US20120065526A9 - Piezoelectric sensor for measuring pressure fluctuations - Google Patents

Piezoelectric sensor for measuring pressure fluctuations Download PDF

Info

Publication number
US20120065526A9
US20120065526A9 US12/993,615 US99361509A US2012065526A9 US 20120065526 A9 US20120065526 A9 US 20120065526A9 US 99361509 A US99361509 A US 99361509A US 2012065526 A9 US2012065526 A9 US 2012065526A9
Authority
US
United States
Prior art keywords
measurement
sensor
piezo electric
pressure
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/993,615
Other versions
US20110166459A1 (en
US9642539B2 (en
Inventor
Roland Kopetsch
Mohammad Nasseri
Stephan Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SECTORCON INGENIEURGESELLSCHAFT fur SYSTEM-UND SOFTWARETECHNIK MBH
Original Assignee
SECTORCON INGENIEURGESELLSCHAFT fur SYSTEM-UND SOFTWARETECHNIK MBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SECTORCON INGENIEURGESELLSCHAFT fur SYSTEM-UND SOFTWARETECHNIK MBH filed Critical SECTORCON INGENIEURGESELLSCHAFT fur SYSTEM-UND SOFTWARETECHNIK MBH
Publication of US20110166459A1 publication Critical patent/US20110166459A1/en
Assigned to SECTORCON INGENIEURGESELLSCHAFT FUR SYSTEM-UND SOFTWARETECHNIK MBH reassignment SECTORCON INGENIEURGESELLSCHAFT FUR SYSTEM-UND SOFTWARETECHNIK MBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERGMANN, STEPHAN, KOPETSCH, ROLAND, NASSERI, MOHAMMAD
Publication of US20120065526A9 publication Critical patent/US20120065526A9/en
Application granted granted Critical
Publication of US9642539B2 publication Critical patent/US9642539B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • A61B5/02035Determining blood viscosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs

Definitions

  • the invention relates to a piezoelectric sensor according to the preamble of patent claim 1 for an improved measurement of mechanical variables such as force, pressure or measurement variables which are derived there from, particularly a PVDF film sensor exhibiting an improved sensitivity and temperature stability of the measurement signal for measuring pressures that vary in time and/or space, and for the one- and two-dimensional determination of a position and propagation velocity of pressure fluctuations and pressure waves.
  • a preferred field of application for the invention is a non-invasive, low impact and continuous measurement of a pulse rate and a systolic and diastolic blood pressure of humans and animals by measuring arterial pulse waves through a sensor configured with piezoelectric PVDF foils.
  • Piezoelectric foils are typically made from polyvinylidenfluoride (abbrev. PVDF).
  • PVDF polyvinylidenfluoride
  • a transparent, partially crystalline fluoride thermoplastic which is polarized for producing the piezoelectric properties, this means it is heated, stretched in one dimension and thus exposed to a strong oriented electromagnetic field for orienting the dipoles.
  • the piezoelectric properties thus created are highly directional through the monoaxial orientation.
  • the PVDF foil is metal coated. This metal coating is mostly made from gold or copper nickel alloys, vapor deposited on the foil.
  • the charges can be tapped through electrodes at the edge of the piezoelectric foil and can be converted into a measurable electric current through a charge amplifier (charge-voltage converter).
  • charge amplifier charge-voltage converter
  • the human heart is a discontinuously feeding displacement pump and feeds blood in its contraction phase through arteries towards the peripheral blood vessels, from where it returns to the heart through the venous blood vessel system.
  • the blood pressure spike in the aorta created during the contraction phase of the heart thus is the systolic blood pressure, which essentially is a function of the heart function parameters
  • the blood pressure in the aorta at the output of the heart during its slacking phase is the diastolic blood pressure, which is substantially a function of the beat volume and elasticity of the aorta.
  • a continuous long term monitoring of both blood pressure values is among other things required for detecting short blood pressure spikes is an important prerequisite for diagnosing in particular the vital functions and possible health risks of a patient.
  • the systolic blood pressure can be derived for this method from the jacket pressure that is readable during the slow jacket pressure lowering when the Korotkoff noise can be heard for the first time.
  • the diastolic blood pressure can be derived from reading the jacket pressure at which the Korotkoff noise cannot be heard anymore for the first time when the reduction of the jacket pressure continues, since no blood vessel contraction occurs anymore below the diastolic blood pressure.
  • An inverse sequence of the measurement steps is also possible by increasing the jacket pressure slowly from the bottom up. It is appreciated that an auscultatoric gap occurs for certain patients with high blood pressure, this means the Korotkoff noise disappears when lowering the pressure between the systolic and the diastolic pressure. When the pressure is lowered further, the noise reappears, and the diastolic pressure is determined when the Korotkoff disappears again.
  • a method of this type for non-invasive measurement of blood pressure is described in DE 34 24 536, in which an inflatable arm jacket includes a microphone for detecting the Korotkoff noises and the systolic and the diastolic blood pressure is determined and displayed through a digital processing unit.
  • the measurement precision of this method in particular for determining the diastolic blood pressure is not very high, furthermore, it is not suitable for continuous blood pressure monitoring, since each measurement process takes a long time through the slow jacket pressure change and a more frequent repetition of the measurements than every five minutes leads to a measurement falsification. Furthermore, the patient is discomforted through the high jacket pressure and there is a risk of tissue damage at the application location.
  • the blood pressure is measured in a non-invasive and continuous manner without using cumbersome compression jackets which discomfort a patient.
  • the systolic blood pressure correlates quite well with the propagation velocity of a pulse wave or the reciprocal of the pulse transition time in an artery of a human.
  • DE 10214220 describes a method and a device for non evasive low impact and continuous measurement of the pulse and the blood pressure by determining the pulse wave velocity.
  • the measurement of the systolic blood pressure which typically discomforts the patient the most is performed by determining the pulse transition time through at least two pressure sensors preferably attached at the upper arm and the lower arm in particular based on piezo electric foils.
  • the determined pulse transit times or systolic blood pressure values are stored in a processing unit.
  • the measurement of the diastolic blood pressure is performed in particular according to the oscillometric method through an arm jacket which is only loaded with a pressure in the order of magnitude of the diastolic blood pressure which only causes minor discomfort for the patient and minor loading of the body tissue at the application location also for long term blood pressure monitoring.
  • the two calibration measurements for systolic blood pressure determination through pulse transit time measurement are thus performed in an oscillometric manner through the arm jacket at the beginning of the measurement interval.
  • the associated disadvantages are that at least two pressure sensors are required at two measurement locations for determining the pulse transit time and that the measurement sensitivity is too low for the prior art pressure sensors based on piezo electric foils, in particular for patients with circulation problems in their extremities, e.g. for patients which suffer from diabetes or from a so called smoker's leg.
  • the permanent application of a pressure jacket is required for measuring according to the Riva-Rocci method.
  • Additional disadvantages of the prior art pressure sensors based on piezo electric foils are bad temperature stability of the measurement data through the undefined and high heat flow in the sensor and bad measurement results through insufficient contact between the sensor surface and the irregularly shaped skin surface of a human.
  • EP 491 655 describes a force sensor system permanently installed in a pavement for measuring weights of vehicles, wherein piezo elements which are installed in a hollow profile are installed with an elastic preload.
  • This preload is achieved in that the hollow profile is elastically opened through lateral clamping and the piezo elements thus can be inserted into the hollow profile.
  • a high vertical elastic pressure preloading of the piezo element occurs.
  • the preloading is neither performed through tension nor in a direction of the piezo-dipole orientation, so that the force sensor thus introduced is not subjected to any measurement sensitivity improvement in piezo-dipole direction through reduced influencing of the signal through the other effective components through the elastic preload.
  • EP 370 203 describes an acceleration sensor in which a piezo foil element is suspended above a base of a metal support component, wherein the base is preformed in a defined manner and used for the piezo foil to come in contact with the base under an acceleration that is high enough and thus prevents an expansion of the piezo foil that is too high.
  • the piezo foil is not tension preloaded in a defined manner in piezo-dipole orientation and a cavity between the piezo foil and a support component is not used for the piezo foil to nestle against the cavity, e.g. for pressure wave detection at an uneven surface.
  • a pressure sensor based on piezo electric converters, in particular piezo electric foils through which measuring pressures that vary time based and/or spatially and deriving measurement variables there from is facilitated with a better measurement sensitivity.
  • an object of the present invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils, through which the measurement of pressures that vary time based and/or in a spatial respect and deriving measurement variables there from is facilitated with improved stability for the measurement data.
  • the object is accomplished through the piezo electric sensor according to the characterizing features of claim 1 .
  • the pressure sensor according to the invention includes a plurality of parallel strips made from a piezo electric material as a measurement membrane and associated with a sensor base element, so that the strips are preloaded with tension in a mono dimensional elastic manner in a direction of the piezo-dipole orientation and a free cavity is provided between the piezo electric sensor material mounted under tension in the measurement portion and the sensor base element through a recess or milled recess.
  • the strong directional orientation of the piezo electric materials through their mono axial orientation is used for improving measurement sensitivity in a controlled manner.
  • Another improvement of the sensor measurement sensitivity is achieved through the plurality of parallel piezo electric sensor strips since in the data processing through the sensor controller only the measurement signals of the piezo electric sensor material strips are selected for data processing whose measurement signals are the best.
  • the temperature stability of the measurement data is improved through the reduced temperature flow of the sensor material to the sensor base element and the sensor material in the measurement area can nestle in an optimum manner against measurement surfaces which have an irregular shape, like e.g. human skin, which further improves sensor measurement sensitivity.
  • the distance of the parallel piezo electric sensor material strips from one another is known, the position and propagation velocity of pressure fluctuations and pressure waves can be determined and measurement variables that can be derived there from can be determined with only one measurement sensor at only one measurement location perpendicular to the sensor material strips, like e.g. pulse wave velocity for animals and humans, or through calibration measurements also at another angle, where the measurement precision for a vertical arrangement of the sensor material strips relative to the pressure fluctuation propagation direction is the highest.
  • pressure sensors that are improved over the prior art are provided through the present invention based on piezo electric converters, in particular pressure sensors based on piezo electric foils for non invasive and low impact and continuous measurement of the pulse frequency and of the blood pressure through determining the arterial pulse wave velocity and the pulse wave signal form for animals and humans which are characterized by an improved measurement sensitivity and temperature stability of the measurement data and through which the determination of the position and the propagation velocity of pressure fluctuations and pressure waves and of the measurement variables derivable there from and the determination of the arterial pulse wave velocity and of the pulse wave signal form for humans and animals is facilitated at a measurement location with only one measurement sensor.
  • the permanent application of a pressure loaded jacket according to the Riva-Rocci-method is not required any more according to the invention.
  • the improved measurement sensitivity of the sensor e.g. the blood pressure and the pulse frequency can be measured also for emergency patients with only very low blood pressure and for patients with circulation problems in the extremities, thus e.g. with patients who suffer from diabetes and the so called smoker's leg.
  • the plurality of the piezo sensor strips on a sensor facilitates positioning the sensor, since it does not have to be positioned exactly at the location of the pressure fluctuation, like e.g. an artery, based on the measurement signal redundancy.
  • piezo electric foils in particular metal coated polyvinylidenfluoride-foils (abbreviated PVDF-foils) are used as piezo electric converters of the pressure sensors.
  • PVDF-foils metal coated polyvinylidenfluoride-foils
  • the PVDF-foil of the pressure sensor is coated on its metal side with a protective foil and glued onto a flexible circuit board preferably made from polyimide as a measurement membrane laminate.
  • the sensor base element, onto which the measurement membrane laminate is applied with a tension through gluing is configured as a bending stiff rigid support circuit board onto which the amplifier electronics of the piezo electric converter is soldered directly.
  • two measurement membrane laminate layers disposed on top of one another, whose sensor material strip orientation relative to one another is preferably perpendicular, are being used in order to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from like the arterial pulse wave velocity for animals and humans for any directional orientation of the sensor at the measurement location.
  • portions of measurement membrane laminates whose sensor material arrangement is preferably perpendicular to one another are being used in order to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from like e.g. the arterial pulse wave velocity for animals and humans for any angular arrangement of the sensor on the measurement location.
  • FIG. 1 illustrates a piezo electric sensor according to the invention in a sectional view
  • FIG. 2 illustrates a piezo electric sensor according to the invention in a bottom view
  • FIG. 3 illustrates a measurement and processing device according to the invention applied to an arm of a patient in a perspective view.
  • FIG. 1 illustrates a sensor based element 4 in a cross sectional view, wherein the sensor base element is configured as a rigid support circuit board on which the electronic amplifier 6 (charge amplifier) is directly soldered in order to prevent charge losses.
  • the measurement membrane laminate includes a flexible polyimide conductor plate 3 , plural parallel metal coated PVDF-foils 1 and a polyimide protective foil 2 and is glued on the sensor base element 4 , so that a cavity 5 is created between the measurement membrane laminate the sensor base element 4 , wherein the cavity can be produced e.g. through milling the sensor base element-support circuit board 4 and so that the measurement membrane laminate is tension preloaded in a direction of the piezo polarization of the PVDF-foil strips 1 .
  • the amplifier electronics 6 , the sensor base element support circuit board 4 , the polyimide circuit board 3 and the metal side of the PVDF-foil strips 1 are connected in an electrically conductive manner through the electrodes and circuit board conductive paths which are not illustrated in further detail herein.
  • the protective foil 2 protects the PVDF-foil strips against humidity and contamination and thus protects the metal electrodes against oxidation. This additionally provides good skin compatibility.
  • the provided cavity 5 facilitates nestling the measurement membrane laminate at uneven surfaces like e.g. the skin of a human and thus improves measurement data quality.
  • the cavity 5 furthermore reduces the heat flow between the PDVF foil strip 1 and the sensor base element-carrier circuit board 4 and renders the heat flow predictable, so that the temperature stability of the measurement data is improved.
  • FIG. 2 illustrates the four parallel PVDF-foil strips 1 in a bottom view, wherein the foil strips are glued onto the sensor base element 4 with a tension preload and are glued as a measurement membrane laminate onto the rigid carrier circuit board which is configured as a sensor base element 4 through forming a cavity 5 through milling.
  • FIG. 3 illustrates the configuration of a device for non invasive low impact and continuous measurement and monitoring the blood pressure and pulse frequency of a human as an embodiment for a piezo electric sensor for pressure fluctuation measurement according to the invention.
  • the upper arm 16 of a patient is enveloped by an arm jacket 7 that is closable through a loop and hook closure, wherein the jacket includes at least one pressure pillow 8 which is filled e.g. with a measurement liquid for calibrating the measurement of the diastolic and systolic blood pressure.
  • the pressure cushion 8 is configured as an elastic membrane at the side oriented towards the skin.
  • the arm jacket 7 furthermore includes a piezo electric pressure sensor according to the invention as a pulse wave sensor 12 which can be applied e.g.
  • the jacket 7 which is made from plural parallel PVDF-piezo foil strips 1 which are glued onto a rigid support circuit board with directly integrated amplifier electronics 6 as a sensor base element 4 forming a cavity 5 between the PVDF-piezo foil 1 and the sensor base element 4 , wherein the plural parallel PVDF-piezo foil strips 1 are glued onto the sensor base element 4 with a tension preload.
  • the PVDF-piezo foil strips 1 are thus glued together with a polyimide protective foil and flexible polyimide circuit board to form a measurement membrane laminate.
  • the propagation of a pulse wave in the artery generates an electric voltage signal in the PVDF-foil strips 1 of the pulse wave sensor 12 through expanding the piezo electric material, wherein the electric voltage signal is amplified in the amplifier electronics 6 and processed in the control and processing unit 13 .
  • the pulse transit time is computed in the control and processing unit 13 and the systolic and diastolic blood pressure is computed from the pulse transit time and from the shape of the pulse wave signals.
  • the display of the measurement values and the menu guidance is provided through an LCD foil 14 .
  • the entry for device control is provided through a keyboard 15 .
  • a calibration routine is started through the control and processing unit 13 .
  • the pressure in the pressure cushion is slowly increased through the pump 9 and the diastolic and systolic blood pressure of the patient is determined through the oscillometric sensor 11 .
  • the pulse transit times and the pulse wave signal form are determined through at least two of the parallel PVDF foil strips 1 and the measurement device for determining the systolic and diastolic blood pressure is calibrated by associating the pulse transit time values and the pulse wave signal form with the oscillometric pressure values determined for the systole and diastole from the pressure values determined in the pressure cushion 8 and measured in the pressure sensor 10 .
  • the calibration process is performed through at least two calibration measurements, e.g. in a resting state of the patient and after a short movement phase of the patient for increasing the blood pressure.
  • the threshold value of the systolic and diastolic blood pressure can be determined for initiating a possible alarm function.
  • the pressure loading of the pressure cushion 8 is performed in an automated manner in that an oscillometric sensor 11 detects the pulse oscillation amplitudes and forwards them as an electric signal to a control and processing unit 13 , where it is determined through a threshold value inquiry of the pulse oscillation amplitude whether the pressure in the pressure cushion corresponds to the diastolic or systolic blood pressure.
  • the control and processing unit 13 When the threshold value is lower or higher the control and processing unit 13 causes the pump 9 to adapt the pressure in the pressure cushion 8 .
  • the oscillometric sensor 11 can be attached to the elastic membrane of the pressure cushion 8 .
  • the pressure in the pressure cushion 8 is received by a pressure sensor 10 and processed and stored in the control and processing unit 13 as a diastolic or systolic blood pressure for calibrating the measurement arrangement.
  • the pulse transition time values and the pulse wave signal forms are continuously measured through the pulse wave sensor 12 and transmitted to the control and processing unit 13 without pressure loading the arm jacket 7 which causes discomfort to the patient, wherein the conversion to systolic and diastolic blood pressures and their storage is performed in the control and processing unit 13 .
  • an alarm function can be triggered, wherein the alarm function can either be incorporated in the control and processing unit 13 or is provided through the data interface 17 through an external device.
  • the data interface 17 can be configured e.g. as a pluggable data cable or as a radio interface. Through the data interface 17 the blood pressure values can also be transmitted to external devices like a PC for further processing.

Abstract

The invention relates to a piezoelectric sensor for the improved measurement of mechanical variables such as force, pressure or measurement variables which are derived there from, particularly a PVDF film sensor having an improved sensitivity and temperature stability of the measurement signal for pressure measurements that vary in time and/or space, and for the one- and two-dimensional determination of the position and propagation velocity of pressure fluctuations and pressure waves with a single measurement sensor at a measurement location. A preferred field of application of the invention is the non-invasive, low strain and continuous measurement of the pulse rate and the systolic and diastolic blood pressure of humans and animals by determining the velocity and the signal form of the pulse waves. The object of the invention is to allow the measurements of the blood pressure and the pulse rate, for example even in the case of emergency patients having only a very low blood pressure and patients having circulatory disorders in the extremities, for example patients which have developed diabetes or the “smoker's leg”, by using only one sensor at a measurement location due to the improved measurement sensitivity of the piezoelectric sensor, with the result that the continuous application of a pressurized jacket for continuously measuring and monitoring the blood pressure is not necessary. The present invention solves this problem in that a plurality of parallel strips of a piezoelectric material (1) are associated as a measurement membrane in the pressure sensor according to the invention with a sensor base body (4) in such a manner that the parallel strips are tension preloaded in a one-dimensional and elastic manner in the direction of the piezo dipole orientation and that an empty cavity (5) is provided between the tension preloaded piezoelectric sensor material (1) in the measurement portion and the sensor base body (4), formed by a recess/cutout.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a national stage of PCT International application no. PCT/EP2009/005543 filed Jul. 17, 2009, which claims priority to German application Ser. No. 10 2008 024 737.5 filed May 20, 2008.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a piezoelectric sensor according to the preamble of patent claim 1 for an improved measurement of mechanical variables such as force, pressure or measurement variables which are derived there from, particularly a PVDF film sensor exhibiting an improved sensitivity and temperature stability of the measurement signal for measuring pressures that vary in time and/or space, and for the one- and two-dimensional determination of a position and propagation velocity of pressure fluctuations and pressure waves. A preferred field of application for the invention is a non-invasive, low impact and continuous measurement of a pulse rate and a systolic and diastolic blood pressure of humans and animals by measuring arterial pulse waves through a sensor configured with piezoelectric PVDF foils.
  • Through the oriented deformation of a piezoelectric material in a direction of a polarization, microscopic dipoles are formed by displacing negative and positive charge centers within the elementary cells. The summation over all elementary cells of the crystal leads to a macroscopically measurable electrical voltage, which is directly proportional to a deformation in a defined deformation range for a longitudinal deformation in a direction of a polarity.
  • Piezoelectric foils are typically made from polyvinylidenfluoride (abbrev. PVDF). A transparent, partially crystalline fluoride thermoplastic, which is polarized for producing the piezoelectric properties, this means it is heated, stretched in one dimension and thus exposed to a strong oriented electromagnetic field for orienting the dipoles. The piezoelectric properties thus created are highly directional through the monoaxial orientation. In order to discharge the dipole charges created during the deformations, the PVDF foil is metal coated. This metal coating is mostly made from gold or copper nickel alloys, vapor deposited on the foil. Thus, the charges can be tapped through electrodes at the edge of the piezoelectric foil and can be converted into a measurable electric current through a charge amplifier (charge-voltage converter).
  • BRIEF SUMMARY OF INVENTION
  • The human heart is a discontinuously feeding displacement pump and feeds blood in its contraction phase through arteries towards the peripheral blood vessels, from where it returns to the heart through the venous blood vessel system. The blood pressure spike in the aorta created during the contraction phase of the heart, thus is the systolic blood pressure, which essentially is a function of the heart function parameters, the blood pressure in the aorta at the output of the heart during its slacking phase is the diastolic blood pressure, which is substantially a function of the beat volume and elasticity of the aorta. A continuous long term monitoring of both blood pressure values is among other things required for detecting short blood pressure spikes is an important prerequisite for diagnosing in particular the vital functions and possible health risks of a patient. For the time being, this is only possible in an invasive manner through a blood pressure measuring canule or a blood pressure measuring catheter applied into the artery of the patient. The disadvantages of the invasive method besides discomfort the patient are the risk of infections and the risk of injury when the patient moves his arms. Furthermore, the method can only be used in a hospital.
  • Most known methods for non-invasive blood pressure measurement operate according to the Riva-Rocci method. A jacket typically applied to the upper arm of a patient is thus initially pumped up with air pressure, which is above the expected systolic blood pressure and has the consequence that the artery in the arm of the patient is compressed enough, so that the blood flow at this location of the artery is interrupted. The blood pressure in the jacket is now slightly lowered by opening a valve. When the jacket pressure falls below the systolic pressure, the blood flow in the blood vessel is reestablished in the contraction phase of the heart for a time period in which the arterial pressure is higher than the jacket pressure. However, since the interior cross section of the blood vessel is still very small, the level of turbulence increases due to the higher blood flow velocity at this location, so that an increased flow noise or a noise through the blood vessel movement in the rhythm of the heartbeat, the so-called Korotkoff noise, can be heard, e.g. through a stethoscope in blood flow direction shortly behind the blood vessel contraction during this time frame. Thus, the systolic blood pressure can be derived for this method from the jacket pressure that is readable during the slow jacket pressure lowering when the Korotkoff noise can be heard for the first time. Analogously thereto, the diastolic blood pressure can be derived from reading the jacket pressure at which the Korotkoff noise cannot be heard anymore for the first time when the reduction of the jacket pressure continues, since no blood vessel contraction occurs anymore below the diastolic blood pressure. An inverse sequence of the measurement steps is also possible by increasing the jacket pressure slowly from the bottom up. It is appreciated that an auscultatoric gap occurs for certain patients with high blood pressure, this means the Korotkoff noise disappears when lowering the pressure between the systolic and the diastolic pressure. When the pressure is lowered further, the noise reappears, and the diastolic pressure is determined when the Korotkoff disappears again.
  • A method of this type for non-invasive measurement of blood pressure is described in DE 34 24 536, in which an inflatable arm jacket includes a microphone for detecting the Korotkoff noises and the systolic and the diastolic blood pressure is determined and displayed through a digital processing unit. The measurement precision of this method in particular for determining the diastolic blood pressure is not very high, furthermore, it is not suitable for continuous blood pressure monitoring, since each measurement process takes a long time through the slow jacket pressure change and a more frequent repetition of the measurements than every five minutes leads to a measurement falsification. Furthermore, the patient is discomforted through the high jacket pressure and there is a risk of tissue damage at the application location.
  • Through another method, the blood pressure is measured in a non-invasive and continuous manner without using cumbersome compression jackets which discomfort a patient. Thus, the fact is being used that in particular, the systolic blood pressure correlates quite well with the propagation velocity of a pulse wave or the reciprocal of the pulse transition time in an artery of a human. Thus, P. Elter in his dissertation “Methods and systems for non-invasive continuous and non-discomforting blood pressure measurements” (University Karlsruhe 2001), analytically proves this relationship by deriving the relationship:

  • p=( 2ρ/E p) (R/h) c 2−Eo /E p
  • As a hydraulic replacement model for the pulse wave propagation in an artery using an undampened wave and a flow without losses in an elastic hose, neglecting exterior forces like gravity, wherein p is the blood pressure in the artery, p is the blood density, R is the inner radius of the artery, h is the wall thickness of the artery, c is the pulse wave velocity, and E0 and Ep are empirical elasticity constants for describing the arterial wall thickness. Based on this model, the pressure can be determined from the pulse wave velocity alone presuming the ratio of the blood vessel sizes R and h to be constant:

  • p i cal =C 1 *c i cal 2 *C 2,
  • wherein C1, C2 are constants which can be determined e.g. through two individual calibration measurements i=1, 2 which have to be performed at different blood pressures, thus e.g. one measurement has to be performed at rest and one measurement has to be performed under a physical load. Furthermore P. Elter provides statistical evidence in his dissertation that the systolic blood pressure correlates with the propagation velocity of a pulse wave or the reciprocal of a pulse transition time.
  • Thus accordingly DE 10214220 describes a method and a device for non evasive low impact and continuous measurement of the pulse and the blood pressure by determining the pulse wave velocity. Thus, the measurement of the systolic blood pressure which typically discomforts the patient the most is performed by determining the pulse transition time through at least two pressure sensors preferably attached at the upper arm and the lower arm in particular based on piezo electric foils. The determined pulse transit times or systolic blood pressure values are stored in a processing unit. The measurement of the diastolic blood pressure is performed in particular according to the oscillometric method through an arm jacket which is only loaded with a pressure in the order of magnitude of the diastolic blood pressure which only causes minor discomfort for the patient and minor loading of the body tissue at the application location also for long term blood pressure monitoring. The two calibration measurements for systolic blood pressure determination through pulse transit time measurement are thus performed in an oscillometric manner through the arm jacket at the beginning of the measurement interval.
  • The associated disadvantages are that at least two pressure sensors are required at two measurement locations for determining the pulse transit time and that the measurement sensitivity is too low for the prior art pressure sensors based on piezo electric foils, in particular for patients with circulation problems in their extremities, e.g. for patients which suffer from diabetes or from a so called smoker's leg. For continuously measuring the diastolic blood pressure also here the permanent application of a pressure jacket is required for measuring according to the Riva-Rocci method. Additional disadvantages of the prior art pressure sensors based on piezo electric foils are bad temperature stability of the measurement data through the undefined and high heat flow in the sensor and bad measurement results through insufficient contact between the sensor surface and the irregularly shaped skin surface of a human.
  • EP 491 655 describes a force sensor system permanently installed in a pavement for measuring weights of vehicles, wherein piezo elements which are installed in a hollow profile are installed with an elastic preload. This preload is achieved in that the hollow profile is elastically opened through lateral clamping and the piezo elements thus can be inserted into the hollow profile. Thus, after releasing a clamped connection, a high vertical elastic pressure preloading of the piezo element occurs. Thus the preloading is neither performed through tension nor in a direction of the piezo-dipole orientation, so that the force sensor thus introduced is not subjected to any measurement sensitivity improvement in piezo-dipole direction through reduced influencing of the signal through the other effective components through the elastic preload.
  • EP 370 203 describes an acceleration sensor in which a piezo foil element is suspended above a base of a metal support component, wherein the base is preformed in a defined manner and used for the piezo foil to come in contact with the base under an acceleration that is high enough and thus prevents an expansion of the piezo foil that is too high. Thus, the piezo foil is not tension preloaded in a defined manner in piezo-dipole orientation and a cavity between the piezo foil and a support component is not used for the piezo foil to nestle against the cavity, e.g. for pressure wave detection at an uneven surface.
  • Thus, it is the object of the present invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils through which measuring pressures that vary time based and/or spatially and deriving measurement variables there from is facilitated with a better measurement sensitivity.
  • Thus it is furthermore an object of the present invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils, through which the measurement of pressures that vary time based and/or in a spatial respect and deriving measurement variables there from is facilitated with improved stability for the measurement data.
  • It is another object of the present invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils in which the pressure sensor is skin friendly.
  • It is another object of the invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils through which the position and the propagation velocity of pressure fluctuations and pressure waves and measurement variables that can be derived there from is facilitated with only one measurement sensor and only one measurement location.
  • It is another object of the present invention to provide a pressure sensor based on piezo electric converters, in particular piezo electric foils, through which the measurement of pressures which are variable time based or in a spatial respect and the measurement variables that can be derived there from is also facilitated from surfaces with an irregular shape like e.g. human skin with an improved measurement sensitivity.
  • It is another object of the present invention to provide a pressure sensor based on a piezo electric converters, in particular piezo electric foils through which the non invasive, impact free and continuous measurement and monitoring of the pulse frequency and of the systolic and the diastolic blood pressure is facilitated for a human and a animal without continuously applying a pressure loaded jacket for measurement according to a Riva-Rocci method.
  • According to the invention the object is accomplished through the piezo electric sensor according to the characterizing features of claim 1.
  • Advantageous embodiments of the invention are described by the characterizing features of the dependent claims.
  • Thus it is a core feature of the invention that the pressure sensor according to the invention includes a plurality of parallel strips made from a piezo electric material as a measurement membrane and associated with a sensor base element, so that the strips are preloaded with tension in a mono dimensional elastic manner in a direction of the piezo-dipole orientation and a free cavity is provided between the piezo electric sensor material mounted under tension in the measurement portion and the sensor base element through a recess or milled recess.
  • Through the mono dimensional elastic preload of the piezo electric sensor material through tension in a direction of the piezo-dipole orientation different measurement variables than the measurement variables to be measured are reduced in a direction of the dipole orientation due to the only minor influencing of the signals through the other effective components and thus the measurement precision of the sensor is increased. Thus, the strong directional orientation of the piezo electric materials through their mono axial orientation is used for improving measurement sensitivity in a controlled manner. Another improvement of the sensor measurement sensitivity is achieved through the plurality of parallel piezo electric sensor strips since in the data processing through the sensor controller only the measurement signals of the piezo electric sensor material strips are selected for data processing whose measurement signals are the best. Since an open cavity is provided between the piezo electric sensor material mounted under tension in the measurement area and the sensor base element, the temperature stability of the measurement data is improved through the reduced temperature flow of the sensor material to the sensor base element and the sensor material in the measurement area can nestle in an optimum manner against measurement surfaces which have an irregular shape, like e.g. human skin, which further improves sensor measurement sensitivity. Since the distance of the parallel piezo electric sensor material strips from one another is known, the position and propagation velocity of pressure fluctuations and pressure waves can be determined and measurement variables that can be derived there from can be determined with only one measurement sensor at only one measurement location perpendicular to the sensor material strips, like e.g. pulse wave velocity for animals and humans, or through calibration measurements also at another angle, where the measurement precision for a vertical arrangement of the sensor material strips relative to the pressure fluctuation propagation direction is the highest.
  • Thus, the result is that pressure sensors that are improved over the prior art are provided through the present invention based on piezo electric converters, in particular pressure sensors based on piezo electric foils for non invasive and low impact and continuous measurement of the pulse frequency and of the blood pressure through determining the arterial pulse wave velocity and the pulse wave signal form for animals and humans which are characterized by an improved measurement sensitivity and temperature stability of the measurement data and through which the determination of the position and the propagation velocity of pressure fluctuations and pressure waves and of the measurement variables derivable there from and the determination of the arterial pulse wave velocity and of the pulse wave signal form for humans and animals is facilitated at a measurement location with only one measurement sensor.
  • The permanent application of a pressure loaded jacket according to the Riva-Rocci-method is not required any more according to the invention. Through the improved measurement sensitivity of the sensor e.g. the blood pressure and the pulse frequency can be measured also for emergency patients with only very low blood pressure and for patients with circulation problems in the extremities, thus e.g. with patients who suffer from diabetes and the so called smoker's leg.
  • It is another advantage of the invention that the plurality of the piezo sensor strips on a sensor facilitates positioning the sensor, since it does not have to be positioned exactly at the location of the pressure fluctuation, like e.g. an artery, based on the measurement signal redundancy.
  • In an advantageous embodiment of the invention piezo electric foils, in particular metal coated polyvinylidenfluoride-foils (abbreviated PVDF-foils) are used as piezo electric converters of the pressure sensors.
  • In another advantageous embodiment of the invention the PVDF-foil of the pressure sensor is coated on its metal side with a protective foil and glued onto a flexible circuit board preferably made from polyimide as a measurement membrane laminate.
  • In another advantageous embodiment of the invention the sensor base element, onto which the measurement membrane laminate is applied with a tension through gluing, is configured as a bending stiff rigid support circuit board onto which the amplifier electronics of the piezo electric converter is soldered directly.
  • In another preferred embodiment of the invention two measurement membrane laminate layers disposed on top of one another, whose sensor material strip orientation relative to one another is preferably perpendicular, are being used in order to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from like the arterial pulse wave velocity for animals and humans for any directional orientation of the sensor at the measurement location.
  • In another advantageous embodiment of the invention portions of measurement membrane laminates whose sensor material arrangement is preferably perpendicular to one another are being used in order to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from like e.g. the arterial pulse wave velocity for animals and humans for any angular arrangement of the sensor on the measurement location.
  • Thus the object of the invention is achieved in their entirety through the provided piezo electric sensor.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • Subsequently a preferred embodiment of the invention is described in more detail with reference to the appended drawing figure wherein:
  • FIG. 1 illustrates a piezo electric sensor according to the invention in a sectional view;
  • FIG. 2 illustrates a piezo electric sensor according to the invention in a bottom view; and
  • FIG. 3 illustrates a measurement and processing device according to the invention applied to an arm of a patient in a perspective view.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates a sensor based element 4 in a cross sectional view, wherein the sensor base element is configured as a rigid support circuit board on which the electronic amplifier 6 (charge amplifier) is directly soldered in order to prevent charge losses. The measurement membrane laminate includes a flexible polyimide conductor plate 3, plural parallel metal coated PVDF-foils 1 and a polyimide protective foil 2 and is glued on the sensor base element 4, so that a cavity 5 is created between the measurement membrane laminate the sensor base element 4, wherein the cavity can be produced e.g. through milling the sensor base element-support circuit board 4 and so that the measurement membrane laminate is tension preloaded in a direction of the piezo polarization of the PVDF-foil strips 1. The amplifier electronics 6, the sensor base element support circuit board 4, the polyimide circuit board 3 and the metal side of the PVDF-foil strips 1 are connected in an electrically conductive manner through the electrodes and circuit board conductive paths which are not illustrated in further detail herein. The protective foil 2 protects the PVDF-foil strips against humidity and contamination and thus protects the metal electrodes against oxidation. This additionally provides good skin compatibility. The provided cavity 5 facilitates nestling the measurement membrane laminate at uneven surfaces like e.g. the skin of a human and thus improves measurement data quality. The cavity 5 furthermore reduces the heat flow between the PDVF foil strip 1 and the sensor base element-carrier circuit board 4 and renders the heat flow predictable, so that the temperature stability of the measurement data is improved.
  • FIG. 2 illustrates the four parallel PVDF-foil strips 1 in a bottom view, wherein the foil strips are glued onto the sensor base element 4 with a tension preload and are glued as a measurement membrane laminate onto the rigid carrier circuit board which is configured as a sensor base element 4 through forming a cavity 5 through milling.
  • FIG. 3 illustrates the configuration of a device for non invasive low impact and continuous measurement and monitoring the blood pressure and pulse frequency of a human as an embodiment for a piezo electric sensor for pressure fluctuation measurement according to the invention. The upper arm 16 of a patient is enveloped by an arm jacket 7 that is closable through a loop and hook closure, wherein the jacket includes at least one pressure pillow 8 which is filled e.g. with a measurement liquid for calibrating the measurement of the diastolic and systolic blood pressure. The pressure cushion 8 is configured as an elastic membrane at the side oriented towards the skin. The arm jacket 7 furthermore includes a piezo electric pressure sensor according to the invention as a pulse wave sensor 12 which can be applied e.g. at the arm of the patient 16 in the area of an artery through respective application of the jacket 7 and which is made from plural parallel PVDF-piezo foil strips 1 which are glued onto a rigid support circuit board with directly integrated amplifier electronics 6 as a sensor base element 4 forming a cavity 5 between the PVDF-piezo foil 1 and the sensor base element 4, wherein the plural parallel PVDF-piezo foil strips 1 are glued onto the sensor base element 4 with a tension preload. The PVDF-piezo foil strips 1 are thus glued together with a polyimide protective foil and flexible polyimide circuit board to form a measurement membrane laminate. The propagation of a pulse wave in the artery generates an electric voltage signal in the PVDF-foil strips 1 of the pulse wave sensor 12 through expanding the piezo electric material, wherein the electric voltage signal is amplified in the amplifier electronics 6 and processed in the control and processing unit 13. From the phase shift of the pulse wave signals of the different parallel PVDF-foil strips 1 the pulse transit time is computed in the control and processing unit 13 and the systolic and diastolic blood pressure is computed from the pulse transit time and from the shape of the pulse wave signals. The display of the measurement values and the menu guidance is provided through an LCD foil 14. The entry for device control is provided through a keyboard 15. At the beginning of the measurement and monitoring cycle a calibration routine is started through the control and processing unit 13. Thus, the pressure in the pressure cushion is slowly increased through the pump 9 and the diastolic and systolic blood pressure of the patient is determined through the oscillometric sensor 11. Simultaneously the pulse transit times and the pulse wave signal form are determined through at least two of the parallel PVDF foil strips 1 and the measurement device for determining the systolic and diastolic blood pressure is calibrated by associating the pulse transit time values and the pulse wave signal form with the oscillometric pressure values determined for the systole and diastole from the pressure values determined in the pressure cushion 8 and measured in the pressure sensor 10. The calibration process is performed through at least two calibration measurements, e.g. in a resting state of the patient and after a short movement phase of the patient for increasing the blood pressure. During the calibration process the threshold value of the systolic and diastolic blood pressure can be determined for initiating a possible alarm function. The pressure loading of the pressure cushion 8 is performed in an automated manner in that an oscillometric sensor 11 detects the pulse oscillation amplitudes and forwards them as an electric signal to a control and processing unit 13, where it is determined through a threshold value inquiry of the pulse oscillation amplitude whether the pressure in the pressure cushion corresponds to the diastolic or systolic blood pressure. When the threshold value is lower or higher the control and processing unit 13 causes the pump 9 to adapt the pressure in the pressure cushion 8. The oscillometric sensor 11 can be attached to the elastic membrane of the pressure cushion 8. The pressure in the pressure cushion 8 is received by a pressure sensor 10 and processed and stored in the control and processing unit 13 as a diastolic or systolic blood pressure for calibrating the measurement arrangement.
  • In a normal measurement and operating mode the pulse transition time values and the pulse wave signal forms are continuously measured through the pulse wave sensor 12 and transmitted to the control and processing unit 13 without pressure loading the arm jacket 7 which causes discomfort to the patient, wherein the conversion to systolic and diastolic blood pressures and their storage is performed in the control and processing unit 13. When exceeding an adjustable threshold value for the diastolic and systolic blood pressure an alarm function can be triggered, wherein the alarm function can either be incorporated in the control and processing unit 13 or is provided through the data interface 17 through an external device. The data interface 17 can be configured e.g. as a pluggable data cable or as a radio interface. Through the data interface 17 the blood pressure values can also be transmitted to external devices like a PC for further processing.
  • REFERENCE NUMERALS AND DESIGNATIONS
    • 1 PVDF foil strip configured as piezo electric material with metal coating on bottom side
    • 2 polyimide protective foil
    • 3 flexible polyimide circuit board
    • 4 rigid carrier circuit board configured as sensor base element
    • 5 milled cavity
    • 6 amplifier electronics
    • 7 arm jacket at upper arm of patient
    • 8 pressure cushion filled with measuring liquid
    • 9 pump for pressure loading the pressure cushion
    • 10 pressure sensor for pressure measurement in the pressure cushions
    • 11 oscillometric sensor for calibration measurement of blood pressure
    • 12 pulse wave sensor with amplifier electronics
    • 13 control and processing unit with CPU and memory
    • 14 LCD foil as display device
    • 15 keyboard as entry device
    • 16 upper arm of patient
    • 17 data interface
    • 18 hook and loop closure

Claims (20)

What is claimed is:
1. A piezo electric sensor for improved measurement of mechanical parameters like force, pressure and measurement values derived there from, in particular a piezo electric sensor with improved measurement signal sensitivity and -temperature stability for measuring pressures that vary with respect to space and time and for determining a position and propagation velocity of a pressure fluctuation and of pressure waves, the piezo electric sensor comprising:
at least two parallel strips made from a piezo electric material;
at least one sensor base element;
at least one cavity between the piezo electric material and the sensor base element; and
at least one piece of amplifier electronics,
wherein the parallel strips are made from a piezo electric material with a protective foil and a flexible circuit board configured as a measurement membrane laminate are glued onto the sensor base element, so that they are elastically preloaded in one dimension in a direction of a piezo-dipole orientation and a free cavity is provided between the piezo electric sensor material mounted under tension in the measurement portion and the sensor base element through a recess/milled recess.
2. The piezo electric sensor according to claim 1, wherein a piezo electric foil is used for the piezo electric material for the sensor.
3. The piezo electric sensor according to claim 2, wherein a metal coated polyvinylidenfluoride foil is used for the piezo electric material for the sensor.
4. The piezo electric sensor according to claim 3, wherein the piezo electric material for the sensor is coated with a protective foil.
5. The piezo electric sensor according to claim 4, wherein the protective foil of the piezo electric material is configured as a polyimide foil.
6. The piezo electric sensor according to claim 5, wherein the metal coating is disposed between the piezo electric material of the sensor and the protective foil.
7. The piezo electric sensor according claim 6, wherein the sensor base element is configured as a rigid carrier circuit board.
8. The piezo electric sensor according to claim 7, wherein the amplifier electronics of the piezo electric sensor are attached directly to the rigid carrier circuit board.
9. The piezo electric sensor according to claim 8, wherein the piezo electric material of the sensor is glued onto a flexible circuit board.
10. The piezo electric sensor according to claim 9, wherein the flexible circuit board is configured as a polyimide circuit board.
11. The piezo electric sensor according to claim 10, wherein the piezo electric sensor is capable of being used for non invasive low impact continuous detection and processing of a pulse frequency for humans and animals,
wherein a measurement of the systolic and the diastolic blood pressure is performed by determining a pulse wave velocity in an artery of a human being and the measurement of the pulse wave signal form is performed through a piezo electric sensor according to the invention,
wherein a measurement of the pulse frequency of a living being is performed from time based pulse wave signals through a piezo electric sensor according to the invention,
wherein a calibration of the measurement device for determining the diastolic and systolic blood pressure is performed at a beginning of the measurement and monitoring cycle in that for at least two calibration measurements with different blood pressure the jacket pressure of a pressure loadable jacket is increased to a value above the systolic blood pressure at the beginning of the measurement or monitoring cycle and thus an association of the blood pressure values derived according to a Riva-Rocci-Method is performed with the values of the pulse wave velocity and the signal wave signal form,
wherein the detection and processing of the systolic and the diastolic blood pressure and of the pulse frequency is performed in an automated manner through a control and processing unit.
12. The piezo electric sensor according to claim 11, wherein two measurement membrane laminate layers disposed on top of one another whose sensor material strips are preferably aligned perpendicular to one another are being used to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from for a random angular placement of the sensor at the measurement location.
13. The piezo electric sensor according to claim 12, wherein portions of measurement membrane laminates disposed adjacent to one another whose sensor material strips are preferably aligned perpendicular to one another are being used for facilitating a two dimensional determination of the position and propagation velocity of pressure fluctuations and pressure waves and measurement values derivable there from, for a random angular arrangement of the sensor at the measurement location.
14. The piezo electric sensor according to claim 1, wherein a metal coated polyvinylidenfluoride foil is used for the piezo electric material for the sensor.
15. The piezo electric sensor according to claim 14, wherein the piezo electric material for the sensor is coated with a protective foil.
16. The piezo electric sensor according to claim 15, wherein two measurement membrane laminate layers disposed on top of one another whose sensor material strips are preferably aligned perpendicular to one another are being used to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from for a random angular placement of the sensor at the measurement location.
17. The piezo electric sensor according to claim 16, wherein portions of measurement membrane laminates disposed adjacent to one another whose sensor material strips are preferably aligned perpendicular to one another are being used for facilitating a two dimensional determination of the position and propagation velocity of pressure fluctuations and pressure waves and measurement values derivable there from, for a random angular arrangement of the sensor at the measurement location.
18. The piezo electric sensor according to claim 1, wherein two measurement membrane laminate layers disposed on top of one another whose sensor material strips are preferably aligned perpendicular to one another are being used to facilitate a two dimensional determination of the position and the propagation velocity of pressure fluctuations and pressure waves and measurement values that are derivable there from for a random angular placement of the sensor at the measurement location.
19. The piezo electric sensor according to claim 18, wherein portions of measurement membrane laminates disposed adjacent to one another whose sensor material strips are preferably aligned perpendicular to one another are being used for facilitating a two dimensional determination of the position and propagation velocity of pressure fluctuations and pressure waves and measurement values derivable there from, for a random angular arrangement of the sensor at the measurement location.
20. A method for non invasive low impact continuous detection and processing of a pulse frequency for humans and animals, the method comprising:
measurement of a systolic and a diastolic blood pressure by determining a pulse wave velocity in an artery of a human being or animal, wherein the measurement of the pulse wave signal form is performed through a piezo electric sensor according to claim 1,
wherein a measurement of the pulse frequency of a living being is performed from time based pulse wave signals through the piezo electric sensor,
wherein a calibration of the measurement device for determining the diastolic and systolic blood pressure is performed at a beginning of the measurement and monitoring cycle such that for at least two calibration measurements with different blood pressure the jacket pressure of a pressure loadable jacket is increased to a value above the systolic blood pressure at the beginning of the measurement or monitoring cycle and an association of the blood pressure values derived according to a Riva-Rocci-Method is performed with the values of the pulse wave velocity and the signal wave signal form,
wherein the detection and processing of the systolic and the diastolic blood pressure and of the pulse frequency is performed in an automated manner through a control and processing unit.
US12/993,615 2008-05-20 2009-07-17 Piezoelectric sensor for measuring pressure fluctuations Active 2030-05-15 US9642539B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008024737 2008-05-20
DE102008024737.5 2008-05-20
DE102008024737A DE102008024737B3 (en) 2008-05-20 2008-05-20 Piezoelectric sensor for pressure fluctuation measurement
PCT/EP2009/005543 WO2009141171A2 (en) 2008-05-20 2009-07-17 Piezoelectric sensor for measuring pressure fluctuations

Publications (3)

Publication Number Publication Date
US20110166459A1 US20110166459A1 (en) 2011-07-07
US20120065526A9 true US20120065526A9 (en) 2012-03-15
US9642539B2 US9642539B2 (en) 2017-05-09

Family

ID=41340604

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/993,615 Active 2030-05-15 US9642539B2 (en) 2008-05-20 2009-07-17 Piezoelectric sensor for measuring pressure fluctuations

Country Status (4)

Country Link
US (1) US9642539B2 (en)
EP (1) EP2323545A2 (en)
DE (1) DE102008024737B3 (en)
WO (1) WO2009141171A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485432B2 (en) 2014-04-04 2019-11-26 Philips Medizin Systeme Böblingen Gmbh Method for determining blood pressure in a blood vessel and device for carrying out said method
US10610113B2 (en) 2014-03-31 2020-04-07 The Regents Of The University Of Michigan Miniature piezoelectric cardiovascular monitoring system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022067A1 (en) * 2010-05-31 2011-12-01 Leuphana Universität Lüneburg Stiftung Öffentlichen Rechts Actuator- and/or sensor element for sleeve in medical field e.g. limb or joint fracture treatment, has nano-wires comprising nano-fibers, where element deforms and acquires dimensional change of nano-fibers via electrical signal
US9986919B2 (en) * 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
TW201347728A (en) 2012-05-17 2013-12-01 Ind Tech Res Inst Sensing structure for physiological signal, stethoscope therewith and manufacturing method thereof
US20140216170A1 (en) * 2013-02-05 2014-08-07 Georgia Tech Research Corporation Systems And Methods For Monitoring Cutting Forces In Peripheral End Milling
FI20136306L (en) * 2013-03-22 2014-09-23 Murata Manufacturing Co Improved blood pressure monitoring method
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
FR3034257B1 (en) * 2015-03-25 2017-03-31 Univ De Lorraine PIEZOELECTRIC SENSOR AND INSTRUMENT COMPRISING SUCH A SENSOR
WO2017079496A1 (en) * 2015-11-04 2017-05-11 Quantum Technolgy Sciences, Inc. (Qtsi) Acoustic and seismic sensor device provding improved sensitivity
JP6635842B2 (en) * 2016-03-25 2020-01-29 京セラ株式会社 Blood pressure estimation device, blood pressure monitor, blood pressure estimation system, and blood pressure estimation method
CN106361299B (en) * 2016-09-22 2023-03-24 安徽理工大学 Triple-film cardiovascular detection sensor
US11311238B2 (en) * 2016-12-14 2022-04-26 Cvr Global, Inc. Attachable sensing pod comprising a piezoelectric unit
TWI624246B (en) * 2017-01-25 2018-05-21 美盛醫電股份有限公司 Blood pressure measurement device and method thereof
DE102017202023B4 (en) 2017-02-09 2020-09-03 Robert Bosch Gmbh Micromechanical sensor device with integrated housing seal, micromechanical sensor arrangement and corresponding manufacturing process
US20190150754A1 (en) * 2017-11-17 2019-05-23 Honeywell International Inc. Circulatory system monitor
CN108542377A (en) * 2018-02-26 2018-09-18 清华大学深圳研究生院 A kind of detection device measuring pulse heart rate based on PVDF piezoelectric transducers
KR102564544B1 (en) * 2018-05-25 2023-08-07 삼성전자주식회사 Biological signal measurement apparatus, Blood pressure measurement apparatus and method
CN109222894B (en) * 2018-07-20 2021-05-25 渝新智能科技(上海)有限公司 Signal source device for detecting sleep state and sleep article
IL263409B2 (en) * 2018-12-02 2023-06-01 Linet Spol Sro Micro motion detection for determining at least one vital sign of a subject
CN110006577B (en) * 2019-04-22 2020-08-28 王久钰 Pressure sensor, pressure measurement system and pressure measurement method
WO2023283312A1 (en) * 2021-07-09 2023-01-12 Ntt Research, Inc. Non-invasive arterial tonometry system and method using cellular polypropylene film sensors
WO2023232856A1 (en) 2022-06-01 2023-12-07 iNDTact GmbH Device for blood pressure measurement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237398B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels
US6764446B2 (en) * 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US20050264133A1 (en) * 2004-05-25 2005-12-01 Ketterling Jeffrey A System and method for design and fabrication of a high frequency transducer
US7019307B1 (en) * 2000-06-26 2006-03-28 Imago Scientific Instruments Corporation Delay line anodes
US20060179952A1 (en) * 2005-02-17 2006-08-17 The Boeing Company Piezoelectric sensor, sensor array, and associated method for measuring pressure
US20060195035A1 (en) * 2005-02-28 2006-08-31 Dehchuan Sun Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof
US20070100332A1 (en) * 2005-10-27 2007-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for electrode contact assessment
US20070287923A1 (en) * 2006-05-15 2007-12-13 Charles Adkins Wrist plethysmograph

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT375466B (en) * 1977-07-27 1984-08-10 List Hans MEASURING VALUE WITH A PIEZOELECTRIC MEASURING ELEMENT
DE3424536A1 (en) * 1984-07-04 1986-01-09 Robert Bosch Gmbh, 7000 Stuttgart Method and device for the non-invasive blood pressure measurement
DE3839344A1 (en) * 1988-11-22 1990-05-23 Dornier Gmbh ACCELERATING SENSOR
US5501111A (en) * 1990-12-09 1996-03-26 Kistler Instrumente Ag Force sensor systems especially for determining dynamically the axle load, speed, wheelbase and gross weight of vehicles
US5265481A (en) * 1990-12-19 1993-11-30 Kistler Instrumente Ag Force sensor systems especially for determining dynamically the axle load, speed, wheelbase and gross weight of vehicles
CH683714A5 (en) * 1990-12-19 1994-04-29 Kk Holding Ag Force sensor arrangement, in particular for the dynamic axle load, speed, center distance and total weight determination of vehicles.
US5494043A (en) * 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
US5649535A (en) * 1995-01-25 1997-07-22 Marquette Electronics, Inc. Blood pressure measuring method and apparatus
DE19542019C1 (en) * 1995-11-10 1997-03-06 Fraunhofer Ges Forschung Sensor for non=invasive and continuous detection of arterial pulse wave delay esp in human arteria radialis, for blood pressure measurement
AUPQ831700A0 (en) * 2000-06-22 2000-07-20 Australian Centre For Advanced Medical Technology Ltd Biophysical sensor
DE10214220A1 (en) * 2002-03-22 2003-10-02 Sectorcon Ingenieurgesellschaf Non-invasive systolic and diastolic blood pressure determination method has a control and evaluation unit that controls continuous blood pressure measurements made using a pressure sleeve with two alternately used pressure pads
WO2005067387A2 (en) * 2004-01-16 2005-07-28 Cardiowatch Ltd. Apparatus and method for calculating velocity of blood pressure change
US20070041273A1 (en) * 2005-06-21 2007-02-22 Shertukde Hemchandra M Acoustic sensor
US7998091B2 (en) * 2005-11-23 2011-08-16 3M Innovative Properties Company Weighted bioacoustic sensor and method of using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237398B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels
US7019307B1 (en) * 2000-06-26 2006-03-28 Imago Scientific Instruments Corporation Delay line anodes
US6764446B2 (en) * 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US20050264133A1 (en) * 2004-05-25 2005-12-01 Ketterling Jeffrey A System and method for design and fabrication of a high frequency transducer
US20060179952A1 (en) * 2005-02-17 2006-08-17 The Boeing Company Piezoelectric sensor, sensor array, and associated method for measuring pressure
US20060195035A1 (en) * 2005-02-28 2006-08-31 Dehchuan Sun Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof
US20070100332A1 (en) * 2005-10-27 2007-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Systems and methods for electrode contact assessment
US20070287923A1 (en) * 2006-05-15 2007-12-13 Charles Adkins Wrist plethysmograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610113B2 (en) 2014-03-31 2020-04-07 The Regents Of The University Of Michigan Miniature piezoelectric cardiovascular monitoring system
US10485432B2 (en) 2014-04-04 2019-11-26 Philips Medizin Systeme Böblingen Gmbh Method for determining blood pressure in a blood vessel and device for carrying out said method

Also Published As

Publication number Publication date
US20110166459A1 (en) 2011-07-07
WO2009141171A3 (en) 2010-08-19
WO2009141171A2 (en) 2009-11-26
US9642539B2 (en) 2017-05-09
DE102008024737B3 (en) 2010-01-07
WO2009141171A8 (en) 2011-03-24
EP2323545A2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US9642539B2 (en) Piezoelectric sensor for measuring pressure fluctuations
CN107920760B (en) Monitoring device for monitoring blood pressure of a subject
US6331161B1 (en) Method and apparatus for fabricating a pressure-wave sensor with a leveling support element
US6277078B1 (en) System and method for monitoring a parameter associated with the performance of a heart
US6926670B2 (en) Wireless MEMS capacitive sensor for physiologic parameter measurement
US10765871B2 (en) Implantable medical device with pressure sensor
US10842396B2 (en) Vibration waveform sensor and waveform analysis device
US11109831B2 (en) Ultrasound patch for detecting fluid flow
EP3430980A1 (en) An apparatus for measuring a physiological parameter using a wearable sensor
US20110224529A1 (en) Methods, apparatus and sensor for measurement of cardiovascular quantities
WO2014085806A1 (en) Smart tip lvad inlet cannula
TW200843697A (en) Arterial blood pressure monitor with a liquid filled cuff
WO2015008350A1 (en) Vascular pulse wave measurement system
EP3713483B1 (en) Pulse wave velocity determination
US11284808B2 (en) Device and method for measurement of vital functions, including intracranial pressure, and system and method for collecting data
US20110028852A1 (en) Implantable Pressure Sensor with Membrane Bridge
JP6773028B2 (en) Blood pressure measuring device
EP4221578B1 (en) Estimating central blood pressure
Rao Wearable Ultrasonic Device to Measure Blood Pressure
Balarama Rao Wearable ultrasonic device to measure blood pressure
KR20230109628A (en) Apparatus and method for measuring jugular venous pressure waveform
WO2011063879A1 (en) Measuring device for registering the propagation speed of pulse waves and method for determining the volumetric flow of a discontinuously operational pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: SECTORCON INGENIEURGESELLSCHAFT FUR SYSTEM-UND SOF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOPETSCH, ROLAND;NASSERI, MOHAMMAD;BERGMANN, STEPHAN;REEL/FRAME:027410/0639

Effective date: 20110117

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4