US20110228927A1 - Cryptographic Method of Multilayer Diffusion in Multidimension - Google Patents

Cryptographic Method of Multilayer Diffusion in Multidimension Download PDF

Info

Publication number
US20110228927A1
US20110228927A1 US12/726,833 US72683310A US2011228927A1 US 20110228927 A1 US20110228927 A1 US 20110228927A1 US 72683310 A US72683310 A US 72683310A US 2011228927 A1 US2011228927 A1 US 2011228927A1
Authority
US
United States
Prior art keywords
circumflex over
over
diffusion
dot
dot over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/726,833
Other versions
US8369515B2 (en
Inventor
Chiou-Haun Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/726,833 priority Critical patent/US8369515B2/en
Publication of US20110228927A1 publication Critical patent/US20110228927A1/en
Application granted granted Critical
Publication of US8369515B2 publication Critical patent/US8369515B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0618Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation

Definitions

  • the invention relates to a cryptographic method. More particularly, the invention relates to a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext), and further, repeating the diffusion function for at least one time to create a multilayer effect in order to perform the encryption and the decryption.
  • a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext)
  • a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext)
  • repeating the diffusion function for at least one time to create a multilayer effect in order to perform the encryption and the decryption.
  • the present invention emphasizes the multilayer effect of multidimensional diffusion.
  • the diffusion function herein is notated specially by AF(p 1 , p 2 , . . . p n ) to differentiate from the traditional symbolization of matrix position.
  • the invention provides a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext), in which a multidimensional medium is meanwhile overlapped to the diffusion-area; accordingly, repeating the diffusion function for at least one time thus brings about the multilayer effect.
  • a so called diffusion-cycle is then able to divide into two parts: one for encrypting, the other for decrypting; consequently, the original status of the diffusion-area is recovered through the diffusion-cycle.
  • FIG. 1 is a summary flow chart diagram showing the main steps taken while encrypting/decrypting by repeating diffusion function in accordance with the present invention
  • FIG. 2A is a summary flow chart diagram of FIG. 1 , 410 showing the steps taken while originating the function of point-diffusion from a diffusion-center in accordance with the present invention
  • FIG. 2B is a two-dimension visualized diagram of FIG. 2A showing the point-diffusion by way of a medium anchoring to a diffusion-center in accordance with the present invention
  • FIG. 3A is a summarized flow chart diagram of FIG. 1 , 420 showing the steps taken while originating the function of block-diffusion from a block diffusion-center in accordance with the present invention
  • FIG. 3B is a two-dimension visualized diagram of FIG. 3A showing the block-diffusion by way of a medium anchoring to a diffusion-center, a block anchoring to the diffusion-center to form a block diffusion-center in accordance with the present invention.
  • FIG. 1 shows an embodiment of the present invention in flow chart diagram form.
  • This system comprises of: inputting a plaintext in encryption or a ciphertext in decryption 100 ; inputting a series of password data forward in encryption or backward in decryption 200 ; further, by the password data, converting the dimensions of the plaintext 300 , and implementing with a function of diffusion, repeated T E times in encryption, T D times in decryption 400 ; outputting the ciphertext in encryption or the plaintext in decryption 600 if completing all password data 500 .
  • FIG. 2A shows an embodiment of the point-diffusion function, FIG. 1 , 410 , in flow chart diagram.
  • the function comprises of: reading a diffusion-area (plaintext/ciphertext), a diffusion-center, and a medium with an anchor-point 201 ; anchoring the medium to the diffusion-center with the anchor-point 411 ; implementing the point-diffusion AF(p 1 , p 2 , . . . p n ) 412 , which is further detailed in Notation of Point-Diffusion.
  • FIG. 2B with 2D visualization for a more clear view, the diffusion effect colored from white to black generates the column segments a-g, a-b for later diffusion calculation.
  • A [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ]
  • ⁇ S [ s 11 s 12 s 13 s 14 s 21 s 22 s 23 s 24 s 31 s 32 s 33 s 34 s 41 s 42 s 43 s 44 ] , ⁇ S .
  • a y ⁇ ( 2 ) [ a 12 a 22 a 32 a 42 ]
  • a y ⁇ ( 3 ) [ a 13 a 23 a 33 a 43 ]
  • ⁇ S [ s 111 s 121 s 131 a 141 a 211 a 221 a
  • Ax 3 expresses a series of two dimensional binary matrixes A x on the axis x; wherein Ax 3 comprises
  • Ay 2 expresses a series of two dimensional binary matrixes A y on the axis y; wherein Ay 2 comprises
  • Az 1 expresses a series of two dimensional binary matrixes A z on the axis z; wherein Az 1 comprises
  • a z ⁇ ( 1 ) [ a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 ]
  • a z ⁇ ( 2 ) [ a 112 a 122 a 132 a 142 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 a 412 a 422 a 432 a 442 ]
  • a z ⁇ ( 0 ) [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
  • FIG. 3A shows an embodiment of the block-diffusion function, FIG. 1 , 420 , in flow chart diagram.
  • the function comprises of: reading a diffusion-area (plaintext/ciphertext), a diffusion-center, a medium with an anchor-point and a block with an anchor-point 202 ; anchoring the medium and the block to the diffusion-center with the anchor-point 421 ; implementing the block-diffusion ⁇ F( ⁇ circumflex over (p) ⁇ 1 , ⁇ circumflex over (p) ⁇ 2 , . . . ⁇ circumflex over (p) ⁇ n ) 422 , further detailed in Notation of Block-Diffusion.
  • FIG. 3B with 2D visualization for a more clear view, the diffusion effect colored from white to black generates the block-column segments a-c, a-b for later diffusion calculation.
  • a ⁇ ⁇ F ⁇ ( p ⁇ 1 , p ⁇ 2 , ... ⁇ , p ⁇ n ) A ⁇ ⁇ A ⁇ ⁇ d ⁇ 1 ⁇ p ⁇ ⁇ A ⁇ ⁇ d ⁇ 2 ⁇ p ⁇ ⁇ ... ⁇ A ⁇ ⁇ d ⁇ n ⁇ p ⁇ ⁇ S ;
  • a ⁇ ⁇ d ⁇ i ⁇ p ⁇ [ A ⁇ d ⁇ i ⁇ ( 2 ) , ... ⁇ , A ⁇ d ⁇ i ⁇ ( p ⁇ i ) , A ⁇ d ⁇ i ⁇ ( 0 ) , A ⁇ d ⁇ i ⁇ ( p ⁇ i ) , ... ⁇ , A ⁇ d ⁇ i ⁇ ( d ⁇ i - 1 ) ] ;
  • A [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ]
  • S [ s 11 s 12 s 13 s 14 s 21 s 22 s 23 s 24 s 31 s 32 s 33 s 34 s 41 s 42 s 43 s 44 ]
  • ⁇ B [ b 11 b 12 b 21 b 22 ]
  • S . ( 2 , 1 )
  • B . ( 1 , 1 ) ;
  • ⁇ circumflex over (x) ⁇ 2 expresses a series of one dimensional binary matrixes ⁇ ⁇ circumflex over (x) ⁇ on the axis ⁇ circumflex over (x) ⁇ ; wherein ⁇ circumflex over (x) ⁇ 2 comprises
  • a ⁇ x ⁇ ⁇ ( 2 ) [ a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ]
  • a ⁇ x ⁇ ⁇ ( 0 ) [ 0 0 0 0 0 0 0 0 ]
  • ⁇ 2 expresses a series of one dimensional binary matrixes ⁇ ⁇ on the axis ⁇ ; wherein ⁇ 2 comprises
  • a ⁇ y ⁇ ⁇ ( 2 ) [ a 12 a 13 a 22 a 23 a 32 a 33 a 42 a 43 ]
  • a ⁇ y ⁇ ⁇ ( 0 ) [ 0 0 0 0 0 0 0 0 ]
  • ⁇ S [ s 111 s 121 s 131 s 141 s 211 s 221 s 231 a
  • ⁇ circumflex over (x) ⁇ 2 expresses a series of two dimensional binary matrixes ⁇ ⁇ circumflex over (x) ⁇ on the axis ⁇ circumflex over (x) ⁇ ; wherein ⁇ circumflex over (x) ⁇ 2 comprises
  • ⁇ 2 expresses a series of two dimensional binary matrixes ⁇ on the axis ⁇ ; wherein ⁇ 2 comprises ⁇ (2) to positions 1, 3 is equal to
  • ⁇ circumflex over (z) ⁇ 1 expresses a series of two dimensional binary matrixes ⁇ circumflex over (z) ⁇ on the axis ⁇ circumflex over (z) ⁇ ; wherein ⁇ circumflex over (z) ⁇ 1 comprises
  • a ⁇ z ⁇ ⁇ ( 0 ) [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
  • a password “Yourlips”, its ASCII code is 59 6f 75 72 6c 69 70 73.
  • ASCII code first, excludes the last digit 3; second, forms into octal format 26 26 75.65 34 46 61 51 34 07; third, adds 1 to each digit; Table 1-2 shows that the password includes 10 diffusion-centers.
  • Table 1-1 overlap for 8 times to shape a 8 ⁇ 8 ⁇ 8 binary matrix, shown as a 8 ⁇ 8 matrix in ASCII code format as in Table 2-1.
  • Table 2-1 the row stands for a x-y plane, namely Table 1-1, and all rows resolve as the axis z.
  • a password “YourlipsY”, its ASCII code is 59 6f 75 72 6c 69 70 73 59.
  • ASCII code first, subtracts 8 if a digit >7 and leaves 51 67 75 72 64 61 70 73 51; second, every three-digit forms a division; third, adds 1 to each digit; Table 2-2 shows that the password includes 6 diffusion-centers.
  • Table 2-1 means a x-y plane
  • it can be figured out by the 3D scheme through rearranging every plane then placing to the corresponding row of 2D table, as Ax 6 and Ay 2 as follows.
  • ⁇ ⁇ plane ⁇ ⁇ of ⁇ ⁇ Ax 6 [ 10110001 01111010 01110100 10001001 11111111 00000000 11111111 11111111 ]
  • ⁇ Ax 6 [ d ⁇ ⁇ 9 d ⁇ ⁇ 6 d ⁇ ⁇ 7 d ⁇ ⁇ 7 da d ⁇ ⁇ 4 d ⁇ ⁇ 2 d ⁇ ⁇ 9 d ⁇ ⁇ 9 d ⁇ ⁇ 6 d ⁇ ⁇ 7 d ⁇ ⁇ 7 da d ⁇ ⁇ 4 d ⁇ ⁇ 2 d ⁇ ⁇ 9 d ⁇ ⁇ 9 d ⁇ ⁇ 6 d ⁇ ⁇ 7 d ⁇ ⁇ 7 da d ⁇ ⁇ 4 d ⁇ ⁇ 2 d ⁇ ⁇ 9 d ⁇ ⁇ 9 d ⁇ ⁇ 6 d ⁇ ⁇ 7 d ⁇ ⁇ 7 da d ⁇ ⁇ 4 d ⁇ ⁇ 2 d ⁇ ⁇ 9
  • a 5 [ c ⁇ ⁇ 4 11 3 ⁇ a b ⁇ ⁇ 7 7 ⁇ a 64 01 ed 8 ⁇ f c ⁇ ⁇ 0 8 ⁇ e 8 ⁇ d a ⁇ ⁇ 1 b ⁇ ⁇ 7 cb 00 53 9 ⁇ c 48 26 ee eb 8 ⁇ b 23 5 ⁇ b 5 ⁇ b 27 47 91 b ⁇ ⁇ 1 5 ⁇ c cb b ⁇ ⁇ 8 34 67 4 ⁇ a 9 ⁇ f b ⁇ ⁇ 3 74 4 ⁇ c 92 17 5 ⁇ d 5 ⁇ a 7 ⁇ e 7 ⁇ d 84 0 ⁇ f a ⁇ ⁇ 0 19
  • a 6 14 [ 24 31 7 ⁇ d 3 ⁇ a e ⁇ ⁇ 8 fb 8 ⁇ d c ⁇ ⁇ 1 93 3 ⁇ d 8 ⁇ b 10 a ⁇ ⁇ 1 6 ⁇ a 61 21 a ⁇ ⁇ 6 25 c ⁇ ⁇ 6 86 ee 81 d ⁇ ⁇ 0 4 ⁇ a 47 39 33 b ⁇ ⁇ 3 91 10 71 50 ⁇ 50 0 ⁇ f 15 63 9 ⁇ f 62 25 ee c ⁇ ⁇ 6 87 9 ⁇ c e ⁇ ⁇ 2 7 ⁇ e 0 ⁇ a 9 ⁇ d 28 9 ⁇ f ce c ⁇

Abstract

The invention provides a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext), in which a multidimensional medium is meanwhile overlapped to the diffusion-area; accordingly, repeating the diffusion function for at least one time thus brings about the multilayer effect. FIG. 1 shows an embodiment of the present invention in flow chart diagram form, comprising of: inputting a plaintext in encryption or a ciphertext in decryption 100; inputting a series of password data forward in encryption or backward in decryption 200; further, by the password data, converting the dimensions of the plaintext 300, and implementing with a diffusion function, repeated TE times in encryption, TD times in decryption 400; outputting the ciphertext in encryption or the plaintext in decryption 600 if completing all password data 500.

Description

  • The Applicant's following patent applications are related to the invention and are incorporated herein by reference: “Diffused Data Encryption/Decryption Processing Method”, application Ser. No. 12/365,160, filed Feb. 3, 2009 (CIP of application Ser. No. 10/963,014, filed Oct. 12, 2004); “Multipoint Synchronous Diffused Encryption/Decryption Method”, application Ser. No. 11/171,549, filed Jun. 30, 2005.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a cryptographic method. More particularly, the invention relates to a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext), and further, repeating the diffusion function for at least one time to create a multilayer effect in order to perform the encryption and the decryption.
  • 2. Description of the Related Art
  • The prior art described that the coding of a 2D diffusion-area, see application Ser. No. 12/365,160, page 7, teaches the math of A(i, j)=A⊕Aci⊕Arj⊕b(i, j); further expressed the status of diffusion from inward to outward or vice versa in reverse, and implemented to multidimensional matrix A(i1, i2, . . . in), see application Ser. No. 11/171,549, page 4, 7.
  • The present invention emphasizes the multilayer effect of multidimensional diffusion. The diffusion function herein is notated specially by AF(p1, p2, . . . pn) to differentiate from the traditional symbolization of matrix position.
  • SUMMARY OF THE INVENTION
  • The invention provides a diffusion function working on a multidimensional diffusion-area (plaintext/ciphertext), in which a multidimensional medium is meanwhile overlapped to the diffusion-area; accordingly, repeating the diffusion function for at least one time thus brings about the multilayer effect. In addition, the numbers of repetition, a so called diffusion-cycle, is then able to divide into two parts: one for encrypting, the other for decrypting; consequently, the original status of the diffusion-area is recovered through the diffusion-cycle. The steps are shown as follows:
      • (a) Selecting a diffusion function, a multidimensional medium;
      • (b) Inputting a multidimensional diffusion-area (plaintext/ciphertext), for which the dimensions are the same as the medium's, and generating a diffusion-cycle;
      • (c) Repeating the diffusion function working on a plaintext for a first part of the diffusion-cycle to generate a ciphertext;
      • (d) Repeating the diffusion function working on the ciphertext for a second part of the diffusion-cycle to recover the plaintext.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a summary flow chart diagram showing the main steps taken while encrypting/decrypting by repeating diffusion function in accordance with the present invention;
  • FIG. 2A is a summary flow chart diagram of FIG. 1, 410 showing the steps taken while originating the function of point-diffusion from a diffusion-center in accordance with the present invention;
  • FIG. 2B is a two-dimension visualized diagram of FIG. 2A showing the point-diffusion by way of a medium anchoring to a diffusion-center in accordance with the present invention;
  • FIG. 3A is a summarized flow chart diagram of FIG. 1, 420 showing the steps taken while originating the function of block-diffusion from a block diffusion-center in accordance with the present invention;
  • FIG. 3B is a two-dimension visualized diagram of FIG. 3A showing the block-diffusion by way of a medium anchoring to a diffusion-center, a block anchoring to the diffusion-center to form a block diffusion-center in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows an embodiment of the present invention in flow chart diagram form. This system comprises of: inputting a plaintext in encryption or a ciphertext in decryption 100; inputting a series of password data forward in encryption or backward in decryption 200; further, by the password data, converting the dimensions of the plaintext 300, and implementing with a function of diffusion, repeated TE times in encryption, TD times in decryption 400; outputting the ciphertext in encryption or the plaintext in decryption 600 if completing all password data 500.
  • Function of Point-Diffusion:
  • FIG. 2A shows an embodiment of the point-diffusion function, FIG. 1, 410, in flow chart diagram. The function comprises of: reading a diffusion-area (plaintext/ciphertext), a diffusion-center, and a medium with an anchor-point 201; anchoring the medium to the diffusion-center with the anchor-point 411; implementing the point-diffusion AF(p1, p2, . . . pn) 412, which is further detailed in Notation of Point-Diffusion. In addition, also see FIG. 2B with 2D visualization for a more clear view, the diffusion effect colored from white to black generates the column segments a-g, a-b for later diffusion calculation.
  • Notation of Point-Diffusion:
    • A: a diffusion-area, wherein A expresses a d1×d2× . . . ×dn binary matrix, wherein A includes a diffusion-center {dot over (P)} expressed (p1, p2, . . . pn) coordinate position.
    • S: a n-dimension medium, expresses a s1×s2× . . . ×sn binary matrix, wherein S includes an anchor-point {dot over (S)} expressed (s1, s2, . . . , sn) coordinate position.
    • AF(p1, p2, . . . pn): the diffusion-area A performs the function of point-diffusion at position {dot over (P)}, wherein S overlaps A by {dot over (S)} anchoring to {dot over (P)}; further comprising:
      •  AF(p1, p2, . . . , pn)=A⊕Ad1p⊕Ad2p⊕ . . . ⊕Adnp⊕S;
      •  Adip=[Ad i (2), . . . , Ad i (pi), Ad i (0), Ad i (pi), . . . , Ad i (di−1)];
      • Adip expresses a series of n−1 dimensional binary matrix Ad i the axis di. Furthermore, Ad i (pi) represents the original Ad i the coordinate pi, and then, Ad i (0) expresses a zero matrix filling at the coordinate pi.
      • For example: 2D point-diffusion, with rows for x, columns for y, AF(px=3, py=2).
        • Suppose
  • A = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] , S = [ s 11 s 12 s 13 s 14 s 21 s 22 s 23 s 24 s 31 s 32 s 33 s 34 s 41 s 42 s 43 s 44 ] , S . = ( 2 , 1 ) thus AF ( 3 , 2 ) = A Ax 3 Ay 2 S = A [ a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 0 0 0 0 a 31 a 32 a 33 a 34 ] [ a 12 0 a 12 a 13 a 22 0 a 22 a 23 a 32 0 a 32 a 33 a 42 0 a 42 a 43 ] [ 0 0 0 0 0 s 11 s 12 s 13 0 s 21 s 22 s 23 0 s 31 s 32 s 33 ]
  • In detail, Ax3 expresses a series of one dimensional binary matrixes Ax on the axis x; wherein Ax3 comprises Ax (2)=[a21 a22 a23 a24] to position 1, Ax (3)=[a31 a32 a33 a34] to positions 2, 4, and Ax (0)=[0 0 0 0] at position 3. Furthermore, Ay2 expresses a series of one dimensional binary matrixes Ay on the axis y; wherein Ay2 comprises
  • A y ( 2 ) = [ a 12 a 22 a 32 a 42 ]
  • to positions 1, 3,
  • A y ( 3 ) = [ a 13 a 23 a 33 a 43 ]
  • to position 4, and
  • A y ( 0 ) = [ 0 0 0 0 ]
  • at position 2.
    Finally, the effective S comes from the overlap between S and A, while {dot over (S)}=(2,1) anchors to P=(3,2).
    For example: 3D point-diffusion AF(px=3, py=2, pz=1). Suppose
  • A = [ a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 z = 1 a 112 a 122 a 132 a 142 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 a 412 a 422 a 432 a 442 z = 2 a 113 a 123 a 133 a 143 a 213 a 223 a 233 a 243 a 313 a 323 a 333 a 343 a 413 a 423 a 433 a 443 z = 3 ] , S = [ s 111 s 121 s 131 s 141 s 211 s 221 s 231 s 241 s 311 s 321 s 331 s 341 s 411 s 421 s 431 s 441 z = 1 s 112 s 122 s 132 s 142 s 212 s 222 s 232 s 242 s 312 s 322 s 332 s 342 s 412 s 422 s 432 s 442 z = 2 s 113 s 123 s 133 s 143 s 213 s 223 s 233 s 243 s 313 s 323 s 333 s 343 s 413 s 423 s 433 s 443 z = 3 ] , S . = ( 2 , 1 , 3 ) ; thus , AF ( 3 , 2 , 1 ) = A Ax 3 Ay 2 Az 1 S = A [ a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 0 0 0 0 a 311 a 321 a 331 a 341 z = 1 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 0 0 0 0 a 312 a 322 a 332 a 342 z = 2 a 213 a 223 a 233 a 243 a 313 a 323 a 333 a 343 0 0 0 0 a 313 a 323 a 333 a 343 z = 3 ] [ a 121 0 a 121 a 131 a 221 0 a 221 a 231 a 321 0 a 321 a 331 a 421 0 a 421 a 431 z = 1 a 122 0 a 122 a 132 a 222 0 a 222 a 232 a 322 0 a 322 a 332 a 422 0 a 422 a 432 z = 2 a 123 0 a 123 a 133 a 223 0 a 223 a 233 a 323 0 a 323 a 333 a 423 0 a 423 a 433 z = 3 ] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z = 1 a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 z = 2 a 112 a 122 a 132 a 142 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 a 412 a 422 a 432 a 442 z = 3 ] [ 0 0 0 0 0 s 113 s 123 s 133 0 s 213 s 223 s 233 0 s 313 s 323 s 333 z = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z = 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z = 3 ] .
  • In detail, Ax3 expresses a series of two dimensional binary matrixes Ax on the axis x; wherein Ax3 comprises
  • A x ( 2 ) = [ a 211 a 221 a 231 a 241 z = 1 a 212 a 222 a 232 a 242 z = 2 a 213 a 223 a 233 a 243 z = 3 ]
  • to position 1.
  • A x ( 3 ) = [ a 311 a 321 a 331 a 341 z = 1 a 312 a 322 a 332 a 342 z = 2 a 313 a 323 a 333 a 343 z = 3 ]
  • to positions 2, 4, and
  • A x ( 0 ) = [ 0 0 0 0 z = 1 0 0 0 0 z = 2 0 0 0 0 z = 3 ]
  • at position 3.
    Furthermore, Ay2 expresses a series of two dimensional binary matrixes Ay on the axis y; wherein Ay2 comprises
  • A y ( 2 ) = [ a 121 z = 1 a 122 z = 2 a 123 z = 3 a 221 a 222 a 223 a 321 a 322 a 323 a 421 a 422 a 423 ]
  • to positions 1, 3,
  • A y ( 3 ) = [ a 131 z = 1 a 132 z = 2 a 133 z = 3 a 231 a 232 a 233 a 331 a 332 a 333 a 431 a 432 a 433 ]
  • to position 4, and
  • A y ( 0 ) = [ 0 z = 1 0 z = 2 0 z = 3 0 0 0 0 0 0 0 0 0 ]
  • at position 2.
    Moreover, Az1 expresses a series of two dimensional binary matrixes Az on the axis z; wherein Az1 comprises
  • A z ( 1 ) = [ a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 ]
  • to position 2,
  • A z ( 2 ) = [ a 112 a 122 a 132 a 142 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 a 412 a 422 a 432 a 442 ]
  • to position 3, and
  • A z ( 0 ) = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
  • at position 1. Finally, the effective S comes from the overlap between S and A, while {dot over (S)}=(2,1,3) anchors to P=(3,2,1).
    • AF(p1, p2 t, . . . , pn): A performs the function of point-diffusion, repeated t times.
      • Example: (a) AF(p1, p2 2, . . . , pn)=AF(p1, p2, . . . , pn)F(p1, p2, . . . , pn)
        • (b) AF(p1, p2 1, . . . , pn)=AF(p1, p2, . . . , pn)
        • (c) AF(p1, p2 0, . . . , pn)=A
    • T: a diffusion-cycle, expresses AF(p1, p2 T, . . . , pn)=A, wherein T=2U+1, U=┌log2 u┐, u=max(d1, d2, . . . , dn).
    Function of Block-Diffusion:
  • FIG. 3A shows an embodiment of the block-diffusion function, FIG. 1, 420, in flow chart diagram. The function comprises of: reading a diffusion-area (plaintext/ciphertext), a diffusion-center, a medium with an anchor-point and a block with an anchor-point 202; anchoring the medium and the block to the diffusion-center with the anchor-point 421; implementing the block-diffusion ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n) 422, further detailed in Notation of Block-Diffusion. In addition, also see FIG. 3B with 2D visualization for a more clear view, the diffusion effect colored from white to black generates the block-column segments a-c, a-b for later diffusion calculation.
  • Notation of Block-Diffusion:
    • A: a n-dimension plaintext, expresses a d1×d2× . . . ×dn binary matrix, wherein A includes a diffusion-center P expressed (p1, p2, . . . pn) coordinate position.
    • S: a n-dimension medium, expresses a s1×s2× . . . ×sn binary matrix, wherein S includes an anchor-point {dot over (S)} expressed ({dot over (s)}1, {dot over (s)}2, . . . , {dot over (s)}n) coordinate position.
    • B: a n-dimension unit-block, expresses a b1×b2× . . . ×bn binary matrix, wherein B includes an anchor-point {dot over (B)} expressed ({dot over (b)}1, {dot over (b)}2, . . . , {dot over (b)}n) coordinate position.
    • ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n):  performs the function of block-diffusion, wherein  expresses A by B unit seeing that {dot over (B)} anchors to P, and thus, includes a block diffusion-center {circumflex over (P)} expressed ({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n) coordinate position. Therefore, A translates into a {circumflex over (d)}1×{circumflex over (d)}2× . . . ×{circumflex over (d)}n binary matrix, wherein {circumflex over (d)}i=┌(pi−{dot over (b)}i)/bi┐+┌(di−pi+{dot over (b)}i┐, and {circumflex over (p)}i=(pi−{dot over (b)}i)/bi|+1; further comprising:
  • A ^ F ( p ^ 1 , p ^ 2 , , p ^ n ) = A ^ A ^ d ^ 1 p ^ A ^ d ^ 2 p ^ A ^ d ^ n p ^ S ; A ^ d ^ i p ^ = [ A ^ d ^ i ( 2 ) , , A ^ d ^ i ( p ^ i ) , A ^ d ^ i ( 0 ) , A ^ d ^ i ( p ^ i ) , , A ^ d ^ i ( d ^ i - 1 ) ] ;
  • Â{circumflex over (d)}i{circumflex over (p)} expresses a series of n−1 dimensional binary matrixes
  • A ^ d ^ i
  • on the axis {circumflex over (d)}i. Furthermore,
  • A ^ d ^ i ( p ^ i )
  • represents the original
  • A ^ d ^ i
  • at the coordinate {circumflex over (p)}i, and then,
  • A ^ d ^ i ( 0 )
  • expresses a zero matrix tilling at the coordinate {circumflex over (p)}i.
      • For example: 2D block-diffusion, with rows for x, columns for y, AF(px=3, py=2). Suppose
  • A = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] , S = [ s 11 s 12 s 13 s 14 s 21 s 22 s 23 s 24 s 31 s 32 s 33 s 34 s 41 s 42 s 43 s 44 ] , B = [ b 11 b 12 b 21 b 22 ] , S . = ( 2 , 1 ) , B . = ( 1 , 1 ) ;
  • thus, dimensions {circumflex over (x)}=┌(3−1)/2┐+┌(4−3+1)/2┐=2 and ŷ=┌(2−1)/2┐+┌(4−2+1)/2┐=3;
  • Figure US20110228927A1-20110922-C00001
  • that shows the block-diffusion in 2×3 blocks, but with the data still kept in 4×4 bits. And now {circumflex over (p)}x=┌(3−1)/2┐+1=2, {circumflex over (p)}y=┌(2−1)/2┐+1=2, thus
  • Figure US20110228927A1-20110922-C00002
  • In detail, Â{circumflex over (x)}2 expresses a series of one dimensional binary matrixes Â{circumflex over (x)} on the axis {circumflex over (x)}; wherein Â{circumflex over (x)}2 comprises
  • A ^ x ^ ( 2 ) = [ a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ]
  • to position 1, and
  • A ^ x ^ ( 0 ) = [ 0 0 0 0 0 0 0 0 ]
  • at position 2. Furthermore, Âŷ2 expresses a series of one dimensional binary matrixes Âŷ on the axis ŷ; wherein Âŷ2 comprises
  • A ^ y ^ ( 2 ) = [ a 12 a 13 a 22 a 23 a 32 a 33 a 42 a 43 ]
  • to positions 1, 3, and
  • A ^ y ^ ( 0 ) = [ 0 0 0 0 0 0 0 0 ]
  • at position 2. Finally, the effective S comes from the overlap between S and A, while {dot over (S)}=(2,1) anchors to P=(3,2).
      • For example: 3D block-diffusion AF(px=3, py=2, pz=1). Suppose
  • A = [ a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 z = 1 a 112 a 122 a 132 a 142 a 212 a 222 a 232 a 242 a 312 a 322 a 332 a 342 a 412 a 422 a 432 a 442 z = 2 a 113 a 123 a 133 a 143 a 213 a 223 a 233 a 243 a 313 a 323 a 333 a 343 a 413 a 423 a 433 a 443 z = 3 ] , S = [ s 111 s 121 s 131 s 141 s 211 s 221 s 231 s 241 s 311 s 321 s 331 s 341 s 411 s 421 s 431 s 441 z = 1 s 112 s 122 s 132 s 142 s 212 s 222 s 232 s 242 s 312 s 322 s 332 s 342 s 412 s 422 s 432 s 442 z = 2 s 113 s 123 s 133 s 143 s 213 s 223 s 233 s 243 s 313 s 323 s 333 s 343 s 413 s 423 s 433 s 443 z = 3 ] , B = [ b 111 b 121 b 211 b 221 z = 1 | b 112 b 122 b 212 b 222 z = 2 ] , S . = ( 2 , 1 , 3 ) , B . = ( 1 , 1 , 1 ) ;
  • thus, dimensions {circumflex over (x)}=┌(3−1)/2┐+┌(4−3+1)/2┐=2, ŷ=┌(2−1)/2┐+┌(4−2+1)/2┐=3, and {circumflex over (z)}=┌(1−1)/2┐+┌(4−1+1)/2┐=2; further
  • Figure US20110228927A1-20110922-C00003
      • that shows the block-diffusion in 2×3×2 blocks, but with the data still kept in 4×4×3 bits. And now {circumflex over (p)}x=┌(3−1)/2┐+1=2, {circumflex over (p)}y=┌(2−1)/2┐+1=2, {circumflex over (p)}z=┌(1−1)/2┐+1=1, thus,
  • Figure US20110228927A1-20110922-C00004
  • In detail, Â{circumflex over (x)}2 expresses a series of two dimensional binary matrixes Â{circumflex over (x)} on the axis {circumflex over (x)}; wherein Â{circumflex over (x)}2 comprises
  • A ^ x ^ ( 2 ) = [ a 311 a 321 a 331 a 341 a 312 a 322 a 332 a 342 a 411 a 421 a 431 a 441 a 412 a 422 a 432 a 442 z ^ = 1 a 313 a 323 a 333 a 343 a 413 a 423 a 433 a 443 z ^ = 2 ]
  • to position 1, and
  • A ^ x ^ ( 0 ) = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z ^ = 1 0 0 0 0 0 0 0 0 z ^ = 2 ]
  • at position 2.
    Furthermore, Âŷ2 expresses a series of two dimensional binary matrixes Âŷ on the axis ŷ; wherein Âŷ2 comprises Âŷ(2) to positions 1, 3 is equal to
  • [ a 121 a 131 a 221 a 231 a 321 a 331 a 421 a 431 a 122 a 132 a 222 a 232 a 322 a 332 a 422 a 432 z ^ = 1 a 123 a 133 a 223 a 233 a 323 a 333 a 423 a 433 z ^ = 2 ] , and A ^ y ^ ( 0 ) = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z ^ = 1 0 0 0 0 0 0 0 0 z ^ = 2 ] and
  • at position 2.
    Moreover, Â{circumflex over (z)}1 expresses a series of two dimensional binary matrixes Â{circumflex over (z)} on the axis {circumflex over (z)}; wherein Â{circumflex over (z)}1 comprises
  • A ^ z ^ ( 1 ) = [ a 111 a 121 a 131 a 141 a 211 a 221 a 231 a 241 a 311 a 321 a 331 a 341 a 411 a 421 a 431 a 441 z ^ = 1 ]
  • to position
  • A ^ z ^ ( 0 ) = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
  • at position 1. Finally, the effective S comes from the overlap between S and A, while {dot over (S)}=(2,1,3) anchors to P=(3,2,1).
    • ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . , {dot over (p)}n): Â performs the function of block-diffusion, repeated t times.
      • Example: (a) ÂF({circumflex over (p)}1, {circumflex over (p)}2 2, . . . , {circumflex over (p)}n)=ÂF({circumflex over (p)}i, {circumflex over (p)}2, . . . , {dot over (p)}n)F({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n)
        • (b) {dot over (A)}F({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n)=ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n)
        • (c) ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n)=A
    • T: a diffusion-cycle, expresses {dot over (A)}F({circumflex over (p)}1, {circumflex over (p)}2 T, . . . {dot over (p)}n)=A, wherein T=2U+1, U=┌log2 u┌, u=max(┌di/bi┐, 1≦i≦n).
    Embodiment of Cryptographic Method
  • To make it easier to understand the content of the present invention, examples in detail are described as follows:
  • Suppose a plaintext A: “smoother”, its ASCII code is 73 6d 6f 6f 74 68 65 72, the binary format is shown as an 8×8 two-dimensional matrix as in Table 1-1.
  • TABLE 1-1
    ASCII
    73 6d 6f 6f 74 68 65 72
    1 1 1 1 0 0 1 0
    1 0 1 1 0 0 0 1
    0 1 1 1 1 0 1 0
    0 1 1 1 0 1 0 0
    1 0 0 0 1 0 0 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
    0 0 0 0 0 0 0 0
  • Suppose a password: “Yourlips”, its ASCII code is 59 6f 75 72 6c 69 70 73. For applying to the plaintext, the ASCII code: first, excludes the last digit 3; second, forms into octal format 26 26 75.65 34 46 61 51 34 07; third, adds 1 to each digit; Table 1-2 shows that the password includes 10 diffusion-centers.
  • TABLE 1-2
    ASCII
    26 26 75 65 34 46 61 51 34 07
    Row 3 3 8 7 4 5 7 6 4 1
    Column 7 7 6 6 5 7 2 2 5 8
  • Example 1 The Function of Point-Diffusion in 2D
  • Supposes
  • S 5 × 5 = [ 10011 01101 10111 10010 11101 ] , S . = ( 1 , 1 ) ;
  • reads every diffusion-center in order, if from 1 to 10 on encryption, then from 10 back to 1 on decryption; counts the diffusion-cycle T=23+1=16, if 1 time on encryption, then 15 times on decryption. In math, inputs the plaintext A, then runs A1, A1 1, . . . A9 1 and outputs A1, A2, . . . A10 during encryption; inputs the ciphertext A10, then runs A10 15, A9 15, . . . A1 15 and outputs A9, . . . , A1, A during decryption. The details on the order 1, 5, 10 are shown as below, Ad i (0) marked in boldface.
  • Encryption at the 1st Diffusion-Center (3,7):
  • A 1 = AF ( 3 , 7 ) = A Ax 3 Ay 7 S = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] [ 10110001 01111010 00000000 01111010 01110100 10001001 11111111 11111111 ] [ 11100101 01100000 11110101 11101000 00010000 11111101 11111101 00000000 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 10100110 10101011 10001101 11100111 11101111 10001001 11111110 11111111 ] = A 1 .
  • Encryption at the 5th Diffusion-Center (4,5):
  • A 4 1 = A 4 F ( 4 , 5 ) = A 4 A 4 x 4 A 4 y 5 S = [ 11010111 00010101 00010001 01000011 00001111 01011001 10101011 01100101 ] [ 00010101 00010001 01000011 00000000 01000011 00001111 01011001 10101011 ] [ 10100011 00100010 00100000 10000001 00010111 10110100 01010101 11000010 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 01100001 00100110 01110010 11001011 01011101 11101001 10101110 00000010 ] = A 5 .
  • Encryption at the 10th Diffusion-Center (1,8):
  • A 9 1 = A 9 F ( 1 , 8 ) = A 9 A 9 x 1 A 9 y 8 S = [ 01110011 10000110 10011100 10101100 01000101 10001011 00110101 10101001 ] [ 00000000 01110011 10000110 10011100 10101100 01000101 10001011 00110101 ] [ 11100110 00001100 00111000 01011000 10001010 00010110 01101010 01010010 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 10010100 11111001 00100011 01101001 01100010 11011000 11010100 11001110 ] = A 10 .
  • Decryption at the 10th Diffusion-Center (1,8):
  • A 10 15 = A 10 14 F ( 1 , 8 ) = A 10 14 A 10 14 x 1 A 10 14 y 8 S = [ 00101110 10011000 00000011 10011010 01001010 10111111 10000110 11100101 ] [ 00000000 00101110 10011000 00000011 10011010 01001010 10111111 10000110 ] [ 01011100 00110000 00000110 00110100 10010100 01111110 00001100 11001010 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 01110011 10000110 10011100 10101100 01000101 10001011 00110101 10101001 ] = A 9 .
  • Decryption at the 5th Diffusion-Center (4,5):
  • A 5 15 = A 5 14 F ( 4 , 5 ) = A 5 14 A 5 14 x 4 A 5 14 y 5 S = [ 00011010 11111000 00011001 00111100 00010110 11000111 00100110 00111001 ] [ 11111000 00011001 00111100 00000000 00111100 00010110 11000111 00100110 ] [ 00110101 11110100 00110100 01110110 00100011 10000011 01000011 01110100 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 11010111 00010101 00010001 01000011 00001111 01011001 10101011 01100101 ] = A 4 .
  • Decryption at the 1st Diffusion-Center (3,7):
  • A 1 15 = A 1 14 F ( 3 , 7 ) = A 1 14 A 1 14 x 3 A 1 14 y 7 S = [ 11010110 10001001 00101000 00110101 01101011 01110011 01111010 11010111 ] [ 10001001 00101000 00000000 00101000 00110101 01101011 01110011 01111010 ] [ 10101101 00010000 01010000 01101000 11010101 11100101 11110101 10101101 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] = A .
  • Example 2 The Function of Block-Diffusion in 2D
  • Supposes that
  • S 5 × 5 = [ 10011 01101 10111 10010 11101 ] , S . = ( 1 , 1 ) , B 2 × 2 = [ b 11 b 12 b 21 b 22 ] , B . = ( 1 , 1 ) ;
  • reads
    every diffusion-center in order, if from 1 to 10 on encryption, then from 10 back to 1 on decryption; counts the diffusion-cycle T=22+1=8, since di/bi=4=22, and if 1 time on encryption, then 7 times on decryption. In math, inputs the plaintext A, then runs Â1, Â1 1, . . . Â9 1, and outputs A1, A2, . . . A10 during encryption; inputs the ciphertext A10, then runs Â10 7, Â9 7, . . . Â1 7 and outputs A9, . . . , A1, A during decryption. The details on the order 1, 5, 10 are shown as below,
  • A ^ d ^ i ( 0 )
  • marked in boldface.
  • Encryption at the 1st Diffusion-Center (3,7):
  • A ^ 1 = A ^ F ( 2 , 4 ) = = A ^ A ^ x ^ 2 A ^ y ^ 4 S ( p ^ x = ( 3 - 1 ) / 2 + 1 , p ^ y = ( 7 - 1 ) / 2 + 1 ) = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] [ 01111010 01110100 00000000 00000000 01111010 01110100 10001001 11111111 ] [ 11001000 11000100 11101000 11010000 00100100 11111100 11111100 00000000 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 01000000 00000001 10010000 10100101 11010101 01110101 10001001 11111111 ] = A 1 .
  • Encryption at the 5th Diffusion-Center (4,5):
  • A ^ 4 1 = A ^ 4 F ( 3 , 3 ) = A ^ 4 A ^ 4 x ^ 3 A ^ 4 y ^ 3 S ( p ^ x = ( 4 - 1 ) / 2 + 1 , p ^ y = ( 5 - 1 ) / 2 + 1 ) = [ 11000011 10100110 10001001 01000110 00110011 01100010 11011111 00000000 ] [ 10001001 01000110 00110011 00000000 00000000 01000110 00110011 01100010 ] [ 0000 00 00 1001 00 01 0010 00 10 0001 00 01 1100 00 00 1000 00 00 0111 00 11 0000 00 00 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 01001010 01110001 10011000 01011110 11110101 10101111 10010110 01101100 ] = A 5 .
  • Encryption at the 10th Diffusion-Center (1,8): (0, Zero in Aŷ, (5), 2nd Col.)
  • A ^ 9 1 = A ^ 9 F ( 1 , 5 ) = A ^ 9 A ^ 9 x ^ 1 A ^ 9 y ^ 5 S ( p ^ x = ( 1 - 1 ) / 2 + 1 , p ^ y = ( 8 - 1 ) / 2 + 1 ) = [ 10011001 11110100 10001001 10001000 11011000 10000001 01110101 10011001 ] [ 00000000 00000000 10011001 11110100 10001000 00010011 11011000 10000001 ] [ 011001 0 110100 0 001000 0 010011 0 011000 0 000001 0 110101 0 011001 0 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 11111100 00100100 00110000 10101010 00110001 10010110 01111001 01111100 ] = A 10 .
  • Decryption at the 10th Diffusion-Center (1,8):
  • A ^ 10 7 = A ^ 10 6 F ( 1 , 5 ) = A ^ 10 6 A ^ 10 6 x ^ 1 A ^ 10 6 y ^ 5 S ( p ^ x = ( 1 - 1 ) / 2 + 1 , p ^ y = ( 8 - 1 ) / 2 + 1 ) = [ 01111000 01100100 01100101 01001110 10001100 11000011 11001101 00010010 ] [ 00000000 00000000 01111000 01100100 01100101 01001110 10001100 11000011 ] [ 111000 0 100100 0 100101 0 001110 0 001100 0 000011 0 001101 0 010010 0 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 10011001 11110100 10001000 00010011 11011000 10000001 01110101 10011001 ] = A 9 .
  • Decryption at the 5th diffusion-center (4,5):
  • A ^ 5 7 = A ^ 5 6 F ( 3 , 3 ) = A ^ 5 6 A ^ 5 6 x ^ 3 A ^ 5 6 y ^ 3 S ( p ^ x = ( 4 - 1 ) / 2 + 1 , p ^ y = ( 5 - 1 ) / 2 + 1 ) = [ 00101110 11111000 01011110 10111100 10100100 11000100 10110010 01101000 ] [ 01011110 10111100 10100100 00000000 00000000 10111100 10100100 11000100 ] [ 1011 00 11 1110 00 10 0111 00 11 1111 00 11 1001 00 01 0001 00 01 1100 00 00 1010 00 10 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 11000011 10100110 10001001 01000110 00110011 01100010 11011111 00000000 ] = A 4 .
  • Decryption at the 1st Diffusion-Center (3,7):
  • A ^ 1 7 = A ^ 1 6 F ( 2 , 4 ) = A ^ 1 6 A ^ 1 6 x ^ 2 A ^ 1 6 y ^ 4 S ( p ^ x = ( 3 - 1 ) / 2 + 1 , p ^ y = ( 7 - 1 ) / 2 + 1 ) = [ 01100010 00000000 00011000 10110001 00101111 10111100 01101111 10001100 ] [ 00011000 10110001 00000000 00000000 00011000 10110001 00101111 10111100 ] [ 100010 00 000000 00 011000 00 110001 00 101111 00 111100 00 101111 00 001100 00 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] = A .
  • Example 3 The Functions of Point-Diffusion and Block-Diffusion in 2D
  • Supposes
  • S 5 × 5 = [ 10011 01101 10111 10010 11101 ] , S . = ( 1 , 1 ) , B 2 × 2 = [ b 11 b 12 b 21 b 22 ] , B . = ( 1 , 1 ) ;
  • selects a switch set Y=[1011011101]; reads every diffusion-center and Y element in order, if from 1 to 10 on encryption, then from 10 back to 1 on decryption; counts the diffusion-cycle, if Y element is 1, then T=23+1=16 with point-diffusion, otherwise, T=22+1=8 with block-diffusion, and if 1 time on encryption, then 15 or 7 times on decryption.
  • In math, inputs the plaintext A, then runs A1, Â1 1, A2 1, A3 1, Â4 1, A5 1, A6 1, A7 1, Â8 1, A9 1 and outputs A1, A2, . . . , A9, A10 during encryption; inputs the ciphertext A10, then runs A10 15, Â9 7, A8 15, A7 15, A6 15, Â5 7, A4 15, A3 15, Â2 7, A1 15 and outputs A9, A8, . . . , A1, A during decryption. The details on the order 1, 5, 10 are shown as below, Ad i (0) and
  • A ^ d ^ i ( 0 )
  • marked in boldface.
  • Encryption at the 1st Diffusion-Center (3,7): Y(1)=1, Point-Diffusion.
  • A 1 = AF ( 3 , 7 ) = A Ax 3 Ay 7 S = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] [ 10110001 01111010 00000000 01111010 01110100 10001001 11111111 11111111 ] [ 111001 0 1 011000 0 0 111101 0 1 111010 0 0 000100 0 0 111111 0 1 111111 0 1 000000 0 0 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 10100110 10101011 10001101 11100111 11101111 10001001 11111110 11111111 ] = A 1
  • Encryption at the 5th Diffusion-Center (4,5): Y(5)=0, Block-Diffusion.
  • A ^ 4 1 = A ^ 4 F ( 3 , 3 ) = A ^ 4 A 4 x ^ 3 A ^ 4 y ^ 3 S ( p ^ x = ( 4 - 1 ) / 2 + 1 , p ^ y = ( 5 - 1 ) / 2 + 1 ) = [ 11001000 00011010 10000111 11010010 01000111 11100010 11010101 00010110 ] [ 10000111 11010010 01000111 00000000 00000000 11010010 01000111 11100010 ] [ 0010 00 10 0110 00 10 0001 00 01 0100 00 00 0001 00 01 1000 00 00 0101 00 01 0101 00 01 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 01101101 10101010 11010001 10011011 01010000 10111011 11001010 10101011 ] = A 5
  • Encryption at the 10th Diffusion-Center (1,8): Y(10)=1, Point-Diffusion.
  • A 9 1 = A 9 F ( 1 , 8 ) = A 9 A 9 x 1 A 9 y 8 S = [ 00110000 11000111 00001010 10000100 00101100 11110100 00000111 10011011 ] [ 00000000 00110000 11000111 00001010 10000100 00101100 11110100 00000111 ] [ 0110000 0 1000111 0 0001010 0 0000100 0 0101100 0 1110100 0 0000111 0 0011011 0 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 01010001 01111001 11011000 10000111 11110001 00110000 11111101 10101010 ] = A 10
  • Decryption at the 10th Diffusion-Center (1,8): Y(10)=1, Point-Diffusion.
  • A 10 15 = A 10 14 F ( 1 , 8 ) = A 10 14 A 10 14 x 1 A 10 14 y 8 S = [ 11101111 00011000 11110001 00101100 11111111 11111001 10101010 11101111 ] [ 00000000 11101111 00011000 11110001 00101100 11111111 11111001 10101010 ] [ 1101111 0 0011000 0 1110001 0 0101100 0 1111111 0 1111001 0 0101010 0 1101111 0 ] [ 00000001 00000000 00000001 00000001 00000001 00000000 00000000 00000000 ] = [ 00110000 11000111 00001010 10000100 00101100 11110100 00000111 10011011 ] = A 9
  • Decryption at the 5th Diffusion-Center (4,5): Y(5)=0, Block-Diffusion.
  • A ^ 5 7 = A ^ 5 6 F ( 3 , 3 ) = A ^ 5 6 A ^ 5 6 x ^ 3 A ^ 5 6 y ^ 3 S ( p ^ x = ( 4 - 1 ) / 2 + 1 , p ^ y = ( 5 - 1 ) / 2 + 1 ) = [ 11101100 10100011 10010111 00111001 01000111 10010000 00101110 00101010 ] [ 10010111 00111001 01000001 00000000 00000000 00111001 01000001 10010000 ] [ 1011 00 11 1000 00 0 0 0101 00 01 1110 00 1 0 0000 00 00 0100 00 00 1011 00 11 1010 00 10 ] [ 00000000 00000000 00000000 00001001 00000110 00001011 00001001 00001110 ] = [ 11001000 00011010 10000111 11010010 01000111 11100010 11010101 00010110 ] = A 4
  • Decryption at the 1st Diffusion-Center (3,7): Y(1)=1, Point-Diffusion.
  • A 1 15 = A 1 14 F ( 3 , 7 ) = A 1 14 A 1 14 x 3 A 1 14 y 7 S = [ 11010110 10001001 00101000 00110101 01101011 01110011 01111010 11010111 ] [ 10001001 00101000 00000000 00101000 00110101 01101011 01110011 01111010 ] [ 101011 0 1 000100 0 0 010100 0 0 011010 0 0 110101 0 1 111001 0 1 111101 0 1 101011 0 1 ] [ 00000000 00000000 00000010 00000001 00000010 00000010 00000011 00000000 ] = [ 11110010 10110001 01111010 01110100 10001001 11111111 11111111 00000000 ] = A
  • Example 4 The Function of Point-Diffusion in 3D
  • Supposes a plaintext A: let Table 1-1 overlap for 8 times to shape a 8×8×8 binary matrix, shown as a 8×8 matrix in ASCII code format as in Table 2-1. To figure out the later 3D calculation clearly with Table 2-1, the row stands for a x-y plane, namely Table 1-1, and all rows resolve as the axis z.
  • TABLE 2-1
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
    73 6d 6f 6f 74 68 65 72
  • Suppose a password: “YourlipsY”, its ASCII code is 59 6f 75 72 6c 69 70 73 59. For applying to the plaintext, the ASCII code: first, subtracts 8 if a digit >7 and leaves 51 67 75 72 64 61 70 73 51; second, every three-digit forms a division; third, adds 1 to each digit; Table 2-2 shows that the password includes 6 diffusion-centers.
  • TABLE 2-2
    ASCII
    516 775 726 461 707 351
    First Dimension 6 8 8 5 8 4
    Second Dimension 2 8 3 7 1 6
    Third Dimension 7 6 7 2 8 2
  • Supposes S1×1×1=1, {dot over (S)}=(1,1,1); reads every diffusion-center in order, if from 1 to 6 on encryption, then from 6 back to 1 on decryption; counts the diffusion-cycle T=23+1=16, if 1 time on encryption, then 15 times on decryption. In math, inputs the plaintext A, then runs A1, A1 1, . . . A5 1 and outputs A1, A2, . . . A6 during encryption; inputs the ciphertext A6, then runs A6 15, A5 15, . . . A1 15 and outputs A5, . . . , A1, A during decryption. The details on the order 1, 6 are shown as below, Ad i (0) marked in boldface.
  • Encryption at the 1st Diffusion-Center (6,2,7):

  • A 1 =AF(6,2,7)=A⊕Ax 6 ⊕Ay 2 ⊕Az 7 ⊕S=A 1;
  • Considering that the row of Table 2-1 means a x-y plane, it can be figured out by the 3D scheme through rearranging every plane then placing to the corresponding row of 2D table, as Ax6 and Ay2 as follows.
  • a plane of Ax 6 = [ 10110001 01111010 01110100 10001001 11111111 00000000 11111111 11111111 ] , Ax 6 = [ d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 d 9 d 6 d 7 d 7 da d 4 d 2 d 9 ] ; a plane of Ay 2 = [ 10111001 00011000 10111101 10111010 00000000 10111111 10111111 00000000 ] , Ay 2 = [ 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 6 d 00 6 d 6 f 6 f 74 68 65 ] ;
  • In addition, S is anchored to position (6,2,7), see below, value 1 found at px=6, py=2 on the 7th plane (pz=7).
  • the 7 th plane of S = [ 00000000 00000000 00000000 00000000 00000000 01000000 00000000 00000000 ] , S = [ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ] .
  • Encryption at the 6th Diffusion-Center (4,6,2):
  • A 5 F ( 4 , 6 , 2 ) = A 5 A 5 x 4 A 5 y 6 A 5 z 2 S = A 6 ; A 5 = [ c 4 11 3 a b 7 7 a 64 01 ed 8 f c 0 8 e 8 d a 1 b 7 cb 00 53 9 c 48 26 ee eb 8 b 23 5 b 5 b 27 47 91 b 1 5 c cb b 8 34 67 4 a 9 f b 3 74 4 c 92 17 5 d 5 a 7 e 7 d 84 0 f a 0 19 5 d e 6 48 7 a 82 c 3 bf ac 38 df 13 2 f d 8 1 a ] ; A 5 z 2 = [ 8 f c 0 8 e 8 d a 1 b 7 cb 00 00 00 00 00 00 00 00 00 8 f c 0 8 e 8 d a 1 b 7 cb 00 53 9 c 48 26 ee eb 8 b 23 5 b 5 b 27 47 91 b 1 5 c cb b 8 34 67 4 a 9 f b 3 74 4 c 92 17 5 d 5 a 7 e 7 d 84 0 f a 0 19 5 d e 6 48 7 a 82 c 3 ] ; A 5 x 4 = [ 82 20 75 63 f 5 c 2 00 d 6 17 80 17 16 40 63 95 00 a 1 36 94 43 d 7 d 5 15 41 b 5 b 5 43 83 20 60 b 6 95 74 62 c 3 95 37 61 e 2 96 21 23 b 6 b 5 f 7 f 6 02 17 40 34 b 6 c 3 94 f 5 01 81 77 56 74 b 7 21 57 b 4 35 ] ; S = [ 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ] ; A 5 y 6 = [ 11 3 a b 7 7 a 64 00 64 01 c 0 8 e 8 d a 1 b 7 00 b 7 cb 9 c 48 26 ee eb 00 eb 8 b 5 b 27 47 91 b 1 00 b 1 5 c 34 67 4 a 9 f b 3 00 b 3 74 17 5 d 5 a 7 e 7 d 00 7 d 84 19 5 d e 6 48 7 a 00 7 a 82 ac 38 df 13 2 f 00 2 f d 8 ] ; A 6 = [ d 8 cb 76 23 4 a 11 ae 3 a 58 ce 14 3 a 56 dc e 9 cb e 1 22 74 06 73 89 be e 9 e 6 55 6 b 73 ee 3 a d 0 21 a 3 6 a c 9 07 8 a 63 79 65 1 c 5 d d 6 db 6 b 38 8 f d 0 6 b 67 50 37 d 8 f 2 7 d cf c 4 db ce 9 d 55 02 c 1 34 ] .
  • Decryption at the 6th Diffusion-Center (4,6,2):
  • A 6 15 = A 6 14 F ( 4 , 6 , 2 ) = A 6 14 A 6 14 x 4 A 6 14 y 6 A 6 14 z 2 S = A 5 ; A 6 14 = [ 24 31 7 d 3 a e 8 fb 8 d c 1 93 3 d 8 b 10 a 1 6 a 61 21 a 6 25 c 6 86 ee 81 d 0 4 a 47 39 33 b 3 91 10 71 50 50 0 f 15 63 9 f 62 25 ee c 6 87 9 c e 2 7 e 0 a 9 d 28 9 f ce c 7 85 48 d 0 ba 31 3 c 6 a dd 94 13 aa bf 77 ] ; A 6 14 x 4 = [ 42 60 f 6 75 d 4 f 5 16 80 21 76 15 20 76 d 5 c 0 40 43 42 83 03 61 00 b 6 95 83 74 61 61 21 20 e 0 a 0 a 0 17 22 c 1 b 5 c 1 42 d 7 83 03 36 c 1 35 15 36 54 37 97 83 02 01 a 0 75 60 76 d 5 b 6 22 d 6 55 77 e 3 ] ; A 6 14 y 6 = [ 31 7 d 3 a e 8 fb 00 fb 8 d 3 d 8 b 10 bd 6 a 00 6 a 61 25 c 6 86 b 3 81 00 81 dd 39 33 b 3 13 10 00 10 71 0 f 15 63 5 b 62 00 62 25 87 9 c e 2 1 a 0 a 00 0 a 9 d ce c 7 85 83 d 0 00 d 0 ba 6 a dd 94 ec aa 00 aa bf ] ; A 6 14 z 2 = [ 93 3 d 8 b 10 bd 6 a 61 21 00 00 00 00 00 00 00 00 93 3 d 8 b 10 bd 6 a 61 21 a 6 25 c 6 86 b 3 81 dd 4 a 47 39 33 b 3 13 10 71 50 50 0 f 15 63 5 b 62 25 ee c 6 87 9 c e 2 1 a 0 a 9 d 28 9 f ce c 7 85 83 d 0 ba 31 ] ;
  • Decryption at the 1st Diffusion-Center (6,2,7):
  • A 1 15 = A 1 14 F ( 6 , 2 , 7 ) = A 1 14 A 1 14 x 6 A 1 14 y 2 A 1 14 z 7 S = A . A 1 14 = [ 53 1 d 4 f 6 e 77 6 e e 8 28 b 4 7 e ba 99 b 6 a 6 37 e 6 e 3 cc f 6 40 00 2 b af 70 8 d 27 8 e 59 34 16 b 6 75 df 19 c 1 34 43 41 9 e 6 b 3 a 78 37 c 0 82 ea b 5 52 6 c c 9 7 b 18 37 d 5 60 1 c 3 a 78 37 c 0 82 ea b 5 52 ] ; A 1 14 x 6 = [ 89 0 e 87 d 7 db d 7 d 4 54 5 a df 5 d 0 c 5 b 53 5 b d 3 d 1 86 db 80 00 55 57 d 8 06 53 07 8 c 5 a 0 b 5 b da 8 f 0 c 80 5 a 81 80 0 f d 5 5 d dc 5 b 80 01 d 5 5 a 89 d 6 84 dd 0 c 5 b 8 a d 0 0 e 5 d dc 5 b 80 01 d 5 5 a 89 ] ; A 1 14 y 2 = [ 1 d 00 1 d 4 f 6 e 77 6 e e 8 7 e 00 7 e ba 99 b 6 a 6 37 cc 00 cc f 6 40 00 2 b af 27 00 27 8 e 59 34 16 b 6 19 00 19 c 1 34 43 41 9 e 78 00 78 37 c 0 82 ea b 5 c 9 00 c 9 7 b 18 37 d 5 60 78 00 78 37 c 0 82 ea b 5 ] ; A 1 14 z 7 = [ b 4 7 e ba 99 b 6 a 6 37 e 6 e 3 cc f 6 40 00 2 b af 70 8 d 27 8 e 59 34 16 b 6 75 df 19 c 1 34 43 41 9 e 6 b 3 a 78 37 c 0 82 ea b 5 52 6 c c 9 7 b 18 37 d 5 60 1 c 00 00 00 00 00 00 00 00 6 c c 9 7 b 18 37 d 5 60 1 c ] ;
  • In summation of the above description, the present invention herein complies with the constitutional, statutory, regulatory and treaty, patent application requirements and is herewith submitted for patent application. However, the description and its accompanied drawings are used for describing preferred embodiments of the present invention, and it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.

Claims (10)

1. A cryptographic method, including a plaintext M run by at least one variable module, each comprising of:
selecting dimensions of M, wherein M forms a d1×d2× . . . ×dn n-dimension binary matrix;
selecting a diffusion-center P, wherein P expresses a (p1, p2, . . . pn) n-dimension position;
selecting a medium S, wherein S is a s1×s2× . . . ×sn n-dimension binary matrix which has an anchor-point {dot over (S)}, wherein {dot over (S)} expresses a ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) n-dimension position;
selecting a function of point-diffusion AF(p1, p2, . . . , pn), wherein AF(p1, p2, . . . , pn)=A⊕Ad1p⊕Ad2p⊕ . . . ⊕Adnp⊕S;
setting a diffusion-cycle T, wherein T=2U+1, U=┌log2 u┐, and u=max(d1, d2, . . . , dn); letting T=TE+TD;
further, comprising steps of:
(a) encrypting M, wherein A=M; a ciphertext C=AF(p1, p2 T E , . . . , pn);
(b) decrypting C, wherein A=C; M=AF(p1, p2 T D , . . . , pn).
2. The cryptographic method according to claim 1, wherein said function of point-diffusion comprises that:
S overlaps A, {dot over (S)} anchoring to P;
Adip, 1≦i≦n, expresses a series of n−1 dimensional binary matrixes Ad i , Adip=[Ad i (2), . . . , Ad i (pi), Ad i (0), Ad i (pi), . . . , Ad i (di−1)], on di axis in order, wherein Ad i (pi) represents the original matrix at pi position, and Ad i (0), expresses a zero matrix filling at pi position.
3. The cryptographic method according to claim 1, further including a password, wherein said password has at least one variable data, said data read by said module, each including: (p1, p2, . . . , pn) and/or d1×d2× . . . ×dn and/or ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) and/or s1×s2× . . . ×sn and/or S and/or TE and/or TD.
4. A cryptographic method, including a plaintext M run by at least one variable module, each comprising of:
selecting dimensions of M, wherein M forms a d1×d2× . . . ×dn n-dimension binary matrix;
selecting a diffusion-center P, wherein P expresses a (p1, p2, . . . pn) n-dimension position;
selecting a medium S, wherein S is a s1×s2× . . . ×sn n-dimension binary matrix which has an anchor-point {dot over (S)}, wherein {dot over (S)} expresses a ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) n-dimension position;
selecting a block B, wherein B is a b1×b2× . . . ×bn n-dimension binary matrix which has an anchor-point {circumflex over (B)}, wherein {dot over (B)} expresses a ({dot over (b)}1, {dot over (b)}2, . . . , {dot over (b)}n) n-dimension position;
selecting a function of block-diffusion ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n), wherein ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n)=Â⊕Â{circumflex over (d)}1{circumflex over (p)}⊕Â{circumflex over (d)}2{circumflex over (p)}⊕ . . . ⊕A{circumflex over (d)}n{circumflex over (p)}⊕S;
setting a diffusion-cycle T, wherein T=2U+1, U=┌log2 u┐, and u=max(┌di/bi┐, 1≦i≦n); letting T=TE+TD;
further, comprising steps of:
(a) encrypting M, wherein Â=M; a ciphertext C=ÂF({circumflex over (p)}1, {circumflex over (p)}2 T E , . . . , {circumflex over (p)}n);
(b) decrypting C, wherein Â=C; M=ÂF({circumflex over (p)}1, {circumflex over (p)}2 T D , . . . , {circumflex over (p)}n).
5. The cryptographic method according to claim 4, wherein said function of block-diffusion comprises that:
S overlaps A based on {dot over (S)} anchoring to P;
 expresses A by B unit based on {dot over (B)} anchoring to P, wherein  is {circumflex over (d)}1×{circumflex over (d)}2× . . . ×{circumflex over (d)}n n-dimension binary matrix which has a block diffusion-center {circumflex over (P)}, wherein {circumflex over (P)} expresses a ({circumflex over (p)}1, {circumflex over (p)}2, . . . {circumflex over (p)}n) n-dimension position; lets {circumflex over (d)}i=┌(pi−{dot over (b)}i)/bi┐+┌(di−pi+{dot over (b)}i)/bi┌, and {circumflex over (p)}i=┌(pi−{dot over (b)}i)/bi┐+1, 1≦i≦n;
Â{circumflex over (d)}i{circumflex over (p)}, 1≦i≦n, expresses a series of n−1 dimensional binary matrixes
A ^ d ^ i p ^ = [ A ^ d ^ i ( 2 ) , , A ^ d ^ i ( p ^ i ) , A ^ d ^ i ( 0 ) , A ^ d ^ i ( p ^ i ) , , A ^ d ^ i ( d ^ i - 1 ) ] ,
on {circumflex over (d)}i axis in order, wherein
A ^ d ^ i ( p ^ i )
represents the original matrix at {circumflex over (p)}i position, and
A ^ d ^ i ( 0 )
expresses a zero matrix filling at {circumflex over (p)}i position.
6. The cryptographic method according to claim 4, further including a password, wherein said password has at least one variable data, said data read by said module, each including: (p1, p2, . . . , pn) and/or d1×d2× . . . ×dn and/or ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) and/or s1×s2× . . . ×sn and/or S and/or ({dot over (b)}1, {dot over (b)}2, . . . , {dot over (b)}n) and/or b1×b2× . . . ×bn and/or TE and/or TD.
7. A cryptographic method, including a plaintext M run by at least one variable module, each comprising of:
selecting dimensions of M, wherein M forms a d1×d2× . . . ×dn n-dimension binary matrix;
selecting a diffusion-center P, wherein P expresses a (p1, p2, . . . pn) n-dimension position;
selecting a medium S, wherein S is a s1×s2× . . . ×sn n-dimension binary matrix which has an anchor-point {dot over (S)}, wherein {dot over (S)} expresses a ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) n-dimension position;
selecting a block B, wherein B is a b1×b2× . . . ×bn n-dimension binary matrix which has an anchor-point {dot over (B)}, wherein {dot over (B)} expresses a ({dot over (b)}1, {dot over (b)}2, . . . , {dot over (b)}n) n-dimension position;
selecting a switch Y, wherein Y represents a first value for a function of point-diffusion, a second value for a function of block-diffusion;
selecting said function of point-diffusion AF(p1, p2, . . . , pn), wherein AF(p1, p2, . . . , pn)=A⊕Ad1p⊕Ad2p⊕ . . . ⊕Adnp⊕S;
selecting said function of block-diffusion ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n), wherein ÂF({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n)=Â⊕Â{circumflex over (d)}1{circumflex over (p)}⊕Â{circumflex over (d)}2{circumflex over (p)}⊕ . . . ⊕Â{circumflex over (d)}n{circumflex over (p)}⊕S;
setting a diffusion-cycle T1, wherein T1=2U+1, U=┌log2 u┐, and u=max(d1, d2, . . . , dn); letting T1=TE1 TD1;
setting a diffusion-cycle T2, wherein T2=2U+1, U=┌log2 u┐, and u=max(┌di/bi┐, 1=i≦n); letting T2=TE2 TD2;
further, comprising steps of:
(a) encrypting M, wherein A=M; if Y equals to said first value, then a ciphertext C=AF(p1, p2 T E1 , . . . , pn); or if Y equals to said second value, then C=ÂF({circumflex over (p)}1, {circumflex over (p)}2 T E2 , . . . , {circumflex over (p)}n);
(b) decrypting C, wherein A=C; if Y equals to said first value, then M=AF(p1, p2 T D1 , . . . , pn); or if Y equals to said second value, then M=ÂF({circumflex over (p)}1, {circumflex over (p)}2 T D2 , . . . , {circumflex over (p)}n).
8. The cryptographic method according to claim 7, wherein said function of point-diffusion comprises that:
S overlaps A, {dot over (S)} anchoring to P;
Adip, 1≦i≦n, expresses a series of n−1 dimensional binary matrixes Ad i , Adip=[Ad i (2), . . . , Ad i (pi), Ad i (0), Ad i (pi), . . . , Ad i (di−1)], on di axis in order, wherein Ad i (pi) represents the original matrix at pi position, and Ad i (0) expresses a zero matrix filling at pi position.
9. The cryptographic method according to claim 7, wherein said function of block-diffusion comprises that:
S overlaps A based on {dot over (S)} anchoring to P;
 expresses A by B unit based on {dot over (B)} anchoring to P, wherein  is {circumflex over (d)}1×{circumflex over (d)}2× . . . ×{circumflex over (d)}n n-dimension binary matrix which has a block diffusion-center {circumflex over (P)}, wherein {circumflex over (P)} expresses a ({circumflex over (p)}1, {circumflex over (p)}2, . . . , {circumflex over (p)}n) n-dimension position; lets {circumflex over (d)}i=┌(pi−{dot over (b)}i)/bi┐+┌(di−pi+{dot over (b)}i┐, and {circumflex over (p)}=|(pi−{dot over (b)}i)/bi|+1, 1≦i≦n;
Â{circumflex over (d)}ip, 1≦i≦n, expresses a series of n−1 dimensional binary matrixes
A ^ d ^ i , A ^ d ^ i p ^ = [ A ^ d ^ i ( 2 ) , , A ^ d ^ i ( p ^ i ) , A ^ d ^ i ( 0 ) , A ^ d ^ i ( p ^ i ) , , A ^ d ^ i ( d ^ i - 1 ) ] ,
on {circumflex over (d)}i axis in order, wherein
A ^ d ^ i ( p ^ i )
represents the original matrix at {circumflex over (p)}i position, and
A ^ d ^ i ( 0 )
expresses a zero matrix filling at {circumflex over (p)}i position.
10. The cryptographic method according to claim 7, further including a password, wherein said password has at least one variable data, said data read by said module, each including: (p1, p2, . . . pn) and/or d1×d2× . . . ×dn and/or ({dot over (s)}1, {dot over (s)}2, . . . {dot over (s)}n) and/or s1×s2× . . . ×sn and/or S and/or ({dot over (b)}1, {dot over (b)}2, . . . , {dot over (b)}n) and/or b1×b2× . . . ×bn and/or Y and/or TE1 and/or TD1 and/or TE2 and/or TD2.
US12/726,833 2010-03-18 2010-03-18 Cryptographic method of multilayer diffusion in multidimension Expired - Fee Related US8369515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/726,833 US8369515B2 (en) 2010-03-18 2010-03-18 Cryptographic method of multilayer diffusion in multidimension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/726,833 US8369515B2 (en) 2010-03-18 2010-03-18 Cryptographic method of multilayer diffusion in multidimension

Publications (2)

Publication Number Publication Date
US20110228927A1 true US20110228927A1 (en) 2011-09-22
US8369515B2 US8369515B2 (en) 2013-02-05

Family

ID=44647263

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/726,833 Expired - Fee Related US8369515B2 (en) 2010-03-18 2010-03-18 Cryptographic method of multilayer diffusion in multidimension

Country Status (1)

Country Link
US (1) US8369515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213086A (en) * 2019-05-14 2019-09-06 曲阜师范大学 Based on network control system l2-l∞Switching system method and system, controller and the control method of control
US11190732B2 (en) * 2019-05-15 2021-11-30 Gama LLC Workstation for neurobiological disorder health professionals

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305085B2 (en) * 2000-06-30 2007-12-04 Kabushiki Kaisha Toshiba Encryption apparatus and method, and decryption apparatus and method based on block encryption
US7499542B2 (en) * 2003-05-23 2009-03-03 Nagravision Sa Device and method for encrypting and decrypting a block of data
US20090103716A1 (en) * 2005-03-25 2009-04-23 Taizo Shirai Information Processing Apparatus
US20100002873A1 (en) * 2005-08-25 2010-01-07 Microsoft Corporation Cipher For Disk Encryption
US20100266122A1 (en) * 2007-12-13 2010-10-21 Nec Corporation Encryption method, decryption method, device, and program
US7995749B2 (en) * 2007-10-30 2011-08-09 Harris Corporation Cryptographic system configured for extending a repetition period of a random sequence
US20110211688A1 (en) * 2008-08-25 2011-09-01 Taizo Shirai Data converter, data conversion method and program
US20110243319A1 (en) * 2008-01-21 2011-10-06 Taizo Shirai Data Converter, Data Conversion Method, and Computer Program
US8098816B2 (en) * 2008-10-17 2012-01-17 Qualcomm Incorporated Apparatus and method for evaluating a cipher structure's resistance to cryptanalysis
US8165288B2 (en) * 2006-09-01 2012-04-24 Sony Corporation Cryptographic processing apparatus and cryptographic processing method, and computer program
US8295478B2 (en) * 2006-07-28 2012-10-23 Sony Corporation Cryptographic processing apparatus, algorithm constructing method, processing method, and computer program applying an extended feistel structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305085B2 (en) * 2000-06-30 2007-12-04 Kabushiki Kaisha Toshiba Encryption apparatus and method, and decryption apparatus and method based on block encryption
US7499542B2 (en) * 2003-05-23 2009-03-03 Nagravision Sa Device and method for encrypting and decrypting a block of data
US20090103716A1 (en) * 2005-03-25 2009-04-23 Taizo Shirai Information Processing Apparatus
US20100002873A1 (en) * 2005-08-25 2010-01-07 Microsoft Corporation Cipher For Disk Encryption
US8295478B2 (en) * 2006-07-28 2012-10-23 Sony Corporation Cryptographic processing apparatus, algorithm constructing method, processing method, and computer program applying an extended feistel structure
US8165288B2 (en) * 2006-09-01 2012-04-24 Sony Corporation Cryptographic processing apparatus and cryptographic processing method, and computer program
US7995749B2 (en) * 2007-10-30 2011-08-09 Harris Corporation Cryptographic system configured for extending a repetition period of a random sequence
US20100266122A1 (en) * 2007-12-13 2010-10-21 Nec Corporation Encryption method, decryption method, device, and program
US20110243319A1 (en) * 2008-01-21 2011-10-06 Taizo Shirai Data Converter, Data Conversion Method, and Computer Program
US20110211688A1 (en) * 2008-08-25 2011-09-01 Taizo Shirai Data converter, data conversion method and program
US8098816B2 (en) * 2008-10-17 2012-01-17 Qualcomm Incorporated Apparatus and method for evaluating a cipher structure's resistance to cryptanalysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213086A (en) * 2019-05-14 2019-09-06 曲阜师范大学 Based on network control system l2-l∞Switching system method and system, controller and the control method of control
US11190732B2 (en) * 2019-05-15 2021-11-30 Gama LLC Workstation for neurobiological disorder health professionals

Also Published As

Publication number Publication date
US8369515B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
CN103810664B (en) A kind of information concealing method and device
US20130179690A1 (en) Method and apparatus for fast image encryption and invisible digital watermark
US20090161865A1 (en) Diffused Data Encryption/Decryption Processing Method
CN104268825A (en) Image encryption and ciphertext processing method
EP3369207B1 (en) An information secure protocol for mobile proactive secret sharing with near-optimal resilience
Gibson Equivalent Goppa codes and trapdoors to McEliece’s public key cryptosystem
US8369515B2 (en) Cryptographic method of multilayer diffusion in multidimension
CN105787413A (en) Method and apparatus for positioning two-dimensional code content display area
CN102387385A (en) Information processing apparatus, program, and information processing method
JP2008107764A (en) Display device, image processing method, and electronic apparatus
Sun et al. An image encryption algorithm utilizing Mandelbrot set
Lv et al. Efficient secret sharing schemes
Kandar et al. Kn secret sharing visual cryptography scheme on color image using random sequence
US20070189516A1 (en) Diffused asymmetric encryption/decryption method
Tabash et al. Image encryption algorithm based on chaotic map
EP1835655B1 (en) Communication system and communication method
EP1401107A1 (en) Method for improving the performance of 3-dimensional concatenated product codes
US20060078107A1 (en) Diffused data encryption/decryption processing method
JP5011431B2 (en) Video signal processing device, processing method, and video display device
Yadav et al. A novel visual cryptography scheme based on substitution cipher
Kandar et al. Random sequence based secret sharing of an encrypted color image
JP6391109B2 (en) Visual decoding type secret image distribution method and program for executing the method
Okada et al. A construction of the progressive (3, n)-threshold visual cryptography using a BIBD and analysis of its optimality
Kamat et al. Symmetric Image Encryption Algorithm Using 3D Rossler System
Merabet et al. Progressive image secret sharing scheme based on Boolean operations with perfect reconstruction capability

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210205