US20110319905A1 - Multiple function vascular device - Google Patents

Multiple function vascular device Download PDF

Info

Publication number
US20110319905A1
US20110319905A1 US12/803,284 US80328410A US2011319905A1 US 20110319905 A1 US20110319905 A1 US 20110319905A1 US 80328410 A US80328410 A US 80328410A US 2011319905 A1 US2011319905 A1 US 2011319905A1
Authority
US
United States
Prior art keywords
coil
vascular device
actuating member
section
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/803,284
Inventor
Robert A. Palme
Gregory L. Townsend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/803,284 priority Critical patent/US20110319905A1/en
Priority to PCT/US2011/001119 priority patent/WO2011162815A1/en
Publication of US20110319905A1 publication Critical patent/US20110319905A1/en
Priority to US15/089,103 priority patent/US10172638B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22079Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with suction of debris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs

Definitions

  • the present invention relates to apparatus and methods for performing surgical procedures that access hollow conduits of mammalian anatomy. More particularly, the invention discloses a multi-function device for navigating tortuous vascular pathways, reaching and then crossing total occlusions in blood vessels.
  • Intracorporal medical devices have been developed and used to navigate and access the tortuous vascular and other hollow conduits of a mammalian body. Some of these devices include guidewires, catheters, intravenous guidewires, stylets, intravenous catheters and related devices like endoscopes and colonoscopes that have a predetermined degree of flexibility and may have straight or pre-formed, shaped ends to guide the device through the anatomical conduit.
  • guidewires catheters, intravenous guidewires, stylets, intravenous catheters and related devices like endoscopes and colonoscopes that have a predetermined degree of flexibility and may have straight or pre-formed, shaped ends to guide the device through the anatomical conduit.
  • endoscopes and colonoscopes like endoscopes and colonoscopes that have a predetermined degree of flexibility and may have straight or pre-formed, shaped ends to guide the device through the anatomical conduit.
  • endoscopes and colonoscopes like endoscopes and colonoscopes that have a
  • Accessing occlusions having relatively sharp angles and passage constrictions using conventional guidewires having pre-formed “J” shapes or angled distal ends requires rotating the guidewire while simultaneously moving it proximally and distally. This action can cause damage to the fragile endothelial cell layer lining blood vessels. Additionally, conventional guidewires can lose their ability to be rotated when the flexible distal ends enter vessels of reduced diameter. Rotation of the guidewire following inserting the distal end into a vessel having a reduced diameter produces high frictional forces between the walls of the small vessels and the guidewire. A desirable device would therefore require reduced rotation and increased ability to advance in a forward or distal direction through tortuous anatomies.
  • An additional disadvantage of a general use catheter is that it must be inserted into the body over a guidewire. Therefore, both a catheter and a guidewire must be used to reach a targeted site within the body.
  • a single device that functions as an independent guidewire or both a catheter and a guidewire would save procedural time, reduce patient recovery time and cause less vascular damage to the patient.
  • the objective is to cross the blockage with the guidewire or remove the guidewire and insert yet another device to cut through the occlusion.
  • This is inherently disadvantageous in that additional time is required and a greater risk of vascular damage or perforation of the vessel wall is presented.
  • Conventional devices used to cross the blockage are generally stiffer than conventional guidewires and when inside the catheter and reaching a bifurcation can cause the more flexible catheter to move away from the target site and follow the guide into the opposite branch of the bifurcation.
  • Physicians generally have four objectives when using such vascular devices: (1) To reach the occlusion; (2) To reach the occlusion without causing vascular damage; (3) To cross the occlusion once it is reached; and (4) To reach the occlusion and cross it in as little time as possible.
  • a device able to accomplish all four objectives would be extremely advantageous. It is not uncommon for a physician to place a catheter somewhere in a vessel and exchange the first guidewire with one or more secondary guidewires having progressively stiffer distal ends to prevent prolapse of the devices placed over the guidewire(s). Yet another advantage would be having a guidewire stiff enough to be pushed and yet be directed into branched vessels with minimal torquing. Still another advantage would be a multi-function device able to carry a second device that could bore its way through an occlusion.
  • Vascular occlusions defined as Chronic Total Occulsions are blockages that can occur anywhere in a patient's vascular system, including coronary, carotid, renal, iliac, femoral, cerebral, popliteal and other peripheral arteries.
  • U.S. Pat. No. 4,676,249 to Arenas discloses a guidewire having a moving internal member to provide stiffness when required, but does not disclose a directable distal end or the ability to cross occlusions.
  • Another U.S. Pat. No. 5,542,434 discloses a longitudinally movable core wire made of a memory metal alloy that stiffens when subjected to thermal energy. This allows the wire to become stiff and yet torquable when desired, but fails when a catheter needs to be slid over the device. Both devices are deficient when they reach an occlusion with heavily calcified plaque in that they do not have the ability to bore through the occlusion.
  • Such devices are generally known as percutaneous transluminal thrombectomy or artherectomy devices. These devices have various means to cross the occlusion and are singular devices lacking the ability to solely navigate the vasculature. As an example, one such device is disclosed in U.S. Pat. No. 6,945,951 and describes a thrombectomy catheter using high velocity saline through jets that erode away the blockage and cross an occlusion.
  • the invention is directed to a vascular device including a shaft defining a longitudinal dimension, a lumen allowing fluid communication through the shaft extending along the longitudinal dimension and a proximal section and a distal section.
  • the distal section further defines a weak side and a strong side and an actuating member is attached to the distal section, with the actuating member being capable of transmitting longitudinal force to the distal section.
  • the weak side of the distal section increases in size while the strong side maintains substantially the same size, resulting in the distal section deflecting.
  • the invention is directed to a vascular device including a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension.
  • the shaft at least partly defines a coil, and the coil further defines a distal end.
  • An actuating member is attached to the coil, and is capable of transferring longitudinal force to the coil.
  • a side of the coil winds is physically connected, defining a connected side, which maintains the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state.
  • an unconnected side of the coil winds expands, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
  • the invention is directed to a vascular device, including a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension.
  • the shaft at least partly defines a coil, with the coil further defining a distal end.
  • a flexible cutting shaft extends through the lumen and defines a proximal end and a distal end, with a cutting burr attached to the distal end of the cutting shaft.
  • An actuating member is attached to the coil and is capable of transferring longitudinal force to the coil.
  • a side of the coil winds is physically connected and defines a connected side, which maintains the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state.
  • longitudinal force is applied to the actuating member an unconnected side of the coil winds expands, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
  • FIG. 1 is a cross sectional centerline view taken along the longitudinal axis of a vascular device of the present invention having a hollow actuating member.
  • FIG. 1A is a cross sectional centerline view taken along the longitudinal axis of the vascular device of FIG. 1 , in a deflected configuration, following the application of distal force to the actuating member.
  • FIG. 1B is a cross sectional centerline view taken along the longitudinal axis of the vascular device of FIG. 1 , in a deflected configuration, following the application of proximal force to the actuating member.
  • FIG. 1C is a lateral cross section view of the guidewire of FIG. 1 taken through the lines 1 C- 1 C, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 2 is a cross sectional centerline view taken along the longitudinal axis of a vascular device of the present invention with a hollow conduit extending the length of the device and having a fibrous polymer or metal actuating member.
  • FIG. 2A is a cross sectional centerline view of the embodiment of the vascular device of FIG. 2 in a deflected configuration following the application of proximal force.
  • FIG. 2B is a lateral cross section view of the guidewire of FIG. 2 taken through the lines 2 B- 2 B, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 3 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device having a hollow actuating member, a handle and a cutting burr.
  • FIG. 3A is a cross sectional centerline view of the embodiment shown in FIG. 3 in a deflected configuration following the application of distal force.
  • FIG. 3B is a cross sectional centerline view of the embodiment shown in FIG. 3 in a deflected configuration following the application of proximal force.
  • FIG. 3C is a lateral cross section view of the guidewire of FIG. 3 taken through the lines 3 C- 3 C, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 4 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device having a hollow actuating member, a handle and a cutting head which are covered by a sheath.
  • FIG. 4A is a side plan view of an embodiment of the vascular device shown in FIG. 4 .
  • FIG. 4B is a cross sectional centerline view of the embodiment shown in FIG. 4 in a deflected configuration following the application of distal force.
  • FIG. 4C is a cross sectional centerline view of the embodiment shown in FIG. 4 in a deflected configuration following the application of proximal force.
  • FIG. 4D is a lateral cross section view of the guidewire of FIG. 4 taken through the lines 4 D- 4 D, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 5A shows the vascular device of FIG. 3 in use following introduction into a patient, approaching an obstruction at the onset of treatment.
  • FIG. 5B shows the vascular device of FIG. 3 in use during treatment.
  • FIG. 5C shows the vascular device of FIG. 3 in use following completion of treatment.
  • FIG. 5D shows the vascular device of FIG. 3 in use with the vascular device contained in a catheter used to aspirate debris from the treatment site.
  • FIG. 5E shows a vascular device similar to that shown in FIG. 4 , having an angled cutting shaft, in use during treatment.
  • Anatomical Conduit refers to a naturally occurring vessel or duct within a patient's body.
  • distal means further from the point controlled by the operator (e.g., physician or technician) of a device.
  • Distal Force means force applied in a distal direction or toward a distal end of the device.
  • ePTFE means expanded polytetrafluoroethylene.
  • FEP means fluorinated ethylene-propylene
  • “Handle” means a device used to grip certain components of the invention for the purpose of causing longitudinal movement of additional components.
  • Longitudinal Force means either distal force or proximal force.
  • “Prolapse” refers to an adverse event occurring when a medical device does not follow the desired path at a vascular bifurcation but instead where a relatively stiff device forces a relatively less stiff device straight through the vessel, pulling the less stiff device out of the side branch of the bifurcation.
  • Proximal means closer to the point controlled by the operator (e.g., physician or technician) of a device.
  • Proximal Force means force applied in a proximal direction or toward a proximal end of the device.
  • PTFE means polytetrafluoroethylene
  • a handle 626 , 1442 is used.
  • the function of the handle 626 , 1442 is to contact the coated coil 608 , 1414 , move the actuating member 604 , 1430 and provide greater control to the operator.
  • Using the handle 626 , 1442 allows the application of a longitudinal force (distal or proximal) from a proximal end (unnumbered) of the device 600 , 1400 to the attached actuating member 604 and proximal force to the actuating member 1430 , which causes a sliding motion.
  • a first handle 422 , 534 contacts the hollow shaft 402 , 502 and is attached to the actuating member 404 , 504 allowing longitudinal force to be applied to the distal section 407 , 517 , causing it to deflect.
  • a second handle 425 , 536 is attached to a cutting head 420 , 520 which distally extends from a distal lumen opening 410 or a sheath 505 and manually rotated in procedures requiring plaque removal.
  • FIG. 1 shows a cross sectional centerline view taken along the longitudinal axis of a vascular device 600 having a first lumen 606 and a second lumen 610 .
  • the vascular device 600 can be used as a guidewire or a catheter or as a combination of the two.
  • the presence of a first lumen 606 and a second lumen 610 allows the device 600 to function as an aspiration device as well as a catheter so that during a medical procedure it can be simultaneously used to deliver other medical devices to a remotely navigated anatomical site and to aspirate fluids.
  • the device 600 can also be used for the delivery of therapeutic fluids through the first lumen 606 to remote anatomical sites following navigation using the device 600 as a guidewire.
  • the device 600 includes a coil 608 defining a proximal open coil section 614 and a distal closed coil section 616 .
  • a proximal closed coil section 628 extends proximally of a distal coil section 617 and is wound in a relatively closed coil configuration similar to the distal closed coil section 616 .
  • the coil 608 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 608 using radiological means, thereby navigating the vascular device 600 into desired anatomical pathways with minimal forward motion.
  • the device 600 is capable of deflecting by applying longitudinal force to an actuating member 604 which causes the expandable side 624 of the coil 608 to expand while the non-expandable side 622 is prevented from expanding by being fixedly attached to a ribbon 612 as explained below.
  • the actuating member 604 can be made from a variety of materials having sufficient strength to be able to cause the distal section 617 to deflect and still be flexible enough to move with the coil 608 , including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials.
  • An outer polymer coating 602 covers the device 600 to the proximal point of attachment (unnumbered) of the ribbon 612 , leaving the open coil section 614 exposed.
  • the ribbon 612 is attached to the open coil section 614 at a flattened section 615 .
  • Means of attaching the ribbon 612 include but are not limited to adhesives, laser welding, or soldering.
  • the distal closed coil section 616 is close or tight wound and forms an area 618 for attaching a hollow actuating member 604 .
  • the actuating member 604 can be made from a variety of materials having sufficient strength to be able to cause the distal section 617 to deflect and still be flexible to flex enough to curve with the coil 608 , including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials.
  • the first lumen 606 which extends through the center of the actuating member 604 can also be used for aspirating fluids or debris when negative pressure is applied to the first lumen 606 .
  • the first lumen 606 can be used for delivery of drugs or therapeutic fluids when positive pressure is applied.
  • a coating 602 such as non-thrombogenic polymers, PTFE, ePTFE, FEP, polyester, polyurethane, polyethylene, silicone or hydrophilic may be applied over the proximal section (unnumbered) of the coil 608 to improve sterility as well as enhancing the outer smoothness of the guidewire 600 , thereby causing less trauma to the patient during introduction, the procedure itself and removal.
  • the coating 602 is applied to the coil 608 by applying a polymer heat shrink tubing such as a PTFE, FEP, or polyester, followed by the application of a proper amount of heat or an appropriate length of time.
  • the coating 602 is applied by dipping the guidewire 600 into a dispersion polymer such as urethane or silicone, by spraying a polymer such as PTFE, FEP, polyester or silicone or by a co-extrusion process of a polymer such as PTFE, FEP, polyester, urethane or silicone.
  • the distal section 617 deflects due to the non-expandable side 622 to which the ribbon 612 is attached being prevented from expanding while allowing the expandable side 624 to expand, resulting in the distal section 617 assuming a deflected configuration as best shown in FIG. 1A .
  • FIG. 1B if proximal force is applied to the actuating member 604 the distal section 617 is deflected in another direction than when distal force is applied.
  • FIG. 1C shows a lateral cross section of the vascular device 600 taken through the lines 1 C- 1 C and illustrates the locations of the non-expandable side 622 and expandable side 624 .
  • FIG. 2 is a cross sectional centerline view taken along the longitudinal axis of a vascular device 1400 of the present invention having a fibrous actuating member 1430 or metal actuating member (not shown) attached 1432 to a distal end 1434 of a coil 1414 enabling the vascular device 1400 to deflect to an alternative shape upon proximal force being applied to the actuating mechanism 1430 .
  • the vascular device 1400 can be used as a guidewire or a catheter or as a combination of the two.
  • the device 1400 includes a coil 1414 defining a distal section 1412 , further defining a loose wound section 1412 a and a tight wound section 1412 b .
  • a proximal coil section 1415 extends proximally of the distal coil section 1412 and may be wound in a relatively closed coil configuration similar to the tight wound section 1412 b .
  • the coil 1414 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 1414 using radiological means, thereby navigating the vascular device 1400 into desired anatomical pathways with minimal forward motion.
  • the coil 1414 extends between a distal end 1434 and a proximal end 1429 and defines a central space 1410 inside the coil winds.
  • the coil 1414 defines a flattened section 1416 towards the distal end 1434 which is configured to receive a ribbon 1418 which is affixed to the coil 1414 .
  • the ribbon 1418 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness. In another embodiment (not shown) the ribbon 1418 is not used and instead the deflectable distal section 1412 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds.
  • the ribbon 1418 is replaced by the application of a polymer fiber fused to coil 1414 .
  • the fiber (not shown) is entangled into the coil 1414 by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive.
  • the ribbon 1418 (or other means of securing) functions to bind together the portions of the coil 1414 to which it is attached to form a non-expandable side 1438 as best shown in FIG. 2B .
  • Means of attaching the ribbon 1418 to the flattened section 1416 include but are not limited to adhesives, laser welding, or soldering.
  • the distal section 1412 will deflect due to the non-expandable side 1438 of the coil 1414 to which the ribbon 1418 is attached being prevented from expanding while allowing the expandable side 1440 to expand, resulting in the distal section 1412 deflecting from a straight configuration.
  • an actuating mechanism such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of proximal force.
  • the coil 1414 defines a loose wound section 1412 a where it is wound at a lesser or looser pitch than the remainder of the coil 1414 , imparting a greater degree of flexibility to the distal section 1412 .
  • Attached by solder 1424 or other means to the coil 1414 at the distal end 1428 is a hollow member 1420 which resides inside the central space 1410 and extends the length of the vascular device 1400 .
  • the hollow member 1420 functions to add stiffness and stability to the vascular device 1400 , while also defining a lumen 1422 which can be used for such purposes as drug delivery, aspiration or as a general catheter.
  • the hollow member 1420 can be made from a variety of materials having sufficient strength to be able to cause the distal section 1412 to deflect and still be flexible enough to move with the coil 1414 , including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials.
  • the actuating member 1430 can be made of a polymeric material such as Kevlar® or other suitable metallic material such as stainless steel and is attached by solder 1424 or other means to the distal end 1434 of the coil 1414 and routed through the central space 1410 so as to be able to apply proximal force to the distal section 1412 , allowing an operator to precisely deflect the distal section 1412 thereby enhancing the steerability and overall maneuverability of the vascular device 1400 .
  • a coating 1426 such as non-thrombogenic polymers, PTFE, ePTFE, FEP, polyester, polyurethane, polyethylene, silicone or hydrophilic may be applied over the coil 1414 to improve sterility as well as enhancing the outer smoothness of the guidewire 1400 , thereby causing less trauma to the patient during introduction, the procedure itself and removal.
  • the coating 1426 is applied to the coil 1414 by applying a polymer heat shrink tubing such as a PTFE, FEP, or polyester, followed by the application of a proper amount of heat or an appropriate length of time.
  • the coating 1426 is applied by dipping the guidewire 1400 into a dispersion polymer such as urethane or silicone, by spraying a polymer such as PTFE, FEP, polyester or silicone or by a co-extrusion process of a polymer such as PTFE, FEP, polyester, urethane or silicone.
  • FIG. 2A shows a lateral cross section of the vascular device 1400 taken through the lines 2 B- 2 B and illustrates the locations of the non-expandable side 1438 and expandable side 1440 .
  • FIG. 3 shows a vascular device 400 which can be used as a guidewire or a catheter or as a combination of the two.
  • a hollow shaft 402 defines a first lumen 414 into which is fitted an actuating member 404 which is itself hollow and defines a second lumen 416 .
  • the hollow shaft 402 is proximally attached to a first handle 422 which, as described above, is used to contact the device 400 as a whole.
  • a third handle 423 is attached to the actuating member 404 which provides longitudinal control over the position of the actuating member 404 .
  • the hollow shaft 402 provides strength and support to the vascular device 400 and defines a proximal termination 402 a , which is mounted within the first handle 422 , and a distal termination 402 b .
  • the hollow shaft 402 and actuating member 404 can be made from a variety of materials having sufficient strength to be able to cause the distal section 407 to deflect and still be flexible enough to move with a coil 406 , including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials.
  • the coil 406 defines an open wound section 406 a which is attached to and extends distally from the distal termination 402 b of the hollow shaft 402 to the proximal end 412 of a solid coil section 406 b .
  • the open wound section 406 a is further defined by the attachment of a ribbon 418 which in one embodiment is attached to a flattened section 426 of the coil 406 .
  • Means of attaching the ribbon 418 include but are not limited to adhesives, laser welding, or soldering.
  • the coil 406 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 406 using radiological means, thereby navigating the vascular device 400 into desired anatomical pathways with minimal forward motion.
  • the vascular device 400 defines a deflectable distal section 407 such that when longitudinal force is applied to the actuating member 404 by the operator, the distal section 407 deflects as a result of preventing the non-expandable side 430 , to which the ribbon 418 is attached, from expanding, while allowing the expandable side 432 to expand, resulting in the distal section 407 assuming a deflected configuration as best shown in FIGS. 3A and 3B .
  • the ribbon 418 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness.
  • the ribbon 418 is not used and instead the deflectable distal section 407 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds.
  • the ribbon 418 is replaced by the application of a polymer fiber fused to the open wound coil section 406 a .
  • the fiber (not shown) is entangled into the open wound coil section 406 a by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive.
  • the solid, distally located section 406 b of the coil 406 is created by the presence of welds 408 between the individual coil winds (unnumbered) which function to prevent flexing of the solid section 406 b from the application of longitudinal force.
  • the solid coil section 406 b terminates at a distal lumen opening 410 which is in fluid communication with the second lumen 416 and can thus be used to either deliver or aspirate substances from the anatomical area accessed by the device 400 .
  • the actuating member 404 extends proximally from the first handle 422 allowing access to the second lumen 416 and distally to the junction between the open wound section 406 a and solid section 406 b of the coil 406 , where it is attached by solder 428 .
  • Extending through the second lumen 416 is a rotatably mounted, flexible cutting shaft 424 , defining a proximal end 424 a and a distal end 424 b which terminates distally with a cutting burr 420 mounted thereon which is used to remove plaque or clots from a vessel.
  • a second handle 425 is distally attached to the cutting shaft 424 and is manually rotated by the physician as needed, resulting in the cutting burr 420 simultaneously rotating.
  • Flexibility of the cutting shaft 424 is preferably provided by making it of superelastic nitinol, but it is also contemplated to be made of stainless steel, glass-filled polymer or carbon-filled polymer.
  • the distal section 407 deflects due to the non-expandable side 430 to which the ribbon 418 is attached being prevented from expanding while allowing the expandable side 432 to expand, resulting in the distal section 407 assuming a deflected configuration as best shown in FIG. 3A .
  • FIG. 3B if proximal force is applied to the actuating member 404 the distal section 407 is deflected in the opposite direction as when distal force is applied.
  • FIG. 3C shows a lateral cross section of the vascular device 400 taken through the lines 3 C- 3 C and illustrates the locations of the non-expandable side 430 and expandable side 432 .
  • FIG. 4 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device 500 which is similar to the embodiment of the vascular device 400 shown in FIGS. 3-3C , with the addition of a covering sheath 505 .
  • the vascular device 500 can be used as a guidewire or a catheter or as a combination of the two.
  • the sheath 505 can be insert molded and surrounds at least the distal section 517 of the vascular device 500 .
  • the sheath 505 functions to make the device 500 more atraumatic, creating a safer device.
  • a distal end 506 of the sheath 505 defines a range of at least one and up to eight slits 508 which are impressed across the center axis of the distal end 506 and which function to enclose a cutting head 520 and thereby protect delicate anatomical structures during introduction.
  • the slits 508 will open, becoming flaps (not shown), allowing the physician to perform a medical procedure, such as loosening and ultimately removing plaque from the interior surfaces of artery walls.
  • the flaps 508 may close (not shown) or remain open still enclosing the cutting head 520 , allowing the device 500 to be removed in a manner less likely to cause additional trauma to the patient.
  • hollow shaft 502 defines a first lumen 514 into which is fitted an actuating member 504 which is itself hollow and defines a second lumen 516 .
  • the hollow shaft 502 and actuating member 504 are proximally attached to a first handle 534 which is used to contact the device 500 as a whole as well as allowing longitudinal control over the position of the actuating member 504 .
  • the hollow shaft 502 provides strength and support to the vascular device 500 as a whole and defines a proximal termination (unnumbered), which is mounted within the first handle 534 .
  • the hollow shaft 502 and actuating member 504 can be made from a variety of materials having sufficient strength to be able to cause the distal section 517 to deflect and still be flexible enough to move with a coil 510 , including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials.
  • the coil 510 defines an open wound section 510 a which is attached to and extends distally from the distal termination (unnumbered) of the hollow shaft 502 to a proximal end (unnumbered) of a solid coil section 510 b .
  • the open wound section 510 a is further defined by the attachment of a ribbon 518 which in one embodiment is attached to a flattened section 526 of the coil 510 .
  • Means of attaching the ribbon 518 include but are not limited to adhesives, laser welding, or soldering.
  • the coil 510 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 510 using radiological means, thereby navigating the vascular device 500 into desired anatomical pathways with minimal forward motion.
  • the vascular device 500 defines a deflectable distal section 517 so that when longitudinal force is applied to the actuating member 504 by the operator, the deflectable distal section 517 deflects, as described in detail below.
  • the ribbon 518 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness. In another embodiment (not shown) the ribbon 518 is not used and instead the deflectable distal section 517 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds. In an alternative embodiment (not shown), the ribbon 518 is replaced by the application of a polymer fiber fused to the open wound coil section 510 a .
  • the fiber (not shown) is entangled into the open wound coil section 510 a by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive.
  • the solid, distally located section 510 b of the coil 510 is created in this embodiment by the presence of welds 512 between the individual coil winds (unnumbered) which function to prevent flexing of the solid section 510 b from the application of longitudinal force.
  • the solid coil section 510 b terminates at a distal lumen opening (unnumbered) which is in fluid communication with the second lumen 516 and can thus be used to either deliver or aspirate substances from the anatomical area accessed by the device 500 .
  • the actuating member 504 extends proximally from the first handle 534 allowing access to the second lumen 516 and distally to the junction between the open wound section 510 a and solid section 510 b of the coil 510 , where it is attached by solder 528 .
  • Extending through the second lumen 516 is a rotatably mounted cutting shaft 524 , defining a proximal end 524 a and a distal end 524 b which terminates distally and is mounted with a cutting head 520 and is used to remove plaque or clots from a vessel.
  • a second handle 536 is distally attached to the cutting shaft 524 and is manually rotated by the physician as needed, resulting in rotation of the cutting head 520 . Flexibility of the cutting shaft 524 is preferably provided by making it of superelastic nitinol, but it is also contemplated to be made of stainless steel, glass-filled polymer or carbon-filled polymer.
  • the distal section 517 deflects due to the non-expandable side 530 to which the ribbon 518 is attached being prevented from expanding while allowing the expandable side 532 to expand, resulting in the distal section 517 assuming a deflected configuration as best shown in FIG. 4B .
  • the distal section 517 is deflected in another direction as when distal force is applied.
  • FIG. 4D shows a lateral cross section of the vascular device 500 taken through the lines 4 D- 4 D and illustrates the locations of the non-expandable side 530 and expandable side 532 .
  • FIG. 5A shows the vascular device 400 as shown in more detail in FIG. 3 in use following introduction into a patient, approaching an obstruction 1002 at the onset of treatment. It is seen that the device 400 has been navigated to the obstruction 1002 in a vessel 1000 which requires opening. Cutting head 420 has been deployed from the second lumen 416 to eventually bore through the obstruction 1002 and it is observed that the distal end (unnumbered this figure) of the device 400 is in the deflected configuration as a result of applying distal force to the actuating member 404 which allows the device to be precisely navigated through a tortuous vascular pathway.
  • FIG. 5B shows the vascular device 400 in use during the beginning of treatment. It is seen that the deployed cutting head 420 is being rotated and contacting the obstruction 1002 . It is further seen that some of the obstruction 1002 b has been detached from its main body following treatment.
  • FIG. 5C shows the vascular device 400 in use following completion of treatment. It is seen that the obstruction 1002 has been crossed and that some obstruction 1002 a remains attached to the vessel 1000 wall while other obstruction 1002 b is detached and has been removed.
  • FIG. 5D shows the vascular device 400 in use following introduction into a patient, approaching an obstruction 1000 at the onset of treatment, with the vascular device 400 contained in a catheter 50 used to aspirate debris from the treatment site.
  • FIG. 5E shows a vascular device 500 similar to that shown in FIG. 4 with an additional difference being a predetermined angle 722 formed into the cutting shaft 718 .
  • the deployed cutting head 720 extends from the slit 508 at the distal end 506 of the sheath 505 and is being rotated and contacting the obstruction 1002 .
  • the angle 722 confers the advantage of allowing the physician to rotate the proximal end (not shown) of the actuating member (not shown) causing the cutting head 720 to move in an elliptical path around the inner walls of the vessel 1000 , cutting and removing obstruction 1002 . This allows the sheath 505 to remain stationary and not rotated by the physician.
  • a consistent deflection can be maintained on the distal end 506 of the vascular device 500 and held in the center axis of the vessel 1000 .
  • This advantage also reduces the amount of vascular damage caused by required rotating of conventional guidewires or cutting devices by the physician in the process of navigating the device 500 through vascular obstructions.
  • the outer diameter of the vascular device 400 , 500 , 600 , 1400 is manufactured to dimensions that are industry standards for certain medical procedures and can range from between approximately 0.006 inch to 0.121 inch which allows passage through a ten French catheter at 0.131 inch outer diameter, as an example.
  • the length of the vascular device 400 , 500 , 600 , 1400 is similarly manufactured to conform to industry standards and may range between approximately 10 centimeters to 300 centimeters as required by the particular medical procedure.
  • vascular device 400 , 500 , 600 , 1400 of the present invention first requires removal from sterile packaging. Standard surgical techniques are employed to incise the proper blood vessel or bodily duct using an introducer having one or more sealed ports.
  • the introducer can range in diameter from 4 to 24 French depending on the vessel or bodily duct size and location.
  • Most procedures performed for Percutaneous Transluminal Coronary Angioplasty (PTCA) use a 6 to 10 French device passing through the introducer.
  • a 6 to 10 French catheter having an open and blunt distal end can cause vascular damage passing through the vessels. Therefore one embodiment of the invention described herein discloses a rounded, bulleted distal end.
  • the introducer is placed into the vessel lumen and is followed by insertion of a guidewire, catheter or other medical device that can pass transluminally through the vessel to the site of therapy. A rounded distal end will facilitate this task with less vascular damage.
  • the vascular device 400 , 500 , 600 , 1400 is then inserted into the introducer and carefully navigated through the patient's vasculature until the treatment site is reached. At that point, either the vascular device 400 , 500 , 600 , 1400 is used to complete the procedure or another device is passed over or through the vascular device 400 , 500 , 600 , 1400 . At the completion of the procedure the vascular device 400 , 500 , 600 , 1400 is disposed of.
  • the invention may be employed as a combination guidewire and thrombectomy or atherectomy device to remove calcified plaque or venous thrombosis.
  • the physician places the distal end 410 , 506 near the obstruction and a radio opaque contrast material may be injected into the artery through a lumen in the device, after which the physician advances a second handle 425 , 536 at the proximal end (unnumbered) to deploy the cutting head 420 , 520 at the distal end 410 , 506 and slowly advance the device while manually rotating the second handle 425 , 536 .
  • Aspiration may be used to remove the debris detached and displaced by the cutting head 420 , 520 .
  • the vascular device 400 , 500 is removed and disposed of.
  • vascular device 400 , 500 , 600 , 1400 may be applied to a variety of medical devices capable of being introduced into the vasculature or other anatomy of a patient.
  • the vascular device 400 , 500 , 600 , 1400 could be applied to singular guidewires, guidewire/catheter combination (e.g., balloon angioplasty, stent deliver, drug delivery, fluid delivery or fluid removal), as a conduit for atherectomy devices and NUS catheters, laparoscopic and endoscopic devices, spinal or cranial navigation devices, neurostimulation and cardiac resynchronization leads, embolic protection devices, therapeutic devices and other medical devices.
  • singular guidewires e.g., balloon angioplasty, stent deliver, drug delivery, fluid delivery or fluid removal
  • atherectomy devices and NUS catheters e.g., laparoscopic and endoscopic devices
  • spinal or cranial navigation devices e.g., spinal or cranial navigation devices
  • neurostimulation and cardiac resynchronization leads e.g., embolic protection devices, therapeutic devices and other medical devices.
  • the invention finds utility by being able to remove fluid causing the surrounding area to lose excess fluid. A drug can then be injected and the
  • the vascular device 600 , 1400 finds further utility in the implantation of neurostimulation or resynchronization leads which are typically 30 to 60 cm long.
  • these leads must include a large lumen for the insertion of a preformed stylet to steer the lead to the target site.
  • a device is needed to steer the leads to the target site and allow the physician to rotate the lead (not shown) at the proximal end to implant the lead.
  • the vascular device 600 , 1400 accomplishes this by providing an open lumen from the proximal end (unnumbered) to the distal end 620 , 1436 while allowing the distal end 620 , 1436 to be manipulatively deflected by the physician and the proximal end of the lead manually rotated. Following implantation of the lead the invention is removed and disposed of.

Abstract

A multi-purpose vascular device defines a lumen allowing fluid communication there through and has a coil with a side of the coil winds having solid physical connections between the coil winds to prevent the connected coil wind side from expanding following the application of force by an actuating member which causes the connected coil winds to have a predetermined configuration in an unstressed state. The application of longitudinal force causes the unconnected coil winds to expand, resulting in the vascular device assuming a different configuration.

Description

    FIELD OF THE INVENTION
  • The present invention relates to apparatus and methods for performing surgical procedures that access hollow conduits of mammalian anatomy. More particularly, the invention discloses a multi-function device for navigating tortuous vascular pathways, reaching and then crossing total occlusions in blood vessels.
  • BACKGROUND
  • Intracorporal medical devices have been developed and used to navigate and access the tortuous vascular and other hollow conduits of a mammalian body. Some of these devices include guidewires, catheters, intravenous guidewires, stylets, intravenous catheters and related devices like endoscopes and colonoscopes that have a predetermined degree of flexibility and may have straight or pre-formed, shaped ends to guide the device through the anatomical conduit. Of the devices that are employed to reach vascular blockages, each has certain advantages and disadvantages. Many fall short of desired performance before reaching a vascular blockage because of a device prolapse at a vascular bifurcation, an inability to enter a bifurcation or be directed to the site of therapy. Others may reach an occlusion but then require a different device to be introduced before crossing the stenosis. The medical industry has striven to reach a balance between the flexibility required to negotiate around tortuous pathways and the rigidity necessary to stabilize a catheter's advancement. Many products such as intravenous interventional guidewires provide directability, flexibility or stiffness but fail to do all or a combination at the same time. These products typically have pre-formed flexible distal ends that provide minimal directability but not true directability, flexibility and stiffness combined, which would be the most useful advantage. Additionally, most physicians must use a series of different diameter guidewires to perform one procedure, creating a procedure that costs additional time, money and risks patient safety from vascular injury.
  • Accessing occlusions having relatively sharp angles and passage constrictions using conventional guidewires having pre-formed “J” shapes or angled distal ends requires rotating the guidewire while simultaneously moving it proximally and distally. This action can cause damage to the fragile endothelial cell layer lining blood vessels. Additionally, conventional guidewires can lose their ability to be rotated when the flexible distal ends enter vessels of reduced diameter. Rotation of the guidewire following inserting the distal end into a vessel having a reduced diameter produces high frictional forces between the walls of the small vessels and the guidewire. A desirable device would therefore require reduced rotation and increased ability to advance in a forward or distal direction through tortuous anatomies.
  • Another undesirable characteristic of conventional guidewires is the inability to support a catheter at the flexible, tapered, distal end. When a catheter is advanced toward a vascular location in and close to a bifurcation, the catheter tends to proceed in a straight line rather than following the guidewire, defined as prolapse. Further, the natural pulsation of the vascular system of a living animal can cause a conventional guidewire to move into or out of the body during the procedure, thereby losing its distal location.
  • An additional disadvantage of a general use catheter is that it must be inserted into the body over a guidewire. Therefore, both a catheter and a guidewire must be used to reach a targeted site within the body. A single device that functions as an independent guidewire or both a catheter and a guidewire would save procedural time, reduce patient recovery time and cause less vascular damage to the patient.
  • Still another disadvantage related to current practices resides in the catheter itself. Conventional catheters typically have totally open distal ends. Manufacturers have made efforts to design catheters with soft distal ends to minimize the extent of vascular damage when the open end engages the interior wall of blood vessels. This scraping of the endothelial layer results in a triggering of the auto immune system, causing clots to form at the damage site. Also, the distal end of the catheter may become clogged with material removed from the interior wall of the blood vessels. It is apparent that this bolus of material will be expelled from the distal catheter end when another device is inserted through the catheter. An all-in-one device having a soft, closed distal end that opens to allow other devices to be deployed from the distal end and then re-closing when the devices are withdrawn, would resolve this problem.
  • Once the occlusion is reached, the objective is to cross the blockage with the guidewire or remove the guidewire and insert yet another device to cut through the occlusion. This is inherently disadvantageous in that additional time is required and a greater risk of vascular damage or perforation of the vessel wall is presented. Conventional devices used to cross the blockage are generally stiffer than conventional guidewires and when inside the catheter and reaching a bifurcation can cause the more flexible catheter to move away from the target site and follow the guide into the opposite branch of the bifurcation.
  • Physicians generally have four objectives when using such vascular devices: (1) To reach the occlusion; (2) To reach the occlusion without causing vascular damage; (3) To cross the occlusion once it is reached; and (4) To reach the occlusion and cross it in as little time as possible. A device able to accomplish all four objectives would be extremely advantageous. It is not uncommon for a physician to place a catheter somewhere in a vessel and exchange the first guidewire with one or more secondary guidewires having progressively stiffer distal ends to prevent prolapse of the devices placed over the guidewire(s). Yet another advantage would be having a guidewire stiff enough to be pushed and yet be directed into branched vessels with minimal torquing. Still another advantage would be a multi-function device able to carry a second device that could bore its way through an occlusion.
  • Vascular occlusions defined as Chronic Total Occulsions are blockages that can occur anywhere in a patient's vascular system, including coronary, carotid, renal, iliac, femoral, cerebral, popliteal and other peripheral arteries.
  • U.S. Pat. No. 4,676,249 to Arenas discloses a guidewire having a moving internal member to provide stiffness when required, but does not disclose a directable distal end or the ability to cross occlusions. Another U.S. Pat. No. 5,542,434, discloses a longitudinally movable core wire made of a memory metal alloy that stiffens when subjected to thermal energy. This allows the wire to become stiff and yet torquable when desired, but fails when a catheter needs to be slid over the device. Both devices are deficient when they reach an occlusion with heavily calcified plaque in that they do not have the ability to bore through the occlusion.
  • Using a conventional guidewire to reach the occlusion requires a catheter to be pushed over the guidewire, the final guidewire removed and then another device to be pushed through the catheter and used to cross the blockage. Such devices are generally known as percutaneous transluminal thrombectomy or artherectomy devices. These devices have various means to cross the occlusion and are singular devices lacking the ability to solely navigate the vasculature. As an example, one such device is disclosed in U.S. Pat. No. 6,945,951 and describes a thrombectomy catheter using high velocity saline through jets that erode away the blockage and cross an occlusion.
  • For all these and other reasons there is a clear need for a single device that can vary its distal end, is relatively stiff, has the ability to cross an occlusion and/or a feature that can drill or bore its way through an occlusion.
  • SUMMARY
  • In one aspect, the invention is directed to a vascular device including a shaft defining a longitudinal dimension, a lumen allowing fluid communication through the shaft extending along the longitudinal dimension and a proximal section and a distal section. The distal section further defines a weak side and a strong side and an actuating member is attached to the distal section, with the actuating member being capable of transmitting longitudinal force to the distal section. When longitudinal force is applied to the actuating member, the weak side of the distal section increases in size while the strong side maintains substantially the same size, resulting in the distal section deflecting.
  • In another aspect, the invention is directed to a vascular device including a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension. The shaft at least partly defines a coil, and the coil further defines a distal end. An actuating member is attached to the coil, and is capable of transferring longitudinal force to the coil. A side of the coil winds is physically connected, defining a connected side, which maintains the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state. When longitudinal force is applied to the actuating member, an unconnected side of the coil winds expands, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
  • In a further aspect the invention is directed to a vascular device, including a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension. The shaft at least partly defines a coil, with the coil further defining a distal end. A flexible cutting shaft extends through the lumen and defines a proximal end and a distal end, with a cutting burr attached to the distal end of the cutting shaft. An actuating member is attached to the coil and is capable of transferring longitudinal force to the coil. A side of the coil winds is physically connected and defines a connected side, which maintains the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state. When longitudinal force is applied to the actuating member an unconnected side of the coil winds expands, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional centerline view taken along the longitudinal axis of a vascular device of the present invention having a hollow actuating member.
  • FIG. 1A is a cross sectional centerline view taken along the longitudinal axis of the vascular device of FIG. 1, in a deflected configuration, following the application of distal force to the actuating member.
  • FIG. 1B is a cross sectional centerline view taken along the longitudinal axis of the vascular device of FIG. 1, in a deflected configuration, following the application of proximal force to the actuating member.
  • FIG. 1C is a lateral cross section view of the guidewire of FIG. 1 taken through the lines 1C-1C, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 2 is a cross sectional centerline view taken along the longitudinal axis of a vascular device of the present invention with a hollow conduit extending the length of the device and having a fibrous polymer or metal actuating member.
  • FIG. 2A is a cross sectional centerline view of the embodiment of the vascular device of FIG. 2 in a deflected configuration following the application of proximal force.
  • FIG. 2B is a lateral cross section view of the guidewire of FIG. 2 taken through the lines 2B-2B, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 3 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device having a hollow actuating member, a handle and a cutting burr.
  • FIG. 3A is a cross sectional centerline view of the embodiment shown in FIG. 3 in a deflected configuration following the application of distal force.
  • FIG. 3B is a cross sectional centerline view of the embodiment shown in FIG. 3 in a deflected configuration following the application of proximal force.
  • FIG. 3C is a lateral cross section view of the guidewire of FIG. 3 taken through the lines 3C-3C, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 4 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device having a hollow actuating member, a handle and a cutting head which are covered by a sheath.
  • FIG. 4A is a side plan view of an embodiment of the vascular device shown in FIG. 4.
  • FIG. 4B is a cross sectional centerline view of the embodiment shown in FIG. 4 in a deflected configuration following the application of distal force.
  • FIG. 4C is a cross sectional centerline view of the embodiment shown in FIG. 4 in a deflected configuration following the application of proximal force.
  • FIG. 4D is a lateral cross section view of the guidewire of FIG. 4 taken through the lines 4D-4D, illustrating the locations of the non-expandable side and expandable side.
  • FIG. 5A shows the vascular device of FIG. 3 in use following introduction into a patient, approaching an obstruction at the onset of treatment.
  • FIG. 5B shows the vascular device of FIG. 3 in use during treatment.
  • FIG. 5C shows the vascular device of FIG. 3 in use following completion of treatment.
  • FIG. 5D shows the vascular device of FIG. 3 in use with the vascular device contained in a catheter used to aspirate debris from the treatment site.
  • FIG. 5E shows a vascular device similar to that shown in FIG. 4, having an angled cutting shaft, in use during treatment.
  • DETAILED DESCRIPTION
  • Nomenclature
    • 50 Catheter
    • 400 Vascular Device
    • 402 Hollow Shaft
    • 402 a Proximal Termination of Hollow Shaft
    • 402 b Distal Termination of Hollow Shaft
    • 404 Actuating Member
    • 406 Coil
    • 406 a Open Wound Coil Section
    • 406 b Solid Coil Section
    • 407 Distal Section
    • 408 Weld
    • 410 Distal Lumen Opening
    • 412 Proximal End of Solid Coil Section
    • 414 First Lumen
    • 416 Second Lumen
    • 418 Ribbon
    • 420 Cutting Head
    • 422 First Handle
    • 423 Third Handle
    • 424 Cutting Shaft
    • 424 a Proximal End of Cutting Shaft
    • 424 b Distal End of Cutting Shaft
    • 425 Second Handle
    • 426 Flattened Section of Coil
    • 428 Solder
    • 430 Non-Expandable Side
    • 432 Expandable Side
    • 500 Vascular Device
    • 502 Hollow Shaft
    • 504 Actuating Member
    • 505 Sheath
    • 506 Distal End (of Vascular Device)
    • 508 Slit
    • 510 Coil
    • 510 a Open Wound Coil Section
    • 510 b Solid Coil Section
    • 512 Weld
    • 514 First Lumen
    • 516 Second Lumen
    • 517 Distal Section
    • 518 Ribbon
    • 520 Cutting Head
    • 524 Cutting Shaft
    • 524 a Proximal End of Cutting Shaft
    • 524 b Distal End of Cutting Shaft
    • 526 Flattened Section of Coil
    • 528 Solder
    • 530 Non-Expandable Side
    • 532 Expandable Side
    • 534 First Handle
    • 536 Second Handle
    • 600 Vascular Device
    • 602 Coating
    • 604 Actuating Member
    • 606 First Lumen
    • 608 Coil
    • 610 Second Lumen
    • 612 Ribbon
    • 614 Open Coil Section
    • 615 Flattened Section of Coil
    • 616 Distal Closed Coil Section
    • 617 Distal Section (of Vascular Device)
    • 618 Actuating Member Attachment
    • 620 Distal First Lumen Opening
    • 622 Non-Expandable Side
    • 624 Expandable Side
    • 626 Handle
    • 628 Proximal Closed Coil Section
    • 718 Cutting Shaft
    • 720 Cutting Head
    • 722 Angle in Cutting Shaft
    • 1000 Vascular Vessel
    • 1002 Vascular Obstruction
    • 1002 a Attached Obstruction
    • 1002 b Obstruction Debris
    • 1400 Vascular Device
    • 1410 Central Space
    • 1412 Distal Section
    • 1412 a Loose Wound Section
    • 1412 b Tight Wound Section
    • 1414 Coil
    • 1415 Proximal Coil Section
    • 1416 Flattened Section of Coil
    • 1418 Ribbon
    • 1420 Hollow Member
    • 1422 Lumen
    • 1424 Solder
    • 1426 Coating
    • 1428 Distal End of Vascular Device
    • 1429 Proximal End of Coil
    • 1430 Actuating Member
    • 1432 Actuating Member Attachment
    • 1434 Distal End of Coil
    • 1436 Distal Lumen Opening
    • 1438 Non-Expandable Side
    • 1440 Expandable Side
    • 1442 Handle
  • Definitions
  • “Anatomical Conduit” refers to a naturally occurring vessel or duct within a patient's body.
  • “Distal” means further from the point controlled by the operator (e.g., physician or technician) of a device.
  • “Distal Force” means force applied in a distal direction or toward a distal end of the device.
  • “ePTFE” means expanded polytetrafluoroethylene.
  • “FEP” means fluorinated ethylene-propylene.
  • “Handle” means a device used to grip certain components of the invention for the purpose of causing longitudinal movement of additional components.
  • “Longitudinal Force” means either distal force or proximal force.
  • “Prolapse” refers to an adverse event occurring when a medical device does not follow the desired path at a vascular bifurcation but instead where a relatively stiff device forces a relatively less stiff device straight through the vessel, pulling the less stiff device out of the side branch of the bifurcation.
  • “Proximal” means closer to the point controlled by the operator (e.g., physician or technician) of a device.
  • “Proximal Force” means force applied in a proximal direction or toward a proximal end of the device.
  • “PTFE” means polytetrafluoroethylene.
  • Construction
  • The following detailed description is to be read with reference to the drawings in which similar components in different drawings have the same nomenclature. The drawings, which are not necessarily to scale, show illustrative embodiments and are not intended to limit the scope of the invention.
  • It should be noted that combinations of materials and components described within this specification may be interchangeable and anyone skilled in the art will understand that a combination of materials or exchange of other materials to accomplish the work of the invention will not depart from the spirit of the invention. It is further understood that the invention is not limited to vascular use and can also be applied to use through an endoscope, gastroenterological procedures, laparoscope, artherectomy procedures, urological procedures or neurological procedures.
  • For the purpose of describing the actuation of the embodiments of the invention 600, 1400 as described below, a handle 626, 1442 is used. The function of the handle 626, 1442 is to contact the coated coil 608, 1414, move the actuating member 604, 1430 and provide greater control to the operator. Using the handle 626, 1442 allows the application of a longitudinal force (distal or proximal) from a proximal end (unnumbered) of the device 600, 1400 to the attached actuating member 604 and proximal force to the actuating member 1430, which causes a sliding motion. As described in detail below, the application of longitudinal force causes a distal section 617, 1412 of the vascular device 600, 1400 to deflect. In the cases of the embodiments of the invention 400, 500 a first handle 422, 534, contacts the hollow shaft 402, 502 and is attached to the actuating member 404, 504 allowing longitudinal force to be applied to the distal section 407, 517, causing it to deflect. A second handle 425, 536 is attached to a cutting head 420, 520 which distally extends from a distal lumen opening 410 or a sheath 505 and manually rotated in procedures requiring plaque removal.
  • FIG. 1 shows a cross sectional centerline view taken along the longitudinal axis of a vascular device 600 having a first lumen 606 and a second lumen 610. The vascular device 600 can be used as a guidewire or a catheter or as a combination of the two. The presence of a first lumen 606 and a second lumen 610 allows the device 600 to function as an aspiration device as well as a catheter so that during a medical procedure it can be simultaneously used to deliver other medical devices to a remotely navigated anatomical site and to aspirate fluids. The device 600 can also be used for the delivery of therapeutic fluids through the first lumen 606 to remote anatomical sites following navigation using the device 600 as a guidewire. The device 600 includes a coil 608 defining a proximal open coil section 614 and a distal closed coil section 616. A proximal closed coil section 628 extends proximally of a distal coil section 617 and is wound in a relatively closed coil configuration similar to the distal closed coil section 616. In one embodiment, the coil 608 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 608 using radiological means, thereby navigating the vascular device 600 into desired anatomical pathways with minimal forward motion. In a manner similar to the other embodiments of the invention 400, 500 the device 600 is capable of deflecting by applying longitudinal force to an actuating member 604 which causes the expandable side 624 of the coil 608 to expand while the non-expandable side 622 is prevented from expanding by being fixedly attached to a ribbon 612 as explained below. The actuating member 604 can be made from a variety of materials having sufficient strength to be able to cause the distal section 617 to deflect and still be flexible enough to move with the coil 608, including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials. An outer polymer coating 602 covers the device 600 to the proximal point of attachment (unnumbered) of the ribbon 612, leaving the open coil section 614 exposed. The ribbon 612 is attached to the open coil section 614 at a flattened section 615. Means of attaching the ribbon 612 include but are not limited to adhesives, laser welding, or soldering. When negative pressure is applied to the second lumen 610 the device 600 can be used as an aspiration device to remove fluid or debris through the spaces between the open coil section 614, from an anatomical location the device 600 has been navigated to. The distal closed coil section 616 is close or tight wound and forms an area 618 for attaching a hollow actuating member 604. The actuating member 604 can be made from a variety of materials having sufficient strength to be able to cause the distal section 617 to deflect and still be flexible to flex enough to curve with the coil 608, including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials. The first lumen 606 which extends through the center of the actuating member 604 can also be used for aspirating fluids or debris when negative pressure is applied to the first lumen 606. Likewise, the first lumen 606 can be used for delivery of drugs or therapeutic fluids when positive pressure is applied. A coating 602 such as non-thrombogenic polymers, PTFE, ePTFE, FEP, polyester, polyurethane, polyethylene, silicone or hydrophilic may be applied over the proximal section (unnumbered) of the coil 608 to improve sterility as well as enhancing the outer smoothness of the guidewire 600, thereby causing less trauma to the patient during introduction, the procedure itself and removal. In one embodiment the coating 602 is applied to the coil 608 by applying a polymer heat shrink tubing such as a PTFE, FEP, or polyester, followed by the application of a proper amount of heat or an appropriate length of time. In additional embodiments the coating 602 is applied by dipping the guidewire 600 into a dispersion polymer such as urethane or silicone, by spraying a polymer such as PTFE, FEP, polyester or silicone or by a co-extrusion process of a polymer such as PTFE, FEP, polyester, urethane or silicone. An additional advantage of a coating 602 is a reduction in adverse reactions due to adhesion of platelets, proteins, cells or other fouling materials, which can cause fibrin clot production.
  • When distal force is applied to the actuating member 604 by the operator, as shown in FIG. 1A, the distal section 617 deflects due to the non-expandable side 622 to which the ribbon 612 is attached being prevented from expanding while allowing the expandable side 624 to expand, resulting in the distal section 617 assuming a deflected configuration as best shown in FIG. 1A. As shown in FIG. 1B, if proximal force is applied to the actuating member 604 the distal section 617 is deflected in another direction than when distal force is applied. This is due to the pitch of the open wound coil section 614 having a relatively loose or open pitch to the coil winds (unnumbered), which allows the coil winds (unnumbered) on the expandable side 624, to be forced into a closer configuration. If the actuating member 604 is coupled with an actuating mechanism (not shown) such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of longitudinal force. FIG. 1C shows a lateral cross section of the vascular device 600 taken through the lines 1C-1C and illustrates the locations of the non-expandable side 622 and expandable side 624.
  • FIG. 2 is a cross sectional centerline view taken along the longitudinal axis of a vascular device 1400 of the present invention having a fibrous actuating member 1430 or metal actuating member (not shown) attached 1432 to a distal end 1434 of a coil 1414 enabling the vascular device 1400 to deflect to an alternative shape upon proximal force being applied to the actuating mechanism 1430. The vascular device 1400 can be used as a guidewire or a catheter or as a combination of the two. The device 1400 includes a coil 1414 defining a distal section 1412, further defining a loose wound section 1412 a and a tight wound section 1412 b. A proximal coil section 1415 extends proximally of the distal coil section 1412 and may be wound in a relatively closed coil configuration similar to the tight wound section 1412 b. In one embodiment, the coil 1414 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 1414 using radiological means, thereby navigating the vascular device 1400 into desired anatomical pathways with minimal forward motion. The coil 1414 extends between a distal end 1434 and a proximal end 1429 and defines a central space 1410 inside the coil winds. The coil 1414 defines a flattened section 1416 towards the distal end 1434 which is configured to receive a ribbon 1418 which is affixed to the coil 1414. The ribbon 1418 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness. In another embodiment (not shown) the ribbon 1418 is not used and instead the deflectable distal section 1412 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds. In an alternative embodiment (not shown), the ribbon 1418 is replaced by the application of a polymer fiber fused to coil 1414. The fiber (not shown) is entangled into the coil 1414 by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive. The ribbon 1418 (or other means of securing) functions to bind together the portions of the coil 1414 to which it is attached to form a non-expandable side 1438 as best shown in FIG. 2B. Means of attaching the ribbon 1418 to the flattened section 1416 include but are not limited to adhesives, laser welding, or soldering. Thus, when proximal force is applied to the actuating member 1430 by the operator, the distal section 1412 will deflect due to the non-expandable side 1438 of the coil 1414 to which the ribbon 1418 is attached being prevented from expanding while allowing the expandable side 1440 to expand, resulting in the distal section 1412 deflecting from a straight configuration. If the actuating member 1430 is coupled with an actuating mechanism (not shown) such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of proximal force. It is also observed that along the distal section 1412 the coil 1414 defines a loose wound section 1412 a where it is wound at a lesser or looser pitch than the remainder of the coil 1414, imparting a greater degree of flexibility to the distal section 1412. Attached by solder 1424 or other means to the coil 1414 at the distal end 1428 is a hollow member 1420 which resides inside the central space 1410 and extends the length of the vascular device 1400. The hollow member 1420 functions to add stiffness and stability to the vascular device 1400, while also defining a lumen 1422 which can be used for such purposes as drug delivery, aspiration or as a general catheter. The hollow member 1420 can be made from a variety of materials having sufficient strength to be able to cause the distal section 1412 to deflect and still be flexible enough to move with the coil 1414, including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials. The actuating member 1430 can be made of a polymeric material such as Kevlar® or other suitable metallic material such as stainless steel and is attached by solder 1424 or other means to the distal end 1434 of the coil 1414 and routed through the central space 1410 so as to be able to apply proximal force to the distal section 1412, allowing an operator to precisely deflect the distal section 1412 thereby enhancing the steerability and overall maneuverability of the vascular device 1400. A coating 1426 such as non-thrombogenic polymers, PTFE, ePTFE, FEP, polyester, polyurethane, polyethylene, silicone or hydrophilic may be applied over the coil 1414 to improve sterility as well as enhancing the outer smoothness of the guidewire 1400, thereby causing less trauma to the patient during introduction, the procedure itself and removal. In one embodiment the coating 1426 is applied to the coil 1414 by applying a polymer heat shrink tubing such as a PTFE, FEP, or polyester, followed by the application of a proper amount of heat or an appropriate length of time. In additional embodiments the coating 1426 is applied by dipping the guidewire 1400 into a dispersion polymer such as urethane or silicone, by spraying a polymer such as PTFE, FEP, polyester or silicone or by a co-extrusion process of a polymer such as PTFE, FEP, polyester, urethane or silicone. An additional advantage of a coating 1426 is a reduction in adverse reactions due to adhesion of platelets, proteins, cells or other fouling materials, which can cause fibrin clot production.
  • As shown in FIG. 2A, if proximal force is applied to the actuating member 1430 the distal section 1412 is deflected. This is due to the expandable side 1440 being able to expand while the non-expandable side 1438 is prevented from expanding. If the actuating member 1430 is coupled with an actuating mechanism (not shown) such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of longitudinal force. FIG. 2B shows a lateral cross section of the vascular device 1400 taken through the lines 2B-2B and illustrates the locations of the non-expandable side 1438 and expandable side 1440.
  • FIG. 3 shows a vascular device 400 which can be used as a guidewire or a catheter or as a combination of the two. A hollow shaft 402 defines a first lumen 414 into which is fitted an actuating member 404 which is itself hollow and defines a second lumen 416. The hollow shaft 402 is proximally attached to a first handle 422 which, as described above, is used to contact the device 400 as a whole. A third handle 423 is attached to the actuating member 404 which provides longitudinal control over the position of the actuating member 404. The hollow shaft 402 provides strength and support to the vascular device 400 and defines a proximal termination 402 a, which is mounted within the first handle 422, and a distal termination 402 b. The hollow shaft 402 and actuating member 404 can be made from a variety of materials having sufficient strength to be able to cause the distal section 407 to deflect and still be flexible enough to move with a coil 406, including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials. The coil 406 defines an open wound section 406 a which is attached to and extends distally from the distal termination 402 b of the hollow shaft 402 to the proximal end 412 of a solid coil section 406 b. The open wound section 406 a is further defined by the attachment of a ribbon 418 which in one embodiment is attached to a flattened section 426 of the coil 406. Means of attaching the ribbon 418 include but are not limited to adhesives, laser welding, or soldering. In one embodiment, the coil 406 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 406 using radiological means, thereby navigating the vascular device 400 into desired anatomical pathways with minimal forward motion. The vascular device 400 defines a deflectable distal section 407 such that when longitudinal force is applied to the actuating member 404 by the operator, the distal section 407 deflects as a result of preventing the non-expandable side 430, to which the ribbon 418 is attached, from expanding, while allowing the expandable side 432 to expand, resulting in the distal section 407 assuming a deflected configuration as best shown in FIGS. 3A and 3B. The ribbon 418 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness. In another embodiment (not shown) the ribbon 418 is not used and instead the deflectable distal section 407 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds. In an alternative embodiment (not shown), the ribbon 418 is replaced by the application of a polymer fiber fused to the open wound coil section 406 a. The fiber (not shown) is entangled into the open wound coil section 406 a by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive. The solid, distally located section 406 b of the coil 406 is created by the presence of welds 408 between the individual coil winds (unnumbered) which function to prevent flexing of the solid section 406 b from the application of longitudinal force. The solid coil section 406 b terminates at a distal lumen opening 410 which is in fluid communication with the second lumen 416 and can thus be used to either deliver or aspirate substances from the anatomical area accessed by the device 400. The actuating member 404 extends proximally from the first handle 422 allowing access to the second lumen 416 and distally to the junction between the open wound section 406 a and solid section 406 b of the coil 406, where it is attached by solder 428. Extending through the second lumen 416 is a rotatably mounted, flexible cutting shaft 424, defining a proximal end 424 a and a distal end 424 b which terminates distally with a cutting burr 420 mounted thereon which is used to remove plaque or clots from a vessel. A second handle 425 is distally attached to the cutting shaft 424 and is manually rotated by the physician as needed, resulting in the cutting burr 420 simultaneously rotating. Flexibility of the cutting shaft 424 is preferably provided by making it of superelastic nitinol, but it is also contemplated to be made of stainless steel, glass-filled polymer or carbon-filled polymer.
  • When distal force is applied to the actuating member 404 by the operator, as shown in FIG. 3A, the distal section 407 deflects due to the non-expandable side 430 to which the ribbon 418 is attached being prevented from expanding while allowing the expandable side 432 to expand, resulting in the distal section 407 assuming a deflected configuration as best shown in FIG. 3A. As shown in FIG. 3B, if proximal force is applied to the actuating member 404 the distal section 407 is deflected in the opposite direction as when distal force is applied. This is due to the pitch of the open wound coil section 406 a having a relatively loose or open pitch to the coil winds (unnumbered), which allows the coil winds (unnumbered) on the expandable side 432, to be forced into a closer configuration. If the actuating member 404 is coupled with an actuating mechanism (not shown) such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of longitudinal force. FIG. 3C shows a lateral cross section of the vascular device 400 taken through the lines 3C-3C and illustrates the locations of the non-expandable side 430 and expandable side 432.
  • FIG. 4 is a cross sectional centerline view taken along the longitudinal axis of an alternative embodiment of the vascular device 500 which is similar to the embodiment of the vascular device 400 shown in FIGS. 3-3C, with the addition of a covering sheath 505. The vascular device 500 can be used as a guidewire or a catheter or as a combination of the two. The sheath 505 can be insert molded and surrounds at least the distal section 517 of the vascular device 500. The sheath 505 functions to make the device 500 more atraumatic, creating a safer device. A distal end 506 of the sheath 505 defines a range of at least one and up to eight slits 508 which are impressed across the center axis of the distal end 506 and which function to enclose a cutting head 520 and thereby protect delicate anatomical structures during introduction. When the cutting head 520 or other medical device (not shown) is deployed the slits 508 will open, becoming flaps (not shown), allowing the physician to perform a medical procedure, such as loosening and ultimately removing plaque from the interior surfaces of artery walls. When the cutting head 520 or other medical device (not shown) is pulled back into the second lumen 516 following completion of the procedure, the flaps 508 may close (not shown) or remain open still enclosing the cutting head 520, allowing the device 500 to be removed in a manner less likely to cause additional trauma to the patient.
  • As shown in FIG. 4 hollow shaft 502 defines a first lumen 514 into which is fitted an actuating member 504 which is itself hollow and defines a second lumen 516. The hollow shaft 502 and actuating member 504 are proximally attached to a first handle 534 which is used to contact the device 500 as a whole as well as allowing longitudinal control over the position of the actuating member 504. The hollow shaft 502 provides strength and support to the vascular device 500 as a whole and defines a proximal termination (unnumbered), which is mounted within the first handle 534. The hollow shaft 502 and actuating member 504 can be made from a variety of materials having sufficient strength to be able to cause the distal section 517 to deflect and still be flexible enough to move with a coil 510, including but not limited to stainless steel alloys, nickel titanium alloys and reinforced polymeric materials such as Kevlar® or fabric materials. The coil 510 defines an open wound section 510 a which is attached to and extends distally from the distal termination (unnumbered) of the hollow shaft 502 to a proximal end (unnumbered) of a solid coil section 510 b. The open wound section 510 a is further defined by the attachment of a ribbon 518 which in one embodiment is attached to a flattened section 526 of the coil 510. Means of attaching the ribbon 518 include but are not limited to adhesives, laser welding, or soldering. In one embodiment, the coil 510 can be made from a radiopaque material such as a platinum-nickel alloy that allows the physician to visualize the position of the coil 510 using radiological means, thereby navigating the vascular device 500 into desired anatomical pathways with minimal forward motion. The vascular device 500 defines a deflectable distal section 517 so that when longitudinal force is applied to the actuating member 504 by the operator, the deflectable distal section 517 deflects, as described in detail below. The ribbon 518 is made of a suitable metallic material such as austenitic stainless steel alloy or a tungsten alloy such as tungsten-molybdenum and tungsten-rhenium. In some instances, iridium is added to the alloy to increase strength and radiopaqueness. In another embodiment (not shown) the ribbon 518 is not used and instead the deflectable distal section 517 is defined by a series of welds (not shown), gluing (not shown) or mechanical fasteners (not shown) affixed to the coil winds. In an alternative embodiment (not shown), the ribbon 518 is replaced by the application of a polymer fiber fused to the open wound coil section 510 a. The fiber (not shown) is entangled into the open wound coil section 510 a by means of weaving in and out of the coil winds and looping around the individual coil winds to form a solid attachment after application of an adhesive. The solid, distally located section 510 b of the coil 510 is created in this embodiment by the presence of welds 512 between the individual coil winds (unnumbered) which function to prevent flexing of the solid section 510 b from the application of longitudinal force. The solid coil section 510 b terminates at a distal lumen opening (unnumbered) which is in fluid communication with the second lumen 516 and can thus be used to either deliver or aspirate substances from the anatomical area accessed by the device 500. The actuating member 504 extends proximally from the first handle 534 allowing access to the second lumen 516 and distally to the junction between the open wound section 510 a and solid section 510 b of the coil 510, where it is attached by solder 528. Extending through the second lumen 516 is a rotatably mounted cutting shaft 524, defining a proximal end 524 a and a distal end 524 b which terminates distally and is mounted with a cutting head 520 and is used to remove plaque or clots from a vessel. A second handle 536 is distally attached to the cutting shaft 524 and is manually rotated by the physician as needed, resulting in rotation of the cutting head 520. Flexibility of the cutting shaft 524 is preferably provided by making it of superelastic nitinol, but it is also contemplated to be made of stainless steel, glass-filled polymer or carbon-filled polymer.
  • When distal force is applied to the actuating member 504 by the operator, as shown in FIG. 4B, the distal section 517 deflects due to the non-expandable side 530 to which the ribbon 518 is attached being prevented from expanding while allowing the expandable side 532 to expand, resulting in the distal section 517 assuming a deflected configuration as best shown in FIG. 4B. As shown in FIG. 4C, if proximal force is applied to the actuating member 504 the distal section 517 is deflected in another direction as when distal force is applied. This is due to the pitch of the open wound coil section 510 a having a relatively loose or open pitch to the coil winds (unnumbered), which allows the coil winds (unnumbered) on the expandable side 532, to be forced into a closer configuration. If the actuating member 504 is coupled with an actuating mechanism (not shown) such as a vernier type mechanism (not shown) a predictable and variable amount of deflection can be achieved with the application of a given amount of longitudinal force. FIG. 4D shows a lateral cross section of the vascular device 500 taken through the lines 4D-4D and illustrates the locations of the non-expandable side 530 and expandable side 532.
  • FIG. 5A shows the vascular device 400 as shown in more detail in FIG. 3 in use following introduction into a patient, approaching an obstruction 1002 at the onset of treatment. It is seen that the device 400 has been navigated to the obstruction 1002 in a vessel 1000 which requires opening. Cutting head 420 has been deployed from the second lumen 416 to eventually bore through the obstruction 1002 and it is observed that the distal end (unnumbered this figure) of the device 400 is in the deflected configuration as a result of applying distal force to the actuating member 404 which allows the device to be precisely navigated through a tortuous vascular pathway.
  • FIG. 5B shows the vascular device 400 in use during the beginning of treatment. It is seen that the deployed cutting head 420 is being rotated and contacting the obstruction 1002. It is further seen that some of the obstruction 1002 b has been detached from its main body following treatment.
  • FIG. 5C shows the vascular device 400 in use following completion of treatment. It is seen that the obstruction 1002 has been crossed and that some obstruction 1002 a remains attached to the vessel 1000 wall while other obstruction 1002 b is detached and has been removed.
  • FIG. 5D shows the vascular device 400 in use following introduction into a patient, approaching an obstruction 1000 at the onset of treatment, with the vascular device 400 contained in a catheter 50 used to aspirate debris from the treatment site.
  • FIG. 5E shows a vascular device 500 similar to that shown in FIG. 4 with an additional difference being a predetermined angle 722 formed into the cutting shaft 718. It is seen that the deployed cutting head 720 extends from the slit 508 at the distal end 506 of the sheath 505 and is being rotated and contacting the obstruction 1002. The angle 722 confers the advantage of allowing the physician to rotate the proximal end (not shown) of the actuating member (not shown) causing the cutting head 720 to move in an elliptical path around the inner walls of the vessel 1000, cutting and removing obstruction 1002. This allows the sheath 505 to remain stationary and not rotated by the physician. A consistent deflection can be maintained on the distal end 506 of the vascular device 500 and held in the center axis of the vessel 1000. This advantage also reduces the amount of vascular damage caused by required rotating of conventional guidewires or cutting devices by the physician in the process of navigating the device 500 through vascular obstructions.
  • The outer diameter of the vascular device 400, 500, 600, 1400 is manufactured to dimensions that are industry standards for certain medical procedures and can range from between approximately 0.006 inch to 0.121 inch which allows passage through a ten French catheter at 0.131 inch outer diameter, as an example. The length of the vascular device 400, 500, 600, 1400 is similarly manufactured to conform to industry standards and may range between approximately 10 centimeters to 300 centimeters as required by the particular medical procedure.
  • Use
  • Using the vascular device 400, 500, 600, 1400 of the present invention first requires removal from sterile packaging. Standard surgical techniques are employed to incise the proper blood vessel or bodily duct using an introducer having one or more sealed ports. The introducer can range in diameter from 4 to 24 French depending on the vessel or bodily duct size and location. Most procedures performed for Percutaneous Transluminal Coronary Angioplasty (PTCA) use a 6 to 10 French device passing through the introducer. A 6 to 10 French catheter having an open and blunt distal end can cause vascular damage passing through the vessels. Therefore one embodiment of the invention described herein discloses a rounded, bulleted distal end. The introducer is placed into the vessel lumen and is followed by insertion of a guidewire, catheter or other medical device that can pass transluminally through the vessel to the site of therapy. A rounded distal end will facilitate this task with less vascular damage.
  • The vascular device 400, 500, 600, 1400 is then inserted into the introducer and carefully navigated through the patient's vasculature until the treatment site is reached. At that point, either the vascular device 400, 500, 600, 1400 is used to complete the procedure or another device is passed over or through the vascular device 400, 500, 600, 1400. At the completion of the procedure the vascular device 400, 500, 600, 1400 is disposed of.
  • In the embodiments 400, 500 as described above, the invention may be employed as a combination guidewire and thrombectomy or atherectomy device to remove calcified plaque or venous thrombosis. When these embodiments of the vascular device 400, 500 are used the physician places the distal end 410, 506 near the obstruction and a radio opaque contrast material may be injected into the artery through a lumen in the device, after which the physician advances a second handle 425, 536 at the proximal end (unnumbered) to deploy the cutting head 420, 520 at the distal end 410, 506 and slowly advance the device while manually rotating the second handle 425, 536. Aspiration may be used to remove the debris detached and displaced by the cutting head 420, 520. Upon completion of the procedure, the vascular device 400, 500 is removed and disposed of. These embodiments allow the physician to navigate a single device to the diseased area and complete the procedure in the shortest time with the least amount of vascular damage.
  • While the invention as described above can be used as a combination guidewire/thrombectomy/atherectomy device, it can also be used a catheter. Most transfemoral coronary catheterization employ between a 4 and 10 French catheter. Small arteries will utilize around a 4 French catheter while larger arteries could utilize up to a 10 French catheter. Cited by the Journal of the American Medical Association, upward of three million cardiac catheterizations are performed annually in the United States. A device to reduce procedural time vascular damage would be an economic advantage to the industry. The vascular device 400, 500, 600, 1400 may be applied to a variety of medical devices capable of being introduced into the vasculature or other anatomy of a patient. For example, the vascular device 400, 500, 600, 1400 could be applied to singular guidewires, guidewire/catheter combination (e.g., balloon angioplasty, stent deliver, drug delivery, fluid delivery or fluid removal), as a conduit for atherectomy devices and NUS catheters, laparoscopic and endoscopic devices, spinal or cranial navigation devices, neurostimulation and cardiac resynchronization leads, embolic protection devices, therapeutic devices and other medical devices. When used for drug delivery the invention finds utility by being able to remove fluid causing the surrounding area to lose excess fluid. A drug can then be injected and the affected area will more readily absorb the drug by the osmotic difference in pressure. This allows the drug to remain at the site rather than be carried away by the movement of interstitial fluids.
  • The vascular device 600, 1400 finds further utility in the implantation of neurostimulation or resynchronization leads which are typically 30 to 60 cm long. Currently these leads must include a large lumen for the insertion of a preformed stylet to steer the lead to the target site. As the industry continues to reduce the diameter of these leads to 4.1 French or less by removing the stylet lumen, a device is needed to steer the leads to the target site and allow the physician to rotate the lead (not shown) at the proximal end to implant the lead. The vascular device 600, 1400 accomplishes this by providing an open lumen from the proximal end (unnumbered) to the distal end 620, 1436 while allowing the distal end 620, 1436 to be manipulatively deflected by the physician and the proximal end of the lead manually rotated. Following implantation of the lead the invention is removed and disposed of.

Claims (18)

1. A vascular device, comprising:
a. a shaft defining a longitudinal dimension, a lumen allowing fluid communication through the shaft extending along the longitudinal dimension, a proximal section and a distal section;
b. the distal section defining a weak side and a strong side; and
c. an actuating member attached to the distal section, the actuating member capable of transmitting longitudinal force to the distal section;
wherein applying longitudinal force to the actuating member causes the weak side of the distal section to increase in size while the strong side maintains substantially the same size, resulting in the distal section deflecting.
2. The vascular device of claim 1 wherein the actuating member is attached to a distal end of the distal section.
3. The vascular device of claim 1 wherein the vascular device in a non-stressed configuration has a straight configuration and applying distal force to the actuating member causes the distal section to deflect.
4. The vascular device of claim 1 wherein the vascular device in a non-stressed configuration has a straight configuration and applying proximal force to the actuating member causes the distal section to deflect.
5. The vascular device of claim 1 wherein at least the distal section comprises a coil defining a central space.
6. The vascular device of claim 5 wherein the strong side of the distal section is prevented from assuming a larger size by a ribbon attached to the coil, preventing the non-expandable side of the coil from expanding when longitudinal force is applied to the coil.
7. The vascular device of claim 6 wherein the ribbon is attached to the coil at a flattened area configured into the coil.
8. A vascular device, comprising:
a. a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension;
b. the shaft at least partly defining a coil, the coil further defining a distal end;
c. an actuating member attached to the coil, the actuating member capable of transferring longitudinal force to the coil; and
d. a side of the coil winds being physically connected, defining a connected side, to maintain the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state;
wherein the application of longitudinal force to the actuating member causes an unconnected side of the coil winds to expand, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
9. The vascular device of claim 8 wherein the device in the unstressed state has a straight configuration and applying longitudinal force to the actuating member causes the distal section to deflect away from the longitudinal dimension.
10. The vascular device of claim 8 wherein the device in the unstressed state has an angled configuration and applying longitudinal force to the actuating member causes the distal section to deflect toward the longitudinal dimension.
11. The vascular device of claim 8 further comprising the side of the coil having connected coil winds being connected by a ribbon attached to the coil.
12. The vascular device of claim 10 wherein the ribbon resides in a recess formed into a section of the surface of the coil.
13. A vascular device, comprising:
a. a shaft defining a lateral dimension, a longitudinal dimension, a proximal section, a distal section having greater flexibility than the proximal section and a lumen allowing access through the shaft extending along the longitudinal dimension;
b. the shaft at least partly defining a coil, the coil further defining a distal end;
c. a flexible cutting shaft extending through the lumen, the cutting shaft defining a proximal end and a distal end, with a cutting burr attached to the distal end of the cutting shaft;
d. an actuating member attached to the coil, the actuating member capable of transferring longitudinal force to the coil;
e. a side of the coil winds being physically connected, defining a connected side, to maintain the coil winds on the connected side in a constant configuration preventing differential spacing resulting from the application of longitudinal force and causing the connected coil winds to have a predetermined configuration in an unstressed state;
wherein the application of longitudinal force to the actuating member causes an unconnected side of the coil winds to expand, resulting in the vascular device assuming a stressed configuration having a different shape than the vascular device in the unstressed configuration.
14. The vascular device of claim 13 wherein the device in the unstressed state has a straight configuration and applying longitudinal force to the actuating member causes the distal section to deflect away from the longitudinal dimension.
15. The vascular device of claim 13 further comprising the side of the coil having connected coil winds being connected by a ribbon attached to the coil.
16. The vascular device of claim 13 wherein the ribbon resides in a recess formed into a section of the surface of the coil.
17. The vascular device of claim 13 wherein the cutting shaft is made of superelastic nitinol.
18. The vascular device of claim 13 wherein at least the distal end is covered by a sheath.
US12/803,284 2010-06-23 2010-06-23 Multiple function vascular device Abandoned US20110319905A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/803,284 US20110319905A1 (en) 2010-06-23 2010-06-23 Multiple function vascular device
PCT/US2011/001119 WO2011162815A1 (en) 2010-06-23 2011-06-22 Multiple function vascular device
US15/089,103 US10172638B2 (en) 2010-06-23 2016-04-01 Multiple function vascular device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/803,284 US20110319905A1 (en) 2010-06-23 2010-06-23 Multiple function vascular device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/089,103 Continuation US10172638B2 (en) 2010-06-23 2016-04-01 Multiple function vascular device

Publications (1)

Publication Number Publication Date
US20110319905A1 true US20110319905A1 (en) 2011-12-29

Family

ID=45353246

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/803,284 Abandoned US20110319905A1 (en) 2010-06-23 2010-06-23 Multiple function vascular device
US15/089,103 Active 2030-09-30 US10172638B2 (en) 2010-06-23 2016-04-01 Multiple function vascular device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/089,103 Active 2030-09-30 US10172638B2 (en) 2010-06-23 2016-04-01 Multiple function vascular device

Country Status (2)

Country Link
US (2) US20110319905A1 (en)
WO (1) WO2011162815A1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120130461A1 (en) * 2009-04-30 2012-05-24 Medtronic, Inc. Radiopaque markers for implantable medical leads, devices, and systems
US20150209065A1 (en) * 2013-09-18 2015-07-30 Xablecath Inc. Methods for crossing and treating an occlusion
US20160029902A1 (en) * 2013-03-15 2016-02-04 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
EP2928539A4 (en) * 2012-12-06 2016-07-27 Indian Wells Medical Inc Steerable guidewire and method of use
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US10016210B2 (en) 2012-04-17 2018-07-10 Indian Wells Medical, Inc. Steerable guidewire and method of use
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
WO2018221462A1 (en) * 2017-05-30 2018-12-06 Terumo Kabushiki Kaisha Atherectomy device and method
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10172638B2 (en) 2010-06-23 2019-01-08 Device Source, Llc Multiple function vascular device
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10398893B2 (en) 2007-02-14 2019-09-03 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10786655B2 (en) 2016-03-14 2020-09-29 Indian Wells Medical, Inc. Steerable guidewire and method of use
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11844548B1 (en) 2014-09-13 2023-12-19 Indian Wells Medical, Inc. Steerable endoluminal punch

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828061B2 (en) 2016-03-03 2020-11-10 Boston Scientific Scimed, Inc. Accessory devices for use with catheters
WO2018156498A1 (en) * 2017-02-21 2018-08-30 Boston Scientific Scimed, Inc. Thrombectomy catheter with helical guidewire
WO2018204697A1 (en) 2017-05-03 2018-11-08 Medtronic Vascular, Inc. Tissue-removing catheter
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
US11357534B2 (en) 2018-11-16 2022-06-14 Medtronic Vascular, Inc. Catheter
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973556A (en) * 1975-06-20 1976-08-10 Lake Region Manufacturing Company, Inc. Smoothened coil spring wire guide
US5378234A (en) * 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
US5480382A (en) * 1989-01-09 1996-01-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US20090082723A1 (en) * 2005-11-17 2009-03-26 Magnus Krogh Medical devices and methods for their fabrication and use
US20090131948A1 (en) * 2007-11-16 2009-05-21 Osseon Therapeutics, Inc. Steerable vertebroplasty system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247371A1 (en) 1986-05-23 1987-12-02 Sarcem Sa Catheter guide
US5125895A (en) 1986-07-22 1992-06-30 Medtronic Versaflex, Inc. Steerable catheter
US4813434A (en) 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4940062A (en) 1988-05-26 1990-07-10 Advanced Cardiovascular Systems, Inc. Guiding member with deflectable tip
US5037391A (en) 1989-01-09 1991-08-06 Pilot Cardiovascular Systems, Inc. Steerable angioplasty device
US5372587A (en) 1989-01-09 1994-12-13 Pilot Cariovascular Systems, Inc. Steerable medical device
US5203772A (en) 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5120308A (en) 1989-05-03 1992-06-09 Progressive Angioplasty Systems, Inc. Catheter with high tactile guide wire
US5060660A (en) 1990-02-28 1991-10-29 C. R. Bard, Inc. Steerable extendable guidewire with adjustable tip
US5211636A (en) 1990-10-31 1993-05-18 Lake Region Manufacturing Co., Inc. Steerable infusion guide wire
US5824031A (en) * 1996-02-28 1998-10-20 Cardio Source Apparatus and method for deflecting a tip of a lead or catheter
US6093157A (en) * 1997-10-22 2000-07-25 Scimed Life Systems, Inc. Radiopaque guide wire
US6056702A (en) * 1998-10-02 2000-05-02 Cordis Corporation Guidewire with outer sheath
US6059739A (en) 1998-05-29 2000-05-09 Medtronic, Inc. Method and apparatus for deflecting a catheter or lead
US6146338A (en) * 1999-04-23 2000-11-14 Medtronic, Inc. Apparatus for deflecting a catheter or lead
US6126649A (en) 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
US6776765B2 (en) 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
US7481778B2 (en) 2002-03-22 2009-01-27 Cordis Corporation Guidewire with deflectable tip having improved flexibility
US20040102719A1 (en) 2002-11-22 2004-05-27 Velocimed, L.L.C. Guide wire control catheters for crossing occlusions and related methods of use
JP2004275435A (en) * 2003-03-14 2004-10-07 Terumo Corp Catheter
US20060089569A1 (en) * 2004-10-26 2006-04-27 Soukup Thomas M Articulator with adjustable stiffness distal portion
US8206343B2 (en) * 2005-11-08 2012-06-26 Custom Medical Applications, Inc. Reinforced catheter with articulated distal tip
US20110319905A1 (en) 2010-06-23 2011-12-29 Palme Robert A Multiple function vascular device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973556A (en) * 1975-06-20 1976-08-10 Lake Region Manufacturing Company, Inc. Smoothened coil spring wire guide
US5480382A (en) * 1989-01-09 1996-01-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5378234A (en) * 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
US20090082723A1 (en) * 2005-11-17 2009-03-26 Magnus Krogh Medical devices and methods for their fabrication and use
US20090131948A1 (en) * 2007-11-16 2009-05-21 Osseon Therapeutics, Inc. Steerable vertebroplasty system

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
US10398893B2 (en) 2007-02-14 2019-09-03 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US20120130461A1 (en) * 2009-04-30 2012-05-24 Medtronic, Inc. Radiopaque markers for implantable medical leads, devices, and systems
US9205253B2 (en) 2009-04-30 2015-12-08 Medtronic, Inc. Shielding an implantable medical lead
US9220893B2 (en) 2009-04-30 2015-12-29 Medtronic, Inc. Shielded implantable medical lead with reduced torsional stiffness
US9272136B2 (en) 2009-04-30 2016-03-01 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9216286B2 (en) 2009-04-30 2015-12-22 Medtronic, Inc. Shielded implantable medical lead with guarded termination
US9956402B2 (en) * 2009-04-30 2018-05-01 Medtronic, Inc. Radiopaque markers for implantable medical leads, devices, and systems
US9452284B2 (en) 2009-04-30 2016-09-27 Medtronic, Inc. Termination of a shield within an implantable medical lead
US11260222B2 (en) 2009-04-30 2022-03-01 Medtronic, Inc. Radiopaque markers for implantable medical leads, devices, and systems
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9629998B2 (en) 2009-04-30 2017-04-25 Medtronics, Inc. Establishing continuity between a shield within an implantable medical lead and a shield within an implantable lead extension
US10086194B2 (en) 2009-04-30 2018-10-02 Medtronic, Inc. Termination of a shield within an implantable medical lead
US10035014B2 (en) 2009-04-30 2018-07-31 Medtronic, Inc. Steering an implantable medical lead via a rotational coupling to a stylet
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10172638B2 (en) 2010-06-23 2019-01-08 Device Source, Llc Multiple function vascular device
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US10016210B2 (en) 2012-04-17 2018-07-10 Indian Wells Medical, Inc. Steerable guidewire and method of use
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11317938B2 (en) 2012-12-06 2022-05-03 Indian Wells Medical, Inc. Steerable guidewire and method of use
EP2928539A4 (en) * 2012-12-06 2016-07-27 Indian Wells Medical Inc Steerable guidewire and method of use
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US20160029902A1 (en) * 2013-03-15 2016-02-04 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US9854979B2 (en) * 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10499934B2 (en) * 2013-09-18 2019-12-10 Xablecath Inc. Methods for crossing and treating an occlusion
US20150209065A1 (en) * 2013-09-18 2015-07-30 Xablecath Inc. Methods for crossing and treating an occlusion
US20220378464A1 (en) * 2013-09-18 2022-12-01 Xablecath Inc. Methods for crossing and treating an occlusion
US9826995B2 (en) 2013-09-18 2017-11-28 XableCath, Inc. Support catheters for use in crossing and treating an occlusion
US10278715B2 (en) 2013-09-18 2019-05-07 Xablecath Inc. Systems for use in crossing and treating an occlusion
US9622762B2 (en) 2013-09-18 2017-04-18 Xablecath Inc. Catheter devices for crossing and treating an occlusion
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US11844548B1 (en) 2014-09-13 2023-12-19 Indian Wells Medical, Inc. Steerable endoluminal punch
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11819642B2 (en) 2016-03-14 2023-11-21 Indian Wells Medical, Inc. Steerable guidewire and method of use
US10786655B2 (en) 2016-03-14 2020-09-29 Indian Wells Medical, Inc. Steerable guidewire and method of use
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
WO2018221462A1 (en) * 2017-05-30 2018-12-06 Terumo Kabushiki Kaisha Atherectomy device and method
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Also Published As

Publication number Publication date
WO2011162815A1 (en) 2011-12-29
US10172638B2 (en) 2019-01-08
US20160270814A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
US10172638B2 (en) Multiple function vascular device
CA2750592C (en) Guidewire
KR102416089B1 (en) Intravascular treatment site approach
US8172829B2 (en) Torqueable and deflectable medical device shaft
US6746422B1 (en) Steerable support system with external ribs/slots that taper
JP4338530B2 (en) System and method for placing an implantable medical device in a coronary vein
US20060184105A1 (en) Thin wall catheter and method of placing same
JP2008523910A (en) Operable guide catheter and method of using the same
US20220152355A1 (en) Catheters having steerable distal portions, and associated systems and methods
WO2018044446A1 (en) Methods of steering and delivery of intravascular devices
US20110301502A1 (en) In-vessel positioning device
US20220151647A1 (en) Catheters having shaped distal portions, and associated systems and methods
WO2006047506A2 (en) Articulator with adjustable stiffness distal portion
EP3677301A2 (en) Steerable locking catheter
JP2018525088A (en) Double concentric guidewire
Nguyen et al. Wires
US20110202038A1 (en) Guidewire positioning device
US20230149675A1 (en) Hybrid transseptal dilator and methods of using the same
CA2488710A1 (en) Steerable support system with external ribs/slots that taper

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION