US20120040131A1 - Composite Panel Having Perforated Foam Core - Google Patents

Composite Panel Having Perforated Foam Core Download PDF

Info

Publication number
US20120040131A1
US20120040131A1 US13/204,762 US201113204762A US2012040131A1 US 20120040131 A1 US20120040131 A1 US 20120040131A1 US 201113204762 A US201113204762 A US 201113204762A US 2012040131 A1 US2012040131 A1 US 2012040131A1
Authority
US
United States
Prior art keywords
apertures
core member
composite panel
core
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/204,762
Inventor
Dwaine D. Speer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wabash National LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/204,762 priority Critical patent/US20120040131A1/en
Assigned to WABASH NATIONAL, L.P. reassignment WABASH NATIONAL, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPEER, DWAINE D.
Publication of US20120040131A1 publication Critical patent/US20120040131A1/en
Priority to US14/454,097 priority patent/US9908315B2/en
Priority to US15/912,970 priority patent/US11420433B2/en
Priority to US17/400,755 priority patent/US20210370660A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/005Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material preformed metal and synthetic material elements being joined together, e.g. by adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/043Superstructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0009Cutting out
    • B29C2793/0018Cutting out for making a hole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Definitions

  • the present invention relates generally to a composite panel for a storage container, such as a truck trailer, for example.
  • the present invention relates to a perforated foam core of the composite panel.
  • Many storage containers such as large truck trailers, for example, include sidewalls made from composite panels.
  • such composite panels may include a plastic core member sandwiched between thin metal skins. The composite panels are thereafter joined together to create the trailer sidewall.
  • DURAPLATE® composite panels provided by Wabash National Corporation of Lafayette, Ind. are constructed of a high-density polyethylene plastic core bonded between two high-strength steel skins.
  • the present invention may comprise one or more of the features recited in the attached claims, and/or one or more of the following features and combinations thereof.
  • the core member includes a plurality of apertures formed therethrough such that each aperture extends from an inner surface of the core member to an outer surface of the core member.
  • the plurality of apertures is covered by the inner and outer metal sheets and wherein a length and width of each aperture is less than a respective length and width of the core member.
  • the plurality of apertures may be circular in shape.
  • a diameter of each aperture may be in the range of approximately 1 ⁇ 4 inch to 1 ⁇ 2 inch.
  • the composite panel may further include an adhesive between the inner metal sheet and the core member and between the outer metal sheet and the core member.
  • the plurality of apertures may include a plurality of adjacent vertical rows of apertures that are aligned with each other and a plurality of adjacent horizontal rows of apertures that are aligned with each other.
  • the plurality of apertures may include a plurality of adjacent vertical rows of apertures that are offset from each other and a plurality of adjacent horizontal rows of apertures that are offset from each other.
  • a top-most horizontal row of apertures may be spaced-apart from a top edge of the core member.
  • a vertical distance between the top edge of the core member and a center of the top-most horizontal row of apertures may be between approximately 0.50-6.00 inches. More particularly, the vertical distance may be approximately 2.0 inches.
  • a left-most vertical row of apertures may be spaced-apart from a left side edge of the core member.
  • a horizontal distance between the left side edge of the core member and a center of the left-most vertical row of apertures may be between approximately 0.50-6.00 inches. More particularly, the horizontal distance may be approximately 6.0 inches.
  • a top-most horizontal row of apertures may be spaced-apart a first distance from a top edge of the core member.
  • a left-most vertical row of apertures may be spaced-apart a second distance from a left side edge of the core member. The first distance may be smaller than the second distance.
  • the apertures may be generally uniformly spaced-apart from one another.
  • the apertures may be generally similarly-sized.
  • the core member may be a foamed core member including a plurality of air bubbles therein.
  • none of the plurality of apertures may be open to any one of a top, bottom, or side edge of the core member.
  • the plurality of apertures may include a plurality of vertically-spaced apart apertures and a plurality of horizontally spaced-apart apertures.
  • a sidewall of a trailer includes a first composite panel and a second composite panel.
  • the first composite panel includes (i) a first outer metal sheet, (ii) a first inner metal sheet, and (iii) a first core member positioned between the first inner and first outer metal sheets.
  • the first core member includes a first plurality of apertures which are both vertically and horizontally spaced-apart from each other. Each of the first plurality of apertures extends from an inner surface of the first core member to an outer surface of the first core member. The first plurality of apertures is covered by the first inner and first outer metal sheets.
  • the first core member includes a first aperture-free side portion.
  • the second composite panel includes (i) a second outer metal sheet, (ii) a second inner metal sheet, and (iii) a second core member positioned between the second inner and second outer metal sheets.
  • the second core member includes a second plurality of apertures which are both vertically and horizontally spaced-apart from each other. Further, each of the second plurality of apertures extends from an inner surface of the second core member to an outer surface of the second core member.
  • the second plurality of apertures is covered by the second inner and second outer metal sheets and the second core member includes a second aperture-free side portion.
  • the sidewall of the trailer further includes a wall joint coupling the first and second composite panels to each other.
  • the wall joint includes a plurality of fasteners received through the first and second aperture-free portions of the first and second composite panels.
  • a method of forming a composite panel configured for use in a sidewall of a trailer includes forming an uncooled thermal plastic sheet of material and advancing the uncooled thermal plastic sheet of material through a transversing punch. Advancing the uncooled thermal plastic sheet of material through the transversing punch forms apertures through the uncooled thermal plastic sheet of material such that each aperture extends from an outer surface of the thermal plastic sheet of material to an inner surface of the thermal plastic sheet of material. The method further includes cooling the transversing punch and coupling an outer metal sheet and an inner metal sheet to the respective outer surface and the inner surface of the uncooied thermal plastic sheet of material.
  • FIG. 1 is a perspective view of a trailer having sidewalls including a plurality of composite panels.
  • FIG. 2 is a perspective view of a portion of one of the composite panels of FIG. 1 showing two outer metal skins and an inner foam core of the panel.
  • FIG. 3 is a perspective, exploded view of the composite panel of FIG. 2 showing the foam core including a plurality of holes formed therethrough.
  • FIG. 4 is a planar view of the foam core of FIG. 3 .
  • FIG. 5 is a planar view of an alternative foam core.
  • FIG. 6 is a schematic of a first method of making the composite panel FIG. 2 .
  • FIG. 7 is a schematic of a second method of making the composite panel of FIG. 2 .
  • FIG. 8 is a schematic of a third method of making of a composite panel having the foam core of FIG. 5 .
  • FIG. 9 is a schematic of a fourth method of making a composite panel having an alternative foam core.
  • FIG. 10 is a schematic of a fifth method of making a composite panel having an alternative foam core.
  • FIG. 11 is a planar view of an alternative foam core.
  • FIG. 12 is a perspective view of a portion of two adjacent composite panels of a sidewall of a trailer which are coupled to each other via a coupling joint and which include the alternative foam core of FIG. 11 .
  • FIG. 13 is a sectional view of a portion of two adjacent composite panels of a sidewall of a trailer which are coupled to each other via a shiplap joint and which include the alternative foam core of FIG. 11 .
  • a truck trailer 10 includes a roof assembly 12 coupled to opposite sidewalls 16 , a front end wall assembly 18 , and a rear end wall assembly (not shown) including an overhead door.
  • the rear end wall assembly may include two rear doors mounted in a conventional manner such that the doors are is hingedly coupled to and swing relative to a rear frame between opened and closed positions.
  • the trailer 10 also includes a floor assembly (not shown) spaced apart from the roof assembly 12 .
  • the trailer 10 is connected to a tractor 20 by conventional means, such as a fifth wheel, for example.
  • each sidewall 16 and the front end wall 18 of the trailer 10 are made from a plurality of composite panels 22 .
  • the composite panels 22 may be coupled to each other using a number of different fasteners and/or joint configurations.
  • the composite panels 22 are coupled to each other via joint configurations 24 including a logistics plate (not shown) and a splicing plate 28 .
  • joint configurations are described in greater detail in U.S. Pat. No. 7,069,702, the entirety of which is hereby incorporated by reference herein.
  • other joint configurations and other fasteners including rivets, screws, bolts, nails, welding, adhesives, and the like
  • fasteners including rivets, screws, bolts, nails, welding, adhesives, and the like
  • each composite panel 22 is generally rectangular having a height greater than its width.
  • the composite panels 22 may be relatively equal in size, or, alternatively, the width and/or thickness of each composite panel 22 may vary.
  • each composite panel 22 is connected to the floor assembly and extends upwardly therefrom such that each panel 22 is attached to upper and lower rails 27 , 29 of the trailer 10 by suitable joining members, such as bolts or rivets, for example.
  • suitable joining members such as bolts or rivets, for example.
  • the outer composite panels are connected to the respective sidewalls 16 of the trailer 10 by hinges. When closed, the doors extend upwardly from the floor assembly.
  • the trailer 10 includes a plurality of composite panels 22 coupled to each other to form a single sidewall 16 , it is within the scope of this disclosure to provide a trailer having a front end wall and/or sidewalls which are formed from one continuous composite panel.
  • each composite panel 22 includes a inner metal sheet 30 , an outer metal sheet 32 , and a foamed thermal plastic core member 34 positioned between the inner and outer sheets 30 , 32 .
  • the inner and outer metal sheets 30 , 32 are bonded to the core member 34 , by a thin adhesive layer (not shown).
  • the sheets 30 , 32 are bonded to the foamed thermal plastic core member 34 by a suitable flexible adhesive bonding film such as, for example, modified polyethylene.
  • a suitable flexible adhesive bonding film such as, for example, modified polyethylene.
  • any suitable adhesive may be used as well.
  • each composite panel 20 of the present disclosure may be formed of aluminum or full hard, high strength, high tension, galvanized steel. However, other metals or metal alloys may be used as well. Illustratively, each sheet 30 , 32 has a thickness of greater than nineteen thousandths of an inch. However, sheets 30 , 32 having lesser thicknesses may be used as well.
  • the core member 34 is formed from a foamed thermal plastic, preferably foamed high density polyethylene (HDPE) or high density polyproplylene. Core weight reduction is often achieved by the addition of a gas during the extrusion process in order to produce a foamed thermal plastic, such as the core member 34 .
  • This gas which is typically carbon dioxide, can be physically injected or liberated from chemical additives, creates a foamed core.
  • the core member 34 includes a plurality of air bubbles interspersed with the thermal plastic material. This foaming of the core member 34 lowers the density of the thermal plastic and improves the strength to weight ratio thereof.
  • the foaming of the core member 34 also reduces the weight of the composite panel 22 as compared to a composite panel having a solid, non-foamed core member. Further, the foamed core member 34 uses less plastic resin versus a solid core member. However, the extent to which the density and the weight reduction may be achieved using this method may be limited by physical process dynamics and needs to maintain acceptable core surface cosmetic appearance and surface area available for effective bonding of the metal sheets to the core.
  • the core member 34 is formed from a foamed HDPE, the core member 34 may alternatively be made from foamed low density thermal plastic, such as foamed low density polyethylene or low density polypropylene. Low density thermal plastic will foam and produce a resilient core member as well. Further, it is within the scope of this disclosure for the core member 34 to be formed from a non-foamed high or low density thermal plastic as well.
  • the core member 34 is generally resilient and is able to flex a certain degree without breaking. Illustratively, the core member 34 is approximately one half of an inch thick or less. However, the core member 34 may be made to define any suitable or desired thickness.
  • holes, or apertures 40 are formed into the core member 34 , as shown in FIG. 3 .
  • These apertures 40 each penetrate the full thickness of the core member 34 .
  • each hole 40 extends from an outer surface 42 of the core member 34 to an inner surface 44 of the foamed core member 34 .
  • the core member 34 includes a plurality of apertures 40 which are generally evenly spaced throughout the core member 34 .
  • the plurality of apertures 40 are arranged in alternating rows of apertures 40 to create an array of apertures of the core member 34 .
  • each aperture 40 is circular in shape and has a diameter in the range of approximately 1 ⁇ 4 inch to 1 ⁇ 2 inch.
  • the apertures 40 shown in FIG. 4 do not open into either the top, bottom or side edges 50 , 52 , 54 of the core member 34 .
  • the top, bottom, and side edges 50 , 52 , 54 of the core member are generally solid in that no formed or manufactured apertures are located therein.
  • no apertures are formed in the outer edges 50 , 52 , 54 of the foam core member 34 by a punch or a different type of tool during the manufacturing process.
  • the inner and outer sheets 30 , 32 of the composite panel 22 are continuously coupled to the respective inner and outer surfaces 42 , 44 of the core member 34 along the top, bottom, and side edges 50 , 52 , 54 thereof.
  • the core member 34 may include apertures 40 which are located at, or open up into, one or more of the top, bottom, and/or side edges 50 , 52 , 54 of the core member 34 .
  • apertures 40 may be arranged in any suitable pattern on the core member 34 . Further, the apertures 40 may be located on only one side (e.g., right, left, top, or bottom) or on only a portion of the core member 34 . In other words, the apertures 40 need not be positioned to cover generally the entire surface area of the core member 34 from the top of the core member 34 to bottom of the core member 34 and from one side of the core member 34 to the other side of the core member 34 .
  • the apertures 40 may be positioned in other suitable configurations that do not span the width and/or height of the core member 34 .
  • generally none of the apertures 40 disclosed herein includes a length or a width which is equal to the respective length and width of the core member 34 .
  • none of the core members disclosed herein include a void which extend from one of the top, bottom and/or side edges of the core member 34 to any other of the top, bottom, or side edges of the core member 34 .
  • each aperture 40 is fess than a respective length and width of the core member 34 in which it is formed.
  • an alternative core member 534 is shown in FIG. 11 and includes a pattern of apertures 40 that are spaced-apart from the top, bottom, and side edges 50 , 52 , 54 of the core member 534 .
  • a top-most, horizontal row 536 of apertures 40 is spaced-apart a distance 538 from the top edge 50 of the core member 534 .
  • a left-most, vertical row 540 of apertures 40 (as viewed from above, as shown in FIG.
  • a bottom-most, horizontal row (not shown) of apertures 40 of the core member 534 is also spaced-apart from the bottom edge (not shown) of the core member 534 while a right-most, vertical row (not shown) of apertures 40 of the core member 534 is also spaced-apart from the right-most edge (not shown) of the core member 534 .
  • the distances 538 and 542 may be equal to each other or may be different from each other.
  • the core member 534 or any core member disclosed herein, may include any combination of top-most, left and right side-most, and bottom-most rows of apertures 40 which are spaced any other suitable distance away from the edges 50 , 52 , 54 of the core member 534 .
  • such apertures may be spaced away from the edges 50 , 52 , 54 in order to provide a suitable space for a fastener to be received through an aperture-free area or portion 550 , 552 of the core member 534 .
  • the distances may be greater than or less than that which is shown in FIG. 11 .
  • the core member 534 may include any combination of top-most, left and right side-most, and bottom-most rows of apertures which are not spaced a suitable distance apart from the respective top, side, and bottom edges 50 , 52 . 54 of the core member 534 in order to be able to receive a fastener through an aperture-free portion of the core member 534 .
  • a diameter 554 of each aperture 40 is approximately 0.250 inches.
  • an aperture of any suitable size may be provided within the composite member 534 .
  • a distance 558 between a centerpoint of adjacent, vertical rows of apertures 40 is approximately 0.625 inch.
  • a distance 556 between a centerpoint of adjacent horizontal rows of apertures 40 is also approximately 0.625 inch.
  • any suitable distance may be provided between apertures of adjacent horizontal rows or adjacent vertical rows.
  • a distance 560 between the left edge 54 of the core member 534 and the center of the left-most row 540 of apertures 40 of the core member 534 may be approximately 0.50-6.00 inches while a distance 562 between the upper edge 50 of the core member 534 and the center of upper-most row 536 of apertures 40 of the core member 534 may also be approximately 0.50-6.00 inches.
  • the distance 560 of the core member 534 is approximately 6.00 inches while the distance 562 of the core member 534 is approximately 2.00 inches.
  • the core member 534 is illustrative in nature and that other core members having apertures of different shapes and sizes may be provided. Further, core members having different distances between vertical and/or horizontal rows of apertures may be provided and core members having different distances between outer edges and the apertures may be provided as well. Finally, it need not be required that such distances are consistent throughout a single core member.
  • the spaced-apart rows 536 , 540 of apertures 40 from the respective top and sides 50 , 54 of the core member 534 provide a top portion 550 and a side portion 552 of the core member 534 that is free from, or that does not include, any apertures 40 .
  • the top portion 550 of the core member 534 is positioned between the top edge 50 of the core member 534 and the top-most, horizontal row 536 of apertures 40 of the core member 534 .
  • the side portion 552 of the core member 534 is positioned between the left-most, side edge 54 of the core member 534 and the left-most, vertical row 540 of the apertures 40 of the core member 534 .
  • the top portion 550 and the side portion 552 of the core member 534 provide areas free from apertures 40 that may be used to secure fasteners therethrough in order to couple one core member 534 to another core member 534 and/or to couple the core member 534 to another object.
  • rivets for example, may be punched through the aperture-free portions 550 , 552 of the core member 534 in order to couple the core member 534 , or the entire composite panel to which the core member 534 belongs, to another object, including, but not limited to adjacent core members 534 and/or adjacent composite panels.
  • fasteners may also be punched through the aperture-free top and bottom portions of the composite panels to which the core member 534 belongs in order to couple top and bottom rails (not shown) of a trailer to the composite panels.
  • rivet-receiving holes may be punched through the formed composite panel (i.e., the inner sheet 30 , the aperture-free portions 550 , 552 of the core member 534 , and the outer sheet 32 ) such that rivets may then be received through such rivet-receiving holes.
  • a portion of a sidewall 551 of a trailer includes a first composite panel 522 having the core member 534 , and an inner metal sheet 30 and an outer metal sheet 32 each coupled to the core member 534 via the use of an adhesive.
  • the sidewall 551 includes a second composite panel 524 similarly having the core member 534 , and an inner metal sheet 30 and an outer metal 32 each coupled to the core member 534 via the use of an adhesive.
  • the first and second composite panels 522 , 524 are adjacent to and spaced-apart from each other in a side-by-side manner.
  • a wall panel joint 560 including a logistics member 562 and a splicing member 564 is provided to couple the adjacent composite panels 522 , 524 together.
  • the rivets 570 used to couple the wall panel joint 560 to the composite panels 522 , 524 are positioned within the side, aperture-free portion 552 of each core member 534 of the panels 522 , 524 .
  • the same and/or similar wall panel joint is discussed in greater detail in U.S. Pat. No. 6,220,651, the entirety of which is hereby incorporated by reference herein.
  • the wall panel joints discussed in the '651 patent may be used to join together one or more adjacent composite panels disclosed herein.
  • a portion of an alternative sidewall 581 includes a first composite panel 582 and a second composite panel 584 each including the core member 534 , an inner metal sheet 30 , and an outer metal sheet 32 .
  • the composite panels 582 , 584 are joined together by a joint 590 .
  • the joint 590 is a shiplap joint. As shown in FIG.
  • each composite panel 582 , 584 includes an overlapping skin member 592 for overlapping a portion of one of the respective metal sheets 30 , 32 .
  • this overlapping skin member 592 is integrally formed as part of the respective metal sheet 30 , 32 of each composite panel 582 , 584 .
  • the overlapping skin member 590 may be a separate member attached to the composite panels 582 , 584 by suitable means.
  • the overlapping skin member 590 of each panel 582 , 584 is provided for overlapping a portion of the respective inner and outer sheets 30 , 32 of the other, adjacent panel 582 , 584 . As shown in FIG.
  • a side end portion of the respective sheets 30 , 32 of the panels 582 , 584 are coined or stepped by suitable means so as to form a stepped end portion. Because the stepped end portion has been stepped a distance which is equal to the thickness of the overlapping skin member 590 , the surface formed by the adjacent panels 582 , 584 is substantially flush. This prevents the overlapping skin members 592 from being snagged by an outside object.
  • a conventional rivet member 594 is then engaged through aligned rivet-receiving holes provided through the overlapping skin member 592 of the first composite panel 582 and the stepped end portion of the second composite panel 584 .
  • a second conventional rivet member 595 is engaged through aligned rivet-receiving holes provided through the stepped end portion of the first composite panel 582 and the overlapping skin member 592 of the second composite panel 584 .
  • the rivets 594 , 595 used to couple the composite panels 582 , 584 together are positioned within the side, aperture-free portion 552 of each core member 534 of the panels 582 , 584 .
  • the stepped end portions of the first and second composite panels 582 , 584 include the aperture-free portions 552 of the core member 534 .
  • the same and/or similar wall panel joint is discussed in greater detail in U.S. Pat. No. 5,938,274, the entirety of which is hereby incorporated by reference herein.
  • the wall panel joints discussed in the '274 patent may be used to join together one or more adjacent composite panels disclosed herein.
  • the aperture-free portions 550 , 552 of the foam core 534 of the composite panels disclosed herein are free of apertures prior to the process of being joined to adjacent composite panels.
  • the aperture-free portions 550 , 552 provide suitable aperture-free areas or portions of the composite panels for having a rivet-receiving hole formed therethrough.
  • the apertures 40 are non-rivet or non-fastener-receiving apertures that are different from the rivet-receiving holes formed through the already-formed composite panels.
  • These rivet-receiving holes are formed through the entire thickness of the composite panels including the inner and outer sheets 30 , 32 and are not only formed through the foam core contrary to the apertures 40 disclosed herein which are formed only through the foam core of a composite panel.
  • the aperture-free portions define an area of the foam core of a composite panel which does not include any apertures that are formed only through the foam core of the composite panel. Accordingly, the aperture-free portions may later have rivet-receiving holes formed therein.
  • aperture-free portions 550 , 552 of the composite panel may include rivet-receiving holes which may later be formed through the composite panel in order to join two adjacent composite panels together.
  • the pattern of the apertures 40 of the core member 534 is different than the pattern of the apertures 40 of the core member 34 shown in FIGS. 3 and 4 .
  • the pattern of the apertures 534 of the core member 534 includes vertical and horizontal rows of apertures 40 that are all aligned with each other. In other words, every vertical row of apertures 40 of the core member 534 is aligned with every adjacent vertical row of apertures 40 of the core member 534 . Further, every horizontal row of apertures 40 of the core member 534 is aligned with every adjacent horizontal row of apertures 40 of the core member 534 .
  • the pattern of the apertures 40 of the core member 34 includes staggered, or offset, vertical and horizontal rows of apertures 40 , as shown in FIG.
  • every other vertical row of apertures 40 of the core member 34 is aligned with every other (and not every adjacent) vertical row of apertures 40 of the core member 34 and every horizontal row of apertures 40 of the core member 34 is aligned with every other (and not every adjacent) horizontal row of apertures 40 of the core member 34 .
  • a core member may be provided which includes any suitable pattern of apertures formed therethrough including any number of aligned and/or misaligned horizontal and vertical rows of apertures. Further, a random array of apertures having not particular pattern may be provided as well.
  • each of the core members 34 , 534 may include apertures 40 of any shape, such as square, rectangular, triangular, oval, etc. Further, it should be understood that the core members 34 , 534 may each include apertures of any suitable size having any suitable dimensions. Finally, while the core members 34 , 534 each include an array of apertures 40 which are all of the same shape and size, it should be understood that the core members 34 , 534 may include apertures of varying dimension, size, and/or shape.
  • the core members 34 , 534 may each include any number of apertures having different sizes and/or shapes. In other words, the spacing, dimension, and geometry of the apertures of the core members 34 , 534 may be different and optimized according to specific production process and performance specifications.
  • the apertures 40 of each of the core members 34 , 534 are shown to be spaced a particular distance apart from each other that is generally uniform, it should be understood that the core members 34 , 534 may each include apertures which are spaced further or closer apart than that which is shown and may also include apertures which are spaced a non-uniform distance from adjacent apertures.
  • an alternative core member 134 is similar to the core members 34 , 534 .
  • the core member 134 includes a plurality of generally diamond-shaped apertures 140 .
  • the diamond-shaped apertures 140 are approximately % inch to 3 ⁇ 8 inch wide and 1 ⁇ 2 inch to 3 ⁇ 4 inch tall.
  • the apertures 140 may have any suitable height and/or width.
  • the apertures 140 extend through the entire thickness of the core member 134 from the outside surface 42 to the inside surface 44 of the core member 134 .
  • a foamed core sheet 80 is first made by mixing foaming beads or pellets 82 with thermal plastic resin beads or pellets 84 . These pellets 82 , 84 are mixed in a mixing chamber 86 using an auger (not shown).
  • the foaming pellets 82 have a gas therein, such as carbon dioxide or nitrogen, for example.
  • the mixed pellets 82 , 84 are subjected to heat in a hot die chamber 88 and the foaming pellets 82 activate and produce carbon dioxide or nitrogen to foam the mixture.
  • the mixture is then extruded into a layer by an extruder 90 to form the foamed core 80 .
  • the foamed core sheet 80 is approximately 350° F. upon leaving the extruder 90 .
  • other methods of foaming the core member may be provided such as by injecting nitrogen into a heating chamber in which the thermal plastic resin pellets are being heated and are in a molten state (without the use of the foaming pellets being mixed therewith) and thereafter extruding the foamed core material onto a core member, or by using both the foaming pellets and the direct injection of nitrogen gas into a heating chamber in which both the thermal plastic resin pellets and the foaming pellets are being heated.
  • Making a foamed core, such as the foamed core 80 is described in greater detail in U.S. Application Publication No.
  • the method 150 of making the composite panel 22 includes making the foamed core sheet 80 , it should be understood that the composite panel 22 may include a non-foamed core sheet as well.
  • a first set of rollers 92 advances the foamed core 80 to a rotary die cutter 94 including an upper roller punch 96 and a lower roller 98 .
  • the rollers 92 are chilled rollers in order to cool the hot, extruded foamed core sheet 80 .
  • the upper die roller punch 96 maybe an engraved steel cylinder on a roll-fed press. As shown in FIG. 6 , the upper die roller 96 includes roller mounted hollow punches, or protrusions, 100 having a circular cross-section.
  • protrusions 100 operate to pierce the foamed core sheet 80 as it is advanced between the upper die roller 94 and the lower roller 96 , The punches, or protrusions 100 , react against the bottom roller 98 on the opposite side of the foamed core sheet 80 .
  • the protrusions 100 illustratively form the apertures 40 into the foamed core sheet 80 in order to produce the core member 34 .
  • slugs of material 102 displaced from the core sheet 80 are produced.
  • such slugs of material 102 may be extracted from the bottom roller 98 , recycled, and reused to make additional core sheets or other devices including foamed components as well.
  • the core member 34 is advanced through a set of upper and lower heated laminating rollers 104 , 106 where the inner and outer sheets 30 , 32 are laminated to each respective inner and outer surface 42 , 44 of the core member 34 .
  • a layer of flexible adhesive may be applied to the inner surface of each of the sheets 30 , 32 prior to laminating the sheets 30 , 32 to the core member 34 .
  • the layer of flexible adhesive may be applied directly to the opposite surfaces 42 , 44 of the core member 34 .
  • the opposite surfaces 42 , 44 of the core member 34 may be treated with a spray adhesive to create an adhesive bonding layer on the opposite surfaces 42 , 44 such that the metal sheets 30 , 32 may be directly bonded thereto.
  • the inner and outer metal sheets 30 , 32 are adhered to the core member 34 by the adhesive layer under pressure in order to create the composite panel 22 .
  • composite panel 22 may be cut to any suitable length.
  • FIG. 7 an alternative process or method 250 for making the composite panel 22 is schematically illustrated.
  • the foamed core sheet 80 is produced in the same manner as that described above in regard to FIG. 6 .
  • the first set of rollers 92 advances the foamed core sheet 80 to a cam-actuated roller punch cutter 194 which similarly operates to pierce the core sheet 80 in order to form the apertures 40 therethrough.
  • the cam-actuated roller punch cutter 194 includes an upper roller 196 and a lower roller 198 against which the upper roller punch 196 reacts during the punch cutting process.
  • the upper roller 196 includes a cam member 199 having cam-actuated hollow punches 200 coupled thereto.
  • the cam-actuated hollow punches 200 are forced out through punch holes 202 formed in the roller punch 196 as the roller punch 196 is pivoted about its central axis.
  • the lower roller 198 includes die buttons or apertures 204 through which the core slugs 108 may pass for removal from the process and subsequent recycling.
  • a bank of vertical punches and underlying die buttons may by used. Such punches and die buttons may travel in a synchronized linear motion with the foamed core sheet 80 while making the through-cuts in the foamed sheet 80 to form the apertures 40 .
  • the punches may make vertical penetration strokes to form the through-cuts, and after withdrawing from the penetration stroke, the bank of punches may return to a start position and again synchronize with the moving core sheet 80 for the next penetration sequence.
  • a method 650 for producing the core member 534 is provided.
  • the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS.
  • the first set of rollers 92 advances the foamed core sheet 80 to a transversing punch 696 .
  • the first set of rollers 92 operate to cool the foamed core sheet 80 as it leaves the extruder 90 and is moved toward the punch 696 .
  • upper rollers 92 may be provided as well.
  • a plurality of lower and/or upper rollers 92 may be provided in order to advance and cool the foamed core sheet 80 from the extruder 90 to the transversing punch cutter 696 .
  • the transversing punch 696 similarly operates to pierce the core sheet 80 in order to form the apertures 40 therethrough.
  • the transversing punch 696 includes an upper platform 698 including the vertical punches 700 extending downwardly therefrom.
  • the transversing punch 696 illustratively extends across a height of the foamed core sheet 80 from a top edge 50 of the sheet to a bottom edge 52 of the sheet.
  • the transversing punch 696 further includes a lower platform 702 coupled to the upper platform 698 for back and forth movement (shown by arrow 652 ) therewith.
  • the transversing punch 696 rests on a table 704 for back and forth movement across the width of the table 704 .
  • the foamed core sheet 80 is approximately 350° F. upon leaving the extruder 90 and is illustratively cooled by the chilled rollers 92 to approximately 250° F. when the transversing punch 696 forms the apertures 40 therein.
  • the punch 696 moves back and forth along the table 704 while the vertical punches 700 operate to pierce the core sheet 80 to form the apertures 40 therethrough.
  • the core slugs (not shown) produced from piercing the core sheet 80 may fall below and be removed from the process for subsequent recycling.
  • the composite panels 22 , 522 including the respective core members 34 , 534 are produced continuously in a line using a “hot” foamed core sheet 80 of approximately 250° F.
  • the apertures 40 are formed in the foamed core sheet 80 while the foamed core sheet 80 is still “hot.”
  • the term “hot” should not be limited to a temperature of approximately 250° F., but rather should refer simply to a foamed core sheet 80 that remains rather pliable and flexible and that has not cooled to a state where it is not flexible or pliable and/or has not cooled to room temperature.
  • the heat from the hot foamed core sheet 80 may affect the tolerances of the equipment used to the punch the apertures 40 in the sheet 80 .
  • the equipment such as the dies 94 , 194 and the punch 696 may need to be cooled as they are operating to pierce the apertures 40 in the foamed core sheet 80 .
  • FIG. 8 a method 350 for making a composite panel 322 including the core member 134 shown in FIG. 5 is schematically illustrated. Illustratively, much of the process includes the same or similar steps as that described above with reference to FIGS. 6 and 7 ; as such, like reference numerals are used to denote like components.
  • the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS. 6 and 7 .
  • the first set of rollers 92 advances the foamed core sheet 80 to a rotary die cutter 294 including an upper die roller 296 and a lower roller 298 . As shown in FIG.
  • the upper die roller 296 includes roller mounted protrusions 300 in the shape of knife-like blades.
  • the blades 300 are thin and slender and operate to pierce the extruded foamed core sheet 80 in a predetermined pattern as the foamed core sheet 80 is advanced between the upper die roller 296 and the lower roller 298 .
  • the blades 300 react against the bottom roller 298 to create slots 302 within the foamed core 80 .
  • the roller mounted blades 300 operate to pierce the core sheet 80 in a regular pattern.
  • the slots 302 formed in the foamed core sheet 80 define a longitudinal axis that is parallel to the longitudinal axis of the foamed core sheet 80 .
  • the length of the slots 302 extends along the length of the foamed core sheet 80 such that the slots 302 are also parallel to the upper and lower edges 81 , 83 of the foamed core sheet 80 .
  • slots 302 extend along a length of the foamed core sheet 30 , it is within the scope of this disclosure form slots 302 which are not parallel to the length, or longitudinal axis, of the foamed core sheet 80 and which are, therefore, angled relative to the longitudinal axis of the foamed core sheet 80 .
  • the die cutting process 350 of FIG. 8 does not create or displace any slugs of material from the core sheet 80 . As such, illustratively, no such slugs of material need be extracted from the bottom roller 298 for subsequent recycling or reuse.
  • the now-slotted core sheet 80 is then subjected to width-wise forces 310 to expand the core sheet 80 and the slots 302 formed therein to create the generally diamond-shaped slots 140 of the core member 134 .
  • the expanding force 310 is applied at right angles to the core process flow thereby creating the apertures 140 that are generally diamond-shaped.
  • the width-wise forces 310 operated to exert an outward force on the slotted core sheet 80 in outward directions perpendicular to the longitudinal axis of the foamed core sheet 80 .
  • Such outward force 310 operates to increase the width of the slotted foamed core sheet 80 while also pulling apart the opposite edges 141 , 143 defining each slot 302 in order to form the generally diamond-shaped slots 140 .
  • This geometry and increased core width is illustratively retained as the core member 134 is cooled.
  • one or both core sheet edges 81 , 83 may be left clear of proximate perforations thereby leaving a continuous material strip for subsequent joining by the use of mechanical or other fastening systems.
  • the protrusions 300 may be mounted to a bank of punches (not shown) which are actuated in a vertical motion in synchronism with the moving core sheet 80 in order to create the slots 302 in the sheet 80 .
  • FIG. 9 a method 450 for making another composite panel 422 including an alternative core member 234 is schematically illustrated.
  • the process 450 includes the same or similar steps as that described above with reference to FIGS. 6-8 ; as such, like reference numerals are used to denote like components.
  • the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS. 6-8 .
  • the first set of rollers 92 advances the foamed core sheet 80 to a rotary die cutter 394 including an upper die roller 396 and a lower roller 398 . As shown in FIG.
  • the upper die roller 396 includes roller mounted protrusions 400 in the shape of knife-like blades.
  • a longitudinal axis of the protrusions 400 is parallel to the longitudinal axis of the upper die roller 396 itself.
  • the blades 400 are similarly thin and slender and operate to pierce the extruded foamed core sheet 80 in a predetermined pattern as the foamed core sheet 80 is advanced between the upper die roller 396 and the lower roller 398 . The blades 400 react against the bottom roller 398 to create slots 402 within the foamed core 80 .
  • the roller mounted blades 400 pierce the core sheet 80 in a regular pattern to produce slots 402 at right angles to the core edges 81 , 83 .
  • the illustrative slots 402 formed in the foamed core sheet 80 define a longitudinal axis that is perpendicular to the longitudinal axis of the foamed core sheet 80 .
  • the length of the slots 402 extends perpendicularly to the length of the foamed core sheet 80 such that the slots 402 are also perpendicular to the upper and lower edges 81 , 83 of the foamed core sheet 80 . Similar to the die cutting process 350 of FIG. 8 , little or no slugs of material are created or displaced from the core sheet 80 when the slots 402 are formed.
  • the now-slotted core sheet 80 is then passed through upper and lower pull-rollers 406 , 408 .
  • the pull-rollers 406 , 408 operate to subject the slotted core sheet 80 to length-wise, or tensile, forces 410 in the direction of travel to expand the core sheet 80 and the slots 402 formed therein. Subjecting the slots 402 to these tensile forces expands the slots 402 to create generally diamond-shaped slots or apertures 240 of the core member 234 . As shown schematically in FIG.
  • the length-wise forces 410 operate to exert a force on the slotted core sheet 80 along the length of the sheet 80 to increase the length of the slotted foamed sheet 80 while also pulling apart the opposite edges 141 , 143 defining each slot 402 in order to form the generally diamond-shaped slots 240 .
  • a length of the diamond-shaped slots 240 of the core member 234 is perpendicular to the length of the core member 134 .
  • the protrusions 400 may be mounted to a bank of punches (not shown) which are actuated in a vertical motion in synchronism with the moving core sheet 80 in order to create the slots 402 in the sheet 80 .
  • a foamed core member such as the foamed core members 34 , 134 , 534 , includes apertures 40 , 140 formed through a thickness (i.e., from the outer surface 42 to the inner surface 44 ) of the core member.
  • the apertures of such a foamed core member of the present disclosure may be any suitable shape and size.
  • the apertures may be spaced any suitable distance apart from each other and may be arranged in any suitable pattern and/or may be arranged randomly.
  • the apertures are not interconnected and no single aperture extends between a top edge and a bottom edge of any core member to create a continuous void from the top edge to the bottom edge.
  • no single aperture extends between the side edges of any core member to create a continuous void from the side edges of the core member.
  • the apertures of a core member of the present disclosure may be open to the top, bottom, and side edges 50 , 52 , 54 .
  • the apertures of a core member of the present disclosure may be spaced-apart from the top, bottom, and side edges 50 , 52 , 54 such that the top, bottom, and side edges of the core member are generally continuous and do not include any formed, or manufactured, voids formed therein.
  • the apertures may be spaced-apart any suitable distance from the edges 50 , 52 , 54 of the core member.
  • a distance that is perpendicular from any edge 50 , 52 , 54 and the center of any adjacent aperture may illustratively be in the range of approximately 0.50 inch-6.00 inches.
  • such a distance between the apertures and the edges may be greater than or less than the above-referenced range.

Abstract

A composite panel configured for use with a sidewall of a trailer includes an outer metal sheet, an inner metal sheet, and a core member positioned between the inner and outer metal sheets. The core member includes a plurality of apertures formed therethrough such that each aperture extends from an inner surface of the core member to an outer surface of the core member. Illustratively, the plurality of apertures is covered by the inner and outer metal sheets.

Description

  • This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/372,259 entitled OVERHEAD DOOR ASSEMBLY FOR A STORAGE CONTAINER and filed Aug. 10, 2010, the entirety of which is hereby incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates generally to a composite panel for a storage container, such as a truck trailer, for example. In particular, the present invention relates to a perforated foam core of the composite panel.
  • BACKGROUND
  • Many storage containers, such as large truck trailers, for example, include sidewalls made from composite panels. Illustratively, such composite panels may include a plastic core member sandwiched between thin metal skins. The composite panels are thereafter joined together to create the trailer sidewall. For example, DURAPLATE® composite panels provided by Wabash National Corporation of Lafayette, Ind. are constructed of a high-density polyethylene plastic core bonded between two high-strength steel skins.
  • SUMMARY
  • The present invention may comprise one or more of the features recited in the attached claims, and/or one or more of the following features and combinations thereof.
  • According to one aspect of the present disclosure, a composite panel configured for use with a sidewall of a trailer includes an outer metal sheet, an inner metal sheet, and a core member positioned between the inner and outer metal sheets. The core member includes a plurality of apertures formed therethrough such that each aperture extends from an inner surface of the core member to an outer surface of the core member. The plurality of apertures is covered by the inner and outer metal sheets and wherein a length and width of each aperture is less than a respective length and width of the core member.
  • In one illustrative embodiment, the plurality of apertures may be circular in shape. Illustratively, a diameter of each aperture may be in the range of approximately ¼ inch to ½ inch.
  • In another illustrative embodiment, the composite panel may further include an adhesive between the inner metal sheet and the core member and between the outer metal sheet and the core member.
  • In still another illustrative embodiment, the plurality of apertures may include a plurality of adjacent vertical rows of apertures that are aligned with each other and a plurality of adjacent horizontal rows of apertures that are aligned with each other.
  • In yet another illustrative embodiment, the plurality of apertures may include a plurality of adjacent vertical rows of apertures that are offset from each other and a plurality of adjacent horizontal rows of apertures that are offset from each other.
  • In still another illustrative embodiment, a top-most horizontal row of apertures may be spaced-apart from a top edge of the core member. Illustratively, a vertical distance between the top edge of the core member and a center of the top-most horizontal row of apertures may be between approximately 0.50-6.00 inches. More particularly, the vertical distance may be approximately 2.0 inches.
  • In yet another illustrative embodiment, a left-most vertical row of apertures may be spaced-apart from a left side edge of the core member. Illustratively, a horizontal distance between the left side edge of the core member and a center of the left-most vertical row of apertures may be between approximately 0.50-6.00 inches. More particularly, the horizontal distance may be approximately 6.0 inches.
  • In still another illustrative embodiment, a top-most horizontal row of apertures may be spaced-apart a first distance from a top edge of the core member. Further illustratively, a left-most vertical row of apertures may be spaced-apart a second distance from a left side edge of the core member. The first distance may be smaller than the second distance.
  • In yet another illustrative embodiment, the apertures may be generally uniformly spaced-apart from one another.
  • In still another illustrative embodiment, the apertures may be generally similarly-sized.
  • In yet another illustrative embodiment, the core member may be a foamed core member including a plurality of air bubbles therein.
  • In still another illustrative embodiment, none of the plurality of apertures may be open to any one of a top, bottom, or side edge of the core member.
  • In yet another illustrative embodiment, the plurality of apertures may include a plurality of vertically-spaced apart apertures and a plurality of horizontally spaced-apart apertures.
  • According to another aspect of the present disclosure, a sidewall of a trailer includes a first composite panel and a second composite panel. The first composite panel includes (i) a first outer metal sheet, (ii) a first inner metal sheet, and (iii) a first core member positioned between the first inner and first outer metal sheets. The first core member includes a first plurality of apertures which are both vertically and horizontally spaced-apart from each other. Each of the first plurality of apertures extends from an inner surface of the first core member to an outer surface of the first core member. The first plurality of apertures is covered by the first inner and first outer metal sheets. The first core member includes a first aperture-free side portion. The second composite panel includes (i) a second outer metal sheet, (ii) a second inner metal sheet, and (iii) a second core member positioned between the second inner and second outer metal sheets. The second core member includes a second plurality of apertures which are both vertically and horizontally spaced-apart from each other. Further, each of the second plurality of apertures extends from an inner surface of the second core member to an outer surface of the second core member. Illustratively, the second plurality of apertures is covered by the second inner and second outer metal sheets and the second core member includes a second aperture-free side portion. The sidewall of the trailer further includes a wall joint coupling the first and second composite panels to each other. The wall joint includes a plurality of fasteners received through the first and second aperture-free portions of the first and second composite panels.
  • According to yet another aspect of the present disclosure, a method of forming a composite panel configured for use in a sidewall of a trailer includes forming an uncooled thermal plastic sheet of material and advancing the uncooled thermal plastic sheet of material through a transversing punch. Advancing the uncooled thermal plastic sheet of material through the transversing punch forms apertures through the uncooled thermal plastic sheet of material such that each aperture extends from an outer surface of the thermal plastic sheet of material to an inner surface of the thermal plastic sheet of material. The method further includes cooling the transversing punch and coupling an outer metal sheet and an inner metal sheet to the respective outer surface and the inner surface of the uncooied thermal plastic sheet of material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a trailer having sidewalls including a plurality of composite panels.
  • FIG. 2 is a perspective view of a portion of one of the composite panels of FIG. 1 showing two outer metal skins and an inner foam core of the panel.
  • FIG. 3 is a perspective, exploded view of the composite panel of FIG. 2 showing the foam core including a plurality of holes formed therethrough.
  • FIG. 4 is a planar view of the foam core of FIG. 3.
  • FIG. 5 is a planar view of an alternative foam core.
  • FIG. 6 is a schematic of a first method of making the composite panel FIG. 2.
  • FIG. 7 is a schematic of a second method of making the composite panel of FIG. 2.
  • FIG. 8 is a schematic of a third method of making of a composite panel having the foam core of FIG. 5.
  • FIG. 9 is a schematic of a fourth method of making a composite panel having an alternative foam core.
  • FIG. 10 is a schematic of a fifth method of making a composite panel having an alternative foam core.
  • FIG. 11 is a planar view of an alternative foam core.
  • FIG. 12 is a perspective view of a portion of two adjacent composite panels of a sidewall of a trailer which are coupled to each other via a coupling joint and which include the alternative foam core of FIG. 11.
  • FIG. 13 is a sectional view of a portion of two adjacent composite panels of a sidewall of a trailer which are coupled to each other via a shiplap joint and which include the alternative foam core of FIG. 11.
  • DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to illustrative embodiments shown in the attached drawings and specific language will be used to describe the same. While the concepts of this disclosure are described in relation to a truck trailer, it will be understood that they are equally applicable to other mobile or stationary storage containers, as well as refrigerated and un-refrigerated trailers or storage containers.
  • Looking first to FIGS. 1-3, a truck trailer 10 includes a roof assembly 12 coupled to opposite sidewalls 16, a front end wall assembly 18, and a rear end wall assembly (not shown) including an overhead door. Alternatively, the rear end wall assembly may include two rear doors mounted in a conventional manner such that the doors are is hingedly coupled to and swing relative to a rear frame between opened and closed positions. Illustratively, the trailer 10 also includes a floor assembly (not shown) spaced apart from the roof assembly 12. Further illustratively, the trailer 10 is connected to a tractor 20 by conventional means, such as a fifth wheel, for example.
  • Illustratively, each sidewall 16 and the front end wall 18 of the trailer 10 are made from a plurality of composite panels 22. The composite panels 22 may be coupled to each other using a number of different fasteners and/or joint configurations. Illustratively, the composite panels 22 are coupled to each other via joint configurations 24 including a logistics plate (not shown) and a splicing plate 28. Such joint configurations are described in greater detail in U.S. Pat. No. 7,069,702, the entirety of which is hereby incorporated by reference herein. Of course, it should be understood that other joint configurations and other fasteners (including rivets, screws, bolts, nails, welding, adhesives, and the like) may be used to couple adjacent composite panels 22 together as well.
  • Illustratively, each composite panel 22 is generally rectangular having a height greater than its width. The composite panels 22 may be relatively equal in size, or, alternatively, the width and/or thickness of each composite panel 22 may vary. When the composite panels 22 are used in the construction of the sidewalls 16 and the front wall assembly 18, each composite panel 22 is connected to the floor assembly and extends upwardly therefrom such that each panel 22 is attached to upper and lower rails 27, 29 of the trailer 10 by suitable joining members, such as bolts or rivets, for example. When the composite panels 22 are used in the construction of the rear doors, the outer composite panels are connected to the respective sidewalls 16 of the trailer 10 by hinges. When closed, the doors extend upwardly from the floor assembly. Although the trailer 10 includes a plurality of composite panels 22 coupled to each other to form a single sidewall 16, it is within the scope of this disclosure to provide a trailer having a front end wall and/or sidewalls which are formed from one continuous composite panel.
  • Looking now to FIG. 2, each composite panel 22 includes a inner metal sheet 30, an outer metal sheet 32, and a foamed thermal plastic core member 34 positioned between the inner and outer sheets 30, 32. Illustratively, as is described in greater detail below, the inner and outer metal sheets 30, 32 are bonded to the core member 34, by a thin adhesive layer (not shown). In particular, the sheets 30, 32, are bonded to the foamed thermal plastic core member 34 by a suitable flexible adhesive bonding film such as, for example, modified polyethylene. Of course, it should be understood that any suitable adhesive may be used as well. When fully assembled, the outer sheets 32 of each panel 20 cooperate to form an outer surface of the sidewalls 16 of the trailer 10 while the inner sheets 30 of each panel 20 cooperate to form an inner surface of the sidewalls 16 of the trailer 10.
  • The metal sheets 30, 32 of each composite panel 20 of the present disclosure may be formed of aluminum or full hard, high strength, high tension, galvanized steel. However, other metals or metal alloys may be used as well. Illustratively, each sheet 30, 32 has a thickness of greater than nineteen thousandths of an inch. However, sheets 30, 32 having lesser thicknesses may be used as well.
  • The core member 34 is formed from a foamed thermal plastic, preferably foamed high density polyethylene (HDPE) or high density polyproplylene. Core weight reduction is often achieved by the addition of a gas during the extrusion process in order to produce a foamed thermal plastic, such as the core member 34. This gas, which is typically carbon dioxide, can be physically injected or liberated from chemical additives, creates a foamed core. As such, the core member 34 includes a plurality of air bubbles interspersed with the thermal plastic material. This foaming of the core member 34 lowers the density of the thermal plastic and improves the strength to weight ratio thereof. The foaming of the core member 34 also reduces the weight of the composite panel 22 as compared to a composite panel having a solid, non-foamed core member. Further, the foamed core member 34 uses less plastic resin versus a solid core member. However, the extent to which the density and the weight reduction may be achieved using this method may be limited by physical process dynamics and needs to maintain acceptable core surface cosmetic appearance and surface area available for effective bonding of the metal sheets to the core.
  • While the illustrative core member 34 is formed from a foamed HDPE, the core member 34 may alternatively be made from foamed low density thermal plastic, such as foamed low density polyethylene or low density polypropylene. Low density thermal plastic will foam and produce a resilient core member as well. Further, it is within the scope of this disclosure for the core member 34 to be formed from a non-foamed high or low density thermal plastic as well.
  • The core member 34 is generally resilient and is able to flex a certain degree without breaking. Illustratively, the core member 34 is approximately one half of an inch thick or less. However, the core member 34 may be made to define any suitable or desired thickness.
  • In order to further reduce the density-to-weight ratio beyond that which is achieved by the foaming process (discussed in greater detail below), holes, or apertures 40, are formed into the core member 34, as shown in FIG. 3. These apertures 40 each penetrate the full thickness of the core member 34. In other words, each hole 40 extends from an outer surface 42 of the core member 34 to an inner surface 44 of the foamed core member 34. Illustratively, as shown in FIGS. 3 and 4, the core member 34 includes a plurality of apertures 40 which are generally evenly spaced throughout the core member 34. Further illustratively, the plurality of apertures 40 are arranged in alternating rows of apertures 40 to create an array of apertures of the core member 34. Further illustratively, each aperture 40 is circular in shape and has a diameter in the range of approximately ¼ inch to ½ inch.
  • Illustratively, the apertures 40 shown in FIG. 4 do not open into either the top, bottom or side edges 50, 52, 54 of the core member 34. In other words, the top, bottom, and side edges 50, 52, 54 of the core member are generally solid in that no formed or manufactured apertures are located therein. Specifically, no apertures are formed in the outer edges 50, 52, 54 of the foam core member 34 by a punch or a different type of tool during the manufacturing process. As such, the inner and outer sheets 30, 32 of the composite panel 22 are continuously coupled to the respective inner and outer surfaces 42, 44 of the core member 34 along the top, bottom, and side edges 50, 52, 54 thereof. However, it should be understood that the core member 34 may include apertures 40 which are located at, or open up into, one or more of the top, bottom, and/or side edges 50, 52, 54 of the core member 34.
  • It should be understood that while the particular pattern of apertures 40 of the illustrative core member 34 is shown in FIGS. 3 and 4, apertures 40 may be arranged in any suitable pattern on the core member 34. Further, the apertures 40 may be located on only one side (e.g., right, left, top, or bottom) or on only a portion of the core member 34. In other words, the apertures 40 need not be positioned to cover generally the entire surface area of the core member 34 from the top of the core member 34 to bottom of the core member 34 and from one side of the core member 34 to the other side of the core member 34. For example, while generally the entire core member 34 is perforated to include the apertures 40 positioned throughout, it should be understood that the apertures may be positioned in other suitable configurations that do not span the width and/or height of the core member 34. However, generally none of the apertures 40 disclosed herein includes a length or a width which is equal to the respective length and width of the core member 34. In other words, none of the core members disclosed herein include a void which extend from one of the top, bottom and/or side edges of the core member 34 to any other of the top, bottom, or side edges of the core member 34. Accordingly, a length and a width (or a diameter, for those apertures which are circular in shape) of each aperture 40 is fess than a respective length and width of the core member 34 in which it is formed. In particular, an alternative core member 534 is shown in FIG. 11 and includes a pattern of apertures 40 that are spaced-apart from the top, bottom, and side edges 50, 52, 54 of the core member 534. Specifically, a top-most, horizontal row 536 of apertures 40 is spaced-apart a distance 538 from the top edge 50 of the core member 534. Further, a left-most, vertical row 540 of apertures 40 (as viewed from above, as shown in FIG. 11) is spaced-apart a distance 542 from the left side edge 54 of the core member 534. Illustratively, a bottom-most, horizontal row (not shown) of apertures 40 of the core member 534 is also spaced-apart from the bottom edge (not shown) of the core member 534 while a right-most, vertical row (not shown) of apertures 40 of the core member 534 is also spaced-apart from the right-most edge (not shown) of the core member 534.
  • Illustratively, the distances 538 and 542 may be equal to each other or may be different from each other. Further illustratively, the core member 534, or any core member disclosed herein, may include any combination of top-most, left and right side-most, and bottom-most rows of apertures 40 which are spaced any other suitable distance away from the edges 50, 52, 54 of the core member 534. In particular, such apertures may be spaced away from the edges 50, 52, 54 in order to provide a suitable space for a fastener to be received through an aperture-free area or portion 550, 552 of the core member 534. In other words, the distances may be greater than or less than that which is shown in FIG. 11. Further, the core member 534 may include any combination of top-most, left and right side-most, and bottom-most rows of apertures which are not spaced a suitable distance apart from the respective top, side, and bottom edges 50, 52. 54 of the core member 534 in order to be able to receive a fastener through an aperture-free portion of the core member 534.
  • Illustratively, a diameter 554 of each aperture 40 is approximately 0.250 inches. However, an aperture of any suitable size may be provided within the composite member 534. Further, a distance 558 between a centerpoint of adjacent, vertical rows of apertures 40 is approximately 0.625 inch. Similarly, a distance 556 between a centerpoint of adjacent horizontal rows of apertures 40 is also approximately 0.625 inch. However, any suitable distance may be provided between apertures of adjacent horizontal rows or adjacent vertical rows. Further illustratively, a distance 560 between the left edge 54 of the core member 534 and the center of the left-most row 540 of apertures 40 of the core member 534 may be approximately 0.50-6.00 inches while a distance 562 between the upper edge 50 of the core member 534 and the center of upper-most row 536 of apertures 40 of the core member 534 may also be approximately 0.50-6.00 inches. Preferably, the distance 560 of the core member 534 is approximately 6.00 inches while the distance 562 of the core member 534 is approximately 2.00 inches. Illustratively, it should be understood that the core member 534 is illustrative in nature and that other core members having apertures of different shapes and sizes may be provided. Further, core members having different distances between vertical and/or horizontal rows of apertures may be provided and core members having different distances between outer edges and the apertures may be provided as well. Finally, it need not be required that such distances are consistent throughout a single core member.
  • Illustratively, the spaced-apart rows 536, 540 of apertures 40 from the respective top and sides 50, 54 of the core member 534 provide a top portion 550 and a side portion 552 of the core member 534 that is free from, or that does not include, any apertures 40. The top portion 550 of the core member 534 is positioned between the top edge 50 of the core member 534 and the top-most, horizontal row 536 of apertures 40 of the core member 534. The side portion 552 of the core member 534 is positioned between the left-most, side edge 54 of the core member 534 and the left-most, vertical row 540 of the apertures 40 of the core member 534.
  • As discussed above, the top portion 550 and the side portion 552 of the core member 534 provide areas free from apertures 40 that may be used to secure fasteners therethrough in order to couple one core member 534 to another core member 534 and/or to couple the core member 534 to another object. In particular, rivets, for example, may be punched through the aperture- free portions 550, 552 of the core member 534 in order to couple the core member 534, or the entire composite panel to which the core member 534 belongs, to another object, including, but not limited to adjacent core members 534 and/or adjacent composite panels. Further, fasteners, may also be punched through the aperture-free top and bottom portions of the composite panels to which the core member 534 belongs in order to couple top and bottom rails (not shown) of a trailer to the composite panels. In particular, after the composite panel is formed and the inner and outer sheets 30, 32 are attached to the core member 534 including the apertures 40 and the aperture- free portions 550, 552, rivet-receiving holes may be punched through the formed composite panel (i.e., the inner sheet 30, the aperture- free portions 550, 552 of the core member 534, and the outer sheet 32) such that rivets may then be received through such rivet-receiving holes.
  • Looking to FIG. 12, for example, a portion of a sidewall 551 of a trailer includes a first composite panel 522 having the core member 534, and an inner metal sheet 30 and an outer metal sheet 32 each coupled to the core member 534 via the use of an adhesive. Illustratively, the sidewall 551 includes a second composite panel 524 similarly having the core member 534, and an inner metal sheet 30 and an outer metal 32 each coupled to the core member 534 via the use of an adhesive. The first and second composite panels 522, 524 are adjacent to and spaced-apart from each other in a side-by-side manner. A wall panel joint 560 including a logistics member 562 and a splicing member 564 is provided to couple the adjacent composite panels 522, 524 together. Illustratively, the rivets 570 used to couple the wall panel joint 560 to the composite panels 522, 524 are positioned within the side, aperture-free portion 552 of each core member 534 of the panels 522, 524. The same and/or similar wall panel joint is discussed in greater detail in U.S. Pat. No. 6,220,651, the entirety of which is hereby incorporated by reference herein. Illustratively, the wall panel joints discussed in the '651 patent may be used to join together one or more adjacent composite panels disclosed herein.
  • While the composite panels 522, 524 of FIG. 12 are joined together by the wall panel joint 560 in order to form at least a portion of a sidewall of a trailer, it should be understood that other wall panel may be used as well. For example, as shown in FIG. 13, a portion of an alternative sidewall 581 includes a first composite panel 582 and a second composite panel 584 each including the core member 534, an inner metal sheet 30, and an outer metal sheet 32. The composite panels 582, 584 are joined together by a joint 590. In particular, the joint 590 is a shiplap joint. As shown in FIG. 13, each composite panel 582, 584 includes an overlapping skin member 592 for overlapping a portion of one of the respective metal sheets 30, 32. Preferably, this overlapping skin member 592 is integrally formed as part of the respective metal sheet 30, 32 of each composite panel 582, 584. However, it is envisioned that the overlapping skin member 590 may be a separate member attached to the composite panels 582, 584 by suitable means. Illustratively, the overlapping skin member 590 of each panel 582, 584 is provided for overlapping a portion of the respective inner and outer sheets 30, 32 of the other, adjacent panel 582, 584. As shown in FIG. 13, a side end portion of the respective sheets 30, 32 of the panels 582, 584 are coined or stepped by suitable means so as to form a stepped end portion. Because the stepped end portion has been stepped a distance which is equal to the thickness of the overlapping skin member 590, the surface formed by the adjacent panels 582, 584 is substantially flush. This prevents the overlapping skin members 592 from being snagged by an outside object. A conventional rivet member 594 is then engaged through aligned rivet-receiving holes provided through the overlapping skin member 592 of the first composite panel 582 and the stepped end portion of the second composite panel 584. A second conventional rivet member 595 is engaged through aligned rivet-receiving holes provided through the stepped end portion of the first composite panel 582 and the overlapping skin member 592 of the second composite panel 584. Illustratively, the rivets 594, 595 used to couple the composite panels 582, 584 together are positioned within the side, aperture-free portion 552 of each core member 534 of the panels 582, 584. In other words, the stepped end portions of the first and second composite panels 582, 584 include the aperture-free portions 552 of the core member 534. The same and/or similar wall panel joint is discussed in greater detail in U.S. Pat. No. 5,938,274, the entirety of which is hereby incorporated by reference herein. Illustratively, the wall panel joints discussed in the '274 patent may be used to join together one or more adjacent composite panels disclosed herein.
  • It should be understood that the aperture- free portions 550, 552 of the foam core 534 of the composite panels disclosed herein are free of apertures prior to the process of being joined to adjacent composite panels. The aperture- free portions 550, 552 provide suitable aperture-free areas or portions of the composite panels for having a rivet-receiving hole formed therethrough. In other words, the apertures 40 are non-rivet or non-fastener-receiving apertures that are different from the rivet-receiving holes formed through the already-formed composite panels. These rivet-receiving holes are formed through the entire thickness of the composite panels including the inner and outer sheets 30, 32 and are not only formed through the foam core contrary to the apertures 40 disclosed herein which are formed only through the foam core of a composite panel. In other words, the aperture-free portions define an area of the foam core of a composite panel which does not include any apertures that are formed only through the foam core of the composite panel. Accordingly, the aperture-free portions may later have rivet-receiving holes formed therein. Thus, aperture- free portions 550, 552 of the composite panel may include rivet-receiving holes which may later be formed through the composite panel in order to join two adjacent composite panels together.
  • Illustratively, the pattern of the apertures 40 of the core member 534 is different than the pattern of the apertures 40 of the core member 34 shown in FIGS. 3 and 4. In particular, the pattern of the apertures 534 of the core member 534 includes vertical and horizontal rows of apertures 40 that are all aligned with each other. In other words, every vertical row of apertures 40 of the core member 534 is aligned with every adjacent vertical row of apertures 40 of the core member 534. Further, every horizontal row of apertures 40 of the core member 534 is aligned with every adjacent horizontal row of apertures 40 of the core member 534. However, the pattern of the apertures 40 of the core member 34 includes staggered, or offset, vertical and horizontal rows of apertures 40, as shown in FIG. 4, such that every other vertical row of apertures 40 of the core member 34 is aligned with every other (and not every adjacent) vertical row of apertures 40 of the core member 34 and every horizontal row of apertures 40 of the core member 34 is aligned with every other (and not every adjacent) horizontal row of apertures 40 of the core member 34. Illustratively, while the specific patterns of apertures 40 are shown in the core member 34 and the core member 534, it should be understood that a core member may be provided which includes any suitable pattern of apertures formed therethrough including any number of aligned and/or misaligned horizontal and vertical rows of apertures. Further, a random array of apertures having not particular pattern may be provided as well.
  • While the particular apertures 40 of each of the core members 34, 534 are circular in shape, it should be understood that the members 34, 534 may include apertures 40 of any shape, such as square, rectangular, triangular, oval, etc. Further, it should be understood that the core members 34, 534 may each include apertures of any suitable size having any suitable dimensions. Finally, while the core members 34, 534 each include an array of apertures 40 which are all of the same shape and size, it should be understood that the core members 34, 534 may include apertures of varying dimension, size, and/or shape. In other words, while the apertures 40 of the illustrative core members 34, 534 are all of uniform shape and size, the core members 34, 534 may each include any number of apertures having different sizes and/or shapes. In other words, the spacing, dimension, and geometry of the apertures of the core members 34, 534 may be different and optimized according to specific production process and performance specifications. Finally, while the apertures 40 of each of the core members 34, 534 are shown to be spaced a particular distance apart from each other that is generally uniform, it should be understood that the core members 34, 534 may each include apertures which are spaced further or closer apart than that which is shown and may also include apertures which are spaced a non-uniform distance from adjacent apertures.
  • Looking to FIG. 5, for example, an alternative core member 134 is similar to the core members 34, 534. As such, like reference numerals are used to denote like components. Rather than the circular-shaped apertures 40 of the core members 34, 534, the core member 134 includes a plurality of generally diamond-shaped apertures 140. Illustratively, the diamond-shaped apertures 140 are approximately % inch to ⅜ inch wide and ½ inch to ¾ inch tall. However, the apertures 140 may have any suitable height and/or width. As discussed above in regard to the apertures 40, the apertures 140 extend through the entire thickness of the core member 134 from the outside surface 42 to the inside surface 44 of the core member 134.
  • Looking now to FIG. 6, an illustrative process or method 150 for making the composite panel 22 is schematically illustrated. Illustratively, a foamed core sheet 80 is first made by mixing foaming beads or pellets 82 with thermal plastic resin beads or pellets 84. These pellets 82, 84 are mixed in a mixing chamber 86 using an auger (not shown). The foaming pellets 82 have a gas therein, such as carbon dioxide or nitrogen, for example. The mixed pellets 82, 84 are subjected to heat in a hot die chamber 88 and the foaming pellets 82 activate and produce carbon dioxide or nitrogen to foam the mixture. The mixture is then extruded into a layer by an extruder 90 to form the foamed core 80. Illustratively, the foamed core sheet 80 is approximately 350° F. upon leaving the extruder 90. It should be understood that other methods of foaming the core member may be provided such as by injecting nitrogen into a heating chamber in which the thermal plastic resin pellets are being heated and are in a molten state (without the use of the foaming pellets being mixed therewith) and thereafter extruding the foamed core material onto a core member, or by using both the foaming pellets and the direct injection of nitrogen gas into a heating chamber in which both the thermal plastic resin pellets and the foaming pellets are being heated. Making a foamed core, such as the foamed core 80, is described in greater detail in U.S. Application Publication No. 2001/0011832, the entirety of which is hereby incorporated by reference herein. As noted above, while the method 150 of making the composite panel 22 includes making the foamed core sheet 80, it should be understood that the composite panel 22 may include a non-foamed core sheet as well.
  • Once the foamed core sheet 80 is formed, a first set of rollers 92 advances the foamed core 80 to a rotary die cutter 94 including an upper roller punch 96 and a lower roller 98. Illustratively, the rollers 92 are chilled rollers in order to cool the hot, extruded foamed core sheet 80. Further illustratively, the upper die roller punch 96 maybe an engraved steel cylinder on a roll-fed press. As shown in FIG. 6, the upper die roller 96 includes roller mounted hollow punches, or protrusions, 100 having a circular cross-section. These protrusions 100 operate to pierce the foamed core sheet 80 as it is advanced between the upper die roller 94 and the lower roller 96, The punches, or protrusions 100, react against the bottom roller 98 on the opposite side of the foamed core sheet 80. The protrusions 100 illustratively form the apertures 40 into the foamed core sheet 80 in order to produce the core member 34.
  • During the die cutting process, slugs of material 102 displaced from the core sheet 80 are produced. Illustratively, such slugs of material 102 may be extracted from the bottom roller 98, recycled, and reused to make additional core sheets or other devices including foamed components as well.
  • Once the core member 34, including the apertures 40, is formed, the core member 34 is advanced through a set of upper and lower heated laminating rollers 104, 106 where the inner and outer sheets 30, 32 are laminated to each respective inner and outer surface 42, 44 of the core member 34. Illustratively, a layer of flexible adhesive (not shown) may be applied to the inner surface of each of the sheets 30, 32 prior to laminating the sheets 30, 32 to the core member 34. Alternatively, the layer of flexible adhesive may be applied directly to the opposite surfaces 42, 44 of the core member 34. Further alternatively, the opposite surfaces 42, 44 of the core member 34 may be treated with a spray adhesive to create an adhesive bonding layer on the opposite surfaces 42, 44 such that the metal sheets 30, 32 may be directly bonded thereto. Regardless of the type of adhesive used or the method by which the adhesive is applied, the inner and outer metal sheets 30, 32 are adhered to the core member 34 by the adhesive layer under pressure in order to create the composite panel 22. Illustratively, after being formed, composite panel 22 may be cut to any suitable length.
  • Looking now to FIG. 7, an alternative process or method 250 for making the composite panel 22 is schematically illustrated. Illustratively, much of the process includes the same or similar steps; as such, like reference numerals are used to denote like components. In particular, the foamed core sheet 80 is produced in the same manner as that described above in regard to FIG. 6. Once the foamed core sheet 80 is formed, the first set of rollers 92 advances the foamed core sheet 80 to a cam-actuated roller punch cutter 194 which similarly operates to pierce the core sheet 80 in order to form the apertures 40 therethrough. Illustratively, the cam-actuated roller punch cutter 194 includes an upper roller 196 and a lower roller 198 against which the upper roller punch 196 reacts during the punch cutting process. The upper roller 196 includes a cam member 199 having cam-actuated hollow punches 200 coupled thereto. In use, the cam-actuated hollow punches 200 are forced out through punch holes 202 formed in the roller punch 196 as the roller punch 196 is pivoted about its central axis. Further illustratively, the lower roller 198 includes die buttons or apertures 204 through which the core slugs 108 may pass for removal from the process and subsequent recycling. Once the core member 34 is formed through the use of the cam-actuated roller punch cutter 194, the composite panel 22 is formed in the same or similar manner as that described above with reference to FIG. 6.
  • In yet another method for producing the core member 34, a bank of vertical punches and underlying die buttons (not shown) may by used. Such punches and die buttons may travel in a synchronized linear motion with the foamed core sheet 80 while making the through-cuts in the foamed sheet 80 to form the apertures 40. The punches may make vertical penetration strokes to form the through-cuts, and after withdrawing from the penetration stroke, the bank of punches may return to a start position and again synchronize with the moving core sheet 80 for the next penetration sequence. As shown in FIG. 10, for example, a method 650 for producing the core member 534 is provided. Illustratively, the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS. 6 and 7. Once the foamed core sheet 80 is formed, the first set of rollers 92 advances the foamed core sheet 80 to a transversing punch 696. As noted above, the first set of rollers 92 operate to cool the foamed core sheet 80 as it leaves the extruder 90 and is moved toward the punch 696. Illustratively, while only lower rollers 92 are shown in FIG. 10, it should be understood that upper rollers 92 may be provided as well. Further, it should be understood that while only a single upper and lower roller 92 is shown in FIGS. 6 and 7, a plurality of lower and/or upper rollers 92 may be provided in order to advance and cool the foamed core sheet 80 from the extruder 90 to the transversing punch cutter 696.
  • Once the foamed core sheet 80 is advanced to the transversing punch 696, the transversing punch 696 similarly operates to pierce the core sheet 80 in order to form the apertures 40 therethrough. Illustratively, the transversing punch 696 includes an upper platform 698 including the vertical punches 700 extending downwardly therefrom. The transversing punch 696 illustratively extends across a height of the foamed core sheet 80 from a top edge 50 of the sheet to a bottom edge 52 of the sheet. The transversing punch 696 further includes a lower platform 702 coupled to the upper platform 698 for back and forth movement (shown by arrow 652) therewith. Illustratively, the transversing punch 696 rests on a table 704 for back and forth movement across the width of the table 704.
  • As noted above, the foamed core sheet 80 is approximately 350° F. upon leaving the extruder 90 and is illustratively cooled by the chilled rollers 92 to approximately 250° F. when the transversing punch 696 forms the apertures 40 therein. As this hot foamed core sheet 80 advances toward the punch 696, the punch 696 moves back and forth along the table 704 while the vertical punches 700 operate to pierce the core sheet 80 to form the apertures 40 therethrough. The core slugs (not shown) produced from piercing the core sheet 80 may fall below and be removed from the process for subsequent recycling. Once the core member 534 is formed through the use of the transversing punch 696, the composite panel 522 (shown in FIG. 12) is formed in the same or similar manner as that described above with reference to FIGS. 6 and 7.
  • Illustratively, and similar to that discussed above in FIGS. 6 and 7, the composite panels 22, 522 including the respective core members 34, 534 are produced continuously in a line using a “hot” foamed core sheet 80 of approximately 250° F. The apertures 40 are formed in the foamed core sheet 80 while the foamed core sheet 80 is still “hot.” Illustratively, it should be understood that the term “hot” should not be limited to a temperature of approximately 250° F., but rather should refer simply to a foamed core sheet 80 that remains rather pliable and flexible and that has not cooled to a state where it is not flexible or pliable and/or has not cooled to room temperature. It should also be understood that the heat from the hot foamed core sheet 80 may affect the tolerances of the equipment used to the punch the apertures 40 in the sheet 80. As such, the equipment, such as the dies 94, 194 and the punch 696 may need to be cooled as they are operating to pierce the apertures 40 in the foamed core sheet 80.
  • Looking now to FIG. 8, a method 350 for making a composite panel 322 including the core member 134 shown in FIG. 5 is schematically illustrated. Illustratively, much of the process includes the same or similar steps as that described above with reference to FIGS. 6 and 7; as such, like reference numerals are used to denote like components. In particular, the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS. 6 and 7. Once the foamed core sheet 80 is formed, the first set of rollers 92 advances the foamed core sheet 80 to a rotary die cutter 294 including an upper die roller 296 and a lower roller 298. As shown in FIG. 8, the upper die roller 296 includes roller mounted protrusions 300 in the shape of knife-like blades. Illustratively, the blades 300 are thin and slender and operate to pierce the extruded foamed core sheet 80 in a predetermined pattern as the foamed core sheet 80 is advanced between the upper die roller 296 and the lower roller 298. The blades 300 react against the bottom roller 298 to create slots 302 within the foamed core 80.
  • Looking still to FIG. 8, the roller mounted blades 300 operate to pierce the core sheet 80 in a regular pattern. Illustratively, the slots 302 formed in the foamed core sheet 80 define a longitudinal axis that is parallel to the longitudinal axis of the foamed core sheet 80. In other words, the length of the slots 302 extends along the length of the foamed core sheet 80 such that the slots 302 are also parallel to the upper and lower edges 81, 83 of the foamed core sheet 80. As is discussed below, while the illustrative slots 302 extend along a length of the foamed core sheet 30, it is within the scope of this disclosure form slots 302 which are not parallel to the length, or longitudinal axis, of the foamed core sheet 80 and which are, therefore, angled relative to the longitudinal axis of the foamed core sheet 80.
  • As opposed to the processes 150, 250 described above (and shown schematically in FIGS. 6 and 7), the die cutting process 350 of FIG. 8 does not create or displace any slugs of material from the core sheet 80. As such, illustratively, no such slugs of material need be extracted from the bottom roller 298 for subsequent recycling or reuse.
  • Once the slots 302 are formed in the core sheet 80, the now-slotted core sheet 80 is then subjected to width-wise forces 310 to expand the core sheet 80 and the slots 302 formed therein to create the generally diamond-shaped slots 140 of the core member 134. The expanding force 310 is applied at right angles to the core process flow thereby creating the apertures 140 that are generally diamond-shaped. In particular, as shown schematically in FIG. 8, the width-wise forces 310 operated to exert an outward force on the slotted core sheet 80 in outward directions perpendicular to the longitudinal axis of the foamed core sheet 80. Such outward force 310 operates to increase the width of the slotted foamed core sheet 80 while also pulling apart the opposite edges 141, 143 defining each slot 302 in order to form the generally diamond-shaped slots 140. This geometry and increased core width is illustratively retained as the core member 134 is cooled. Illustratively, one or both core sheet edges 81, 83 may be left clear of proximate perforations thereby leaving a continuous material strip for subsequent joining by the use of mechanical or other fastening systems. Once the core member 134 is formed through the use of the die cutter 294, the composite panel 322 is formed in the same or similar manner as that described above with reference to FIGS. 6 and 7.
  • Alternatively, it should be understood that rather than passing the foamed core sheet 80 through the rotary die cutter 294, as described above and shown in FIG. 8, the protrusions 300 may be mounted to a bank of punches (not shown) which are actuated in a vertical motion in synchronism with the moving core sheet 80 in order to create the slots 302 in the sheet 80.
  • Looking now to FIG. 9, a method 450 for making another composite panel 422 including an alternative core member 234 is schematically illustrated. Illustratively, much of the process 450 includes the same or similar steps as that described above with reference to FIGS. 6-8; as such, like reference numerals are used to denote like components. In particular, the foamed core sheet 80 is produced in the same manner as that described above in regards to FIGS. 6-8. Once the foamed core sheet 80 is formed, the first set of rollers 92 advances the foamed core sheet 80 to a rotary die cutter 394 including an upper die roller 396 and a lower roller 398. As shown in FIG. 9, the upper die roller 396 includes roller mounted protrusions 400 in the shape of knife-like blades. Illustratively, as opposed to the protrusions 300 of the upper die roller 296 shown in FIG. 8, a longitudinal axis of the protrusions 400 is parallel to the longitudinal axis of the upper die roller 396 itself. Illustratively, the blades 400 are similarly thin and slender and operate to pierce the extruded foamed core sheet 80 in a predetermined pattern as the foamed core sheet 80 is advanced between the upper die roller 396 and the lower roller 398. The blades 400 react against the bottom roller 398 to create slots 402 within the foamed core 80.
  • Illustratively, the roller mounted blades 400 pierce the core sheet 80 in a regular pattern to produce slots 402 at right angles to the core edges 81, 83. In particular, the illustrative slots 402 formed in the foamed core sheet 80 define a longitudinal axis that is perpendicular to the longitudinal axis of the foamed core sheet 80. In other words, the length of the slots 402 extends perpendicularly to the length of the foamed core sheet 80 such that the slots 402 are also perpendicular to the upper and lower edges 81, 83 of the foamed core sheet 80. Similar to the die cutting process 350 of FIG. 8, little or no slugs of material are created or displaced from the core sheet 80 when the slots 402 are formed.
  • Once the slots 402 are formed in the foamed core sheet 80, the now-slotted core sheet 80 is then passed through upper and lower pull- rollers 406, 408. The pull- rollers 406, 408 operate to subject the slotted core sheet 80 to length-wise, or tensile, forces 410 in the direction of travel to expand the core sheet 80 and the slots 402 formed therein. Subjecting the slots 402 to these tensile forces expands the slots 402 to create generally diamond-shaped slots or apertures 240 of the core member 234. As shown schematically in FIG. 9, the length-wise forces 410 operate to exert a force on the slotted core sheet 80 along the length of the sheet 80 to increase the length of the slotted foamed sheet 80 while also pulling apart the opposite edges 141, 143 defining each slot 402 in order to form the generally diamond-shaped slots 240. Illustratively, as opposed to the diamond-shaped slots 140 of the core member 134 shown in FIGS. 5 and 8, a length of the diamond-shaped slots 240 of the core member 234 is perpendicular to the length of the core member 134. Once the core member 234 is formed through the use of the die cutter 394, the composite panel 422 is formed in the same or similar manner as that described above with reference to FIGS. 6-8.
  • Again, alternatively, it should be understood that rather than passing the foamed core sheet 80 through the rotary die cutter 394, as described above and shown in FIG. 9, the protrusions 400 may be mounted to a bank of punches (not shown) which are actuated in a vertical motion in synchronism with the moving core sheet 80 in order to create the slots 402 in the sheet 80.
  • While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. In particular, a foamed core member, such as the foamed core members 34, 134, 534, includes apertures 40, 140 formed through a thickness (i.e., from the outer surface 42 to the inner surface 44) of the core member. The apertures of such a foamed core member of the present disclosure may be any suitable shape and size. The apertures may be spaced any suitable distance apart from each other and may be arranged in any suitable pattern and/or may be arranged randomly. Illustratively, the apertures are not interconnected and no single aperture extends between a top edge and a bottom edge of any core member to create a continuous void from the top edge to the bottom edge. Further, no single aperture extends between the side edges of any core member to create a continuous void from the side edges of the core member. The apertures of a core member of the present disclosure may be open to the top, bottom, and side edges 50, 52, 54. Alternatively, the apertures of a core member of the present disclosure may be spaced-apart from the top, bottom, and side edges 50, 52, 54 such that the top, bottom, and side edges of the core member are generally continuous and do not include any formed, or manufactured, voids formed therein. The apertures may be spaced-apart any suitable distance from the edges 50, 52, 54 of the core member. In particular, a distance that is perpendicular from any edge 50, 52, 54 and the center of any adjacent aperture may illustratively be in the range of approximately 0.50 inch-6.00 inches. However, it should be understood that such a distance between the apertures and the edges may be greater than or less than the above-referenced range.

Claims (20)

What is claimed is:
1. A composite panel configured for use with a sidewall of a trailer comprising:
an outer metal sheet;
an inner metal sheet; and
a core member positioned between the inner and outer metal sheets, wherein the core member includes a plurality of apertures formed therethrough such that each aperture extends from an inner surface of the core member to an outer surface of the core member, wherein the plurality of apertures is covered by the inner and outer metal sheets, and wherein a length and width of each aperture is less than a respective length and width of the core member.
2. The composite panel of claim 1, wherein the plurality of apertures are circular in shape.
3. The composite panel of claim 2, wherein a diameter of each aperture is in the range of approximately ¼ inch to ½ inch.
4. The composite panel of claim 1, further comprising an adhesive between the inner metal sheet and the core member and between the outer metal sheet and the core member.
5. The composite panel of claim 1, wherein the plurality of apertures includes a plurality of adjacent vertical rows of apertures that are aligned with each other and a plurality of adjacent horizontal rows of apertures that are aligned with each other.
6. The composite panel of claim 1, wherein the plurality of apertures includes a plurality of adjacent vertical rows of apertures that are offset from each other and a plurality of adjacent horizontal rows of apertures that are offset from each other.
7. The composite panel of claim 1, wherein a top-most horizontal row of apertures is spaced-apart from a top edge of the core member.
8. The composite panel of claim 7, wherein a vertical distance between the top edge of the core member and a center of the top-most horizontal row of apertures is between approximately 0.50-6.00 inches.
9. The composite panel of claim 8, wherein the vertical distance is approximately 2.0 inches.
10. The composite panel of claim 1, wherein a left-most vertical row of apertures is spaced-apart from a left side edge of the core member.
11. The composite panel of claim 10, wherein a horizontal distance between the left side edge of the core member and a center of the left-most vertical row of apertures is between approximately 0.50-6.00 inches.
12. The composite panel of claim 11, wherein the horizontal distance is approximately 6.0 inches.
13. The composite panel of claim 1, wherein a top-most horizontal row of apertures is spaced-apart a first distance from a top edge of the core member, wherein a left-most vertical row of apertures is spaced-apart a second distance from a left side edge of the core member, and wherein the first distance is smaller than the second distance.
14. The composite panel of claim 1, wherein the apertures are generally uniformly spaced-apart from one another.
15. The composite panel of claim 1, wherein the apertures are generally similarly-sized.
16. The composite panel of claim 1, wherein the core member is a foamed core member including a plurality of air bubbles therein.
17. The composite panel of claim 1, wherein none of the plurality of apertures is open to any one of a top, bottom, or side edge of the core member.
18. The composite panel of claim 1, wherein the plurality of apertures includes a plurality of vertically-spaced apart apertures and a plurality of horizontally spaced-apart apertures.
19. A sidewall of a trailer comprising
a first composite panel including (i) a first outer metal sheet, (ii) a first inner metal sheet, and (iii) a first core member positioned between the first inner and first outer metal sheets, wherein the first core member includes a first plurality of apertures which are both vertically and horizontally spaced-apart from each other, wherein each of the first plurality of apertures extends from an inner surface of the first core member to an outer surface of the first core member, wherein the first plurality of apertures is covered by the first inner and first outer metal sheets, wherein the first core member includes a first aperture-free side portion;
a second composite panel including (i) a second outer metal sheet, (ii) a second inner metal sheet, and (iii) a second core member positioned between the second inner and second outer metal sheets, wherein the second core member includes a second plurality of apertures which are both vertically and horizontally spaced-apart from each other, wherein each of the second plurality of apertures extends from an inner surface of the second core member to an outer surface of the second core member, wherein the second plurality of apertures is covered by the second inner and second outer metal sheets, wherein the second core member includes a second aperture-free side portion; and
a wall joint coupling the first and second composite panels to each other, the wall joint including a plurality of fasteners received through the first and second aperture-free portions of the first and second composite panels.
20. A method of forming a composite panel configured for use in a sidewall of a trailer, the method comprising:
forming an uncooled thermal plastic sheet of material;
advancing the uncooled thermal plastic sheet of material through a transversing punch in order to form apertures through the uncooled thermal plastic sheet of material such that each aperture extends from an outer surface of the thermal plastic sheet of material to an inner surface of the thermal plastic sheet of material;
cooling the transversing punch; and
coupling an outer metal sheet and an inner metal sheet to the respective outer surface and the inner surface of the uncooled thermal plastic sheet of material.
US13/204,762 2010-08-10 2011-08-08 Composite Panel Having Perforated Foam Core Abandoned US20120040131A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/204,762 US20120040131A1 (en) 2010-08-10 2011-08-08 Composite Panel Having Perforated Foam Core
US14/454,097 US9908315B2 (en) 2010-08-10 2014-08-07 Composite panel having perforated foam core and method of making the same
US15/912,970 US11420433B2 (en) 2010-08-10 2018-03-06 Composite panel having perforated foam core and method of making the same
US17/400,755 US20210370660A1 (en) 2010-08-10 2021-08-12 Composite panel having perforated foam core and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37225910P 2010-08-10 2010-08-10
US13/204,762 US20120040131A1 (en) 2010-08-10 2011-08-08 Composite Panel Having Perforated Foam Core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/454,097 Division US9908315B2 (en) 2010-08-10 2014-08-07 Composite panel having perforated foam core and method of making the same

Publications (1)

Publication Number Publication Date
US20120040131A1 true US20120040131A1 (en) 2012-02-16

Family

ID=45565027

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/204,762 Abandoned US20120040131A1 (en) 2010-08-10 2011-08-08 Composite Panel Having Perforated Foam Core
US14/454,097 Active US9908315B2 (en) 2010-08-10 2014-08-07 Composite panel having perforated foam core and method of making the same
US15/912,970 Active 2033-07-31 US11420433B2 (en) 2010-08-10 2018-03-06 Composite panel having perforated foam core and method of making the same
US17/400,755 Pending US20210370660A1 (en) 2010-08-10 2021-08-12 Composite panel having perforated foam core and method of making the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/454,097 Active US9908315B2 (en) 2010-08-10 2014-08-07 Composite panel having perforated foam core and method of making the same
US15/912,970 Active 2033-07-31 US11420433B2 (en) 2010-08-10 2018-03-06 Composite panel having perforated foam core and method of making the same
US17/400,755 Pending US20210370660A1 (en) 2010-08-10 2021-08-12 Composite panel having perforated foam core and method of making the same

Country Status (3)

Country Link
US (4) US20120040131A1 (en)
CA (1) CA2748616C (en)
MX (1) MX352991B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100860A1 (en) * 2009-10-26 2011-05-05 Brown James B Modular Storage Container
US20140330227A1 (en) 2010-03-16 2014-11-06 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US20150119833A1 (en) * 2013-10-30 2015-04-30 Kci Licensing, Inc. Dressing with differentially sized perforations
US20150119831A1 (en) 2013-10-30 2015-04-30 Kci Licensing, Inc. Condensate absorbing and dissipating system
US20150119832A1 (en) * 2013-10-30 2015-04-30 Kci Licensing, Inc. Dressing with sealing and retention interface
US10010656B2 (en) 2008-03-05 2018-07-03 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US10398604B2 (en) 2014-12-17 2019-09-03 Kci Licensing, Inc. Dressing with offloading capability
US10406266B2 (en) 2014-05-02 2019-09-10 Kci Licensing, Inc. Fluid storage devices, systems, and methods
US10556397B2 (en) * 2016-12-27 2020-02-11 Nippon Steel Corporation Exterior panel and manufacturing method of exterior panel
US10561534B2 (en) 2014-06-05 2020-02-18 Kci Licensing, Inc. Dressing with fluid acquisition and distribution characteristics
US10632020B2 (en) 2014-02-28 2020-04-28 Kci Licensing, Inc. Hybrid drape having a gel-coated perforated mesh
US10842707B2 (en) 2012-11-16 2020-11-24 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US10849792B2 (en) 2013-10-30 2020-12-01 Kci Licensing, Inc. Absorbent conduit and system
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
US10945889B2 (en) 2011-12-16 2021-03-16 Kci Licensing, Inc. Releasable medical drapes
US10973694B2 (en) 2015-09-17 2021-04-13 Kci Licensing, Inc. Hybrid silicone and acrylic adhesive cover for use with wound treatment
US11026844B2 (en) 2014-03-03 2021-06-08 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US11096830B2 (en) 2015-09-01 2021-08-24 Kci Licensing, Inc. Dressing with increased apposition force
US11246975B2 (en) 2015-05-08 2022-02-15 Kci Licensing, Inc. Low acuity dressing with integral pump
US11760426B2 (en) 2020-10-22 2023-09-19 Transtex Inc. Ribbed aerodynamic skirt panel and assembly thereof
US11872792B2 (en) * 2017-01-30 2024-01-16 Wabash National, L.P. Composite core with reinforced areas and method
WO2024051475A1 (en) * 2022-09-06 2024-03-14 上海先导慧能技术有限公司 Composite current collector manufacturing method and manufacturing device
US11957546B2 (en) 2020-01-02 2024-04-16 3M Innovative Properties Company Dressing with fluid acquisition and distribution characteristics

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120040131A1 (en) 2010-08-10 2012-02-16 Speer Dwaine D Composite Panel Having Perforated Foam Core
CA2986177A1 (en) 2016-11-21 2018-05-21 Wabash National, L.P. Composite core with reinforced plastic strips and method thereof
WO2018152180A1 (en) * 2017-02-14 2018-08-23 Wabash National, L.P. Hybrid composite panel and method
US11008051B2 (en) 2018-02-06 2021-05-18 Wabash National, L.P. Interlocking composite core and method
CA3077220A1 (en) 2019-03-27 2020-09-27 Wabash National, L.P. Composite panel with connecting strip and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340129A (en) * 1980-05-01 1982-07-20 Cabot Corporation Acoustical laminate construction and attenuated systems comprising same
US4940279A (en) * 1989-03-16 1990-07-10 Fruehauf Corporation Cargo vehicle wall construction
US5507405A (en) * 1993-12-16 1996-04-16 Great Dane Trailers, Inc. Thermally insulated cargo container
US5580636A (en) * 1993-09-17 1996-12-03 Alusutsse-Lonza Services Ltd. Welded composite panels
US20010011832A1 (en) * 1997-08-28 2001-08-09 Wabash Technology Corporation Foamed core composite plate for use in trailer walls and doors
US6546694B2 (en) * 2001-04-24 2003-04-15 Dofasco Inc. Light-weight structural panel
US20050257893A1 (en) * 2004-05-07 2005-11-24 Bayer Materialscience Ag Apparatus and process for the production of sandwich composite elements
WO2006128632A1 (en) * 2005-05-28 2006-12-07 Airbus Deutschland Gmbh Sandwich structure having a frequency-selective double-wall behavior
US20070196681A1 (en) * 2004-11-15 2007-08-23 Taryn Biggs Laminate panel and process for production thereof
US20070256379A1 (en) * 2006-05-08 2007-11-08 Edwards Christopher M Composite panels
US20080111393A1 (en) * 2006-09-27 2008-05-15 Ehrlich Rodney P Composite panel for a trailer wall
US20080116718A1 (en) * 2006-11-21 2008-05-22 Lewallen Wilfred E Logistics panel for use in a sidewall of a trailer
WO2010050242A1 (en) * 2008-10-31 2010-05-06 キョーラク株式会社 Sandwich panel, method of forming core material for sandwich panel, and method of forming sandwich panel

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294930A (en) 1941-04-07 1942-09-08 Minnesota Mining & Mfg Reflex light reflector
US2719809A (en) 1954-10-14 1955-10-04 Weisberg Baer Co Method of making hollow panel structural units
US3072225A (en) 1955-10-17 1963-01-08 Solar Aircraft Co Honeycomb sandwich structure
US2934372A (en) 1958-01-16 1960-04-26 Great Dane Trailers Inc Vehicle body and structural elements therefor
US3249659A (en) 1961-07-19 1966-05-03 Allied Chem Method of making laminated panel structures
JPS494829B1 (en) * 1964-09-05 1974-02-04
US3318267A (en) * 1964-11-09 1967-05-09 Kitchens Of Sara Lee Inc Rotary cutter
US3420023A (en) 1966-06-02 1969-01-07 Roher Bohm Ltd Baffle unit
US3496259A (en) * 1968-05-03 1970-02-17 Chevron Res Process for preparing fibrous web
US3617351A (en) 1969-10-17 1971-11-02 Hercules Inc Process of coating with an olefin polymer
US3817671A (en) * 1970-09-01 1974-06-18 J Lemelson Apparatus for forming sheet material
US4128369A (en) * 1975-12-10 1978-12-05 Hazelett Strip-Casting Corporation Continuous apparatus for forming products from thermoplastic polymeric material having three-dimensional patterns and surface textures
US4466845A (en) * 1980-09-24 1984-08-21 Cosden Technology, Inc. Methods of making bi-axially oriented, thin-walled, synthetic plastic containers/articles
US4557100A (en) 1983-02-07 1985-12-10 The Boeing Company Unitary fastener insert for structural sandwich panels
AT387542B (en) * 1983-02-11 1989-02-10 Isovolta METHOD FOR PRODUCING PHENOL ALDEHYDE RESIN FOAMED BODIES
AT390094B (en) 1984-11-16 1990-03-12 Austria Metall SOUND-INSULATING COMPOUND PANEL AND METHOD FOR THEIR PRODUCTION
US4578297A (en) 1985-07-11 1986-03-25 Mobil Oil Corporation Polymer film/polymer foam laminate and heat-resistant container fabricated therefrom
US4701369A (en) 1986-04-23 1987-10-20 Mobil Oil Corporation Opaque polymer film laminate having an absorbent surface
US4888234A (en) * 1986-07-17 1989-12-19 Gates Formed-Fibre Products, Inc. Formable fiber composite
US4708757A (en) 1986-07-21 1987-11-24 Guthrie Walker L Method of forming corrugated panel
US4817264A (en) 1987-08-10 1989-04-04 Shur-Lok Corporation Fastener and assembly process
US4796397A (en) 1987-09-21 1989-01-10 Capaul Raymond W Demountable panel structure
US4930266A (en) 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
DE3838686C2 (en) 1988-11-15 1993-10-21 Man Ghh Schienenverkehr Vehicle compartment
US4879152A (en) 1989-02-15 1989-11-07 Green Patrick H Composite panel structure
CA2017661A1 (en) 1989-05-30 1990-11-30 James E. O'connor Composite cellular sandwich structure
US5518802A (en) * 1989-05-31 1996-05-21 Colvin; David P. Cushioning structure
JPH0387461A (en) 1989-08-30 1991-04-12 Nippon Steel Chem Co Ltd Soundproof floor material
US5066531A (en) * 1989-09-05 1991-11-19 Ametek Variable thickness foam plank
CH678306A5 (en) 1989-12-29 1991-08-30 Matec Holding
US5214991A (en) 1990-08-30 1993-06-01 Hitachi, Ltd. Punching apparatus
CA2052549C (en) 1990-10-02 2002-06-11 Kazunori Mito Process for preparing a laminate of a metal and a polyolefin type resin
US5328744A (en) 1990-10-09 1994-07-12 E. I. Du Pont De Nemours And Company Panel having a core with thermoplastic resin facings
US5366578A (en) * 1991-03-26 1994-11-22 Robert Systems, Inc. Fitment forming process
HU217800B (en) * 1991-04-30 2000-04-28 The Dow Chemical Co. Process for increasing ellimination of foaming material from polyethylene foam
US5585058A (en) * 1991-04-30 1996-12-17 The Dow Chemical Company Method for providing accelerated release of a blowing agent from a plastic foam
EP0595887B1 (en) 1991-07-01 1998-12-02 Raven Marketing, Inc. Cushioning structure
AU650769B2 (en) * 1991-08-05 1994-06-30 3A Technology & Management Ltd. Process for the production of a composite sheet comprising a cellular core and at least one outer layer
US5580409A (en) * 1992-08-11 1996-12-03 E. Khashoggi Industries Methods for manufacturing articles of manufacture from hydraulically settable sheets
US6007890A (en) 1993-11-19 1999-12-28 The Dow Chemical Company Acoustic insulating panels or elements
KR0162706B1 (en) * 1994-06-20 1998-12-01 사이카와 겐조오 Composite material with controlled elasticity
USRE38505E1 (en) 1994-09-16 2004-04-20 Mcneil-Ppc, Inc. Nonwoven fabrics having raised portions
JP3152848B2 (en) * 1994-10-17 2001-04-03 富士写真フイルム株式会社 Manufacturing method of disc for regulating the winding diameter of photographic film
US5591518A (en) 1994-12-16 1997-01-07 Toray Industries, Inc. Polyester film for use of a laminate with a metal plate
JP3569987B2 (en) 1994-12-22 2004-09-29 東洋紡績株式会社 Biaxially oriented polyamide resin film
US5604021A (en) 1994-12-23 1997-02-18 Ohio Mattress Company Licensing And Components Group Multi-layer support pad having regions of differing firmness
HU217883B (en) 1994-12-23 2000-04-28 Depron B.V. Method and apparatus for perforation of open cellular plastic foam foil having plain surface with closed cells
US5554246A (en) * 1995-01-12 1996-09-10 Anthony Industries, Inc. Air infiltration barrier laminate and process for preparing same
CN1072170C (en) 1995-07-14 2001-10-03 东丽株式会社 Cargo container
CH690268A5 (en) * 1995-09-06 2000-06-30 Tetra Pak Suisse Sa Process for the production of packaging or packaging parts as well as blank produced in the process as an intermediate product.
DE19543324A1 (en) * 1995-11-21 1997-05-22 Bayer Ag Device and method for producing plastic / metal composite panels
US6383559B1 (en) 1995-12-07 2002-05-07 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
US5774972A (en) 1996-03-22 1998-07-07 Wabash National Corporation Method of punching a composite plate
US5779847A (en) 1996-04-22 1998-07-14 Hoechst Celanese Corporation Process for high performance, permeable fibrous structure
EP0819518B1 (en) 1996-07-18 2005-08-24 Alcan Technology & Management AG Composite board
US5860693A (en) 1996-09-12 1999-01-19 Wabash National Corporation Composite joint configuration
US6220651B1 (en) 1996-09-12 2001-04-24 Wabash Technology Corporation Composite joint configuration
US5851342A (en) 1996-11-14 1998-12-22 Material Sciences Corporation Method and apparatus for forming a laminate
USRE38508E1 (en) 1997-06-28 2004-04-27 Laminators Incorporated Structural panels with metal faces and corrugated plastic core
US6080495A (en) 1997-10-27 2000-06-27 Wright; John Structural panels with metal faces and corrugated plastic core
US5899037A (en) 1997-07-29 1999-05-04 Josey; Gary L. Composite wall structure
US6071444A (en) * 1997-11-24 2000-06-06 Alliant Techsystems Inc. Process for manufacture of perforated slab propellant
US6276748B1 (en) 1998-03-17 2001-08-21 Western Sear Trucks Inc. Lightweight cab/sleeper for trucks
TW568829B (en) 1998-03-26 2004-01-01 Mitsui Chemicals Inc Laminated film
FR2779379B1 (en) 1998-06-05 2000-08-25 Peguform France PROCESS FOR PRODUCING A REINFORCED COMPOSITE STRUCTURE PANEL OF THE SANDWICH TYPE WITH AN ALVEOLAR CORE AND PANEL PRODUCED ACCORDING TO SUCH A PROCESS
US5997076A (en) 1998-07-27 1999-12-07 Wabash National Corporation Logistics at composite panel vertical joints
EP1123184B1 (en) 1998-10-23 2002-12-18 Vantico AG Method for filling and reinforcing honeycomb sandwich panels
EP1196281B1 (en) * 1999-06-29 2007-03-21 Dofasco Inc. Cargo vehicle wall
US6199939B1 (en) 1999-09-17 2001-03-13 Wabash Technology Corporation Composite joint configuration
US6266865B1 (en) 1999-09-17 2001-07-31 Wabash Technology Corporation Method of punching a composite plate
JP4766810B2 (en) 1999-10-08 2011-09-07 ミルウォーキー・コンポジッツ・インコーポレーテッド Panel using pre-cured reinforced core and manufacturing method thereof
US6355302B1 (en) 1999-12-10 2002-03-12 3M Innovative Properties Company Continuous process for making high performance retroreflective fabric
US20020014302A1 (en) 2000-07-13 2002-02-07 Kazak Composites, Incorporated Method for incorporating rigid elements into the core of composite structural members in a pultrusion process
US6331028B1 (en) 2000-10-17 2001-12-18 Advance Usa, Inc. Fiber-reinforced composite structure
AU2001216907A1 (en) 2000-11-30 2002-06-11 Kwokleung Kwan A honeycomb paenl assembly
US20020098341A1 (en) 2000-12-07 2002-07-25 Schiffer Daniel K. Biodegradable breathable film and laminate
US6852386B2 (en) 2001-03-08 2005-02-08 Norbord Inc. Composite board with OSB faces
US6524679B2 (en) * 2001-06-06 2003-02-25 Bpb, Plc Glass reinforced gypsum board
US6638636B2 (en) * 2001-08-28 2003-10-28 Kimberly-Clark Worldwide, Inc. Breathable multilayer films with breakable skin layers
US20030186029A1 (en) 2001-09-27 2003-10-02 Kinyosha Co., Ltd. Compressible printing blanket and method of manufacturing a compressible printing blanket
US6843525B2 (en) 2001-10-30 2005-01-18 Patent Holding Company Reinforced composite vehicle load floor of the cellular core sandwich-type
US7255822B2 (en) 2002-01-31 2007-08-14 Owens-Corning Fiberglas Technology Inc. Process for manufacturing a composite sheet
DE10212370B4 (en) 2002-03-20 2006-12-14 Webasto Ag Roof module for a vehicle and manufacturing method therefor
JP2003285397A (en) 2002-03-27 2003-10-07 Nihon Tetra Pak Kk Food packaging material
FR2839075B1 (en) 2002-04-25 2006-05-19 Airbus France PERFORATED ADHESIVE FILM AND METHOD FOR MANUFACTURING THE SAME
DE10237090B4 (en) 2002-08-13 2006-08-03 Webasto Ag Vehicle body part
US7197852B2 (en) 2002-09-20 2007-04-03 The Boeing Company Internally stiffened composite panels and methods for their manufacture
TW583126B (en) * 2002-09-26 2004-04-11 Hagihara Ind Emboss carrier tape making machine
ES2300662T3 (en) * 2002-12-20 2008-06-16 Tredegar Film Products Corporation METHOD AND APPARATUS FOR THE MANUFACTURE OF A PERFORATED MATERIAL FOR USE IN ABSORBENT ITEMS.
US7758487B2 (en) 2003-02-24 2010-07-20 Rutgers, The State University Of New Jersey Technology for continuous folding of sheet materials into a honeycomb-like configuration
KR100465848B1 (en) 2003-05-07 2005-01-13 김병식 Continuous manufacturing system for aluminum honeycomb panel
US20050087899A1 (en) * 2003-10-22 2005-04-28 L&L Products, Inc. Baffle and method of forming same
WO2005049247A1 (en) 2003-11-20 2005-06-02 Otkrytoe Aktsionernoe Obschestvo 'kazansky Nauchno-Isledovatelsky Institut Aviatsionnoi Tekhnologii' Method for production of sandwich panels with zigzag corrugated core
JP2005169705A (en) * 2003-12-09 2005-06-30 Nippon Petrochemicals Co Ltd Laminated sheet and its manufacturing method
US7553435B2 (en) 2004-01-23 2009-06-30 Vec Industries, L.L.C. Method and apparatus for molding composite articles
DE102004007238B8 (en) 2004-02-13 2006-03-09 Heinrich Kuper Gmbh & Co Kg Apparatus and method for producing sandwich panels
JP4506200B2 (en) 2004-02-26 2010-07-21 東レ株式会社 White laminated polyester film for thermal transfer recording
US7014253B2 (en) 2004-04-12 2006-03-21 David D. Oren Sidewall construction and methods of making the same
US20070004813A1 (en) 2004-09-16 2007-01-04 Eastman Chemical Company Compositions for the preparation of void-containing articles
US7161056B2 (en) * 2005-01-28 2007-01-09 Ossur Hf Wound dressing and method for manufacturing the same
EP1880834A4 (en) * 2005-04-27 2010-08-04 Toyo Boseki Apparatus for producing polymer film and process for producing polymer film
US20060272279A1 (en) 2005-05-13 2006-12-07 Administrator Of The National Aeronautics And Space Administration Composite panel having subsonic transverse wave speed characteristics
US8273208B2 (en) 2005-09-14 2012-09-25 Intrinsix, Llc Structural composite laminate, and process of making same
GB0526312D0 (en) 2005-12-23 2006-02-01 Britax Premium Aircraft Interi Composite panel
DE202006003857U1 (en) 2006-03-11 2006-07-13 W. Döllken & Co. GmbH Support strip for a composite panel
US20080131654A1 (en) 2006-12-05 2008-06-05 Bradford Company Folded Product Made From Extruded Profile and Method of Making Same
US8668855B2 (en) 2006-12-05 2014-03-11 Bradford Company Method of making core for sandwich-like product starting with extruded profile
WO2008089334A2 (en) 2007-01-19 2008-07-24 Vec Industries, L.L.C. Method and apparatus for molding composite articles
US7842147B2 (en) 2007-01-31 2010-11-30 M.C. Gill Corporation Composite panel having in-situ thermoset foamed core
EP1995052A1 (en) 2007-05-22 2008-11-26 EconCore N.V. Elastic honeycomb sheet, its production process and equipment to produce
US7722122B2 (en) 2007-07-28 2010-05-25 John Mittelstadt Portable support including a pillow
ATE510081T1 (en) 2007-09-19 2011-06-15 Valter Naldi PLATE AND ASSOCIATED MANUFACTURING SYSTEM AND METHOD
US20110089183A1 (en) 2007-10-02 2011-04-21 Herbert Gundelsheimer Composite panel and its production
WO2009136489A1 (en) 2008-04-30 2009-11-12 キョーラク株式会社 Core material for sandwich panel, method of molding core material for sandwich panel, sandwich panel, and method of molding sandwich panel
ITBO20080371A1 (en) 2008-06-11 2009-12-12 Biesse Spa WOOD OR SIMILAR PANEL AND METHOD AND MACHINE FOR ITS REALIZATION.
US7968479B2 (en) * 2008-06-30 2011-06-28 Kimberly-Clark Worldwide, Inc. Elastic multilayer composite including pattern unbonded elastic materials, articles containing same, and methods of making same
NL2002289C2 (en) 2008-12-04 2010-06-07 Gtm Holding B V Sandwich panel, support member for use in a sandwich panel and aircraft provided with such a sandwich panel.
EP2367989B1 (en) 2008-12-19 2018-04-25 Inter IKEA Systems B.V. Method for manufacturing of building units for furniture
US8622729B2 (en) * 2008-12-23 2014-01-07 General Mills, Inc. Dough cutting and stamping apparatus and method
CN102497979B (en) * 2009-03-24 2015-10-07 詹姆士.W.克里 The veined net width of embossing and manufacture method thereof
US9783233B2 (en) 2009-10-28 2017-10-10 Boulder Electric Vehicle Composite land vehicle frame
DE102010005456A1 (en) 2010-01-22 2011-07-28 Daimler AG, 70327 Sandwich component and method for its production
NZ606959A (en) 2010-07-13 2014-05-30 Bellmax Acoustic Pty Ltd An acoustic panel
US20120040131A1 (en) 2010-08-10 2012-02-16 Speer Dwaine D Composite Panel Having Perforated Foam Core
KR101033533B1 (en) 2010-08-10 2011-05-11 한국항공우주연구원 Composite honeycomb sandwich panel equipped with composite-rail and aluminum i-shape side insert
US8336933B2 (en) 2010-11-04 2012-12-25 Sabic Innovative Plastics Ip B.V. Energy absorbing device and methods of making and using the same
WO2012062706A1 (en) 2010-11-09 2012-05-18 Magna Steyr Fahrzeugtechnik Ag & Co Kg Honeycomb core, method of producing a honeycomb core and sandwich panel comprising a honeycomb core
JP5655625B2 (en) 2011-02-24 2015-01-21 横浜ゴム株式会社 Mounting structure of the insert nut to the panel
US9242406B2 (en) * 2011-04-26 2016-01-26 The Procter & Gamble Company Apparatus and process for aperturing and stretching a web
FR2974754B1 (en) 2011-05-02 2013-06-28 Daher Aerospace SELF-REINFORCED COMPOSITE PANEL, IN PARTICULAR FOR AIRCRAFT FLOORS, AND METHOD OF MANUFACTURING SUCH A PANEL
US9399435B2 (en) 2012-04-23 2016-07-26 Global Ip Holdings, Llc Cargo management system including an automotive vehicle seat having a cargo trim panel made by a composite, compression molding process and having a wood grain finish
USRE45991E1 (en) 2012-04-23 2016-05-03 Global Ip Holdings, Llc Carpeted, automotive vehicle, load floor including a pivotable cover having a decorative, backside, noise-management, covering
US8852711B2 (en) 2012-04-23 2014-10-07 Global Ip Holdings, Llc Carpeted, vehicle load floor including a pivotable cover segmented into articulated, sectional members
US8764089B2 (en) 2012-04-23 2014-07-01 Global Ip Holdings, Llc Compression-molded composite panel including a living hinge having a score line which functions as a style line
US9126537B2 (en) 2012-04-23 2015-09-08 Global Ip Holdings, Llc Cargo management system including an automotive vehicle seat having a cargo trim panel made by a composite, compression molding process and having a wood grain finish
US9511690B2 (en) 2012-04-23 2016-12-06 Global Ip Holdings, Llc Cargo management system including a vehicle load floor having a cellulose-based core and made by a composite, compression molding process and having a wood grain finish
US8690233B2 (en) 2012-04-23 2014-04-08 Global Ip Holdings, Llc Carpeted automotive vehicle load floor having a living hinge
US8883285B2 (en) 2012-04-23 2014-11-11 Global Ip Holdings, Llc Sandwich-type, composite component such as motor vehicle component and unitary structural assembly utilizing same
US9308945B2 (en) 2012-04-23 2016-04-12 Global Ip Holdings, Llc Cargo management system including a vehicle load floor made by a composite, compression molding process and having a wood grain finish
US8808829B2 (en) 2012-04-23 2014-08-19 Global Ip Holdings, Llc Assembly including a compression-molded, composite panel locally reinforced adjacent a living hinge of the assembly
US8808830B2 (en) 2012-04-23 2014-08-19 Global Ip Holdings, Llc Sandwich-type, structural, composite component having a cut-out feature with a substantially hidden core, assembly utilizing same and panel for use in a vehicle load floor assembly
US9527268B2 (en) 2012-04-23 2016-12-27 Global Ip Holdings, Llc Method of making a sandwich-type composite panel having a cellulose-based core and a living hinge and panel obtained by performing the method
US8808831B2 (en) 2012-04-23 2014-08-19 Global Ip Holdings, Llc Sandwich-type, structural, composite component including at least one hingedly-connected portion, cargo management system and automotive vehicle load floor utilizing the component
US8808828B2 (en) 2012-04-23 2014-08-19 Global Ip Holdings, Llc Cargo management system including a vehicle load floor to compartmentalize a cargo area
US8795465B2 (en) 2012-04-23 2014-08-05 Global Ip Holdings, Llc Method of making a sandwich-type composite panel having a living hinge and panel obtained by performing the method
US9010834B2 (en) 2012-04-23 2015-04-21 Global Ip Holdings, Llc Cargo management system for a vehicle and including a pair of opposing cargo trim panels, each of which is made by a composite, compression molding process and has a wood grain finish
US8795807B2 (en) 2012-11-29 2014-08-05 Global Ip Holdings, Llc Assembly including a compression-molded composite component having a sandwich structure and a unitarily connected second component
US9346375B2 (en) 2012-04-23 2016-05-24 Global Ip Holdings, Llc Cargo management system for a vehicle and including a pair of opposing cargo trim panels, each of which is made by a composite, compression molding process and has a wood grain finish
US8859074B2 (en) 2012-04-23 2014-10-14 Global Ip Holdings, Llc Sandwich-type, generally planar, structural member having an attachment feature and assembly utilizing same
US9539958B2 (en) 2012-04-23 2017-01-10 Global Ip Holdings, Llc Assembly including a compression-molded, composite panel having a cellulose-based core and a hinged mounting flange
US8995138B2 (en) 2012-04-23 2015-03-31 Global Ip Holdings, Llc Assembly including a compression-molded, composite panel with a hinged mounting flange
ITUD20120165A1 (en) 2012-09-28 2014-03-29 Friul Intagli Ind S P A METHOD AND APPARATUS FOR THE PRODUCTION OF DRUM PANELS
US8808827B2 (en) 2012-11-27 2014-08-19 Global Ip Holdings, Llc Cargo management system including a vehicle load floor having a vehicle component restraining feature
US8808835B2 (en) 2012-11-28 2014-08-19 Global Ip Holdings, Llc System including a panel assembly having a container and a compression-molded, composite cover for covering the container
US8808834B2 (en) 2012-11-28 2014-08-19 Global Ip Holdings, Llc Sandwich-type, structural, composite panel having a pattern of depressions formed at a lower outer surface thereof and stiffening supports received and retained therein
US8808833B2 (en) 2012-11-30 2014-08-19 Global Ip Holdings, Llc Compression-molded composite component having a sandwich structure and having integrally formed strengthening structures
US8834985B2 (en) 2012-11-30 2014-09-16 Global Ip Holdings, Llc Sandwich-type composite component having imprinted 3-D structures which provide at least one pattern at an outer surface of the component
TWI504510B (en) 2012-12-20 2015-10-21 Compal Electronics Inc Composite material and method of forming the same
US20150306840A1 (en) 2014-04-29 2015-10-29 Samuel Joseph Ferguson, JR. Sturdy Gypsum Composite Decorative Surface and Method for Making Sturdy Gypsum Composite Decorative Surface
US20160176149A1 (en) 2014-12-22 2016-06-23 Vixen Composites, LLC Vehicle floor system
US10239566B2 (en) 2016-02-24 2019-03-26 Wabash National, L.P. Composite floor for a dry truck body

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340129A (en) * 1980-05-01 1982-07-20 Cabot Corporation Acoustical laminate construction and attenuated systems comprising same
US4940279A (en) * 1989-03-16 1990-07-10 Fruehauf Corporation Cargo vehicle wall construction
US5580636A (en) * 1993-09-17 1996-12-03 Alusutsse-Lonza Services Ltd. Welded composite panels
US5507405A (en) * 1993-12-16 1996-04-16 Great Dane Trailers, Inc. Thermally insulated cargo container
US20010011832A1 (en) * 1997-08-28 2001-08-09 Wabash Technology Corporation Foamed core composite plate for use in trailer walls and doors
US6546694B2 (en) * 2001-04-24 2003-04-15 Dofasco Inc. Light-weight structural panel
US20050257893A1 (en) * 2004-05-07 2005-11-24 Bayer Materialscience Ag Apparatus and process for the production of sandwich composite elements
US20070196681A1 (en) * 2004-11-15 2007-08-23 Taryn Biggs Laminate panel and process for production thereof
WO2006128632A1 (en) * 2005-05-28 2006-12-07 Airbus Deutschland Gmbh Sandwich structure having a frequency-selective double-wall behavior
US20070256379A1 (en) * 2006-05-08 2007-11-08 Edwards Christopher M Composite panels
US20080111393A1 (en) * 2006-09-27 2008-05-15 Ehrlich Rodney P Composite panel for a trailer wall
US20080116718A1 (en) * 2006-11-21 2008-05-22 Lewallen Wilfred E Logistics panel for use in a sidewall of a trailer
WO2010050242A1 (en) * 2008-10-31 2010-05-06 キョーラク株式会社 Sandwich panel, method of forming core material for sandwich panel, and method of forming sandwich panel
US20110250384A1 (en) * 2008-10-31 2011-10-13 Takehiko Sumi Sandwich panel, method of forming core material for sandwich panel, and method of forming sandwich panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of WO 2006128632 A1, 12/2006 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010656B2 (en) 2008-03-05 2018-07-03 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US11020516B2 (en) 2008-03-05 2021-06-01 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US20110100860A1 (en) * 2009-10-26 2011-05-05 Brown James B Modular Storage Container
US20140330227A1 (en) 2010-03-16 2014-11-06 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US10279088B2 (en) 2010-03-16 2019-05-07 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US11400204B2 (en) 2010-03-16 2022-08-02 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US10945889B2 (en) 2011-12-16 2021-03-16 Kci Licensing, Inc. Releasable medical drapes
US11944520B2 (en) 2011-12-16 2024-04-02 3M Innovative Properties Company Sealing systems and methods employing a hybrid switchable drape
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
US11395785B2 (en) 2012-11-16 2022-07-26 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US11839529B2 (en) 2012-11-16 2023-12-12 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US10842707B2 (en) 2012-11-16 2020-11-24 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
US10940046B2 (en) 2013-10-30 2021-03-09 Kci Licensing, Inc. Dressing with sealing and retention interface
US11154650B2 (en) 2013-10-30 2021-10-26 Kci Licensing, Inc. Condensate absorbing and dissipating system
US20150119833A1 (en) * 2013-10-30 2015-04-30 Kci Licensing, Inc. Dressing with differentially sized perforations
US10849792B2 (en) 2013-10-30 2020-12-01 Kci Licensing, Inc. Absorbent conduit and system
US20150119831A1 (en) 2013-10-30 2015-04-30 Kci Licensing, Inc. Condensate absorbing and dissipating system
US11793923B2 (en) 2013-10-30 2023-10-24 Kci Licensing, Inc. Dressing with differentially sized perforations
US11744740B2 (en) 2013-10-30 2023-09-05 Kci Licensing, Inc. Dressing with sealing and retention interface
US10398814B2 (en) 2013-10-30 2019-09-03 Kci Licensing, Inc. Condensate absorbing and dissipating system
US10967109B2 (en) 2013-10-30 2021-04-06 Kci Licensing, Inc. Dressing with differentially sized perforations
US20150119832A1 (en) * 2013-10-30 2015-04-30 Kci Licensing, Inc. Dressing with sealing and retention interface
US10016544B2 (en) * 2013-10-30 2018-07-10 Kci Licensing, Inc. Dressing with differentially sized perforations
US9956120B2 (en) * 2013-10-30 2018-05-01 Kci Licensing, Inc. Dressing with sealing and retention interface
US10632020B2 (en) 2014-02-28 2020-04-28 Kci Licensing, Inc. Hybrid drape having a gel-coated perforated mesh
US11026844B2 (en) 2014-03-03 2021-06-08 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US10406266B2 (en) 2014-05-02 2019-09-10 Kci Licensing, Inc. Fluid storage devices, systems, and methods
US10561534B2 (en) 2014-06-05 2020-02-18 Kci Licensing, Inc. Dressing with fluid acquisition and distribution characteristics
US10398604B2 (en) 2014-12-17 2019-09-03 Kci Licensing, Inc. Dressing with offloading capability
US11246975B2 (en) 2015-05-08 2022-02-15 Kci Licensing, Inc. Low acuity dressing with integral pump
US11950984B2 (en) 2015-09-01 2024-04-09 Solventum Intellectual Properties Company Dressing with increased apposition force
US11096830B2 (en) 2015-09-01 2021-08-24 Kci Licensing, Inc. Dressing with increased apposition force
US10973694B2 (en) 2015-09-17 2021-04-13 Kci Licensing, Inc. Hybrid silicone and acrylic adhesive cover for use with wound treatment
US10556397B2 (en) * 2016-12-27 2020-02-11 Nippon Steel Corporation Exterior panel and manufacturing method of exterior panel
US11872792B2 (en) * 2017-01-30 2024-01-16 Wabash National, L.P. Composite core with reinforced areas and method
US11957546B2 (en) 2020-01-02 2024-04-16 3M Innovative Properties Company Dressing with fluid acquisition and distribution characteristics
US11760426B2 (en) 2020-10-22 2023-09-19 Transtex Inc. Ribbed aerodynamic skirt panel and assembly thereof
WO2024051475A1 (en) * 2022-09-06 2024-03-14 上海先导慧能技术有限公司 Composite current collector manufacturing method and manufacturing device

Also Published As

Publication number Publication date
CA2748616A1 (en) 2012-02-10
US11420433B2 (en) 2022-08-23
US20180194124A1 (en) 2018-07-12
US20140345795A1 (en) 2014-11-27
US9908315B2 (en) 2018-03-06
CA2748616C (en) 2019-01-08
MX352991B (en) 2017-12-15
MX2011008411A (en) 2012-02-20
US20210370660A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US20210370660A1 (en) Composite panel having perforated foam core and method of making the same
US9707733B2 (en) Process for making a laminated sheet
EP2705315B2 (en) Refrigerator, in particular domestic refrigerator
US20160375480A1 (en) Bulk textured material sheeting
EP2608903B1 (en) Multilayer lightweigth construction element with structured layers
CN104085451A (en) Vehicle body, structural reinforcement member thereof and method for reinforcing hollow structural member in vehicle
CA2199584A1 (en) Wall and logistics track construction for a refrigerated vehicle
IL132181A (en) Metal door with continous frame and method of production
US11318702B2 (en) Hybrid composite panel and method
DE10222120A1 (en) Motor vehicle with a plastic component and method for its production
DE102007008557B3 (en) Plastic molded part manufacturing method for motor vehicle, involves attaching lining material piece to molded part using groove, heating molded part within area of groove, and partially welding side walls of groove with each other
WO2002094544A1 (en) Composite boards with hollow chambers and method of production
US11872792B2 (en) Composite core with reinforced areas and method
US10376949B2 (en) Hollow shank rivet and rivet coupling method
US20220332374A1 (en) Multi-dimensional load structure
DE102020109118B3 (en) Spacer structure, sandwich construction with such a spacer structure and method for producing such a spacer structure
US3585697A (en) Process for forming apertures in ductile strips
WO2012152648A2 (en) Refrigeration device, particularly a domestic refrigeration device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WABASH NATIONAL, L.P., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPEER, DWAINE D.;REEL/FRAME:026755/0986

Effective date: 20110811

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION