US20110202311A1 - System and method for classifying vehicle occupant - Google Patents

System and method for classifying vehicle occupant Download PDF

Info

Publication number
US20110202311A1
US20110202311A1 US13/091,892 US201113091892A US2011202311A1 US 20110202311 A1 US20110202311 A1 US 20110202311A1 US 201113091892 A US201113091892 A US 201113091892A US 2011202311 A1 US2011202311 A1 US 2011202311A1
Authority
US
United States
Prior art keywords
vehicle occupant
base
cover
weight
classifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/091,892
Inventor
Young Nam Cho
Yong Sun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kia Corp
Original Assignee
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kia Motors Corp filed Critical Kia Motors Corp
Priority to US13/091,892 priority Critical patent/US20110202311A1/en
Assigned to KIA MOTORS CORP. reassignment KIA MOTORS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, YOUNG NAM, KIM, YONG SUN
Publication of US20110202311A1 publication Critical patent/US20110202311A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B9/00Connections of rods or tubular parts to flat surfaces at an angle
    • F16B9/02Detachable connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/40Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight
    • G01G19/413Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means
    • G01G19/414Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
    • G01G19/4142Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only for controlling activation of safety devices, e.g. airbag systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01211Expansion of air bags

Definitions

  • the present invention relates to a system for classifying a vehicle occupant, and, more particularly, to a system for classifying a vehicle occupant which classifies a vehicle occupant sitting in the seat of a vehicle in order to deploy an airbag only for an occupant who has an age equal to or greater than certain age or certain physical requirements.
  • airbags are installed for passenger seats as well as a driver's seat.
  • Such airbags are deployed when a collision between vehicles occurs, and thus protecting vehicle occupants.
  • a deployed airbag may act as a dangerous factor that threatens its life thereof. Therefore, whether an airbag for a passenger seat should be deployed must be determined depending on the type of vehicle occupant.
  • FMVSS Federal Motor Vehicle Safety Standards
  • a vehicle occupant classification system In order to discriminate between adults and small children, as described above, a vehicle occupant classification system must be installed in the seat. Some currently used vehicle occupant classification systems basically use the differences in weight between adults and small children. For example, as shown in FIG. 2 , a conventional system for classifying a vehicle occupant is configured such that a control unit 4 identifies vehicle occupants using input values from four weight sensors S 1 to S 4 installed between the leg frames 2 and moving rails 3 of a seat 1 , and the results of the sensing are transmitted to an Airbag Control Unit (ACU).
  • ACU Airbag Control Unit
  • the above-described conventional system for classifying a vehicle occupant has problems in that the price thereof is relatively high because it requires four weight sensors, and that it is difficult to install in a seat and the burden of work increases because respective components of the system are individually installed in a seat.
  • an object of the present invention is to provide a system for classifying a vehicle occupant, which can accurately classify a vehicle occupant while reducing the number of weight sensors.
  • Another object of the present invention is to provide a system for classifying a vehicle occupant, which is modulized, so that the assembly and durability for seats are excellent.
  • the present invention provides a system for classifying a vehicle occupant, including a base installed in each of leg frames of a seat of a vehicle; a cover installed above the base to be spaced apart from the base; two weight sensors installed between the base and the cover to support the cover, and configured to measure a load transmitted to the cover by the weight of a vehicle occupant sitting in the seat; and a control unit configured to receive load values measured by the weight sensors, and determine whether the vehicle occupant sitting in the seat is an adult or a child based on the received load values.
  • a shock absorption member is interposed between the weight sensors and the base, and a stopper is interposed between the base and the cover in order to limit the downward movement range of the cover in the case of overload.
  • a method of classifying a vehicle occupant sitting in a seat using a system for classifying a vehicle occupant using two weight sensors including calculating the weight of a vehicle occupant by multiplying two-sensor measurement load value set by an optimal independent variable set, and comparing the calculated weight of the vehicle occupant with a preset threshold value, and determining whether the vehicle occupant is an adult or a child, where the optimal independent variable set is a variable set that, in experiments for various types of adult and child dummies, belongs to variable sets within a preset range, by which the two-sensor measurement load value set is multiplied, and maximizes the difference between the minimum weight value of the adult dummies and the maximum weight value of the child dummies;
  • each element X 1 k and X 2 k of the optimal independent variable set (X 1 k , X 2 k ) has a value ranging from 0 to 2.
  • FIG. 1 is a diagram showing conventional criteria for airbag deployment
  • FIG. 2 is a schematic diagram showing a system for classifying a vehicle occupant having four sensors according to the prior art
  • FIG. 3 is a schematic diagram showing a system for classifying a vehicle occupant having two sensors according to an exemplary embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along the line A-A′ of FIG. 3 ;
  • FIG. 5 is an enlarged view of the right part of FIG. 4 ;
  • FIG. 6 is a cross-sectional view taken along the line B-B′ of FIG. 3 ;
  • FIG. 7 is a view showing the advantages of criteria for airbag deployment according to the exemplary embodiment of the present invention.
  • FIG. 8 is a flowchart showing a method of classifying a vehicle occupant according to an exemplary embodiment of the present invention.
  • FIG. 9 is a flowchart showing the advantages of the method of classifying a vehicle occupant according to the exemplary embodiment of the present invention.
  • the system for classifying a vehicle occupant includes a base 10 installed in each of the leg frames (not shown) of a seat, a cover 20 installed above the base to be spaced apart from the base 10 , two weight sensors 30 installed between the base 10 and the cover 20 , and a control unit 60 connected to the weight sensors 30 by wires 33 a and 33 b and a connector 34 .
  • the two weight sensors 30 measure the load transmitted to the cover 20 by the weight of a vehicle occupant sitting in a seat.
  • the control unit 60 receives values measured by the weight sensors 30 , and determines whether the vehicle occupant sitting in the seat is an adult or a child based on the received values of load.
  • a moving rail (not shown) is mounted on the cover 20 , and fastening holes 21 are formed in the upper surfaces of both ends of the cover 20 in order to tighten the moving rail.
  • the two weight sensors 30 are installed above the base 10 to be spaced apart from the base 10 to support the cover 20 .
  • the lower bolt 31 and the upper bolt 32 of the weight sensor 30 respectively penetrate through a portion of the base 10 and a portion of the cover 20 , and are fastened and tightened by nuts 31 a and 32 a .
  • the cover 20 is moved downward in the direction of the weight sensor 30 by the load.
  • a shock absorption member 50 is interposed between the weight sensor 30 and the base 10 in order to protect the weight sensors and compensate for assembly tolerance.
  • a stopper 40 is interposed between the base 10 and the cover 20 in order to limit the downward movement range of the cover 20 in the case of overload. That is, the stopper 40 is bolted on a skirt section 22 of the cover 20 , and is fastened and tightened by nuts 41 . The front end of the stopper 40 penetrates through the buffer hole 12 of a base expansion section 11 of the base 10 and is exposed to the outside. The diameter of the buffer hole 12 is larger than that of the stopper 40 . Further, in the state in which no load is applied to the cover 20 , the stopper 40 is arranged at the center of the buffer hole 12 .
  • the target for which an airbag is not to be deployed is changed from a small child 6 years old or younger to an infant 1 year old or younger.
  • an airbag since an airbag must be deployed even for small children 3 or 6 years old, there is a burden in that the extent of injury to children caused by the deployment of an airbag is required to be decreased.
  • an airbag softer than a conventional airbag has been developed, so that the criteria for selecting the target for which an airbag is not to be deployed have changed for the better.
  • the system can more reliably avoid the problem in which an adult is erroneously determined to be a small child due to the change in the posture of an occupant.
  • the usefulness of this criteria change is easily understood by referring to FIG. 7 . That is, since the gap between small children and adults is much greater than that of the prior art, the likelihood of erroneous occupant classification of the system can be decreased.
  • two sensor classification system a method of classifying a vehicle occupant using the system for classifying a vehicle occupant having two sensors
  • the weight of a vehicle occupant is obtained by simply summing up values measured by the respective sensors.
  • the weight of a vehicle occupant in the case of the two-sensor classification system is not obtained using such a method.
  • the optimal independent variable set (X 1 , X 2 ) is obtained based on actual experiments.
  • a threshold value used to identify a vehicle occupant, can be obtained based on the optimal independent variable set (X 1 , X 2 ) as explained hereinafter.
  • a performance test for a system for classifying a vehicle occupant is performed by, for example, seating thirty types of adult dummies and sixteen types of child dummies wearing CRS (hereinafter simply referred to as “child dummy”) in seats, and verifying whether the system for classifying a vehicle occupant can accurately classify them.
  • CRS CRS
  • the i sensor measurement load value set (S 1 i , S 2 i ) for child dummies and j sensor measurement load value sets (S 1 j , S 2 j ) for adult dummies can be obtained using the two sensor classification system.
  • An optimal independent variable set (X 1 , X 2 ) for classification as adults or children is derived based on the obtained sensor measurement load value set (S 1 i , S 2 i ) and (S 1 j , S 2 j ). of the child and adult dummies.
  • the optimal independent variable set (X 1 , X 2 ) is calculated based on the following Equation 1.
  • independent variable sets for adult or child dummies are preset. That is, an independent variable set (X 1 ik , X 2 ik ) is preset for child dummies.
  • the independent variable set (X 1 jk , X 2 jk ) is preset for adult dummies.
  • the respective sensor measurement load value sets (S 1 i , S 2 i ) and (S 1 j , S 2 j ) for child and adult dummies are multiplied by respective preset independent variable sets (X 1 ik ,X 2 ik ) and (X 1 jk , X 2 jk ) by matrix computation. That is, X 1 k of each independent variable set is a variable to be multiplied by S 1 , and X 2 k is a variable to be multiplied by S 2 , so that the respective weight value set A jk and C jk of the adult and child dummies are obtained.
  • the minimum weight value of the adult dummies and the maximum weight value of the child dummies for the respective independent variable sets are extracted, and a independent variable set, which maximizes the difference between the minimum weight value of the adult dummies and the maximum weight value of the child dummies, is selected as the optimal independent variable set (X 1 , X 2 ).
  • Variables for child and adult dummies are arranged in rows X 1 1 to X 1 k and columns X 2 1 to X 2 k , in a predetermined range, and are processed as matrix combination type data in which the value between each of the rows and each of the columns has a difference by a predetermined value (for example, 0.1).
  • a threshold value T is selected as a value which is optimized to discriminate between adults and children and ranges between the minimum weight value of the adult dummies and the maximum weight value of the child dummies.
  • the threshold value T is the average value of the minimum weight value of the adult dummies and the maximum weight value of the child dummies, which satisfies MAX[SUB k ].
  • the optimal independent variable set (X 1 , X 2 ) and the threshold value T which are obtained in the above process, are unit values of the corresponding two sensor classification system, and the two sensor classification system can identify a vehicle occupant sitting in a seat using the optimal independent variable set (X 1 , X 2 ) and the threshold value T.
  • the control unit multiplies sensor measurement load value sets (S 1 input , S 2 input ) by the optimal independent variable set (X 1 , X 2 ) and calculates the sum thereof as illustrated in Equation 2.
  • the sum indicates the weight value of the vehicle occupant measured by the two sensor classification system.
  • the two sensor classification system compares the measured weight value (W input ) of a vehicle occupant with the threshold value T, and determines that the vehicle occupant is a child when W input is smaller than T. Otherwise, the two sensor classification system determines that the vehicle occupant is an adult. The results of the comparison are transmitted to the airbag control unit.
  • the gap is C kg, that is, the fact that the gap is smaller than that of the case in which four sensors are used has been experimentally demonstrated.
  • the system for classifying a vehicle occupant is modulized, so that the assembly and durability for seats are excellent.

Abstract

A system and method for classifying a vehicle occupant is disclosed. A base is installed in each of leg frames of a seat of a vehicle. A cover is installed above the base to be spaced apart from the base. Two weight sensors are installed between the base and the cover to support the cover, and configured to measure a load transmitted to the cover by the weight of a vehicle occupant sitting in the seat. A control unit receives load values measured by the weight sensors, and determines whether the vehicle occupant sitting in the seat is an adult or a child based on the received load values. A shock absorption member is interposed between the weight sensors and the base. A stopper is interposed between the base and the cover in order to limit a downward movement range of the cover in a case of overload.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of U.S. patent application Ser. No. 11/972,342, filed Jan. 10, 2008, which claims priority to Korean Application No. 10-2007-0058284, filed on Jun. 14, 2007, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a system for classifying a vehicle occupant, and, more particularly, to a system for classifying a vehicle occupant which classifies a vehicle occupant sitting in the seat of a vehicle in order to deploy an airbag only for an occupant who has an age equal to or greater than certain age or certain physical requirements.
  • 2. Description of the Related Art
  • Recently, in many cases, airbags are installed for passenger seats as well as a driver's seat.
  • Such airbags are deployed when a collision between vehicles occurs, and thus protecting vehicle occupants. In the case of an adult, there is no problem when using an airbag, but, in the case of a small child, a deployed airbag may act as a dangerous factor that threatens its life thereof. Therefore, whether an airbag for a passenger seat should be deployed must be determined depending on the type of vehicle occupant.
  • With reference to FIG. 1, criteria for airbag deployment according to the Federal Motor Vehicle Safety Standards (FMVSS) 208 will be described. According to the FMVSS 208, in the case of adults, an airbag is to be deployed, but, in the case of small children 6 years old or younger, an airbag must be prevented from being deployed. The reason for this is to protect small children 6 years old or younger using a separate Child Restraint System (CRS), rather than an airbag in the event of accidents.
  • In order to discriminate between adults and small children, as described above, a vehicle occupant classification system must be installed in the seat. Some currently used vehicle occupant classification systems basically use the differences in weight between adults and small children. For example, as shown in FIG. 2, a conventional system for classifying a vehicle occupant is configured such that a control unit 4 identifies vehicle occupants using input values from four weight sensors S1 to S4 installed between the leg frames 2 and moving rails 3 of a seat 1, and the results of the sensing are transmitted to an Airbag Control Unit (ACU).
  • However, the above-described conventional system for classifying a vehicle occupant has problems in that the price thereof is relatively high because it requires four weight sensors, and that it is difficult to install in a seat and the burden of work increases because respective components of the system are individually installed in a seat.
  • The information disclosed in this Background of the Invention section is only for enhancement of understanding of the background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art that is already known to a person skilled in the art.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a system for classifying a vehicle occupant, which can accurately classify a vehicle occupant while reducing the number of weight sensors.
  • Another object of the present invention is to provide a system for classifying a vehicle occupant, which is modulized, so that the assembly and durability for seats are excellent.
  • In order to accomplish the above object, the present invention provides a system for classifying a vehicle occupant, including a base installed in each of leg frames of a seat of a vehicle; a cover installed above the base to be spaced apart from the base; two weight sensors installed between the base and the cover to support the cover, and configured to measure a load transmitted to the cover by the weight of a vehicle occupant sitting in the seat; and a control unit configured to receive load values measured by the weight sensors, and determine whether the vehicle occupant sitting in the seat is an adult or a child based on the received load values.
  • Preferably, a shock absorption member is interposed between the weight sensors and the base, and a stopper is interposed between the base and the cover in order to limit the downward movement range of the cover in the case of overload.
  • Meanwhile, a method of classifying a vehicle occupant sitting in a seat using a system for classifying a vehicle occupant using two weight sensors, the method including calculating the weight of a vehicle occupant by multiplying two-sensor measurement load value set by an optimal independent variable set, and comparing the calculated weight of the vehicle occupant with a preset threshold value, and determining whether the vehicle occupant is an adult or a child, where the optimal independent variable set is a variable set that, in experiments for various types of adult and child dummies, belongs to variable sets within a preset range, by which the two-sensor measurement load value set is multiplied, and maximizes the difference between the minimum weight value of the adult dummies and the maximum weight value of the child dummies;
  • Preferably, the optimal independent variable set (X1 k, X2 k) have a relationship of X1 k+X2 k=a predetermined rational value.
  • Further, preferably, each element X1 k and X2 k of the optimal independent variable set (X1 k, X2 k) has a value ranging from 0 to 2.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features of the present invention will now be described in detail with reference to certain exemplary embodiments thereof illustrated the accompanying drawings which are given hereinbelow by way of illustration, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a diagram showing conventional criteria for airbag deployment;
  • FIG. 2 is a schematic diagram showing a system for classifying a vehicle occupant having four sensors according to the prior art;
  • FIG. 3 is a schematic diagram showing a system for classifying a vehicle occupant having two sensors according to an exemplary embodiment of the present invention;
  • FIG. 4 is a cross-sectional view taken along the line A-A′ of FIG. 3;
  • FIG. 5 is an enlarged view of the right part of FIG. 4;
  • FIG. 6 is a cross-sectional view taken along the line B-B′ of FIG. 3;
  • FIG. 7 is a view showing the advantages of criteria for airbag deployment according to the exemplary embodiment of the present invention;
  • FIG. 8 is a flowchart showing a method of classifying a vehicle occupant according to an exemplary embodiment of the present invention; and
  • FIG. 9 is a flowchart showing the advantages of the method of classifying a vehicle occupant according to the exemplary embodiment of the present invention.
  • It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention. The specific design features of the present invention as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes will be determined in part by the particular intended application and use environment.
  • In the figures, reference numbers refer to the same or equivalent parts of the present invention throughout the several figures of the drawing.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to a preferred embodiment of the present invention, an example of which is illustrated in the accompanying drawings and described below. While the invention will be described in conjunction with an exemplary embodiment, it should be understood that the description is not intended to limit the invention to the exemplary embodiment. On the contrary, the invention is intended to cover not only the exemplary embodiment, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.
  • First, the system for classifying a vehicle occupant will be described with reference to FIGS. 3 to 6.
  • As shown in FIG. 3, the system for classifying a vehicle occupant includes a base 10 installed in each of the leg frames (not shown) of a seat, a cover 20 installed above the base to be spaced apart from the base 10, two weight sensors 30 installed between the base 10 and the cover 20, and a control unit 60 connected to the weight sensors 30 by wires 33 a and 33 b and a connector 34. The two weight sensors 30 measure the load transmitted to the cover 20 by the weight of a vehicle occupant sitting in a seat. The control unit 60 receives values measured by the weight sensors 30, and determines whether the vehicle occupant sitting in the seat is an adult or a child based on the received values of load. Meanwhile, a moving rail (not shown) is mounted on the cover 20, and fastening holes 21 are formed in the upper surfaces of both ends of the cover 20 in order to tighten the moving rail.
  • As shown in FIGS. 4 and 5, the two weight sensors 30 are installed above the base 10 to be spaced apart from the base 10 to support the cover 20. The lower bolt 31 and the upper bolt 32 of the weight sensor 30 respectively penetrate through a portion of the base 10 and a portion of the cover 20, and are fastened and tightened by nuts 31 a and 32 a. The cover 20 is moved downward in the direction of the weight sensor 30 by the load. A shock absorption member 50 is interposed between the weight sensor 30 and the base 10 in order to protect the weight sensors and compensate for assembly tolerance.
  • Referring to FIGS. 3 and 6, a stopper 40 is interposed between the base 10 and the cover 20 in order to limit the downward movement range of the cover 20 in the case of overload. That is, the stopper 40 is bolted on a skirt section 22 of the cover 20, and is fastened and tightened by nuts 41. The front end of the stopper 40 penetrates through the buffer hole 12 of a base expansion section 11 of the base 10 and is exposed to the outside. The diameter of the buffer hole 12 is larger than that of the stopper 40. Further, in the state in which no load is applied to the cover 20, the stopper 40 is arranged at the center of the buffer hole 12.
  • Meanwhile, according to an exemplary embodiment of the present invention, the target for which an airbag is not to be deployed is changed from a small child 6 years old or younger to an infant 1 year old or younger. In this case, since an airbag must be deployed even for small children 3 or 6 years old, there is a burden in that the extent of injury to children caused by the deployment of an airbag is required to be decreased. However, recently, an airbag softer than a conventional airbag has been developed, so that the criteria for selecting the target for which an airbag is not to be deployed have changed for the better. Further, since the target for which an airbag is not to be deployed is set to an infant 1 year old or younger, the system can more reliably avoid the problem in which an adult is erroneously determined to be a small child due to the change in the posture of an occupant. The usefulness of this criteria change is easily understood by referring to FIG. 7. That is, since the gap between small children and adults is much greater than that of the prior art, the likelihood of erroneous occupant classification of the system can be decreased.
  • Next, a method of classifying a vehicle occupant using the system for classifying a vehicle occupant having two sensors (hereinafter referred to as “two sensor classification system”) will be described with reference to FIG. 8.
  • In the case of the system for classifying a vehicle occupant having four sensors, the weight of a vehicle occupant is obtained by simply summing up values measured by the respective sensors. However, the weight of a vehicle occupant in the case of the two-sensor classification system is not obtained using such a method. Moreover, since the weight of a vehicle occupant sitting in a seat is not uniformly distributed throughout the seat, the determination of “weight of a vehicle occupant=sum of values measured by two sensors×2” considerably inaccurate.
  • Therefore, speaking relatively simply, in order to identify a vehicle occupant using the two sensor classification system, it is necessary to derive optimal variables X1 and X2 which can satisfy the relationship of “weight of a vehicle occupant=X1×S1+X2×S2”, where S1 and S2 are load values measured by the respective weight sensors (hereinafter referred to as “sensor measurement load value set”) and X1 and X2 are optimal independent variables (hereinafter referred to as “optimal independent variable set). The optimal independent variable set (X1, X2) is obtained based on actual experiments. When the optimal independent variable set (X1, X2) is obtained, a threshold value, used to identify a vehicle occupant, can be obtained based on the optimal independent variable set (X1, X2) as explained hereinafter.
  • Obtainment of Sensor Measurement Load Value Set as Weight Data
  • A performance test for a system for classifying a vehicle occupant is performed by, for example, seating thirty types of adult dummies and sixteen types of child dummies wearing CRS (hereinafter simply referred to as “child dummy”) in seats, and verifying whether the system for classifying a vehicle occupant can accurately classify them.
  • In order to select an optimal independent variable set (X1, X2), it is assumed that the number of child dummy types is “i” and the number of adult dummy types is I″. Therefore, the i sensor measurement load value set (S1 i, S2 i) for child dummies and j sensor measurement load value sets (S1 j, S2 j) for adult dummies can be obtained using the two sensor classification system.
  • Selection of Optimal Independent Variable Set
  • An optimal independent variable set (X1, X2) for classification as adults or children is derived based on the obtained sensor measurement load value set (S1 i, S2 i) and (S1 j, S2 j). of the child and adult dummies.
  • The optimal independent variable set (X1, X2) is calculated based on the following Equation 1.

  • MAX[SUBk=MIN(A jk)1 j−MAX(C ik)1 i]1 k  (Equation 1)
  • Where Cik=X1 ik×S1 i+X2 ik×S2 i and Ajk=X1 jk×S1 j+X2 jk×S2 j.
  • For this calculation, at first, independent variable sets for adult or child dummies are preset. That is, an independent variable set (X1 ik, X2 ik) is preset for child dummies. The independent variable set (X1 jk, X2 jk) is preset for adult dummies.
  • The respective sensor measurement load value sets (S1 i, S2 i) and (S1 j, S2 j) for child and adult dummies are multiplied by respective preset independent variable sets (X1 ik,X2 ik) and (X1 jk, X2 jk) by matrix computation. That is, X1 k of each independent variable set is a variable to be multiplied by S1, and X2 k is a variable to be multiplied by S2, so that the respective weight value set Ajk and Cjk of the adult and child dummies are obtained.
  • Thereafter, the minimum weight value of the adult dummies and the maximum weight value of the child dummies for the respective independent variable sets are extracted, and a independent variable set, which maximizes the difference between the minimum weight value of the adult dummies and the maximum weight value of the child dummies, is selected as the optimal independent variable set (X1, X2).
  • Variables for child and adult dummies are arranged in rows X1 1 to X1 k and columns X2 1 to X2 k, in a predetermined range, and are processed as matrix combination type data in which the value between each of the rows and each of the columns has a difference by a predetermined value (for example, 0.1). Of course, according to setting, the variable data X1 k and X2 k may have an upper limit and a lower limit (for example, a rational number between 0 to 2) and correlation may be applied between respective elements (for example, X1 k+X2 k=2).
  • Selection of Threshold Value
  • A threshold value T is selected as a value which is optimized to discriminate between adults and children and ranges between the minimum weight value of the adult dummies and the maximum weight value of the child dummies. Preferably, the threshold value T is the average value of the minimum weight value of the adult dummies and the maximum weight value of the child dummies, which satisfies MAX[SUBk].
  • Method of Classifying Vehicle Occupant
  • The optimal independent variable set (X1, X2) and the threshold value T, which are obtained in the above process, are unit values of the corresponding two sensor classification system, and the two sensor classification system can identify a vehicle occupant sitting in a seat using the optimal independent variable set (X1, X2) and the threshold value T.
  • First, when a vehicle occupant is sitting on a seat in which the two sensor classification system is installed, the control unit multiplies sensor measurement load value sets (S1 input, S2 input) by the optimal independent variable set (X1, X2) and calculates the sum thereof as illustrated in Equation 2. The sum indicates the weight value of the vehicle occupant measured by the two sensor classification system.

  • W input =X1×S1input +XS2input  (Equation 2)
  • Next, the two sensor classification system compares the measured weight value (Winput) of a vehicle occupant with the threshold value T, and determines that the vehicle occupant is a child when Winput is smaller than T. Otherwise, the two sensor classification system determines that the vehicle occupant is an adult. The results of the comparison are transmitted to the airbag control unit.
  • Meanwhile, a graph which compares the method of classifying a vehicle occupant according to the above-described exemplary embodiment with another method of classifying a vehicle occupant will be illustrated. As shown in FIG. 9, in the case of the four sensor classification system, when a target for which an airbag is not to be deployed is changed from small children between 3 or 6 years old to infants 1 year old or younger, the gap between adults and small children, which is required for discrimination therebetween, is increased from B kg to A kg. However, when the independent variable algorithm according to the exemplary embodiment of the present invention, the gap is D kg, which is much greater than A kg. In the case of the two sensor classification system, which does not use the independent variable algorithm and simply doubles the values of weights measured by two sensors, the gap is C kg, that is, the fact that the gap is smaller than that of the case in which four sensors are used has been experimentally demonstrated.
  • According to the system and method for classifying a vehicle occupant configured as described above, although the number of weight sensors is decreased to two, a vehicle occupant sitting in a seat can be accurately identified.
  • Further, the system for classifying a vehicle occupant is modulized, so that the assembly and durability for seats are excellent.
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (8)

1. A system for classifying a vehicle occupant, comprising:
a base installed in each of leg frames of a seat of a vehicle;
a cover installed above the base to be spaced apart from the base with a predetermined distance;
a first weight sensor and a second weight sensor installed between the base and the cover to support the cover, and configured to measure a load transmitted to the cover by a weight of a vehicle occupant sitting in the seat; and
a control unit configured to receive load values measured by the first and second weight sensors, and determine whether the vehicle occupant sitting in the seat is an adult or a child based on the received load values.
2. The system for classifying the vehicle occupant as set forth in claim 1, wherein the first weight sensor and the second weight sensor is spaced with a predetermined distance in a longitudinal direction of the cover or the base.
3. The system for classifying the vehicle occupant as set forth in claim 1, wherein a first shock absorption member is interposed between the first weight sensor and the base and a second shock absorption member is interposed between the second weight sensor and the base.
4. The system for classifying the vehicle occupant as set forth in claim 1, wherein at least a stopper is interposed between the base and the cover in order to limit a downward movement range of the cover in a case of overload.
5. The system for classifying the vehicle occupant as set forth in claim 4, wherein a proximate end portion of the stopper is coupled to a lower portion of the cover and the a distal end portion of the stopper is penetrated into a buffer hole of the base, wherein the buffer hole is larger than the diameter of the stopper.
6. The system for classifying the vehicle occupant as set forth in claim 1, wherein the control unit calculates the weight of the vehicle occupant by multiplying a two-sensor measurement load value set with an optimal independent variable set (X1 k, X2 k), where the optimal independent variable set (X1 k, X2 k) is a variable set that, in experiments for various types of adult and child dummies, belongs to variable set within a range of a predetermined rational value, by which the two-sensor measurement load value set is multiplied, and maximizes a difference between a minimum weight value of the adult dummies and a maximum weight value of the child dummies.
7. The system for classifying the vehicle occupant as set forth in claim 6, wherein the range of the predetermined rational value is from “0” to “2.”
8. The system for classifying the vehicle occupant as set forth in claim 6, wherein the control unit compares the calculated weight value of the vehicle occupant with a threshold value, and classifies the vehicle occupant, where the threshold value is set to an average value of the minimum weight value of adult dummies and the maximum weight value of child dummies.
US13/091,892 2007-06-14 2011-04-21 System and method for classifying vehicle occupant Abandoned US20110202311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/091,892 US20110202311A1 (en) 2007-06-14 2011-04-21 System and method for classifying vehicle occupant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2007-0058284 2007-06-14
KR1020070058284A KR100837919B1 (en) 2007-06-14 2007-06-14 Apparatus and method for detecting passenger in vehicle
US11/972,342 US7991530B2 (en) 2007-06-14 2008-01-10 System and method for classifying vehicle occupant
US13/091,892 US20110202311A1 (en) 2007-06-14 2011-04-21 System and method for classifying vehicle occupant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/972,342 Division US7991530B2 (en) 2007-06-14 2008-01-10 System and method for classifying vehicle occupant

Publications (1)

Publication Number Publication Date
US20110202311A1 true US20110202311A1 (en) 2011-08-18

Family

ID=39771205

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/972,342 Active 2030-04-25 US7991530B2 (en) 2007-06-14 2008-01-10 System and method for classifying vehicle occupant
US13/091,892 Abandoned US20110202311A1 (en) 2007-06-14 2011-04-21 System and method for classifying vehicle occupant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/972,342 Active 2030-04-25 US7991530B2 (en) 2007-06-14 2008-01-10 System and method for classifying vehicle occupant

Country Status (5)

Country Link
US (2) US7991530B2 (en)
JP (1) JP5174454B2 (en)
KR (1) KR100837919B1 (en)
CN (1) CN101323286B (en)
DE (1) DE102007062764B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094803A1 (en) * 2005-09-30 2011-04-28 Ts Tech Co., Ltd. Passenger's weight measurement device for vehicle seat

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856987B1 (en) * 2007-09-18 2008-09-04 현대모비스 주식회사 Apparatus for differentiating passengers
KR100941251B1 (en) * 2007-12-17 2010-02-10 현대모비스 주식회사 Apparatus for differentiating passengers with independent frame structure
KR101430195B1 (en) * 2008-08-18 2014-08-18 현대모비스 주식회사 Apparatus for differentiating passengers
US20100121536A1 (en) * 2008-11-12 2010-05-13 Gm Global Technology Operations, Inc. Performance-based classification method and algorithm for passengers
KR101054779B1 (en) 2008-12-02 2011-08-05 기아자동차주식회사 Passenger Identification System of Vehicle Using Weight Sensor
CA2770958C (en) * 2009-08-14 2017-11-21 Robert Bosch Gmbh System and method for classifying a vehicle occupant
US20140025385A1 (en) * 2010-12-30 2014-01-23 Nokia Corporation Method, Apparatus and Computer Program Product for Emotion Detection
CN104175992A (en) * 2013-05-27 2014-12-03 北汽福田汽车股份有限公司 Safety airbag, vehicle occupant side safety airbag control system and vehicle
US10017078B2 (en) 2013-05-30 2018-07-10 Yefim G Kriger Relocatable/replaceable pad for accurate vehicle occupant weight measurement
CN103318120B (en) * 2013-07-02 2015-08-12 浙江大学 The automobile intelligent safety air bag of Shape-based interpolation memory alloy spring and method thereof
CN103359038B (en) * 2013-08-05 2016-09-21 北京汽车研究总院有限公司 A kind of child of identification sits the method for copilot station, system and automobile
US20160304045A1 (en) * 2015-04-17 2016-10-20 Ford Global Technologies, Llc Restraint characteristics configuration for passenger zones
JP6536206B2 (en) * 2015-06-19 2019-07-03 アイシン精機株式会社 Sitting condition detection device
US9744929B2 (en) * 2015-11-25 2017-08-29 Ford Global Technologies, Llc Front passenger knee bolster deployment control
US20190184853A1 (en) * 2017-12-19 2019-06-20 GM Global Technology Operations LLC Occupant sensing system for a vehicle
CN111619498B (en) * 2019-02-27 2021-06-22 长城汽车股份有限公司 Vehicle intelligent protection system and vehicle
US20210016682A1 (en) * 2019-07-19 2021-01-21 Zf Active Safety And Electronics Us Llc System, method, and apparatus for classifying an occupant of a vehicle seat
CN110979237A (en) * 2019-12-03 2020-04-10 惠州市德赛西威汽车电子股份有限公司 Early warning method and device for automobile copilot

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984350A (en) * 1997-09-22 1999-11-16 Am-Safe, Inc. Vehicle safety system
US6364352B1 (en) * 1997-07-09 2002-04-02 Peter Norton Seat occupant weight sensing system
US6467804B2 (en) * 1999-12-24 2002-10-22 Aisin Seiki Kabushiki Kaisha Vehicle seat
US6557424B1 (en) * 1999-02-24 2003-05-06 Siemens Vdo Automotive Corporation Method and apparatus for sensing seat occupant weight
US20030174579A1 (en) * 2001-12-20 2003-09-18 Daniel Rioux Sensor for profiling system
US20030201880A1 (en) * 2002-04-10 2003-10-30 Chun-Ming Lu Automobile flat tires/blowout alert system
US6771175B1 (en) * 2002-12-06 2004-08-03 Daimlerchrysler Corporation Method for demonstrating reliability of occupant classification systems
US7023355B2 (en) * 2002-11-29 2006-04-04 Aisin Seiki Kabushiki Kaisha Occupant determination device
US20070061102A1 (en) * 2005-09-12 2007-03-15 Hyundai Mobis Co., Ltd. Method for classifying occupant weight of vehicle
US20070086293A1 (en) * 2005-10-11 2007-04-19 Lg Electronics Inc. Method and apparatus for determining writing power for recording data
US20070118265A1 (en) * 2005-11-23 2007-05-24 Hyundai Mobis Co., Ltd Occupant classifying system and method of vehicle
US7455343B2 (en) * 2005-09-12 2008-11-25 Ts Tech Co., Ltd. Passenger's weight measurement device for vehicle seat and attachment structure for load sensor
US7478699B2 (en) * 2005-02-16 2009-01-20 Calsonic Kansei Corporation Vehicle passenger detecting device
US7562735B2 (en) * 2005-12-22 2009-07-21 Calsonic Kansei Corporation Passenger detecting device adapted for motor vehicle
US7584037B2 (en) * 2002-07-17 2009-09-01 Aisin Seiki Kabushiki Kaisha Occupant determining device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521886B2 (en) * 1996-02-07 2010-08-11 株式会社日本自動車部品総合研究所 Occupant detection device
JP3468728B2 (en) * 1998-10-06 2003-11-17 タカタ株式会社 Seat weight measuring device
US6342683B1 (en) * 1999-05-20 2002-01-29 Takata Corporation Weight sensor for vehicle occupant
DE19947733B4 (en) * 1999-10-05 2004-04-29 3Dconnexion Gmbh Device for acquiring and evaluating characteristic data on a vehicle seat and related evaluation method
DE10152958A1 (en) * 2001-10-26 2003-08-21 Hottinger Messtechnik Baldwin Device for controlling motor vehicle safety systems, especially an airbag, dependent on seat occupancy, whereby the signals of a film type pressure sensor in the seat support and weight sensors are logically combined and evaluated
JP3570629B2 (en) * 2002-02-20 2004-09-29 株式会社デンソー Occupant determination device using load sensor
JP3969158B2 (en) * 2002-04-03 2007-09-05 マツダ株式会社 Vehicle seat
JP2004037406A (en) * 2002-07-08 2004-02-05 Tachi S Co Ltd Load detection structure of vehicle sheet
DE10239761B4 (en) * 2002-08-29 2007-10-25 Sartorius Ag Method and device for identifying the type of occupancy of a support surface
KR100582763B1 (en) * 2004-07-05 2006-05-23 주식회사 현대오토넷 Air bag control devce
JP4695358B2 (en) 2004-07-30 2011-06-08 テイ・エス テック株式会社 Vehicle seat occupant weight measurement device
KR20060031393A (en) * 2004-10-08 2006-04-12 주식회사 하이닉스반도체 Semiconductor memory device
JP4522224B2 (en) * 2004-10-26 2010-08-11 カルソニックカンセイ株式会社 Occupant detection device
KR100599561B1 (en) * 2004-12-20 2006-07-13 현대모비스 주식회사 Passenger's seat status measurement device in vehicle
JP2006264366A (en) * 2005-03-22 2006-10-05 Aisin Seiki Co Ltd Occupant discrimination device of vehicle
JP4344719B2 (en) * 2005-09-12 2009-10-14 本田技研工業株式会社 Crew weight detection device
KR20070058284A (en) 2005-12-02 2007-06-08 엘지전자 주식회사 Method and apparatus of recording range closing in recording medium

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364352B1 (en) * 1997-07-09 2002-04-02 Peter Norton Seat occupant weight sensing system
US5984350A (en) * 1997-09-22 1999-11-16 Am-Safe, Inc. Vehicle safety system
US6557424B1 (en) * 1999-02-24 2003-05-06 Siemens Vdo Automotive Corporation Method and apparatus for sensing seat occupant weight
US6467804B2 (en) * 1999-12-24 2002-10-22 Aisin Seiki Kabushiki Kaisha Vehicle seat
US20030174579A1 (en) * 2001-12-20 2003-09-18 Daniel Rioux Sensor for profiling system
US20030201880A1 (en) * 2002-04-10 2003-10-30 Chun-Ming Lu Automobile flat tires/blowout alert system
US7584037B2 (en) * 2002-07-17 2009-09-01 Aisin Seiki Kabushiki Kaisha Occupant determining device
US7023355B2 (en) * 2002-11-29 2006-04-04 Aisin Seiki Kabushiki Kaisha Occupant determination device
US6771175B1 (en) * 2002-12-06 2004-08-03 Daimlerchrysler Corporation Method for demonstrating reliability of occupant classification systems
US7478699B2 (en) * 2005-02-16 2009-01-20 Calsonic Kansei Corporation Vehicle passenger detecting device
US7455343B2 (en) * 2005-09-12 2008-11-25 Ts Tech Co., Ltd. Passenger's weight measurement device for vehicle seat and attachment structure for load sensor
US20070061102A1 (en) * 2005-09-12 2007-03-15 Hyundai Mobis Co., Ltd. Method for classifying occupant weight of vehicle
US20070086293A1 (en) * 2005-10-11 2007-04-19 Lg Electronics Inc. Method and apparatus for determining writing power for recording data
US20070118265A1 (en) * 2005-11-23 2007-05-24 Hyundai Mobis Co., Ltd Occupant classifying system and method of vehicle
US7562735B2 (en) * 2005-12-22 2009-07-21 Calsonic Kansei Corporation Passenger detecting device adapted for motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094803A1 (en) * 2005-09-30 2011-04-28 Ts Tech Co., Ltd. Passenger's weight measurement device for vehicle seat
US8820464B2 (en) * 2005-09-30 2014-09-02 Ts Tech Co., Ltd. Coil spring holder for a seat load sensor to compensate for dimensional errors in the manufacturing process

Also Published As

Publication number Publication date
CN101323286A (en) 2008-12-17
DE102007062764A1 (en) 2008-12-18
CN101323286B (en) 2013-01-16
US7991530B2 (en) 2011-08-02
JP5174454B2 (en) 2013-04-03
JP2008308151A (en) 2008-12-25
KR100837919B1 (en) 2008-06-13
DE102007062764B4 (en) 2015-05-21
US20080312795A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US7991530B2 (en) System and method for classifying vehicle occupant
US7383113B2 (en) Method and system in the classification of objects occupying a seat
US7730794B2 (en) Method for classifying passengers
US6898498B1 (en) Crash classification method and apparatus using multiple point crash sensing
CN111251950A (en) Occupant classification protection method, system, device, and computer-readable storage medium
US7567184B2 (en) Method for establishing the occupation of a vehicle seat
JP2001191830A (en) Child seat detecting device
US8499879B2 (en) System and method for classifying a vehicle occupant
CN102424027A (en) Device and method for identifying passenger type and sitting posture based on sitting trace
US7063352B2 (en) Side airbag system
KR100941252B1 (en) Apparatus for Differentiating Passengers
US6662670B2 (en) Seatbelt force sensor with overload protection
US20090157256A1 (en) Passenger differentiating apparatus with independent frame structure
US6759603B2 (en) Weight sensor assembly with overload spring
US7032968B2 (en) Occupant judging device for a vehicle seat
KR101611097B1 (en) Apparatus for discriminating passenger in vehicles
US7053759B2 (en) Method of determining an equivalent value for a failed sensor in a vehicle seat having an occupancy sensing system
KR20020005594A (en) Method and apparatus for sensing seat occupant weight
US20050097972A1 (en) Method and apparatus for sensing seat occupant weight
JP2008535719A (en) Apparatus and method for identifying a person and an object on a vehicle seat
CN112606791A (en) Passenger car airbag device
US20080306659A1 (en) Device and Method for Distinguishing a Person From an Object on a Vehicle Seat
US9302640B2 (en) Seat apparatus for vehicle
JP4273638B2 (en) Crew identification system for automobiles
US20020105178A1 (en) Combination sensor systems for occupant sensing

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIA MOTORS CORP., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHO, YOUNG NAM;KIM, YONG SUN;REEL/FRAME:026165/0318

Effective date: 20071221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION