approximately 0.76 mm to approximately 1.02 mm). In some embodiments, abradable coating 108 may be deposited to a thickness approximately equal to or greater than the desired final thickness and may be machined to the desired final thickness.
  • abradable coating 108 has been described herein as a separate layer from EBC 206
  • abradable coating 108 and EBC 206 may be formed as a unitary structure.
  • a thermal spraying process may include depositing a substantially nonporous EBC 206 , and gradually changing the composition of the coating feed to include polyester, graphite or hexagonal Boron Nitride to provide a transition to a more porous layer. This may simplify the manufacture of the EBC 206 and abradable coating 108 , and may also improve the adhesion of abradable coating 108 to EBC 206 by producing a gradual transition of the thermal conductivity and thermal expansion coefficients of the abradable coating 108 and EBC 206 .
  • FIG. 7 illustrates an example of an article 700 that includes a multilayer abradable coating 708 deposited over a substrate 102 .
  • multilayer abradable coating 708 includes a first layer 722 deposited over substrate 102 and a second layer 724 deposited over first layer 722 .
  • First layer 722 may comprise a first material
  • second layer 724 may comprise a second material different from the first material.
  • multilayer abradable coating 708 may include more than two layers 722 and 724 , such as, for example, a plurality of pairs of first layer 722 and second layer 724 .
  • multilayer abradable coating 708 may include two pairs of first layer 722 and second layer 724 , arranged in alternating layers (e.g., first layer 722 , second layer 724 , first layer 722 , second layer 724 ).
  • Multilayer abradable coating 708 may include any number of pairs of first layer 722 and second layer 724 .
  • First layer 722 may include, or may consist essentially of, a rare earth silicate, similar to those described above with reference to abradable layer 108 .
  • First layer 722 may include, for example, monosilicates, disilicates, or both of at least one of Lu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, La, Y, Sc, and the like.
  • first layer 722 may also include at least one of silica or a rare earth oxide, which may be present in addition to the rare earth silicate.
  • First layer 722 also may include at least one of alumina, Ta 2 O 5 , HfSiO 4 , alkali oxides, and alkali earth oxides.
  • Second layer 724 may include, or may consist essentially of, stabilized zirconia or stabilized hafnia.
  • stabilized zirconia and stabilized hafnia includes the base oxide (e.g., zirconia or hafnia) stabilized by the inclusion of one or more additive elements or compounds.
  • stabilized zirconia or stabilized hafnia may include a rare earth oxide incorporated in the zirconia or hafnia. The rare earth oxide may modify or improve the phase stability, thermal conductivity, or another characteristic of the hafnia or zirconia.
  • FIG. 7 illustrates second layer 724 as deposited over first layer 722
  • second layer 724 e.g., the layer include stabilized zirconia or stabilized hafnia
  • First layer 722 e.g., the layer including the rare earth silicate
  • abradable coating 708 may include more than one layer pair of first layer 722 and second layer 724 .
  • FIG. 8 is a cross-sectional micrograph of an article 800 including a Si bond coat 804 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 802 .
  • the article 800 further includes an Yb 2 Si 2 O 7 (ytterbium disilicate) abradable coating 808 deposited over the Si bond coat 804 to a thickness of about 60 mils (about 1.524 mm), as indicated by reference numeral 810 .
  • Each of Si bond coat 804 and Yb 2 Si 2 O 7 abradable coating 808 was deposited by plasma spraying.
  • FIG. 8 shows the article 800 after exposure to 100 one-hour thermal cycles in steam at 1600° F. As FIG. 8 illustrates, the Yb 2 Si 2 O 7 abradable coating maintained good adherence to the SiC/SiC CMC substrate 802 after completion of the thermal cycles.
  • FIG. 9 is a cross-sectional micrograph of an article 900 including a Si bond coat 904 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 902 .
  • the article 900 further includes an Yb 2 Si 2 O 7 (ytterbium disilicate) abradable coating 908 deposited over the Si bond coat 904 to a thickness of about 60 mils (about 1.524 mm), as indicated by reference numeral 910 .
  • Each of Si bond coat 904 and Yb 2 Si 2 O 7 abradable coating 908 was deposited by plasma spraying.
  • FIG. 9 shows the article 900 after exposure to 100 one-hour thermal cycles in steam at 2400° F. As FIG. 9 illustrates, the Yb 2 Si 2 O 7 abradable coating 908 maintained good adherence to the SiC/SiC CMC substrate 902 after completion of the thermal cycles.
  • FIG. 10 is a cross-sectional micrograph of an article 1000 including a Si bond coat 1004 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 1002 .
  • the article 1000 further includes a multilayer abradable coating 1008 deposited over the Si bond coat 1000 .
  • the multilayer abradable coating 1008 includes a layer of Yb 2 Si 2 O 7 (ytterbium disilicate) 1010 deposited over the Si bond coat 1004 and a layer of zirconia 1012 stabilized by about 7 wt. % (weight percent) yttrium oxide deposited over the Yb 2 Si 2 O 7 1010 .
  • the Yb 2 Si 2 O 7 1010 was deposited to a thickness of about 40 mils (about 1.016 mm), as indicated by reference numeral 1014 , and the layer of zirconia 1012 was deposited to a thickness of about 10 mils (about 0.254 mm), as indicated by reference numeral 1016 .
  • Each of Si bond coat 1004 and Yb 2 Si 2 O 7 abradable coating 1008 was deposited by plasma spraying.
  • FIG. 10 shows the article 1000 after exposure to 100 one-hour thermal cycles in steam at 1600° F. As FIG. 10 illustrates, the multilayer abradable coating 1008 maintained good adherence to the SiC/SiC CMC substrate 1002 after completion of the thermal cycles.
  • FIG. 11 is a cross-sectional micrograph of an article 1100 including a Si bond coat 1104 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 1102 .
  • the article 1100 further includes a multilayer abradable coating 1108 deposited over the Si bond coat 1100 .
  • the multilayer abradable coating 1108 includes a layer of Yb 2 Si 2 O 7 (ytterbium disilicate) 1110 deposited over the Si bond coat 1104 to a thickness of about 40 mils (about 1.016 mm), as indicated by reference numeral 1114 , and a layer of zirconia stabilized by about 7 wt.
  • FIG. 11 shows the article 1100 after exposure to 100 one-hour thermal cycles in steam at 2400° F. As FIG. 11 illustrates, the multilayer abradable coating 1108 maintained good adherence to the SiC/SiC CMC substrate 1102 after completion of the thermal cycles.

Abstract

An abradable coating may include a rare earth silicate. The abradable coating may be deposited over a substrate, an environmental barrier coating, or a thermal barrier coating. The abradable coating may be deposited on a gas turbine blade track or a gas turbine blade shroud to form a seal between the gas turbine blade track or gas turbine blade shroud and a gas turbine blade. The abradable coating may also include a plurality of layers, such as alternating first and second layers including, respectively, a rare earth silicate and stabilized zirconia or stabilized hafnia.

Description

  • This application is a divisional of U.S. patent application Ser. No. 12/624,938 filed Nov. 24, 2009, which claims priority from U.S. Provisional Application Ser. No. 61/117,797 filed Nov. 25, 2008. The entire contents of U.S. patent application Ser. No. 12/624,938 and U.S. Provisional Application Ser. No. 61/117,797 are incorporated herein by reference.
  • TECHNICAL FIELD
  • The disclosure relates to abradable coatings for use in high temperature mechanical systems.
  • BACKGROUND
  • The components of high-temperature mechanical systems, such as, for example, gas-turbine engines, must operate in severe environments. For example, the high-pressure turbine blades, vanes, blade tracks and blade shrouds exposed to hot gases in commercial aeronautical engines typically experience metal surface temperatures of about 1000° C., with short-term peaks as high as 1100° C.
  • Components of high-temperature mechanical systems may include a Ni- or Co-based superalloy substrate. The substrate can be coated with a thermal barrier coating (TBC) to reduce surface temperatures. The thermal barrier coating may include a thermally insulative ceramic topcoat, and may be bonded to the substrate by an underlying metallic bond coat.
  • The TBC, usually applied either by air plasma spraying or electron beam physical vapor deposition, is most often a layer of yttria-stabilized zirconia (YSZ) with a thickness of about 100-500 μm. The properties of YSZ include low thermal conductivity, high oxygen permeability, and a relatively high coefficient of thermal expansion. The YSZ TBC is also typically made “strain tolerant” and the thermal conductivity further lowered by depositing a structure that contains numerous pores and/or pathways.
  • Economic and environmental concerns, i.e., the desire for improved efficiency and reduced emissions, continue to drive the development of advanced gas turbine engines with higher inlet temperatures. In some cases, this may lead to the replacement of the superalloy substrate with a silicon-based ceramic or ceramic matrix composite (CMC) substrate. Silicon-based ceramics or CMCs possess excellent high temperature mechanical, physical and chemical properties, and may allow gas turbine engines to operate at higher temperatures than gas turbine engines having superalloy components.
  • However, silicon-based ceramics and CMCs suffer from recession in combustion environments due to the volatilization of silica by water vapor. Thus, silicon-based ceramic and CMC substrates may be coated by a substantially non-porous environmental barrier coating (EBC), which protects the substrate from environmental degradation, such as water vapor attack or corrosion.
  • SUMMARY
  • In addition to raising the inlet temperature, gas turbine power and efficiency also may be improved by reducing the gap between a gas turbine blade and a surrounding blade track or blade shroud. One method of reducing the gap between blade and track or shroud includes coating the blade track or blade shroud with an abradable coating. As the turbine blade rotates, the tip of the turbine blade intentionally contacts the abradable coating and wears away a portion of the coating to form a groove in the abradable coating corresponding to the path of the turbine blade. The intimate fit between the blade and abradable coating provides a seal, which may reduce or eliminate leakage of gas around the blade tip and increase the efficiency of the gas turbine engine by up to 5% in some cases.
  • In general, the present disclosure is directed to an abradable coating that may be applied over a blade track or blade shroud. The abradable coating includes a rare earth silicate, and in some embodiments, may consist essentially of a rare earth silicate. The abradable coating may be deposited over at least one of an environmental barrier coating (EBC) and a thermal barrier coating (TBC), or may be deposited over a substrate without an EBC or TBC.
  • In some embodiments, the abradable coating may include a plurality of layers. For example, the abradable coating may include a first layer including a rare earth silicate and a second layer including stabilized zirconia (zirconium oxide) or stabilized hafnia (hafnium oxide). The first and second layers may alternate within the abradable coating, and the abradable coating may include one or more pair of first and second layers.
  • In one aspect, the disclosure is directed to a multilayer environmental barrier coating and abradable system including an environmental barrier coating (EBC) and an abradable coating deposited over the EBC. The abradable coating includes a rare earth silicate, and may consist essentially of a rare earth silicate.
  • In another aspect, the disclosure is directed to an article including a substrate and an abradable coating deposited over the EBC. The abradable coating includes a rare earth silicate, and may consist essentially of a rare earth silicate.
  • In yet another aspect, the disclosure is directed to a method including depositing over a substrate an abradable coating including a rare earth silicate. In some embodiments, the abradable layer may be deposited by thermal spraying.
  • The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over a substrate.
  • FIG. 2 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited over a bond coat.
  • FIG. 3 is a cross-sectional diagram illustrating an example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited over an intermediate layer and a bond coat.
  • FIG. 4 is cross-sectional diagram illustrating another example article that includes an abradable coating deposited over an environmental barrier coating, which is deposited directly on a substrate.
  • FIG. 5 is a cross-sectional diagram illustrating an exemplary article that includes an abradable coating deposited over a thermal barrier coating.
  • FIG. 6 is a conceptual diagram illustrating an example gas turbine blade and a gas turbine blade track or gas turbine blade shroud.
  • FIG. 7 is a cross-sectional diagram of an abradable coating, which includes a first layer and a second layer, deposited over a substrate.
  • FIG. 8 is a cross-sectional micrograph of an example article including a CMC substrate coated with a silicon bond coat and an abradable coating.
  • FIG. 9 is a cross-sectional micrograph of another example article including a CMC substrate coated with a silicon bond coat and an abradable coating.
  • FIG. 10 is a cross-sectional micrograph of an example article including a CMC substrate coated with a silicon bond coat and a multilayer abradable coating.
  • FIG. 11 is a cross-sectional micrograph of another example article including a substrate coated with a silicon bond coat and a multilayer abradable coating.
  • DETAILED DESCRIPTION
  • In general, the present disclosure is directed to an abradable coating that may be applied over a component of a high temperature mechanical system, such as a gas turbine blade track or blade shroud. The abradable coating includes a rare earth silicate, and in some embodiments, may consist essentially of a rare earth silicate. The abradable coating may be deposited over at least one of an environmental barrier coating, a thermal barrier coating, and a substrate, and may be deposited as a porous layer.
  • In some embodiments, the abradable coating may include a plurality of layers. For example, the abradable coating may include a first layer including a rare earth silicate and a second layer including stabilized zirconia (zirconium oxide) or stabilized hafnia (hafnium oxide). The first and second layers may alternate within the abradable coating, and the abradable coating may include one or more pair of first and second layers.
  • The abradable coating may provide a seal between the blade track or blade shroud and a gas turbine blade. The gas turbine blade may intentionally contact and abrade at least a portion of the abradable coating to form a groove in the abradable coating corresponding to the path of the turbine blade. This allows contact between the turbine blade and abradable coating while also allowing the turbine blade to rotate freely. In addition, the abradable coating may be usable in high temperature systems where rubber or other polymeric seals would degrade.
  • FIG. 1 illustrates a cross-sectional view of an exemplary article 100 used in a high-temperature mechanical system. Article 100 includes an abradable coating 108 deposited over a substrate 102.
  • Article 100 may be a component of a high temperature mechanical system, such as, for example, a gas turbine engine or the like. In some embodiments, article 100 may include a gas turbine blade track or gas turbine blade shroud. However, while the following description will be directed primarily to a gas turbine blade track, it will be understood that the disclosure is not limited to such embodiments. Rather, abradable coating 108 may be deposited over any article which requires or may benefit from an abradable coating. For example, abradable coating 108 may be deposited on a cylinder of an internal combustion engine, an industrial pump, a housing or internal seal ring of an air compressor, or an electric power turbine.
  • In some embodiments, as illustrated in FIG. 1, abradable coating 108 may be deposited directly on substrate 102. In other embodiments, abradable coating 108 may be deposited over substrate 102, with one or more intermediate layer between abradable coating 108 and substrate 102, as illustrated in FIGS. 2-5. As used herein, “deposited over” is defined as a layer or coating that is deposited on top of another layer or coating, and encompasses both a first layer or coating deposited immediately adjacent a second layer or coating and a first layer or coating deposited on top of a second layer or coating with one or more intermediate layer or coating present between the first and second layers or coatings. In contrast, “deposited directly on” denotes a layer or coating that is deposited immediately adjacent another layer or coating, i.e., there are no intermediate layers or coatings.
  • In some embodiments, substrate 102 may include a superalloy, such as a superalloy based on Ni, Co, Ni/Fe, or the like. A substrate 102 including a superalloy may include other additive elements to alter its mechanical properties, such as toughness, hardness, temperature stability, corrosion resistance, oxidation resistance, and the like, as is well known in the art. Any useful superalloy may be utilized for substrate 102, including, for example, those available from Martin-Marietta Corp., Bethesda, Md., under the trade designation MAR-M247; those available from Cannon-Muskegon Corp., Muskegon, Mich., under the trade designation CMSX-4 or CMXS-10; and the like.
  • In other embodiments, substrate 102 may include a ceramic or ceramic matrix composite (CMC). A substrate 102 including a ceramic or CMC may include any useful ceramic material, including, for example, silicon carbide, silicon nitride, alumina, silica, and the like. The CMC may further include any desired filler material, and the filler material may include a continuous reinforcement or a discontinuous reinforcement. For example, the filler material may include discontinuous whiskers, platelets, or particulates. As another example, the filler material may include a continuous monofilament or multifilament weave.
  • The filler composition, shape, size, and the like may be selected to provide the desired properties to the CMC. For example, the filler material may be chosen to increase the toughness of a brittle ceramic matrix. The filler may also be chosen to modify a thermal conductivity, electrical conductivity, thermal expansion coefficient, hardness, or the like of the CMC.
  • In some embodiments, the filler composition may be the same as the ceramic matrix material. For example, a silicon carbide matrix may surround silicon carbide whiskers. In other embodiments, the filler material may include a different composition than the ceramic matrix, such as aluminum silicate fibers in an alumina matrix, or the like. One preferred CMC includes silicon carbide continuous fibers embedded in a silicon carbide matrix.
  • Some example ceramics and CMCs which may be used for substrate 102 include ceramics containing Si, such as SiC and Si3N4; composites of SiC or Si3N4 and silicon oxynitride or silicon aluminum oxynitride; metal alloys that include Si, such as a molybdenum-silicon alloy (e.g., MoSi2) or niobium-silicon alloys (e.g., NbSi2); and oxide-oxide ceramics, such as an alumina or aluminosilicate matrix with a NEXTEL™ Ceramic Oxide Fiber 720 (available from 3M Co., St. Paul, Minn.).
  • Abradable coating 108 may include a material that provides at least one of erosion resistance, abradability, corrosion resistance, thermal shock resistance, manufacturability and high temperature capability. For example, abradability may include a disposition to break into relatively small pieces when exposed to a sufficient physical force. Abradability may be influenced by the material characteristics of abradable coating 108, such as fracture toughness and fracture mechanism (e.g., brittle fracture), as well as the porosity of abradable coating 108. Thermal shock resistance and high temperature capability may be important for use in a gas turbine engine, in which abradable coating 108 is exposed to wide temperature variations from high operating temperatures to low environmental temperatures when the gas turbine engine is not operating.
  • In order to accomplish at least some of the desired material properties mentioned above, abradable coating 108 may include at least one rare earth silicate. The rare earth silicate may include a silicate of at least one of Lu (lutetium), Yb (ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium), Sm (samarium), Pm (promethium), Nd (neodymium), Pr (praseodymium), Ce (cerium) La (lanthanum), Y (yttrium), and Sc (scandium). The rare earth silicate may include a rare earth monosilicate, which has the chemical formula RE2O3—SiO2 or, equivalently, RE2SiO5, where RE is a rare earth element, may include a rare earth disilicate, which has the formula RE2O3-2SiO2 or, equivalently, RE2Si2O7, where RE is a rare earth element, or may include a mixture of both rare earth monosilicate and rare earth disilicate. A rare earth monosilicate may be formed by a chemical reaction between one silica molecule and one rare earth oxide molecule, while a rare earth disilicate may be formed by a chemical reaction between two silica molecules and one rare earth oxide molecule.
  • In some embodiments, abradable coating 108 may include a mixture of rare earth monosilicate and rare earth disilicate. For example, abradable coating 108 may include a predominance of rare earth monosilicate when a rare earth oxide and silica are present in approximately a 1:1 molar ratio, but may still include some rare earth disilicate. Similarly, abradable coating 108 may include a predominance of rare earth disilicate when a rare earth oxide and silica are present in approximately a 1:2 molar ratio, but may still include some rare earth monosilicate.
  • In addition, abradable coating 108 may further include a silica (SiO2) molecule that is not associated with a rare earth oxide molecule, a rare earth oxide molecule that is not associated with a silica molecule, or both. For example, when the at least one rare earth oxide and silica are present in a rare earth oxide-to-silica ratio between approximately 1:1 and 1:2 or greater that approximately 1:2, abradable coating 108 may include solitary silica (i.e., silica not associated with a rare earth oxide). As another example, when the ratio of rare earth oxide-to-silica is less than approximately 1:1, abradable coating 108 may include solitary rare earth oxide (i.e., rare earth oxide not associated with silica).
  • Abradable coating 108 may further include other, optional, additive elements or compounds. The additive elements or compounds may modify the mechanical and/or chemical properties of abradable coating 108, such as, for example, a coefficient of thermal expansion of abradable coating, or a chemical or mechanical compatibility of abradable coating 108 with an adjacent layer, such as substrate 102. The additive elements may include, for example, alumina, Ta2O5, HfSiO4, alkali oxides, alkali earth oxides, or mixtures thereof.
  • As described briefly above, abradable coating 108 may be deposited over substrate 102 with one or more layers or coatings between abradable coating 108 and substrate 102. For example, abradable coating 108 may be deposited over a bond coat, which is deposited over substrate 102. Further details regarding exemplary bond coats will be described with reference to FIGS. 2 and 3 below, and any bond coat described in reference to those figures may be deposited over substrate 102, with abradable coating 108 deposited over the bond coat.
  • FIG. 2 illustrates a cross-sectional view of an example article 200 including a bond coat 204 deposited over substrate 102, an environmental barrier coating (EBC) 206 deposited over bond coat 204, and abradable coating 108 deposited over EBC 206. Abradable coating 108 may also be deposited directly over bond coat 204, without EBC 206 being present.
  • Bond coat 204 may be deposited over or deposited directly on substrate 102. Bond coat 204 may improve adhesion between EBC 106 and substrate 102. In embodiments in which substrate 102 includes a superalloy, bond coat 204 may include an alloy, such as a MCrAlY alloy (where M is Ni, Co, or NiCo), a β-NiAl nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof), a γ-Ni+γ′-Ni3Al nickel aluminide alloy (either unmodified or modified by Pt, Cr, Hf, Zr, Y, Si, and combinations thereof), or the like.
  • In other embodiments, bond coat 204 may include a ceramic or other material that is compatible with a substrate 102 that includes a ceramic or CMC. For example, bond coat 204 may include mullite (aluminum silicate, Al6Si2O13), silica, silicides, silicon, or the like. Bond coat 204 may further include other ceramics, such as rare earth silicates including silicates of Lu (lutetium), Yb (ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium), Sm (samarium), Pm (promethium), Nd (neodymium), Pr (praseodymium), Ce (cerium) La (lanthanum), Y (yttrium), and Sc (scandium). Some preferred compositions of a bond coat 204 for depositing over a CMC substrate 102 include silicon, mullite, and ytterbium silicate.
  • Bond coat 204 may be selected based on a number of considerations, including the chemical composition and phase constitution of EBC 206 and substrate 102. For example, when substrate 102 includes a superalloy with a γ-Ni+γ′-Ni3Al phase constitution, bond coat 204 preferably includes a γ-Ni+γ′-Ni3Al phase constitution to better match the coefficient of thermal expansion and/or chemistry of substrate 102, and therefore increase the mechanical and/or chemical stability (e.g., adhesion, chemical compatibility, or the like) of bond coat 204 to substrate 102. Alternatively, when substrate 102 includes a CMC, bond coat 204 preferably includes silicon and/or a ceramic, such as, for example, mullite or a rare earth silicate.
  • In some embodiments, an article 300, shown in cross-section in FIG. 3, may include multiple layers between substrate 102 and EBC 206. For example, bond coat 204 may be deposited over or deposited directly on substrate 102, and an intermediate layer 304 may be deposited over or deposited directly on bond coat 204. Bond coat 204 and intermediate layer 304 may be desirable because each layer may perform a separate function. For example, in some embodiments in which substrate 102 is a CMC including silicon carbide, a bond coat 204 including silicon may be deposited on substrate 102, followed by the deposition of intermediate layer 304 including mullite. The silicon layer may provide bonding while the mullite provides a gradual transition of thermal expansion and prevents water vapor from reaching the silicon bond coat 204.
  • In other embodiments, article 100 may not include a bond coat 204. For example, in some embodiments, as illustrated in FIG. 4, an article 400 may include EBC 206 deposited directly on substrate 102. Bond coat 204 may not be required or desired when EBC 206 and substrate 102 are chemically and/or mechanically compatible. For example, in embodiments in which EBC 206 and substrate 102 adhere sufficiently strongly to each other, bond coat 204 may not be necessary.
  • EBC 206 may include any layer which prevents environmental degradation of substrate 102. For example, EBC 206 may include materials that are resistant to oxidation or water vapor attack, and provide at least one of water vapor stability, chemical stability and environmental durability to substrate 102. EBC 206 may include, for example, mullite; glass ceramics such as barium strontium alumina silicate (BaOx—SrO1-x—Al2O3-2SiO2; BSAS), barium alumina silicate (BaO—Al2O3-2SiO2; BAS), calcium alumina silicate (CaO—Al2O3-2SiO2), strontium alumina silicate (SrO—Al2O3-2SiO2; SAS), lithium alumina silicate (Li2O—Al2O3-2SiO2; LAS) and magnesium alumina silicate (2MgO-2Al2O3-5SiO2; MAS); rare earth silicates and the like. EBC 206 may be applied by any useful technique, such as plasma spraying, physical vapor deposition (PVD), including electron beam physical vapor deposition (EB-PVD) and directed vapor deposition (DVD), chemical vapor deposition, cathodic arc deposition, slurry dipping, sol-gel coating, electrophoretic deposition and the like, and may be deposited as a substantially non-porous structure, which prevents water vapor or other gases from contacting substrate 102.
  • In some embodiments, as FIG. 4 further illustrates, substrate 102 may include a patterned or etched surface 402. Patterned surface 402 may improve adhesion between EBC 206 and substrate 102 by compartmentalizing the strain on the interface between EBC 206 and substrate 102 due to any thermal expansion coefficient mismatch between EBC 206 and substrate 102. Patterned surface 402 may include a pattern that extends in substantially one dimension along surface 402, such as an array of parallel grooves or ridges, or may include a pattern that extends in two dimensions along surface 402, such as an array of parallel lines extending in two or more directions and forming an array of rectangles, triangles, diamonds, or other shapes.
  • Patterned surface 402 may be formed by, for example, chemical or mechanical etching, laser ablation, or laser cladding.
  • In other embodiments, as illustrated in FIG. 5, a TBC 506 may be substituted for EBC 206. TBC 506 may be deposited over bond coat 204, as illustrated in FIG. 5, or may be deposited over substrate 102 without bond coat 204. TBC 506 may provide thermal insulation to substrate 102 to lower the temperature experienced by substrate 102. TBC 506 may include any useful insulative layer, including, for example, ceramic layers comprising zirconia or hafnia. TBC 506 may include other elements or compounds to modify a desired characteristic of the TBC 506, such as, for example, phase stability, thermal conductivity, or the like. Exemplary additive elements or compounds include, for example, rare earth oxides.
  • TBC 506 may be applied by any useful technique, including, for example, plasma spraying, electron beam physical vapor deposition, chemical vapor deposition, and the like. TBC 506 may be deposited as a porous structure, which reduces the effective thermal conductivity (by both radiation and conduction) of TBC 506. While not wishing to be bound by any theory, the porous structure may reduce the thermal conductivity of TBC 506 by reducing the area through which heat is conducted and by providing a large refractive index difference between the pores and the material from which TBC 506 is made, which can reduce heat transfer by radiation.
  • In some embodiments, an EBC 206/TBC 506 bilayer or multilayer coating may be desired to provide thermal protection and resistance to oxidation, water vapor attack, or the like. In some embodiments, TBC 506 may be deposited over EBC 206, while in other embodiments, EBC 206 may be deposited over TBC 506. In either case, the EBC 206/TBC 506 bilayer or multilayer coating may be applied over substrate 102 with or without bond coat 204.
  • Regardless of whether an article includes EBC 206, TBC 506, or both, abradable coating 108 may be deposited over or deposited directly on TBC 506 or EBC 206. Alternatively, the article may not include an EBC 206 or TBC 506, and abradable coating 108 may be deposited over or directly on substrate 102. As described briefly above, abradable coating 108 may be deposited as a porous layer, which is configured to abrade when contacted by a gas turbine blade tip. For example, as depicted in the conceptual diagram illustrated in FIG. 6, a gas turbine blade track or gas turbine blade shroud 600 (hereafter blade track 600) may include substrate 102, EBC 206 deposited over substrate 102, and abradable coating 108 deposited over EBC 106. FIG. 6 also illustrates a gas turbine blade 612, which includes a blade tip 614 which contacts abradable coating 108.
  • Blade tip 614 may include an abrasive coating or may not include an abrasive coating. In some embodiments, the abrasive coating may facilitate abrasion of abradable coating 108, and may protect blade tip 614 from damage from abradable coating 108. The abrasive coating may include, for example, cubic boron nitride or another coating with high fracture toughness and acceptable high temperature performance. However, a blade tip 614 including an abrasive coating may be more complex and thus more expensive than a blade tip 614 that does not include an abrasive coating. Accordingly, in some embodiments, blade tip 614 may not include an abrasive coating.
  • The contact between blade tip 614 and abradable coating 108 may be intentional for at least some of the temperatures experienced by blade track 600 and blade 612. For example, gas turbine blade 612 may experience thermal expansion when heated to its operating temperature from the temperature when the gas turbine engine is not in use. At the same time, the blade track 600 may also undergo thermal expansion when heated to the operating temperature. The thermal expansion experienced by turbine blade 612 and blade track 600 may result in a change in distance between substrate 102 of blade track 600 and blade tip 614. In some embodiments, the thickness of abradable layer 108 may be selected such that blade tip 614 approximately contacts surface 618 of abradable coating 108 at a low temperature, such as a minimum operating temperature or a temperature of the surrounding environment when the gas turbine engine is not operating. The thickness of abradable coating 108 may also be selected such that when turbine blade 612 and turbine track or turbine shroud 600 are at an operating temperature, blade tip 614 contacts and abrades at least a portion of abradable coating 108, but does not contact EBC 206.
  • As FIG. 6 illustrates, as blade 612 rotates in a direction indicated by arrow 616, blade tip 614 may contact abradable coating 108 and abrade a portion of coating 108 to form a groove 610 in abradable coating 108. The depth of groove 610 corresponds to the extent to which blade 612 extends into abradable coating 108. The depth of groove 610 may not be constant, as variations in fit between blade track 600 and turbine blade 612 may exist along the length of blade track 600.
  • Of course, in actual gas turbine engines, more than one blade is typically used. The gas turbine blades may follow substantially the same path along blade track 600 as the blades rotate during operation. However, the turbine blades may vary slightly in length or alignment, and thus may abrade different portions of abradable coating 108. Accordingly, groove 610 may be essentially a superposition of the grooves formed by each turbine blade 612. Because of this, the seal between a turbine blade 612 and abradable layer 108 may not be perfect, but may be improved compared to a seal between a turbine blade 612 and blade track 600 that does not include an abradable coating 108.
  • Abradable coating 108 may be deposited over or deposited directly on substrate 102, EBC 206 or TBC 506 using, for example, a thermal spraying technique, such as, for example, plasma spraying. Porosity of abradable coating 108 may be controlled by the use of coating material additives and/or processing techniques to create the desired porosity. In some embodiments, substantially closed pores may be desired.
  • For example, a coating material additive that melts or burns at the use temperatures of the component (e.g., blade track 600) may be incorporated into the coating material that forms abradable coating 108. The coating material additive may include, for example, graphite, hexagonal boron nitride, or a polymer such as a polyester, and may be incorporated into the coating material prior to deposition of the coating material over EBC 206 or TBC 506 to form abradable coating 108. The coating material additive then may be melted or burned off in a post-deposition heat treatment, or during operation of the gas turbine engine, to form pores in abradable coating 108. The post-deposition heat-treatment may be performed at up to about 1150° C. for a component having a substrate 102 including a superalloy, or at up to about 1500° C. for a component having a substrate 102 including a CMC or other ceramic.
  • The coating material additive may be exposed to various processing techniques to improve the amount of additive that remains entrapped within abradable coating 108 after thermal spraying. In some embodiments, the coating material and coating material additive may undergo attrition ball milling to attach the particles of the coating material additive to particles of the coating material. In other embodiments, the coating material additive may be attached to the coating material with an organic binder, such as, for example, a cellular methyl carbonate (CMC), which may also contain sodium or carbon. The use or processing techniques to improve the amount of additive that remains entrapped within abradable coating 108 after thermal spraying may improve at least one of the extent of porosity and the uniformity of porosity in abradable coating 108.
  • The porosity of abradable coating 108 can also be created and/or controlled by plasma spraying the coating material using a co-spray process technique in which the coating material and coating material additive are fed into the plasma stream with two radial powder feed injection ports. The feed pressures and flow rates of the coating material and coating material additive may be adjusted to inject the material on the outer edge of the plasma plume using direct 90 degree angle injection. This may permit the coating material particles to soften but not completely melt and the coating material additive to not burn off but rather soften sufficiently for adherence in abradable coating 108.
  • In some embodiments, the porosity of abradable coating 108 may be controlled to vary throughout at least a portion of abradable coating 108. For example, the porosity of abradable layer may be controlled to be greater adjacent surface 618 than adjacent EBC 206. This may be particularly advantageous when EBC 206 and abradable coating 108 are deposited in a unitary structure with varying porosity, instead of two separate layers, as will be described in further detail below.
  • As described briefly above, abradable coating 108 may be deposited to a range of thicknesses depending on various considerations. One consideration may be a predicted size change of components (e.g., blade 612 and blade track 600) at a low operating temperature or temperatures when the turbine engine is not operating and a maximum operating temperature. For example, thermal expansion of blade 612 may be expected to reduce the distance between blade tip 614 and substrate 102. In this example, the thickness of abradable coating 108 may be selected to be substantially equal to or greater than the predicted difference in the distance between blade tip 614 and substrate 102 at low operating temperatures and high operating temperatures. This may allow contact and formation of a seal between blade 612 and blade track or blade shroud 610 at substantially all operating temperatures, which may improve efficiency of the gas turbine engine throughout its operational temperature range.
  • In some embodiments, abradable coating 108 may be deposited to a thickness of up to approximately 0.1 inches (about 2.5 mm). In other embodiments, abradable coating 108 may be deposited to a thickness of approximately 0.030 to approximately 0.040 inches (approximately 0.76 mm to approximately 1.02 mm). In some embodiments, abradable coating 108 may be deposited to a thickness approximately equal to or greater than the desired final thickness and may be machined to the desired final thickness.
  • While abradable coating 108 has been described herein as a separate layer from EBC 206, in some embodiments, abradable coating 108 and EBC 206 may be formed as a unitary structure. For example, a thermal spraying process may include depositing a substantially nonporous EBC 206, and gradually changing the composition of the coating feed to include polyester, graphite or hexagonal Boron Nitride to provide a transition to a more porous layer. This may simplify the manufacture of the EBC 206 and abradable coating 108, and may also improve the adhesion of abradable coating 108 to EBC 206 by producing a gradual transition of the thermal conductivity and thermal expansion coefficients of the abradable coating 108 and EBC 206.
  • FIG. 7 illustrates an example of an article 700 that includes a multilayer abradable coating 708 deposited over a substrate 102. In the embodiment illustrated in FIG. 7, multilayer abradable coating 708 includes a first layer 722 deposited over substrate 102 and a second layer 724 deposited over first layer 722. First layer 722 may comprise a first material, while second layer 724 may comprise a second material different from the first material.
  • In other embodiments, multilayer abradable coating 708 may include more than two layers 722 and 724, such as, for example, a plurality of pairs of first layer 722 and second layer 724. For example, multilayer abradable coating 708 may include two pairs of first layer 722 and second layer 724, arranged in alternating layers (e.g., first layer 722, second layer 724, first layer 722, second layer 724). Multilayer abradable coating 708 may include any number of pairs of first layer 722 and second layer 724.
  • First layer 722 may include, or may consist essentially of, a rare earth silicate, similar to those described above with reference to abradable layer 108. First layer 722 may include, for example, monosilicates, disilicates, or both of at least one of Lu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, La, Y, Sc, and the like. In some embodiments, first layer 722 may also include at least one of silica or a rare earth oxide, which may be present in addition to the rare earth silicate. First layer 722 also may include at least one of alumina, Ta2O5, HfSiO4, alkali oxides, and alkali earth oxides.
  • Second layer 724 may include, or may consist essentially of, stabilized zirconia or stabilized hafnia. Each of stabilized zirconia and stabilized hafnia includes the base oxide (e.g., zirconia or hafnia) stabilized by the inclusion of one or more additive elements or compounds. For example, stabilized zirconia or stabilized hafnia may include a rare earth oxide incorporated in the zirconia or hafnia. The rare earth oxide may modify or improve the phase stability, thermal conductivity, or another characteristic of the hafnia or zirconia.
  • While FIG. 7 illustrates second layer 724 as deposited over first layer 722, in other embodiments, second layer 724 (e.g., the layer include stabilized zirconia or stabilized hafnia) may be deposited over or deposited directly on substrate 102. First layer 722 (e.g., the layer including the rare earth silicate) then may be deposited over or deposited directly on second layer 724. Once again, abradable coating 708 may include more than one layer pair of first layer 722 and second layer 724.
  • EXAMPLES Example 1
  • FIG. 8 is a cross-sectional micrograph of an article 800 including a Si bond coat 804 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 802. The article 800 further includes an Yb2Si2O7 (ytterbium disilicate) abradable coating 808 deposited over the Si bond coat 804 to a thickness of about 60 mils (about 1.524 mm), as indicated by reference numeral 810. Each of Si bond coat 804 and Yb2Si2O7 abradable coating 808 was deposited by plasma spraying. FIG. 8 shows the article 800 after exposure to 100 one-hour thermal cycles in steam at 1600° F. As FIG. 8 illustrates, the Yb2Si2O7 abradable coating maintained good adherence to the SiC/SiC CMC substrate 802 after completion of the thermal cycles.
  • Example 2
  • FIG. 9 is a cross-sectional micrograph of an article 900 including a Si bond coat 904 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 902. The article 900 further includes an Yb2Si2O7 (ytterbium disilicate) abradable coating 908 deposited over the Si bond coat 904 to a thickness of about 60 mils (about 1.524 mm), as indicated by reference numeral 910. Each of Si bond coat 904 and Yb2Si2O7 abradable coating 908 was deposited by plasma spraying. FIG. 9 shows the article 900 after exposure to 100 one-hour thermal cycles in steam at 2400° F. As FIG. 9 illustrates, the Yb2Si2O7 abradable coating 908 maintained good adherence to the SiC/SiC CMC substrate 902 after completion of the thermal cycles.
  • Example 3
  • FIG. 10 is a cross-sectional micrograph of an article 1000 including a Si bond coat 1004 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 1002. The article 1000 further includes a multilayer abradable coating 1008 deposited over the Si bond coat 1000. The multilayer abradable coating 1008 includes a layer of Yb2Si2O7 (ytterbium disilicate) 1010 deposited over the Si bond coat 1004 and a layer of zirconia 1012 stabilized by about 7 wt. % (weight percent) yttrium oxide deposited over the Yb2Si2O7 1010. The Yb2Si2O7 1010 was deposited to a thickness of about 40 mils (about 1.016 mm), as indicated by reference numeral 1014, and the layer of zirconia 1012 was deposited to a thickness of about 10 mils (about 0.254 mm), as indicated by reference numeral 1016. Each of Si bond coat 1004 and Yb2Si2O7 abradable coating 1008 was deposited by plasma spraying. FIG. 10 shows the article 1000 after exposure to 100 one-hour thermal cycles in steam at 1600° F. As FIG. 10 illustrates, the multilayer abradable coating 1008 maintained good adherence to the SiC/SiC CMC substrate 1002 after completion of the thermal cycles.
  • Example 4
  • FIG. 11 is a cross-sectional micrograph of an article 1100 including a Si bond coat 1104 having a thickness of about 0.003 inches deposited over a SiC/SiC ceramic matrix composite (CMC) substrate 1102. The article 1100 further includes a multilayer abradable coating 1108 deposited over the Si bond coat 1100. The multilayer abradable coating 1108 includes a layer of Yb2Si2O7 (ytterbium disilicate) 1110 deposited over the Si bond coat 1104 to a thickness of about 40 mils (about 1.016 mm), as indicated by reference numeral 1114, and a layer of zirconia stabilized by about 7 wt. % (weight percent) yttrium oxide deposited over the Yb2Si2O7 1110. Each of Si bond coat 1104 and multilayer abradable coating 1108 was deposited by plasma spraying. FIG. 11 shows the article 1100 after exposure to 100 one-hour thermal cycles in steam at 2400° F. As FIG. 11 illustrates, the multilayer abradable coating 1108 maintained good adherence to the SiC/SiC CMC substrate 1102 after completion of the thermal cycles.
  • Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.

Claims (18)

1. A method comprising:
depositing over a substrate of a blade track or a blade shroud a multilayer, porous abradable coating, wherein the multilayer, porous abradable coating comprises a plurality of layer pairs, and wherein each layer pair comprises a first layer including a rare earth silicate and a second layer including at least one of stabilized zirconia and stabilized hafnia; and
disposing at least one gas turbine blade comprising a blade tip relative to the blade track or the blade shroud so the blade tip contacts a portion of the multilayer, porous abradable coating during rotation of the gas turbine blade, and wherein the multilayer, porous abradable coating is configured to be abraded by the contact by the blade tip.
2. The method of claim 1, further comprising:
depositing over the substrate an environmental barrier coating (EBC) comprising at least one of mullite, barium strontium alumina silicate, barium alumina silicate, calcium alumina silicate, strontium alumina silicate, lithium alumina silicate, magnesium alumina silicate, or a rare earth silicate, and
wherein depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating comprises depositing over the EBC the multilayer, porous abradable coating.
3. The method of claim 2, wherein depositing over the substrate the EBC comprises depositing over the substrate the EBC comprising the rare earth silicate.
4. The method of claim 1, wherein the porous abradable coating comprises a first surface adjacent the substrate and a second surface opposite the substrate, and wherein depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating comprises, depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating including a first porosity of the multilayer, porous abradable coating proximate the first surface and a second, different porosity of the multilayer, porous abradable coating proximate the second surface.
5. The method of claim 4, wherein the first porosity is less than the second porosity.
6. The method of claim 1, wherein depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating comprises thermal spraying over the substrate the first layer comprising the rare earth silicate and a coating material additive.
7. The method of claim 6, wherein the coating material additive comprises at least one of graphite, hexagonal boron nitride, and a polymer.
8. The method of claim 7, wherein the coating material additive comprises polyester.
9. The method of claim 6, further comprising subjecting the multilayer, porous abradable coating to a heat treatment.
10. The method of claim 9, wherein subjecting the multilayer, porous abradable coating to the heat treatment at least one of burns and melts the coating material additive to form pores in the first layer.
11. The method of claim 1, wherein at least one of the first layers of the multilayer, porous abradable coating comprises at least one of RE2SiO5 and RE2Si2O7, and wherein RE is a rare earth element.
12. The method of claim 1, wherein at least one of the first layers of the multilayer, porous abradable coating comprises a rare earth oxide.
13. The method of claim 1, wherein at least one of the first layers of the multilayer, porous abradable coating comprises silica.
14. The method of claim 1, wherein at least one of the first layers of the multilayer, porous abradable coating comprises at least one of alumina, Ta2O5, HfSiO4, an alkali oxide, and an alkali earth oxide.
15. The method of claim 1, further comprising depositing over the substrate a bond coat, and wherein depositing over the substrate the EBC comprises depositing the EBC over the bond coat.
16. The method of claim 1, further comprising depositing over the substrate a thermal barrier coating (TBC), and wherein depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating comprises depositing the multilayer, porous abradable coating over the TBC.
17. The method of claim 16, further comprising depositing over the substrate a bond coat, and wherein depositing over the substrate the TBC comprises depositing over the bond coat the TBC.
18. The method of claim 1, further comprising depositing over the substrate a bond coat, and wherein depositing over the substrate of the blade track or the blade shroud the multilayer, porous abradable coating comprises depositing over the bond coat the multilayer, porous abradable coating.
US13/359,232 2008-11-25 2012-01-26 Abradable layer including a rare earth silicate Abandoned US20120128879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/359,232 US20120128879A1 (en) 2008-11-25 2012-01-26 Abradable layer including a rare earth silicate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11779708P 2008-11-25 2008-11-25
US12/624,938 US8124252B2 (en) 2008-11-25 2009-11-24 Abradable layer including a rare earth silicate
US13/359,232 US20120128879A1 (en) 2008-11-25 2012-01-26 Abradable layer including a rare earth silicate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/624,938 Division US8124252B2 (en) 2008-11-25 2009-11-24 Abradable layer including a rare earth silicate

Publications (1)

Publication Number Publication Date
US20120128879A1 true US20120128879A1 (en) 2012-05-24

Family

ID=41682730

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/624,938 Active US8124252B2 (en) 2008-11-25 2009-11-24 Abradable layer including a rare earth silicate
US13/359,232 Abandoned US20120128879A1 (en) 2008-11-25 2012-01-26 Abradable layer including a rare earth silicate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/624,938 Active US8124252B2 (en) 2008-11-25 2009-11-24 Abradable layer including a rare earth silicate

Country Status (3)

Country Link
US (2) US8124252B2 (en)
EP (1) EP2192098A3 (en)
CA (1) CA2686332C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078085A1 (en) * 2011-09-27 2013-03-28 Christopher W. Strock Blade air seal with integral barrier
CN104564185A (en) * 2013-10-28 2015-04-29 通用电气公司 Microchannel exhaust for cooling and/or purging gas turbine segment gaps
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US10273192B2 (en) * 2015-02-17 2019-04-30 Rolls-Royce Corporation Patterned abradable coating and methods for the manufacture thereof
JP2019533090A (en) * 2016-10-18 2019-11-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
EP3583240A4 (en) * 2017-02-17 2020-07-15 Oerlikon Metco (US) Inc. Fiber porosity forming fillers in thermal spray powders and coatings and method making and using the same
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating
US11078798B2 (en) 2015-03-26 2021-08-03 General Electric Company Methods of deposition of thick environmental barrier coatings on CMC blade tips
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
EP2344590B1 (en) * 2008-09-30 2016-11-30 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
US8124252B2 (en) 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate
US8470460B2 (en) 2008-11-25 2013-06-25 Rolls-Royce Corporation Multilayer thermal barrier coatings
US20110033630A1 (en) * 2009-08-05 2011-02-10 Rolls-Royce Corporation Techniques for depositing coating on ceramic substrate
US20130129938A1 (en) * 2010-01-06 2013-05-23 Direct Vapor Technologies International Method for the co-evaporation and deposition of materials with differing vapor pressures
US20120107103A1 (en) * 2010-09-28 2012-05-03 Yoshitaka Kojima Gas turbine shroud with ceramic abradable layer
US9139480B2 (en) * 2011-02-28 2015-09-22 Honeywell International Inc. Protective coatings and coated components comprising the protective coatings
EP2683844B1 (en) * 2011-03-09 2019-05-08 Rolls-Royce Corporation Abradable layer
US20140072816A1 (en) * 2011-03-23 2014-03-13 Rolls-Royce Corporation Bond layers for ceramic or ceramic matrix composite substrates
EP2540973A1 (en) * 2011-06-30 2013-01-02 Siemens Aktiengesellschaft Seal system for a gas turbine
US20130236302A1 (en) * 2012-03-12 2013-09-12 Charles Alexander Smith In-situ gas turbine rotor blade and casing clearance control
WO2014031963A1 (en) * 2012-08-24 2014-02-27 Barson Composites Corporation Coatings for fluid energy device components
US11047033B2 (en) * 2012-09-05 2021-06-29 Raytheon Technologies Corporation Thermal barrier coating for gas turbine engine components
EP2971216A1 (en) * 2013-03-11 2016-01-20 Kang N. Lee Environmental barrier coating-based thermal barrier coatings for ceramic matrix composites
US20140272168A1 (en) 2013-03-12 2014-09-18 Rolls-Royce Corporation Method for fabricating multilayer environmental barrier coatings
US9764989B2 (en) 2013-03-13 2017-09-19 Rolls-Royce Corporation Reactive fiber interface coatings for improved environmental stability
US20160160664A1 (en) * 2013-03-15 2016-06-09 General Electric Company Recession resistant ceramic matrix composites and environmental barrier coatings
US20150003997A1 (en) * 2013-07-01 2015-01-01 United Technologies Corporation Method of forming hybrid metal ceramic components
US20150093237A1 (en) * 2013-09-30 2015-04-02 General Electric Company Ceramic matrix composite component, turbine system and fabrication process
WO2015053948A1 (en) * 2013-10-09 2015-04-16 United Technologies Corporation Aluminum alloy coating with rare earth and transition metal corrosion inhibitors
WO2015076962A1 (en) * 2013-11-20 2015-05-28 United Technologies Corporation Erosion resistant coating for air seal
US10022921B2 (en) 2013-12-19 2018-07-17 General Electric Company Turbine component patch delivery systems and methods
US10676403B2 (en) * 2014-01-16 2020-06-09 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
WO2015130527A2 (en) 2014-02-25 2015-09-03 Siemens Aktiengesellschaft Turbine component thermal barrier coating with depth-varying material properties
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US9890089B2 (en) * 2014-03-11 2018-02-13 General Electric Company Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
EP3149227B1 (en) 2014-05-27 2018-10-24 General Electric Company Lanthanum molybdate abradable coatings
US9957826B2 (en) 2014-06-09 2018-05-01 United Technologies Corporation Stiffness controlled abradeable seal system with max phase materials and methods of making same
WO2016003571A1 (en) * 2014-06-30 2016-01-07 General Electric Comapny Thermal and environmental barrier coating compositions
US9556743B2 (en) 2014-07-03 2017-01-31 Rolls-Royce Corporation Visual indicator of coating thickness
US10132185B2 (en) 2014-11-07 2018-11-20 Rolls-Royce Corporation Additive process for an abradable blade track used in a gas turbine engine
US10329205B2 (en) 2014-11-24 2019-06-25 Rolls-Royce Corporation Bond layer for silicon-containing substrates
EP3040441A1 (en) * 2014-12-31 2016-07-06 General Electric Company Shroud abradable coatings and methods of manufacturing
DE102015100441A1 (en) * 2015-01-13 2016-07-14 Airbus Defence and Space GmbH Structure or component for high-temperature applications and method and apparatus for producing the same
US20160230570A1 (en) * 2015-02-11 2016-08-11 Rolls-Royce High Temperature Composites Inc. Modified atmosphere melt infiltration
US20160236994A1 (en) * 2015-02-17 2016-08-18 Rolls-Royce Corporation Patterned abradable coatings and methods for the manufacture thereof
WO2016133982A1 (en) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Forming cooling passages in thermal barrier coated, combustion turbine superalloy components
WO2016133581A1 (en) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Turbine shroud with abradable layer having composite non-inflected triple angle ridges and grooves
US20160305319A1 (en) * 2015-04-17 2016-10-20 General Electric Company Variable coating porosity to influence shroud and rotor durability
US10465534B2 (en) * 2015-06-05 2019-11-05 Rolls-Royce North American Technologies, Inc. Machinable CMC insert
US10458653B2 (en) * 2015-06-05 2019-10-29 Rolls-Royce Corporation Machinable CMC insert
US10472976B2 (en) * 2015-06-05 2019-11-12 Rolls-Royce Corporation Machinable CMC insert
EP3165629A1 (en) * 2015-11-06 2017-05-10 Rolls-Royce Corporation Plasma spray physical vapor deposition deposited environmental barrier coating
US10145252B2 (en) * 2015-12-09 2018-12-04 General Electric Company Abradable compositions and methods for CMC shrouds
US20170191152A1 (en) * 2015-12-31 2017-07-06 General Electric Company Environmental Barrier Coatings and Methods of Deposition Thereof
EP3199507A1 (en) 2016-01-29 2017-08-02 Rolls-Royce Corporation Plasma spray physical vapor deposition deposited multilayer, multi-microstructure environmental barrier coating
US10247027B2 (en) * 2016-03-23 2019-04-02 United Technologies Corporation Outer airseal insulated rub strip
US20170292402A1 (en) * 2016-04-11 2017-10-12 United Technologies Corporation Organic matrix composite thermal barrier coating
US10662517B2 (en) * 2016-08-12 2020-05-26 Raytheon Technologies Corporation Aluminum fan blade tip prepared for thermal spray deposition of abrasive by laser ablation
EP3351522B1 (en) 2017-01-18 2020-04-22 Rolls-Royce Corporation Bond layer for ceramic or ceramic matrix composite
US11209010B2 (en) * 2017-02-13 2021-12-28 Raytheon Technologies Corporation Multilayer abradable coating
US20180258783A1 (en) * 2017-03-08 2018-09-13 General Electric Company Abradable material coating repair and steam turbine stationary component
US10934626B2 (en) * 2017-04-21 2021-03-02 General Electric Company Segmented environmental barrier coating systems and methods of forming the same
US10801111B2 (en) * 2017-05-30 2020-10-13 Honeywell International Inc. Sintered-bonded high temperature coatings for ceramic turbomachine components
US10858950B2 (en) 2017-07-27 2020-12-08 Rolls-Royce North America Technologies, Inc. Multilayer abradable coatings for high-performance systems
US10900371B2 (en) 2017-07-27 2021-01-26 Rolls-Royce North American Technologies, Inc. Abradable coatings for high-performance systems
US10871078B2 (en) 2017-09-27 2020-12-22 Rolls-Royce Corporation Low porosity abradable coating
CN108373342B (en) * 2018-03-19 2020-08-28 广东省新材料研究所 Composite-structure environmental barrier coating, preparation method and application thereof, and aero-engine
US10808565B2 (en) * 2018-05-22 2020-10-20 Rolls-Royce Plc Tapered abradable coatings
US11555241B2 (en) * 2018-07-03 2023-01-17 Raytheon Technologies Corporation Coating system having synthetic oxide layers
US11668198B2 (en) 2018-08-03 2023-06-06 Raytheon Technologies Corporation Fiber-reinforced self-healing environmental barrier coating
US11535571B2 (en) 2018-08-16 2022-12-27 Raytheon Technologies Corporation Environmental barrier coating for enhanced resistance to attack by molten silicate deposits
US10934220B2 (en) 2018-08-16 2021-03-02 Raytheon Technologies Corporation Chemical and topological surface modification to enhance coating adhesion and compatibility
EP3611146B1 (en) * 2018-08-16 2021-03-24 Raytheon Technologies Corporation Machinable coatings fabricated by slurry methods for use on ceramic matrix composites
US11505506B2 (en) 2018-08-16 2022-11-22 Raytheon Technologies Corporation Self-healing environmental barrier coating
US11084761B2 (en) 2018-09-14 2021-08-10 Honeywell International Inc. Method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate
US11827574B2 (en) 2018-09-14 2023-11-28 Honeywell International Inc. Method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate
US11236023B2 (en) * 2018-11-07 2022-02-01 Honeywell International Inc. Method of forming a protective coating on a surface of a ceramic substrate
BE1026993B1 (en) * 2019-01-29 2020-08-24 Atlas Copco Airpower Nv Dry-running System with Wear-resistant sealing element, sealing element therefor and method for assembling the system
US11612986B2 (en) 2019-12-17 2023-03-28 Rolls-Royce Corporation Abrasive coating including metal matrix and ceramic particles
US11686208B2 (en) * 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
FR3107905B1 (en) * 2020-03-03 2022-01-28 Safran Ceram Process for coating a ceramic matrix composite material part with an environmental barrier
US20210324201A1 (en) * 2020-04-15 2021-10-21 General Electric Company Consumable coatings and methods of protecting a high temperature component from dust deposits
WO2021213735A1 (en) 2020-04-24 2021-10-28 Rolls-Royce Deutschland Ltd & Co Kg Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material
US11326469B2 (en) * 2020-05-29 2022-05-10 Rolls-Royce Corporation CMCs with luminescence environmental barrier coatings
US11845701B2 (en) * 2020-07-21 2023-12-19 Rolls-Royce Corporation EBC layer containing boron
US11566531B2 (en) * 2020-10-07 2023-01-31 Rolls-Royce Corporation CMAS-resistant abradable coatings
US11486263B1 (en) 2021-06-28 2022-11-01 General Electric Company System for addressing turbine blade tip rail wear in rubbing and cooling
US11555452B1 (en) * 2021-07-16 2023-01-17 Raytheon Technologies Corporation Ceramic component having silicon layer and barrier layer
US11761341B2 (en) 2021-07-27 2023-09-19 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
CN114988895A (en) * 2022-06-20 2022-09-02 中国科学院金属研究所 Impact-resistant thermal cycle and CMAS corrosion resistant complex phase eutectoid environmental barrier coating and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588607A (en) * 1984-11-28 1986-05-13 United Technologies Corporation Method of applying continuously graded metallic-ceramic layer on metallic substrates
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
US20020063118A1 (en) * 1999-10-04 2002-05-30 Koshkarian Kent A. Method for forming a rare earth silicate coating on a silicon based ceramic component by controlled oxidation for improved corrosion resistance
US6733908B1 (en) * 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
US6835465B2 (en) * 1996-12-10 2004-12-28 Siemens Westinghouse Power Corporation Thermal barrier layer and process for producing the same
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
US20060121295A1 (en) * 2004-12-06 2006-06-08 General Electric Company Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
US20060166015A1 (en) * 2005-01-21 2006-07-27 Irene Spitsberg Thermal/environmental barrier coating with transition layer for silicon-comprising materials
US7695830B2 (en) * 2006-09-06 2010-04-13 Honeywell International Inc. Nanolaminate thermal barrier coatings
US7740960B1 (en) * 2005-08-26 2010-06-22 The United States Of America As Represented By The Secretary Of The Army Multifunctionally graded environmental barrier coatings for silicon-base ceramic components

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2400705C3 (en) 1974-01-08 1984-05-03 Miele & Cie GmbH & Co, 4830 Gütersloh Coating tank with electrodes
US4094673A (en) 1974-02-28 1978-06-13 Brunswick Corporation Abradable seal material and composition thereof
US3964877A (en) 1975-08-22 1976-06-22 General Electric Company Porous high temperature seal abradable member
US4914794A (en) 1986-08-07 1990-04-10 Allied-Signal Inc. Method of making an abradable strain-tolerant ceramic coated turbine shroud
US5350599A (en) 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
US5660885A (en) 1995-04-03 1997-08-26 General Electric Company Protection of thermal barrier coating by a sacrificial surface coating
US5773141A (en) 1995-04-06 1998-06-30 General Electric Company Protected thermal barrier coating composite
US5851678A (en) 1995-04-06 1998-12-22 General Electric Company Composite thermal barrier coating with impermeable coating
US5871820A (en) 1995-04-06 1999-02-16 General Electric Company Protection of thermal barrier coating with an impermeable barrier coating
US5714202A (en) 1995-06-07 1998-02-03 Lemelson; Jerome H. Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings
JP4245661B2 (en) 1995-06-26 2009-03-25 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating composite protected by multiple coatings
US6465090B1 (en) 1995-11-30 2002-10-15 General Electric Company Protective coating for thermal barrier coatings and coating method therefor
US6261643B1 (en) 1997-04-08 2001-07-17 General Electric Company Protected thermal barrier coating composite with multiple coatings
US5869146A (en) 1997-11-12 1999-02-09 United Technologies Corporation Plasma sprayed mullite coatings on silicon based ceramic materials
US6057047A (en) 1997-11-18 2000-05-02 United Technologies Corporation Ceramic coatings containing layered porosity
US6723674B2 (en) 2000-09-22 2004-04-20 Inframat Corporation Multi-component ceramic compositions and method of manufacture thereof
US6645649B2 (en) 2000-10-31 2003-11-11 Kyocera Corporation Surface-coated sintered body of silicon nitride
US7001859B2 (en) 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6812176B1 (en) 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6617037B2 (en) * 2001-12-19 2003-09-09 United Technologies Corporation Silicon based substrate with a CTE compatible layer on the substrate
US20030138658A1 (en) 2002-01-22 2003-07-24 Taylor Thomas Alan Multilayer thermal barrier coating
US6720038B2 (en) 2002-02-11 2004-04-13 General Electric Company Method of forming a coating resistant to deposits and coating formed thereby
US6627323B2 (en) 2002-02-19 2003-09-30 General Electric Company Thermal barrier coating resistant to deposits and coating method therefor
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US6730422B2 (en) 2002-08-21 2004-05-04 United Technologies Corporation Thermal barrier coatings with low thermal conductivity
US6890668B2 (en) 2002-08-30 2005-05-10 General Electric Company Thermal barrier coating material
US7226668B2 (en) 2002-12-12 2007-06-05 General Electric Company Thermal barrier coating containing reactive protective materials and method for preparing same
US20040115470A1 (en) 2002-12-12 2004-06-17 Ackerman John Frederick Thermal barrier coating protected by infiltrated alumina and method for preparing same
US6893750B2 (en) 2002-12-12 2005-05-17 General Electric Company Thermal barrier coating protected by alumina and method for preparing same
US6933066B2 (en) 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by tantalum oxide and method for preparing same
US6933061B2 (en) 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
US6887528B2 (en) 2002-12-17 2005-05-03 General Electric Company High temperature abradable coatings
US20050003172A1 (en) 2002-12-17 2005-01-06 General Electric Company 7FAstage 1 abradable coatings and method for making same
US6787195B2 (en) 2003-02-03 2004-09-07 General Electric Company Method of depositing a coating on Si-based ceramic composites
US6902836B2 (en) 2003-05-22 2005-06-07 United Technologies Corporation Environmental barrier coating for silicon based substrates such as silicon nitride
US7063894B2 (en) 2003-05-22 2006-06-20 United Technologies Corporation Environmental barrier coating for silicon based substrates
US6903162B2 (en) * 2003-07-01 2005-06-07 Equistar Chemicals, Lp Preparation of polyethylene films
US20050129973A1 (en) * 2003-12-16 2005-06-16 Eaton Harry E. Velocity barrier layer for environmental barrier coatings
US6887595B1 (en) 2003-12-30 2005-05-03 General Electric Company Thermal barrier coatings having lower layer for improved adherence to bond coat
JP4681841B2 (en) 2004-06-18 2011-05-11 京セラ株式会社 Corrosion resistant silicon nitride ceramics
US20060014029A1 (en) 2004-07-15 2006-01-19 General Electric Company Article including environmental barrier coating system, and method for making
US7927722B2 (en) 2004-07-30 2011-04-19 United Technologies Corporation Dispersion strengthened rare earth stabilized zirconia
US7422671B2 (en) 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures
US7666512B2 (en) 2004-08-09 2010-02-23 United Technologies Corporation Thermal resistant environmental barrier coating
KR100953707B1 (en) 2004-08-24 2010-04-19 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Semiconductor processing components and semiconductor processing utilizing same
US7374825B2 (en) 2004-12-01 2008-05-20 General Electric Company Protection of thermal barrier coating by an impermeable barrier coating
US20060115661A1 (en) 2004-12-01 2006-06-01 General Electric Company Protection of thermal barrier coating by a sacrificial coating
US20060154093A1 (en) 2005-01-13 2006-07-13 General Electric Company Multilayered environmental barrier coating and related articles and methods
US7449254B2 (en) 2005-01-21 2008-11-11 General Electric Company Environmental barrier coating with physical barrier layer for silicon-comprising materials
US20060210800A1 (en) 2005-03-21 2006-09-21 Irene Spitsberg Environmental barrier layer for silcon-containing substrate and process for preparing same
US7374818B2 (en) * 2005-05-23 2008-05-20 United Technologies Corporation Coating system for silicon based substrates
US20060280955A1 (en) 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
US7354651B2 (en) * 2005-06-13 2008-04-08 General Electric Company Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same
US7357994B2 (en) 2005-06-14 2008-04-15 General Electric Company Thermal/environmental barrier coating system for silicon-containing materials
US7955707B2 (en) 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. High purity ceramic abradable coatings
US7780832B2 (en) 2005-11-30 2010-08-24 General Electric Company Methods for applying mitigation coatings, and related articles
US7595114B2 (en) 2005-12-09 2009-09-29 General Electric Company Environmental barrier coating for a component and method for fabricating the same
US7510777B2 (en) 2005-12-16 2009-03-31 General Electric Company Composite thermal barrier coating with improved impact and erosion resistance
US20070160859A1 (en) 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
EP1976647A2 (en) 2006-01-25 2008-10-08 Ceramatec, Inc. Environmental and thermal barrier coating to provide protection in various environments
US20070207330A1 (en) 2006-03-01 2007-09-06 Sonia Tulyani Adhesive protective coatings, non-line of sight methods for their preparation, and coated articles
US20080274336A1 (en) 2006-12-01 2008-11-06 Siemens Power Generation, Inc. High temperature insulation with enhanced abradability
US20080206542A1 (en) 2007-02-22 2008-08-28 Siemens Power Generation, Inc. Ceramic matrix composite abradable via reduction of surface area
US20090162556A1 (en) * 2007-12-20 2009-06-25 Brett Allen Boutwell Methods for making tape cast barrier coatings, components comprising the same and tapes made according to the same
US20090184280A1 (en) 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
US20090186237A1 (en) 2008-01-18 2009-07-23 Rolls-Royce Corp. CMAS-Resistant Thermal Barrier Coatings
EP2344590B1 (en) 2008-09-30 2016-11-30 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
US8470460B2 (en) 2008-11-25 2013-06-25 Rolls-Royce Corporation Multilayer thermal barrier coatings
US8124252B2 (en) 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate
US20110033630A1 (en) 2009-08-05 2011-02-10 Rolls-Royce Corporation Techniques for depositing coating on ceramic substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588607A (en) * 1984-11-28 1986-05-13 United Technologies Corporation Method of applying continuously graded metallic-ceramic layer on metallic substrates
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
US6835465B2 (en) * 1996-12-10 2004-12-28 Siemens Westinghouse Power Corporation Thermal barrier layer and process for producing the same
US20020063118A1 (en) * 1999-10-04 2002-05-30 Koshkarian Kent A. Method for forming a rare earth silicate coating on a silicon based ceramic component by controlled oxidation for improved corrosion resistance
US6733908B1 (en) * 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
US20060121295A1 (en) * 2004-12-06 2006-06-08 General Electric Company Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
US20060166015A1 (en) * 2005-01-21 2006-07-27 Irene Spitsberg Thermal/environmental barrier coating with transition layer for silicon-comprising materials
US7740960B1 (en) * 2005-08-26 2010-06-22 The United States Of America As Represented By The Secretary Of The Army Multifunctionally graded environmental barrier coatings for silicon-base ceramic components
US7695830B2 (en) * 2006-09-06 2010-04-13 Honeywell International Inc. Nanolaminate thermal barrier coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
definition of "distinct", dictionary.com, pages 1-3, retrieved December 3, 2013. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US20130078085A1 (en) * 2011-09-27 2013-03-28 Christopher W. Strock Blade air seal with integral barrier
US8777562B2 (en) * 2011-09-27 2014-07-15 United Techologies Corporation Blade air seal with integral barrier
CN104564185A (en) * 2013-10-28 2015-04-29 通用电气公司 Microchannel exhaust for cooling and/or purging gas turbine segment gaps
US10273192B2 (en) * 2015-02-17 2019-04-30 Rolls-Royce Corporation Patterned abradable coating and methods for the manufacture thereof
US11078798B2 (en) 2015-03-26 2021-08-03 General Electric Company Methods of deposition of thick environmental barrier coatings on CMC blade tips
JP2019533090A (en) * 2016-10-18 2019-11-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
JP7271429B2 (en) 2016-10-18 2023-05-11 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and the coated substrate obtained by the method
EP3583240A4 (en) * 2017-02-17 2020-07-15 Oerlikon Metco (US) Inc. Fiber porosity forming fillers in thermal spray powders and coatings and method making and using the same
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating

Also Published As

Publication number Publication date
EP2192098A2 (en) 2010-06-02
CA2686332A1 (en) 2010-05-25
EP2192098A3 (en) 2016-04-06
CA2686332C (en) 2014-08-05
US8124252B2 (en) 2012-02-28
US20100129636A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
US8124252B2 (en) Abradable layer including a rare earth silicate
US10871078B2 (en) Low porosity abradable coating
US11506073B2 (en) Multilayer abradable coatings for high-performance systems
EP2683844B1 (en) Abradable layer
EP2189504B1 (en) Reinforced oxide coatings
US9713912B2 (en) Features for mitigating thermal or mechanical stress on an environmental barrier coating
EP2553027B1 (en) Multilayer cmas-resistant barrier coating
US20130136915A1 (en) Durable environmental barrier coatings for ceramic substrates
US10900371B2 (en) Abradable coatings for high-performance systems
US11313243B2 (en) Non-continuous abradable coatings
JP6560266B2 (en) Thermal barrier and environmental coating composition
EP3838870A1 (en) Cmas-resistant abradable coatings
KR20040077771A (en) Multilayer thermal barrier coating
JP2006347870A (en) Bond coat for corrosion resistant environmental barrier coating for silicon-containing substrate and process for preparing the same
EP3395785B1 (en) Seal coating for ceramic matrix composite
US11655543B2 (en) CMAS-resistant barrier coatings
US20190093499A1 (en) Non-continuous abradable coatings
US20200370439A1 (en) Textured subsurface coating segmentation
EP3981956A1 (en) Cmas-resistant abradable coatings

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION