US20110201523A1 - Particle Arrays and Methods of Making and Using - Google Patents

Particle Arrays and Methods of Making and Using Download PDF

Info

Publication number
US20110201523A1
US20110201523A1 US13/027,336 US201113027336A US2011201523A1 US 20110201523 A1 US20110201523 A1 US 20110201523A1 US 201113027336 A US201113027336 A US 201113027336A US 2011201523 A1 US2011201523 A1 US 2011201523A1
Authority
US
United States
Prior art keywords
particles
nucleic acid
array
particle
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/027,336
Inventor
Wolfgang Hinz
John Leamon
David Light
Jonathan Rothberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technologies Corp
Original Assignee
Life Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/475,311 external-priority patent/US20100301398A1/en
Priority claimed from US12/474,897 external-priority patent/US20100137143A1/en
Application filed by Life Technologies Corp filed Critical Life Technologies Corp
Priority to US13/027,336 priority Critical patent/US20110201523A1/en
Publication of US20110201523A1 publication Critical patent/US20110201523A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00466Beads in a slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • amplicons are either in a planar format (e.g. Mitra et al, cited above; Adessi et al, Nucleic Acids Research, 28: c87 (2000)), which limits ease of manipulation and/or reagent access, or the amplicons are on bead surfaces, which lack sufficient fragment density or concentration for adequate signal-to-noise ratios.
  • amplifications must be done in emulsions in order to obtain clonal populations of templates. Such emulsion reactions are labor intensive and require a high degree of expertise, which significantly increases costs.
  • Gels have been widely used as supports in analytical and synthetic processes and as encapsulating agents, e.g. Weaver et al, U.S. Pat. No. 5,055,390; Tmovsky et al, U.S. Pat. No. 6,586,176, and have interiors accessible to analytical reagents.
  • particulates are limited in that they are typically produced with widely varying size distributions, particularly at lower size ranges, e.g. less than about 30 ⁇ m, which makes them unsuitable for many exacting analytical applications, such as large scale DNA sequencing.
  • the present invention is generally directed to particle compositions for nucleic acid analysis, which address the aforementioned issues with current methodologies, as well as other related issues.
  • the present invention is exemplified in a number of implementations and applications, some of which are summarized below and throughout the specification.
  • the invention includes the production and use of porous microparticles for increasing the number of polynucleotides templates within a defined volume.
  • porous microparticles comprise three-dimensional scaffolds for attaching greater numbers of template molecules than possible with solid beads that have only a two-dimensional surface available for attachment.
  • such porous microparticles are referred to herein as nucleic acid polymer particles.
  • porous microparticles comprise particles having shapes with larger surface to volume ratios than spherical particles.
  • Such shapes include tubes, shells, hollow spheres with accessible interiors (e.g. nanocapsules), barrels, multiply connected solids, including doubly connected solids, such as donut-shaped solids and their topological equivalents, triply connected solids and their topological equivalents, four-way connected solids and their topologically equivalents, and the like.
  • Such porous microparticles are referred to herein as “non-spheroidal microparticles.” Techniques for producing and characterizing such particles are disclosed in Elaissari, editor, Colloidal Polymers: Synthesis and Characterization (Marcel Dekker, Inc., New York, 2003), and like references.
  • the invention provides a composition of nucleic acid polymer particles each comprising polynucleotides attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9 ⁇ 10 4 per ⁇ m 3 and wherein the oligonucleotides have an average nearest neighbor distance of 22 nm or less.
  • the polynucleotide is a DNA fragment in the range of from 100 to 500 nucleotides in length, or in the range of from 100 to 200 nucleotides in length.
  • such polynucleotide is a double stranded DNA (dsDNA) having a length in the range of from 150 to 250 basepairs.
  • the invention provides amplicon libraries, such libraries comprising a plurality of amplicons, each amplicon comprising a clonal population of a single polynucleotide from a nucleic acid library, each polynucleotide of the clonal population being attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides of the clonal population being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9 ⁇ 10 4 per ⁇ m 3 .
  • polynucleotides of such amplicons have an average nearest neighbor distance of 22 nm or less, or an average nearest neighbor distance of 20 nm or less.
  • such polynucleotides are each a double stranded DNA (dsDNA) having a length in the range of from 150 to 250 basepairs, or a length in the range of from 150 to 200 basepairs.
  • dsDNA double stranded DNA
  • an amplicon library of the invention comprises a plurality of amplicons, each amplicon comprising a clonal population of a single polynucleotide from a nucleic acid library, each polynucleotide of the clonal population being attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides of the clonal population being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9 ⁇ 10 4 per ⁇ m 3 .
  • a plurality of amplicons is in the range of from 10 4 to 10 7 amplicons.
  • the invention provides methods of making monodisperse populations of gel particles by combining a monodisperse emulsion of a gel reaction mixture without an initiator and an emulsion with a dispersed phase containing an initiator or a continuous phase solution saturated with an initiator.
  • volumes of the gel particles of such monodisperse populations have coefficients of variation of less than fifteen percent, or in another embodiment, less than twelve percent.
  • the invention provides a method of making amplicon libraries comprising the steps: (a) combining in an amplification reaction mixture a library of polynucleotide fragments each having at least one primer binding site and a population of non-nucleosidic polymer networks, each such polymer network having a volume of less than 1.4 ⁇ 10 4 ⁇ m 3 and having primers attached thereto, and the volumes of the non-nucleosidic polymer networks having a coefficient of variation of fifteen percent or less; (b) performing an amplification reaction so that primers of the polymer networks are each extended along a polynucleotide fragment annealed thereto so that clonal populations of such polynucleotide fragments are formed on the polymer networks, thereby forming an amplicon library.
  • the method of making amplicon libraries further includes a step of enriching polymer networks having clonal populations of polynucleotide fragments attached by separating them from polymer networks without such fragments.
  • separation is accomplished by affinity separation or by electrophoretic separation.
  • the invention includes methods of using monodisperse gel particle compositions to make amplicon libraries without an emulsion reaction.
  • FIG. 1 illustrates the presence of nucleic acid polymer particles inside microwells of a semiconductor sequencing device and the effects of different polymer network sizes within a library.
  • FIG. 2A schematically illustrates production of spheroidal gel particles by membrane emulsification using a micromachined membrane and continuous polymerization by heat.
  • FIG. 2B schematically illustrates another embodiment for producing spheroidal gel particles by membrane emulsification and batch mode polymerization by heat.
  • FIG. 3 diagrammatically illustrates a bridge PCR on a surface.
  • FIG. 4 diagrammatically illustrates bridge PCR on a suspension of nucleic acid polymer particles.
  • FIG. 5 illustrates a method of minimizing cross-contamination of bridge PCR templates among closely packed particles.
  • FIG. 6 illustrates a method of using adaptor oligonucleotides to allow one kind of nucleic acid polymer particle to be used to capture and amplify a selected set of nucleic acids, such as particular exons of one or more genes.
  • FIG. 7 shows a simple thermocycler for carrying out PCRs while preventing porous particles from settling at the bottom of a reaction vessel.
  • FIG. 8 illustrates steps of a nucleic acid sequencing method using nucleic acid polymer particles of the invention.
  • the practice of the present invention may employ, unless otherwise indicated, conventional techniques and descriptions of organic chemistry, molecular biology (including recombinant techniques), cell biology, and biochemistry, which are within the skill of the art.
  • conventional techniques include, but are not limited to, preparation of synthetic polynucleotides, polymerization techniques, chemical and physical analysis of polymer particles, nucleic acid sequencing and analysis, and the like. Specific illustrations of suitable techniques can be had by reference to the example herein below. However, other equivalent conventional procedures can, of course, also be used.
  • Such conventional techniques and descriptions can be found in standard laboratory manuals such as Genome Analysts: A Laboratory Manual Series (Vols.
  • the invention is directed to methods and compositions for enhancing the sensitivity of nucleic acid analysis, particularly where many different nucleic acid fragments are assayed simultaneously, such as in large-scale parallel DNA sequencing reactions.
  • the compositions of the invention result from the conversion of a library of individual nucleic acid fragments into a library of individual solid phase amplicons that provide higher concentrations of fragments per amplicon and greater uniformity of amplicon size than current methodologies.
  • Solid phase amplicons of the invention are composite materials made up of a framework, or scaffold, of a hydrophilic covalent non-nucleosidic polymer (referred to herein as a “polymer network” or as a “porous microparticle”) and covalently attached copies of usually one kind of nucleic acid fragment, or in some embodiments, two kinds of nucleic acid fragment.
  • nucleic acid fragment is a nucleic acid primer.
  • nucleic acid fragment is a DNA fragment from a library, which may have been formed on a polymer network by extension of a covalently attached primer.
  • compositions of the invention include libraries or collections of such solid phase amplicons, or equivalently, nucleic acid polymer particles.
  • the invention includes compositions comprising populations of such solid phase amplicons.
  • polymer networks are stable in a wide pH range, e.g. from 4 to 10, and especially from 6 to 9, and they are chemically and physically stable in physiological salt solutions and/or electrolytes.
  • polymer networks are preferably inert to reactants, reagents and/or reaction conditions and buffers used in analytical assays and reactions for nucleic acids, including, but not limited to, polymerase reactions, ligase reactions, nuclease reactions, polymerase chain reactions, and the like.
  • Polymer networks are preferably chemically and physically stable over a wide temperature range, e.g. 0° C. to 100° C., and 5° C. to 95° C.
  • polymer networks are substantially nonswelling in under a wide range of reaction conditions, particularly polymerase extension reaction conditions.
  • substantially nonswelling it is meant that the volume of a polymer network changes by no more than five percent within a temperature range of from 25° C. to 70° C. and under chemical conditions of physiological or assay salt and pH in the range of from 6 to 10, and especially in the range of from 7 to 9.
  • the porosity of polymer networks permits free or substantially free diffusion of proteins having a size in the range of from 50 to 200 kilodaltons, or from 50 to 150 kilodaltons, or from 50 to 125 kilodaltons.
  • the porosity of polymer networks permits free or substantially free diffusion of nucleic acid polymerases.
  • such porosity may be selected to permit free or substantially free diffusion of primers and/or a DNA polymerase, including but not limited to, a Taq polymerase, a 9° N polymerase, an E. coli DNA polymerase I, a T7 DNA polymerase, a Bsu DNA polymerase, a Klenow fragment DNA polymerase, a Phusion DNA polymerase, a Vent DNA polymerase, a Bst DNA polymerase, a phi29 DNA polymerase, a T4 DNA polymerase, or the like.
  • a DNA polymerase including but not limited to, a Taq polymerase, a 9° N polymerase, an E. coli DNA polymerase I, a T7 DNA polymerase, a Bsu DNA polymerase, a Klenow fragment DNA polymerase, a Phusion DNA polymerase, a Vent DNA polymerase, a Bst DNA polymerase, a phi29 DNA polymerase, a T4 DNA poly
  • polymer networks have a porosity that renders them permeable to proteins having a size in the range of from 50 to 200 kilodaltons, or from 50 to 150 kilodaltons, or from 50 to 125 kilodaltons.
  • the porosity of polymer networks is selected so that such permeability is at least fifty percent of the diffusability in polymer-free solution, or at least twenty-five percent of such diffusability, or at least ten percent of such diffusability.
  • polymer networks have an average pore size in the range of from 20 to 200 nm in diameter, or from 25 to 100 nm in diameter, or from 30 to 100 nm in diameter.
  • polymer networks may have empty channels or hollow cores that when taken together with the polymer network volume comprise at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% of the combined volume.
  • nucleic acid fragments are uniformly attached throughout the volume of polymer networks. In some embodiments, nucleic acid fragments are uniformly and randomly attached throughout the volume of polymer networks (i.e. as approximately a Poisson distribution). In yet other embodiments, nucleic acid fragments may be attached throughout a layer or portion of a polymer network. In further embodiments, nucleic acid fragments may be attached non-uniformly throughout the volume of polymer networks. For example, in spherically shaped polymer networks, a concentration of attached nucleic acid fragments may be a function of distance from the center of such polymer network. In one such embodiment, such function describes a monotonically decreasing concentration from the surface of a polymer network to its center.
  • the density of nucleic acids may be expressed in terms of expected or average nearest neighbor distance, which allows surface densities to be compared with volume densities. Equivalent densities of nucleic acids distributed throughout a spheroidal volume have larger expected nearest neighbor distances than those of nucleic acids distributed on the surface of such a volume. Expected nearest neighbor distances for Poisson distributed points or molecules are readily computed for surfaces or volumes, e.g. Pielou, Introduction to Mathematical Ecology (Wiley-Interscience, New York, 1977). Since large molecules or molecular complexes of interest (e.g.
  • nucleic acid polymer particles of the invention have 150 to 200 basepair nucleic acids immobilized throughout a spheroidal volume having a diameter in the range of from 0.5 to 10 ⁇ m in an approximate Poisson distribution having an expected nearest neighbor distance in the range of from 15 to 22 nm.
  • such spheroidal volume has a diameter in the range of from 1 to 10 ⁇ m and such Poisson distribution of dsDNAs has an expected nearest neighbor distance in the range of from 18 to 20 nm.
  • Polymer networks may have a variety of shapes, including but not limited to, spherical, cylindrical, barrel shaped, toroidal, conical, tubular, hemispherical, cubical, and topological equivalents of the foregoing.
  • polymer networks are spherically shaped, which are readily obtained from emulsion-based methods of making them.
  • An important application of nucleic acid polymer particle compositions is their use in massively parallel sequencing reactions where nucleic acids attached to the polymer networks making up such particles are derived from fragments of a target polynucleotide of interest, such as a genome.
  • FIGS. 1A and 1B illustrate top views of ISFET sensor arrays ( 100 ), e.g.
  • populations of nucleic acid polymer particles with sizes, e.g. volumes, or diameters for spherical particles, which have a low coefficient of variation.
  • populations of particles have volumes with coefficients of variation less than 25 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 20 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 15 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 10 percent; or less than 5 percent.
  • populations of spherical polymer networks have coefficients of variation less than 15 percent, and more preferably, less than 10 percent, or less than 5 percent.
  • spherical polymer networks have average sizes (diameters) less than 30 ⁇ m, or in the range of from 0.5 ⁇ m to 30 ⁇ m, or in the range of from 0.5 ⁇ m to 15 ⁇ m, or in the range of from 0.5 ⁇ m to 10 ⁇ m.
  • the porous microparticle is hollow (i.e., it has a hollow core); while in other embodiments it has a porous core.
  • an aspect of the invention includes amplicon libraries comprising a plurality of solid phase amplicons each, in turn, comprising nucleic acid polymer particles each having a clonal population of polynucleotides, such as genomic fragments, attached throughout the volume of a polymer network.
  • Polymer networks may be made of a wide variety of components and the method of manufacturing may vary widely.
  • Design factors for making polymer networks include, but are not limited to, the following: (i) the polymers of the networks are hydrophilic, (ii) they are capable of having a pore and/or network structure (e.g. average pore diameter, tortuosity, and the like) that permits interior access to various enzymes, especially polymerases, (iii) they are physically and chemically stable under conditions where biomolecules, such as enzymes, are functional and they are substantially non-swelling under the same conditions.
  • pore and/or network structure e.g. average pore diameter, tortuosity, and the like
  • polymer networks comprise polymers selected from the following group: agarose; polyoxybutylene; diethylacrylamide; polyoxyethylene; polyacrylamide; polyoxypropylene; N,N-polydimethylacrylamide; poly(N-isopropylacrylamide); polyvinylpyrrolidone; poly-N-hydroxyacrylamide; and the like.
  • polymers may be formed into polymer networks using conventional methodologies, e.g. cross-linking methods, methods for producing desired shapes, and the like.
  • the nucleic acids are bound to polymer networks with one or more non-nucleic acid polymers or linking groups.
  • the non-nucleic acid polymers are polyethylene glycol (PEG) polymers.
  • the PEG polymers may be of varying lengths.
  • the non-nucleic acid polymers are dextran polymers and/or chitosan polymers.
  • the non-nucleic acid polymers include PEG polymers and dextran polymers.
  • the non-nucleic acid polymers include PEG polymers and chitosan polymers.
  • the non-nucleic acid polymers may be linear or branched.
  • nucleic acid polymer particles are made by first making polymer networks that incorporate either bromoacetyl groups or alternative thiol groups, then reacting either a thiol derivatized oligonucleotide or a bromoacetyl-derivatized oligonucleotide respectively, as taught by Ghosh et al, U.S. Pat. No. 5,478,893, which is incorporated by reference. Synthesizing bromoacetyl-derivatized and thiol-derivatized oligonucleotides is further disclosed by Gryaznov, U.S. Pat. No. 5,830,658, which is incorporated by reference.
  • polyacrylamide particles are employed that may be size selected either before or after bromoacetyl- and thiol-derivatized components are reacted.
  • nucleic acid polymer particles are made by preparing a polymer network that incorporates a click chemistry functionality then combining it with oligonucleotides having a complementary click chemistry functionality, so that rapid and specific bonds are formed and a nucleic acid polymer particle results.
  • Click chemistry functionalities and reactions are well-known and are disclosed in the following references, which are incorporated by reference: Lahann, editor, Click Chemistry for Biotechnology and Material Science (Wiley, 2009); Kolb et al, Angew. Chem. Int. Ed., 40: 2004-2021 (2001); Binder et al, Macromolecular Rapid Comm., 28: 15-54 (2007); Sharpless et al, U.S. Pat. No.
  • click chemistry reactive functionalities and complementary functionalities are commercially available from Glen Research (Sterling, Va.); Sigma Aldrich (St. Louis, Mo.), baseclick GmbH (Tutzing, Germany); and like companies.
  • the click chemistry reactive functionality is an azide and the click chemistry complementary functionality is an alkene.
  • a reaction between such functionalities is catalyzed by copper(I).
  • a click chemistry reactive functionality or complementary functionality is incorporated into a polyacrylamide polymer matrix.
  • Polyacrylamide gels are formed by copolymerization of acrylamide and bis-acrylamide (“bis,” N,N′-methylene-bisacrylamide). The reaction is a vinyl addition polymerization initiated by a free radical-generating system. Polymerization is initiated by ammonium persulfate and TEMED (tetramethylethylenediamine): TEMED accelerates the rate of formation of free radicals from persulfate and these in turn catalyze polymerization. The persulfate free radicals convert acrylamide monomers to free radicals which react with unactivated monomers to begin the polymerization chain reaction.
  • TEMED tetramethylethylenediamine
  • Riboflavin (or riboflavin-5′-phosphate) may also be used as a source of free radicals, often in combination with TEMED and ammonium persulfate. In the presence of light and oxygen, riboflavin is converted to its leuco form, which is active in initiating polymerization, which is usually referred to as photochemical polymerization.
  • T represents the total percentage concentration (w/v, in mg/mL) of monomer (acrylamide plus crosslinker) in the gel.
  • C refers to the percentage of the total monomer represented by the crosslinker. For example, an 8%, 19:1 (acrylamide/bisacrylamide) gel would have a T value of 8% and a C value of 5%.
  • polymer networks comprise polyacrylamide gels with total monomer percentages in the range of from 3-20 percent, and more preferably, in the range of from 5 to 10 percent.
  • crosslinker percentage of monomers is in the range of from 5 to 10 percent.
  • polymer networks comprise 10 percent total acrylamide of which 10 percent is bisacrylamide.
  • the invention includes a polyacrylamide particle composition comprising a population of polyacrylamide particles with an average particle size of less than 15 ⁇ m with a coefficient of variation of less than 15 percent.
  • the polyacrylamide particles have a weight:volume percentage of twenty-five percent or less.
  • the polyacrylamide particles are spheroidal and have an average diameter of less than 15 ⁇ m with a coefficient of variation of less than 15 percent.
  • Nucleic acid polymer particles of the invention may be made by a wide variety of methods.
  • such method include steps of (i) forming a reaction mixture whose polymerization may be controlled by physical conditions, e.g. heat, or the addition of a catalyst; (ii) performing a polymerization reaction to produce polymer networks or candidate polymer networks or nucleic acid polymer particles or candidate polymer particles depending on reactants and conditions employed, and (iii) optionally, selecting candidate polymer networks or candidate nucleic acid polymer particles in a predetermined size range.
  • Nucleic acid polymer particles may be made by first making polymer networks followed by attachment of polynucleotides, or they may be made by co-polymerization of oligonucleotide components along with monomers and crosslinkers.
  • physical process are employed to create such networks and particles with desired shapes and size distributions. Such physical processes include, but are not limited to, flow focusing using microfluidics devices, e.g. Nisisako et al, LabChip, 8: 287-293 (2008); Kumaresan et al, Anal.
  • Polymer networks may be made by polymerization of acrylamide spray droplets generated by single or multiple nozzles located on an oscillating membrane, such as in a commercially available system from The Technology Partnership (www.ttp.com) which sprays droplets from single or multiple nozzles located on a stainless steel membrane by piezo electronically actuating the membrane and allowing it to oscillate at its natural resonance frequency.
  • These droplets are then streamed passed a strong UV light source for photoinitiated polymerization.
  • Polymerization with molding involves the molding of a paste which disperses the acrylamide, bisacrylamide and acrydite labeled oligonucleotides in a sacrificial “porogen” followed by, but not limited to, photoinitiated radical polymerization of the acrylamide monomers with subsequent removal of the porogen my dissolution and repeated washing.
  • the molding technology is available through Liquidia Technologies (Research Triangle Park, N.C.) and disclosed in DeSimone et al, PCT publication WO 2007/024323, and like references.
  • non-spheroidal microparticles in defined shapes such as tetrahedral shapes, hemispherical shapes, barrel shapes, open capsular shapes, toroidal shapes, tube shapes, and the like, which have greater surface areas than spheroidal shaped particles with the same solid volume.
  • the areas of the non-spheroidal microparticles in a composition are substantially the same.
  • substantially the same in reference to non-spheroidal microparticles means that the areas of the microparticles in a composition have a coefficient of variation of less than 15 percent, or less than 10 percent, or less than 5 percent.
  • non-spherical microparticles of the invention have at least twice the surface area of a sphere with equal volume, or preferably, at least three times the surface area, or at least four time the surface area, or at least five times the surface area.
  • non-spheroidal microparticles are composed of polyacrylamide gel.
  • polyacrylamide gel is made using acryldite oligonucleotides so that the resulting non-spheroidal microparicles have covalently attached oligonucleotides, which may be used as primers in extension reactions, ligation reactions, amplification reactions, or the like.
  • non-spheroidal microparticles are compact in that they may be closely enclosed within a microwell or other reaction chamber.
  • non-spheroidal microparticles of the invention may be enclosed by a sphere having a volume twice that of the non-spheroidal microparticle, or a volume three times that of such microparticle, or four time that of such microparticle.
  • non-spheroidal microparticles of the invention are enclosed by a cylinder having a diameter:height aspect ratio of 1:1.5 and a diameter of 10 ⁇ m, or 5 ⁇ m, or 2 ⁇ m, or a cylinder having a diameter:height aspect ratio of 1:1 and a diameter of 10 ⁇ m, or 5 ⁇ m, or 2 ⁇ m, or 1 ⁇ m.
  • Membrane emulsification Polymerization of emulsified acrylamide requires a) control of particle size distribution during polymerization, and b) a controllable polymerization method. Control of size distribution requires both the minimization of polydispersity due to the emulsification process as well as minimization of instability of the emulsion leading to coalescence of individual drops prior to polymerization. Highly monodisperse emulsions may be achieved through microsieve emulsification techniques (such as provided commercially by Nanomi B. V., The Netherlands) and disclosed the following exemplary references: Wissink et al, PCT publication WO2005/115599; Nakajima et al, U.S. Pat. No.
  • a discontinuous phase aqueous solution of monomers and other components
  • a stream of continuous phase oil formulation with surfactant
  • FIG. 2A illustrates apparatus in one approach to membrane emulsification.
  • Aqueous phase gel reaction mixture ( 200 ) is passed through membrane ( 208 ) held in reaction vessel ( 210 ).
  • Membrane ( 208 ) has pores or orifices ( 209 ) that create droplets ( 211 ) of a predetermined size (as shown in expanded view ( 212 )) dispersed in an immiscible continuous phase fluid ( 202 ).
  • droplets ( 211 ) are formed, slowly flowing continuous phase ( 222 ) sweeps them away from membrane ( 208 ) to tubing ( 214 ) where (in this embodiment) droplets ( 211 ) are polymerized by applying heat ( 216 ).
  • the flow of continuous phase ( 202 ) may be controlled by syringe pump ( 204 ).
  • the length and diameter of tubing ( 214 ) is selected to correspond to the amount of time required for polymerization given the amount of heat applied.
  • Polymerized droplets ( 218 ) are deposited in collection vessel ( 220 ), after which they are removed and washed to remove traces of continuous phase ( 202 ).
  • the volume of the aqueous phase gel reaction mixture ( 200 ) is a relatively small (200 ul-5 ml) and is pumped at low flow rates (200 uL/hr to 1 mL/hr) such that the rate of droplet formation at each orifice ( 209 ) is about 2-20 drops/second.
  • a syringe pump or gravity flow may be used for this purpose.
  • Continuous phase ( 202 ) an oil/surfactant formulation is a much larger volume, e.g. 100-1000 ⁇ greater than the aqueous flow.
  • a large syringe pump ( 204 ) or pressure driven flow (pneumatic) may be used to control its flow and volume.
  • the stream containing an emulsion of aqueous drops in oil/surfactant formulation passing through tubing ( 214 ) is passed through a heated section of tubing (the I.D. of the tubing may be increased to reduce the linear flow rate, backpressure and increase the residence time in the heated section.
  • the polymerized particles are finally collected in collection vessel ( 220 ) for extraction of the polymer particles.
  • membrane ( 208 ) is microfabricated, e.g. from a silicon substrate, using conventional micromachining techniques described in the above references.
  • the diameters of orifices ( 209 ) are 25 to 35 percent of the expected diameters of particles ( 211 ). It is important that the aqueous solution ( 200 ) does not wet the membrane surfaces, particularly in and/or at the orifices so that the droplets or micelles entering the continuous phase have a quick break off from the rest of the aqueous phase.
  • droplets of gel reaction mixture may be formed then polymerized by exposure to initiator and heat in a batch mode by at least the following methods.
  • monodisperse polyacrylamide particles may be made by first producing an emulsion with monodisperse droplets of polyacrylamide reaction mixture without an initiator followed by combining with either a second emulsion with an initiator in the disperse phase or a continuous phase (equivalent to that of the first emulsion) saturated with an initiator.
  • Method 1 A monodisperse emulsion is mixed with a micro or macro emulsion of initiator in the same oil/surfactant system.
  • the initiator emulsion is generated rapidly by vortexing or using an Ultra Turrax, or like immiscible phase fluid. Since the monomers are soluble in the continuous phase polymerization of monomer in the initiator emulsion has been observed.
  • Method 2 An initiator soluble in the continuous phase is used to initiate the polymerization in a previously generated emulsion.
  • Use of oil-soluble initiators is well-known in the art as evidenced by the following references, which are incorporated by references: Alduncin et al, Macromolecules, 27: 2256-2261 (1994); Capek, Adv. Colloid and Interface Science, 91: 295-334 (2001); Gromov et al, Vysokomol. Soyed.
  • the pre-made emulsion is simply diluted with a saturated solution of initiator (for example, a 1:1 ratio of emulsion to initiator solution in a polyacrylamide system) and heated to a temperature up to or below 96° C.
  • initiator for example, a 1:1 ratio of emulsion to initiator solution in a polyacrylamide system
  • the emulsion is heated to 90° C. for 2 h.
  • a water soluble initiator can be used which will not require the dilution of the emulsion, or the oil used during the formation of the monodisperse emulsion can be saturated with an appropriate initiator.
  • water soluble initiators which includes azo type compounds as well as inorganic peroxides.
  • exemplary initiators include ammonium persulfate, hydroxymethanesulfinic acid monosodium salt dihydrate, potassium persulfate, sodium persulfate, and the like.
  • water soluble (in dispersed phase) or oil soluble initiators may be used. Example of each are given below in Tables I and II. Note: The temperature at which the initiator has a half-life of 10 h is given. The lower the temperature the more reactive the initiator. Selection of appropriately reactive initiator allows one of ordinary skill in the art to tune the rate at which the polymerization is initiated and what maximum temperatures are used during the reaction.
  • Nucleic acid polymer particles may be made in a batch-mode process where a polymerization initiator is introduced after droplets of gel reaction mixture are formed.
  • a similar membrane emulsion apparatus ( 248 ) as described in FIG. 2A is used to generate spheroidal droplets of gel reaction mixture ( 249 ) in an immiscible continuous phase ( 202 ), except that gel reaction mixture in this embodiment does not contain a polymerization initiator.
  • continuous phase and droplets ( 250 ) are placed in tube ( 252 ), after which the mixture is centrifuged ( 254 ) to drive droplets ( 255 ) to the bottom of the tube and supernatant ( 257 ) comprising the continuous phase is removed ( 256 ).
  • Droplets ( 253 ) are then resuspended ( 258 ) in continuous phase fluid that contains a suitable initiator, after which the mixture is immediately placed ( 260 ) in oven ( 261 ) where it is heated to drive the polymerization reaction. After polymerization is complete, the mixture is cooled and washed ( 262 ) several times to remove the continuous phase material from the resulting nucleic acid polymer particles.
  • the invention include a method of making nucleic acid polymer particles comprising the following steps: (a) combining in a reaction mixture hydrophilic monomers each having at least one reactive functionality and at least one complementary functionality and hydrophilic cross-linkers each having at least two of either the reactive functionality or complementary functionality, (i) wherein the reactive functionality and complementary functionality are capable of reacting with one another under catalytic conditions to form covalent linkages, (ii) wherein a proportion of the monomer have an ancillary functionality or an oligonucleotide attached, the ancillary functionality being capable of reacting with a capture moiety without cross reacting with the reactive functionality or the complementary functionality, and (iii) wherein concentrations of the monomers and cross-linkers, and the proportion of monomers having an ancillary functionality or oligonucleotide in the reaction mixture are selected so that a cross-linked polymer is capable of forming that has a density of oligonucleotides or ancillary functionalities of at least 1
  • ancillary functionalities include monomer derivatives that include reactive groups such as thiol or bromoacetyl groups disclosed by Ghosh et al (cited above), groups comprising one of a pair of click chemistry reactants, or the like
  • the porous membrane comprises a silicon membrane having a plurality of identical orifices through which the reaction mixture passes.
  • the method includes a further step of removing the polymer networks from said non-aqueous phase and washing the polymer networks.
  • the hydrophilic monomer is an acrylamide and the hydrophilic cross-linker is an N,N′-methylenebisacylamide.
  • a proportion of the hydrophilic monomer is an acrydite oligonucleotide.
  • the invention includes a method of making monodisperse populations of polyacrylamide particles comprising the step of combining a monodisperse emulsion of a polyacrylamide reaction mixture without an initiator and an emulsion with a dispersed phase containing an initiator or a continuous phase solution saturated with an initiator.
  • a reaction mixture includes a nucleic acid acrydite monomer.
  • size distributions of bulk manufactured polymer networks and/or nucleic acid polymer particles are controlled so that their coefficients of variation are as small as possible. For such control, it is important to be able to conveniently measure the sizes of a sample of candidate particles to determine whether their populations have appropriate coefficients of variation.
  • Many techniques are available for making such measurements, including laser diffraction, flow cytometry, coulter counting, image analysis, acoustical spectroscopy, and the like.
  • Instruments for laser diffraction are commercially available, e.g. Malvern Instruments (Malvern, United Kingdom); instruments for flow analysis are commercially available from Becton Dickinson (San Jose, Calif.); Image analysis systems and software are widely available commercially, e.g.
  • Nucleic acid polymer particles of the invention are particularly useful in multiplex genetic assays, including analysis of single nucleotide polymorphisms, DNA sequencing, and the like, where polynucleotide analytes, i.e. target polynucleotides, in a sample must be amplified in the course of analysis.
  • Such analytical techniques use a wide variety of amplification methodologies which can be used with nucleic acid polymer particles of the invention, including, but not limited to, emulsion PCR (emPCR), bridge amplification, NASBA, rolling circle amplification, and the like.
  • a substrate ( 300 ) is provided that has attached via their 5′ ends at least two primer sequences, A ( 302 ) and B ( 304 ).
  • Template ( 306 ) having 3′ primer binding site A′ ( 308 ) (that is complementary to A) and primer sequence A ( 310 ) (that has the same sequence as B on surface ( 300 )) anneals to a primer A on surface ( 300 ) so that primer A may be extended, e.g.
  • primers A and B may have a scissile linkage for its removal to obtain a single population on surface ( 300 ).
  • a bridge PCR may be performed on nucleic acid polymer particles described herein.
  • the method may be employed to make amplicon libraries without the use of emulsion reactions.
  • suspension ( 400 ) of nucleic acid polymer particles ( 402 ) is combined with template ( 404 ), the latter being in a very dilute concentration relative to the concentration of nucleic acid polymer particles, so that the probability of two different templates annealing to the same nucleic acid polymer particle is very low.
  • nucleic acid polymer particle may be present at 10 times, or 100 times the concentration of template.
  • template ( 404 ) has primer binding region at its 5′ end ( 406 ) that is complementary to one ( 408 ) of two primers on the nucleic acid polymer particles and a sequence at its 3′ end ( 409 ) identical to that of the other primer on the nucleic acid polymer particles.
  • primer ( 408 ) is extended to form extension product ( 410 ), after which template ( 404 ) is melted and released ( 414 ).
  • Extension product ( 410 ) may then anneal to other primers on the nucleic acid polymer particle to form additional extension products and eventually a bi-clonal population ( 412 ) of templates and its complement in reverse orientation.
  • released template ( 404 ) may participate in further amplifications on other nucleic acid polymer particles, preferably the spacing or concentration of such particles is controlled to reduce the probability that such an event occurs (which otherwise may cross contaminate another particle with a second template amplicon).
  • the spacing or concentration of such particles is controlled to reduce the probability that such an event occurs (which otherwise may cross contaminate another particle with a second template amplicon).
  • this may be prevented or reduced by including inert spacer particles ( 500 ) along with nucleic acid polymer particles ( 502 ).
  • the number and size of spacing particles ( 500 ) may be selected to control expected distance ( 504 ) between nucleic acid polymer particles ( 502 ).
  • a ratio of spacer particle to nucleic acid polymer particle is 10:1, or 100:1, or 1000:1.
  • Spacer particles may also be selected that are smaller in size than nucleic acid polymer particles so that interstitial spaces between them have smaller cross sections and create longer diffusion paths.
  • spacer particles may be swellable so that interstitial spaces are reduced or eliminated upon swelling.
  • Spacer particles may also contain tethered nucleases for digesting released or unused surplus templates that remain in the reaction solution. Compositions and techniques for making selecting and making spacer particles with covalently attached or trapped nucleases are described in Hermanson, Bioconjugate Techniques, 2 nd edition (Academic Press); and like references.
  • the invention provides a method of making an amplicon library comprising the steps of: (a) combining in a polymerase chain reaction mixture a library of polynucleotide fragments each having a first primer binding site at one end and a second primer binding site at the other end, and a population of nucleic acid polymer particles each comprising a non-nucleosidic polymer network having attached thereto a first primer and a second primer each at a concentration of at least 1 ⁇ 10 5 primers per ⁇ m 3 such that each polynucleotide fragment is capable of annealing to a first primer by its first primer binding site and to a second primer by a complement of its second primer binding site; and (b) performing a polymerase chain reaction in the presence of a quantity of spacer particles so that primers of the polymer networks are extended along polynucleotide fragments annealed thereto so that clonal populations of complements of such polynucleotide fragments are formed on the
  • the polymer networks each have a volume and a concentration of the polynucleotide fragments and a concentration of said polymer networks are selected so that in said step of combining at least 10 percent of said polymer networks have at a single said polynucleotide fragment within its volume.
  • the non-nucleosidic polymer network has a volume of less than 1.4 ⁇ 10 4 ⁇ m 3 .
  • the invention provides a method of making an amplicon library by performing a bridge polymerase chain reaction on a composition of monodisperse nucleic acid polymer particles.
  • the composition of monodisperse nucleic acid polymer particles includes a quantity of spacer particles.
  • nucleic acid polymer particles being used in bridge PCR may be amplified in a thermocycler instrument that provides agitation or rotation of the reaction chambers or tubes to present settling or prolonged particle-particle contact.
  • a simple device shown in FIG. 7 may be used as such a thermocycler.
  • Reaction tubes (not shown) are placed in holders near the outer periphery of wheel ( 702 ) which may be lowered into heated oil bath ( 700 ) and rotated by motor ( 704 ).
  • Wheel ( 702 ) rotates at a predetermined speed and depth in oil bath ( 700 ), whose temperature is controlled by controller ( 710 ) by way of thermometer ( 708 ) and heater ( 706 ).
  • controller ( 710 ) By programming controller ( 710 ) a thermocycler is provided, which ensures that nucleic acid polymer particles do not settle during amplification.
  • Methods of making amplicon libraries may also include a step of enriching nucleic acid polymer particles having clonal populations of polynucleotide fragments.
  • enrichment may be accomplished by affinity purification, for example, by annealing an oligonucleotide with a capture moiety, such as biotin, to a primer binding site of the polynucleotide fragments, after which the resulting complexes may be captured, e.g. by streptavidinated magnetic beads, and separated from particles without polynucleotide fragments.
  • nucleic acid polymer particles having clonal populations of polynucleotide fragments may be separated from particles without polynucleotide fragments by electrophoresis, e.g. using a commercially available instrument (such as, PippinPrep automated prep gel system, Sage Science, Beverly, Mass.).
  • Nucleic acid polymer particles may further be used in analysis of selected sets of genes or other polynucleotide sequences. Sets of such particles with specificities for particular predetermined polynucleotide targets are readily prepared from a single batch of particles using the technique outlined in FIG. 6 .
  • annealed adaptor oligonucleotide ( 602 ) that comprises 3′ end ( 604 ) that is complementary to primer ( 608 ) and that includes 5′ end ( 606 ) which has a sequence identical to a target polynucleotide to be captured and amplified.
  • polymerase ( 610 ) is added in a conventional polymerase reaction mixture so that primer ( 608 ) is extended along 5′ end of oligonucleotide ( 602 ) as a template. After such extension ( 614 ), oligonucleotide ( 602 ) is released to leave sequence-specific primer ( 616 ) on nucleic acid polymer particle ( 600 ).
  • sequence-specific primer ( 616 ) on nucleic acid polymer particle ( 600 ).
  • the same steps may be followed to add a second primer for bridge amplification on the resulting set of nucleic acid polymer particles.
  • primer ( 608 ) (or a second primer) may be extended in a template-driven ligation reaction, where a 5′ phosphorylated oligonucleotide (not shown) complementary to 5′ segment ( 606 ) is provided.
  • This technique may be used to prepare a set of nucleic acid polymer particles containing a plurality of particles each with a different specificity. Such a set may be used to selectively amplify a predetermined set of target polynucleotides in a bridge PCR for analysis.
  • the invention may be used for carrying out label-free DNA sequencing, and in particular, pH-based DNA sequencing.
  • label-free DNA sequencing including pH-based DNA sequencing
  • the concept of label-free DNA sequencing, including pH-based DNA sequencing, has been described in the literature, including the following references that are incorporated by reference: Rothberg et al, U.S. patent publication 2009/0026082; Anderson et al, Sensors and Actuators B Chem., 129: 79-86 (2008); Pourmand et al, Proc. Natl. Acad. Sci., 103: 6466-6470 (2006); and the like.
  • base incorporations are determined by measuring hydrogen ions that are generated as natural byproducts of polymerase-catalyzed extension reactions.
  • Nucleic acid polymer particles are used advantageously in pH-based sequencing because greater concentrations of templates may be attached to them thereby increasing the signal-to-noise ratio of the pH signal associated with base incorporations.
  • Nucleic acid polymer particles are used to make amplicon libraries as described above which, in turn, are used with apparatus as described in Rothberg et al (cited above).
  • templates each having a primer and polymerase operably bound are loaded into reaction chambers (such as the microwells disclosed in Rothberg et al, cited above), after which repeated cycles of deoxynucleoside triphosphate (dNTP) addition and washing are carried out.
  • dNTP deoxynucleoside triphosphate
  • templates may be attached as clonal populations to a solid support, such as a microparticle, bead, or the like, and such clonal popultations are loaded into reaction chambers.
  • a solid support such as a microparticle, bead, or the like
  • templates may be prepared as disclosed in U.S. Pat. No. 7,323,305, which is incorporated by reference.
  • “operably bound” means that a primer is annealed to a template so that the primer's 3′ end may be extended by a polymerase and that a polymerase is bound to such primer-template duplex, or in close proximity thereof so that binding and/or extension takes place whenever dNTPs are added.
  • the polymerase extends the primer by incorporating added dNTP only if the next base in the template is the complement of the added dNTP. If there is one complementary base, there is one incorporation, if two, there are two incorporations, if three, there are three incorporations, and so on. With each such incorporation there is a hydrogen ion released, and collectively a population of templates releasing hydrogen ions changes the local pH of the reaction chamber.
  • the production of hydrogen ions is monotonically related to the number of contiguous complementary bases in the template (as well as the total number of template molecules with primer and polymerase that participate in an extension reaction). Thus, when there is a number of contiguous identical complementary bases in the template (i.e.
  • the number of hydrogen ions generated, and therefore the magnitude of the local pH change is proportional to the number of contiguous identical complementary bases.
  • the corresponding output signals are sometimes referred to as “1-mer”, “2-mer”, “3-mer” output signals, and so on). If the next base in the template is not complementary to the added dNTP, then no incorporation occurs and no hydrogen ion is released (in which case, the output signal is sometimes referred to as a “0-mer” output signal.)
  • an unbuffered wash solution at a predetermined pH is used to remove the dNTP of the previous step in order to prevent misincorporations in later cycles.
  • the four different kinds of dNTP are added sequentially to the reaction chambers, so that each reaction is exposed to the four different dNTPs one at a time, such as in the following sequence: dATP, dCTP, dGTP, dTTP, dATP, dCTP, dGTP, dTTP, and so on; with each exposure followed by a wash step.
  • the process is illustrated in FIG. 8 for template ( 882 ) with primer binding site ( 881 ) attached to nucleic acid polymer particle ( 880 ).
  • Primer ( 884 ) and DNA polymerase ( 886 ) operably bound to template ( 882 ).
  • wash step ( 890 ) follows, after which the next dNTP (dCTP) is added ( 892 ).
  • a dNTP-destroying agent such as apyrase
  • a sequencing method exemplified in FIG. 8 may be carry out using the apparatus of the invention in the following steps: (a) disposing a plurality of template nucleic acids into a plurality of reaction chambers disposed on a sensor array, the sensor array comprising a plurality of sensors and each reaction chamber being disposed on and in a sensing relationship with at least one sensor configured to provide at least one output signal representing a sequencing reaction byproduct proximate thereto, and wherein each of the template nucleic acids is hybridized to a sequencing primer and is bound to a polymerase; (b) introducing a known nucleotide triphosphate into the reaction chambers; (c) detecting incorporation at a 3′ end of the sequencing primer of one or more nucleotide triphosphates by a sequencing reaction byproduct if such one or more nucleotide triphosphates are complementary to corresponding nucleotides in the template nucleic acid; (d) washing unincorporated nucleotide triphosphates from the following steps
  • the reactions further should be conducted under weak buffer conditions, so that the maximum number of hydrogen ions reacts with a sensor and not extraneous components (e.g. microwell or solid supports that may have surface buffering capacity) or chemical constituents (in particular pH buffering compounds).
  • a weak buffer allows detection of a pH change of at least ⁇ 0.1 in said reaction chamber, or at least ⁇ 0.01 in said reaction chambers.
  • a solution of specific amounts of acrylamide and methylene-N,N-bisacrylamide containing a specified concentration of acrodyte oligonucleotides is degassed by bubbling an inert atmosphere (Argon, Nitrogen, Helium) through the solution for a minimum of 30 minutes.
  • an inert atmosphere Argon, Nitrogen, Helium
  • a radical initiator is added.
  • the radical initiator can be a combination of ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TMED) which catalyses the radical initiation by APS.
  • APS ammonium persulfate
  • TMED N,N,N′,N′-tetramethylethylenediamine
  • the amount of TMED used needs to be carefully adjusted to allow sufficient time for emulsification.
  • APS and V-50 initiate thermally above ⁇ 65 degrees celsius.
  • a photoinitiator such 2,2′-Azobis(2-methylpropionamidine)dihydrochloride (V-50) may be used in conjunction with a UV light source with strong emission peaks at 220 nm and 365 nm.
  • the aqueous solution above may be dispersed into a continuous phase via several techniques. For example: The aqueous solution may be subdivided into droplets by a vibrating membrane with several appropriately sized holes (typically 50-70% smaller than the intended diameter of the droplet) after which the droplets are allowed to enter an immiscible continuous phase which may or may not contain surfactants.
  • the droplets may be irradiated with UV prior to entering the continuous phase (after leaving the nozzle, in mid air) or after entering the continuous phase.
  • the drops are allowed to polymerize prior to entering the continuous phase which may be miscible with the un-polymerized dispersed phase.
  • the humidity of the atmosphere needs to be controlled to prevent uncontrolled evaporative shrinking of the droplets and the atmosphere needs to be largely oxygen free to allow radical polymerization in the droplets.
  • An alternative emulsification technique can be described as follows: The aqueous phase is pumped through a porous membrane (with uniformly sized pores) into an immiscible continuous phase.
  • the beads are recovered from the continuous phase by either breaking the emulsion (by addition of n-butanol, n-propanol i-propanol or other appropriate chemicals) followed by centrifugation to pellet the beads in the bottom of the eppendorf tube or filtration through an appropriately sized filter. After washing with an appropriate buffer, the beads can be used for PCR amplification of DNA library elements or direct hybridization of DNA fragments with the reverse complement to the attached oligonucleotide.
  • This example describes membrane emulsification and the subsequent transformation of the aqueous micelles of the emulsion into polyacrylamide particles by radical polymerization in batch mode using an initiator-saturated oil phase.
  • the steps of the process comprise (a) formation of a gel reaction mixture-in-oil emulsion using a membrane, (b) particle polymerization, and (c) particle extraction and washing.
  • SNAPP Oil comprises the following mixture: TegosoftTM DEC oil (730 mL), ABIL WE09 (70 gm), and mineral oil (200 mL) (SNAPP oil is stored under argon);
  • SNAPP Buffer 1 ⁇ TE, 0.1% Triton X-100, 0.02% sodium azide;
  • Acrylamide Solution 50 mg N,N-methylene bisacrylamidc, 450 mg acrylamide, 550 uL double distilled H 2 O kept under argon;
  • DNA Mix 10 umol 30-mer acrydite oligonucleotide with 18C spacer in 2.5 mL Gel Reaction Mixture is formed by mixing the following together under argon for a total volume of 1400 uL: 526.4 uL DNA Mix, 14 mL TMED, 299.6 mL H 2 O, and 560 mL Acrylamide Solution.
  • SNAPP Oil All but about 1 mL of the supernatant SNAPP Oil is removed, after which the micelles are resuspended by adding 20 mL of initiator (1,1′-azobis(cyclohexanecarbonitrile))-saturated SNAPP Oil.
  • initiator-saturated SNAPP Oil is made by mixing 500 mg initiator in 25 mL SNAPP Oil under argon with vigorous mixing).
  • the resuspended micelles undergo polymerization by placing them in an oven at 90° C. under argon and constant rotation for 2 hr. and 2 min, after which they are removed and immediately place in a 4° C. refrigerator for at least 1 hr.
  • the SNAPP Oil is removed from the polymerized particles by centrifuging to form a pellet followed by resuspension in butanol with vortexing, and then repeating, after which the polymerized particles are resuspended in 0.1% SDS and sonicated for 3 min.
  • the polymerized particles are then twice centrifuged, resuspended in SNAPP Buffer, and sonicated for 3 min, after which they are resuspended in SNAPP Buffer and stored at 4° C.
  • the size distribution of the above nucleic acid polymer particles may be measured using a Guava flow cytometer after hybridizing a labeled oligonucleotide with a sequence complementary to at least one of those of the nucleic acid polymer particle.
  • An exemplary protocol is as follows: (1) suspend about 5 million particles in 9 ⁇ L 1 ⁇ PBS 0.2% Tween, (2) add 2 ⁇ L of 100 ⁇ M biotinylated oligonucleotide complement, (3) anneal at 95oC for 2 min followed by 37oC for 2 min, (4) centrifuge to remove supernatant, (5) wash 2 ⁇ with 1 ⁇ PBS 0.2% Twccn, (6) resuspend in 10 ⁇ L 1 ⁇ PBS 0.2% Twccn, (7) add 0.5 ⁇ L strcptavidin-FITC (commercial reagent, c.g.
  • Anaspec, Fremont, Calif. (8) wash 2 ⁇ with 1 ⁇ PBS 0.05 Tween, (9) add to 1 mL 1 ⁇ PBS 0.05% Tween, and (10) run sample on flow cytometer (e.g. EasyCyte mini, Guava Technologies).
  • flow cytometer e.g. EasyCyte mini, Guava Technologies.
  • Size distributions of nucleic acid polymer particles may also be measured by staining and counting them using a fluorescent microscope with automatic particle counting software. A series of dilutions of nucleic acid polymer particles are stained with a series of concentrations of a nucleic acid stain, such as SYBR Gold (Invitrogen), after which they are place in separate wells of multi-welled poly-1-lysine coated slides (e.g. Tekdon Inc.). A comparison of particle sizing and counting data from flow system and microscope measurements shows good correlation. CVs of size distributions of samples from a batch of nucleic acid polymer particles, designated B4, was determined by slide counting (described above) and by flow cytometry counting (described above).
  • Amplicon means the product of a polynucleotide amplification reaction; that is, a clonal population of polynucleotides, which may be single stranded or double stranded, which are replicated from one or more starting sequences.
  • the one or more starting sequences may be one or more copies of the same sequence, or they may be a mixture of different sequences that contain a common region that is amplified, for example, a specific exon sequence present in a mixture of DNA fragments extracted from a sample.
  • amplicons are formed by the amplification of a single starting sequence. Amplicons may be produced by a variety of amplification reactions whose products comprise replicates of the one or more starting, or target, nucleic acids.
  • amplification reactions producing amplicons are “template-driven” in that base pairing of reactants, either nucleotides or oligonucleotides, have complements in a template polynucleotide that are required for the creation of reaction products.
  • template-driven reactions are primer extensions with a nucleic acid polymerase or oligonucleotide ligations with a nucleic acid ligase.
  • Such reactions include, but are not limited to, polymerase chain reactions (PCRs), linear polymerase reactions, nucleic acid sequence-based amplification (NASBAs), rolling circle amplifications, and the like, disclosed in the following references that are incorporated herein by reference: Mullis et al, U.S. Pat.
  • amplicons of the invention are produced by PCRs.
  • an “amplifying” means performing an amplification reaction.
  • An “reaction mixture,” including an “amplification reaction mixture,” means a solution containing all the necessary reactants for performing a reaction, which may include, but not be limited to, buffering agents to maintain pH at a selected level during a reaction, salts, co-factors, scavengers, and the like.
  • a “solid phase amplicon” means a solid phase support, such as a particle or bead, having attached a clonal population of nucleic acid sequences, which may have been produced by a process such as emulsion PCR, or like technique.
  • One aspect of the invention is solid phase amplicons comprising nucleic acid polymer particles.
  • amplicons may be produced by isothermal reactions, such as rolling circle amplification reactions, NASBAs, or helicase-mediated amplification reactions, e.g. U.S. Pat. No. 7,282,328, which is incorporated by reference.
  • isothermal reactions such as rolling circle amplification reactions, NASBAs, or helicase-mediated amplification reactions, e.g. U.S. Pat. No. 7,282,328, which is incorporated by reference.
  • Microwell which is used interchangeably with “reaction chamber,” means a special case of a “reaction confinement region,” that is, a physical or chemical attribute of a solid substrate that permit the localization of a reaction of interest.
  • Reaction confinement regions may be a discrete region of a surface of a substrate that specifically binds an analyte of interest, such as a discrete region with oligonucleotides or antibodies covalently linked to such surface.
  • reaction confinement regions are hollows or wells having well-defined shapes and volumes which are manufactured into a substrate. These latter types of reaction confinement regions are referred to herein as microwells or reaction chambers, and may be fabricated using conventional microfabrication techniques, e.g.
  • Microwells may have square, rectangular, or octagonal cross sections and be arranged as a rectilinear array on a surface. Microwells may also have hexagonal cross sections and be arranged as a hexagonal array, which permit a higher density of microwells per unit area in comparison to rectilinear arrays. Exemplary configurations of microwells are as follows:
  • the reaction chamber array comprises 10 2 , 10 3 , 10 4 , 10 5 , 10 6 or 10 7 reaction chambers.
  • an array is a planar arrangement of elements such as sensors or wells. The array may be one or two dimensional.
  • a one dimensional array is an array having one column (or row) of elements in the first dimension and a plurality of columns (or rows) in the second dimension.
  • the number of columns (or rows) in the first and second dimensions may or may not be the same.
  • the array comprises at least 100,000 chambers.
  • each reaction chamber has a horizontal width and a vertical depth that has an aspect ratio of about 1:1 or less.
  • the pitch between the reaction chambers is no more than about 10 microns.
  • microwell arrays may be fabricated as follows: After the semiconductor structures of a sensor array are formed, the microwell structure is applied to such structure on the semiconductor die.
  • the microwell structure can be formed right on the die or it may be formed separately and then mounted onto the die, either approach being acceptable.
  • various processes may be used.
  • the entire die may be spin-coated with, for example, a negative photoresist such as Microchem's SU-8 2015 or a positive resist/polyimide such as HD Microsystems HD8820, to the desired height of the microwells.
  • the desired height of the wells (e.g., about 3-12 ⁇ m in the example of one pixel per well, though not so limited as a general matter) in the photoresist layer(s) can be achieved by spinning the appropriate resist at predetermined rates (which can be found by reference to the literature and manufacturer specifications, or empirically), in one or more layers.
  • Well height typically may be selected in correspondence with the lateral dimension of the sensor pixel, preferably for a nominal 1:1-1.5:1 aspect ratio, height:width or diameter.
  • multiple layers of different photoresists may be applied or another form of dielectric material may be deposited.
  • Various types of chemical vapor deposition may also be used to build up a layer of materials suitable for microwell formation therein.
  • microwells are formed in a layer of tetra-methyl-ortho-silicate (TEOS).
  • TEOS tetra-methyl-ortho-silicate
  • the invention encompasses an apparatus comprising at least one two-dimensional array of reaction chambers, wherein each reaction chamber is coupled to a chemically-sensitive field effect transistor (“chemFET”) and each reaction chamber is no greater than 10 ⁇ m 3 (i.e., 1 pL) in volume.
  • chemFET chemically-sensitive field effect transistor
  • each reaction chamber is no greater than 0.34 pL, and more preferably no greater than 0.096 pL or even 0.012 pL in volume.
  • a reaction chamber can optionally be 2 2 , 3 2 , 4 2 , 5 2 , 6 2 , 7 2 , 8 2 , 9 2 , or 10 2 square microns in cross-sectional area at the top.
  • the array has at least 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , or more reaction chambers.
  • the reaction chambers may be capacitively coupled to the chemFETs, and preferably are capacitively coupled to the chemFETs.
  • PCR Polymerase chain reaction
  • PCR is a reaction for making multiple copies or replicates of a target nucleic acid flanked by primer binding sites, such reaction comprising one or more repetitions of the following steps: (i) denaturing the target nucleic acid, (ii) annealing primers to the primer binding sites, and (iii) extending the primers by a nucleic acid polymerase in the presence of nucleoside triphosphates.
  • the reaction is cycled through different temperatures optimized for each step in a thermal cycler instrument.
  • a double stranded target nucleic acid may be denatured at a temperature >90° C., primers annealed at a temperature in the range 50-75° C., and primers extended at a temperature in the range 72-78° C.
  • PCR encompasses derivative forms of the reaction, including but not limited to, RT-PCR, real-time PCR, nested PCR, quantitative PCR, multiplexed PCR, concatemetic PCR, and the like. Reaction volumes range from a few hundred nanoliters, e.g. 200 nL, to a few hundred ⁇ L, e.g. 200 ⁇ L.
  • Polymer network means a structure comprising covalently connected subunits (monomers, crosslinkers, and the like) in which all such subunits are connected to every other subunit by many paths through the polymer phase, and wherein there are enough polymer chains bonded together (either physically or chemically) such that at least one large molecule is coextensive with the polymer phase (i.e. the structure is above its gel point).
  • a polymer network has a volume in the range of from 65 aL to 15 pL, or from 1 fL to 1 pL.
  • Polynucleotide or “oligonucleotide” are used interchangeably and each mean a linear polymer of nucleotide monomers.
  • Monomers making up polynucleotides and oligonucleotides are capable of specifically binding to a natural polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like.
  • Such monomers and their internucleosidic linkages may be naturally occurring or may be analogs thereof, e.g. naturally occurring or non-naturally occurring analogs.
  • Non-naturally occurring analogs may include PNAs, phosphorothioatc internucleosidic linkages, bases containing linking groups permitting the attachment of labels, such as fluorophores, or haptens, and the like.
  • PNAs phosphorothioatc internucleosidic linkages
  • bases containing linking groups permitting the attachment of labels such as fluorophores, or haptens, and the like.
  • Polynucleotides typically range in size from a few monomeric units, e.g. 5-40, when they are usually referred to as “oligonucleotides,” to several thousand monomeric units.
  • oligonucleotides typically range in size from a few monomeric units, e.g. 5-40, when they are usually referred to as “oligonucleotides,” to several thousand monomeric units.
  • A denotes deoxyadenosine
  • C denotes deoxycytidine
  • G denotes deoxyguanosine
  • T denotes thymidine
  • I denotes deoxyinosine
  • U denotes uridine, unless otherwise indicated or obvious from context.
  • polynucleotides comprise the four natural nucleosides (e.g. deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA) linked by phosphodiester linkages; however, they may also comprise non-natural nucleotide analogs, e.g. including modified bases, sugars, or internucleosidic linkages.
  • nucleosides e.g. deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA
  • non-natural nucleotide analogs e.g. including modified bases, sugars, or internucleosidic linkages.
  • Primer means an oligonucleotide, either natural or synthetic that is capable, upon forming a duplex with a polynucleotide template, of acting as a point of initiation of nucleic acid synthesis and being extended from its 3′ end along the template so that an extended duplex is formed.
  • Extension of a primer is usually carried out with a nucleic acid polymerase, such as a DNA or RNA polymerase.
  • the sequence of nucleotides added in the extension process is determined by the sequence of the template polynucleotide.
  • primers are extended by a DNA polymerase. Primers usually have a length in the range of from 14 to 40 nucleotides, or in the range of from 18 to 36 nucleotides.
  • Primers are employed in a variety of nucleic amplification reactions, for example, linear amplification reactions using a single primer, or polymerase chain reactions, employing two or more primers.
  • Guidance for selecting the lengths and sequences of primers for particular applications is well known to those of ordinary skill in the art, as evidenced by the following references that are incorporated by reference: Dieffenbach, editor, PCR Primer: A Laboratory Manual, 2 nd Edition (Cold Spring Harbor Press, New York, 2003).
  • sample in one aspect means a quantity of material from a biological, environmental, medical, or patient source in which detection or measurement of one or more analytes is sought.
  • a sample may also include a specimen of synthetic origin.
  • Biological samples may be animal, including human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste.
  • Biological samples may include materials taken from a patient including, but not limited to cultures, blood, saliva, cerebral spinal fluid, needle aspirates, and the like. Biological samples also may be obtained from animals.
  • sample means a material or substance extracted, partially purified, separated, or otherwise obtained by sample preparation techniques from a sample as defined in the previous sentences (collectively referred to as “extracted material”).
  • extracted material include but are not limited to nucleic acids (for example, DNA or RNA extracted material), protein extracted material, lipid extracted material, and the like.

Abstract

The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.

Description

  • This is a continuation-in-part of U.S. patent applications Ser. Nos. 12/474,897 and 12/475,311 both filed 29 May 2009, and claims priority under U.S. provisional applications Ser. No. 61/263,734 filed 23 Nov. 2009; Ser. No. 61/291,788 filed 31 Dec. 2009; and Ser. No. 61/297,203 filed 21 Jan. 2010. All of the foregoing applications are incorporated by reference in their entireties.
  • BACKGROUND
  • In order to generate sufficient signal for analysis, many applications in genomics and biomedical research require the conversion of nucleic acid molecules in a library into separate, or separable, libraries of amplicons of the molecules, e.g. Margulies et al, Nature 437: 376-380 (2005); Mitra et al, Nucleic Acids Research, 27: c34 (1999); Shendure et al, Science, 309: 1728-1732 (2005); Brenner et al, Proc. Natl. Acad. Sci., 97: 1665-1670 (2000); and the like. Several techniques have been used for making such conversions, including hybrid selection (e.g., Brenner et al, cited above); in-gel polymerase chain reaction (PCR) (e.g. Mitra et al, cited above); bridge amplification (e.g. Shapero et al, Genome Research, 11: 1926-1934 (2001)); and emulsion PCR (emPCR) (e.g. Margulies et al, cited above). Most of these techniques employ particulate supports, such as beads, which spatially concentrate the amplicons for enhanced signal-to-noise ratios, as well as other benefits, such as, better reagent access.
  • These techniques have several drawbacks. In some cases, amplicons are either in a planar format (e.g. Mitra et al, cited above; Adessi et al, Nucleic Acids Research, 28: c87 (2000)), which limits ease of manipulation and/or reagent access, or the amplicons are on bead surfaces, which lack sufficient fragment density or concentration for adequate signal-to-noise ratios. In other cases, amplifications must be done in emulsions in order to obtain clonal populations of templates. Such emulsion reactions are labor intensive and require a high degree of expertise, which significantly increases costs. It would be very useful if supports were available which were capable of providing a higher density of analyte binding or attachment sites, particularly for clonal populations of nucleic acid fragments. It would also be advantageous if such supports did not require emulsion reactions for producing clonal populations.
  • Gels have been widely used as supports in analytical and synthetic processes and as encapsulating agents, e.g. Weaver et al, U.S. Pat. No. 5,055,390; Tmovsky et al, U.S. Pat. No. 6,586,176, and have interiors accessible to analytical reagents. However, such particulates are limited in that they are typically produced with widely varying size distributions, particularly at lower size ranges, e.g. less than about 30 μm, which makes them unsuitable for many exacting analytical applications, such as large scale DNA sequencing.
  • It would be highly useful if methods and compositions were available for creating small-sized monodisperse populations of gel-based particulate supports, which could be readily loaded with analytes, such as amplicons of nucleic acid fragments.
  • SUMMARY OF THE INVENTION
  • The present invention is generally directed to particle compositions for nucleic acid analysis, which address the aforementioned issues with current methodologies, as well as other related issues. The present invention is exemplified in a number of implementations and applications, some of which are summarized below and throughout the specification.
  • In one aspect, the invention includes the production and use of porous microparticles for increasing the number of polynucleotides templates within a defined volume. In one embodiment such porous microparticles comprise three-dimensional scaffolds for attaching greater numbers of template molecules than possible with solid beads that have only a two-dimensional surface available for attachment. In one embodiment, such porous microparticles are referred to herein as nucleic acid polymer particles.
  • In another embodiment, such porous microparticles comprise particles having shapes with larger surface to volume ratios than spherical particles. Such shapes include tubes, shells, hollow spheres with accessible interiors (e.g. nanocapsules), barrels, multiply connected solids, including doubly connected solids, such as donut-shaped solids and their topological equivalents, triply connected solids and their topological equivalents, four-way connected solids and their topologically equivalents, and the like. Such porous microparticles are referred to herein as “non-spheroidal microparticles.” Techniques for producing and characterizing such particles are disclosed in Elaissari, editor, Colloidal Polymers: Synthesis and Characterization (Marcel Dekker, Inc., New York, 2003), and like references.
  • In another aspect the invention provides a composition of nucleic acid polymer particles each comprising polynucleotides attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9×104 per μm3 and wherein the oligonucleotides have an average nearest neighbor distance of 22 nm or less. In one aspect, the polynucleotide is a DNA fragment in the range of from 100 to 500 nucleotides in length, or in the range of from 100 to 200 nucleotides in length. In another aspect, such polynucleotide is a double stranded DNA (dsDNA) having a length in the range of from 150 to 250 basepairs.
  • In another aspect, the invention provides amplicon libraries, such libraries comprising a plurality of amplicons, each amplicon comprising a clonal population of a single polynucleotide from a nucleic acid library, each polynucleotide of the clonal population being attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides of the clonal population being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9×104 per μm3. In another aspect, polynucleotides of such amplicons have an average nearest neighbor distance of 22 nm or less, or an average nearest neighbor distance of 20 nm or less. In still another aspect, such polynucleotides are each a double stranded DNA (dsDNA) having a length in the range of from 150 to 250 basepairs, or a length in the range of from 150 to 200 basepairs.
  • In one aspect, an amplicon library of the invention comprises a plurality of amplicons, each amplicon comprising a clonal population of a single polynucleotide from a nucleic acid library, each polynucleotide of the clonal population being attached to a non-nucleosidic polymer network, each such polymer network having a volume and the polynucleotides of the clonal population being attached to the polymer network throughout its volume, wherein the number of attached polynucleotides is at least 6.9×104 per μm3. In one embodiment, a plurality of amplicons is in the range of from 104 to 107 amplicons.
  • In another aspect, the invention provides methods of making monodisperse populations of gel particles by combining a monodisperse emulsion of a gel reaction mixture without an initiator and an emulsion with a dispersed phase containing an initiator or a continuous phase solution saturated with an initiator. In one embodiment, volumes of the gel particles of such monodisperse populations have coefficients of variation of less than fifteen percent, or in another embodiment, less than twelve percent.
  • In another aspect, the invention provides a method of making amplicon libraries comprising the steps: (a) combining in an amplification reaction mixture a library of polynucleotide fragments each having at least one primer binding site and a population of non-nucleosidic polymer networks, each such polymer network having a volume of less than 1.4×104 μm3 and having primers attached thereto, and the volumes of the non-nucleosidic polymer networks having a coefficient of variation of fifteen percent or less; (b) performing an amplification reaction so that primers of the polymer networks are each extended along a polynucleotide fragment annealed thereto so that clonal populations of such polynucleotide fragments are formed on the polymer networks, thereby forming an amplicon library. In one embodiment, the method of making amplicon libraries further includes a step of enriching polymer networks having clonal populations of polynucleotide fragments attached by separating them from polymer networks without such fragments. In another embodiment, such separation is accomplished by affinity separation or by electrophoretic separation.
  • In still another aspect, the invention includes methods of using monodisperse gel particle compositions to make amplicon libraries without an emulsion reaction.
  • These above-characterized aspects, as well as other aspects, of the present invention are exemplified in a number of illustrated implementations and applications, some of which are shown in the figures and characterized in the claims section that follows. However, the above summary is not intended to describe each illustrated embodiment or every implementation of the present invention.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • FIG. 1 illustrates the presence of nucleic acid polymer particles inside microwells of a semiconductor sequencing device and the effects of different polymer network sizes within a library.
  • FIG. 2A schematically illustrates production of spheroidal gel particles by membrane emulsification using a micromachined membrane and continuous polymerization by heat.
  • FIG. 2B schematically illustrates another embodiment for producing spheroidal gel particles by membrane emulsification and batch mode polymerization by heat.
  • FIG. 3 diagrammatically illustrates a bridge PCR on a surface.
  • FIG. 4 diagrammatically illustrates bridge PCR on a suspension of nucleic acid polymer particles.
  • FIG. 5 illustrates a method of minimizing cross-contamination of bridge PCR templates among closely packed particles.
  • FIG. 6 illustrates a method of using adaptor oligonucleotides to allow one kind of nucleic acid polymer particle to be used to capture and amplify a selected set of nucleic acids, such as particular exons of one or more genes.
  • FIG. 7 shows a simple thermocycler for carrying out PCRs while preventing porous particles from settling at the bottom of a reaction vessel.
  • FIG. 8 illustrates steps of a nucleic acid sequencing method using nucleic acid polymer particles of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The practice of the present invention may employ, unless otherwise indicated, conventional techniques and descriptions of organic chemistry, molecular biology (including recombinant techniques), cell biology, and biochemistry, which are within the skill of the art. Such conventional techniques include, but are not limited to, preparation of synthetic polynucleotides, polymerization techniques, chemical and physical analysis of polymer particles, nucleic acid sequencing and analysis, and the like. Specific illustrations of suitable techniques can be had by reference to the example herein below. However, other equivalent conventional procedures can, of course, also be used. Such conventional techniques and descriptions can be found in standard laboratory manuals such as Genome Analysts: A Laboratory Manual Series (Vols. I-IV), PCR Primer: A Laboratory Manual, and Molecular Cloning: A Laboratory Manual (all from Cold Spring Harbor Laboratory Press), Hermanson, Bioconjugate Techniques, Second Edition (Academic Press, 2008); Merkus, Particle Size Measurements (Springer, 2009); Rubinstein and Colby, Polymer Physics (Oxford University Press, 2003); and the like.
  • The invention is directed to methods and compositions for enhancing the sensitivity of nucleic acid analysis, particularly where many different nucleic acid fragments are assayed simultaneously, such as in large-scale parallel DNA sequencing reactions. In one aspect, the compositions of the invention result from the conversion of a library of individual nucleic acid fragments into a library of individual solid phase amplicons that provide higher concentrations of fragments per amplicon and greater uniformity of amplicon size than current methodologies. Solid phase amplicons of the invention are composite materials made up of a framework, or scaffold, of a hydrophilic covalent non-nucleosidic polymer (referred to herein as a “polymer network” or as a “porous microparticle”) and covalently attached copies of usually one kind of nucleic acid fragment, or in some embodiments, two kinds of nucleic acid fragment. In some preferred embodiments, such nucleic acid fragment is a nucleic acid primer. In other preferred embodiments, such nucleic acid fragment is a DNA fragment from a library, which may have been formed on a polymer network by extension of a covalently attached primer. (In such embodiments, it is understood that a single “kind” in this case, may include unextended primers or partially extended primers, which have different lengths but otherwise identical sequences). Such solid phase amplicons are synonymously referred to as “scaffolded nucleic acid polymer particles” or simply “nucleic acid polymer particles.” Compositions of the invention include libraries or collections of such solid phase amplicons, or equivalently, nucleic acid polymer particles. In one aspect, the invention includes compositions comprising populations of such solid phase amplicons. In one aspect, polymer networks are stable in a wide pH range, e.g. from 4 to 10, and especially from 6 to 9, and they are chemically and physically stable in physiological salt solutions and/or electrolytes. Likewise, polymer networks are preferably inert to reactants, reagents and/or reaction conditions and buffers used in analytical assays and reactions for nucleic acids, including, but not limited to, polymerase reactions, ligase reactions, nuclease reactions, polymerase chain reactions, and the like. Polymer networks are preferably chemically and physically stable over a wide temperature range, e.g. 0° C. to 100° C., and 5° C. to 95° C. In one aspect, polymer networks are substantially nonswelling in under a wide range of reaction conditions, particularly polymerase extension reaction conditions. In one aspect, by substantially nonswelling, it is meant that the volume of a polymer network changes by no more than five percent within a temperature range of from 25° C. to 70° C. and under chemical conditions of physiological or assay salt and pH in the range of from 6 to 10, and especially in the range of from 7 to 9. In one aspect, the porosity of polymer networks permits free or substantially free diffusion of proteins having a size in the range of from 50 to 200 kilodaltons, or from 50 to 150 kilodaltons, or from 50 to 125 kilodaltons. In another aspect, the porosity of polymer networks permits free or substantially free diffusion of nucleic acid polymerases. In various embodiments, such porosity may be selected to permit free or substantially free diffusion of primers and/or a DNA polymerase, including but not limited to, a Taq polymerase, a 9° N polymerase, an E. coli DNA polymerase I, a T7 DNA polymerase, a Bsu DNA polymerase, a Klenow fragment DNA polymerase, a Phusion DNA polymerase, a Vent DNA polymerase, a Bst DNA polymerase, a phi29 DNA polymerase, a T4 DNA polymerase, or the like. In another embodiment, polymer networks have a porosity that renders them permeable to proteins having a size in the range of from 50 to 200 kilodaltons, or from 50 to 150 kilodaltons, or from 50 to 125 kilodaltons. In one embodiment, the porosity of polymer networks is selected so that such permeability is at least fifty percent of the diffusability in polymer-free solution, or at least twenty-five percent of such diffusability, or at least ten percent of such diffusability. In another aspect, polymer networks have an average pore size in the range of from 20 to 200 nm in diameter, or from 25 to 100 nm in diameter, or from 30 to 100 nm in diameter.
  • In another aspect, polymer networks may have empty channels or hollow cores that when taken together with the polymer network volume comprise at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% of the combined volume.
  • In another aspect, nucleic acid fragments are uniformly attached throughout the volume of polymer networks. In some embodiments, nucleic acid fragments are uniformly and randomly attached throughout the volume of polymer networks (i.e. as approximately a Poisson distribution). In yet other embodiments, nucleic acid fragments may be attached throughout a layer or portion of a polymer network. In further embodiments, nucleic acid fragments may be attached non-uniformly throughout the volume of polymer networks. For example, in spherically shaped polymer networks, a concentration of attached nucleic acid fragments may be a function of distance from the center of such polymer network. In one such embodiment, such function describes a monotonically decreasing concentration from the surface of a polymer network to its center.
  • The density of nucleic acids may be expressed in terms of expected or average nearest neighbor distance, which allows surface densities to be compared with volume densities. Equivalent densities of nucleic acids distributed throughout a spheroidal volume have larger expected nearest neighbor distances than those of nucleic acids distributed on the surface of such a volume. Expected nearest neighbor distances for Poisson distributed points or molecules are readily computed for surfaces or volumes, e.g. Pielou, Introduction to Mathematical Ecology (Wiley-Interscience, New York, 1977). Since large molecules or molecular complexes of interest (e.g. template-primer-polymerase complexes) have volumes roughly in the range of from 1000 to 1.2×103 nm3 (Holmes et al, Electrophoresis, 12: 253-263 (1991)), higher concentrations of such can be achieved by attaching them throughout a volume rather than on a surface. In one aspect, nucleic acid polymer particles of the invention have 150 to 200 basepair nucleic acids immobilized throughout a spheroidal volume having a diameter in the range of from 0.5 to 10 μm in an approximate Poisson distribution having an expected nearest neighbor distance in the range of from 15 to 22 nm. In another aspect, such spheroidal volume has a diameter in the range of from 1 to 10 μm and such Poisson distribution of dsDNAs has an expected nearest neighbor distance in the range of from 18 to 20 nm.
  • Polymer networks may have a variety of shapes, including but not limited to, spherical, cylindrical, barrel shaped, toroidal, conical, tubular, hemispherical, cubical, and topological equivalents of the foregoing. In one aspect, polymer networks are spherically shaped, which are readily obtained from emulsion-based methods of making them. An important application of nucleic acid polymer particle compositions is their use in massively parallel sequencing reactions where nucleic acids attached to the polymer networks making up such particles are derived from fragments of a target polynucleotide of interest, such as a genome. In several large scale sequencing approaches, clonal populations of fragments, usually attached to separate beads, are subjected to sequencing reactions in microwells, or equivalent enclosures, e.g. as disclosed in Rothberg et al, U.S. patent publication 2009/0127589; Gamal et al, U.S. Pat. No. 7,595,883; Leamon et al, U.S. Pat. No. 7,323,305; and the like. In particular, approaches based on making electrochemical measurements, such as Rothberg et al (cited above), benefit from populations of nucleic acid polymer particles that have low coefficients of variation. For example, FIGS. 1A and 1B illustrate top views of ISFET sensor arrays (100), e.g. as disclosed in Rothberg et al (cited above), which include a rectilinear array of microwells (102) filled with microparticles (104) and electrolyte (106). In FIG. 1A, the coefficient of variation of the diameters of microparticles (104) is 51%, and in FIG. 1B the corresponding coefficient of variation is 22%. Whenever electrical measurements are made through or across the microwells, differences in microparticle sizes and motions give rise to resistive noise; thus, the greater the coefficient of variation in microparticle size, the greater the noise. Generally, if the coefficient of variation of the size of a particle is large, several difficulties can arise: (i) flows of reagents across the beads or particles may dislodge and wash away some particles, e.g. small particles or particles too large to completely fit into a microwell, (ii) in the case of ion-based sequencing approaches, such as pH-based sequencing disclosed in Rothberg et al (cited above), fluid noise sensed by a electronic-based sensor will vary depending on the fluid gap around the particle in the well, and (iii) signals generated by reactions taking place on the nucleic acids of a particle will vary with the size of the particle, which adds a signal processing complication because many sequencing chemistries generate a signal that depends on the number of bases incorporated in a polymerase extension reaction. As a consequence, it is advantageous to have populations of nucleic acid polymer particles with sizes, e.g. volumes, or diameters for spherical particles, which have a low coefficient of variation. In one aspect, such populations of particles have volumes with coefficients of variation less than 25 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 20 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 15 percent; and in further aspects, such populations of particles have volumes with coefficients of variation less than 10 percent; or less than 5 percent. Preferably, populations of spherical polymer networks have coefficients of variation less than 15 percent, and more preferably, less than 10 percent, or less than 5 percent.
  • In another aspect, spherical polymer networks have average sizes (diameters) less than 30 μm, or in the range of from 0.5 μm to 30 μm, or in the range of from 0.5 μm to 15 μm, or in the range of from 0.5 μm to 10 μm.
  • In some embodiments, the porous microparticle is hollow (i.e., it has a hollow core); while in other embodiments it has a porous core.
  • As mentioned above, an aspect of the invention includes amplicon libraries comprising a plurality of solid phase amplicons each, in turn, comprising nucleic acid polymer particles each having a clonal population of polynucleotides, such as genomic fragments, attached throughout the volume of a polymer network.
  • Compositions
  • Polymer networks may be made of a wide variety of components and the method of manufacturing may vary widely. Design factors for making polymer networks include, but are not limited to, the following: (i) the polymers of the networks are hydrophilic, (ii) they are capable of having a pore and/or network structure (e.g. average pore diameter, tortuosity, and the like) that permits interior access to various enzymes, especially polymerases, (iii) they are physically and chemically stable under conditions where biomolecules, such as enzymes, are functional and they are substantially non-swelling under the same conditions. There is a great amount of guidance in the art for selecting polymers and polymerization methodologies to produce polymer networks meeting such performance criteria, such as the following exemplary references, which are incorporated by reference: Saltzman and Langer, J. Biophys., 55:163 (1989); Ghosh et al, U.S. Pat. No. 5,478,893; Mirzabekov, U.S. Pat. No. 6,656,725; Johnson et al, U.S. Pat. No. 6,372,813; Tang and Xiao, Biosensors and Bioelectronics, 24: 1817-1824 (2009); Boles et al, U.S. Pat. Nos. 5,932,711 and 6,180,770; Xiao et al, Electrophoresis, 28: 1903-1912 (2007); Holmes et al, Electrophoresis, 12: 253-263 (1991); Shapero et al, Genome Research, 11: 1926-1934 (2001); Righetti et al, J. Biochem. Biophys. Methods, 4: 347-363 (1981); Mitra et al, Nucleic Acids Research, 27: e34 (1999); Rehman et al, Nucleic Acids Research, 27: 649-655 (1999); Smith, U.S. Pat. No. 4,485,224; Chiari et al, U.S. Pat. No. 5,785,832; Rickwood and Hames, Editors, Gel Electrophoresis of Nucleic Acids (IRL Press, Oxford, 1982); Chrambach, The Practice of Quantitative Gel Electrophoresis (VCH, Deerfield Beach, 1985); Mitra et al, Anal. Biochem., 320: 55-65 (2003); Kenney et al, Biotechniques, 25: 516 (1998); Elaissari, editor, Colloidal Polymers: Synthesis and Characterization (Marcel Dekker, Inc., New York, 2003); and the like.
  • In one aspect, polymer networks comprise polymers selected from the following group: agarose; polyoxybutylene; diethylacrylamide; polyoxyethylene; polyacrylamide; polyoxypropylene; N,N-polydimethylacrylamide; poly(N-isopropylacrylamide); polyvinylpyrrolidone; poly-N-hydroxyacrylamide; and the like. As described more fully below, such polymers may be formed into polymer networks using conventional methodologies, e.g. cross-linking methods, methods for producing desired shapes, and the like.
  • In some embodiments, the nucleic acids are bound to polymer networks with one or more non-nucleic acid polymers or linking groups. In some embodiments, the non-nucleic acid polymers are polyethylene glycol (PEG) polymers. The PEG polymers may be of varying lengths. In some embodiments, the non-nucleic acid polymers are dextran polymers and/or chitosan polymers. In some embodiments, the non-nucleic acid polymers include PEG polymers and dextran polymers. In some embodiments, the non-nucleic acid polymers include PEG polymers and chitosan polymers. The non-nucleic acid polymers may be linear or branched. Still other methods for attaching nucleic acids to beads are taught by Lund et al., Nucleic Acids Research, 1988, 16(22):10861-10880, Joos et al. Anal Biochem, 1997, 247:96-101, Steinberg et. al. Biopolymers, 2004, 73:597-605, and Steinberg-Tatman et al. Bioconjugate Chem 2006 17:841-848.
  • In one embodiment, nucleic acid polymer particles are made by first making polymer networks that incorporate either bromoacetyl groups or alternative thiol groups, then reacting either a thiol derivatized oligonucleotide or a bromoacetyl-derivatized oligonucleotide respectively, as taught by Ghosh et al, U.S. Pat. No. 5,478,893, which is incorporated by reference. Synthesizing bromoacetyl-derivatized and thiol-derivatized oligonucleotides is further disclosed by Gryaznov, U.S. Pat. No. 5,830,658, which is incorporated by reference. In one aspect, polyacrylamide particles are employed that may be size selected either before or after bromoacetyl- and thiol-derivatized components are reacted.
  • In another embodiment, nucleic acid polymer particles are made by preparing a polymer network that incorporates a click chemistry functionality then combining it with oligonucleotides having a complementary click chemistry functionality, so that rapid and specific bonds are formed and a nucleic acid polymer particle results. Click chemistry functionalities and reactions are well-known and are disclosed in the following references, which are incorporated by reference: Lahann, editor, Click Chemistry for Biotechnology and Material Science (Wiley, 2009); Kolb et al, Angew. Chem. Int. Ed., 40: 2004-2021 (2001); Binder et al, Macromolecular Rapid Comm., 28: 15-54 (2007); Sharpless et al, U.S. Pat. No. 7,375,234; Carell et al, U.S. patent publication 2009/0215635; and the like. Reagents containing click chemistry reactive functionalities and complementary functionalities are commercially available from Glen Research (Sterling, Va.); Sigma Aldrich (St. Louis, Mo.), baseclick GmbH (Tutzing, Germany); and like companies. In one aspect, the click chemistry reactive functionality is an azide and the click chemistry complementary functionality is an alkene. In one embodiment, a reaction between such functionalities is catalyzed by copper(I). In another aspect, a click chemistry reactive functionality or complementary functionality is incorporated into a polyacrylamide polymer matrix.
  • Of particular interest are polymer networks comprising polyacrylamide gels. Polyacrylamide gels are formed by copolymerization of acrylamide and bis-acrylamide (“bis,” N,N′-methylene-bisacrylamide). The reaction is a vinyl addition polymerization initiated by a free radical-generating system. Polymerization is initiated by ammonium persulfate and TEMED (tetramethylethylenediamine): TEMED accelerates the rate of formation of free radicals from persulfate and these in turn catalyze polymerization. The persulfate free radicals convert acrylamide monomers to free radicals which react with unactivated monomers to begin the polymerization chain reaction. The elongating polymer chains are randomly crosslinked by bis, resulting in a gel with a characteristic porosity which depends on the polymerization conditions and monomer concentrations. Riboflavin (or riboflavin-5′-phosphate) may also be used as a source of free radicals, often in combination with TEMED and ammonium persulfate. In the presence of light and oxygen, riboflavin is converted to its leuco form, which is active in initiating polymerization, which is usually referred to as photochemical polymerization. In a standard nomenclature for forming polyacrylamide gels, T represents the total percentage concentration (w/v, in mg/mL) of monomer (acrylamide plus crosslinker) in the gel. The term C refers to the percentage of the total monomer represented by the crosslinker. For example, an 8%, 19:1 (acrylamide/bisacrylamide) gel would have a T value of 8% and a C value of 5%.
  • In one aspect, polymer networks comprise polyacrylamide gels with total monomer percentages in the range of from 3-20 percent, and more preferably, in the range of from 5 to 10 percent. In one embodiment, crosslinker percentage of monomers is in the range of from 5 to 10 percent. In a particular embodiment, polymer networks comprise 10 percent total acrylamide of which 10 percent is bisacrylamide.
  • Accordingly, in one aspect, the invention includes a polyacrylamide particle composition comprising a population of polyacrylamide particles with an average particle size of less than 15 μm with a coefficient of variation of less than 15 percent. In one embodiment, the polyacrylamide particles have a weight:volume percentage of twenty-five percent or less. In another embodiment, the polyacrylamide particles are spheroidal and have an average diameter of less than 15 μm with a coefficient of variation of less than 15 percent.
  • Methods of Making Nucleic Acid Polymer Particles
  • Nucleic acid polymer particles of the invention may be made by a wide variety of methods. In one aspect, such method include steps of (i) forming a reaction mixture whose polymerization may be controlled by physical conditions, e.g. heat, or the addition of a catalyst; (ii) performing a polymerization reaction to produce polymer networks or candidate polymer networks or nucleic acid polymer particles or candidate polymer particles depending on reactants and conditions employed, and (iii) optionally, selecting candidate polymer networks or candidate nucleic acid polymer particles in a predetermined size range. Nucleic acid polymer particles may be made by first making polymer networks followed by attachment of polynucleotides, or they may be made by co-polymerization of oligonucleotide components along with monomers and crosslinkers. In addition to the chemical processes that determine the composition of polymer networks and nucleic acid polymer particles, physical process are employed to create such networks and particles with desired shapes and size distributions. Such physical processes include, but are not limited to, flow focusing using microfluidics devices, e.g. Nisisako et al, LabChip, 8: 287-293 (2008); Kumaresan et al, Anal. Chem., 80: 3522-3529 (2008), pneumatic disruption of a sheath-sample flow stream, e.g. Lin et al, Biomed Microdevices, 9: 833-843 (2007); sieving, molding, e.g. Rolland et al, J. Am. Chem. Soc., 127: 10096-10100 (2005), sonication, controlled shearing, and membrane emulsion. Further exemplary references include the following: Mak et al. Adv. Funct. Mater. 2008 18:2930-2937; Morimoto et al. MEMS 2008 Tucson Ariz. USA January 13-17, 2008 Poster Abstract 304-307; Lee et al. Adv. Mater. 2008 20:3498-3503; Martin-Banderas et al. Small. 2005 1(7):688-92; and published PCT application WO03/078659. Of particular interest are the following three methods of forming polymer networks.
  • UV polymerization. Polymer networks may be made by polymerization of acrylamide spray droplets generated by single or multiple nozzles located on an oscillating membrane, such as in a commercially available system from The Technology Partnership (www.ttp.com) which sprays droplets from single or multiple nozzles located on a stainless steel membrane by piezo electronically actuating the membrane and allowing it to oscillate at its natural resonance frequency. This yields monodispersed droplets in a gaseous atmosphere (such as Argon) at rates of tens of thousands to millions of droplets per second. These droplets are then streamed passed a strong UV light source for photoinitiated polymerization.
  • Polymerization with molding. This approach involves the molding of a paste which disperses the acrylamide, bisacrylamide and acrydite labeled oligonucleotides in a sacrificial “porogen” followed by, but not limited to, photoinitiated radical polymerization of the acrylamide monomers with subsequent removal of the porogen my dissolution and repeated washing. The molding technology is available through Liquidia Technologies (Research Triangle Park, N.C.) and disclosed in DeSimone et al, PCT publication WO 2007/024323, and like references. Such approached are particularly useful for producing non-spheroidal microparticles in defined shapes, such as tetrahedral shapes, hemispherical shapes, barrel shapes, open capsular shapes, toroidal shapes, tube shapes, and the like, which have greater surface areas than spheroidal shaped particles with the same solid volume. Preferably, the areas of the non-spheroidal microparticles in a composition are substantially the same. In one aspect, substantially the same in reference to non-spheroidal microparticles means that the areas of the microparticles in a composition have a coefficient of variation of less than 15 percent, or less than 10 percent, or less than 5 percent. In one embodiment, non-spherical microparticles of the invention have at least twice the surface area of a sphere with equal volume, or preferably, at least three times the surface area, or at least four time the surface area, or at least five times the surface area. In another embodiment, non-spheroidal microparticles are composed of polyacrylamide gel. In still another embodiment such polyacrylamide gel is made using acryldite oligonucleotides so that the resulting non-spheroidal microparicles have covalently attached oligonucleotides, which may be used as primers in extension reactions, ligation reactions, amplification reactions, or the like. Alternatively, oligonucleotides or other reagents, such as antibodies, may be attached by using linking groups and chemistries known in the art, such as described above. In further preference, non-spheroidal microparticles are compact in that they may be closely enclosed within a microwell or other reaction chamber. In one embodiment, non-spheroidal microparticles of the invention may be enclosed by a sphere having a volume twice that of the non-spheroidal microparticle, or a volume three times that of such microparticle, or four time that of such microparticle. In another embodiment, non-spheroidal microparticles of the invention are enclosed by a cylinder having a diameter:height aspect ratio of 1:1.5 and a diameter of 10 μm, or 5 μm, or 2 μm, or a cylinder having a diameter:height aspect ratio of 1:1 and a diameter of 10 μm, or 5 μm, or 2 μm, or 1 μm.
  • Membrane emulsification. Polymerization of emulsified acrylamide requires a) control of particle size distribution during polymerization, and b) a controllable polymerization method. Control of size distribution requires both the minimization of polydispersity due to the emulsification process as well as minimization of instability of the emulsion leading to coalescence of individual drops prior to polymerization. Highly monodisperse emulsions may be achieved through microsieve emulsification techniques (such as provided commercially by Nanomi B. V., The Netherlands) and disclosed the following exemplary references: Wissink et al, PCT publication WO2005/115599; Nakajima et al, U.S. Pat. No. 6,155,710; Qiu et al, U.S. Pat. No. 7,307,104; Gijsbertsen-Abrahase, “Membrane emulsification: process principles,” (Ph.D. Thesis, Wageningen Universiteit, 2003); Geerken, “Emulsification with micro-engineered devices”, Ph.D. Thesis, University of Twente, ISBN: 90-365-2432-6, 1974; Yuan, et. al., “Manufacture of controlled emulsions and particulates using membrane emulsification”, Desalination, 224, 2008; Geerken, et. al., “Interfacial aspects of water drop formation at micro-engineered orifices”, Journal of Colloid and Interface Science, 312, 2007; Sotoyama, et. al., “Water/Oil emulsions prepared by the membrane emulsification method and their stability”, Journal of Food Science, Vol. 64, No 2, 1999; Kosvintsev, et. al., “Membrane emulsification: Droplet size and uniformity in the absence of surface shear”, Journal of Membrane Science, 313, 2008; Egidi, et. al., “Membrane emulsification using membranes of regular pore spacing: Droplet size and uniformity in the presence of surface shear”, Journal of Membrane Science, 323, 2008; Abrahamse, et. al., “Analysis of droplet formation and interactions during cross-flow membrane emulsification”, Journal of Membrane Science, 204, 2002; Katoh, et. al., “Preparation of food emulsions using a membrane emulsification system”, Journal of Membrane Science, 113, 1996; Charcosset, et. al., “The membrane emulsification process—a review”, Journal of Chemical Technology and Biotechnology, 79, 209-218, 2004; and the like.
  • In membrane-based emulsification to produce particles, a discontinuous phase (aqueous solution of monomers and other components) is extruded through a plate with multiple through holes where the other side of the plate is constantly washed with a stream of continuous phase (oil formulation with surfactant) such that the droplets that break off from the individual orifices are carried away by a stream of continuous phase. The droplet stream is then passed through a heated section of tubing which will initiate the polymerization and is finally collected in bulk for extraction of the polymer particles.
  • FIG. 2A illustrates apparatus in one approach to membrane emulsification. Aqueous phase gel reaction mixture (200) is passed through membrane (208) held in reaction vessel (210). Membrane (208) has pores or orifices (209) that create droplets (211) of a predetermined size (as shown in expanded view (212)) dispersed in an immiscible continuous phase fluid (202). As droplets (211) are formed, slowly flowing continuous phase (222) sweeps them away from membrane (208) to tubing (214) where (in this embodiment) droplets (211) are polymerized by applying heat (216). The flow of continuous phase (202) may be controlled by syringe pump (204). The length and diameter of tubing (214) is selected to correspond to the amount of time required for polymerization given the amount of heat applied. Polymerized droplets (218) are deposited in collection vessel (220), after which they are removed and washed to remove traces of continuous phase (202). The volume of the aqueous phase gel reaction mixture (200) is a relatively small (200 ul-5 ml) and is pumped at low flow rates (200 uL/hr to 1 mL/hr) such that the rate of droplet formation at each orifice (209) is about 2-20 drops/second. A syringe pump or gravity flow may be used for this purpose. Continuous phase (202), an oil/surfactant formulation is a much larger volume, e.g. 100-1000× greater than the aqueous flow. A large syringe pump (204) or pressure driven flow (pneumatic) may be used to control its flow and volume. In this embodiment, as mentioned above, the stream containing an emulsion of aqueous drops in oil/surfactant formulation passing through tubing (214) is passed through a heated section of tubing (the I.D. of the tubing may be increased to reduce the linear flow rate, backpressure and increase the residence time in the heated section. The polymerized particles are finally collected in collection vessel (220) for extraction of the polymer particles.
  • In one aspect, membrane (208) is microfabricated, e.g. from a silicon substrate, using conventional micromachining techniques described in the above references. Typically, the diameters of orifices (209) are 25 to 35 percent of the expected diameters of particles (211). It is important that the aqueous solution (200) does not wet the membrane surfaces, particularly in and/or at the orifices so that the droplets or micelles entering the continuous phase have a quick break off from the rest of the aqueous phase.
  • In another aspect, droplets of gel reaction mixture (less initiator) may be formed then polymerized by exposure to initiator and heat in a batch mode by at least the following methods. In particular, monodisperse polyacrylamide particles may be made by first producing an emulsion with monodisperse droplets of polyacrylamide reaction mixture without an initiator followed by combining with either a second emulsion with an initiator in the disperse phase or a continuous phase (equivalent to that of the first emulsion) saturated with an initiator. Method 1. A monodisperse emulsion is mixed with a micro or macro emulsion of initiator in the same oil/surfactant system. The initiator emulsion is generated rapidly by vortexing or using an Ultra Turrax, or like immiscible phase fluid. Since the monomers are soluble in the continuous phase polymerization of monomer in the initiator emulsion has been observed. Method 2. An initiator soluble in the continuous phase is used to initiate the polymerization in a previously generated emulsion. Use of oil-soluble initiators is well-known in the art as evidenced by the following references, which are incorporated by references: Alduncin et al, Macromolecules, 27: 2256-2261 (1994); Capek, Adv. Colloid and Interface Science, 91: 295-334 (2001); Gromov et al, Vysokomol. Soyed. A30: 1164-1168 (1988); U.S. Pat. No. 3,284,393. The pre-made emulsion is simply diluted with a saturated solution of initiator (for example, a 1:1 ratio of emulsion to initiator solution in a polyacrylamide system) and heated to a temperature up to or below 96° C. In one aspect of making polyacrylamide nucleic acid polymer particles, the emulsion is heated to 90° C. for 2 h. Alternatively a water soluble initiator can be used which will not require the dilution of the emulsion, or the oil used during the formation of the monodisperse emulsion can be saturated with an appropriate initiator. For method 1, only water soluble initiators would be used which includes azo type compounds as well as inorganic peroxides. Exemplary initiators include ammonium persulfate, hydroxymethanesulfinic acid monosodium salt dihydrate, potassium persulfate, sodium persulfate, and the like. For methods 2. both water soluble (in dispersed phase) or oil soluble initiators may be used. Example of each are given below in Tables I and II. Note: The temperature at which the initiator has a half-life of 10 h is given. The lower the temperature the more reactive the initiator. Selection of appropriately reactive initiator allows one of ordinary skill in the art to tune the rate at which the polymerization is initiated and what maximum temperatures are used during the reaction.
  • This approach is illustrated in FIG. 2B. Nucleic acid polymer particles may be made in a batch-mode process where a polymerization initiator is introduced after droplets of gel reaction mixture are formed. A similar membrane emulsion apparatus (248) as described in FIG. 2A is used to generate spheroidal droplets of gel reaction mixture (249) in an immiscible continuous phase (202), except that gel reaction mixture in this embodiment does not contain a polymerization initiator. After leaving apparatus (248), continuous phase and droplets (250) are placed in tube (252), after which the mixture is centrifuged (254) to drive droplets (255) to the bottom of the tube and supernatant (257) comprising the continuous phase is removed (256). Droplets (253) are then resuspended (258) in continuous phase fluid that contains a suitable initiator, after which the mixture is immediately placed (260) in oven (261) where it is heated to drive the polymerization reaction. After polymerization is complete, the mixture is cooled and washed (262) several times to remove the continuous phase material from the resulting nucleic acid polymer particles.
  • In one aspect, the invention include a method of making nucleic acid polymer particles comprising the following steps: (a) combining in a reaction mixture hydrophilic monomers each having at least one reactive functionality and at least one complementary functionality and hydrophilic cross-linkers each having at least two of either the reactive functionality or complementary functionality, (i) wherein the reactive functionality and complementary functionality are capable of reacting with one another under catalytic conditions to form covalent linkages, (ii) wherein a proportion of the monomer have an ancillary functionality or an oligonucleotide attached, the ancillary functionality being capable of reacting with a capture moiety without cross reacting with the reactive functionality or the complementary functionality, and (iii) wherein concentrations of the monomers and cross-linkers, and the proportion of monomers having an ancillary functionality or oligonucleotide in the reaction mixture are selected so that a cross-linked polymer is capable of forming that has a density of oligonucleotides or ancillary functionalities of at least 1×105 per μm3 and an average pore size in the range of from 20 to 150 nm; (b) passing the reaction mixture through a porous membrane into a non-aqueous phase so that spherical droplets of reaction mixture are dispersed into the non-aqueous phase; and (c) subjecting the spherical droplets of the reaction mixture to catalytic conditions so that polymer networks are formed. Ancillary functionalities include monomer derivatives that include reactive groups such as thiol or bromoacetyl groups disclosed by Ghosh et al (cited above), groups comprising one of a pair of click chemistry reactants, or the like In one aspect, the porous membrane comprises a silicon membrane having a plurality of identical orifices through which the reaction mixture passes. In another aspect, the method includes a further step of removing the polymer networks from said non-aqueous phase and washing the polymer networks. In one embodiment, the hydrophilic monomer is an acrylamide and the hydrophilic cross-linker is an N,N′-methylenebisacylamide. In another embodiment, a proportion of the hydrophilic monomer is an acrydite oligonucleotide.
  • In another aspect, the invention includes a method of making monodisperse populations of polyacrylamide particles comprising the step of combining a monodisperse emulsion of a polyacrylamide reaction mixture without an initiator and an emulsion with a dispersed phase containing an initiator or a continuous phase solution saturated with an initiator. In one embodiment such reaction mixture includes a nucleic acid acrydite monomer.
  • TABLE I
    Water Soluble Azo Initiator Compounds
    10 hour half-life
    Structure decomposition temperature
    Figure US20110201523A1-20110818-C00001
    44° C.
    Figure US20110201523A1-20110818-C00002
    47° C.
    Figure US20110201523A1-20110818-C00003
    56° C.
    Figure US20110201523A1-20110818-C00004
    57° C.
    Figure US20110201523A1-20110818-C00005
    60° C.
    Figure US20110201523A1-20110818-C00006
    61° C.
    Figure US20110201523A1-20110818-C00007
    67° C.
    Figure US20110201523A1-20110818-C00008
    80° C.
    Figure US20110201523A1-20110818-C00009
    87° C.
  • TABLE II
    Oil Soluble Azo Initiator Compounds
    10 hour half-life
    decomposition
    Structure temperature
    Figure US20110201523A1-20110818-C00010
    30° C.
    Figure US20110201523A1-20110818-C00011
    51° C.
    Figure US20110201523A1-20110818-C00012
    66° C.
    Figure US20110201523A1-20110818-C00013
    67° C.
    Figure US20110201523A1-20110818-C00014
    88° C.
    Figure US20110201523A1-20110818-C00015
    96° C.
    Figure US20110201523A1-20110818-C00016
    104° C.
    Figure US20110201523A1-20110818-C00017
    110° C.
    Figure US20110201523A1-20110818-C00018
    111° C.
  • Measuring Size Distributions of Nucleic Acid Polymer Particles
  • In one aspect, size distributions of bulk manufactured polymer networks and/or nucleic acid polymer particles are controlled so that their coefficients of variation are as small as possible. For such control, it is important to be able to conveniently measure the sizes of a sample of candidate particles to determine whether their populations have appropriate coefficients of variation. Many techniques are available for making such measurements, including laser diffraction, flow cytometry, coulter counting, image analysis, acoustical spectroscopy, and the like. Instruments for laser diffraction are commercially available, e.g. Malvern Instruments (Malvern, United Kingdom); instruments for flow analysis are commercially available from Becton Dickinson (San Jose, Calif.); Image analysis systems and software are widely available commercially, e.g. Becton Dickinson, Biolmaging Systems (Rockville, Md.). The foregoing techniques for characterizing particles are disclosed in Dukhin and Goetz, Ultrasound for Characterizing Colloids (Elsevier Science, 2002); Elaissari, editor, Colloidal Polymers: Synthesis and Characterization (Marcel Dekker, Inc., New York, 2003); Shapiro, Practical Flow Cytometry, 4th edition (Wiley-Liss, 2003); and like references. In the case of polymer networks comprising polyacrylamide, fluorescent monomers are available that may be added to gel reaction mixtures for incorporation into the polymer networks to aid in their tracking and sizing, e.g. U.S. Pat. No. 5,043,406.
  • Making Amplicon Libraries With Nucleic Acid Polymer Particles
  • Nucleic acid polymer particles of the invention are particularly useful in multiplex genetic assays, including analysis of single nucleotide polymorphisms, DNA sequencing, and the like, where polynucleotide analytes, i.e. target polynucleotides, in a sample must be amplified in the course of analysis. Such analytical techniques use a wide variety of amplification methodologies which can be used with nucleic acid polymer particles of the invention, including, but not limited to, emulsion PCR (emPCR), bridge amplification, NASBA, rolling circle amplification, and the like. Exemplary references disclosing such techniques are described in the following references, which are incorporated by reference: Marguiles et al, Nature, 437: 376-380 (2005); Adams et al, U.S. Pat. No. 5,641,658; Boles et al, U.S. Pat. No. 6,300,070; Berka et al, U.S. patent publication 2005/0079510; Shapero et al (cited above); and the like.
  • Bridge PCR amplification on surfaces is described in Adessi et al (cited above) and in Boles et al, U.S. Pat. No. 6,300,070, which is incorporated by reference. Briefly, the technique is illustrated in FIG. 3. A substrate (300) is provided that has attached via their 5′ ends at least two primer sequences, A (302) and B (304). Template (306) having 3′ primer binding site A′ (308) (that is complementary to A) and primer sequence A (310) (that has the same sequence as B on surface (300)) anneals to a primer A on surface (300) so that primer A may be extended, e.g. by a polymerase, along template (306) to produce double stranded product (316). Template (306) is melted off (314) leaving single stranded extention product (318) attached to surface (300). Conditions are applied so that single stranded extension product (318) anneals to an adjacent primer B (302) on surface (300) so that such primer B may be extended (320) to form extension product (322). After melting, extension products (318) and (322) are available (324) for additional cycles of annealing and extension which form populations of extension products having identical sequences to (318) and (322). In some embodiments, one of primers A and B may have a scissile linkage for its removal to obtain a single population on surface (300).
  • In accordance with a method of the invention, a bridge PCR may be performed on nucleic acid polymer particles described herein. The method may be employed to make amplicon libraries without the use of emulsion reactions. As illustrated in FIG. 4, suspension (400) of nucleic acid polymer particles (402) is combined with template (404), the latter being in a very dilute concentration relative to the concentration of nucleic acid polymer particles, so that the probability of two different templates annealing to the same nucleic acid polymer particle is very low. On a molar basis, for example, nucleic acid polymer particle may be present at 10 times, or 100 times the concentration of template. As in FIG. 3, template (404) has primer binding region at its 5′ end (406) that is complementary to one (408) of two primers on the nucleic acid polymer particles and a sequence at its 3′ end (409) identical to that of the other primer on the nucleic acid polymer particles. After template (404) anneals to primer (408), primer (408) is extended to form extension product (410), after which template (404) is melted and released (414). Extension product (410) may then anneal to other primers on the nucleic acid polymer particle to form additional extension products and eventually a bi-clonal population (412) of templates and its complement in reverse orientation. As released template (404) may participate in further amplifications on other nucleic acid polymer particles, preferably the spacing or concentration of such particles is controlled to reduce the probability that such an event occurs (which otherwise may cross contaminate another particle with a second template amplicon). In particular, whenever handling or operations result in nucleic acid polymer particles settling out of solution, a closely packed mass of particles forms, which could facilitate such cross contamination. As illustrated in FIG. 5, this may be prevented or reduced by including inert spacer particles (500) along with nucleic acid polymer particles (502). In one embodiment, the number and size of spacing particles (500) may be selected to control expected distance (504) between nucleic acid polymer particles (502). In another embodiment, for nucleic acid polymer particles and spacer particles of approximately the same size, a ratio of spacer particle to nucleic acid polymer particle is 10:1, or 100:1, or 1000:1. Spacer particles may also be selected that are smaller in size than nucleic acid polymer particles so that interstitial spaces between them have smaller cross sections and create longer diffusion paths. In one embodiment, spacer particles may be swellable so that interstitial spaces are reduced or eliminated upon swelling. Spacer particles may also contain tethered nucleases for digesting released or unused surplus templates that remain in the reaction solution. Compositions and techniques for making selecting and making spacer particles with covalently attached or trapped nucleases are described in Hermanson, Bioconjugate Techniques, 2nd edition (Academic Press); and like references.
  • In one aspect, the invention provides a method of making an amplicon library comprising the steps of: (a) combining in a polymerase chain reaction mixture a library of polynucleotide fragments each having a first primer binding site at one end and a second primer binding site at the other end, and a population of nucleic acid polymer particles each comprising a non-nucleosidic polymer network having attached thereto a first primer and a second primer each at a concentration of at least 1×105 primers per μm3 such that each polynucleotide fragment is capable of annealing to a first primer by its first primer binding site and to a second primer by a complement of its second primer binding site; and (b) performing a polymerase chain reaction in the presence of a quantity of spacer particles so that primers of the polymer networks are extended along polynucleotide fragments annealed thereto so that clonal populations of complements of such polynucleotide fragments are formed on the polymer networks, thereby forming an amplicon library, the quantity of spacer particles being selected to prevent cross-contamination of amplicons. In one aspect, the polymer networks each have a volume and a concentration of the polynucleotide fragments and a concentration of said polymer networks are selected so that in said step of combining at least 10 percent of said polymer networks have at a single said polynucleotide fragment within its volume. For some embodiments, the non-nucleosidic polymer network has a volume of less than 1.4×104 μm3.
  • In still another aspect, the invention provides a method of making an amplicon library by performing a bridge polymerase chain reaction on a composition of monodisperse nucleic acid polymer particles. In an embodiment of such method the composition of monodisperse nucleic acid polymer particles includes a quantity of spacer particles.
  • Alternatively, nucleic acid polymer particles being used in bridge PCR may be amplified in a thermocycler instrument that provides agitation or rotation of the reaction chambers or tubes to present settling or prolonged particle-particle contact. A simple device shown in FIG. 7 may be used as such a thermocycler. Reaction tubes (not shown) are placed in holders near the outer periphery of wheel (702) which may be lowered into heated oil bath (700) and rotated by motor (704). Wheel (702) rotates at a predetermined speed and depth in oil bath (700), whose temperature is controlled by controller (710) by way of thermometer (708) and heater (706). By programming controller (710) a thermocycler is provided, which ensures that nucleic acid polymer particles do not settle during amplification.
  • Methods of making amplicon libraries may also include a step of enriching nucleic acid polymer particles having clonal populations of polynucleotide fragments. In one embodiment, such enrichment may be accomplished by affinity purification, for example, by annealing an oligonucleotide with a capture moiety, such as biotin, to a primer binding site of the polynucleotide fragments, after which the resulting complexes may be captured, e.g. by streptavidinated magnetic beads, and separated from particles without polynucleotide fragments. In another embodiment, nucleic acid polymer particles having clonal populations of polynucleotide fragments may be separated from particles without polynucleotide fragments by electrophoresis, e.g. using a commercially available instrument (such as, PippinPrep automated prep gel system, Sage Science, Beverly, Mass.).
  • Nucleic acid polymer particles may further be used in analysis of selected sets of genes or other polynucleotide sequences. Sets of such particles with specificities for particular predetermined polynucleotide targets are readily prepared from a single batch of particles using the technique outlined in FIG. 6. To a batch of nucleic acid polymer particles (600) that have the same primers (608) attached by their 5′ ends, is annealed adaptor oligonucleotide (602) that comprises 3′ end (604) that is complementary to primer (608) and that includes 5′ end (606) which has a sequence identical to a target polynucleotide to be captured and amplified. After such annealing, polymerase (610) is added in a conventional polymerase reaction mixture so that primer (608) is extended along 5′ end of oligonucleotide (602) as a template. After such extension (614), oligonucleotide (602) is released to leave sequence-specific primer (616) on nucleic acid polymer particle (600). In the same reaction (by providing oligonucleotide (602) as a mixture of A and B primers) or in a subsequent reaction, the same steps may be followed to add a second primer for bridge amplification on the resulting set of nucleic acid polymer particles. Alternatively, primer (608) (or a second primer) may be extended in a template-driven ligation reaction, where a 5′ phosphorylated oligonucleotide (not shown) complementary to 5′ segment (606) is provided. This technique may be used to prepare a set of nucleic acid polymer particles containing a plurality of particles each with a different specificity. Such a set may be used to selectively amplify a predetermined set of target polynucleotides in a bridge PCR for analysis.
  • Nucleic Acid Sequencing with Nucleic Acid Polymer Particles
  • In one aspect, the invention may be used for carrying out label-free DNA sequencing, and in particular, pH-based DNA sequencing. The concept of label-free DNA sequencing, including pH-based DNA sequencing, has been described in the literature, including the following references that are incorporated by reference: Rothberg et al, U.S. patent publication 2009/0026082; Anderson et al, Sensors and Actuators B Chem., 129: 79-86 (2008); Pourmand et al, Proc. Natl. Acad. Sci., 103: 6466-6470 (2006); and the like. Briefly, in pH-based DNA sequencing, base incorporations are determined by measuring hydrogen ions that are generated as natural byproducts of polymerase-catalyzed extension reactions. Nucleic acid polymer particles are used advantageously in pH-based sequencing because greater concentrations of templates may be attached to them thereby increasing the signal-to-noise ratio of the pH signal associated with base incorporations. Nucleic acid polymer particles are used to make amplicon libraries as described above which, in turn, are used with apparatus as described in Rothberg et al (cited above). In one embodiment, templates each having a primer and polymerase operably bound are loaded into reaction chambers (such as the microwells disclosed in Rothberg et al, cited above), after which repeated cycles of deoxynucleoside triphosphate (dNTP) addition and washing are carried out. In some embodiments, such templates may be attached as clonal populations to a solid support, such as a microparticle, bead, or the like, and such clonal popultations are loaded into reaction chambers. For example, templates may be prepared as disclosed in U.S. Pat. No. 7,323,305, which is incorporated by reference. As used herein, “operably bound” means that a primer is annealed to a template so that the primer's 3′ end may be extended by a polymerase and that a polymerase is bound to such primer-template duplex, or in close proximity thereof so that binding and/or extension takes place whenever dNTPs are added. In each addition step of the cycle, the polymerase extends the primer by incorporating added dNTP only if the next base in the template is the complement of the added dNTP. If there is one complementary base, there is one incorporation, if two, there are two incorporations, if three, there are three incorporations, and so on. With each such incorporation there is a hydrogen ion released, and collectively a population of templates releasing hydrogen ions changes the local pH of the reaction chamber. The production of hydrogen ions is monotonically related to the number of contiguous complementary bases in the template (as well as the total number of template molecules with primer and polymerase that participate in an extension reaction). Thus, when there is a number of contiguous identical complementary bases in the template (i.e. a homopolymer region), the number of hydrogen ions generated, and therefore the magnitude of the local pH change, is proportional to the number of contiguous identical complementary bases. (The corresponding output signals are sometimes referred to as “1-mer”, “2-mer”, “3-mer” output signals, and so on). If the next base in the template is not complementary to the added dNTP, then no incorporation occurs and no hydrogen ion is released (in which case, the output signal is sometimes referred to as a “0-mer” output signal.) In each wash step of the cycle, an unbuffered wash solution at a predetermined pH is used to remove the dNTP of the previous step in order to prevent misincorporations in later cycles. Usually, the four different kinds of dNTP are added sequentially to the reaction chambers, so that each reaction is exposed to the four different dNTPs one at a time, such as in the following sequence: dATP, dCTP, dGTP, dTTP, dATP, dCTP, dGTP, dTTP, and so on; with each exposure followed by a wash step. The process is illustrated in FIG. 8 for template (882) with primer binding site (881) attached to nucleic acid polymer particle (880). Primer (884) and DNA polymerase (886) operably bound to template (882). Upon the addition (888) of dNTP (shown as dATP), polymerase (886) incorporates a nucleotide since “T” is the next nucleotide in template (882). Wash step (890) follows, after which the next dNTP (dCTP) is added (892). Optionally, after each step of adding a dNTP, an additional step may be performed wherein the reaction chambers are treated with a dNTP-destroying agent, such as apyrase, to eliminate any residual dNTPs remaining in the chamber, which may result in spurious extensions in subsequent cycles.
  • In one embodiment, a sequencing method exemplified in FIG. 8 may be carry out using the apparatus of the invention in the following steps: (a) disposing a plurality of template nucleic acids into a plurality of reaction chambers disposed on a sensor array, the sensor array comprising a plurality of sensors and each reaction chamber being disposed on and in a sensing relationship with at least one sensor configured to provide at least one output signal representing a sequencing reaction byproduct proximate thereto, and wherein each of the template nucleic acids is hybridized to a sequencing primer and is bound to a polymerase; (b) introducing a known nucleotide triphosphate into the reaction chambers; (c) detecting incorporation at a 3′ end of the sequencing primer of one or more nucleotide triphosphates by a sequencing reaction byproduct if such one or more nucleotide triphosphates are complementary to corresponding nucleotides in the template nucleic acid; (d) washing unincorporated nucleotide triphosphates from the reaction chambers; and (e) repeating steps (b) through (d) until the plurality of template nucleic acids are sequenced. For embodiments where hydrogen ion is measured as a reaction byproduct, the reactions further should be conducted under weak buffer conditions, so that the maximum number of hydrogen ions reacts with a sensor and not extraneous components (e.g. microwell or solid supports that may have surface buffering capacity) or chemical constituents (in particular pH buffering compounds). In one embodiment, a weak buffer allows detection of a pH change of at least ±0.1 in said reaction chamber, or at least ±0.01 in said reaction chambers.
  • EXAMPLE 1 Making Polyacrylamide Nucleic Acid Polymer Particles By Membrane Emulsification 100641 This example describes the method and apparatus for production of uniformly sized droplets of aqueous solution in non-miscible continuous phase by extrusion through a micro fabricated plate with multiple through holes (nozzles, orifices) and the subsequent transformation of the emulsion into polymer particles by radical polymerization. The fabrication of the plate with multiple through holes is described in the above references.
  • A solution of specific amounts of acrylamide and methylene-N,N-bisacrylamide containing a specified concentration of acrodyte oligonucleotides (primers for PCR) is degassed by bubbling an inert atmosphere (Argon, Nitrogen, Helium) through the solution for a minimum of 30 minutes. Just prior to emulsification, a radical initiator is added. The radical initiator can be a combination of ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TMED) which catalyses the radical initiation by APS. The amount of TMED used needs to be carefully adjusted to allow sufficient time for emulsification. APS and V-50 (see below) initiate thermally above ˜65 degrees celsius. Alternatively a photoinitiator such 2,2′-Azobis(2-methylpropionamidine)dihydrochloride (V-50) may be used in conjunction with a UV light source with strong emission peaks at 220 nm and 365 nm. The aqueous solution above may be dispersed into a continuous phase via several techniques. For example: The aqueous solution may be subdivided into droplets by a vibrating membrane with several appropriately sized holes (typically 50-70% smaller than the intended diameter of the droplet) after which the droplets are allowed to enter an immiscible continuous phase which may or may not contain surfactants. The droplets may be irradiated with UV prior to entering the continuous phase (after leaving the nozzle, in mid air) or after entering the continuous phase. In one implementation the drops are allowed to polymerize prior to entering the continuous phase which may be miscible with the un-polymerized dispersed phase. In either case, the humidity of the atmosphere needs to be controlled to prevent uncontrolled evaporative shrinking of the droplets and the atmosphere needs to be largely oxygen free to allow radical polymerization in the droplets. An alternative emulsification technique can be described as follows: The aqueous phase is pumped through a porous membrane (with uniformly sized pores) into an immiscible continuous phase. After polymerization, the beads are recovered from the continuous phase by either breaking the emulsion (by addition of n-butanol, n-propanol i-propanol or other appropriate chemicals) followed by centrifugation to pellet the beads in the bottom of the eppendorf tube or filtration through an appropriately sized filter. After washing with an appropriate buffer, the beads can be used for PCR amplification of DNA library elements or direct hybridization of DNA fragments with the reverse complement to the attached oligonucleotide.
  • EXAMPLE 2 Making Polyacrylamide Nucleic Acid Polymer Particles By Membrane Emulsification with Batch Mode Initiation
  • This example describes membrane emulsification and the subsequent transformation of the aqueous micelles of the emulsion into polyacrylamide particles by radical polymerization in batch mode using an initiator-saturated oil phase. The steps of the process comprise (a) formation of a gel reaction mixture-in-oil emulsion using a membrane, (b) particle polymerization, and (c) particle extraction and washing.
  • The following reagents are employed in the process: (a) SNAPP Oil comprises the following mixture: Tegosoft™ DEC oil (730 mL), ABIL WE09 (70 gm), and mineral oil (200 mL) (SNAPP oil is stored under argon); (b) SNAPP Buffer: 1× TE, 0.1% Triton X-100, 0.02% sodium azide; (c) Acrylamide Solution: 50 mg N,N-methylene bisacrylamidc, 450 mg acrylamide, 550 uL double distilled H2O kept under argon; (d) DNA Mix: 10 umol 30-mer acrydite oligonucleotide with 18C spacer in 2.5 mL Gel Reaction Mixture is formed by mixing the following together under argon for a total volume of 1400 uL: 526.4 uL DNA Mix, 14 mL TMED, 299.6 mL H2O, and 560 mL Acrylamide Solution. Under argon, 1 mL of the Gel Reaction Mixture is added to the upper compartment of a two-compartment rig (see FIGS. 2A & 2B) having an emulsification membrane dividing the upper compartment from the lower compartment, so that the Gel Reaction Mixture flows under gravity from the upper compartment through the emulsification membrane (thereby forming droplets or micelles) into a flow of SNAPP Oil in the lower compartment. SNAPP Oil is driven into the lower chamber at a rate of 2.4 mL/hr. About 50 mL of the SNAPP Oil-Gel Reaction Mixture emulsion is collected in a centrifuge tube, after which it is centrifuged so that the Gel Reaction Mixture micelles are driven to the bottom. All but about 1 mL of the supernatant SNAPP Oil is removed, after which the micelles are resuspended by adding 20 mL of initiator (1,1′-azobis(cyclohexanecarbonitrile))-saturated SNAPP Oil. (Initiator-saturated SNAPP Oil is made by mixing 500 mg initiator in 25 mL SNAPP Oil under argon with vigorous mixing). The resuspended micelles undergo polymerization by placing them in an oven at 90° C. under argon and constant rotation for 2 hr. and 2 min, after which they are removed and immediately place in a 4° C. refrigerator for at least 1 hr. The SNAPP Oil is removed from the polymerized particles by centrifuging to form a pellet followed by resuspension in butanol with vortexing, and then repeating, after which the polymerized particles are resuspended in 0.1% SDS and sonicated for 3 min. The polymerized particles are then twice centrifuged, resuspended in SNAPP Buffer, and sonicated for 3 min, after which they are resuspended in SNAPP Buffer and stored at 4° C.
  • The size distribution of the above nucleic acid polymer particles may be measured using a Guava flow cytometer after hybridizing a labeled oligonucleotide with a sequence complementary to at least one of those of the nucleic acid polymer particle. An exemplary protocol is as follows: (1) suspend about 5 million particles in 9 μL 1× PBS 0.2% Tween, (2) add 2 μL of 100 μM biotinylated oligonucleotide complement, (3) anneal at 95oC for 2 min followed by 37oC for 2 min, (4) centrifuge to remove supernatant, (5) wash 2× with 1× PBS 0.2% Twccn, (6) resuspend in 10 μL 1× PBS 0.2% Twccn, (7) add 0.5 μL strcptavidin-FITC (commercial reagent, c.g. Anaspec, Fremont, Calif.), (8) wash 2× with 1× PBS 0.05 Tween, (9) add to 1 mL 1× PBS 0.05% Tween, and (10) run sample on flow cytometer (e.g. EasyCyte mini, Guava Technologies).
  • Size distributions of nucleic acid polymer particles may also be measured by staining and counting them using a fluorescent microscope with automatic particle counting software. A series of dilutions of nucleic acid polymer particles are stained with a series of concentrations of a nucleic acid stain, such as SYBR Gold (Invitrogen), after which they are place in separate wells of multi-welled poly-1-lysine coated slides (e.g. Tekdon Inc.). A comparison of particle sizing and counting data from flow system and microscope measurements shows good correlation. CVs of size distributions of samples from a batch of nucleic acid polymer particles, designated B4, was determined by slide counting (described above) and by flow cytometry counting (described above). For slide counting, three samples of particles (4.32 million/uL) were analyzed and coefficients of variation were determined to be 12.9%, 13.8%, and 9.6%, respectively. A single sample of particles (3.8 million/uL) was analyzed and a coefficient of variation was determined to be 5.88%.
  • While the present invention has been described with reference to several particular example embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. The present invention is applicable to a variety of implementations and other subject matter, in addition to those discussed above.
  • Definitions
  • Unless otherwise specifically defined herein, terms and symbols of nucleic acid chemistry, biochemistry, genetics, and molecular biology used herein follow those of standard treatises and texts in the field, e.g. Kornberg and Baker, DNA Replication, Second Edition (W.H. Freeman, New York, 1992); Lehninger, Biochemistry, Second Edition (Worth Publishers, New York, 1975); Strachan and Read, Human Molecular Genetics, Second Edition (Wiley-Liss, New York, 1999).
  • “Amplicon” means the product of a polynucleotide amplification reaction; that is, a clonal population of polynucleotides, which may be single stranded or double stranded, which are replicated from one or more starting sequences. The one or more starting sequences may be one or more copies of the same sequence, or they may be a mixture of different sequences that contain a common region that is amplified, for example, a specific exon sequence present in a mixture of DNA fragments extracted from a sample. Preferably, amplicons are formed by the amplification of a single starting sequence. Amplicons may be produced by a variety of amplification reactions whose products comprise replicates of the one or more starting, or target, nucleic acids. In one aspect, amplification reactions producing amplicons are “template-driven” in that base pairing of reactants, either nucleotides or oligonucleotides, have complements in a template polynucleotide that are required for the creation of reaction products. In one aspect, template-driven reactions are primer extensions with a nucleic acid polymerase or oligonucleotide ligations with a nucleic acid ligase. Such reactions include, but are not limited to, polymerase chain reactions (PCRs), linear polymerase reactions, nucleic acid sequence-based amplification (NASBAs), rolling circle amplifications, and the like, disclosed in the following references that are incorporated herein by reference: Mullis et al, U.S. Pat. Nos. 4,683,195; 4,965,188; 4,683,202; 4,800,159 (PCR); Gelfand et al, U.S. Pat. No. 5,210,015 (real-time PCR with “taqman” probes); Wittwer et al, U.S. Pat. No. 6,174,670; Kacian et al, U.S. Pat. No. 5,399,491 (“NASBA”); Lizardi, U.S. Pat. No. 5,854,033; Aono et al, Japanese patent publ. JP 4-262799 (rolling circle amplification); and the like. In one aspect, amplicons of the invention are produced by PCRs. As used herein, the term “amplifying” means performing an amplification reaction. An “reaction mixture,” including an “amplification reaction mixture,” means a solution containing all the necessary reactants for performing a reaction, which may include, but not be limited to, buffering agents to maintain pH at a selected level during a reaction, salts, co-factors, scavengers, and the like. A “solid phase amplicon” means a solid phase support, such as a particle or bead, having attached a clonal population of nucleic acid sequences, which may have been produced by a process such as emulsion PCR, or like technique. One aspect of the invention is solid phase amplicons comprising nucleic acid polymer particles. In some embodiments, amplicons may be produced by isothermal reactions, such as rolling circle amplification reactions, NASBAs, or helicase-mediated amplification reactions, e.g. U.S. Pat. No. 7,282,328, which is incorporated by reference.
  • “Microwell,” which is used interchangeably with “reaction chamber,” means a special case of a “reaction confinement region,” that is, a physical or chemical attribute of a solid substrate that permit the localization of a reaction of interest. Reaction confinement regions may be a discrete region of a surface of a substrate that specifically binds an analyte of interest, such as a discrete region with oligonucleotides or antibodies covalently linked to such surface. Usually reaction confinement regions are hollows or wells having well-defined shapes and volumes which are manufactured into a substrate. These latter types of reaction confinement regions are referred to herein as microwells or reaction chambers, and may be fabricated using conventional microfabrication techniques, e.g. as disclosed in the following references: Doering and Nishi, Editors, Handbook of Semiconductor Manufacturing Technology, Second Edition (CRC Press, 2007); Saliterman, Fundamentals of BioMEMS and Medical Microdevices (SPIE Publications, 2006); Elwenspoek et al, Silicon Micromachining (Cambridge University Press, 2004); and the like. Preferable configurations (e.g. spacing, shape and volumes) of microwells or reaction chambers are disclosed in Rothberg et al, U.S. patent publication 2009/0127589; Rothberg et al, U.K. patent application GB24611127, which are incorporated by reference. Microwells may have square, rectangular, or octagonal cross sections and be arranged as a rectilinear array on a surface. Microwells may also have hexagonal cross sections and be arranged as a hexagonal array, which permit a higher density of microwells per unit area in comparison to rectilinear arrays. Exemplary configurations of microwells are as follows: In some embodiments, the reaction chamber array comprises 102, 103, 104, 105, 106 or 107 reaction chambers. As used herein, an array is a planar arrangement of elements such as sensors or wells. The array may be one or two dimensional. A one dimensional array is an array having one column (or row) of elements in the first dimension and a plurality of columns (or rows) in the second dimension. The number of columns (or rows) in the first and second dimensions may or may not be the same. Preferably, the array comprises at least 100,000 chambers. Preferably, each reaction chamber has a horizontal width and a vertical depth that has an aspect ratio of about 1:1 or less. Preferably, the pitch between the reaction chambers is no more than about 10 microns. Briefly, in one embodiment microwell arrays may be fabricated as follows: After the semiconductor structures of a sensor array are formed, the microwell structure is applied to such structure on the semiconductor die. That is, the microwell structure can be formed right on the die or it may be formed separately and then mounted onto the die, either approach being acceptable. To form the microwell structure on the die, various processes may be used. For example, the entire die may be spin-coated with, for example, a negative photoresist such as Microchem's SU-8 2015 or a positive resist/polyimide such as HD Microsystems HD8820, to the desired height of the microwells. The desired height of the wells (e.g., about 3-12 μm in the example of one pixel per well, though not so limited as a general matter) in the photoresist layer(s) can be achieved by spinning the appropriate resist at predetermined rates (which can be found by reference to the literature and manufacturer specifications, or empirically), in one or more layers. (Well height typically may be selected in correspondence with the lateral dimension of the sensor pixel, preferably for a nominal 1:1-1.5:1 aspect ratio, height:width or diameter.) Alternatively, multiple layers of different photoresists may be applied or another form of dielectric material may be deposited. Various types of chemical vapor deposition may also be used to build up a layer of materials suitable for microwell formation therein. In one embodiment, microwells are formed in a layer of tetra-methyl-ortho-silicate (TEOS). The invention encompasses an apparatus comprising at least one two-dimensional array of reaction chambers, wherein each reaction chamber is coupled to a chemically-sensitive field effect transistor (“chemFET”) and each reaction chamber is no greater than 10 μm3 (i.e., 1 pL) in volume. Preferably, each reaction chamber is no greater than 0.34 pL, and more preferably no greater than 0.096 pL or even 0.012 pL in volume. A reaction chamber can optionally be 22, 32, 42, 52, 62, 72, 82, 92, or 102 square microns in cross-sectional area at the top. Preferably, the array has at least 102, 103, 104, 105, 106, 107, 108, 109, or more reaction chambers. The reaction chambers may be capacitively coupled to the chemFETs, and preferably are capacitively coupled to the chemFETs.
  • “Polymerase chain reaction,” or “PCR,” means a reaction for the in vitro amplification of specific DNA sequences by the simultaneous primer extension of complementary strands of DNA. In other words, PCR is a reaction for making multiple copies or replicates of a target nucleic acid flanked by primer binding sites, such reaction comprising one or more repetitions of the following steps: (i) denaturing the target nucleic acid, (ii) annealing primers to the primer binding sites, and (iii) extending the primers by a nucleic acid polymerase in the presence of nucleoside triphosphates. Usually, the reaction is cycled through different temperatures optimized for each step in a thermal cycler instrument. Particular temperatures, durations at each step, and rates of change between steps depend on many factors well-known to those of ordinary skill in the art, e.g. exemplified by the references: McPherson et al, editors, PCR: A Practical Approach and PCR2: A Practical Approach (IRL Press, Oxford, 1991 and 1995, respectively). For example, in a conventional PCR using Taq DNA polymerase, a double stranded target nucleic acid may be denatured at a temperature >90° C., primers annealed at a temperature in the range 50-75° C., and primers extended at a temperature in the range 72-78° C. The term “PCR” encompasses derivative forms of the reaction, including but not limited to, RT-PCR, real-time PCR, nested PCR, quantitative PCR, multiplexed PCR, concatemetic PCR, and the like. Reaction volumes range from a few hundred nanoliters, e.g. 200 nL, to a few hundred μL, e.g. 200 μL.
  • “Polymer network” means a structure comprising covalently connected subunits (monomers, crosslinkers, and the like) in which all such subunits are connected to every other subunit by many paths through the polymer phase, and wherein there are enough polymer chains bonded together (either physically or chemically) such that at least one large molecule is coextensive with the polymer phase (i.e. the structure is above its gel point). Preferably a polymer network has a volume in the range of from 65 aL to 15 pL, or from 1 fL to 1 pL.
  • “Polynucleotide” or “oligonucleotide” are used interchangeably and each mean a linear polymer of nucleotide monomers. Monomers making up polynucleotides and oligonucleotides are capable of specifically binding to a natural polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like. Such monomers and their internucleosidic linkages may be naturally occurring or may be analogs thereof, e.g. naturally occurring or non-naturally occurring analogs. Non-naturally occurring analogs may include PNAs, phosphorothioatc internucleosidic linkages, bases containing linking groups permitting the attachment of labels, such as fluorophores, or haptens, and the like. Whenever the use of an oligonucleotide or polynucleotide requires enzymatic processing, such as extension by a polymerase, ligation by a ligase, or the like, one of ordinary skill would understand that oligonucleotides or polynucleotides in those instances would not contain certain analogs of internucleosidic linkages, sugar moieties, or bases at any or some positions. Polynucleotides typically range in size from a few monomeric units, e.g. 5-40, when they are usually referred to as “oligonucleotides,” to several thousand monomeric units. Whenever a polynucleotide or oligonucleotide is represented by a sequence of letters (upper or lower case), such as “ATGCCTG,” it will be understood that the nucleotides are in 5′→3′ order from left to right and that “A” denotes deoxyadenosine, “C” denotes deoxycytidine, “G” denotes deoxyguanosine, and “T” denotes thymidine, “I” denotes deoxyinosine, “U” denotes uridine, unless otherwise indicated or obvious from context. Unless otherwise noted the terminology and atom numbering conventions will follow those disclosed in Strachan and Read, Human Molecular Genetics 2 (Wiley-Liss, New York, 1999). Usually polynucleotides comprise the four natural nucleosides (e.g. deoxyadenosine, deoxycytidine, deoxyguanosine, deoxythymidine for DNA or their ribose counterparts for RNA) linked by phosphodiester linkages; however, they may also comprise non-natural nucleotide analogs, e.g. including modified bases, sugars, or internucleosidic linkages. It is clear to those skilled in the art that where an enzyme has specific oligonucleotide or polynucleotide substrate requirements for activity, e.g. single stranded DNA, RNA/DNA duplex, or the like, then selection of appropriate composition for the oligonucleotide or polynucleotide substrates is well within the knowledge of one of ordinary skill, especially with guidance from treatises, such as Sambrook et al, Molecular Cloning, Second Edition (Cold Spring Harbor Laboratory, New York, 1989), and like references.
  • “Primer” means an oligonucleotide, either natural or synthetic that is capable, upon forming a duplex with a polynucleotide template, of acting as a point of initiation of nucleic acid synthesis and being extended from its 3′ end along the template so that an extended duplex is formed. Extension of a primer is usually carried out with a nucleic acid polymerase, such as a DNA or RNA polymerase. The sequence of nucleotides added in the extension process is determined by the sequence of the template polynucleotide. Usually primers are extended by a DNA polymerase. Primers usually have a length in the range of from 14 to 40 nucleotides, or in the range of from 18 to 36 nucleotides. Primers are employed in a variety of nucleic amplification reactions, for example, linear amplification reactions using a single primer, or polymerase chain reactions, employing two or more primers. Guidance for selecting the lengths and sequences of primers for particular applications is well known to those of ordinary skill in the art, as evidenced by the following references that are incorporated by reference: Dieffenbach, editor, PCR Primer: A Laboratory Manual, 2nd Edition (Cold Spring Harbor Press, New York, 2003).
  • “Sample” in one aspect means a quantity of material from a biological, environmental, medical, or patient source in which detection or measurement of one or more analytes is sought. A sample may also include a specimen of synthetic origin. Biological samples may be animal, including human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Biological samples may include materials taken from a patient including, but not limited to cultures, blood, saliva, cerebral spinal fluid, needle aspirates, and the like. Biological samples also may be obtained from animals. Environmental samples include environmental material such as surface matter, soil, water and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, and the like. In another aspect, “sample” means a material or substance extracted, partially purified, separated, or otherwise obtained by sample preparation techniques from a sample as defined in the previous sentences (collectively referred to as “extracted material”). Such extracted materials that are occasionally referred to herein as “samples” include but are not limited to nucleic acids (for example, DNA or RNA extracted material), protein extracted material, lipid extracted material, and the like.

Claims (14)

1.-23. (canceled)
24. An array comprising a population of particles disposed in a plurality of reaction chambers, wherein the particles each individually comprises one or more polynucleotides attached to a non-nucleosidic polymer network, and wherein at least one reaction chamber comprises, or is capacitively coupled to, a field effect transistor (FET).
25. The array of claim 24, wherein at least one of the reaction chambers has a volume of no greater than about 10 μm3.
26. The array of claim 24, wherein each particle in the population of particles has a volume, and the coefficient of variation of the volumes in the population of particles is no greater than about 15 percent.
27. The array of claim 24, wherein at least one particle in the population of particles includes a clonal population of a single polynucleotide.
28. The array of claim 24, wherein two or more particles in the population of particles each comprises a polynucleotide having a sequence that differs from the sequence of a polynucleotide of any other particle in the population.
29. The array of claim 24, wherein at least one of the particles of the population includes a plurality of polynucleotides distributed throughout the volume of at least one particle, and wherein the polynucleotides are present at an average density of at least about 6.9×104 per μm3.
30. The array of claim 24, wherein at least one of the particles in the population includes a plurality of polynucleotides having an average nearest neighbor distance of from about 15 to about 22 nm.
31. The array of claim 24, wherein a plurality of particles in the population of particles have an average pore size of about 20 to about 150 nm.
32. The array of claim 24, wherein a plurality the particles are substantially spherical or spheroidal in shape.
33. The array of claim 9, wherein a plurality of particles have diameters of from about 0.5 μm to about 10 μm.
34. The array of claim 24, wherein a plurality of particles are non-spherical.
35. The array of claim 24, wherein at least one of the field effect transistors of the array is an ion-sensitive field effect transistor (ISFET).
36. The array of claim 24, wherein at least one of the plurality of reaction chambers includes no more than one particle.
US13/027,336 2009-05-29 2011-02-15 Particle Arrays and Methods of Making and Using Abandoned US20110201523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/027,336 US20110201523A1 (en) 2009-05-29 2011-02-15 Particle Arrays and Methods of Making and Using

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12/475,311 US20100301398A1 (en) 2009-05-29 2009-05-29 Methods and apparatus for measuring analytes
US12/474,897 US20100137143A1 (en) 2008-10-22 2009-05-29 Methods and apparatus for measuring analytes
US24236909P 2009-09-14 2009-09-14
US26373409P 2009-11-23 2009-11-23
US29178809P 2009-12-31 2009-12-31
US29720310P 2010-01-21 2010-01-21
US12/785,685 US8574835B2 (en) 2009-05-29 2010-05-24 Scaffolded nucleic acid polymer particles and methods of making and using
US13/027,336 US20110201523A1 (en) 2009-05-29 2011-02-15 Particle Arrays and Methods of Making and Using

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/785,685 Continuation US8574835B2 (en) 2009-05-29 2010-05-24 Scaffolded nucleic acid polymer particles and methods of making and using

Publications (1)

Publication Number Publication Date
US20110201523A1 true US20110201523A1 (en) 2011-08-18

Family

ID=43220931

Family Applications (13)

Application Number Title Priority Date Filing Date
US12/785,685 Active 2030-09-19 US8574835B2 (en) 2009-05-29 2010-05-24 Scaffolded nucleic acid polymer particles and methods of making and using
US13/026,707 Abandoned US20110195252A1 (en) 2009-05-29 2011-02-14 Scaffolded Nucleic Acid Polymer Particles and Methods of Making and Using
US13/026,759 Abandoned US20110195253A1 (en) 2009-05-29 2011-02-14 Scaffolded Nucleic Acid Polymer Particles and Methods of Making and Using
US13/027,336 Abandoned US20110201523A1 (en) 2009-05-29 2011-02-15 Particle Arrays and Methods of Making and Using
US13/027,355 Abandoned US20120094871A1 (en) 2009-05-29 2011-02-15 Particle Population and Methods of Making and Using
US13/029,566 Abandoned US20110201508A1 (en) 2009-05-29 2011-02-17 Methods of Using Porous Particles
US13/029,611 Abandoned US20110201506A1 (en) 2009-05-29 2011-02-17 Methods of Primer Extension Using Porous Particle Supports
US13/029,664 Abandoned US20110195459A1 (en) 2009-05-29 2011-02-17 Methods of Making Libraries of Nucleic Acids Using Porous Particles
US14/044,712 Active 2030-03-28 US9249461B2 (en) 2009-05-29 2013-10-02 Scaffolded nucleic acid polymer particles and methods of making and using
US14/987,552 Abandoned US20160194629A1 (en) 2009-05-29 2016-01-04 Scaffolded nucleic acid polymer particles and methods of making and using
US15/846,195 Abandoned US20180179520A1 (en) 2009-05-29 2017-12-18 Scaffolded nucleic acid polymer particles and methods of making and using
US16/121,615 Active US10612017B2 (en) 2009-05-29 2018-09-04 Scaffolded nucleic acid polymer particles and methods of making and using
US16/841,546 Pending US20200239877A1 (en) 2009-05-29 2020-04-06 Scaffolded nucleic acid polymer particles and methods of making and using

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/785,685 Active 2030-09-19 US8574835B2 (en) 2009-05-29 2010-05-24 Scaffolded nucleic acid polymer particles and methods of making and using
US13/026,707 Abandoned US20110195252A1 (en) 2009-05-29 2011-02-14 Scaffolded Nucleic Acid Polymer Particles and Methods of Making and Using
US13/026,759 Abandoned US20110195253A1 (en) 2009-05-29 2011-02-14 Scaffolded Nucleic Acid Polymer Particles and Methods of Making and Using

Family Applications After (9)

Application Number Title Priority Date Filing Date
US13/027,355 Abandoned US20120094871A1 (en) 2009-05-29 2011-02-15 Particle Population and Methods of Making and Using
US13/029,566 Abandoned US20110201508A1 (en) 2009-05-29 2011-02-17 Methods of Using Porous Particles
US13/029,611 Abandoned US20110201506A1 (en) 2009-05-29 2011-02-17 Methods of Primer Extension Using Porous Particle Supports
US13/029,664 Abandoned US20110195459A1 (en) 2009-05-29 2011-02-17 Methods of Making Libraries of Nucleic Acids Using Porous Particles
US14/044,712 Active 2030-03-28 US9249461B2 (en) 2009-05-29 2013-10-02 Scaffolded nucleic acid polymer particles and methods of making and using
US14/987,552 Abandoned US20160194629A1 (en) 2009-05-29 2016-01-04 Scaffolded nucleic acid polymer particles and methods of making and using
US15/846,195 Abandoned US20180179520A1 (en) 2009-05-29 2017-12-18 Scaffolded nucleic acid polymer particles and methods of making and using
US16/121,615 Active US10612017B2 (en) 2009-05-29 2018-09-04 Scaffolded nucleic acid polymer particles and methods of making and using
US16/841,546 Pending US20200239877A1 (en) 2009-05-29 2020-04-06 Scaffolded nucleic acid polymer particles and methods of making and using

Country Status (1)

Country Link
US (13) US8574835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177520A1 (en) * 1999-10-06 2011-07-21 Daniel Henry Densham Dna sequencing method
US9249461B2 (en) 2009-05-29 2016-02-02 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using

Families Citing this family (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
EP3913375A1 (en) 2006-01-11 2021-11-24 Bio-Rad Laboratories, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US9394567B2 (en) 2008-11-07 2016-07-19 Adaptive Biotechnologies Corporation Detection and quantification of sample contamination in immune repertoire analysis
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
CN102272327B (en) 2008-11-07 2015-11-25 赛昆塔公司 By the method for sequential analysis monitoring situation
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
DK2387627T3 (en) 2009-01-15 2016-07-04 Adaptive Biotechnologies Corp Adaptive immunity profiling and methods for producing monoclonal antibodies
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
CA2760439A1 (en) 2009-04-30 2010-11-04 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
US9334531B2 (en) 2010-12-17 2016-05-10 Life Technologies Corporation Nucleic acid amplification
US9309566B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid amplification
US20120156728A1 (en) 2010-12-17 2012-06-21 Life Technologies Corporation Clonal amplification of nucleic acid on solid surface with template walking
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
KR20120044941A (en) 2009-06-25 2012-05-08 프레드 헛친슨 켄서 리서치 센터 Method of measuring adaptive immunity
CA2769006A1 (en) * 2009-07-29 2011-02-03 Pyrobett Pte Ltd. Method and apparatus for conducting an assay
EP2486409A1 (en) 2009-10-09 2012-08-15 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
EP3392349A1 (en) 2010-02-12 2018-10-24 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US8841104B2 (en) 2010-04-21 2014-09-23 Nanomr, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9476812B2 (en) 2010-04-21 2016-10-25 Dna Electronics, Inc. Methods for isolating a target analyte from a heterogeneous sample
US20110262989A1 (en) 2010-04-21 2011-10-27 Nanomr, Inc. Isolating a target analyte from a body fluid
ES2740802T3 (en) 2010-05-06 2020-02-06 Adaptive Biotechnologies Corp Stage monitoring of lymphoid neoplasia using clonotype profiles
US20130053280A1 (en) * 2010-05-10 2013-02-28 Koshin Hamasaki Nucleic acid analysis device, method for producing same, and nucleic acid analyzer
EP2600901B1 (en) 2010-08-06 2019-03-27 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
EP3447155A1 (en) 2010-09-30 2019-02-27 Raindance Technologies, Inc. Sandwich assays in droplets
CN104531671A (en) 2010-10-01 2015-04-22 现代治疗公司 Engineered nucleic acids and methods of use thereof
AU2011312218B2 (en) 2010-10-04 2015-11-05 Sequencing Health, Inc. Systems and methods for automated reusable parallel biological reactions
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
US9184099B2 (en) 2010-10-04 2015-11-10 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US9534092B2 (en) 2011-02-10 2017-01-03 Life Technologies Corporation Purification systems and methods
WO2012109600A2 (en) 2011-02-11 2012-08-16 Raindance Technologies, Inc. Methods for forming mixed droplets
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
US9121047B2 (en) * 2011-04-07 2015-09-01 Life Technologies Corporation System and methods for making and processing emulsions
US9017993B2 (en) 2011-04-07 2015-04-28 Life Technologies Corporation System and methods for making and processing emulsions
WO2012142132A1 (en) * 2011-04-11 2012-10-18 Life Technologies Corporation Polymer particles and methods of making and using same
WO2012145574A2 (en) 2011-04-20 2012-10-26 Life Technologies Corporation Methods, compositions and systems for sample deposition
EP3072977B1 (en) 2011-04-28 2018-09-19 Life Technologies Corporation Methods and compositions for multiplex pcr
US8585973B2 (en) 2011-05-27 2013-11-19 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
EP3709018A1 (en) 2011-06-02 2020-09-16 Bio-Rad Laboratories, Inc. Microfluidic apparatus for identifying components of a chemical reaction
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
WO2013006824A2 (en) 2011-07-07 2013-01-10 Life Technologies Corporation Polymer particles, nucleic acid polymer particles and methods of making and using the same
ES2556580T3 (en) 2011-07-08 2016-01-19 Keygene N.V. Genotyping based on sequences based on oligonucleotide ligation assays
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US20140378333A1 (en) * 2011-09-13 2014-12-25 Tufts University Digital bridge pcr
KR20140072160A (en) 2011-10-03 2014-06-12 셀매틱스, 인크. Methods and devices for assessing risk to a putative offspring of developing a condition
EP2763701B1 (en) 2011-10-03 2018-12-19 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2013058907A1 (en) 2011-10-17 2013-04-25 Good Start Genetics, Inc. Analysis methods
AU2012325791B2 (en) 2011-10-21 2018-04-05 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
CN104053786B (en) 2011-11-29 2017-06-06 生命技术公司 For the method and composition of multiplex PCR
WO2013081864A1 (en) 2011-11-29 2013-06-06 Life Technologies Corporation Methods and compositions for multiplex pcr
CN106591103B (en) 2011-12-01 2021-06-04 吉纳普赛斯股份有限公司 System and method for efficient electronic sequencing and detection
EP3904536A1 (en) 2011-12-09 2021-11-03 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
JP2015501844A (en) 2011-12-16 2015-01-19 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified nucleosides, nucleotides and nucleic acid compositions
RU2643034C2 (en) 2012-02-09 2018-01-30 Лайф Текнолоджис Корпорейшн Hydrophilic polymer particles and methods for their obtaining
EP3626831B1 (en) 2012-02-09 2022-03-02 Life Technologies Corporation Conjugated polymeric particle and method of making same
US20130210659A1 (en) 2012-02-10 2013-08-15 Andrew Watson Molecular diagnostic screening assay
WO2013123442A1 (en) 2012-02-17 2013-08-22 Fred Hutchinson Cancer Research Center Compositions and methods for accurately identifying mutations
US10077478B2 (en) 2012-03-05 2018-09-18 Adaptive Biotechnologies Corp. Determining paired immune receptor chains from frequency matched subunits
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
DE18200782T1 (en) 2012-04-02 2021-10-21 Modernatx, Inc. MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS ASSOCIATED WITH DISEASES IN HUMANS
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
US8812422B2 (en) 2012-04-09 2014-08-19 Good Start Genetics, Inc. Variant database
US10227635B2 (en) 2012-04-16 2019-03-12 Molecular Loop Biosolutions, Llc Capture reactions
EP2844773B1 (en) 2012-05-04 2017-08-16 Boreal Genomics Corp. Biomarker analysis using scodaphoresis
CN107586832B (en) 2012-05-08 2021-03-30 适应生物技术公司 Compositions and methods for measuring and calibrating amplification bias in multiplex PCR reactions
EP2872650A2 (en) 2012-07-13 2015-05-20 Life Technologies Corporation Human identifiation using a panel of snps
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
MX364957B (en) 2012-08-14 2019-05-15 10X Genomics Inc Microcapsule compositions and methods.
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2014031163A1 (en) 2012-08-24 2014-02-27 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid paired end sequencing
AU2013327423B2 (en) 2012-10-01 2017-06-22 Adaptive Biotechnologies Corporation Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization
US9177098B2 (en) 2012-10-17 2015-11-03 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
US10162800B2 (en) 2012-10-17 2018-12-25 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
WO2015160439A2 (en) 2014-04-17 2015-10-22 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
WO2014068407A2 (en) * 2012-10-26 2014-05-08 Sysmex Inostics Gmbh Emulsion systems and emulsion-based amplification of nucleic acid
WO2014074611A1 (en) 2012-11-07 2014-05-15 Good Start Genetics, Inc. Methods and systems for identifying contamination in samples
HRP20220607T1 (en) 2012-11-26 2022-06-24 Modernatx, Inc. Terminally modified rna
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9836577B2 (en) 2012-12-14 2017-12-05 Celmatix, Inc. Methods and devices for assessing risk of female infertility
EP3567116A1 (en) 2012-12-14 2019-11-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9995742B2 (en) 2012-12-19 2018-06-12 Dnae Group Holdings Limited Sample entry
US9551704B2 (en) 2012-12-19 2017-01-24 Dna Electronics, Inc. Target detection
US9804069B2 (en) 2012-12-19 2017-10-31 Dnae Group Holdings Limited Methods for degrading nucleic acid
US9434940B2 (en) 2012-12-19 2016-09-06 Dna Electronics, Inc. Methods for universal target capture
US10000557B2 (en) 2012-12-19 2018-06-19 Dnae Group Holdings Limited Methods for raising antibodies
US9599610B2 (en) 2012-12-19 2017-03-21 Dnae Group Holdings Limited Target capture system
WO2014113204A1 (en) 2013-01-17 2014-07-24 Personalis, Inc. Methods and systems for genetic analysis
WO2014124338A1 (en) 2013-02-08 2014-08-14 10X Technologies, Inc. Polynucleotide barcode generation
US9512422B2 (en) * 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
US9914979B2 (en) 2013-03-04 2018-03-13 Fry Laboratories, LLC Method and kit for characterizing microorganisms
EP2971159B1 (en) 2013-03-14 2019-05-08 Molecular Loop Biosolutions, LLC Methods for analyzing nucleic acids
US9340835B2 (en) 2013-03-15 2016-05-17 Boreal Genomics Corp. Method for separating homoduplexed and heteroduplexed nucleic acids
CN105051214B (en) 2013-03-15 2018-12-28 吉纳普赛斯股份有限公司 System and method for bioanalysis
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2014197377A2 (en) 2013-06-03 2014-12-11 Good Start Genetics, Inc. Methods and systems for storing sequence read data
MX361481B (en) 2013-06-27 2018-12-06 10X Genomics Inc Compositions and methods for sample processing.
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
US9898575B2 (en) 2013-08-21 2018-02-20 Seven Bridges Genomics Inc. Methods and systems for aligning sequences
US9116866B2 (en) 2013-08-21 2015-08-25 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
WO2015031689A1 (en) 2013-08-30 2015-03-05 Personalis, Inc. Methods and systems for genomic analysis
AU2014324438B2 (en) 2013-09-30 2019-12-05 Seven Bridges Genomics Inc. Methods and system for detecting sequence variants
WO2015051275A1 (en) 2013-10-03 2015-04-09 Personalis, Inc. Methods for analyzing genotypes
EA201690675A1 (en) 2013-10-03 2016-08-31 Модерна Терапьютикс, Инк. POLYNUCLEOTES ENCODING THE RECEPTOR OF LOW DENSITY LIPOPROTEINS
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US10851414B2 (en) 2013-10-18 2020-12-01 Good Start Genetics, Inc. Methods for determining carrier status
EP3058096A1 (en) 2013-10-18 2016-08-24 Good Start Genetics, Inc. Methods for assessing a genomic region of a subject
AU2014337089B2 (en) 2013-10-18 2019-08-08 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
WO2015058120A1 (en) 2013-10-18 2015-04-23 Seven Bridges Genomics Inc. Methods and systems for aligning sequences in the presence of repeating elements
CA2927637A1 (en) 2013-10-18 2015-04-23 Seven Bridges Genomics, Inc. Methods and systems for identifying disease-induced mutations
US10832797B2 (en) 2013-10-18 2020-11-10 Seven Bridges Genomics Inc. Method and system for quantifying sequence alignment
US9092402B2 (en) 2013-10-21 2015-07-28 Seven Bridges Genomics Inc. Systems and methods for using paired-end data in directed acyclic structure
JP6706206B2 (en) 2013-11-11 2020-06-03 ライフ テクノロジーズ コーポレーション Rotor assembly and method for using same
EP3080300B1 (en) 2013-12-11 2020-09-02 Genapsys Inc. Systems and methods for biological analysis and computation
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
EP3090063B1 (en) 2013-12-31 2019-11-06 Bio-Rad Laboratories, Inc. Method for detection of latent retrovirus
AU2015204819B2 (en) 2014-01-10 2021-05-06 Seven Bridges Genomics Inc. Systems and methods for use of known alleles in read mapping
US9817944B2 (en) 2014-02-11 2017-11-14 Seven Bridges Genomics Inc. Systems and methods for analyzing sequence data
EP3114240B1 (en) 2014-03-05 2019-07-24 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
EP3129143B1 (en) 2014-04-10 2022-11-23 10X Genomics, Inc. Method for partitioning microcapsules
EP3556864B1 (en) 2014-04-18 2020-12-09 Genapsys, Inc. Methods and systems for nucleic acid amplification
WO2015175530A1 (en) 2014-05-12 2015-11-19 Gore Athurva Methods for detecting aneuploidy
CN106795553B (en) 2014-06-26 2021-06-04 10X基因组学有限公司 Methods of analyzing nucleic acids from individual cells or cell populations
SG11201700303UA (en) 2014-07-17 2017-02-27 Celmatix Inc Methods and systems for assessing infertility and related pathologies
US11408024B2 (en) 2014-09-10 2022-08-09 Molecular Loop Biosciences, Inc. Methods for selectively suppressing non-target sequences
CA2961613A1 (en) 2014-09-17 2016-03-24 Hologic, Inc. Method of partial lysis and assay
JP2017536087A (en) 2014-09-24 2017-12-07 グッド スタート ジェネティクス, インコーポレイテッド Process control to increase the robustness of genetic assays
US10040048B1 (en) 2014-09-25 2018-08-07 Synthego Corporation Automated modular system and method for production of biopolymers
CN107408043A (en) 2014-10-14 2017-11-28 七桥基因公司 System and method for the intelligence tool in sequence streamline
CA3002133A1 (en) 2014-10-17 2016-04-21 Good Start Genetics, Inc. Pre-implantation genetic screening and aneuploidy detection
EP3212807B1 (en) 2014-10-29 2020-09-02 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
EP3715455A1 (en) 2014-10-29 2020-09-30 Adaptive Biotechnologies Corp. Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
WO2016070131A1 (en) 2014-10-30 2016-05-06 Personalis, Inc. Methods for using mosaicism in nucleic acids sampled distal to their origin
US10000799B2 (en) 2014-11-04 2018-06-19 Boreal Genomics, Inc. Methods of sequencing with linked fragments
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
US9970437B2 (en) 2014-11-25 2018-05-15 Genia Technologies, Inc. Two-way pump selectable valve and bypass waste channel
US11066705B2 (en) 2014-11-25 2021-07-20 Adaptive Biotechnologies Corporation Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing
CN104532360B (en) * 2014-12-17 2017-02-22 北京诺禾致源科技股份有限公司 Whole-genome methylation sequencing library and construction method thereof
CA3010579A1 (en) 2015-01-06 2016-07-14 Good Start Genetics, Inc. Screening for structural variants
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
CA2976580A1 (en) 2015-02-24 2016-09-01 Adaptive Biotechnologies Corp. Methods for diagnosing infectious disease and determining hla status using immune repertoire sequencing
WO2016137973A1 (en) 2015-02-24 2016-09-01 10X Genomics Inc Partition processing methods and systems
US10192026B2 (en) 2015-03-05 2019-01-29 Seven Bridges Genomics Inc. Systems and methods for genomic pattern analysis
CA2980078A1 (en) 2015-03-16 2016-09-22 Personal Genome Diagnostics Inc. Systems and methods for analyzing nucleic acid
EP3277294A4 (en) 2015-04-01 2018-11-14 Adaptive Biotechnologies Corp. Method of identifying human compatible t cell receptors specific for an antigenic target
US10275567B2 (en) 2015-05-22 2019-04-30 Seven Bridges Genomics Inc. Systems and methods for haplotyping
US10889861B2 (en) 2015-06-17 2021-01-12 The Translational Genomics Research Institute Systems and methods for obtaining biological molecules from a sample
EP3317314B1 (en) 2015-07-02 2020-01-08 Life Technologies Corporation Polymer substrates formed from carboxy functional acrylamide
EP3317426B1 (en) 2015-07-02 2020-01-15 Life Technologies Corporation Conjugation of carboxyl functional hydrophilic beads
CN108350490B (en) 2015-07-06 2022-06-21 生命技术公司 Substrates and methods for sequencing
US10793895B2 (en) 2015-08-24 2020-10-06 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10724110B2 (en) 2015-09-01 2020-07-28 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
US10584380B2 (en) 2015-09-01 2020-03-10 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
EP3693459A1 (en) 2015-10-10 2020-08-12 Guardant Health, Inc. Methods and applications of gene fusion detection in cell-free dna analysis
US11347704B2 (en) 2015-10-16 2022-05-31 Seven Bridges Genomics Inc. Biological graph or sequence serialization
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
EP3384048B1 (en) 2015-12-04 2021-03-24 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
EP3858996B1 (en) 2015-12-07 2022-08-03 Zymergen Inc. Microbial strain improvement by a htp genomic engineering platform
JP6821598B2 (en) 2015-12-07 2021-01-27 ザイマージェン インコーポレイテッド Promoter derived from Corynebacterium glutamicum
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
EP3390668A4 (en) 2015-12-17 2020-04-01 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
US20170199960A1 (en) 2016-01-07 2017-07-13 Seven Bridges Genomics Inc. Systems and methods for adaptive local alignment for graph genomes
EP3402883A4 (en) 2016-01-12 2019-09-18 Seqwell, Inc. Compositions and methods for sequencing nucleic acids
US10364468B2 (en) 2016-01-13 2019-07-30 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US10460829B2 (en) 2016-01-26 2019-10-29 Seven Bridges Genomics Inc. Systems and methods for encoding genetic variation for a population
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US10262102B2 (en) 2016-02-24 2019-04-16 Seven Bridges Genomics Inc. Systems and methods for genotyping with graph reference
EP3436607B1 (en) 2016-03-28 2023-06-14 Ncan Genomics, Inc. Linked duplex target capture
US10961573B2 (en) 2016-03-28 2021-03-30 Boreal Genomics, Inc. Linked duplex target capture
CN109312402A (en) 2016-04-11 2019-02-05 得克萨斯州大学系统董事会 For detecting the method and composition of single T cell receptor affinity and sequence
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
ES2929367T3 (en) 2016-05-18 2022-11-28 Hoffmann La Roche Quantitative ultrafast PCR amplification using an electrowet based device
US11299783B2 (en) 2016-05-27 2022-04-12 Personalis, Inc. Methods and systems for genetic analysis
SG11201810907UA (en) 2016-06-06 2019-01-30 Redvault Biosciences Lp Target reporter constructs and uses thereof
WO2017218512A1 (en) 2016-06-13 2017-12-21 Grail, Inc. Enrichment of mutated cell free nucleic acids for cancer detection
WO2018005793A1 (en) 2016-06-30 2018-01-04 Zymergen Inc. Methods for generating a glucose permease library and uses thereof
JP2019519242A (en) 2016-06-30 2019-07-11 ザイマージェン インコーポレイテッド Method for generating a bacterial hemoglobin library and its use
US10544456B2 (en) 2016-07-20 2020-01-28 Genapsys, Inc. Systems and methods for nucleic acid sequencing
US11250931B2 (en) 2016-09-01 2022-02-15 Seven Bridges Genomics Inc. Systems and methods for detecting recombination
US20180073062A1 (en) * 2016-09-15 2018-03-15 The University Of Chicago Compositions and methods for identifying endogenous dna-dna interactions
US10428325B1 (en) 2016-09-21 2019-10-01 Adaptive Biotechnologies Corporation Identification of antigen-specific B cell receptors
US11466328B2 (en) 2016-09-23 2022-10-11 Life Technologies Corporation Compositions and methods for assessing immune response
US10487358B2 (en) 2016-09-23 2019-11-26 Grail, Inc. Methods of preparing and analyzing cell-free nucleic acid sequencing libraries
JP7144432B2 (en) * 2016-11-07 2022-09-29 ディーエヌエーイー・ダイアグノスティックス・リミテッド CHEMFET array
CN109906276A (en) 2016-11-07 2019-06-18 格里尔公司 For detecting the recognition methods of somatic mutation feature in early-stage cancer
CN110023509A (en) 2016-11-15 2019-07-16 私人基因诊断公司 Non- unique bar code in genotyping measurement
WO2018104908A2 (en) 2016-12-09 2018-06-14 Boreal Genomics, Inc. Linked ligation
US20180163201A1 (en) 2016-12-12 2018-06-14 Grail, Inc. Methods for tagging and amplifying rna template molecules for preparing sequencing libraries
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10982351B2 (en) 2016-12-23 2021-04-20 Grail, Inc. Methods for high efficiency library preparation using double-stranded adapters
EP3571320B1 (en) 2017-01-17 2022-04-06 Life Technologies Corporation Compositions and methods for immune repertoire sequencing
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
EP3583112A4 (en) * 2017-02-14 2021-04-07 Seqwell, Inc. Compositions and methods for sequencing nucleic acids
US20200377935A1 (en) 2017-03-24 2020-12-03 Life Technologies Corporation Polynucleotide adapters and methods of use thereof
US11274344B2 (en) 2017-03-30 2022-03-15 Grail, Inc. Enhanced ligation in sequencing library preparation
US11584958B2 (en) 2017-03-31 2023-02-21 Grail, Llc Library preparation and use thereof for sequencing based error correction and/or variant identification
WO2018183897A1 (en) 2017-03-31 2018-10-04 Grail, Inc. Higher target capture efficiency using probe extension
EP3625351A1 (en) 2017-05-19 2020-03-25 Zymergen Inc. Genomic engineering of biosynthetic pathways leading to increased nadph
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
SG11201901822QA (en) 2017-05-26 2019-03-28 10X Genomics Inc Single cell analysis of transposase accessible chromatin
WO2018226900A2 (en) 2017-06-06 2018-12-13 Zymergen Inc. A htp genomic engineering platform for improving fungal strains
US20200102554A1 (en) 2017-06-06 2020-04-02 Zymergen Inc. High throughput transposon mutagenesis
JP2020524490A (en) 2017-06-06 2020-08-20 ザイマージェン インコーポレイテッド HTP genome manipulation platform to improve Escherichia coli
JP7350659B2 (en) 2017-06-06 2023-09-26 ザイマージェン インコーポレイテッド High-throughput (HTP) genome manipulation platform for the improvement of Saccharopolyspora spinosa
CN111108215B (en) 2017-06-30 2024-01-16 生命技术公司 Method for preparing molecular library, composition and application thereof
WO2019046817A1 (en) 2017-09-01 2019-03-07 Life Technologies Corporation Compositions and methods for immune repertoire sequencing
GB2582865B (en) * 2017-09-11 2022-05-04 Synthego Corp Biopolymer synthesis system and method
US20200263170A1 (en) 2017-09-14 2020-08-20 Grail, Inc. Methods for preparing a sequencing library from single-stranded dna
SG11202002516WA (en) 2017-09-21 2020-04-29 Genapsys Inc Systems and methods for nucleic acid sequencing
EP4026915B1 (en) 2017-09-28 2023-10-25 Grail, LLC Enrichment of short nucleic acid fragments in sequencing library preparation
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
CN111787930A (en) 2017-10-06 2020-10-16 芝加哥大学 Screening of T lymphocytes against cancer specific antigens
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
CN111479631B (en) 2017-10-27 2022-02-22 10X基因组学有限公司 Methods and systems for sample preparation and analysis
US11691141B2 (en) 2017-11-13 2023-07-04 Roche Sequencing Solutions, Inc. Devices for sample analysis using epitachophoresis
EP3954782A1 (en) 2017-11-15 2022-02-16 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11254980B1 (en) 2017-11-29 2022-02-22 Adaptive Biotechnologies Corporation Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019118925A1 (en) 2017-12-15 2019-06-20 Grail, Inc. Methods for enriching for duplex reads in sequencing and error correction
US20190237161A1 (en) 2017-12-22 2019-08-01 Grail, Inc. Error removal using improved library preparation methods
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
JP2021518128A (en) 2018-03-20 2021-08-02 ザイマージェン インコーポレイテッド HTP platform for genetic engineering of Chinese hamster ovary cells
US20210108268A1 (en) 2018-03-23 2021-04-15 Life Technologies Corporation Immune repertoire monitoring
WO2019195166A1 (en) 2018-04-06 2019-10-10 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11814750B2 (en) 2018-05-31 2023-11-14 Personalis, Inc. Compositions, methods and systems for processing or analyzing multi-species nucleic acid samples
US10801064B2 (en) 2018-05-31 2020-10-13 Personalis, Inc. Compositions, methods and systems for processing or analyzing multi-species nucleic acid samples
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
WO2020018837A1 (en) 2018-07-18 2020-01-23 Life Technologies Corporation Compositions and methods for immune repertoire sequencing
WO2020018836A1 (en) 2018-07-18 2020-01-23 Life Technologies Corporation Compositions and methods for immune repertoire sequencing
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
WO2020074742A1 (en) 2018-10-12 2020-04-16 F. Hoffmann-La Roche Ag Detection methods for epitachophoresis workflow automation
US11680261B2 (en) 2018-11-15 2023-06-20 Grail, Inc. Needle-based devices and methods for in vivo diagnostics of disease conditions
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11512349B2 (en) 2018-12-18 2022-11-29 Grail, Llc Methods for detecting disease using analysis of RNA
CN111378557B (en) 2018-12-26 2023-06-06 财团法人工业技术研究院 Tubular structure for producing liquid beads and liquid bead producing method
US11473136B2 (en) 2019-01-03 2022-10-18 Ncan Genomics, Inc. Linked target capture
US20220081714A1 (en) 2019-01-04 2022-03-17 Northwestern University Storing temporal data into dna
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
CA3125762A1 (en) 2019-01-10 2020-07-16 Iovance Biotherapeutics, Inc. System and methods for monitoring adoptive cell therapy clonality and persistence
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
CN114269916A (en) 2019-05-14 2022-04-01 豪夫迈·罗氏有限公司 Device and method for sample analysis
US20200407711A1 (en) * 2019-06-28 2020-12-31 Advanced Molecular Diagnostics, LLC Systems and methods for scoring results of identification processes used to identify a biological sequence
CN114450420A (en) 2019-08-30 2022-05-06 生命技术公司 Compositions and methods for accurate determination of oncology
US11807909B1 (en) 2019-09-12 2023-11-07 Zymo Research Corporation Methods for species-level resolution of microorganisms
US11111507B2 (en) 2019-09-23 2021-09-07 Zymergen Inc. Method for counterselection in microorganisms
CN115176032A (en) 2019-10-11 2022-10-11 生命科技股份有限公司 Compositions and methods for assessing microbial populations
US20230356168A1 (en) * 2019-12-20 2023-11-09 Ran Biotechnologies, Inc. Universal functionalized beads and method of making same
EP4093887A1 (en) 2020-01-22 2022-11-30 Life Technologies Corporation Immune repertoire biomarkers in autoimmune disease and immunodeficiency disorders
EP4103580A4 (en) 2020-02-13 2024-03-06 Zymergen Inc Metagenomic library and natural product discovery platform
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
WO2022104391A1 (en) 2020-11-16 2022-05-19 Life Technologies Corporation Compositions and methods for immune repertoire monitoring
EP4247976A1 (en) 2020-11-17 2023-09-27 Life Technologies Corporation Compositions and methods for immune repertoire monitoring
WO2022140793A1 (en) 2020-12-24 2022-06-30 Life Technologies Corporation Compositions and methods for highly sensitive detection of target sequences in multiplex reactions
EP4308723A1 (en) 2021-03-15 2024-01-24 F. Hoffmann-La Roche AG Targeted next-generation sequencing via anchored primer extension
US20230131285A1 (en) 2021-08-18 2023-04-27 Life Technologies Corporation Immune repertoire biomarkers for prediction of treatment response in autoimmune disease
WO2023225515A1 (en) 2022-05-17 2023-11-23 Life Technologies Corporation Compositions and methods for oncology assays
WO2024030599A1 (en) * 2022-08-04 2024-02-08 Duke University Technologies for scaffold and void space analysis of granular particle scaffolds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057426A (en) * 1986-11-22 1991-10-15 Diagen Institut Fur Molekular-Biologische, Diagnostik Gmbh Method for separating long-chain nucleic acids
US6090935A (en) * 1993-11-11 2000-07-18 Medinnova Sf Isolation of nucleic acid
US20030073086A1 (en) * 2001-10-05 2003-04-17 Surmodics, Inc. Randomly ordered arrays and methods of making and using
US20030211637A1 (en) * 2002-05-08 2003-11-13 Joseph Schoeniger Single particle electrochemical sensors and methods of utilization
US20050019842A1 (en) * 2002-11-06 2005-01-27 Prober James M. Microparticle-based methods and systems and applications thereof
US20080032295A1 (en) * 2001-03-09 2008-02-07 Dna Electronics Ltd. Sensing apparatus and method
US7815868B1 (en) * 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU530410B2 (en) * 1978-02-21 1983-07-14 Sintef Preparing aqueous emulsions
US4863849A (en) 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
US4822566A (en) 1985-11-19 1989-04-18 The Johns Hopkins University Optimized capacitive sensor for chemical analysis and measurement
US4722830A (en) 1986-05-05 1988-02-02 General Electric Company Automated multiple stream analysis system
US4971903A (en) 1988-03-25 1990-11-20 Edward Hyman Pyrophosphate-based method and apparatus for sequencing nucleic acids
US4874499A (en) 1988-05-23 1989-10-17 Massachusetts Institute Of Technology Electrochemical microsensors and method of making such sensors
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5237016A (en) 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
EP0394598B1 (en) 1989-04-28 1996-03-06 International Business Machines Corporation An improved gate array cell having FETS of different and optimized sizes
US5110441A (en) 1989-12-14 1992-05-05 Monsanto Company Solid state ph sensor
US5317407A (en) 1991-03-11 1994-05-31 General Electric Company Fixed-pattern noise correction circuitry for solid-state imager
WO1993008464A1 (en) 1991-10-21 1993-04-29 Holm Kennedy James W Method and device for biochemical sensing
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5284566A (en) 1993-01-04 1994-02-08 Bacharach, Inc. Electrochemical gas sensor with wraparound reference electrode
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US6406848B1 (en) 1997-05-23 2002-06-18 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5932450A (en) 1995-06-07 1999-08-03 Gen-Probe Incorporated Enzymatic synthesis of oligonucleotides using digestible templates
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5702964A (en) 1995-10-17 1997-12-30 Lg Semicon, Co., Ltd. Method for forming a semiconductor device having a floating gate
US5854033A (en) * 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
EP1015872B1 (en) 1996-12-12 2005-03-02 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US6197557B1 (en) 1997-03-05 2001-03-06 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6872527B2 (en) 1997-04-16 2005-03-29 Xtrana, Inc. Nucleic acid archiving
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
JP4231560B2 (en) 1997-05-29 2009-03-04 株式会社堀場製作所 Method and apparatus for electrochemical measurement of chemical quantity distribution
US6465178B2 (en) 1997-09-30 2002-10-15 Surmodics, Inc. Target molecule attachment to surfaces
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US7090975B2 (en) 1998-03-13 2006-08-15 Promega Corporation Pyrophosphorolysis and incorporation of nucleotide method for nucleic acid detection
WO1999057321A1 (en) 1998-05-01 1999-11-11 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and dna molecules
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
EP1090293B2 (en) 1998-06-24 2019-01-23 Illumina, Inc. Decoding of array sensors with microspheres
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
GB9901475D0 (en) 1999-01-22 1999-03-17 Pyrosequencing Ab A method of DNA sequencing
AU3372800A (en) 1999-02-23 2000-09-14 Caliper Technologies Corporation Manipulation of microparticles in microfluidic systems
US20030108867A1 (en) 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
US7097973B1 (en) 1999-06-14 2006-08-29 Alpha Mos Method for monitoring molecular species within a medium
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6642000B1 (en) * 1999-11-12 2003-11-04 University Of Chicago PCR amplification on microarrays of gel immobilized oligonucleotides
US6913884B2 (en) * 2001-08-16 2005-07-05 Illumina, Inc. Compositions and methods for repetitive use of genomic DNA
FR2805826B1 (en) 2000-03-01 2002-09-20 Nucleica NEW DNA CHIPS
JP3960802B2 (en) 2000-03-02 2007-08-15 マイクロチップス・インコーポレーテッド Microfabricated devices for storing and selectively exposing chemicals and devices
US6413792B1 (en) 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
AU2001271401A1 (en) 2000-06-23 2002-01-08 The United States Of America As Represented By The Secretary Of The Navy Microelectronic device and method for label-free detection and quantification ofbiological and chemical molecules
US6611037B1 (en) 2000-08-28 2003-08-26 Micron Technology, Inc. Multi-trench region for accumulation of photo-generated charge in a CMOS imager
WO2002030561A2 (en) 2000-10-10 2002-04-18 Biotrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US20020155476A1 (en) 2000-10-20 2002-10-24 Nader Pourmand Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
GB2370410A (en) 2000-12-22 2002-06-26 Seiko Epson Corp Thin film transistor sensor
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
WO2003042697A1 (en) 2001-11-14 2003-05-22 Genospectra, Inc. Biochemical analysis system with combinatorial chemistry applications
JP4195859B2 (en) 2001-11-16 2008-12-17 株式会社バイオエックス FET type sensor, ion concentration detection method and base sequence detection method using the sensor
US7772383B2 (en) 2002-01-25 2010-08-10 The Trustees Of Princeton University Chemical PCR: Compositions for enhancing polynucleotide amplification reactions
US7276749B2 (en) 2002-02-05 2007-10-02 E-Phocus, Inc. Image sensor with microcrystalline germanium photodiode layer
US6846881B2 (en) 2002-02-27 2005-01-25 Bio-Rad Laboratories, Inc. Preparation of defect-free polyacrylamide electrophoresis gels in plastic cassettes
US6953958B2 (en) 2002-03-19 2005-10-11 Cornell Research Foundation, Inc. Electronic gain cell based charge sensor
US6828685B2 (en) 2002-06-14 2004-12-07 Hewlett-Packard Development Company, L.P. Memory device having a semiconducting polymer film
AU2003258969A1 (en) 2002-06-27 2004-01-19 Nanosys Inc. Planar nanowire based sensor elements, devices, systems and methods for using and making same
US7192700B2 (en) 2002-12-20 2007-03-20 Orchid Cellmark Inc. Methods and compositions for conducting primer extension and polymorphism detection reactions
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
AU2003282548A1 (en) 2002-10-10 2004-05-04 Nanosys, Inc. Nano-chem-fet based biosensors
US6700814B1 (en) 2002-10-30 2004-03-02 Motorola, Inc. Sense amplifier bias circuit for a memory having at least two distinct resistance states
DE10251144A1 (en) 2002-10-31 2004-05-19 Röhm GmbH & Co. KG Macroporous plastic bead material
US20040197803A1 (en) 2002-12-06 2004-10-07 Hidenobu Yaku Method, primer and kit for determining base type
US20040142379A1 (en) * 2003-01-16 2004-07-22 Carlsberg Research Laboratory Affinity fishing for ligands and proteins receptors
US7575865B2 (en) * 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
ES2380893T3 (en) 2003-01-29 2012-05-21 454 Life Sciences Corporation Amplification of nucleic acids in pearl emulsion
US20050006234A1 (en) 2003-02-13 2005-01-13 Arjang Hassibi Semiconductor electrochemical bio-sensor array
US20070262363A1 (en) 2003-02-28 2007-11-15 Board Of Regents, University Of Texas System Low temperature fabrication of discrete silicon-containing substrates and devices
US7291496B2 (en) 2003-05-22 2007-11-06 University Of Hawaii Ultrasensitive biochemical sensor
GB0322010D0 (en) 2003-09-19 2003-10-22 Univ Cambridge Tech Detection of molecular interactions using field effect transistors
US20070087401A1 (en) 2003-10-17 2007-04-19 Andy Neilson Analysis of metabolic activity in cells using extracellular flux rate measurements
WO2005043160A2 (en) 2003-10-31 2005-05-12 University Of Hawaii Ultrasensitive biochemical sensing platform
US20050136414A1 (en) 2003-12-23 2005-06-23 Kevin Gunderson Methods and compositions for making locus-specific arrays
US7462512B2 (en) 2004-01-12 2008-12-09 Polytechnic University Floating gate field effect transistors for chemical and/or biological sensing
ES2432040T3 (en) 2004-01-28 2013-11-29 454 Life Sciences Corporation Nucleic acid amplification with continuous flow emulsion
CA2557841A1 (en) 2004-02-27 2005-09-09 President And Fellows Of Harvard College Polony fluorescent in situ sequencing beads
EP2436778A3 (en) 2004-03-03 2012-07-11 The Trustees of Columbia University in the City of New York Photocleavable fluorescent nucleotides for DNA sequencing on chip constructed by site-specific coupling chemistry
DE102004014537A1 (en) 2004-03-23 2005-10-13 Fujitsu Ltd., Kawasaki Chip-integrated detector for analyzing liquids
US7264934B2 (en) 2004-06-10 2007-09-04 Ge Healthcare Bio-Sciences Corp. Rapid parallel nucleic acid analysis
US20060024711A1 (en) 2004-07-02 2006-02-02 Helicos Biosciences Corporation Methods for nucleic acid amplification and sequence determination
GB2416210B (en) 2004-07-13 2008-02-20 Christofer Toumazou Ion sensitive field effect transistors
US7888013B2 (en) 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
US20070212681A1 (en) 2004-08-30 2007-09-13 Benjamin Shapiro Cell canaries for biochemical pathogen detection
US7534097B2 (en) 2004-10-15 2009-05-19 Nanyang Technological University Method and apparatus for controlling multi-fluid flow in a micro channel
WO2007008246A2 (en) 2004-11-12 2007-01-18 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for dna and other molecules
CA2596496A1 (en) * 2005-02-01 2006-08-10 Agencourt Bioscience Corp. Reagents, methods, and libraries for bead-based sequencing
US9040237B2 (en) * 2005-03-04 2015-05-26 Intel Corporation Sensor arrays and nucleic acid sequencing applications
CA2603576A1 (en) 2005-04-05 2006-10-19 Protein Discovery, Inc. Improved methods and devices for concentration and fractionation of analytes for chemical analysis including matrix-assisted laser desorption/ionization (maldi) mass spectrometry (ms)
US20060228721A1 (en) 2005-04-12 2006-10-12 Leamon John H Methods for determining sequence variants using ultra-deep sequencing
TWI287041B (en) 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
US7538827B2 (en) 2005-11-17 2009-05-26 Chunghwa Picture Tubes, Ltd. Pixel structure
US7576037B2 (en) 2005-11-18 2009-08-18 Mei Technologies, Inc. Process and apparatus for combinatorial synthesis
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
KR100799577B1 (en) 2006-08-31 2008-01-30 한국전자통신연구원 Method for forming sensor for detecting gases and biochemical materials, integrated circuit including the sensor, and method for manufacturing the integrated circuit
US7682791B2 (en) 2006-10-29 2010-03-23 Macevicz Stephen C Method of generating nested sets of double stranded DNA circles
US20080242560A1 (en) 2006-11-21 2008-10-02 Gunderson Kevin L Methods for generating amplified nucleic acid arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
GB2457851B (en) 2006-12-14 2011-01-05 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale fet arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US7972828B2 (en) 2006-12-19 2011-07-05 Sigma-Aldrich Co. Stabilized compositions of thermostable DNA polymerase and anionic or zwitterionic detergent
US7932034B2 (en) 2006-12-20 2011-04-26 The Board Of Trustees Of The Leland Stanford Junior University Heat and pH measurement for sequencing of DNA
WO2008107014A1 (en) 2007-03-02 2008-09-12 Dna Electronics Ltd Qpcr using solid-state ph sensing
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
EP2657869A3 (en) 2007-08-29 2015-06-03 Applied Biosystems, LLC Alternative nucleic acid sequencing methods
EP2982437B1 (en) 2008-06-25 2017-12-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
CN102203597A (en) 2008-06-26 2011-09-28 生命技术公司 Methods and apparatus for detecting molecular interactions using fet arrays
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8546128B2 (en) 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
US20100137143A1 (en) * 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
WO2010047804A1 (en) 2008-10-22 2010-04-29 Ion Torrent Systems Incorporated Integrated sensor arrays for biological and chemical analysis
CN101413034B (en) 2008-11-21 2011-02-09 东南大学 Method for preparing molecular cloning chip for high-throughput cloning of nucleic acid molecule
EP2435461B1 (en) 2009-05-29 2017-08-09 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US8574835B2 (en) 2009-05-29 2013-11-05 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057426A (en) * 1986-11-22 1991-10-15 Diagen Institut Fur Molekular-Biologische, Diagnostik Gmbh Method for separating long-chain nucleic acids
US6090935A (en) * 1993-11-11 2000-07-18 Medinnova Sf Isolation of nucleic acid
US20080032295A1 (en) * 2001-03-09 2008-02-07 Dna Electronics Ltd. Sensing apparatus and method
US20030073086A1 (en) * 2001-10-05 2003-04-17 Surmodics, Inc. Randomly ordered arrays and methods of making and using
US20030211637A1 (en) * 2002-05-08 2003-11-13 Joseph Schoeniger Single particle electrochemical sensors and methods of utilization
US20050019842A1 (en) * 2002-11-06 2005-01-27 Prober James M. Microparticle-based methods and systems and applications thereof
US7815868B1 (en) * 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177520A1 (en) * 1999-10-06 2011-07-21 Daniel Henry Densham Dna sequencing method
US9249461B2 (en) 2009-05-29 2016-02-02 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US10612017B2 (en) 2009-05-29 2020-04-07 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using

Also Published As

Publication number Publication date
US20110201508A1 (en) 2011-08-18
US20110195253A1 (en) 2011-08-11
US20200239877A1 (en) 2020-07-30
US10612017B2 (en) 2020-04-07
US20140128269A1 (en) 2014-05-08
US20160194629A1 (en) 2016-07-07
US20110195459A1 (en) 2011-08-11
US20120094871A1 (en) 2012-04-19
US20100304982A1 (en) 2010-12-02
US9249461B2 (en) 2016-02-02
US20180179520A1 (en) 2018-06-28
US20110195252A1 (en) 2011-08-11
US20190071667A1 (en) 2019-03-07
US20110201506A1 (en) 2011-08-18
US8574835B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
US10612017B2 (en) Scaffolded nucleic acid polymer particles and methods of making and using
EP3301104B1 (en) Scaffolded nucleic acid polymer particles and methods of making and using
US11649498B2 (en) Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells
US11591637B2 (en) Compositions and methods for sample processing
CN110592182B (en) Compositions and methods for sample processing
CN112126675B (en) Method and system for preparing nucleic acid sequencing library and library prepared by using same
JP2023040104A (en) Sample preparation on solid support body
CN110799679A (en) Method and system for improving droplet stabilization
US11319587B2 (en) Immobilized buffer particles and uses thereof
CN116064734A (en) Nucleic acid amplification
US20230278037A1 (en) Devices, systems, and methods for high throughput droplet formation
EP2588838B1 (en) Ph measuring apparatus with particles comprising an immobile buffer
US20230278038A1 (en) Flow focusing devices, systems, and methods for high throughput droplet formation
US20240002929A1 (en) Methods and systems for processing polynucleotides
KR20220034716A (en) Compositions and methods for preparing nucleic acid sequencing libraries using CRISPR/CAS9 immobilized on a solid support

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION