US20120109219A1 - Implant having a shaft and a holding element connected therewith for connecting with a rod - Google Patents

Implant having a shaft and a holding element connected therewith for connecting with a rod Download PDF

Info

Publication number
US20120109219A1
US20120109219A1 US13/175,128 US201113175128A US2012109219A1 US 20120109219 A1 US20120109219 A1 US 20120109219A1 US 201113175128 A US201113175128 A US 201113175128A US 2012109219 A1 US2012109219 A1 US 2012109219A1
Authority
US
United States
Prior art keywords
rod
recess
implant
thread
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/175,128
Inventor
Wilfried Matthis
Lutz Biedermann
Jürgen Harms
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biedermann Technologies GmbH and Co KG
Original Assignee
Biedermann Motech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biedermann Motech GmbH and Co KG filed Critical Biedermann Motech GmbH and Co KG
Priority to US13/175,128 priority Critical patent/US20120109219A1/en
Assigned to BIEDERMANN MOTECH GMBH & CO. KG reassignment BIEDERMANN MOTECH GMBH & CO. KG CHANGE OF LEGAL FORM Assignors: BIEDERMANN MOTECH GMBH
Assigned to BIEDERMANN TECHNOLOGIES GMBH & CO. KG reassignment BIEDERMANN TECHNOLOGIES GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIEDERMANN MOTECH GMBH & CO. KG
Publication of US20120109219A1 publication Critical patent/US20120109219A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass

Definitions

  • the invention relates to an implant to be used in spine or trauma surgery, the implant having a shaft and a holding element connected therewith for connecting with a rod, wherein the holding element comprises a recess having a U-shaped cross section for receiving the rod and two free legs at one end which have an inner thread and a closure element for fixation of the rod inserted into the U-shaped recess, the closure element comprising an outer thread cooperating with the inner thread of the legs.
  • EP 0 614 649 B1 describes a polyaxial bone screw with a receiver member with a nut to be screwed onto the receiver member for securing a rod.
  • the thread of the receiver member and of an inner screw is a metric thread
  • force components in radial direction of the cylindrical receiver member occur when screwing in the inner screw, which could cause splaying of the legs of the receiver member resulting in a loosening of the inner screw.
  • Implants which employ only an inner screw for fixation of the rod, whereby a specific shape of the thread is provided for reducing the forces acting radially outward when screwing in.
  • U.S. Pat. No. 5,005,562 describes an implant having a receiver member, wherein the shape of the thread of the receiver member and the inner screw is formed as saw tooth thread
  • WO 00/27297 describes the use of a thread with a negative angle of the load flank.
  • FIG. 7 shows schematically a polyaxial bone screw similar to that shown in EP 0 614 549 B1, but without the external cap or nut.
  • FIG. 6 there is a screw element 101 having a spherical segment-shaped head 102 , which is held in a receiver member 103 having a U-shaped recess for insertion of the rod 100 .
  • a pressure element 104 acts upon the spherical segment-shaped head 102 and, for fixation of the rod and of the head, an inner screw 105 with a metric thread is provided which can be screwed into the receiver member 103 .
  • the inner screw tilts about the rod support surface or rotates about the rod such that a torsional force acts upon the legs of the receiver member distorting the same against each other. This results in an asymmetric splaying and deformation of the thread receiving parts resulting in the possibility that the inner screw can slide out of the lower right and the upper left turn shown by a circle in FIG. 7 , respectively, and the respective turn may be skipped.
  • the inner screw should be tightened with reduced torque which, however, impairs the retention force. Further, the problem also can be reduced, if a wall of the receiver member is very thickly dimensioned, which is, however, an obstacle to the requirement of a compact implant design.
  • the present invention provides an implant having a shaft ( 1 ) and a holding element ( 3 ; 30 ) connected therewith for connecting with a rod ( 100 ), wherein the holding element ( 3 ; 30 ) comprises a recess having a U-shaped cross section for receiving the rod and two free legs ( 7 , 8 ; 32 , 33 ) at one end which have an inner thread ( 9 ; 34 ) and a closure element ( 20 ; 36 ) for fixation of the rod inserted into the U-shaped recess, the closure element comprising an outer thread cooperating with the inner thread of the legs, wherein, at or in the holding element ( 3 ; 30 ), a securing device is provided which limits a tilting of the closure element about the rod at the time of final tightening of the closure element.
  • the securing device is formed by a support surface ( 12 ; 37 ) for cooperation with a section of the lower side of the closure element ( 20 ; 36 ) facing the rod;
  • the distance (A) between the bottom of the U-shaped recess to the support surface ( 12 ; 37 ) is smaller than the diameter (D) of the rod;
  • the distance (A) is smaller than the diameter (D) by an amount of approximately 1% to 7.5% of the diameter (D);
  • the securing device is formed as a projection ( 37 ) provided at the inside of the free legs ( 32 , 33 ) of the holding element ( 30 );
  • the shaft ( 1 ) and the holding element ( 30 ) are connected monoaxially, preferably formed in one piece;
  • the shaft ( 1 ) has a head ( 2 ) at one end being polyaxially connected to the holding element and wherein a pressure element ( 10 ) acting upon the head is provided for fixation of the angular position and wherein the securing device is provided at the pressure element ( 10 );
  • the pressure element ( 10 ) comprises a U-shaped recess ( 14 ) corresponding to the recess of the holding element ( 3 ) and wherein the securing device is formed by the free edge ( 12 ) of the legs ( 15 , 16 ) formed by the recess;
  • the distance (A) from the bottom of the U-shaped recess to the free end ( 12 ) of the pressure element is smaller than the diameter (D) of the rod;
  • the inner thread of the legs ( 7 , 8 ; 32 , 33 ) and the outer thread of the closure element ( 20 ; 36 ) is formed as metric thread or as saw tooth thread or as thread having a load flank having a negative angle or as a flat thread.
  • the construction of the implant in accord with the present invention is suitable, not only for polyaxial bone screws but also for monoaxial bone screws or hooks and is suitable for all forms of threads used for the receiver member and the inner screw. Implants in accord with the present invention are particularly advantageous for use with a rod having circular cross section.
  • the invention also provides a method for fixing a rod relative to a bone.
  • the method comprises providing an implant as described above, connecting the implant to the bone, positioning the rod in the implant, and fixing the rod in the implant.
  • the method further comprises adjusting the angular position of the polyaxial screw element relative to the holding element and adjustment of the rod.
  • the method further comprises assembling the screw elements and holding member of the implant, inserting a pressure member into the holding member, screwing the polyaxial screw into the bone using a driving tool that drives the screw by means of the recess in the head, and after positioning the rod, fixing the rod by tightening the closure element in the holding element.
  • the fixing step includes tightening of the closure element by applying strong forces to tilt the closure element about the rod until stopped against further forward movement by the abutment.
  • FIG. 1 is an elevational view, partially in section, of a first embodiment of the invention in which the inner screw is not yet tightened;
  • FIG. 2 is an elevational view, partially in section, of the first embodiment in which the inner screw is tightened;
  • FIG. 3 is a schematic elevational representation of the pressure element in relation to the rod for the first embodiment
  • FIG. 4 is an exploded view of the first embodiment
  • FIG. 5 is an elevational view, partially in section, of a second embodiment of the invention in which the inner screw is not yet tightened;
  • FIG. 6 is an elevational view, partially in section, of the second embodiment of the invention in which the inner screw is tightened;
  • FIG. 7 is a schematic elevational view of a conventional polyaxial screw with inner screw at the time of final tightening of the inner screw.
  • an implant according to the present invention is formed as a polyaxial screw comprising a screw element having a threaded shaft 1 with a bone thread (not shown) and an integral spherical segment-shaped head 2 .
  • the head 2 is held within the receiver member 3 .
  • the receiver or holding member 3 has at its one end an axially symmetric first bore 4 , the diameter of which is greater than that of the thread section of the shaft 1 and smaller than that of the head 2 .
  • the receiver 3 comprises a coaxial second bore 5 , which is open at the end opposite to the first bore 4 and the diameter of which is sufficiently large that the screw element can be passed through the open end with its threaded section going through the first bore 4 and with the head 2 held in a section 6 between the bottom of the second bore 5 and the first bore 4 .
  • the small coaxial section 6 is provided adjacent to the first bore 4 and is spherically shaped towards the open end of the second bore 5 , wherein the radius of the spherically shaped section 6 is substantially the same as that of the spherical segment-shaped section of the head 2 .
  • the receiver or holding member 3 further comprises in a conventional manner a U-shaped recess 3 ′ arranged symmetrically with respect to the center of the part for accommodation of the rod 100 , the bottom of which is directed towards the first bore 4 and by which the two free legs 7 , 8 are formed.
  • the legs 7 , 8 comprise an inner thread 9 which is formed in this embodiment as a metric thread.
  • a cylindrical pressure element 10 is provided having a first end 11 , which faces the head 2 in a state where the pressure element is inserted into the receiver 3 , and with a second end 12 opposite to the first end.
  • the outer diameter of the pressure element is slightly smaller than that of the bore 5 of the receiver member, such that the pressure element is able to slide into the bore 5 , i.e., it is displaceable in bore 5 towards the head 2 .
  • the pressure element 10 further comprises at its first end 11 a spherical segment-shaped recess 13 enlarging towards the end, the radius of which is selected such that the pressure element partly encompasses the head 2 when it is inserted into the receiver.
  • the pressure element 10 is provided with a U-shaped recess 14 at the second end 12 opposite to the spherically-shaped recess 13 , thereby forming two legs 15 , 16 .
  • the dimensions of the U-shaped recess 14 of the pressure element are such that the recess forms a channel in which the rod 100 can be inserted.
  • the depth A of the U-shaped recess 14 is smaller than the diameter D of the rod 100 to be accommodated.
  • the rod 100 protrudes by a distance or height S above the first end 12 formed by the free end of the legs 15 , 16 .
  • the height S preferably is from about 1% to about 7.5% of the diameter D of the rod for the usual dimensions of the polyaxial screw implant.
  • the pressure element further comprises a central bore 17 extending therethrough and the diameter of which is sufficiently large that a screw-in tool for engaging with a recess 18 provided in the head 2 can be passed therethrough.
  • an inner screw 20 is provided as a closure element that has an outer thread 21 cooperating with the inner thread 9 of the legs 7 , 8 of the receiver member and which is dimensioned such that the screw does not or does not substantially protrude above the receiver member in the screwed-in state when the screw 20 presses on the inserted rod 100 .
  • the inner thread 9 of the receiver is preferably dimensioned such that beginning from the free end of the legs 7 , 8 it does not extend substantially deeper than the upper edge of the rod when the rod rests on the bottom of the U-shaped recess of the inserted pressure element.
  • the screw element is inserted into the receiver 3 until the head 2 contacts the spherical section 6 .
  • the pressure element 10 is inserted and positioned in such a way that the U-shaped recess 3 ′ of the receiver member and the U-shaped recess 14 of the pressure element 10 correspond.
  • the screw element is screwed into the bone by means of a drive tool engaging the recess 18 in head 2 .
  • the rod 100 is inserted and the closure element, inner screw 20 , is screwed into the receiver element to contact rod 100 .
  • the inner screw 20 is tightened to fix the rod and the angle of the screw element.
  • the lower side of the inner screw 20 touches the rod only slightly whereby, between the lower side of the inner screw and the free second end 12 of the pressure element, there is then a gap of the size S as shown in FIG. 1 .
  • the legs 7 , 8 of the receiver can possibly be slightly splayed which is indicated by the arrows.
  • the inner screw 20 tends to escape the pressure acting on it and to tilt about the rod, however, it is hindered because its lower edge is supported by the free end 12 of one of the legs 15 , 16 of the pressure element 10 forming an abutment against further forward movement of the inner screw 20 .
  • the inner screw fixes the rod and fixes via the pressure element and the rod also the head 2 .
  • the implant in accord with the present invention is formed as monoaxial bone screw.
  • a shaft 1 having a section with a bone thread is rigidly connected to a receiver or holding member 30 for accommodation of the rod 100 .
  • the receiver has a recess 31 with a U-shaped cross section, which is dimensioned sufficiently large that the rod 100 can be placed in and fits to the bottom of the recess. Due to the U-shaped recess 31 , two free legs 32 , 33 are formed which have an inner thread 34 adjacent to their free end, the inner thread cooperating with a corresponding outer thread 35 of an inner screw 36 (the closure element), which is to be screwed in between the legs for fixation of the rod 100 .
  • the U-shaped recess 31 has a channel width from the bottom until a height A which is slightly larger than the diameter D of the rod to be received such that the rod is displaceable into the channel formed by the recess. Adjacent to this region and starting from the height A until the free end of the legs 32 , 33 , the inner diameter of the receiver 30 is larger than the diameter of the rod. Therefore, a shoulder or projection 37 is formed at the inside of each of the legs 32 , 33 , which forms an abutment for supporting the inner screw to avoid tilting thereof.
  • the inward projection 37 can be formed, for example, as the undercut for the inner thread with a planar surface.
  • the operation and function of the implant illustrated by the second embodiment is similar to the first embodiment.
  • the abutment 37 acts as a support in case of tilting of the inner screw 36 and offers a counterforce (indicated by the small arrow) against the edge of the inner screw, which prevents a distortion of the legs at the time of tightening. Therefore, the same effects are achieved as by the first embodiment.
  • a saw tooth thread instead of the metric thread of the receiver member and the inner screw, a thread having a load flank with a negative flank angle or a flat thread can be provided.
  • the latter is characterized in that both flanks of the thread enclose an angle of 90° with the screw axis.
  • the threads described can further be formed as right hand or left hand threads.
  • the inner screw can be formed as sleeve-like part with an outer thread and can have a continuous slit or a partial slit in axial direction.
  • a hook can be provided instead of the shaft having the bone thread.

Abstract

An implant is described having a shaft (1) and a holding element (3; 30) connected therewith for connecting with a rod (100). A recess is provided in the holding element. The recess has a U-shaped cross section for accommodation of the rod and two free legs (7, 8; 32, 33) at one end which include an inner thread (9; 34). A closure element (20; 36) fixes the rod inserted into the U-shaped recess. The closure element has an outer thread cooperating with the inner thread of the legs. An abutment is provided at or in the holding element (3; 30) to limit tilting of the closure element about the rod at the time of final tightening of the closure element in the holding element. As a result thereof it is possible to keep the wall thickness of the receiver member small in spite of the large forces acting at the time of final tightening. The invention is applicable to both monoaxial screws and polyaxial screws as well as bone hooks.

Description

    FIELD OF THE INVENTION
  • The invention relates to an implant to be used in spine or trauma surgery, the implant having a shaft and a holding element connected therewith for connecting with a rod, wherein the holding element comprises a recess having a U-shaped cross section for receiving the rod and two free legs at one end which have an inner thread and a closure element for fixation of the rod inserted into the U-shaped recess, the closure element comprising an outer thread cooperating with the inner thread of the legs.
  • BACKGROUND OF THE INVENTION
  • EP 0 614 649 B1 describes a polyaxial bone screw with a receiver member with a nut to be screwed onto the receiver member for securing a rod.
  • If the thread of the receiver member and of an inner screw is a metric thread, force components in radial direction of the cylindrical receiver member occur when screwing in the inner screw, which could cause splaying of the legs of the receiver member resulting in a loosening of the inner screw.
  • Implants are known which employ only an inner screw for fixation of the rod, whereby a specific shape of the thread is provided for reducing the forces acting radially outward when screwing in. For example, U.S. Pat. No. 5,005,562 describes an implant having a receiver member, wherein the shape of the thread of the receiver member and the inner screw is formed as saw tooth thread, whereas WO 00/27297 describes the use of a thread with a negative angle of the load flank.
  • Such implants that have thin side flanks of the receiver member, however, encounter a problem when using only an inner screw for fixation without an additional securing via a nut to be screwed on or a cap covering the legs of the receiver member at the outside or a ring or the like. The problem is illustrated by means of FIG. 7, which shows schematically a polyaxial bone screw similar to that shown in EP 0 614 549 B1, but without the external cap or nut. As shown in FIG. 6, there is a screw element 101 having a spherical segment-shaped head 102, which is held in a receiver member 103 having a U-shaped recess for insertion of the rod 100. A pressure element 104 acts upon the spherical segment-shaped head 102 and, for fixation of the rod and of the head, an inner screw 105 with a metric thread is provided which can be screwed into the receiver member 103. At the time of final tightening of the inner screw with high torque, the inner screw tilts about the rod support surface or rotates about the rod such that a torsional force acts upon the legs of the receiver member distorting the same against each other. This results in an asymmetric splaying and deformation of the thread receiving parts resulting in the possibility that the inner screw can slide out of the lower right and the upper left turn shown by a circle in FIG. 7, respectively, and the respective turn may be skipped.
  • To avoid this, the inner screw should be tightened with reduced torque which, however, impairs the retention force. Further, the problem also can be reduced, if a wall of the receiver member is very thickly dimensioned, which is, however, an obstacle to the requirement of a compact implant design.
  • The problem of tilting of the inner screw at the time of final tightening which has been described is independent from the form of the used thread.
  • It is desirable to provide an element of the type described which allows a reliable fixation of the rod and at the same time makes a compact design possible.
  • SUMMARY OF THE INVENTION
  • The present invention provides an implant having a shaft (1) and a holding element (3; 30) connected therewith for connecting with a rod (100), wherein the holding element (3; 30) comprises a recess having a U-shaped cross section for receiving the rod and two free legs (7, 8; 32, 33) at one end which have an inner thread (9; 34) and a closure element (20; 36) for fixation of the rod inserted into the U-shaped recess, the closure element comprising an outer thread cooperating with the inner thread of the legs, wherein, at or in the holding element (3; 30), a securing device is provided which limits a tilting of the closure element about the rod at the time of final tightening of the closure element.
  • Alternative embodiments of the implants of the present invention further comprise one or more of the following features:
  • the securing device is formed by a support surface (12; 37) for cooperation with a section of the lower side of the closure element (20; 36) facing the rod;
  • the distance (A) between the bottom of the U-shaped recess to the support surface (12; 37) is smaller than the diameter (D) of the rod;
  • the distance (A) is smaller than the diameter (D) by an amount of approximately 1% to 7.5% of the diameter (D);
  • the securing device is formed as a projection (37) provided at the inside of the free legs (32, 33) of the holding element (30);
  • the shaft (1) and the holding element (30) are connected monoaxially, preferably formed in one piece;
  • the shaft (1) has a head (2) at one end being polyaxially connected to the holding element and wherein a pressure element (10) acting upon the head is provided for fixation of the angular position and wherein the securing device is provided at the pressure element (10);
  • the pressure element (10) comprises a U-shaped recess (14) corresponding to the recess of the holding element (3) and wherein the securing device is formed by the free edge (12) of the legs (15, 16) formed by the recess;
  • the distance (A) from the bottom of the U-shaped recess to the free end (12) of the pressure element is smaller than the diameter (D) of the rod; and/or
  • the inner thread of the legs (7, 8; 32, 33) and the outer thread of the closure element (20; 36) is formed as metric thread or as saw tooth thread or as thread having a load flank having a negative angle or as a flat thread.
  • The construction of the implant in accord with the present invention is suitable, not only for polyaxial bone screws but also for monoaxial bone screws or hooks and is suitable for all forms of threads used for the receiver member and the inner screw. Implants in accord with the present invention are particularly advantageous for use with a rod having circular cross section.
  • The invention also provides a method for fixing a rod relative to a bone. The method comprises providing an implant as described above, connecting the implant to the bone, positioning the rod in the implant, and fixing the rod in the implant. In embodiments where the implant is a polyaxial screw, the method further comprises adjusting the angular position of the polyaxial screw element relative to the holding element and adjustment of the rod. In other embodiments where the implant is a polyaxial screw preferably comprising a screw element having a head with a recess in the head, the method further comprises assembling the screw elements and holding member of the implant, inserting a pressure member into the holding member, screwing the polyaxial screw into the bone using a driving tool that drives the screw by means of the recess in the head, and after positioning the rod, fixing the rod by tightening the closure element in the holding element.
  • In certain preferred embodiments, the fixing step includes tightening of the closure element by applying strong forces to tilt the closure element about the rod until stopped against further forward movement by the abutment.
  • Further features and advantages of the invention will become apparent to those skilled in the art from the description of embodiments and the accompanying Figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1: is an elevational view, partially in section, of a first embodiment of the invention in which the inner screw is not yet tightened;
  • FIG. 2: is an elevational view, partially in section, of the first embodiment in which the inner screw is tightened;
  • FIG. 3: is a schematic elevational representation of the pressure element in relation to the rod for the first embodiment;
  • FIG. 4: is an exploded view of the first embodiment;
  • FIG. 5: is an elevational view, partially in section, of a second embodiment of the invention in which the inner screw is not yet tightened;
  • FIG. 6: is an elevational view, partially in section, of the second embodiment of the invention in which the inner screw is tightened;
  • FIG. 7: is a schematic elevational view of a conventional polyaxial screw with inner screw at the time of final tightening of the inner screw.
  • DETAILED DESCRIPTION OF THE INVENTION INCLUDING PREFERRED EMBODIMENTS
  • In the embodiment shown in FIGS. 1 to 4 an implant according to the present invention is formed as a polyaxial screw comprising a screw element having a threaded shaft 1 with a bone thread (not shown) and an integral spherical segment-shaped head 2. The head 2 is held within the receiver member 3. The receiver or holding member 3 has at its one end an axially symmetric first bore 4, the diameter of which is greater than that of the thread section of the shaft 1 and smaller than that of the head 2. Further, the receiver 3 comprises a coaxial second bore 5, which is open at the end opposite to the first bore 4 and the diameter of which is sufficiently large that the screw element can be passed through the open end with its threaded section going through the first bore 4 and with the head 2 held in a section 6 between the bottom of the second bore 5 and the first bore 4. The small coaxial section 6 is provided adjacent to the first bore 4 and is spherically shaped towards the open end of the second bore 5, wherein the radius of the spherically shaped section 6 is substantially the same as that of the spherical segment-shaped section of the head 2.
  • The receiver or holding member 3 further comprises in a conventional manner a U-shaped recess 3′ arranged symmetrically with respect to the center of the part for accommodation of the rod 100, the bottom of which is directed towards the first bore 4 and by which the two free legs 7, 8 are formed. In a region adjacent to their free end, the legs 7, 8 comprise an inner thread 9 which is formed in this embodiment as a metric thread.
  • Further, a cylindrical pressure element 10 is provided having a first end 11, which faces the head 2 in a state where the pressure element is inserted into the receiver 3, and with a second end 12 opposite to the first end. The outer diameter of the pressure element is slightly smaller than that of the bore 5 of the receiver member, such that the pressure element is able to slide into the bore 5, i.e., it is displaceable in bore 5 towards the head 2.
  • The pressure element 10 further comprises at its first end 11 a spherical segment-shaped recess 13 enlarging towards the end, the radius of which is selected such that the pressure element partly encompasses the head 2 when it is inserted into the receiver.
  • Further, the pressure element 10 is provided with a U-shaped recess 14 at the second end 12 opposite to the spherically-shaped recess 13, thereby forming two legs 15, 16. The dimensions of the U-shaped recess 14 of the pressure element are such that the recess forms a channel in which the rod 100 can be inserted. As illustrated in FIG. 2 and particularly shown in FIGS. 1 and 3, the depth A of the U-shaped recess 14, as seen in direction of the cylinder axis of the pressure element, is smaller than the diameter D of the rod 100 to be accommodated. In a state shown in FIG. 1, in which the pressure element 10 is inserted into the receiver and in which the rod 100 is inserted, the rod 100 protrudes by a distance or height S above the first end 12 formed by the free end of the legs 15, 16. The height S preferably is from about 1% to about 7.5% of the diameter D of the rod for the usual dimensions of the polyaxial screw implant.
  • The pressure element further comprises a central bore 17 extending therethrough and the diameter of which is sufficiently large that a screw-in tool for engaging with a recess 18 provided in the head 2 can be passed therethrough.
  • In addition, an inner screw 20 is provided as a closure element that has an outer thread 21 cooperating with the inner thread 9 of the legs 7, 8 of the receiver member and which is dimensioned such that the screw does not or does not substantially protrude above the receiver member in the screwed-in state when the screw 20 presses on the inserted rod 100. The inner thread 9 of the receiver is preferably dimensioned such that beginning from the free end of the legs 7, 8 it does not extend substantially deeper than the upper edge of the rod when the rod rests on the bottom of the U-shaped recess of the inserted pressure element.
  • In operation, first, the screw element is inserted into the receiver 3 until the head 2 contacts the spherical section 6. Then, the pressure element 10 is inserted and positioned in such a way that the U-shaped recess 3′ of the receiver member and the U-shaped recess 14 of the pressure element 10 correspond. In this state the screw element is screwed into the bone by means of a drive tool engaging the recess 18 in head 2. Thereafter, the rod 100 is inserted and the closure element, inner screw 20, is screwed into the receiver element to contact rod 100. After adjustment of the angular position of the polyaxial screw element relative to the receiver and adjustment of the rod 100, the inner screw 20 is tightened to fix the rod and the angle of the screw element. Thus, at the beginning, the lower side of the inner screw 20 touches the rod only slightly whereby, between the lower side of the inner screw and the free second end 12 of the pressure element, there is then a gap of the size S as shown in FIG. 1. At this time the legs 7, 8 of the receiver can possibly be slightly splayed which is indicated by the arrows. At the time of final tightening of the inner screw 20 and of applying strong forces, the inner screw 20 tends to escape the pressure acting on it and to tilt about the rod, however, it is hindered because its lower edge is supported by the free end 12 of one of the legs 15, 16 of the pressure element 10 forming an abutment against further forward movement of the inner screw 20. In that way the influence of torsional forces at the time of final tightening is avoided and any further splaying of the legs of the receiver is prevented. Therefore, it is also possible to apply a higher torque at the time of final tightening and, thereby, generate a high retention force without having an excessive splaying of the receiver legs 7, 8 or tilting of the inner screw 20. Therefore, a skipping of one turn of the thread of the receiver by the inner screw is prevented.
  • In the final state in which the inner screw is completely screwed in, the inner screw fixes the rod and fixes via the pressure element and the rod also the head 2.
  • There is a desired advantage that the thickness of the wall of the receiver member can be reduced because this design is more compact and the prevention of tilting of the inner screw at the time of tightening is highly safeguarded.
  • In the embodiment shown in FIGS. 5 and 6, the implant in accord with the present invention is formed as monoaxial bone screw. In this embodiment, a shaft 1 having a section with a bone thread is rigidly connected to a receiver or holding member 30 for accommodation of the rod 100. The receiver has a recess 31 with a U-shaped cross section, which is dimensioned sufficiently large that the rod 100 can be placed in and fits to the bottom of the recess. Due to the U-shaped recess 31, two free legs 32, 33 are formed which have an inner thread 34 adjacent to their free end, the inner thread cooperating with a corresponding outer thread 35 of an inner screw 36 (the closure element), which is to be screwed in between the legs for fixation of the rod 100.
  • As shown in FIG. 5, the U-shaped recess 31 has a channel width from the bottom until a height A which is slightly larger than the diameter D of the rod to be received such that the rod is displaceable into the channel formed by the recess. Adjacent to this region and starting from the height A until the free end of the legs 32, 33, the inner diameter of the receiver 30 is larger than the diameter of the rod. Therefore, a shoulder or projection 37 is formed at the inside of each of the legs 32, 33, which forms an abutment for supporting the inner screw to avoid tilting thereof. The inward projection 37 can be formed, for example, as the undercut for the inner thread with a planar surface.
  • The operation and function of the implant illustrated by the second embodiment is similar to the first embodiment. As shown in FIG. 6, the abutment 37 acts as a support in case of tilting of the inner screw 36 and offers a counterforce (indicated by the small arrow) against the edge of the inner screw, which prevents a distortion of the legs at the time of tightening. Therefore, the same effects are achieved as by the first embodiment.
  • The invention has been described including the preferred embodiments thereof. However, it will be appreciated that those skilled in the art may make modifications and improvements within the spirit and scope of the invention.
  • As such, various alternative modifications of the embodiments described are possible. For example, instead of the metric thread of the receiver member and the inner screw, a saw tooth thread, a thread having a load flank with a negative flank angle or a flat thread can be provided. The latter is characterized in that both flanks of the thread enclose an angle of 90° with the screw axis. When using the thread forms as described, a splaying of the legs does not occur because there are no force components acting radially outwards. In spite of this, there is tilting at the time of final tightening of the inner screw and therefore torsional forces are produced which could lead to a deformation of the thread of the outer flanks of the receiver member. This is reliably prevented by using a structure in accord with the present invention together with the thread forms as described above.
  • The threads described can further be formed as right hand or left hand threads.
  • The inner screw can be formed as sleeve-like part with an outer thread and can have a continuous slit or a partial slit in axial direction.
  • Instead of the shaft having the bone thread, a hook can be provided.

Claims (20)

1. An implant comprising:
a shaft;
a holding element connected with the shaft, wherein the holding element comprises a recess with a U-shaped cross section for receiving a rod, the recess forming two free legs having at one end thereof an inner thread;
a closure element for fixation of the rod inserted into the U-shaped recess, the closure element having an outer thread cooperating with the inner thread of the legs; and
an abutment cooperating with the closure element to limit a tilting of the closure element about the rod at the time of final tightening of the closure element in the holding element.
2. The implant according to claim 1, wherein the closure element comprises a lower side facing the rod and the abutment is a support surface for a section of the lower side of the closure element.
3. The implant according to claim 2, wherein the U-shaped recess has a bottom and the rod has a diameter (D), a distance (A) between the bottom of the U-shaped recess to the support surface being smaller than the diameter (D) of the rod.
4. The implant according to claim 3, wherein the distance (A) is smaller than the diameter (D) by an amount from about 1% to about 7.5% of the diameter (D).
5. The implant according to claim 1, wherein the abutment is an inward projecting surface on the inside of the free legs of the holding element.
6. The implant according to claim 1, wherein the shaft and the holding element are connected monoaxially.
7. The implant according to claim 6, wherein the shaft and the holding element are formed in one piece.
8. The implant according to claim 1, wherein the shaft has a head at one end that is polyaxially connected to the holding element,
wherein the implant further comprises a pressure element having an end facing the closure element for acting upon the head to fix an angular position of the shaft relative to the holding element, and
wherein the abutment is provided at the end of the pressure element.
9. The implant according to claim 8, wherein the pressure element comprises a second U-shaped recess with a second bottom corresponding to the recess of the holding element, the second U-shaped recess forming third and fourth free legs having a free end in a plane and wherein the abutment is formed by the free end.
10. The implant according to claim 9, wherein the rod has a diameter (D) and wherein a distance (A) from the second bottom of the second U-shaped recess to the free end of the pressure element is smaller than the diameter (D) of the rod.
11. The implant according to claim 1, wherein the inner thread of the legs and the outer thread of the closure element are formed as a thread selected from the group consisting of a metric thread, a saw tooth thread, a thread having a load flank having a negative angle, and a flat thread.
12. The implant according to claim 1, wherein the shaft comprises a bone thread or a bone hook.
13. A method for fixing a rod relative to a bone, the method comprising:
providing an implant comprising:
a shaft;
a holding element connected with the shaft, wherein the holding element comprises a recess with a U-shaped cross section for receiving a rod, the recess forming two free legs having at one end thereof an inner thread;
a closure element for fixation of the rod inserted into the U-shaped recess, the closure element having an outer thread cooperating with the inner thread of the legs; and
an abutment cooperating with the closure element to limit a tilting of the closure element about the rod at the time of final tightening of the closure element in the holding element;
connecting the implant to the bone;
positioning the rod in the implant; and
fixing the rod in the implant.
14. The method according to claim 13, wherein the implant is a polyaxial screw and the method further comprises adjusting the angular position of the polyaxial screw element relative to the holding element and adjustment of the rod.
15. The method according to claim 13, wherein the implant is a polyaxial screw comprising a head with a recess in the head and the method further comprises:
assembling the polyaxial screw and holding member of the implant;
inserting a pressure member into the holding member;
screwing the polyaxial screw into the bone using a diving tool that dives the screw by means of the recess in the head; and
after positioning the rod, fixing the rod by tightening the closure element in the holding element.
16. The method according to claim 13, wherein the fixing step includes tightening of the closure element by applying strong forces to tilt the closure element about the rod until stopped against further forward movement by the abutment.
17. Pressure element for use in a polyaxial bone screw, the polyaxial bone screw comprising
a screw element having a shaft with a bone thread and a head,
a holding element for holding the head, the holding element comprising
a first recess with a U-shaped cross section for receiving a rod having a diameter (D), the first recess having a bottom and forming two free legs having at one end thereof an inner thread,
the pressure element being substantially cylindrically-shaped with a first end and a second end and comprising
a second recess with U-shaped cross section at the first end, the second recess corresponding to said first recess in said holding element, the second recess having a second bottom and forming third and fourth free legs for receiving the rod,
wherein a distance (A) from the second bottom of the second U-shaped recess to the free end of the third and fourth legs is smaller than the diameter (D) of the rod.
18. Pressure element according to claim 16, comprising a third recess at the second end which is shaped such as to at least partly encompass the head of the screw element.
19. Pressure element according to claim 16, comprising a coaxial bore for inserting a screw-in tool to cooperate with the head of the screw element.
20. The pressure element according to claim 16, wherein the distance (A) is smaller than the diameter (D) by an amount from about 1% to about 7.5% of the diameter (D).
US13/175,128 2002-12-02 2011-07-01 Implant having a shaft and a holding element connected therewith for connecting with a rod Abandoned US20120109219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/175,128 US20120109219A1 (en) 2002-12-02 2011-07-01 Implant having a shaft and a holding element connected therewith for connecting with a rod

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10256095.1 2002-12-02
DE10256095A DE10256095B4 (en) 2002-12-02 2002-12-02 Element with a shaft and an associated holding element for connecting to a rod
US10/726,177 US7335202B2 (en) 2002-12-02 2003-12-01 Implant having a shaft and a hold element connected therewith for connecting with a rod
US11/965,211 US20080167689A1 (en) 2002-12-02 2007-12-27 Implant having a shaft and a holding element connected therewith for connecting with a rod
US13/175,128 US20120109219A1 (en) 2002-12-02 2011-07-01 Implant having a shaft and a holding element connected therewith for connecting with a rod

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/965,211 Continuation US20080167689A1 (en) 2002-12-02 2007-12-27 Implant having a shaft and a holding element connected therewith for connecting with a rod

Publications (1)

Publication Number Publication Date
US20120109219A1 true US20120109219A1 (en) 2012-05-03

Family

ID=32308891

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/726,177 Expired - Lifetime US7335202B2 (en) 2002-12-02 2003-12-01 Implant having a shaft and a hold element connected therewith for connecting with a rod
US11/965,211 Abandoned US20080167689A1 (en) 2002-12-02 2007-12-27 Implant having a shaft and a holding element connected therewith for connecting with a rod
US13/175,128 Abandoned US20120109219A1 (en) 2002-12-02 2011-07-01 Implant having a shaft and a holding element connected therewith for connecting with a rod

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/726,177 Expired - Lifetime US7335202B2 (en) 2002-12-02 2003-12-01 Implant having a shaft and a hold element connected therewith for connecting with a rod
US11/965,211 Abandoned US20080167689A1 (en) 2002-12-02 2007-12-27 Implant having a shaft and a holding element connected therewith for connecting with a rod

Country Status (4)

Country Link
US (3) US7335202B2 (en)
EP (1) EP1426016B1 (en)
JP (1) JP4338505B2 (en)
DE (2) DE10256095B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149702B2 (en) 2015-01-12 2018-12-11 Imds Llc Polyaxial screw and rod system

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10729469B2 (en) * 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US20160242816A9 (en) * 2001-05-09 2016-08-25 Roger P. Jackson Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms
US8353932B2 (en) * 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US10258382B2 (en) * 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US6740086B2 (en) * 2002-04-18 2004-05-25 Spinal Innovations, Llc Screw and rod fixation assembly and device
US11224464B2 (en) 2002-05-09 2022-01-18 Roger P. Jackson Threaded closure with inwardly-facing tool engaging concave radiused structures and axial through-aperture
US20060129151A1 (en) * 2002-08-28 2006-06-15 Allen C W Systems and methods for securing fractures using plates and cable clamps
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8523913B2 (en) 2002-09-06 2013-09-03 Roger P. Jackson Helical guide and advancement flange with break-off extensions
DE10256095B4 (en) * 2002-12-02 2004-11-18 Biedermann Motech Gmbh Element with a shaft and an associated holding element for connecting to a rod
US8540753B2 (en) * 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US6716214B1 (en) * 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8814911B2 (en) * 2003-06-18 2014-08-26 Roger P. Jackson Polyaxial bone screw with cam connection and lock and release insert
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US7776067B2 (en) * 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US7967850B2 (en) * 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
FR2859376B1 (en) 2003-09-04 2006-05-19 Spine Next Sa SPINAL IMPLANT
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7678137B2 (en) 2004-01-13 2010-03-16 Life Spine, Inc. Pedicle screw constructs for spine fixation systems
US8029548B2 (en) 2008-05-05 2011-10-04 Warsaw Orthopedic, Inc. Flexible spinal stabilization element and system
CA2555868C (en) 2004-02-27 2011-09-06 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
EP1727484A2 (en) * 2004-03-26 2006-12-06 Smith and Nephew, Inc. Methods for treating fractures of the femur and femoral fracture devices
US7645294B2 (en) 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7503924B2 (en) 2004-04-08 2009-03-17 Globus Medical, Inc. Polyaxial screw
US8475495B2 (en) 2004-04-08 2013-07-02 Globus Medical Polyaxial screw
US7901435B2 (en) * 2004-05-28 2011-03-08 Depuy Spine, Inc. Anchoring systems and methods for correcting spinal deformities
US20060058788A1 (en) * 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
US8951290B2 (en) * 2004-08-27 2015-02-10 Blackstone Medical, Inc. Multi-axial connection system
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US7604655B2 (en) 2004-10-25 2009-10-20 X-Spine Systems, Inc. Bone fixation system and method for using the same
JP2008517733A (en) 2004-10-25 2008-05-29 アルファスパイン インコーポレイテッド Pedicle screw system and assembly / installation method of the system
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
EP2085040B1 (en) * 2005-05-27 2012-05-23 Biedermann Technologies GmbH & Co. KG Tool for holding or guiding a receiving part for connecting a shank of a bone anchoring element to a rod
EP1769761B1 (en) * 2005-07-12 2008-09-10 BIEDERMANN MOTECH GmbH Bone anchoring device
AU2006270487A1 (en) * 2005-07-18 2007-01-25 Dong Myung Jeon Bi-polar bone screw assembly
US7717943B2 (en) 2005-07-29 2010-05-18 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
JP5084195B2 (en) * 2005-08-03 2012-11-28 ビーダーマン・モテーク・ゲゼルシャフト・ミット・ベシュレンクタ・ハフツング Bone anchoring device
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US20080140076A1 (en) * 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
US7686835B2 (en) 2005-10-04 2010-03-30 X-Spine Systems, Inc. Pedicle screw system with provisional locking aspects
EP1795134B1 (en) * 2005-11-17 2008-08-06 BIEDERMANN MOTECH GmbH Polyaxial screw for flexible rod
US8100946B2 (en) 2005-11-21 2012-01-24 Synthes Usa, Llc Polyaxial bone anchors with increased angulation
US7704271B2 (en) * 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US20070191842A1 (en) * 2006-01-30 2007-08-16 Sdgi Holdings, Inc. Spinal fixation devices and methods of use
WO2007114834A1 (en) 2006-04-05 2007-10-11 Dong Myung Jeon Multi-axial, double locking bone screw assembly
US7922749B2 (en) * 2006-04-14 2011-04-12 Warsaw Orthopedic, Inc. Reducing device
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
ES2334811T3 (en) * 2006-11-17 2010-03-16 Biedermann Motech Gmbh OSEO ANCHORAGE DEVICE.
CA2670988C (en) 2006-12-08 2014-03-25 Roger P. Jackson Tool system for dynamic spinal implants
US20080161853A1 (en) * 2006-12-28 2008-07-03 Depuy Spine, Inc. Spine stabilization system with dynamic screw
US8475498B2 (en) * 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8366745B2 (en) * 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8029547B2 (en) * 2007-01-30 2011-10-04 Warsaw Orthopedic, Inc. Dynamic spinal stabilization assembly with sliding collars
US8109975B2 (en) * 2007-01-30 2012-02-07 Warsaw Orthopedic, Inc. Collar bore configuration for dynamic spinal stabilization assembly
EP2146654A4 (en) 2007-03-27 2011-09-28 X Spine Systems Inc Pedicle screw system configured to receive a straight or a curved rod
US7922725B2 (en) 2007-04-19 2011-04-12 Zimmer Spine, Inc. Method and associated instrumentation for installation of spinal dynamic stabilization system
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US8197517B1 (en) 2007-05-08 2012-06-12 Theken Spine, Llc Frictional polyaxial screw assembly
US7951173B2 (en) * 2007-05-16 2011-05-31 Ortho Innovations, Llc Pedicle screw implant system
US8197518B2 (en) 2007-05-16 2012-06-12 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7942911B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7942909B2 (en) 2009-08-13 2011-05-17 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7947065B2 (en) 2008-11-14 2011-05-24 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US7942910B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US20090005815A1 (en) * 2007-06-28 2009-01-01 Scott Ely Dynamic stabilization system
US9439681B2 (en) 2007-07-20 2016-09-13 DePuy Synthes Products, Inc. Polyaxial bone fixation element
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US9277940B2 (en) * 2008-02-05 2016-03-08 Zimmer Spine, Inc. System and method for insertion of flexible spinal stabilization element
US20090254125A1 (en) * 2008-04-03 2009-10-08 Daniel Predick Top Loading Polyaxial Spine Screw Assembly With One Step Lockup
ES2378171T3 (en) * 2008-05-13 2012-04-09 Spinelab Ag Pedicle screw with a locking mechanism
US20100004693A1 (en) * 2008-07-01 2010-01-07 Peter Thomas Miller Cam locking spine stabilization system and method
US8118837B2 (en) * 2008-07-03 2012-02-21 Zimmer Spine, Inc. Tapered-lock spinal rod connectors and methods for use
US8197512B1 (en) * 2008-07-16 2012-06-12 Zimmer Spine, Inc. System and method for spine stabilization using resilient inserts
US8167914B1 (en) 2008-07-16 2012-05-01 Zimmer Spine, Inc. Locking insert for spine stabilization and method of use
CA2739997C (en) 2008-08-01 2013-08-13 Roger P. Jackson Longitudinal connecting member with sleeved tensioned cords
JP5815407B2 (en) 2008-09-12 2015-11-17 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Spinal stabilization and guided fixation system
EP2339975B1 (en) 2008-09-29 2015-03-25 Synthes GmbH Polyaxial bottom-loading screw and rod assembly
US8628558B2 (en) 2008-11-03 2014-01-14 DePuy Synthes Products, LLC Uni-planer bone fixation assembly
US8075603B2 (en) 2008-11-14 2011-12-13 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
CA2758590A1 (en) 2009-04-15 2010-10-21 Synthes Usa, Llc Revision connector for spinal constructs
CN103917181A (en) 2009-06-15 2014-07-09 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
EP2757988A4 (en) 2009-06-15 2015-08-19 Jackson Roger P Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
WO2010148231A1 (en) 2009-06-17 2010-12-23 Synthes Usa, Llc Revision connector for spinal constructs
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8801761B2 (en) * 2009-12-18 2014-08-12 X-Spine Systems, Inc. Spinal implant locking member with improved guidance, tactile and visual feedback
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
FR2959113B1 (en) * 2010-04-23 2013-04-12 Smartspine POLAR PEDICULAR SCREW AND PEDICULAR FIXING DEVICE FOR APPLYING FOR VERTEBRAL OSTEOSYNTHESIS
US9084634B1 (en) 2010-07-09 2015-07-21 Theken Spine, Llc Uniplanar screw
US10603083B1 (en) 2010-07-09 2020-03-31 Theken Spine, Llc Apparatus and method for limiting a range of angular positions of a screw
WO2012030712A1 (en) 2010-08-30 2012-03-08 Zimmer Spine, Inc. Polyaxial pedicle screw
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element
EP2637584A4 (en) * 2010-10-15 2015-01-28 Alphatec Holdings Inc Fixation screw assembly
GB2502449A (en) 2010-11-02 2013-11-27 Roger P Jackson Polyaxial bone anchor with pop-on shank and pivotable retainer
EP2670321B1 (en) * 2011-02-04 2017-05-10 Spinesave AG Precaution against jamming on open bone screws
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
US8888827B2 (en) 2011-07-15 2014-11-18 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9993269B2 (en) 2011-07-15 2018-06-12 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9198694B2 (en) 2011-07-15 2015-12-01 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9358047B2 (en) 2011-07-15 2016-06-07 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US9186187B2 (en) 2011-07-15 2015-11-17 Globus Medical, Inc. Orthopedic fixation devices and methods of installation thereof
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
EP2574296B1 (en) * 2011-09-28 2016-03-02 Biedermann Technologies GmbH & Co. KG Bone anchoring assembly
US8956361B2 (en) * 2011-12-19 2015-02-17 Amendia, Inc. Extended tab bone screw system
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9453526B2 (en) 2013-04-30 2016-09-27 Degen Medical, Inc. Bottom-loading anchor assembly
CN103277403B (en) * 2013-05-28 2015-04-15 北京空间飞行器总体设计部 Flexible ball joint suitable for in-orbit application of high-precision mechanism of spacecraft
US20150073488A1 (en) * 2013-09-09 2015-03-12 James A. Rinner Spinal stabilization system
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
FR3018442B1 (en) * 2014-03-12 2016-03-25 Safe Orthopaedics IMPROVED ANCHOR SCREW FOR VERTEBRATES STABILIZATION AND OSTEOSYNTHESIS SYSTEM COMPRISING SUCH SCREWS
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US20180263666A1 (en) * 2017-03-15 2018-09-20 Christopher John Marden CAIN Mono to poly axial universal pedicle screw and method of using the same
US10507043B1 (en) 2017-10-11 2019-12-17 Seaspine Orthopedics Corporation Collet for a polyaxial screw assembly
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11690652B1 (en) 2022-08-17 2023-07-04 Zavation Medical Products Llc Modular screw assembly

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633177B1 (en) * 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
CA2035348C (en) * 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
DE59301618D1 (en) * 1992-06-04 1996-03-28 Synthes Ag Osteosynthetic fastener
DE4307576C1 (en) * 1993-03-10 1994-04-21 Biedermann Motech Gmbh Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod
DE19507141B4 (en) * 1995-03-01 2004-12-23 Harms, Jürgen, Prof. Dr.med. Locking
US5683404A (en) * 1996-06-05 1997-11-04 Metagen, Llc Clamp and method for its use
US5797911A (en) * 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
KR100417222B1 (en) * 1996-12-12 2004-02-05 신테스 아게 츄어 Device for connecting a longitudinal support to a pedicle screw
US6485494B1 (en) * 1996-12-20 2002-11-26 Thomas T. Haider Pedicle screw system for osteosynthesis
WO1998032386A1 (en) * 1997-01-22 1998-07-30 Synthes Ag Chur Device for connecting a longitudinal bar to a pedicle screw
DE29710484U1 (en) * 1997-06-16 1998-10-15 Howmedica Gmbh Receiving part for a holding component of a spinal implant
US6623068B2 (en) * 1998-06-18 2003-09-23 Alcan Technology & Management Ag Roof unit and basic structure of a road-bound vehicle
US6296642B1 (en) * 1998-11-09 2001-10-02 Sdgi Holdings, Inc. Reverse angle thread for preventing splaying in medical devices
DE19912364B4 (en) * 1999-03-19 2004-10-07 Peter Brehm pedicle screw
US6547789B1 (en) * 1999-07-02 2003-04-15 Sulzer Orthopedics Ltd. Holding apparatus for the spinal column
DE19936286C2 (en) * 1999-08-02 2002-01-17 Lutz Biedermann bone screw
AU1493301A (en) * 1999-09-27 2001-04-30 Blackstone Medical, Inc. A surgical screw system and related methods
US6224598B1 (en) * 2000-02-16 2001-05-01 Roger P. Jackson Bone screw threaded plug closure with central set screw
KR200200582Y1 (en) * 2000-03-15 2000-10-16 최길운 Prosthesis for connecting bone
EP1174092A3 (en) * 2000-07-22 2003-03-26 Corin Spinal Systems Limited A pedicle attachment assembly
US6368321B1 (en) * 2000-12-04 2002-04-09 Roger P. Jackson Lockable swivel head bone screw
DE50100793D1 (en) * 2000-12-27 2003-11-20 Biedermann Motech Gmbh Screw for connecting to a rod
US6869433B2 (en) * 2001-01-12 2005-03-22 Depuy Acromed, Inc. Polyaxial screw with improved locking
DE10136129A1 (en) * 2001-07-27 2003-02-20 Biedermann Motech Gmbh Bone screw and fastening tool for this
KR100379194B1 (en) * 2001-10-31 2003-04-08 U & I Co Ltd Apparatus for fixing bone
DE10164323C1 (en) * 2001-12-28 2003-06-18 Biedermann Motech Gmbh Bone screw has holder element joined to shaft and possessing two free arms , with inner screw, slot, external nut, cavity and shoulder cooperating with attachment
CN1221217C (en) * 2002-01-24 2005-10-05 英属维京群岛商冠亚生技控股集团股份有限公司 Rotary button fixator for vertebration fixing
DE10213855A1 (en) * 2002-03-27 2003-10-16 Biedermann Motech Gmbh Bone anchoring device for stabilizing bone segments and receiving part of a bone anchoring device
DE10256095B4 (en) * 2002-12-02 2004-11-18 Biedermann Motech Gmbh Element with a shaft and an associated holding element for connecting to a rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149702B2 (en) 2015-01-12 2018-12-11 Imds Llc Polyaxial screw and rod system

Also Published As

Publication number Publication date
DE10256095B4 (en) 2004-11-18
US20080167689A1 (en) 2008-07-10
JP4338505B2 (en) 2009-10-07
US7335202B2 (en) 2008-02-26
JP2004183896A (en) 2004-07-02
EP1426016B1 (en) 2006-08-30
EP1426016A1 (en) 2004-06-09
DE10256095A1 (en) 2004-07-22
US20040186474A1 (en) 2004-09-23
DE50304838D1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US7335202B2 (en) Implant having a shaft and a hold element connected therewith for connecting with a rod
US6443953B1 (en) Self-aligning cap nut for use with a spinal rod anchor
US9895173B2 (en) Element with a shank and a holding element connected to it for connecting to a rod
CA2133484C (en) Posterior spinal implant
JP5220575B2 (en) System for stabilizing the spine
EP2085040B1 (en) Tool for holding or guiding a receiving part for connecting a shank of a bone anchoring element to a rod
US7264621B2 (en) Multi-axial bone attachment assembly
US11207106B2 (en) Polyaxial bone anchoring device
US8123784B2 (en) Anchoring element for use in spine or bone surgery, methods for use and production thereof
US8343191B2 (en) Bone anchoring device
EP1891904B1 (en) Bone anchoring device
US9277938B2 (en) Polyaxial bone anchoring system
US20070233086A1 (en) Bone anchoring assembly
US9192417B2 (en) Monoplanar bone anchoring device with selectable pivot plane
JPH11253454A (en) Screw turning position determining mechanism
US20060036242A1 (en) Screw and rod fixation system
EP1749489B1 (en) Bone anchoring device
US11298157B2 (en) Closure assembly for securing a stabilization element in a receiving part of a bone anchoring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIEDERMANN MOTECH GMBH & CO. KG, GERMANY

Free format text: CHANGE OF LEGAL FORM;ASSIGNOR:BIEDERMANN MOTECH GMBH;REEL/FRAME:027746/0489

Effective date: 20090720

AS Assignment

Owner name: BIEDERMANN TECHNOLOGIES GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIEDERMANN MOTECH GMBH & CO. KG;REEL/FRAME:027873/0551

Effective date: 20120308

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION