US20110226506A1 - Input/output module for building automation system with mounting plate - Google Patents

Input/output module for building automation system with mounting plate Download PDF

Info

Publication number
US20110226506A1
US20110226506A1 US13/030,489 US201113030489A US2011226506A1 US 20110226506 A1 US20110226506 A1 US 20110226506A1 US 201113030489 A US201113030489 A US 201113030489A US 2011226506 A1 US2011226506 A1 US 2011226506A1
Authority
US
United States
Prior art keywords
input
mounting plate
output module
circuit board
junction box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/030,489
Other versions
US8503183B2 (en
Inventor
Steven R. Hamilton
Michael B. Strozewski
Jian Fang Wang
Yuan Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Industry Inc
Original Assignee
Siemens Industry Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Industry Inc filed Critical Siemens Industry Inc
Priority to US13/030,489 priority Critical patent/US8503183B2/en
Assigned to SIEMENS INDUSTRY, INC. reassignment SIEMENS INDUSTRY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, YUAN, FANG WANG, JIAN, HAMILTON, STEVEN R, STROZEWSKI, MICHAEL B
Publication of US20110226506A1 publication Critical patent/US20110226506A1/en
Application granted granted Critical
Publication of US8503183B2 publication Critical patent/US8503183B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units

Definitions

  • the present invention relates generally to input/output devices for a building automation system.
  • HVAC heating, ventilation and air conditioning
  • security systems security systems
  • fire safety systems While various building automation systems serve different purposes, many share the commonality of employing widely dispersed devices that perform sensing, control and physical (i.e. actuator) operations.
  • HVAC heating, ventilation and air conditioning
  • an HVAC system typically includes temperature sensors dispersed throughout a building or campus, and also includes ventilation dampers that are dispersed throughout a building.
  • the HVAC system operates the ventilation dampers to increase or decrease the flow of conditioned air (chilled or heated) to different spaces used on the temperature measurements performed in those spaces.
  • the HVAC system typically also includes many dispersed control devices that receive local sensor signals and provide control signals to local dampers based on the control signals.
  • a typical HVAC system can include hundreds of controllers, actuators, and sensors located throughout a building.
  • Security systems and fire safely systems have a similar architecture.
  • Building systems include a communication network by which various devices (e.g. controllers) can communicate.
  • Building systems also typically include one or more work stations or other access devices whereby a technician or building manager may monitor conditions in the building as detected by the various sensors, and to command devices and/or define controller set points (e.g. desired room temperature, etc.).
  • sensor and actuator devices are not always connected directly to the building automation system communication network.
  • sensor and actuator devices often include relatively simple analog or digital inputs and outputs, and do not include the sophisticated circuitry that can be required to operate as addressable devices on a data network.
  • building automation systems often provide network connection to controller devices within so-called field control panels.
  • field control panels include, in addition to controllers, the analog and/or digital I/O circuitry to interact with the non-networked sensors and actuators.
  • controller devices typically perform localized control using the I/O circuitry
  • the control field panel circuitry can also provide wider building network access to data received from the sensors via the I/O ports, and to actuators via the FO ports. Accordingly, the field control panel can serve as a sort of interface between a data network and various sensor and actuator hardware.
  • sensors and/or actuators can be located at a relatively significant distance from the nearest field control panel.
  • an input/output module that connects to sensors and actuators, but does not have the full field panel capability.
  • Such an input/output module operates as an interface between the building network and the end devices (sensors and actuators).
  • the input/output module receives sensor data from the sensors and causes the sensor data to be transmitted to other devices via the building network.
  • the input/output module can receive command data from the building network and generate corresponding outputs for the connected sensors and/or actuators.
  • Such input/output modules have various shapes and custom mounting methods.
  • a problem with all building automation systems is the cost associated with wiring the system. Because the system employs devices dispersed throughout an entire building, the material and installation cost of the wiring can be significant.
  • the use of wireless sensors and actuators has been proposed, and shows promise as a solution.
  • the complete elimination of wired sensors in building automation systems on a wide scale basis does not appear to be imminent. Accordingly, there is always a need to reduce the cost associated with wiring building automation systems without implementing wireless solutions.
  • the present invention addresses the above described needs, as well as others, by providing an input/output module that may be mounted to a standard electrical junction box, such as the type installed for installing light switches and electrical outlets.
  • an input/output module for a building automation system includes a mounting plate, a circuit board, and a cover.
  • the mounting plate has at least two fastener receptacles positioned to align with fastener receptacles of a standard electrical junction box.
  • the mounting plate further includes at least two openings, each opening sized to receive one or more wires therethrough.
  • the circuit board supports an interface circuit configured to communicate on a building network.
  • the circuit board also includes device input terminals and device output terminals.
  • the interface circuit is configured to provide an interface between the building network and devices connected to the input and output terminals.
  • the circuit board is configured to be mounted to the mounting plate.
  • the cover is sized to fit over the mounting plate and circuit board.
  • FIG. 1 shows an exploded perspective view of an exemplary input/output module according to an embodiment of the invention as well as a standard electrical junction box to which it can be mounted;
  • FIG. 2 shows a first perspective view of a first side of the mounting plate of the input/output module of FIG. 1 ;
  • FIG. 3 shows a first perspective view of a second side of the mounting plate of the input/output module of FIG. 1 ;
  • FIG. 4 shows a plan view of the second side of the mounting plate of FIGS. 2 and 3 ;
  • FIG. 5 shows a perspective view of the mounting plate and circuit board of the input/output module of FIG. 1 with wires connected to at least some of the wiring terminals;
  • FIG. 6 shows a schematic diagram of the interface circuit disposed on the circuit board of the input/output module of FIG. 1 .
  • FIG. 1 shows an exploded perspective view of an exemplary input/output module 10 according to an embodiment of the invention, as well as a standard electrical junction box 90 to which the input/output module 10 can be mounted.
  • the input/output (I/O) module 10 includes a mounting plate 12 , a circuit board 14 , and a cover 16 .
  • FIGS. 2 , 3 and 4 show additional views of the mounting plate 12
  • FIG. 5 shows a perspective view of the mounting plate 12 and circuit board 14 of the input/output module of FIG. 1 with wires 120 connected to at least some of the wiring terminals. Reference to the various views is made throughout the description.
  • the electrical junction box 90 is a standard junction box used in wiring residential, commercial and industrial buildings, and is typically associated with the use of an electrical system within a building.
  • the electrical junction box is a standard four-inch square junction box typically used in building wiring in the United States.
  • the junction box 90 is in the form of an open metal or plastic box, having a back wall 92 and four side walls 94 .
  • the side walls each include a plurality of openings 96 for passing wires into and out of the junction box 90 .
  • the junction box 90 further includes a screw boss 98 in a corner defined by two sides 94 of the junction box 94 , and a second screw boss, not shown, disposed on an opposing corner of the other two sides 94 .
  • the screw boss 98 extends from the level of the top edge of the side walls 94 down along at least part of the depth of the junction box 90 .
  • the electrical junction box 90 has a length / and width w defined generally the back wall 92 , and a depth d defined by the side walls 94 . In general, the length / and the width w are on the order of 95 mm to 100 mm.
  • the position of the screw boss 98 and opposing screw boss are defined by standard.
  • the I/O module 10 may be used in connection with another electrical junction box, not shown, that is the defined standard in other countries.
  • Such other electrical junction boxes are defined, for example, by IEC 60634.
  • the mounting plate 12 includes a plate-like support structure 18 that has a first side 20 (see FIGS. 1 and 2 ) and a second side 22 (see FIGS. 3 and 4 ).
  • the mounting plate 12 has four fastener receptacles 24 , 26 , 28 , 30 , opposing pairs of which are positioned to align with fastener receptacles of a standard electrical junction box, in other words, proximate opposing corners of a square measuring approximate 100 mm ⁇ 100 mm.
  • the fastener receptacles 24 and 28 align with the screw boss 98 and the opposing screw boss, not shown, of the junction box 90 .
  • the fastener receptacles 26 and 30 would align with the screw boss 98 and the opposing screw boss.
  • the fastener receptacles 24 , 26 , 28 and 30 are positioned such that the plate-like support structure 18 substantially extends at least to the side walls 96 of the junction box 90 when opposing pairs of the receptacles 24 , 26 , 28 and 30 are aligned with the screw boss 98 and the opposing screw boss.
  • the fastener receptacle 24 includes a through-hole 32 defined as an oval that is oriented diagonally toward the center of the support structure 18 .
  • the fastener receptacle 24 also includes a raised boss structure 34 surrounding the through-hole 32 .
  • Each of the fastener receptacles 26 , 28 and 30 has a substantially identical structure.
  • the oval shape and orientation of the through-hole 32 and corresponding boss structure 34 allows for a margin of error in the configuration of the fastener receptacles 98 of the junction box 90 . Accordingly, the mounting plate 10 is configured to be affixed to a wide range of tolerances in the standard junction box configuration.
  • the mounting plate 12 further includes at least two openings, and in this embodiment, four openings 36 , 38 , 40 and 42 , defined through the support structure 18 .
  • Each of the four openings 36 , 38 , 40 and 42 is sized to receive multiple wires and/or cabling therethrough.
  • each of the openings 36 , 38 , 40 and 42 is rectangular in shape. (See also FIGS. 3 , 4 )
  • the circuit board 14 is a circuit board that has dimensions that are generally configured to fit within the length and width of the junction box 90 .
  • the circuit board 14 has a length less than / and a width less than w.
  • the circuit board 14 supports an interface circuit 100 , shown in schematic form in FIG. 6 .
  • the interface circuit 100 includes a a plurality of input and output (I/O) terminals 102 , communication terminals 104 , a processing circuit 106 , a power regulation circuit 108 , a plurality of indicators 1 10 , and power input terminals 112 .
  • I/O input and output
  • the I/O terminals 102 include digital input terminals, digital output terminals, analog input terminals, and analog output terminals.
  • the processing circuit 106 includes a programmable processor as well as other circuitry configured to interface electrically with the I/O terminals 102 . Such circuits are known in the art.
  • the different types of I/O terminals 102 allow for flexible usage of the I/O module 10 in different applications.
  • the communication terminals 104 are configured to connect to a communication network, not shown, such as a building control network.
  • the power input terminals 112 are configured to be coupled to a power source, such as 24 volt AC building power conductors.
  • the power regulation circuit 108 is configured to generate regulated DC bias voltages for the processing circuit 106 and any other circuits requiring power in the interface circuit 100 .
  • the processing circuit 106 is configured through software or firmware to respond to requests from a communication network for data relating to physical devices, not shown, connected to the FO terminals 102 .
  • processing circuit 106 can receive a request for temperature data from a sensor, not shown, which is connected to the one of the input terminals 102 .
  • the processing circuit 106 is further configured to read the voltage at the input terminal 102 , which is representative of the voltage sensed by the sensor.
  • the processing circuit 106 is also configured to generate a data message that includes information representative of the measured temperature, the data message having the appropriate communication network protocol format.
  • the processing circuit 106 is further configured to cause communication of the data message on the network via the communication network terminals 104 .
  • the processing circuit 106 may include or be connected to an address setting device, such as a dip switch, which defines the network address for the module 10 .
  • the processing circuit 106 is further configured through software or firmware to communicate commands to the FO terminals 102 , where the commands are received from a controller or processor on the communication network.
  • processing circuit 106 can receive a data message on the communication network terminals 104 that includes a command to operate an actuator that is connected to one of the outputs 102 .
  • the actuator may suitably be an actuator for a water valve or ventilation damper.
  • the processing circuit 106 is configured to generate the command in the format expected by the actuator, and provide the generated command to the appropriate output terminal 102 .
  • the processing circuit 106 operates as an interface between the communication network connected to the communication terminals 104 and the physical devices connected to the I/O terminals 102 .
  • the processing circuit 106 may further be configured to perform control operations.
  • the processing circuit 106 may be configured to command an actuator connected to one of the output terminals 102 based on temperature or other sensor information received from one or more of the inputs 102 .
  • the processing circuit 106 would execute a control algorithm, such as a PID control algorithm, to generate control signals (for the outputs 102 ) based on process signals (from the inputs 102 ) in accordance with a set point (from the communication terminals 104 ).
  • circuit board 14 is configured to be installed onto the mounting plate 12 using physical features of the mounting plate 12 .
  • the mounting plate 12 includes L-shaped interference features 44 disposed proximate a first end 18 a of the support structure 18 .
  • Each L-shaped feature 44 includes a shaft 46 extending upward from the support structure 18 and an inward extension 48 proximate the top of the shaft 46 .
  • the inward extension 48 extends toward the second side 18 b of the support structure 18 , such that the inward extension and shaft 46 receive and retain a first edge of the circuit board 14 .
  • retention barbs 50 are disposed proximate the second end 18 b of the support structure 18 .
  • Each retention barb 50 includes a shaft 52 and an angled barb element 54 .
  • the shaft 52 extends upward from the support structure 18 and the barb element 54 extends toward the first side 18 a of the support structure 18 .
  • the barb element 54 is angled downward, which facilitates a snap-fit installation of the circuit board 14 .
  • the retention barbs 50 retain a second edge of the circuit board 14 .
  • the L-shaped features 44 and the retention barbs 50 retain the circuit board 14 from movement outward in the direction of the first side 18 a of the support structure 18 , the second side 18 b of the support structure 18 , as well as upward from the support structure 18 .
  • the support structure 18 also includes framing posts or ribs 56 that inhibit movement in the direction normal to the direction from the first side 18 a and the second side 18 b.
  • the features 44 , 50 and 56 are configured to receive and retain the circuit board 14 in the position shown in FIG. 5 .
  • circuit board 14 when installed, does not overlap the fastener receptacles 24 , 26 , 28 and 30 .
  • Such a configuration allows for flexible installation order of the mounting plate 12 in the junction box 90 and the circuit board 14 in the mounting plate 12 .
  • the installer may readily install the circuit board 14 prior to installing the mounting plate 12 in the junction box 12 , or vice versa.
  • the circuit board 14 also does not completely overlap any of the openings 36 , 38 , 40 and 42 .
  • Such a configuration facilitates wiring by limiting the number of wire bends, and allows for connection of wires 120 (see FIG. 5 ) either before or after the installation of the circuit board 14 .
  • the cover 16 comprises a top plate 86 and a plurality of side panels 88 . An end of each of the side panels 88 is disposed adjacent an edge of the mounting plate 12 .
  • an installer runs the wires 120 to be connected to the VO module 10 through the openings 96 of the junction box 90 .
  • the wires 120 will be ran to the junction box 90 and through the openings 96 by a building electrician.
  • Another installer then, at a subsequent time, runs the wires 120 through the appropriate openings 36 , 38 , 40 and 42 of the mounting plate 12 , and connects the wires to the appropriate ones of the communication terminals 104 and FO terminals 106 .
  • the installer then affixes the circuit board 14 to the mounting plate 12 .
  • the installer places a first edge of the circuit board 14 under the inward extension 48 and against the shaft 46 of the interference features 44 , and generally aligns the circuit board 44 between the rib/post features 56 .
  • the installer then pushes the second end over the barbs 50 until the second end clears barb elements 54 , snapping into place below barb elements 54 .
  • the installer then aligns the mounting plate 12 such that one of the opposing pairs of the fastener receptacles 24 , 26 , 28 and 30 line up with the boss 98 and the opposing boss, not shown in FIG. 1 , of the junction box 90 .
  • the installer affixes the mounting plate 12 to the junction box by inserting fasteners (e.g. fastener 99 ) through the aligned receptacles and bosses (e.g. receptacle 24 and boss 98 ).
  • the cover 16 is disposed over the mounting plate 12 and attached via additional fasteners, for example, fasteners 17 .
  • the I/O module 10 further includes an optional barrier 58 that extends from the second side 22 of the mounting plate 12 into the interior the junction box 12 .
  • an optional barrier 58 that extends from the second side 22 of the mounting plate 12 into the interior the junction box 12 .
  • the barrier can provide separation between low voltage and high voltage conductors, if desired.
  • the barrier 58 is configured as a generally rectangular plate-like structure having two alignment features 60 and an L-shaped retention element 62 .
  • mounting plate 12 includes slots 64 for receiving the alignment features 60 and a slot 66 for receiving the retention element 62 .
  • the mounting plate 12 further includes two parallel ribs 68 configured to receive a part of the edge of the barrier 58 and retain the edge in a friction-fit manner.
  • the barrier 58 is configured to generally extend through the width w and/or length / of the junction box 90 , thereby dividing the interior of the junction box 90 into two substantially physically isolated compartments.
  • the mounting plate 12 further includes two additional fastener receptacles 70 , 72 disposed on the support structure 18 in a position compatible with the wiring standard IEC 60634 for European electrical junction boxes.
  • the fastener receptacle 70 is disposed along the dimension along, the length / approximately at the midpoint of the mounting plate 12 , and the along the dimension along the width w approximately one-quarter of the width away from one side of the mounting plate 12 .
  • the fastener receptacle 72 is disposed along the dimension along the length / approximately at the midpoint of the mounting plate 12 , and the along the dimension along the width w approximately one-quarter of the width away from the other side of the mounting plate 12 .
  • the fastener receptacle 70 has an oval-shaped through-hole and surrounding boss, with the long dimension of the oval extending parallel to the dimension along the length /.
  • the fastener receptacle 72 has an oval-shaped through-hole and surrounding boss. However, the long dimension of the oval of the receptacle 72 extends parallel to the dimension along the width w.
  • FIGS. 1-5 Another feature of the embodiment of FIGS. 1-5 is expandability of the openings 36 , 38 , 40 and 42 of the mounting plate 12 .
  • the punch tab 36 includes a plate 82 and connectors 84 .
  • the plate 82 is slightly smaller than the width of the opening 36 , and is less than one-half the length (on the order of one-third the length) of the opening 36 .
  • the plate 82 is disposed at one end of the opening, and is coupled to the support structure 18 via the connectors 84 .
  • the connectors 84 are configured to hold the plate 82 in place on the support structure, but also define a weak point that allows forcible removal of the plate 82 .
  • the support structure 18 is shaped such that, when the plate 82 is forcibly removed via failure of the connectors 84 , the effective size of the opening 36 increases by approximately the size of the plate 82 .
  • the punch tabs 76 , 78 and 80 have substantially the same configuration.
  • the punch tabs 74 , 76 , 78 and 80 provide additional flexibility to increase the size of the openings 36 , 38 , 40 and 42 in the event that such an increase is necessary. In addition, in the event that an increase is not necessary, the punch tabs 74 , 76 , 78 and 80 effectively cover open areas where access to dangerous electrical conductors can occur.
  • fastener openings 24 , 26 , 30 and 32 can include punch tabs as shown in FIG. 3 , which can be forcibly removed if and when each opening is used.
  • the above-described embodiment thus includes many features and advantages in flexibility, compatibility and ease of installation that can reduce wiring costs in a building control system.
  • One feature of many embodiments is the ability to employ standard electrical junction boxes as a connection point, which is differs from the typical building automation system installation, This feature facilitates separation of the wall wiring activities and the I/O module wiring activities.
  • Another feature is the adaptability of at least some embodiments of the I/O module to different junction box styles and tolerances.

Abstract

An input/output module for a building automation system includes a mounting plate, a circuit board, and a cover. The mounting plate has at least two fastener receptacles (24-30) positioned to align with fastener receptacles of a standard electrical junction box (90). The mounting plate further includes at least two openings, each opening sized to receive one or more wires therethrough. The circuit board supports an interface circuit configured to communicate on a building network. The circuit board also includes device input terminals and device output terminals. The interface circuit is configured to provide an interface between the building network and devices connected to the input and output terminals. The circuit board is configured to be mounted to the mounting plate. The cover is sized to fit over the mounting plate and circuit board.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of PCT Patent Application No. PCT/US2009/054556, filed Aug. 21, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/090,721, filed Aug. 21, 2008, and U.S. patent application Ser. No. 12/543,970, filed Aug. 19, 2009, each of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to input/output devices for a building automation system.
  • Background
  • Building automation systems include systems that provide automatic monitoring and control over various building operations. Common building automation systems include heating, ventilation and air conditioning (HVAC) systems, security systems, and fire safety systems. While various building automation systems serve different purposes, many share the commonality of employing widely dispersed devices that perform sensing, control and physical (i.e. actuator) operations. For example, an HVAC system typically includes temperature sensors dispersed throughout a building or campus, and also includes ventilation dampers that are dispersed throughout a building. The HVAC system operates the ventilation dampers to increase or decrease the flow of conditioned air (chilled or heated) to different spaces used on the temperature measurements performed in those spaces. The HVAC system typically also includes many dispersed control devices that receive local sensor signals and provide control signals to local dampers based on the control signals. A typical HVAC system can include hundreds of controllers, actuators, and sensors located throughout a building. Security systems and fire safely systems have a similar architecture.
  • Most building automation systems include a communication network by which various devices (e.g. controllers) can communicate. Building systems also typically include one or more work stations or other access devices whereby a technician or building manager may monitor conditions in the building as detected by the various sensors, and to command devices and/or define controller set points (e.g. desired room temperature, etc.).
  • In commonly known architectures, individual sensor and actuator devices are not always connected directly to the building automation system communication network. To this end, sensor and actuator devices often include relatively simple analog or digital inputs and outputs, and do not include the sophisticated circuitry that can be required to operate as addressable devices on a data network. To accommodate these devices, building automation systems often provide network connection to controller devices within so-called field control panels. These field control panels include, in addition to controllers, the analog and/or digital I/O circuitry to interact with the non-networked sensors and actuators. While controller devices typically perform localized control using the I/O circuitry, the control field panel circuitry can also provide wider building network access to data received from the sensors via the I/O ports, and to actuators via the FO ports. Accordingly, the field control panel can serve as a sort of interface between a data network and various sensor and actuator hardware.
  • However, in some cases, sensors and/or actuators can be located at a relatively significant distance from the nearest field control panel. In such cases, it is known in the art to provide an input/output module that connects to sensors and actuators, but does not have the full field panel capability. Such an input/output module operates as an interface between the building network and the end devices (sensors and actuators). The input/output module receives sensor data from the sensors and causes the sensor data to be transmitted to other devices via the building network. Similarly, the input/output module can receive command data from the building network and generate corresponding outputs for the connected sensors and/or actuators. Such input/output modules have various shapes and custom mounting methods.
  • A problem with all building automation systems is the cost associated with wiring the system. Because the system employs devices dispersed throughout an entire building, the material and installation cost of the wiring can be significant. The use of wireless sensors and actuators has been proposed, and shows promise as a solution. However, the complete elimination of wired sensors in building automation systems on a wide scale basis does not appear to be imminent. Accordingly, there is always a need to reduce the cost associated with wiring building automation systems without implementing wireless solutions.
  • SUMMARY OF THE INVENTION
  • The present invention addresses the above described needs, as well as others, by providing an input/output module that may be mounted to a standard electrical junction box, such as the type installed for installing light switches and electrical outlets.
  • In a first embodiment, an input/output module for a building automation system includes a mounting plate, a circuit board, and a cover. The mounting plate has at least two fastener receptacles positioned to align with fastener receptacles of a standard electrical junction box. The mounting plate further includes at least two openings, each opening sized to receive one or more wires therethrough. The circuit board supports an interface circuit configured to communicate on a building network. The circuit board also includes device input terminals and device output terminals. The interface circuit is configured to provide an interface between the building network and devices connected to the input and output terminals. The circuit board is configured to be mounted to the mounting plate. The cover is sized to fit over the mounting plate and circuit board.
  • The above-described features and advantages, as well as others, will become more readily apparent to those of ordinary skill in the art by reference to the following detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an exploded perspective view of an exemplary input/output module according to an embodiment of the invention as well as a standard electrical junction box to which it can be mounted;
  • FIG. 2 shows a first perspective view of a first side of the mounting plate of the input/output module of FIG. 1;
  • FIG. 3 shows a first perspective view of a second side of the mounting plate of the input/output module of FIG. 1;
  • FIG. 4 shows a plan view of the second side of the mounting plate of FIGS. 2 and 3;
  • FIG. 5 shows a perspective view of the mounting plate and circuit board of the input/output module of FIG. 1 with wires connected to at least some of the wiring terminals;
  • FIG. 6 shows a schematic diagram of the interface circuit disposed on the circuit board of the input/output module of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 shows an exploded perspective view of an exemplary input/output module 10 according to an embodiment of the invention, as well as a standard electrical junction box 90 to which the input/output module 10 can be mounted. The input/output (I/O) module 10 includes a mounting plate 12, a circuit board 14, and a cover 16. FIGS. 2, 3 and 4 show additional views of the mounting plate 12, and FIG. 5 shows a perspective view of the mounting plate 12 and circuit board 14 of the input/output module of FIG. 1 with wires 120 connected to at least some of the wiring terminals. Reference to the various views is made throughout the description.
  • The electrical junction box 90 is a standard junction box used in wiring residential, commercial and industrial buildings, and is typically associated with the use of an electrical system within a building. For example, the electrical junction box is a standard four-inch square junction box typically used in building wiring in the United States. The junction box 90 is in the form of an open metal or plastic box, having a back wall 92 and four side walls 94. The side walls each include a plurality of openings 96 for passing wires into and out of the junction box 90. The junction box 90 further includes a screw boss 98 in a corner defined by two sides 94 of the junction box 94, and a second screw boss, not shown, disposed on an opposing corner of the other two sides 94. The screw boss 98 extends from the level of the top edge of the side walls 94 down along at least part of the depth of the junction box 90. The electrical junction box 90 has a length / and width w defined generally the back wall 92, and a depth d defined by the side walls 94. In general, the length / and the width w are on the order of 95 mm to 100 mm.
  • While some variation of the electrical junction box 90 will occur, the position of the screw boss 98 and opposing screw boss are defined by standard. In addition, as will be discussed further below, the I/O module 10 may be used in connection with another electrical junction box, not shown, that is the defined standard in other countries. Such other electrical junction boxes are defined, for example, by IEC 60634.
  • The mounting plate 12 includes a plate-like support structure 18 that has a first side 20 (see FIGS. 1 and 2) and a second side 22 (see FIGS. 3 and 4). The mounting plate 12 has four fastener receptacles 24, 26, 28, 30, opposing pairs of which are positioned to align with fastener receptacles of a standard electrical junction box, in other words, proximate opposing corners of a square measuring approximate 100 mm×100 mm. Thus, for example, the fastener receptacles 24 and 28 align with the screw boss 98 and the opposing screw boss, not shown, of the junction box 90. Moreover, if the FO module 10 or the junction box 90 were rotated by ninety degrees, then the fastener receptacles 26 and 30 would align with the screw boss 98 and the opposing screw boss. In either case, the fastener receptacles 24, 26, 28 and 30 are positioned such that the plate-like support structure 18 substantially extends at least to the side walls 96 of the junction box 90 when opposing pairs of the receptacles 24, 26, 28 and 30 are aligned with the screw boss 98 and the opposing screw boss.
  • As shown in FIG. 2, the fastener receptacle 24 includes a through-hole 32 defined as an oval that is oriented diagonally toward the center of the support structure 18. The fastener receptacle 24 also includes a raised boss structure 34 surrounding the through-hole 32. Each of the fastener receptacles 26, 28 and 30 has a substantially identical structure. The oval shape and orientation of the through-hole 32 and corresponding boss structure 34 allows for a margin of error in the configuration of the fastener receptacles 98 of the junction box 90. Accordingly, the mounting plate 10 is configured to be affixed to a wide range of tolerances in the standard junction box configuration.
  • The mounting plate 12 further includes at least two openings, and in this embodiment, four openings 36, 38, 40 and 42, defined through the support structure 18. Each of the four openings 36, 38, 40 and 42 is sized to receive multiple wires and/or cabling therethrough. In this embodiment, each of the openings 36, 38, 40 and 42 is rectangular in shape. (See also FIGS. 3, 4)
  • Referring again to the embodiment of FIG. 1, the circuit board 14 is a circuit board that has dimensions that are generally configured to fit within the length and width of the junction box 90. In other words, the circuit board 14 has a length less than / and a width less than w. The circuit board 14 supports an interface circuit 100, shown in schematic form in FIG. 6. The interface circuit 100 includes a a plurality of input and output (I/O) terminals 102, communication terminals 104, a processing circuit 106, a power regulation circuit 108, a plurality of indicators 1 10, and power input terminals 112.
  • The I/O terminals 102 include digital input terminals, digital output terminals, analog input terminals, and analog output terminals. The processing circuit 106 includes a programmable processor as well as other circuitry configured to interface electrically with the I/O terminals 102. Such circuits are known in the art. The different types of I/O terminals 102 allow for flexible usage of the I/O module 10 in different applications.
  • The communication terminals 104 are configured to connect to a communication network, not shown, such as a building control network. The power input terminals 112 are configured to be coupled to a power source, such as 24 volt AC building power conductors. The power regulation circuit 108 is configured to generate regulated DC bias voltages for the processing circuit 106 and any other circuits requiring power in the interface circuit 100.
  • The processing circuit 106 is configured through software or firmware to respond to requests from a communication network for data relating to physical devices, not shown, connected to the FO terminals 102. For example, processing circuit 106 can receive a request for temperature data from a sensor, not shown, which is connected to the one of the input terminals 102. The processing circuit 106 is further configured to read the voltage at the input terminal 102, which is representative of the voltage sensed by the sensor. The processing circuit 106 is also configured to generate a data message that includes information representative of the measured temperature, the data message having the appropriate communication network protocol format. The processing circuit 106 is further configured to cause communication of the data message on the network via the communication network terminals 104. The processing circuit 106 may include or be connected to an address setting device, such as a dip switch, which defines the network address for the module 10.
  • The processing circuit 106 is further configured through software or firmware to communicate commands to the FO terminals 102, where the commands are received from a controller or processor on the communication network. For example, processing circuit 106 can receive a data message on the communication network terminals 104 that includes a command to operate an actuator that is connected to one of the outputs 102. The actuator may suitably be an actuator for a water valve or ventilation damper. The processing circuit 106 is configured to generate the command in the format expected by the actuator, and provide the generated command to the appropriate output terminal 102.
  • Thus, the processing circuit 106 operates as an interface between the communication network connected to the communication terminals 104 and the physical devices connected to the I/O terminals 102. In some embodiments, the processing circuit 106 may further be configured to perform control operations. For example, the processing circuit 106 may be configured to command an actuator connected to one of the output terminals 102 based on temperature or other sensor information received from one or more of the inputs 102. In such a case, the processing circuit 106 would execute a control algorithm, such as a PID control algorithm, to generate control signals (for the outputs 102) based on process signals (from the inputs 102) in accordance with a set point (from the communication terminals 104).
  • Referring again to FIG. 1, and also referring to FIGS. 2 and 5, circuit board 14 is configured to be installed onto the mounting plate 12 using physical features of the mounting plate 12. In particular, the mounting plate 12 includes L-shaped interference features 44 disposed proximate a first end 18 a of the support structure 18. Each L-shaped feature 44 includes a shaft 46 extending upward from the support structure 18 and an inward extension 48 proximate the top of the shaft 46. The inward extension 48 extends toward the second side 18 b of the support structure 18, such that the inward extension and shaft 46 receive and retain a first edge of the circuit board 14. In addition, retention barbs 50 are disposed proximate the second end 18 b of the support structure 18. Each retention barb 50 includes a shaft 52 and an angled barb element 54. The shaft 52 extends upward from the support structure 18 and the barb element 54 extends toward the first side 18 a of the support structure 18. The barb element 54 is angled downward, which facilitates a snap-fit installation of the circuit board 14. The retention barbs 50 retain a second edge of the circuit board 14.
  • Thus, the L-shaped features 44 and the retention barbs 50 retain the circuit board 14 from movement outward in the direction of the first side 18 a of the support structure 18, the second side 18 b of the support structure 18, as well as upward from the support structure 18. The support structure 18 also includes framing posts or ribs 56 that inhibit movement in the direction normal to the direction from the first side 18 a and the second side 18 b.
  • Accordingly, the features 44, 50 and 56 are configured to receive and retain the circuit board 14 in the position shown in FIG. 5. In this embodiment, circuit board 14, when installed, does not overlap the fastener receptacles 24, 26, 28 and 30. Such a configuration allows for flexible installation order of the mounting plate 12 in the junction box 90 and the circuit board 14 in the mounting plate 12. In other words, the installer may readily install the circuit board 14 prior to installing the mounting plate 12 in the junction box 12, or vice versa. In addition, in this embodiment, the circuit board 14 also does not completely overlap any of the openings 36, 38, 40 and 42. Such a configuration facilitates wiring by limiting the number of wire bends, and allows for connection of wires 120 (see FIG. 5) either before or after the installation of the circuit board 14.
  • Referring to the cover 16, the cover 16 comprises a top plate 86 and a plurality of side panels 88. An end of each of the side panels 88 is disposed adjacent an edge of the mounting plate 12.
  • In a typical use of the VO module 10, an installer runs the wires 120 to be connected to the VO module 10 through the openings 96 of the junction box 90. In many cases, the wires 120 will be ran to the junction box 90 and through the openings 96 by a building electrician. Another installer then, at a subsequent time, runs the wires 120 through the appropriate openings 36, 38, 40 and 42 of the mounting plate 12, and connects the wires to the appropriate ones of the communication terminals 104 and FO terminals 106. The installer then affixes the circuit board 14 to the mounting plate 12. To this end, the installer places a first edge of the circuit board 14 under the inward extension 48 and against the shaft 46 of the interference features 44, and generally aligns the circuit board 44 between the rib/post features 56. The installer then pushes the second end over the barbs 50 until the second end clears barb elements 54, snapping into place below barb elements 54.
  • The installer then aligns the mounting plate 12 such that one of the opposing pairs of the fastener receptacles 24, 26, 28 and 30 line up with the boss 98 and the opposing boss, not shown in FIG. 1, of the junction box 90. Once aligned, the installer affixes the mounting plate 12 to the junction box by inserting fasteners (e.g. fastener 99) through the aligned receptacles and bosses (e.g. receptacle 24 and boss 98). After the mounting plate 12 has been installed, the cover 16 is disposed over the mounting plate 12 and attached via additional fasteners, for example, fasteners 17.
  • In the embodiment described above, the I/O module 10 further includes an optional barrier 58 that extends from the second side 22 of the mounting plate 12 into the interior the junction box 12. In particular, it can be advantageous to install a barrier between different types of conductors within the junction box. The barrier can provide separation between low voltage and high voltage conductors, if desired. As shown in FIG. 1, the barrier 58 is configured as a generally rectangular plate-like structure having two alignment features 60 and an L-shaped retention element 62. Correspondingly, mounting plate 12 includes slots 64 for receiving the alignment features 60 and a slot 66 for receiving the retention element 62. The mounting plate 12 further includes two parallel ribs 68 configured to receive a part of the edge of the barrier 58 and retain the edge in a friction-fit manner. The barrier 58 is configured to generally extend through the width w and/or length / of the junction box 90, thereby dividing the interior of the junction box 90 into two substantially physically isolated compartments.
  • Another optional feature shown in the embodiment of FIGS. 1-5 is an adaptation for standard European-style junction boxes. To this end, the mounting plate 12 further includes two additional fastener receptacles 70, 72 disposed on the support structure 18 in a position compatible with the wiring standard IEC 60634 for European electrical junction boxes. in general, the fastener receptacle 70 is disposed along the dimension along, the length / approximately at the midpoint of the mounting plate 12, and the along the dimension along the width w approximately one-quarter of the width away from one side of the mounting plate 12. Similarly, the fastener receptacle 72 is disposed along the dimension along the length / approximately at the midpoint of the mounting plate 12, and the along the dimension along the width w approximately one-quarter of the width away from the other side of the mounting plate 12. The fastener receptacle 70 has an oval-shaped through-hole and surrounding boss, with the long dimension of the oval extending parallel to the dimension along the length /. Similarly, the fastener receptacle 72 has an oval-shaped through-hole and surrounding boss. However, the long dimension of the oval of the receptacle 72 extends parallel to the dimension along the width w.
  • Another feature of the embodiment of FIGS. 1-5 is expandability of the openings 36, 38, 40 and 42 of the mounting plate 12. In particular, as shown in FIGS. 3 and 4, adjacent each of the openings 36, 38, 40 and 42 are respective punch tabs 74, 76, 78 and 80. By way of example, the punch tab 36 includes a plate 82 and connectors 84. The plate 82 is slightly smaller than the width of the opening 36, and is less than one-half the length (on the order of one-third the length) of the opening 36. The plate 82 is disposed at one end of the opening, and is coupled to the support structure 18 via the connectors 84. The connectors 84 are configured to hold the plate 82 in place on the support structure, but also define a weak point that allows forcible removal of the plate 82. The support structure 18 is shaped such that, when the plate 82 is forcibly removed via failure of the connectors 84, the effective size of the opening 36 increases by approximately the size of the plate 82. The punch tabs 76, 78 and 80 have substantially the same configuration.
  • The punch tabs 74, 76, 78 and 80 provide additional flexibility to increase the size of the openings 36, 38, 40 and 42 in the event that such an increase is necessary. In addition, in the event that an increase is not necessary, the punch tabs 74, 76, 78 and 80 effectively cover open areas where access to dangerous electrical conductors can occur.
  • It will further appreciated that the fastener openings 24, 26, 30 and 32 can include punch tabs as shown in FIG. 3, which can be forcibly removed if and when each opening is used.
  • The above-described embodiment thus includes many features and advantages in flexibility, compatibility and ease of installation that can reduce wiring costs in a building control system. One feature of many embodiments is the ability to employ standard electrical junction boxes as a connection point, which is differs from the typical building automation system installation, This feature facilitates separation of the wall wiring activities and the I/O module wiring activities. Another feature is the adaptability of at least some embodiments of the I/O module to different junction box styles and tolerances.
  • It will be appreciated that the above-described embodiments are merely exemplary, and that those of ordinary skill in the art may readily devise their own implementations and modifications that incorporate the principles of the invention and fall within the spirit and scope thereof.

Claims (16)

1. An input/output module for a building automation system, comprising:
a mounting plate having at least two fastener receptacles positioned to align with fastener receptacles of a standard electrical junction box, the mounting plate further comprising at least two openings, each opening sized to receive one or more wires therethrough;
a circuit board supporting an interface circuit, the interface circuit configured to communicate on a building network, and including at least one device input terminal and one device output terminal, the interface circuit configured to provide an interface between the building network and one or more devices connected to the input and/or output terminals, the circuit board configured to be mounted to the mounting plate; and
a cover sized to fit over the mounting plate and circuit board.
2. The input/output module of claim 1, wherein the openings are configured such that when the circuit board is mounted to the mounting plate, at least a portion of each opening extends past at least one edge of the circuit board in a plane defined by a main surface of the mounting plate.
3. The input/output module of claim 1, wherein the circuit board supports a plurality of input device terminals and a plurality of output device terminals.
4. The input/output module of claim 1, wherein the openings are configured such that each opening is disposed adjacent to a location on the circuit board that includes at least one of the input and/or output terminals.
5. The input/output module of claim 1, wherein the mounting plate has a first surface and a second surface, and wherein the circuit board is configured to mount on or above the first surface, and wherein the second surface faces an interior of the standard electrical junction box.
6. The input/output module of claim 5, further comprising a barrier element, the barrier element configured to be received by the mounting plate and to extend in a direction away from the second surface, the barrier element disposed at least partly between two of the at least two openings.
7. The input/output module of claim 1, wherein the cover comprises a top plate and a plurality of side panels, and wherein an end of each of the side panels is disposed adjacent an edge of the mounting plate.
8. The input/output module of claim 1, wherein the at least two fastener receptacles comprise four fastener receptacles disposed to define corners of a square.
9. The input/output module of claim 1, further comprising additional fastener receptacles positioned to align with fastener receptacles of a second standard electrical junction box, a configuration of the fastener receptacles of the second standard electrical junction box different than a configuration of the fastener receptacles of the standard electrical junction box.
10. The input/output module of claim 1, further comprising punch tabs disposed adjacent to a first of the at least two openings, the punch tab including a removable plate configured to enlarge the first opening.
11. The input/output module of claim 4, wherein the openings are configured such that when the circuit board is mounted to the mounting plate, at least a portion of each opening extends past at least one edge of the circuit board in a plane defined by a main surface of the mounting plate.
12. The input/output module of claim 11, wherein the mounting plate has a first surface and a second surface, and wherein the circuit board is configured to mount on or above the first surface, and wherein the second surface faces an interior of the standard electrical junction box.
13. The input/output module of claim 12, further comprising a barrier element, the barrier element configured to be received by the mounting plate and to extend in a direction away from the second surface, the barrier element disposed at least partly between two of the at least two openings.
14. The input/output module of claim 13, wherein the at least two fastener receptacles comprise four fastener receptacles disposed to define corners of a square.
15. The input/output module of claim 14, further comprising additional fastener receptacles positioned to align with fastener receptacles of a second standard electrical junction box, a configuration of the fastener receptacles of the second standard electrical junction box different than a configuration of the fastener receptacles of the standard electrical junction box.
16. The input/output module of claim 15, further comprising further comprising a punch tabs disposed adjacent to a first of the at least two openings, the punch tab including a removable plate configured to enlarge the first opening.
US13/030,489 2008-08-21 2011-02-18 Input/output module for building automation system with mounting plate Active 2030-02-02 US8503183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/030,489 US8503183B2 (en) 2008-08-21 2011-02-18 Input/output module for building automation system with mounting plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9072108P 2008-08-21 2008-08-21
US54397009A 2009-08-19 2009-08-19
PCT/US2009/054556 WO2010022297A1 (en) 2008-08-21 2009-08-21 Input/output module for building automation system with mounting plate
US13/030,489 US8503183B2 (en) 2008-08-21 2011-02-18 Input/output module for building automation system with mounting plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/054556 Continuation WO2010022297A1 (en) 2008-08-21 2009-08-21 Input/output module for building automation system with mounting plate

Publications (2)

Publication Number Publication Date
US20110226506A1 true US20110226506A1 (en) 2011-09-22
US8503183B2 US8503183B2 (en) 2013-08-06

Family

ID=41279337

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/030,489 Active 2030-02-02 US8503183B2 (en) 2008-08-21 2011-02-18 Input/output module for building automation system with mounting plate

Country Status (9)

Country Link
US (1) US8503183B2 (en)
EP (1) EP2327285B1 (en)
KR (1) KR101603363B1 (en)
CN (1) CN102197716B (en)
BR (1) BRPI0917373B1 (en)
CA (1) CA2734890C (en)
ES (1) ES2695598T3 (en)
MX (1) MX2011001953A (en)
WO (1) WO2010022297A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044082A1 (en) * 2010-08-20 2012-02-23 Rockwell Automation Technologies, Inc. Input/Output Circuits and Devices Having Physically Corresponding Status Indicators
US20130286896A1 (en) * 2012-04-27 2013-10-31 Selph Secured LLC Telecommunications and computer network interconnectivity apparatuses and methods thereof
USD898682S1 (en) * 2019-05-27 2020-10-13 Voltronic Power Technology Corp. Monitoring and control device for an uninterruptible power system
USD907587S1 (en) * 2019-06-23 2021-01-12 Watlow Electric Manufacturing Company Process controller interface
USD909313S1 (en) * 2019-06-23 2021-02-02 Watlow Electric Manufacturing Company Process controller interface
WO2021081163A1 (en) * 2019-10-22 2021-04-29 Hayward Industries, Inc. Modular wiring system for actuators
US11301018B2 (en) 2019-05-27 2022-04-12 Voltronic Power Technology Corp. Uninterruptible power system
DE102013017204B4 (en) 2013-10-16 2023-06-29 tado GmbH Retrofit set for heating control
GB2623869A (en) * 2022-09-20 2024-05-01 Honeywell Int Inc Building controller with wiring terminals programmable between an input wiring terminal type, an output wiring terminal type, and a communication wiring

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569558B2 (en) * 2012-06-06 2014-08-13 第一精工株式会社 Housing for electrical parts
US20140168905A1 (en) * 2012-12-16 2014-06-19 Energy Pro Technology Co., Ltd. Electric box with wire protection mechanism
KR200481419Y1 (en) * 2013-05-28 2016-10-10 케스웰 인코포레이티드 Detachable network module structure
US10119712B2 (en) 2015-10-21 2018-11-06 Setra Systems Room condition monitoring system
CN107072082B (en) * 2016-07-07 2023-01-13 深圳市朗科智能电气股份有限公司 LED power supply
USD813647S1 (en) * 2016-12-30 2018-03-27 Open Mesh, Inc. Network access point mounting plate
CN207214369U (en) * 2017-04-28 2018-04-10 西门子瑞士有限公司 Temperature controller suitable for indoor wall dress
US11553618B2 (en) * 2020-08-26 2023-01-10 PassiveLogic, Inc. Methods and systems of building automation state load and user preference via network systems activity
USD1008821S1 (en) * 2022-05-31 2023-12-26 Watts Regulator Co. Snow ice sensor interface
USD1008820S1 (en) * 2022-06-02 2023-12-26 Watts Regulator Co. Boiler controller
US20240032235A1 (en) * 2022-07-20 2024-01-25 Crestron Electronics, Inc. Thermal management in electrical boxes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247840A (en) * 1979-04-27 1981-01-27 Gte Products Corporation Ground fault receptacle reversible conductors
US4267966A (en) * 1979-08-27 1981-05-19 Teledyne Industries, Inc. Programmable thermostat
US4733330A (en) * 1986-03-19 1988-03-22 Matsushita Electric Works, Ltd. Wiring-device mounting structure
US5592989A (en) * 1994-04-28 1997-01-14 Landis & Gyr Powers, Inc. Electronic thermostat having high and low voltage control capability
US6274809B1 (en) * 1999-04-29 2001-08-14 Hubbell Incorporated Large capacity floor box
US20020146207A1 (en) * 2001-04-05 2002-10-10 Max Chu Fiber converter faceplate outlet
US20050095927A1 (en) * 2003-11-03 2005-05-05 Conway Raymond L. Electrical box
US20050099257A1 (en) * 1999-07-26 2005-05-12 Kent Holce Combination current sensor and relay
US6911598B2 (en) * 2003-02-14 2005-06-28 Sumitomo Wiring Systems, Ltd. Casing unit for circuit assembly and method for producing the circuit assembly
US20060039125A1 (en) * 2004-08-17 2006-02-23 Invensys Building Systems, Inc. Method and apparatus for progressively connecting a controller to an external circuit of a building
US20080151458A1 (en) * 2006-10-27 2008-06-26 Honeywell International Inc. Wall mount electronic controller

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247840A (en) * 1979-04-27 1981-01-27 Gte Products Corporation Ground fault receptacle reversible conductors
US4267966A (en) * 1979-08-27 1981-05-19 Teledyne Industries, Inc. Programmable thermostat
US4733330A (en) * 1986-03-19 1988-03-22 Matsushita Electric Works, Ltd. Wiring-device mounting structure
US5592989A (en) * 1994-04-28 1997-01-14 Landis & Gyr Powers, Inc. Electronic thermostat having high and low voltage control capability
US6274809B1 (en) * 1999-04-29 2001-08-14 Hubbell Incorporated Large capacity floor box
US20050099257A1 (en) * 1999-07-26 2005-05-12 Kent Holce Combination current sensor and relay
US20020146207A1 (en) * 2001-04-05 2002-10-10 Max Chu Fiber converter faceplate outlet
US6911598B2 (en) * 2003-02-14 2005-06-28 Sumitomo Wiring Systems, Ltd. Casing unit for circuit assembly and method for producing the circuit assembly
US20050095927A1 (en) * 2003-11-03 2005-05-05 Conway Raymond L. Electrical box
US20060039125A1 (en) * 2004-08-17 2006-02-23 Invensys Building Systems, Inc. Method and apparatus for progressively connecting a controller to an external circuit of a building
US20080151458A1 (en) * 2006-10-27 2008-06-26 Honeywell International Inc. Wall mount electronic controller

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055688B2 (en) 2010-08-20 2015-06-09 Rockwell Automation Technologies, Inc. Input/output circuits having status indicators aligned with respective terminals
US9055687B2 (en) * 2010-08-20 2015-06-09 Rockwell Automation Technologies, Inc. Input/output circuits and devices having physically corresponding status indicators
US9483928B2 (en) 2010-08-20 2016-11-01 Rockwell Automation Technologies, Inc. Input/output circuits and devices having physically corresponding status indicators
US20120044082A1 (en) * 2010-08-20 2012-02-23 Rockwell Automation Technologies, Inc. Input/Output Circuits and Devices Having Physically Corresponding Status Indicators
US20130286896A1 (en) * 2012-04-27 2013-10-31 Selph Secured LLC Telecommunications and computer network interconnectivity apparatuses and methods thereof
DE102013017204B4 (en) 2013-10-16 2023-06-29 tado GmbH Retrofit set for heating control
US11301018B2 (en) 2019-05-27 2022-04-12 Voltronic Power Technology Corp. Uninterruptible power system
USD898682S1 (en) * 2019-05-27 2020-10-13 Voltronic Power Technology Corp. Monitoring and control device for an uninterruptible power system
USD907587S1 (en) * 2019-06-23 2021-01-12 Watlow Electric Manufacturing Company Process controller interface
USD909313S1 (en) * 2019-06-23 2021-02-02 Watlow Electric Manufacturing Company Process controller interface
US11266019B2 (en) * 2019-10-22 2022-03-01 Hayward Industries, Inc. Modular wiring system for actuators
WO2021081163A1 (en) * 2019-10-22 2021-04-29 Hayward Industries, Inc. Modular wiring system for actuators
US20220141958A1 (en) * 2019-10-22 2022-05-05 Hayward Industries, Inc. Modular Wiring System For Actuators
US11849541B2 (en) * 2019-10-22 2023-12-19 Hayward Industries, Inc. Modular wiring system for actuators
GB2623869A (en) * 2022-09-20 2024-05-01 Honeywell Int Inc Building controller with wiring terminals programmable between an input wiring terminal type, an output wiring terminal type, and a communication wiring

Also Published As

Publication number Publication date
WO2010022297A1 (en) 2010-02-25
US8503183B2 (en) 2013-08-06
EP2327285A1 (en) 2011-06-01
KR101603363B1 (en) 2016-03-14
MX2011001953A (en) 2011-05-02
ES2695598T3 (en) 2019-01-09
CN102197716B (en) 2014-12-03
CA2734890A1 (en) 2010-02-25
BRPI0917373B1 (en) 2019-04-09
CN102197716A (en) 2011-09-21
CA2734890C (en) 2017-03-07
BRPI0917373A2 (en) 2015-11-17
EP2327285B1 (en) 2018-07-04
KR20110057163A (en) 2011-05-31

Similar Documents

Publication Publication Date Title
US8503183B2 (en) Input/output module for building automation system with mounting plate
US20210372645A1 (en) Multipurpose multifunction device
US6414241B1 (en) Enclosure for interfacing electrical and control or communication devices
US7748640B2 (en) Stackable thermostat
US7800498B2 (en) Occupancy sensor powerbase
US9686880B1 (en) Thermostat housing with pc board locating apertures
CA2956761C (en) Wall mountable connector terminal configuration
EP1071054A2 (en) Lens for a motion detector
US20170234568A1 (en) Wall covering plate for use with an hvac controller
US9941183B2 (en) Wall mountable connector with wall covering plate
US20170237187A1 (en) Wall mountable connector with commonly used field wire terminals spaced from one another
US9960581B2 (en) Adapter plate with mounting features for a wall mountable connector
WO2008097992A1 (en) Modular components for building automation systems
US20120182698A1 (en) Assembly for installing building systems engineering units
CA2956763C (en) Wall mountable connector for an hvac controller
CA2956762C (en) Hvac wall mountable connector with movable door
US20030167631A1 (en) Mounting assembly for premises automation system components
US20190239368A1 (en) Electrical box adapter plate
WO2020096709A1 (en) Thermostat
JP7281808B2 (en) control panel equipment
US20240090143A1 (en) Tamper-resistant enclosure coupling system
EP3624285B1 (en) Wall-mountable back plate for securing a control module to a wall, and assembly comprising such a back plate
EP3385636A1 (en) Wall mountable back plate for securing a building control module to a wall
JPH11329132A (en) Wiring appliance attaching box

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS INDUSTRY, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMILTON, STEVEN R;STROZEWSKI, MICHAEL B;FANG WANG, JIAN;AND OTHERS;SIGNING DATES FROM 20110315 TO 20110530;REEL/FRAME:026369/0992

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8