US20110158174A1 - Method and System For Establishing A Connection Between Network Elements - Google Patents

Method and System For Establishing A Connection Between Network Elements Download PDF

Info

Publication number
US20110158174A1
US20110158174A1 US13/039,264 US201113039264A US2011158174A1 US 20110158174 A1 US20110158174 A1 US 20110158174A1 US 201113039264 A US201113039264 A US 201113039264A US 2011158174 A1 US2011158174 A1 US 2011158174A1
Authority
US
United States
Prior art keywords
network element
connection
call
request
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/039,264
Inventor
Tuija Hurtta
Janne Koistinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Priority to US13/039,264 priority Critical patent/US20110158174A1/en
Assigned to NOKIA CORPORATION reassignment NOKIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HURTTA, TUIJA, KOISTINEN, JANNE
Publication of US20110158174A1 publication Critical patent/US20110158174A1/en
Assigned to NOKIA TECHNOLOGIES OY reassignment NOKIA TECHNOLOGIES OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOKIA CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4535Network directories; Name-to-address mapping using an address exchange platform which sets up a session between two nodes, e.g. rendezvous servers, session initiation protocols [SIP] registrars or H.323 gatekeepers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the invention relates to a method and system for establishing a connection between two or more network elements.
  • the connection may for example be a VoIP (Voice over Internet Protocol) call.
  • the connection may involve e.g. an IP telephony layer or network and a GPRS/UMTS-based network transporting the call.
  • connection parameters are used for defining connection characteristics such as PDP (Packet Data Protocol) context information, quality of service (QoS) requested or provided, charging-related information such as charging tariff, etc.
  • PDP Packet Data Protocol
  • QoS quality of service
  • connection involves two or more networks of different types such as networks using different transmission protocols, e.g. GPRS/UMTS-based networks and IP-based networks
  • problems may occur in properly establishing the connection and setting the connection parameters.
  • the present invention provides a method and system which are able to properly establish a connection between network elements, e.g. arranged in different networks, in an advantageous manner, as defined in the attached claims.
  • connection can be properly established or processed, e.g. for charging purposes, by exchanging request and response between the third and fourth network element related to the permission for establishing a connection (or connection type such as PDP type), or to a connection parameter such as QoS (Quality of Service) so as to ensure correct handling of the connection.
  • connection type such as PDP type
  • QoS Quality of Service
  • the third network element may be a support node, preferably a gateway support node whereas the fourth network element may be a CSCF or PCF or CPS.
  • the fourth network element may be part of, or provide, a IP telephony layer.
  • the communication happens between the PS (packet-switched) domain (e.g. GGSN or SGSN) and between the IM subsystem (CSCF).
  • PS packet-switched domain
  • CSCF IM subsystem
  • the fourth network element such as the IP telephony layer is allowed to control at least one connection parameter, e.g. to restrict a PDP (Packet Data Protocol) context activation or modification.
  • a PDP Packet Data Protocol
  • a conversational PDP context i.e., a connection enabling a conversation between the caller and the callee, may only be activated when the first network element, e.g. a mobile terminal, is trying to make a call to the second network element.
  • the third network element such as a GGSN may send a permission request to the fourth network, such as CSCF or PCF or CPS, in order to check whether the PDP context activation or modification can be accepted.
  • the fourth network element such as CSCF learns the address of the third network element, e.g. the GGSN, from the request and therefore knows where to return the response. Otherwise, when the fourth network element were designed to send the information to the third network element before being addressed by the third network element, problems may arise when the fourth network element does not have information on the address of the third network element in charge of handling the connection.
  • the first network element e.g. a mobile terminal
  • the first network element should directly send information to the fourth network element when trying to establish a connection such as a call
  • the first network element does not yet have information on the address of the third network element in charge of subsequently handling the connection, and can therefore not send this address information to the fourth network element.
  • a message such as an authorize message would first be sent from the fourth to the third network element
  • the third network element would have to store information on call handling parameters such as PDP contexts which are not yet active.
  • the third network element might then have to activate a timer, and to remove the authorize information after timer expiry, in case the PDP context activation should not be performed for some reason.
  • the invention provides a solution for restricting e.g. PDP context activation or modification based on a call that will be carried on the PDP context.
  • a common identifier is provided in the networks or layers working according to different protocols, e.g. in the GPRS/UMTS layer and the IP telephony layer, as well as in a control means or function such as CSCF or PCF.
  • This common identifier may be used to map a PDP context to a call.
  • the common identifier may be e.g. a call identifier such as Call_Id already provided in SIP (Session Initiation Protocol) messages.
  • the common identifier may also be an identifier allocated in one of the layers, e.g. in the GPRS/UMTS layer.
  • the common identifier in this case may be NSAPI.
  • this common identifier is preferably sent to the fourth network element, e.g. the CSCF, in a protocol message such as the INVITE message of SIP.
  • the common identifier (e.g. NSAPI) may then be sent from the third network element, e.g. GGSN, to the fourth network element (e.g. PCF) as well as from a fifth network element (e.g. CSCF) to the fourth network element.
  • the fourth network element maps a request (sent by the third network element) and an authorisation (sent by the fifth network element such as CSCF) based on the common identifier, e.g. NSAPI.
  • a mechanism for combining a connection parameter such as charging info generated in a first network such as mobile core network (e.g. SGSN and GGSN), and in another network such an IPT (IP-based telephony) core network, e.g. CPS.
  • a connection parameter such as charging info generated in a first network such as mobile core network (e.g. SGSN and GGSN)
  • IPT IP-based telephony core network
  • CPS IP-based telephony core network
  • a mechanism for combining the call-related charging info and for controlling relevancy between QoS reservation in the one network e.g. IPT network, with IPT QoS reservation being sent e.g. in the INVITE message of SIP) and QoS reservation (e.g. PDP context QoS context activation) in the other network (e.g. mobile packet core network) is provided.
  • the delivered identifier such as Call Id is checked for charging purposes, and the requested QoS level relevancy or request is also checked both in the protocol message (e.g. SIP: INVITE) and PDP context activation message(s).
  • a new parameter may be introduced in PDP context activation for informing the third network element such as GGSN about the fourth network element such as serving CSCF, or integrated CSCF/PCF, or CPS. Therefore, the third network element is informed on the address of the fourth network element to which the QoS, check request is to be sent.
  • a further optional feature controllable by the end-user may be the possibility of requesting a QoS check by a terminal (e.g. first network element) in a protocol message such as SIP: INVITE.
  • FIG. 1 shows the basic structure and message flow according to one embodiment of a method and system according to the invention
  • FIG. 2 illustrates a further embodiment of a system and method in accordance with the present invention
  • FIG. 3 shows a further embodiment of a system and method in accordance with the present invention
  • FIG. 4 illustrates another embodiment of a system and method according to the present invention
  • FIG. 5 shows another embodiment of a system and method in accordance with the present invention
  • FIG. 6 illustrates a modification of the embodiment shown in FIG. 2 ;
  • FIG. 7 shows another embodiment of a system and method in accordance with the present invention
  • FIG. 1 illustrates a first embodiment of a method or system in accordance with the invention.
  • This embodiment provides a CSCF-permitted PDP context activation or modification.
  • a user equipment (UE) 1 is a first network element which may a mobile station.
  • SGSN 2 represent a serving node (serving GPRS support node) which serves user equipment 1 in handling a connection to another network element (second network element) such as a terminal of a called party which is not shown in FIG. 1 .
  • GGSN (Gateway GPRS Support Node) 3 represents a gateway node for handling connections to another network to which the called party terminal may be attached.
  • a Call State Control Function (CSCF) 4 represents a fourth network element which decides on permission of PDP context activation or modification.
  • CSCF Call State Control Function
  • the user equipment 1 When the user equipment 1 intends to make a call to a terminal arranged in another network, e.g. an IP-based network, it sends a message such as an INVITE message of SIP (Session Initiation Protocol) to the CSCF 4 . Thereafter, preferably after having received a response from CSCF 4 informing on the acceptance of the call request, the user equipment 1 sends an Activate (or Modify) PDP context request to SGSN 2 . The SGSN 2 in response to this Activate (or Modify) PDP context request, sends a Create (or Update) PDP context request to GGSN 3 .
  • SIP Session Initiation Protocol
  • the GGSN 3 In response to this request from SGSN 2 , the GGSN 3 does not immediately perform a Create or Update of the PDP contexts but is adapted first to send a permission request to CSCF 4 . In the embodiment of FIG. 1 , the GGSN 3 sends this permission request to the CSCF 4 in order to check whether PDP context activation/modification can be accepted. In a modified embodiment, the permission request may also be sent to a policy control function PCF which may represent an additional optional network element or may be integrated with CSCF.
  • PCF policy control function
  • the GGSN 3 includes IMSI/MSISDN (and possibly the PDP address) in the permission request to identify the mobile, that is the user equipment 1 .
  • the GGSN 3 may additionally send, in the permission request, the requested QoS (Quality of Service) values as well as the address of the called party (B Party Address), if present in the traffic flow template TFT.
  • IMSI/MSISDN and possibly PDP address
  • an additional information such as NSAPI may be used and transmitted to GGSN 3 .
  • the user equipment 1 preferably sends the information NSAPI of the PDP context in a call-set up message to the CSCF, e.g. in the SIP: INVITE message.
  • the CSCF 4 (or if alternatively or additionally provided PCF) is then adapted to check that the NSAPI for the call contained in the call-set up message equals the NSAPI for the PDP context sent from the GGSN 3 in the permission request, so that the CSCF 4 (or the PCF) can authorise the correct PDP context. If there should be provided a separate PCF, the CSCF 4 is adapted to send the NSAPI to the PCF. Likewise, in this case, the GGSN 3 is adapted to send the permission request including NSAPI to the separate PCF.
  • the CSCF 4 (or the PCF) sends a permission response to the GGSN 3 .
  • the permission response includes IMSI/MSISDN for identifying the user equipment 1 or the call for which the PDP context is to be created or updated, and preferably additionally includes information such as “call characteristics”.
  • the call characteristics information preferably includes accepted QoS values, accepted B Party Information (preferably IP address and the port number of the called party), as well as an indication indicating whether the call is a normal call or an emergency call.
  • the GGSN 3 is adapted to set the QoS values to the ones received from the CSCF 4 (or the PCF).
  • the GGSN 3 can set the allocation/retention priority to the highest value if the call is an emergency call. Furthermore, the GGSN 3 can set the traffic flow template TFT according to the B Party Information.
  • the user equipment 1 may be informed thereon by sending this information from the GGSN 3 to the SGSN 2 which will forward this information to the (mobile) user equipment 1 .
  • the GGSN 3 For sending the permission request, the GGSN 3 must know the address of the CSCF 4 for communication.
  • the CSCF address is added as a new parameter to the Activate (or Modify) PDP context request and the Create (or Update) PDP context request messages.
  • the GGSN 3 is implemented to derive the CSCF address from the TFT of the signalling PDP context.
  • the GGSN 3 may also be informed in some other way on the CSCF 4 address.
  • the address of this network element may be configured to the GGSN 3 (per access point) and to the CSCF 4 .
  • a new parameter describing whether or not a permission from the CSCF (or the PCF) is needed at PDP context activation (or modification), is added to the subscription information in the subscriber database (such as Home Location Register HLR).
  • This new parameter can be PDP context specific.
  • the GGSN 3 sets the PDP context and further information as necessary in accordance with the information contained in the Permission Response, such as accepted QoS value etc. Further, the GGSN 3 returns a Create (or Update) PDP context response to SGSN 2 . In response thereto, the SGSN 2 sends an Activate (or Modify) PDP context response to the user equipment 1 . Thereupon, the call is established and carried-out in the known manner.
  • FIG. 2 shows a further embodiment of the invention (method and/or system) which is provided with a Policy Control Function (PCF).
  • PCF Policy Control Function
  • the PCF has an interface towards the GGSN as well as to the CSCF.
  • the PCF can be used for the communication between the IP telephony layer, i.e. proxy CSCF, and the GPRS/UMTS layer (GGSN).
  • GGSN GPRS/UMTS layer
  • a call can have effects on the PDP context which is activated for the call.
  • FIG. 2 illustrates an example for the communication and message flow between the GPRS/UMTS layer, i.e. the GGSN, and the IP telephony layer, i.e. the CSCF, via the PCF.
  • the IP telephony layer is allowed to restrict PDP context activation (or modification).
  • a call-based permission for PDP context activation/modification is performed.
  • the case shown presents.
  • a PDP context activation in case of a mobile originated (MO) call, that is a call originating from mobile station (MS) 21 , the called party (callee) being represented by network element 27 (user equipment, database, etc.).
  • a permission is requested from the PCF 25 . Only the parameters required for the communication between proxy CSCF 26 and PCF 25 , and for the communication between GGSN 24 and PCF 25 are shown and described below.
  • a common identifier is provided in the GPRS/UMTS layer (i.e. GGSN 24 of third generation (3G)), in the IP telephony layer, e.g. CSCF 26 , and in the PCF 25 for mapping a PDP context to a call.
  • the subscriber identifier e.g. IMSI
  • IMSI is not enough when the MS 21 has multiple calls ongoing at the same time.
  • the common identifier used according to FIG. 2 is the call identifier Call_Id which already exists in SIP messages.
  • the initiator of a call in the present example mobile station 21 , allocates the Call_Id in a manner known e.g. from SIP protocol which identifier Call_Id uniquely identifies the call.
  • this common identifier such as Call_Id is sent from the MS 21 to the SGSN 23 and from SGSN 23 to GGSN 24 . Further, this common identifier is sent from the mobile station 21 to the proxy CSCF 26 , preferably in a call-initiating message such as SIP:INVITE. Further, this common identifier is sent from the CSCF 26 to the PCF 25 , and furthermore from the GGSN 24 to PCF 25 . The PCF 25 then maps a request sent by the GGSN 24 and an authorisation sent by the CSCF 26 based on the common identifier (e.g. call Id), and decides on call permission and/or connection parameters such as QoS to be used.
  • the common identifier e.g. call Id
  • an identifier allocated in the GPRS/UMTS layer, e.g. in the GGSN 24 is used as the common identifier.
  • NSAPI is used as such a common identifier.
  • the NSAPI is sent from the MS 21 to the CSCF 26 in the INVITE message or other call-set up message.
  • NSAPI is sent from the GGSN 24 to the PCF 25 , and from the CSCF 26 to the PCF 25 .
  • the PCF 25 maps a request sent by the GGSN 24 and an authorisation sent by the CSCF 26 based on NSAPI.
  • An operator may configure access point specific information to the GGSN to indicate whether communication with the PCF is required and for what kinds of PDP context, e.g. only when the QoS class indicates conversational, i.e. a voice transmission.
  • the PCF 25 address can also be configured to the GGSN 24 and to the CSCF 26 so that the GGSN 24 and the CSCF 26 can communicate with the same PCF 25 .
  • a new parameter e.g. the PCF address
  • the subscriber database such as HLR and/or the UMS (User Mobility Server).
  • the SGSN 23 receives the PCF 25 address from the subscriber database, e.g. HLR, and sends it to the GGSN 24 .
  • the GGSN 24 knows which PCF 25 to contact.
  • the CSCF receives the same PCF 25 address from the UMS and can contact the same PCF 25 .
  • PCF Interaction Required a new parameter describing whether communication with the PCF 25 is required, e.g. an information “PCF Interaction Required” is added to subscription information in the subscriber database HLR and the UMS.
  • the “PCF Interaction Required” in the HLR may be subscription specific or may be PDP context specific.
  • the SGSN 23 receives the information “PCF Interaction Required” from the HLR and sends it to the GGSN 24 .
  • the GGSN 24 knows whether it is necessary to communicate with the PCF or not when establishing a connection or modifying a connection or the like.
  • the CSCF 26 receives the information “PCF Interaction Required” from the UMS and knows therefrom whether or not communication with the PCF 25 is required.
  • PS Packet-switched domain interaction with Policy Control Function (PCF) 25 is shown and described.
  • PCF Policy Control Function
  • step 1 the mobile station 21 sends an INVITE message to the proxy CSCF 26 , the INVITE message containing a subscriber identification “Subscriber Id” and a call identifier “Call_Id”.
  • the proxy CSCF 26 forwards this message to the callee 27 .
  • the proxy CSCF 26 receives a positive acknowledgement from the callee terminal 27 , e.g. 183 w/SDP as defined in SIP.
  • the proxy CSCF 26 forwards this acknowledgement to the mobile station (caller) 21 .
  • the proxy CSCF 26 sends an authorise message (containing Subscriber Id, call identifier Call_Id, QoS negotiated, callee transport address) to the PCF 25 .
  • the Subscriber Id may e.g. be IMSI, MSISDN, or the IP address of the caller 21 (i.e. the PDP address in the GPRS/UMTS layer).
  • the Call_Id is required and used to map the call to the correct PDP context in the PCF 25 .
  • the QoS negotiated includes the QoS parameters negotiated for the call. In case of an emergency call, the proxy CSCF 26 will set the QoS parameter allocation/retention priority to the highest value.
  • the callee transport address is used in the GPRS/UMTS layer to set the TFT (Traffic Flow Template) for the PDP context.
  • the PCF 25 may acknowledge the authorise message of step 3 . by returning an authorise acknowledge (Subscriber Id, Call_Id) message to the proxy CSCF 26 .
  • the MS 21 requests to activate a PDP context (e.g. a secondary PDP context) for the call by sending an Activate PDP context request (PDP address, Call_Id, QoS Requested) message to the SGSN 23 .
  • a PDP context e.g. a secondary PDP context
  • step 6 a radio access bearer set-up procedure is performed.
  • step 7 the SGSN 24 sends a Create PDP context request (Subscriber Id, Call Id, QoS negotiated) message to the GGSN 24 .
  • a Create PDP context request Subscriber Id, Call Id, QoS negotiated
  • step 8 the GGSN 24 requests permission for the PDP context activation by sending a Permission Request (Request Id, Subscriber Id, Call_Id, QoS negotiated) message to the PCF 25 .
  • the first request message (step 8 .) creates a request state in the PCF 25 .
  • step 9 the PCF 25 replies by sending a decision (Request Id, QoS negotiated, callee transport address) message to the GGSN 24 .
  • the GGSN 24 sets the TFT for the PDP context according to the callee transport address.
  • the GGSN 24 may report that it has acted in acccordance with the decision by sending a Report State message (Request Id) to the PCF 25 .
  • Request Id Report State message
  • steps 11 ., 12 . the PDP context activation is reported in the known manner.
  • the messages 8 (request), 9 (decision), and 10 (report state) are COPS messages.
  • FIG. 2 illustrates the case of a PDP context activation. Steps 8 . to 10 . and the further steps shown in FIG. 2 are the same if the PDP context is to be modified.
  • PCF Interaction Required It may be operator specific whether a permission for PDP context activation is required from the PCF 25 .
  • a new parameter such as “PCF Interaction Required” is included in the subscription information in the HLR.
  • the SGSN receives the “PCF Interaction Required” from the HLR and shall send it to the GGSN 24 at PDP context activation/modification.
  • the GGSN 24 knows whether or not a communication with the PCF 25 is required when creating or modifying a PDP context.
  • the GGSN 3 , 24 , 33 ( FIGS. 3 to 5 ) can know the address of CSCF 4 , 26 (or CPS 34 of FIGS. 3 to 5 )
  • the parameters to be sent by the GGSN to find the right call or connection in the PCF may be any parameter to be sent by the GGSN to find the right call or connection in the PCF (CPS; PCF is the logical element; It may be a standalone element or located either in the CSCF or in the GGSN.) may be
  • FIGS. 3 to 5 show further embodiments of the present invention which provide a method and mechanism to combine charging information generated by a mobile core network and an IPT core network.
  • the mobile core network is represented by SGSN 32 and GGSN 33 .
  • the further necessary components for providing a mobile network are known to the skilled man and not shown in the drawings.
  • the IPT core network is represented by Call Processing Server (CPS) 34 .
  • CPS Call Processing Server
  • the further components of the IPT network are known to the skilled man and not illustrated in the drawings.
  • telephony calls require real time (RT) traffic and usually necessitate higher QoS level than a communication of other type such as e-mail transmission (which may be transported using lower QoS level and thus being charged at a lower rate).
  • RT real time
  • FIGS. 3 to 5 provide a mechanism for combining call-related charging information and controlling relevancy or coincidence between IPT QoS reservation (e.g. as requested by the call originating terminal in e.g. SIP: INVITE message) and mobile packet core network PDP context QoS (PDP context activation).
  • IPT QoS reservation e.g. as requested by the call originating terminal in e.g. SIP: INVITE message
  • PDP context QoS PDP context activation
  • FIGS. 3 to 5 show the message transmission between a mobile terminal (MT) 31 attached to the mobile network, SGSN 32 , GGSN 33 (SGSN 32 and GGSN 33 forming part of the mobile network to which MT 31 is attached), and Call Processing Server (CPS) 34 .
  • the CPS 34 comprises the Call State Control Function (CSCF) such as shown in FIGS. 1 and 2 so that the inscription of block 34 may also be “CSCF”.
  • CSCF Call State Control Function
  • the mobile terminal 31 When the mobile terminal 31 wants to establish a connection to another network element such as a telecommunication equipment of a party to be called, the mobile terminal 31 issues, as represented by step 1 ., a acaal establishment request such as an “INVITE” message of a Session Initiation Protocol such as SIP.
  • the INVITE message is sent from MT 31 to CPS 34 and contains the information elements “Call_Id” and “SDP: QoS”.
  • SDP stands for Serving Profile DataBase.
  • “Call_Id” represents a common identifier which is provided to allow to combine or otherwise benefit from links in charging data, e.g.
  • CDRs (charging data records) generated by support nodes such as GSNs (GPRS support nodes) and CSCF (or CPS).
  • This common identifier e.g. “Call_Id” is distributed in the connection establishment phase (e.g. call establishment phase) to the support nodes and CSCF (or CPS).
  • This technique is able to uniquely identify a connection or call to be established in all involved processing elements such as GGSN and CPS without requiring a direct interface between these components.
  • This method and structure provides a mechanism for combining charging data and/or checking QoS validity in different network types which e.g. provide an all-IP-connection between end terminals, e.g. IP telephony.
  • the mobile terminal 31 transmits a PDP context activation request to the SGSN 32 which request not only includes the usual information such as bearer type and codec, but additionally the parameter “Call ID”.
  • This parameter “Call_ID” and the further necessary known information elements are thereupon sent from SGSN 32 to GGSN 33 so that GGSN 33 is also informed about the common identifier “Call_ID” attributed to the connection to be established.
  • the GGSN 33 sends a check request to CPS 34 , the check request indicating the common identifier “Call_ID” and further information such as bearer type and codec.
  • the CPS 34 (or CSCF contained in CPS 34 ) performs a check for the connection to be established as identified by the common identifier “Call_ID” and checks that the required QoS parameters are valid in both call signalling (SIP/SDP) and bearer (PDP contexts).
  • the CSCF (CPS 34 ) performs this check for controlling the validity of the required QoS parameters before accepting (or proceeding with) the call establishment so as to be able to charge for the QoS provided in the call or connection of other type, or for other purposes than charging.
  • the CPS 34 issues OK or NOT OK as result of this check (Call_ID, SDP: QoS, bearer type, codec) and returns (step 5 .) a response to GGSN 33 indicating the check result (okay/not okay).
  • the GGSN 33 uses the information received in step 5 . for accepting (if check result is positive, “OK”) or rejecting (if check result is negative, “N OK”) the call-related PDP context activation, and returns a response to the SGSN 32 informing the latter on the acceptance or rejection of the PDP context activation (or modification).
  • the SGSN 32 performs the known steps upon receipt of the accept or reject response, and sends corresponding information to the mobile terminal 31 .
  • the CPS 34 may also directly transmit a response to mobile terminal 31 (step 6 .) returning a response to the call establishment request of step 1 .
  • a response “OK/NOK” of SIP may be transmitted in step 6 .
  • an additional message sequence between CSCF (or CPS) and GGSN 33 is provided for making a decision of how to proceed with a connection to be established.
  • the CPS (CSCF) 34 may also receive additional parameters in addition to “Call_ID” and base the decision on these additional parameters as well.
  • CPS CPS
  • the GGSN 33 is adapted to send the check request to the CPS (CSCF) 34 as step 3 . Therefore, GGSN 33 needs information on the address or name of CPS (CSCF). In a case where the GGSN 33 has no knowledge about the serving CSCF (CPS 34 ) where the mobile terminal 31 has registered with the SIP registration mechanism and has sent the INVITE message, the GGSN 33 has to be informed on the address or name of this serving CSCF (CPS) 34 .
  • the embodiment of FIG. 4 presents a solution to this problem.
  • the embodiment of FIG. 4 provides a new parameter, e.g. “S-CSCF_logicalname”, in a PDP context activation request for informing GGSN 33 about the address or name of the serving CSCF (or CPS) 34 so that GGSN 33 knows where to send a “QoS check” request.
  • a new parameter e.g. “S-CSCF_logicalname”
  • FIG. 4 is based on the structure shown in FIG. 3 and described above. The above description also applies for the message sequences and performed steps as shown in FIG. 4 .
  • the mobile terminal 31 is informed on the CPS (or CSCF) 34 to which it has registered, and is adapted to include information on the address or name of the S-CSCF (Serving CSCF in CPS 34 ) in the message sent in step 2 . to SGSN 32 and further transmitted to GGSN 33 .
  • This new parameter for indicating the address or name of the Serving CSCF is represented in FIG. 4 , by the parameter “S-CSCF_logicalname” sent in the PDP context activation request.
  • the GGSN 33 is now informed on the address or name of the correct CSCF (CPS), and sends the check request (step 3 .) to the CPS (CSCF) 34 indicated by this parameter.
  • the other steps shown in FIG. 4 are identical to same of FIG. 3 described above.
  • FIG. 5 provides an additional optional feature controllable by an end-user of mobile terminal 31 allowing an end-user or call originating equipment to request a “QoS check”, e.g. in a SIP: INVITE message.
  • the embodiment according to FIG. 5 includes all features of the embodiments of FIGS. 3 and 4 described above.
  • a new parameter e.g. “Require_ggsn_check” is Included into the connection establishment request sent, in step 1 ., from mobile terminal 31 to CPS (CSCF) 34 .
  • CSCF CPS
  • the structure and method shown in FIG. 5 is an addition to the combining mechanisms for charging data and QoS control as described and provided with regard to FIGS. 3 and 4 .
  • the embodiment according to FIG. 5 allows an optional selection of performing or not performing the check steps 3 . to 5 .
  • the CPS or CSCF included in CPS
  • the CPS is prepared to perform the check according to a step 4 ., and expects the check request message from GGSN 33 according to step 3 .
  • the CPS 34 After receiving the check request in step 3 ., the CPS 34 performs the check of step 4 .
  • the CPS (CSCF) 34 does not perform the QoS check according to step 4 . and does not require any check message from GGSN 33 .
  • the CSCF is informed whether or not the check procedure is required to proceed with call establishment.
  • the new check request parameter can of course have any arbitrary designation such as “Requirepdpqos_check” provided that it is understood by the CSCF.
  • This new parameter provided according to FIG. 5 and the optionality of performing or not performing a QoS check or check of any other type (step 4 .) is also applicable with a structure as shown in FIG. 3 which does not provide the indication of the logical name or address of CPS 34 according to step 2 . of FIG. 4 .
  • the GGSN 33 is informed by other means on the address of CPS 34 to which MT 31 is registered, e.g. by sending a message from CPS 34 to GGSN 33 .
  • the methods and mechanisms provided according to the embodiments of the invention may be implemented as software in GGSN 3 , 33 and/or CSCF/CPS 34 allowing a proper execution of the requests and checks as well as check result processing and charging information generation for providing a charging record for established connections.
  • the provided method and mechanism for checking QoS parameters may also be implemented separately from charging information generation.
  • the shown embodiments furthermore provide the possibility of controlling and inhibiting e.g. PDP context update for PDP contexts allocated for voice calls until a check from CPS 34 is performed. This can be managed by providing another message exchange between GGSN 33 and CPS 34 .
  • FIG. 6 shows a further embodiment of the invention (method and/or system) which is a modification of the embodiment shown in FIG. 2 .
  • the PCF 25 FIG. 2
  • the Proxy CSCF 26 FIG. 2
  • This structure provides the benefit of avoiding any external signalling between the PCF and CSCF so that the steps 3 . and 4 . of FIG. 2 can be omitted.
  • the authorization check according to these steps 3 ., 4 . of FIG. 2 is performed using internal processing within network element 25 ′ of FIG. 6 .
  • the signalling between PCF and CSCF is in this case merely an internal signalling (i.e. not so strictly limited by any standardization).
  • the PCF may therefore be a separate logical entity 25 as shown in FIG. 2 , may be integrated to the CSCF as shown in FIG. 6 , or may also be integrated to the GGSN 24 .
  • FIG. 7 shows another embodiment of a system and method in accordance with the present invention which provides a call-based PDP context activation/modification.
  • FIG. 7 presents a PDP context activation in case of a MO call. It is assumed that at least one PDP context is activated for the call. For the PDP context activation, a permission is requested from the PCF. The permission from the PCF is required to adjust the QoS of the PDP context to the QoS of the call.
  • the configuration information can define that a decision from the PCF is needed only for conversational PDP contexts, while for other PDP contexts, the PDP context activation shall proceed without PCF interaction. Only the parameters which are required for the GGSN-PCF communication are shown and described below. In the following, the steps shown in FIG. 7 will be described in detail.
  • the steps 6 , 7 and 10 are the same if the PDP context is modified.
  • the invention is not limited to a communication between GGSN ( 3 , 24 ) and PCF-CSCF (or CSCF/PCF).
  • PCF-CSCF or CSCF/PCF
  • the same communication is possible by replacing the GGSN 3 , 24 with the SGSN 2 , 23 , resulting in SGSN-PCF-CSCF (or CSCF/PCF) communication.

Abstract

The invention provides a method and system for establishing or handling a connection between a first and a second network element connected to different networks such as GPRS/UMTS and IP-based networks. The connection is established by means of at least one third network element such as a SGSN or GGSN arranged in one of the networks. The third network element is adapted to send, when receiving information on an establishment of a connection, a request to a fourth network element which may be a Call State Control Function (CSCF), a Policy Control Function (PCF), or a Call Processing Server (CPS). The request requests permission for establishing a requested type of connection, or requests a check of a connection parameter, and specifies the first and/or second network element and/or the connection or connection type to be established. The fourth network element returns a response specifying a permission for establishing a connection or connection type, or specifying a connection parameter.

Description

    FIELD OF THE INVENTION
  • The invention relates to a method and system for establishing a connection between two or more network elements. The connection may for example be a VoIP (Voice over Internet Protocol) call. The connection may involve e.g. an IP telephony layer or network and a GPRS/UMTS-based network transporting the call.
  • BACKGROUND OF THE INVENTION
  • Generally, for properly establishing and handling a connection between network elements such as a user equipment, for instance a mobile terminal, and another user terminal or database, etc., one or more intermediate network elements such as support nodes are involved. One or more connection parameters are used for defining connection characteristics such as PDP (Packet Data Protocol) context information, quality of service (QoS) requested or provided, charging-related information such as charging tariff, etc.
  • In particular in a case when a connection involves two or more networks of different types such as networks using different transmission protocols, e.g. GPRS/UMTS-based networks and IP-based networks, problems may occur in properly establishing the connection and setting the connection parameters.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method and system which are able to properly establish a connection between network elements, e.g. arranged in different networks, in an advantageous manner, as defined in the attached claims.
  • The connection can be properly established or processed, e.g. for charging purposes, by exchanging request and response between the third and fourth network element related to the permission for establishing a connection (or connection type such as PDP type), or to a connection parameter such as QoS (Quality of Service) so as to ensure correct handling of the connection.
  • The third network element may be a support node, preferably a gateway support node whereas the fourth network element may be a CSCF or PCF or CPS. The fourth network element may be part of, or provide, a IP telephony layer.
  • In accordance with one of the aspects of the invention, the communication happens between the PS (packet-switched) domain (e.g. GGSN or SGSN) and between the IM subsystem (CSCF).
  • According to one of the preferred embodiments of the invention, the fourth network element such as the IP telephony layer is allowed to control at least one connection parameter, e.g. to restrict a PDP (Packet Data Protocol) context activation or modification. For example, a conversational PDP context, i.e., a connection enabling a conversation between the caller and the callee, may only be activated when the first network element, e.g. a mobile terminal, is trying to make a call to the second network element. When, as an example, the connection parameter is a PDP context, and an activation or modification of PDP context is requested, the third network element such as a GGSN may send a permission request to the fourth network, such as CSCF or PCF or CPS, in order to check whether the PDP context activation or modification can be accepted.
  • This approach provides several advantages. First, the fourth network element such as CSCF learns the address of the third network element, e.g. the GGSN, from the request and therefore knows where to return the response. Otherwise, when the fourth network element were designed to send the information to the third network element before being addressed by the third network element, problems may arise when the fourth network element does not have information on the address of the third network element in charge of handling the connection.
  • Even when the first network element, e.g. a mobile terminal, should directly send information to the fourth network element when trying to establish a connection such as a call, the first network element does not yet have information on the address of the third network element in charge of subsequently handling the connection, and can therefore not send this address information to the fourth network element. Furthermore, if a message such as an authorize message would first be sent from the fourth to the third network element, the third network element would have to store information on call handling parameters such as PDP contexts which are not yet active. The third network element might then have to activate a timer, and to remove the authorize information after timer expiry, in case the PDP context activation should not be performed for some reason.
  • Furthermore, the solution proposed according to the present invention works also for roaming subscribers and thus provides additional advantage.
  • Generally, according to an aspect, the invention provides a solution for restricting e.g. PDP context activation or modification based on a call that will be carried on the PDP context.
  • According to one of the preferred embodiments of the invention, a common identifier is provided in the networks or layers working according to different protocols, e.g. in the GPRS/UMTS layer and the IP telephony layer, as well as in a control means or function such as CSCF or PCF. This common identifier may be used to map a PDP context to a call. The common identifier may be e.g. a call identifier such as Call_Id already provided in SIP (Session Initiation Protocol) messages.
  • As an alternative, the common identifier may also be an identifier allocated in one of the layers, e.g. in the GPRS/UMTS layer. For instance, the common identifier in this case may be NSAPI. In this case, this common identifier is preferably sent to the fourth network element, e.g. the CSCF, in a protocol message such as the INVITE message of SIP. The common identifier (e.g. NSAPI) may then be sent from the third network element, e.g. GGSN, to the fourth network element (e.g. PCF) as well as from a fifth network element (e.g. CSCF) to the fourth network element. The fourth network element then maps a request (sent by the third network element) and an authorisation (sent by the fifth network element such as CSCF) based on the common identifier, e.g. NSAPI.
  • In accordance with a further preferred embodiment of the invention, a mechanism is provided for combining a connection parameter such as charging info generated in a first network such as mobile core network (e.g. SGSN and GGSN), and in another network such an IPT (IP-based telephony) core network, e.g. CPS. According to this embodiment, a possibility for charging of QoS (Quality of Service) level used in telephony calls is provided.
  • According to this aspect of the invention, a mechanism for combining the call-related charging info and for controlling relevancy between QoS reservation in the one network (e.g. IPT network, with IPT QoS reservation being sent e.g. in the INVITE message of SIP) and QoS reservation (e.g. PDP context QoS context activation) in the other network (e.g. mobile packet core network) is provided. As an example, the delivered identifier such as Call Id is checked for charging purposes, and the requested QoS level relevancy or request is also checked both in the protocol message (e.g. SIP: INVITE) and PDP context activation message(s).
  • A new parameter may be introduced in PDP context activation for informing the third network element such as GGSN about the fourth network element such as serving CSCF, or integrated CSCF/PCF, or CPS. Therefore, the third network element is informed on the address of the fourth network element to which the QoS, check request is to be sent.
  • A further optional feature controllable by the end-user may be the possibility of requesting a QoS check by a terminal (e.g. first network element) in a protocol message such as SIP: INVITE.
  • According to this aspect of the invention, the preparation of a charging record based on QoS provided is possible.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the basic structure and message flow according to one embodiment of a method and system according to the invention;
  • FIG. 2 illustrates a further embodiment of a system and method in accordance with the present invention;
  • FIG. 3 shows a further embodiment of a system and method in accordance with the present invention;
  • FIG. 4 illustrates another embodiment of a system and method according to the present invention;
  • FIG. 5 shows another embodiment of a system and method in accordance with the present invention;
  • FIG. 6 illustrates a modification of the embodiment shown in FIG. 2; and
  • FIG. 7 shows another embodiment of a system and method in accordance with the present invention
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • FIG. 1 illustrates a first embodiment of a method or system in accordance with the invention. This embodiment provides a CSCF-permitted PDP context activation or modification. A user equipment (UE) 1 is a first network element which may a mobile station. SGSN 2 represent a serving node (serving GPRS support node) which serves user equipment 1 in handling a connection to another network element (second network element) such as a terminal of a called party which is not shown in FIG. 1. GGSN (Gateway GPRS Support Node) 3 represents a gateway node for handling connections to another network to which the called party terminal may be attached. A Call State Control Function (CSCF) 4 represents a fourth network element which decides on permission of PDP context activation or modification.
  • When the user equipment 1 intends to make a call to a terminal arranged in another network, e.g. an IP-based network, it sends a message such as an INVITE message of SIP (Session Initiation Protocol) to the CSCF 4. Thereafter, preferably after having received a response from CSCF 4 informing on the acceptance of the call request, the user equipment 1 sends an Activate (or Modify) PDP context request to SGSN 2. The SGSN 2 in response to this Activate (or Modify) PDP context request, sends a Create (or Update) PDP context request to GGSN 3.
  • In response to this request from SGSN 2, the GGSN 3 does not immediately perform a Create or Update of the PDP contexts but is adapted first to send a permission request to CSCF 4. In the embodiment of FIG. 1, the GGSN 3 sends this permission request to the CSCF 4 in order to check whether PDP context activation/modification can be accepted. In a modified embodiment, the permission request may also be sent to a policy control function PCF which may represent an additional optional network element or may be integrated with CSCF.
  • The GGSN 3 includes IMSI/MSISDN (and possibly the PDP address) in the permission request to identify the mobile, that is the user equipment 1. The GGSN 3 may additionally send, in the permission request, the requested QoS (Quality of Service) values as well as the address of the called party (B Party Address), if present in the traffic flow template TFT. If IMSI/MSISDN (and possibly PDP address) should not be sufficient to identify the user equipment 1 or the call, an additional information such as NSAPI may be used and transmitted to GGSN 3. In this case, the user equipment 1 preferably sends the information NSAPI of the PDP context in a call-set up message to the CSCF, e.g. in the SIP: INVITE message. The CSCF 4 (or if alternatively or additionally provided PCF) is then adapted to check that the NSAPI for the call contained in the call-set up message equals the NSAPI for the PDP context sent from the GGSN 3 in the permission request, so that the CSCF 4 (or the PCF) can authorise the correct PDP context. If there should be provided a separate PCF, the CSCF 4 is adapted to send the NSAPI to the PCF. Likewise, in this case, the GGSN 3 is adapted to send the permission request including NSAPI to the separate PCF.
  • In response to the permission request and after effecting the above described check, the CSCF 4 (or the PCF) sends a permission response to the GGSN 3. The permission response includes IMSI/MSISDN for identifying the user equipment 1 or the call for which the PDP context is to be created or updated, and preferably additionally includes information such as “call characteristics”. The call characteristics information preferably includes accepted QoS values, accepted B Party Information (preferably IP address and the port number of the called party), as well as an indication indicating whether the call is a normal call or an emergency call.
  • The GGSN 3 is adapted to set the QoS values to the ones received from the CSCF 4 (or the PCF). The GGSN 3 can set the allocation/retention priority to the highest value if the call is an emergency call. Furthermore, the GGSN 3 can set the traffic flow template TFT according to the B Party Information.
  • In case the call is an emergency call and the PDP context is used for this emergency call, the user equipment 1 may be informed thereon by sending this information from the GGSN 3 to the SGSN 2 which will forward this information to the (mobile) user equipment 1.
  • For sending the permission request, the GGSN 3 must know the address of the CSCF 4 for communication. In one embodiment of the invention, the CSCF address is added as a new parameter to the Activate (or Modify) PDP context request and the Create (or Update) PDP context request messages. In an alternative embodiment, the GGSN 3 is implemented to derive the CSCF address from the TFT of the signalling PDP context.
  • Further, the GGSN 3 may also be informed in some other way on the CSCF 4 address.
  • When another network element such as PCF is provided for deciding on the permission, the address of this network element (such as PCF) may be configured to the GGSN 3 (per access point) and to the CSCF 4.
  • Further, in accordance with another possible aspect of the invention, if the above described functionality (Permission Request and Permission Response) is also to be provided for roaming subscribers, a new parameter describing whether or not a permission from the CSCF (or the PCF) is needed at PDP context activation (or modification), is added to the subscription information in the subscriber database (such as Home Location Register HLR). This new parameter can be PDP context specific.
  • Returning now to FIG. 1, after receipt of the Permission Response, the GGSN 3 sets the PDP context and further information as necessary in accordance with the information contained in the Permission Response, such as accepted QoS value etc. Further, the GGSN 3 returns a Create (or Update) PDP context response to SGSN 2. In response thereto, the SGSN 2 sends an Activate (or Modify) PDP context response to the user equipment 1. Thereupon, the call is established and carried-out in the known manner.
  • FIG. 2 shows a further embodiment of the invention (method and/or system) which is provided with a Policy Control Function (PCF). The PCF has an interface towards the GGSN as well as to the CSCF. The PCF can be used for the communication between the IP telephony layer, i.e. proxy CSCF, and the GPRS/UMTS layer (GGSN). For example, a call can have effects on the PDP context which is activated for the call.
  • FIG. 2 illustrates an example for the communication and message flow between the GPRS/UMTS layer, i.e. the GGSN, and the IP telephony layer, i.e. the CSCF, via the PCF. The IP telephony layer is allowed to restrict PDP context activation (or modification).
  • According to FIG. 2, a call-based permission for PDP context activation/modification is performed. The case shown presents. a PDP context activation in case of a mobile originated (MO) call, that is a call originating from mobile station (MS) 21, the called party (callee) being represented by network element 27 (user equipment, database, etc.). For the PDP context activation, a permission is requested from the PCF 25. Only the parameters required for the communication between proxy CSCF 26 and PCF 25, and for the communication between GGSN 24 and PCF 25 are shown and described below.
  • Generally, according to the embodiment shown in FIG. 2, a common identifier is provided in the GPRS/UMTS layer (i.e. GGSN 24 of third generation (3G)), in the IP telephony layer, e.g. CSCF 26, and in the PCF 25 for mapping a PDP context to a call. The subscriber identifier, e.g. IMSI, is not enough when the MS 21 has multiple calls ongoing at the same time. In such a case, the common identifier used according to FIG. 2, is the call identifier Call_Id which already exists in SIP messages. The initiator of a call, in the present example mobile station 21, allocates the Call_Id in a manner known e.g. from SIP protocol which identifier Call_Id uniquely identifies the call.
  • According to a preferred embodiment such as the one shown in FIG. 2, this common identifier such as Call_Id is sent from the MS 21 to the SGSN 23 and from SGSN 23 to GGSN 24. Further, this common identifier is sent from the mobile station 21 to the proxy CSCF 26, preferably in a call-initiating message such as SIP:INVITE. Further, this common identifier is sent from the CSCF 26 to the PCF 25, and furthermore from the GGSN 24 to PCF 25. The PCF 25 then maps a request sent by the GGSN 24 and an authorisation sent by the CSCF 26 based on the common identifier (e.g. call Id), and decides on call permission and/or connection parameters such as QoS to be used.
  • In a modified embodiment, an identifier allocated in the GPRS/UMTS layer, e.g. in the GGSN 24, is used as the common identifier. As an example, NSAPI is used as such a common identifier. In this case, in accordance with one embodiment of the invention, the NSAPI is sent from the MS 21 to the CSCF 26 in the INVITE message or other call-set up message. Furthermore, NSAPI is sent from the GGSN 24 to the PCF 25, and from the CSCF 26 to the PCF 25. In this case, the PCF 25 maps a request sent by the GGSN 24 and an authorisation sent by the CSCF 26 based on NSAPI.
  • An operator may configure access point specific information to the GGSN to indicate whether communication with the PCF is required and for what kinds of PDP context, e.g. only when the QoS class indicates conversational, i.e. a voice transmission. The PCF 25 address can also be configured to the GGSN 24 and to the CSCF 26 so that the GGSN 24 and the CSCF 26 can communicate with the same PCF 25.
  • In an alternative embodiment, when the PCF address is not configured per network element such as elements 24 and 26, a new parameter, e.g. the PCF address, can be included in the subscription information in the subscriber database such as HLR and/or the UMS (User Mobility Server). The SGSN 23 receives the PCF 25 address from the subscriber database, e.g. HLR, and sends it to the GGSN 24. When receiving the PCF 25 address, the GGSN 24 knows which PCF 25 to contact. The CSCF receives the same PCF 25 address from the UMS and can contact the same PCF 25.
  • It may be home operator specific whether communication with the PCF 25 is required or not. For roaming subscribers, a new parameter describing whether communication with the PCF 25 is required, e.g. an information “PCF Interaction Required” is added to subscription information in the subscriber database HLR and the UMS. The “PCF Interaction Required” in the HLR may be subscription specific or may be PDP context specific. The SGSN 23 receives the information “PCF Interaction Required” from the HLR and sends it to the GGSN 24. When receiving the information “PCF Interaction Required”, the GGSN 24 knows whether it is necessary to communicate with the PCF or not when establishing a connection or modifying a connection or the like. The CSCF 26 receives the information “PCF Interaction Required” from the UMS and knows therefrom whether or not communication with the PCF 25 is required.
  • Therefore, according to this aspect of the invention, three new ideas are alternatively or combinedly incorporated:
    • (a) a common identifier is provided to map a PDP context to a call;
    • (b) a new parameter for HLR and UMS is provided, namely the PCF address; and/or
    • (c) a new HLR and UMS parameter is provided such as “PCF Interaction Required”.
  • According to the embodiment of FIG. 2, the PS (Packet-switched) domain interaction with Policy Control Function (PCF) 25 is shown and described. The steps performed when establishing a connection are described below in more detail with reference to the step numbers shown in FIG. 2.
  • In step 1., the mobile station 21 sends an INVITE message to the proxy CSCF 26, the INVITE message containing a subscriber identification “Subscriber Id” and a call identifier “Call_Id”. The proxy CSCF 26 forwards this message to the callee 27.
  • In step 2., the proxy CSCF 26 receives a positive acknowledgement from the callee terminal 27, e.g. 183 w/SDP as defined in SIP. The proxy CSCF 26 forwards this acknowledgement to the mobile station (caller) 21.
  • In step 3., after receiving the positive acknowledgement from the callee terminal 27, the proxy CSCF 26 sends an authorise message (containing Subscriber Id, call identifier Call_Id, QoS negotiated, callee transport address) to the PCF 25. The Subscriber Id may e.g. be IMSI, MSISDN, or the IP address of the caller 21 (i.e. the PDP address in the GPRS/UMTS layer). The Call_Id is required and used to map the call to the correct PDP context in the PCF 25. The QoS negotiated includes the QoS parameters negotiated for the call. In case of an emergency call, the proxy CSCF 26 will set the QoS parameter allocation/retention priority to the highest value. The callee transport address is used in the GPRS/UMTS layer to set the TFT (Traffic Flow Template) for the PDP context.
  • In step 4., the PCF 25 may acknowledge the authorise message of step 3. by returning an authorise acknowledge (Subscriber Id, Call_Id) message to the proxy CSCF 26.
  • In step 5., the MS 21 requests to activate a PDP context (e.g. a secondary PDP context) for the call by sending an Activate PDP context request (PDP address, Call_Id, QoS Requested) message to the SGSN 23.
  • In step 6., a radio access bearer set-up procedure is performed.
  • In step 7., the SGSN 24 sends a Create PDP context request (Subscriber Id, Call Id, QoS negotiated) message to the GGSN 24.
  • In step 8., the GGSN 24 requests permission for the PDP context activation by sending a Permission Request (Request Id, Subscriber Id, Call_Id, QoS negotiated) message to the PCF 25. The first request message (step 8.) creates a request state in the PCF 25.
  • In step 9., the PCF 25 replies by sending a decision (Request Id, QoS negotiated, callee transport address) message to the GGSN 24. The GGSN 24 sets the TFT for the PDP context according to the callee transport address.
  • In step 10., the GGSN 24 may report that it has acted in acccordance with the decision by sending a Report State message (Request Id) to the PCF 25.
  • In steps 11., 12., the PDP context activation is reported in the known manner.
  • In FIG. 2, the messages 8 (request), 9 (decision), and 10 (report state) are COPS messages.
  • FIG. 2 illustrates the case of a PDP context activation. Steps 8. to 10. and the further steps shown in FIG. 2 are the same if the PDP context is to be modified.
  • It may be operator specific whether a permission for PDP context activation is required from the PCF 25. To provide this function also for roaming subscribers, a new parameter such as “PCF Interaction Required” is included in the subscription information in the HLR. The SGSN receives the “PCF Interaction Required” from the HLR and shall send it to the GGSN 24 at PDP context activation/modification. When receiving the “PCF Interaction Required”, the GGSN 24 knows whether or not a communication with the PCF 25 is required when creating or modifying a PDP context.
  • The GGSN 3, 24, 33 (FIGS. 3 to 5) can know the address of CSCF 4, 26 (or CPS 34 of FIGS. 3 to 5)
      • by resolving the proxy CSCF address from the proxy CSCF domain name (preferred option);
      • from a new parameter “CSCF address” sent by the MS in the (secondary) PDP context activation message;
      • from the TFT of the signalling PDP context.
  • The parameters to be sent by the GGSN to find the right call or connection in the PCF (CPS; PCF is the logical element; It may be a standalone element or located either in the CSCF or in the GGSN.) may be
      • MS IP address (=PDP address) and MS port number (=TFT destination port number) (preferred option);
      • Peer IP address (=TFT source address) and peer port number (=TFT source port number).
  • FIGS. 3 to 5 show further embodiments of the present invention which provide a method and mechanism to combine charging information generated by a mobile core network and an IPT core network. The mobile core network is represented by SGSN 32 and GGSN 33. The further necessary components for providing a mobile network are known to the skilled man and not shown in the drawings. The IPT core network is represented by Call Processing Server (CPS) 34. The further components of the IPT network are known to the skilled man and not illustrated in the drawings.
  • The embodiments shown in the figures provide the possibility for charging of the QoS level used in telephony calls or connections of other type. As an example, telephony calls require real time (RT) traffic and usually necessitate higher QoS level than a communication of other type such as e-mail transmission (which may be transported using lower QoS level and thus being charged at a lower rate).
  • The embodiments shown in FIGS. 3 to 5 provide a mechanism for combining call-related charging information and controlling relevancy or coincidence between IPT QoS reservation (e.g. as requested by the call originating terminal in e.g. SIP: INVITE message) and mobile packet core network PDP context QoS (PDP context activation).
  • FIGS. 3 to 5 show the message transmission between a mobile terminal (MT) 31 attached to the mobile network, SGSN 32, GGSN 33 (SGSN 32 and GGSN 33 forming part of the mobile network to which MT 31 is attached), and Call Processing Server (CPS) 34. The CPS 34 comprises the Call State Control Function (CSCF) such as shown in FIGS. 1 and 2 so that the inscription of block 34 may also be “CSCF”.
  • In the following, the embodiment shown in FIG. 3 will be described in more detail.
  • When the mobile terminal 31 wants to establish a connection to another network element such as a telecommunication equipment of a party to be called, the mobile terminal 31 issues, as represented by step 1., a acaal establishment request such as an “INVITE” message of a Session Initiation Protocol such as SIP. The INVITE message is sent from MT 31 to CPS 34 and contains the information elements “Call_Id” and “SDP: QoS”. SDP stands for Serving Profile DataBase. “Call_Id” represents a common identifier which is provided to allow to combine or otherwise benefit from links in charging data, e.g. CDRs (charging data records) generated by support nodes such as GSNs (GPRS support nodes) and CSCF (or CPS). This common identifier, e.g. “Call_Id” is distributed in the connection establishment phase (e.g. call establishment phase) to the support nodes and CSCF (or CPS). This technique is able to uniquely identify a connection or call to be established in all involved processing elements such as GGSN and CPS without requiring a direct interface between these components. This method and structure provides a mechanism for combining charging data and/or checking QoS validity in different network types which e.g. provide an all-IP-connection between end terminals, e.g. IP telephony.
  • In a next step 2., the mobile terminal 31 transmits a PDP context activation request to the SGSN 32 which request not only includes the usual information such as bearer type and codec, but additionally the parameter “Call ID”. This parameter “Call_ID” and the further necessary known information elements are thereupon sent from SGSN 32 to GGSN 33 so that GGSN 33 is also informed about the common identifier “Call_ID” attributed to the connection to be established. In a next step 3., the GGSN 33 sends a check request to CPS 34, the check request indicating the common identifier “Call_ID” and further information such as bearer type and codec.
  • As a next step 4., the CPS 34 (or CSCF contained in CPS 34) performs a check for the connection to be established as identified by the common identifier “Call_ID” and checks that the required QoS parameters are valid in both call signalling (SIP/SDP) and bearer (PDP contexts). The CSCF (CPS 34) performs this check for controlling the validity of the required QoS parameters before accepting (or proceeding with) the call establishment so as to be able to charge for the QoS provided in the call or connection of other type, or for other purposes than charging. The CPS 34 issues OK or NOT OK as result of this check (Call_ID, SDP: QoS, bearer type, codec) and returns (step 5.) a response to GGSN 33 indicating the check result (okay/not okay). The GGSN 33 uses the information received in step 5. for accepting (if check result is positive, “OK”) or rejecting (if check result is negative, “N OK”) the call-related PDP context activation, and returns a response to the SGSN 32 informing the latter on the acceptance or rejection of the PDP context activation (or modification). The SGSN 32 performs the known steps upon receipt of the accept or reject response, and sends corresponding information to the mobile terminal 31.
  • The CPS 34 (or CSCF) may also directly transmit a response to mobile terminal 31 (step 6.) returning a response to the call establishment request of step 1. As an example, a response “OK/NOK” of SIP may be transmitted in step 6.
  • Therefore, an additional message sequence between CSCF (or CPS) and GGSN 33 is provided for making a decision of how to proceed with a connection to be established.
  • The CPS (CSCF) 34 may also receive additional parameters in addition to “Call_ID” and base the decision on these additional parameters as well.
  • The mechanism shown in FIG. 3 and described above is not restricted to QoS and charging aspects only but may also relate to checks or evaluations of other type. Furthermore, the decision made by CPS (CSCF) 34 may also be advisory and needs not be only a binary “OK/NOT OK” type.
  • As shown in FIGS. 3 to 5, the GGSN 33 is adapted to send the check request to the CPS (CSCF) 34 as step 3. Therefore, GGSN 33 needs information on the address or name of CPS (CSCF). In a case where the GGSN 33 has no knowledge about the serving CSCF (CPS 34) where the mobile terminal 31 has registered with the SIP registration mechanism and has sent the INVITE message, the GGSN 33 has to be informed on the address or name of this serving CSCF (CPS) 34. The embodiment of FIG. 4 presents a solution to this problem.
  • In addition to the above discussed structure and function of the embodiment of FIG. 3, the embodiment of FIG. 4 provides a new parameter, e.g. “S-CSCF_logicalname”, in a PDP context activation request for informing GGSN 33 about the address or name of the serving CSCF (or CPS) 34 so that GGSN 33 knows where to send a “QoS check” request.
  • The embodiment of FIG. 4 is based on the structure shown in FIG. 3 and described above. The above description also applies for the message sequences and performed steps as shown in FIG. 4.
  • The mobile terminal 31 is informed on the CPS (or CSCF) 34 to which it has registered, and is adapted to include information on the address or name of the S-CSCF (Serving CSCF in CPS 34) in the message sent in step 2. to SGSN 32 and further transmitted to GGSN 33. This new parameter for indicating the address or name of the Serving CSCF is represented in FIG. 4, by the parameter “S-CSCF_logicalname” sent in the PDP context activation request. With this additional information “S-CSCF_logicalname”, the GGSN 33 is now informed on the address or name of the correct CSCF (CPS), and sends the check request (step 3.) to the CPS (CSCF) 34 indicated by this parameter. The other steps shown in FIG. 4 are identical to same of FIG. 3 described above.
  • Furthermore, FIG. 5 provides an additional optional feature controllable by an end-user of mobile terminal 31 allowing an end-user or call originating equipment to request a “QoS check”, e.g. in a SIP: INVITE message.
  • The embodiment according to FIG. 5 includes all features of the embodiments of FIGS. 3 and 4 described above. In addition, according FIG. 5, a new parameter, e.g. “Require_ggsn_check”, is Included into the connection establishment request sent, in step 1., from mobile terminal 31 to CPS (CSCF) 34.
  • The structure and method shown in FIG. 5 is an addition to the combining mechanisms for charging data and QoS control as described and provided with regard to FIGS. 3 and 4. The embodiment according to FIG. 5 allows an optional selection of performing or not performing the check steps 3. to 5. When the parameter “Require_ggsn_check” is set in the SIP INVITE message (or connection establishment request message of other appropriate type) sent from the mobile terminal 31 to CPS 34, the CPS (or CSCF included in CPS) is prepared to perform the check according to a step 4., and expects the check request message from GGSN 33 according to step 3. After receiving the check request in step 3., the CPS 34 performs the check of step 4. as described above, with the step sequence thereafter being continued as described above. When the parameter “Require_ggsn_check” is not set or not present in the connection establishment request of step 1., the CPS (CSCF) 34 does not perform the QoS check according to step 4. and does not require any check message from GGSN 33. With this information provided by the new parameter “Require_ggsn_check”, the CSCF is informed whether or not the check procedure is required to proceed with call establishment. The new check request parameter can of course have any arbitrary designation such as “Requirepdpqos_check” provided that it is understood by the CSCF.
  • This new parameter provided according to FIG. 5, and the optionality of performing or not performing a QoS check or check of any other type (step 4.) is also applicable with a structure as shown in FIG. 3 which does not provide the indication of the logical name or address of CPS 34 according to step 2. of FIG. 4. In particular in a case where the GGSN 33 is informed by other means on the address of CPS 34 to which MT 31 is registered, e.g. by sending a message from CPS 34 to GGSN 33.
  • The methods and mechanisms provided according to the embodiments of the invention may be implemented as software in GGSN 3, 33 and/or CSCF/CPS 34 allowing a proper execution of the requests and checks as well as check result processing and charging information generation for providing a charging record for established connections.
  • The provided method and mechanism for checking QoS parameters may also be implemented separately from charging information generation.
  • The shown embodiments furthermore provide the possibility of controlling and inhibiting e.g. PDP context update for PDP contexts allocated for voice calls until a check from CPS 34 is performed. This can be managed by providing another message exchange between GGSN 33 and CPS 34.
  • FIG. 6 shows a further embodiment of the invention (method and/or system) which is a modification of the embodiment shown in FIG. 2. According to FIG. 6, the PCF 25 (FIG. 2) is integrated with the Proxy CSCF 26 (FIG. 2) and forms a single network element 25′. This structure provides the benefit of avoiding any external signalling between the PCF and CSCF so that the steps 3. and 4. of FIG. 2 can be omitted. The authorization check according to these steps 3., 4. of FIG. 2 is performed using internal processing within network element 25′ of FIG. 6. The signalling between PCF and CSCF is in this case merely an internal signalling (i.e. not so strictly limited by any standardization).
  • The further steps 1., 2., and 5. to 12. of FIG. 6 are identical to the ones described above with regard to FIG. 2.
  • The PCF may therefore be a separate logical entity 25 as shown in FIG. 2, may be integrated to the CSCF as shown in FIG. 6, or may also be integrated to the GGSN 24.
  • FIG. 7 shows another embodiment of a system and method in accordance with the present invention which provides a call-based PDP context activation/modification. FIG. 7 presents a PDP context activation in case of a MO call. It is assumed that at least one PDP context is activated for the call. For the PDP context activation, a permission is requested from the PCF. The permission from the PCF is required to adjust the QoS of the PDP context to the QoS of the call.
  • It could be configured to the GGSN whether a decision is needed from the PCF and for what kind of PDP contexts. As an example, the configuration information can define that a decision from the PCF is needed only for conversational PDP contexts, while for other PDP contexts, the PDP context activation shall proceed without PCF interaction. Only the parameters which are required for the GGSN-PCF communication are shown and described below. In the following, the steps shown in FIG. 7 will be described in detail.
      • Step 1. The MS sends the Invite (Subscriber Id) message to the proxy CSCF. The proxy CSCF forwards the message towards the callee.
      • Step 2. The proxy CSCF receives a positive acknowledgement, e.g. 183 w/SDP. The proxy CSCF forwards the acknowledgement to the caller.
      • Step 3. The MS activates a PDP context for the call by sending the Activate Secondary PDP Context Request (QoS Requested) message to the SGSN.
      • Step 4. The radio access bearer setup procedure is performed.
      • Step 5. The SGSN sends the Create PDP Context Request (PDP Address, QoS Negotiated) message to the GGSN.
      • Step 6. The GGSN requests permission for the PDP context activation by sending the Request (Request Id, Subscriber Id, QoS Negotiated) message to the PCF. The Subscriber Id is an identifier known both in the PS domain and in the IM subsystem, e.g., the IP address of the MS.
      • Step 7. The PCF replies by sending the Decision (Request Id, QoS Negotiated) message to the GGSN.
      • Steps 8.-9. The PDP context activation is accepted with the parameters received from the PCF.
      • Step 10. The GGSN may report that it has successfully completed performing the decision by sending the Report State (Request Id) message to the PCF.
  • The steps 6, 7 and 10 are the same if the PDP context is modified.
  • Although preferred embodiments have been shown and described above, the invention is not limited to the details described and shown and intends to cover all modifications, omissions, and additions of the features described above and shown in the drawings.
  • As an example, the invention is not limited to a communication between GGSN (3, 24) and PCF-CSCF (or CSCF/PCF). The same communication is possible by replacing the GGSN 3, 24 with the SGSN 2, 23, resulting in SGSN-PCF-CSCF (or CSCF/PCF) communication.

Claims (54)

1. Method for establishing or handling a connection between a first and a second network element connected to different networks, the connection being established by means of at least one third network element arranged in one of the networks, wherein the third network element, when receiving information on an establishment of a connection, sends a request to a fourth network element, the request requesting permission for establishing a requested type of connection, or requesting a check of a connection parameter, the request specifying the first and/or second network element and/or the connection or connection type to be established, the fourth network element returning a response specifying a permission for establishing a connection or connection type, or specifying a connection parameter, the establishment or handling of the connection being controlled in dependence on the response.
2. Method according to claim 1, wherein the third network element is a support node.
3. Method according to claim 2, wherein the support node is a gateway node, in particular a GGSN (Gateway GPRS Support Node).
4. Method according to any one of the preceding claims, wherein the fourth network element is a Call State Control Function (CSCF).
5. Method according to any one of the preceding claims, wherein the fourth network element is a Policy Control Function (PCF).
6. Method according to any one of the preceding claims, wherein the fourth network element is a Call Processing Server (CPS).
7. Method according to any one of the preceding claims, wherein the fourth network element is at least partly implemented as part of the third network element.
8. Method according to any one of the preceding claims, wherein the request is a permission request requesting permission to activate or modify a PDP Context for the first and/or second network element.
9. Method according to any one of the preceding claims, wherein the request is a check request requesting a check of at least one connection parameter.
10. Method according to any one of the preceding claims, wherein the response indicates call characteristics, preferably accepted QoS values, and/or accepted information on the second network element, and/or an indication indicating whether the connection is a normal call or an emergency call.
11. Method according to any one of the preceding claims, wherein the first network element addresses a fifth network element when trying to establish a call, the fifth network element sending an authorization message to the fourth network element characterizing at least one call parameter, the fourth network element forming its response to the third network element based on the contents of the authorization message.
12. Method according to any one of the preceding claims, wherein subscription information stored for the first network element includes a parameter defining the necessity of sending a request from the third to the fourth network element when establishing a connection between the first and second network element, this parameter being sent to the third network element when establishing a connection between the first and second network element, the third network element deciding on the necessity of sending the request to the fourth network element depending on the contents of this parameter.
13. Method according to claim 12, wherein, when the parameter indicates no necessity for sending a request from the third to the fourth network element, the third network element does not send such a request and proceeds with the establishing of the connection between the first and second network elements.
14. Method according to any one of the preceding claims, wherein a common identifier is provided for identifying a network element requesting the establishment to another network element, or for identifying a call, both in an IP-based network and an GPRS- or UMTS-based network.
15. Method according to claim 14, wherein the common identifier is used for mapping connection parameter, in particular PDP Context information, to a call, and is transmitted to both the third and the fourth network element when establishing a connection between the first and second network element.
16. Method according to claim 14 or 15, wherein the common identifier is NSAPI, or a Call Identifier provided in a connection initiating protocol, preferably SIP (Session Intitiation Protocol).
17. Method according to any one of the preceding claims, wherein an address of the fourth network element is contained in subscription information stored for the first network element, the address being transmitted to the third network element when establishing a connection being the first and second network element.
18. Method according to any one of the preceding claims, wherein a charging record for charging for the connection is provided taking account of the result of a check of the connection parameter.
19. Method according to any one of the preceding claims, wherein the connection parameter indicates requested or accepted QoS, and the QoS information provided in both the signalling and user traffic is checked, a charging record being provided taking account of the check result.
20. Method according to claim 19, wherein the QoS check is effected in response to a check request.
21. Method according to any one of the preceding claims, wherein the connection parameter indicates call characteristics, preferably accepted QoS values, and/or information about the second network element, and/or an indication indicating whether the connection is a normal call or an emergency call.
22. Method according to any one of the preceding claims, wherein the connection involves at least two networks of different types, preferably a GPRS/UMTS-based network and an IP-based network, and QoS values provided provided in both networks for the connection are checked and compared for gaining charging-related information.
23. Method according to any one of the preceding claims, wherein a check request for checking a charging-related parameter is sent from the first network element to the fourth or another network element when sending a call establishment request.
24. System for establishing or handling a connection between a first and a second network element connected to different networks, the connection being established by means of at least one third network element arranged in one of the networks, wherein the third network element is adapted to send, when receiving information on an establishment of a connection, a request to a fourth network element, the request requesting permission for establishing a requested type of connection, or requesting a check of a connection parameter, the request specifying the first and/or second network element and/or the connection or connection type to be established, the fourth network element returning a response specifying a permission for establishing a connection or connection type, or specifying a connection parameter, the establishment or handling of the connection being controlled in dependence on the response.
25. System according to claim 24, wherein the third network element is a support node.
26. System according to claim 25, wherein the support node is a gateway node, in particular a GGSN (Gateway GPRS Support Node).
27. System according to any one of the preceding system claims, wherein the fourth network element is a Call State Control Function (CSCF).
28. System according to any one of the preceding system claims, wherein the fourth network element is a Policy Control Function (PCF).
29. System according to any one of the preceding system claims, wherein the fourth network element is a Call Processing Server (CPS).
30. System according to any one of the preceding system claims, wherein the fourth network element is at least partly implemented as part of the third network element.
31. System according to any one of the preceding system claims, wherein the request is a permission request requesting permission to activate or modify a PDP Context for the first and/or second network element.
32. System according to any one of the preceding system claims, wherein the request is a check request requesting a check of at least one connection parameter.
33. System according to any one of the preceding system claims, wherein the response indicates call characteristics, preferably accepted QoS values, and/or accepted information on the second network element, and/or an indication indicating whether the connection is a normal call or an emergency call.
34. System according to any one of the preceding system claims, wherein the first network element is adapted to address a fifth network element when trying to establish a call, the fifth network element being adapted to send an authorization message to the fourth network element characterizing at least one call parameter, the fourth network element being adapted to form its response to the third network element based on the contents of the authorization message.
35. System according to any one of the preceding system claims, wherein subscription information stored for the first network element includes a parameter defining the necessity of sending a request from the third to the fourth network element when establishing a connection between the first and second network element, this parameter being sent to the third network element when establishing a connection between the first and second network element, the third network element being adapted to decide on the necessity of sending the request to the fourth network element depending on the contents of this parameter.
36. System according to claim 35, wherein, when the parameter indicates no necessity for sending a request from the third to the fourth network element, the third network element does not send such a request and proceeds with the establishing of the connection between the first and second network elements.
37. System according to any one of the preceding system claims, wherein a common identifier is provided for identifying a network element requesting the establishment to another network element, or for identifying a call, both in an IP-based network and an GPRS- or UMTS-based network.
38. System according to claim 37, wherein the common identifier is used for mapping connection parameter, in particular PDP Context information, to a call, and is transmitted to both the third and the fourth network element when establishing a connection between the first and second network element.
39. System according to claim 37 or 38, wherein the common identifier is NSAPI, or a Call Identifier provided in a connection initiating protocol, preferably SIP (Session Intitiation Protocol).
40. System according to any one of the preceding system claims, wherein an address of the fourth network element is contained in subscription information stored for the first network element, the address being transmittable to the third network element when establishing a connection being the first and second network element.
41. System according to any one of the preceding system claims, wherein a charging record for charging for the connection is provided taking account of the result of a check of the connection parameter.
42. System according to any one of the preceding system claims, wherein the connection parameter indicates requested or accepted QoS, and the QoS information provided in both the signalling and user traffic is checked, a charging record being provided taking account of the check result.
43. System according to claim 42, wherein the QoS check is effected in response to a check request.
44. System according to any one of the preceding system claims, wherein the connection parameter indicates call characteristics, preferably accepted QoS values, and/or information about the second network element, and/or an indication indicating whether the connection is a normal call or an emergency call.
45. System according to any one of the preceding system claims, wherein the connection involves at least two networks of different types, preferably a GPRS/UMTS-based network and an IP-based network, and QoS values provided provided in both networks for the connection are checked and compared for gaining charging-related information.
46. System according to any one of the preceding system claims, wherein a check request for checking a charging-related parameter is sent from the first network element to the fourth or another network element when sending a call establishment request.
47. A method for establishing a connection in a two-layer communication network comprising a first communication network layer adapted to establish a communication channel to a terminal and a second communication network layer adapted to establish a session carried on said communication channel, said method comprising the steps of:
establishing a session with an identifier, establishing a communication channel with said identifier,
authorizing said communication channel by said session using said identifier.
48. Method according to claim 47, wherein said authorizing comprises the steps of:
a network element in said first communication network layer (e.g. GGSN) initiating a request for said authorization at communication channel establishment
a network element in said second communication network layer (e.g. CSCF) performing said authorization.
49. Method according to claim 47 or 48, wherein said first communication network layer is a GPRS/UMTS layer, and said second communication network layer is an IP Multimedia Subsystem.
50. Method according to claim 47, 48, or 49, wherein said terminal is a User equipment or Mobile Station.
51. A system for establishing a connection in a two-layer communication network comprising a first communication network layer adapted to establish a communication channel to a terminal and a second communication network layer adapted to establish a session carried on said communication channel, said system being adapted:
to establish a session with an identifier,
to establish a communication channel with said identifier,
to authorize said communication channel by said session using said identifier.
52. System according to claim 51, wherein for performing said authorizing:
a network element in said first communication network layer is adapted to initiate a request for said authorization at communication channel establishment
a network element in said second communication network layer is adapted to perform said authorization.
53. System according to claim 51 or 52, wherein said first communication network layer is a GPRS/UMTS layer, and said second communication network layer is an IP Multimedia Subsystem.
54. System according to claim 51, 52, or 53, wherein said terminal is a User equipment or Mobile Station.
US13/039,264 2000-10-09 2011-03-02 Method and System For Establishing A Connection Between Network Elements Abandoned US20110158174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/039,264 US20110158174A1 (en) 2000-10-09 2011-03-02 Method and System For Establishing A Connection Between Network Elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/EP2000/009884 WO2002032165A1 (en) 2000-10-09 2000-10-09 Method and system for establishing a connection between network elements
US39841203A 2003-08-26 2003-08-26
US13/039,264 US20110158174A1 (en) 2000-10-09 2011-03-02 Method and System For Establishing A Connection Between Network Elements

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2000/009884 Continuation WO2002032165A1 (en) 2000-10-09 2000-10-09 Method and system for establishing a connection between network elements
US39841203A Continuation 2000-10-09 2003-08-26

Publications (1)

Publication Number Publication Date
US20110158174A1 true US20110158174A1 (en) 2011-06-30

Family

ID=8164124

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/398,412 Active 2024-07-17 US7944813B1 (en) 2000-10-09 2000-10-09 Method and system for establishing a connection between network elements
US13/039,264 Abandoned US20110158174A1 (en) 2000-10-09 2011-03-02 Method and System For Establishing A Connection Between Network Elements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/398,412 Active 2024-07-17 US7944813B1 (en) 2000-10-09 2000-10-09 Method and system for establishing a connection between network elements

Country Status (9)

Country Link
US (2) US7944813B1 (en)
EP (2) EP1327365B1 (en)
JP (1) JP4223806B2 (en)
KR (1) KR100730394B1 (en)
CN (3) CN1202681C (en)
AU (1) AU2001213843A1 (en)
CA (2) CA2423276C (en)
MX (1) MXPA03003036A (en)
WO (1) WO2002032165A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252695A1 (en) * 2001-10-08 2004-12-16 Juha Rasanen Service and capability negotiotion in a network using single numbering scheme
US20080084871A1 (en) * 2004-09-30 2008-04-10 Yanhong Wang Method and Apparatus for Service Identifying and Routing in Multimedia Broadcast/Multicast Service System
US20100135239A1 (en) * 2003-08-26 2010-06-03 Tuija Hurtta Method and system for establishing a connection between network elements
US20140050179A1 (en) * 2011-04-28 2014-02-20 Samsung Electronics Co., Ltd. Method and system for reserving resources in mobile communication system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408948B2 (en) 2001-04-17 2008-08-05 Nokia Corporation Packet mode speech communication
US7386000B2 (en) 2001-04-17 2008-06-10 Nokia Corporation Packet mode speech communication
CN100455045C (en) * 2001-04-17 2009-01-21 诺基亚公司 One-to-one communication
DE10151743A1 (en) * 2001-10-19 2003-04-30 Siemens Ag Method for carrying out instantaneous message traffic (instant messaging) with packet-switched data
AU2002224990A1 (en) * 2002-01-10 2003-07-24 Nokia Corporation Method and system for proxying a message
US7505431B2 (en) 2002-03-26 2009-03-17 Interdigital Technology Corporation RLAN wireless telecommunication system with RAN IP gateway and methods
US7489672B2 (en) 2002-03-26 2009-02-10 Interdigital Technology Corp. RLAN wireless telecommunication system with RAN IP gateway and methods
US8432893B2 (en) 2002-03-26 2013-04-30 Interdigital Technology Corporation RLAN wireless telecommunication system with RAN IP gateway and methods
US7406068B2 (en) 2002-03-26 2008-07-29 Interdigital Technology Corporation TDD-RLAN wireless telecommunication system with RAN IP gateway and methods
US7394795B2 (en) 2002-03-26 2008-07-01 Interdigital Technology Corporation RLAN wireless telecommunication system with RAN IP gateway and methods
DE10297809D2 (en) * 2002-08-16 2005-07-07 Ag Siemens A method for authenticating a user of a communication terminal when registering in and using a service network
JP4373655B2 (en) * 2002-09-19 2009-11-25 株式会社エヌ・ティ・ティ・ドコモ Packet communication terminal, packet communication system, and packet communication method
US8161158B2 (en) 2002-09-25 2012-04-17 Nokia Corporation Method in a communication system, a communication system and a communication device
US8661079B2 (en) 2003-02-20 2014-02-25 Qualcomm Incorporated Method and apparatus for establishing an invite-first communication session
US7826353B2 (en) 2003-05-05 2010-11-02 Nokia Corporation Method, system and network element for authorizing a data transmission
WO2005015875A1 (en) * 2003-07-31 2005-02-17 T-Mobile Deutschland Gmbh Transparent access authentication in gprs core networks
EP3148155B1 (en) 2003-08-18 2019-12-25 Microsoft Technology Licensing, LLC Method and system for service denial and termination on a wireless network
US7570590B2 (en) * 2003-10-28 2009-08-04 Alcatel-Lucent Usa Inc. Decision tree logic for determining the optimal value for QoS uplink and downlink maximum bitrate attributes
US7623530B2 (en) 2003-11-20 2009-11-24 Nokia Corporation Indication of service flow termination by network control to policy decision function
CN100397831C (en) * 2004-01-16 2008-06-25 华为技术有限公司 System and method for realizing IP multimedia business monitoring
DE102004004527B4 (en) * 2004-01-22 2006-04-20 Siemens Ag Method for authorization control of data transmission in a data mobile network
MX2007001408A (en) * 2004-08-04 2007-04-16 Lg Electronics Inc Broadcast/multicast service system and method providing inter-network roaming.
US10178522B2 (en) * 2005-08-02 2019-01-08 Qualcomm Incorporated VoIP emergency call support
EP1950992A4 (en) 2005-11-01 2011-07-20 Ntt Docomo Inc Communication device and communication method
CN100407876C (en) * 2006-01-26 2008-07-30 华为技术有限公司 User's device attaching method
US7860102B2 (en) * 2006-02-20 2010-12-28 Nokia Corporation Call establishment for multimedia call
CN100426752C (en) * 2006-05-08 2008-10-15 华为技术有限公司 Method and system for acquiring connection between network elements
KR100764115B1 (en) * 2006-08-29 2007-10-08 재단법인서울대학교산학협력재단 Method and apparatus for linking in zigbee networks
US8176525B2 (en) * 2006-09-29 2012-05-08 Rockstar Bidco, L.P. Method and system for trusted contextual communications
CN101163091B (en) 2006-10-10 2011-05-11 华为技术有限公司 Resource admission control system and method
CN101163102B (en) * 2006-10-10 2010-07-21 华为技术有限公司 Resource admission control method and policy decision functional unit
CN101425959B (en) * 2007-10-29 2013-04-24 华为技术有限公司 Bearing processing method and apparatus
GB0722370D0 (en) * 2007-11-14 2007-12-27 Skype Ltd Authentication system and method
CN101483928B (en) 2008-01-11 2011-04-20 华为技术有限公司 Establishing method, mobile network and policy control entity for data connection of mobile network
US10200418B2 (en) * 2014-01-31 2019-02-05 Avaya Inc. Call context conveyance

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761638A (en) * 1970-12-30 1973-09-25 Ibm Process and device for identifying connections in a switching network
US5722087A (en) * 1994-04-13 1998-02-24 Ne-Products Oy Method for interpreting dialled digits of a dialling sequence transmitted by a dialling means to a radio transceiver
US5909648A (en) * 1996-04-11 1999-06-01 Northern Telecom Limited Network interface and method for providing complete reception of data
US5925137A (en) * 1996-03-28 1999-07-20 Nec Corporation Alternate routing of management message to simplified network element in a ring network
US5933786A (en) * 1994-11-14 1999-08-03 Nokia Telecommunictions Oy Subscriber network element
US6208879B1 (en) * 1996-04-26 2001-03-27 Mitsubishi Denki Kabushiki Kaisha Mobile information terminal equipment and portable electronic apparatus
US6230018B1 (en) * 1998-05-14 2001-05-08 Nortel Networks Limited Devices and processing in a mobile radio communication network having calibration terminals
US6327483B1 (en) * 1998-02-20 2001-12-04 Nec Corporation Mobile radio communication equipment
US6665495B1 (en) * 2000-10-27 2003-12-16 Yotta Networks, Inc. Non-blocking, scalable optical router architecture and method for routing optical traffic
US6675190B1 (en) * 1998-10-08 2004-01-06 Alcatel Method for cooperative multitasking in a communications network, and a network element for carrying out the method
US6771982B1 (en) * 1999-10-20 2004-08-03 Curo Interactive Incorporated Single action audio prompt interface utlizing binary state time domain multiple selection protocol
US6792284B1 (en) * 1999-04-30 2004-09-14 Nokia Mobile Phones Ltd. Method and arrangement for managing cell reselection in a terminal for a cellular system
US6968209B1 (en) * 1999-07-05 2005-11-22 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for synchronizing databases in portable communication devices
US6973039B2 (en) * 2000-12-08 2005-12-06 Bbnt Solutions Llc Mechanism for performing energy-based routing in wireless networks
US7076255B2 (en) * 2000-04-05 2006-07-11 Microsoft Corporation Context-aware and location-aware cellular phones and methods
US7747282B1 (en) * 1999-06-23 2010-06-29 Siemens Aktiengesellschaft Mobile phone with expanded telephone directory

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128938C2 (en) * 1991-08-30 1995-12-14 Siemens Ag Method for setting up virtual connections in packet switching networks
WO1999013266A1 (en) * 1997-09-08 1999-03-18 Simon Jerome H Architectural lighting distributed from contained radially collimated light and compact efficient luminaires
US5377186A (en) * 1993-07-21 1994-12-27 Telefonaktiebolaget L M Ericsson System for providing enhanced subscriber services using ISUP call-setup protocol
FI104869B (en) * 1995-05-24 2000-04-14 Ericsson Telefon Ab L M Method for establishing a voice connection between networks and an intelligent network service
FI103005B (en) * 1996-03-25 1999-03-31 Nokia Telecommunications Oy Priority of sending data in router
NO304570B1 (en) * 1997-05-20 1999-01-11 Ericsson Telefon Ab L M Procedure related to GPRS (General Packet Radio Service) system with packet switched connections
AU738855B2 (en) * 1997-06-20 2001-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Data packet radio service with enhanced mobility management
US6937566B1 (en) * 1997-07-25 2005-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic quality of service reservation in a mobile communications network
US6097951A (en) 1997-08-06 2000-08-01 Northern Telecom Limited Method and apparatus for wireless network architecture based on subscriber distribution
DE19742681C2 (en) 1997-09-26 2003-03-06 Ericsson Telefon Ab L M GPRS subscriber selection from several Internet service providers
DE19743169A1 (en) * 1997-09-30 1999-04-01 Daimler Benz Ag Process for frame synchronization of a received signal
US6031896A (en) 1998-10-23 2000-02-29 Gte Laboratories Incorporated Real-time voicemail monitoring and call control over the internet
KR100343172B1 (en) * 1998-10-29 2002-08-22 삼성전자 주식회사 Wireless data transmission method and interworking device between mobile terminal and heterogeneous signal
AR023186A1 (en) * 1999-03-31 2002-09-04 Ericsson Telefon Ab L M SYSTEM AND METHOD OF SELECTION OF AN INTERURBAN COMMUNICATIONS SERVICE PROVIDER
CA2376160A1 (en) * 1999-06-15 2000-12-21 Telefonaktiebolaget Lm Ericsson System and method of providing a required quality of service (qos) level for a mobile-originated call routed through a packet-switched network
US20020161922A1 (en) * 2001-04-30 2002-10-31 Scott Frank F. Method for adapting a characteristic of a call server
US20070271453A1 (en) * 2006-05-19 2007-11-22 Nikia Corporation Identity based flow control of IP traffic

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761638A (en) * 1970-12-30 1973-09-25 Ibm Process and device for identifying connections in a switching network
US5722087A (en) * 1994-04-13 1998-02-24 Ne-Products Oy Method for interpreting dialled digits of a dialling sequence transmitted by a dialling means to a radio transceiver
US5933786A (en) * 1994-11-14 1999-08-03 Nokia Telecommunictions Oy Subscriber network element
US5925137A (en) * 1996-03-28 1999-07-20 Nec Corporation Alternate routing of management message to simplified network element in a ring network
US5909648A (en) * 1996-04-11 1999-06-01 Northern Telecom Limited Network interface and method for providing complete reception of data
US6208879B1 (en) * 1996-04-26 2001-03-27 Mitsubishi Denki Kabushiki Kaisha Mobile information terminal equipment and portable electronic apparatus
US6327483B1 (en) * 1998-02-20 2001-12-04 Nec Corporation Mobile radio communication equipment
US6230018B1 (en) * 1998-05-14 2001-05-08 Nortel Networks Limited Devices and processing in a mobile radio communication network having calibration terminals
US6675190B1 (en) * 1998-10-08 2004-01-06 Alcatel Method for cooperative multitasking in a communications network, and a network element for carrying out the method
US6792284B1 (en) * 1999-04-30 2004-09-14 Nokia Mobile Phones Ltd. Method and arrangement for managing cell reselection in a terminal for a cellular system
US7747282B1 (en) * 1999-06-23 2010-06-29 Siemens Aktiengesellschaft Mobile phone with expanded telephone directory
US6968209B1 (en) * 1999-07-05 2005-11-22 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for synchronizing databases in portable communication devices
US6771982B1 (en) * 1999-10-20 2004-08-03 Curo Interactive Incorporated Single action audio prompt interface utlizing binary state time domain multiple selection protocol
US7076255B2 (en) * 2000-04-05 2006-07-11 Microsoft Corporation Context-aware and location-aware cellular phones and methods
US6665495B1 (en) * 2000-10-27 2003-12-16 Yotta Networks, Inc. Non-blocking, scalable optical router architecture and method for routing optical traffic
US6973039B2 (en) * 2000-12-08 2005-12-06 Bbnt Solutions Llc Mechanism for performing energy-based routing in wireless networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EN 301 344 V6.3.2 (1999-07) European Standard (Telecommunications series) Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service description; EUROPEAN TELECOMMUNICATIONS STANDARD INSTITUTE, June 18, 1999 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252695A1 (en) * 2001-10-08 2004-12-16 Juha Rasanen Service and capability negotiotion in a network using single numbering scheme
US8234382B2 (en) * 2001-10-08 2012-07-31 Nokia Corporation Service and capability negotiation in a network using single numbering scheme
US20100135239A1 (en) * 2003-08-26 2010-06-03 Tuija Hurtta Method and system for establishing a connection between network elements
US20080084871A1 (en) * 2004-09-30 2008-04-10 Yanhong Wang Method and Apparatus for Service Identifying and Routing in Multimedia Broadcast/Multicast Service System
US8325641B2 (en) * 2004-09-30 2012-12-04 Huawei Technologies Co., Ltd Method and apparatus for service identifying and routing in multimedia broadcast/multicast service system
US20140050179A1 (en) * 2011-04-28 2014-02-20 Samsung Electronics Co., Ltd. Method and system for reserving resources in mobile communication system
US10064104B2 (en) * 2011-04-28 2018-08-28 Samsung Electronics Co., Ltd. Method and system for reserving resources in mobile communication system

Also Published As

Publication number Publication date
EP1959695B1 (en) 2012-11-21
CN1202681C (en) 2005-05-18
CA2423276C (en) 2012-04-03
WO2002032165A1 (en) 2002-04-18
AU2001213843A1 (en) 2002-04-22
CN1607849A (en) 2005-04-20
CA2643419A1 (en) 2002-04-18
CN1454434A (en) 2003-11-05
KR20040004396A (en) 2004-01-13
CN1322773C (en) 2007-06-20
EP1327365A1 (en) 2003-07-16
KR100730394B1 (en) 2007-06-20
JP4223806B2 (en) 2009-02-12
US7944813B1 (en) 2011-05-17
EP1327365B1 (en) 2012-07-04
CN1665322A (en) 2005-09-07
JP2004523935A (en) 2004-08-05
EP1959695A1 (en) 2008-08-20
CN100361475C (en) 2008-01-09
CA2423276A1 (en) 2002-04-18
MXPA03003036A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
US7944813B1 (en) Method and system for establishing a connection between network elements
US7684786B2 (en) Method and system for establishing a connection between network elements
KR100879811B1 (en) Technique for providing announcements in mobile-originated calls
EP1776824B1 (en) Method of managing a connection release, corresponding system and device
US8843992B2 (en) Method, apparatuses and computer program for dynamically configuring a proxy call session control function of the IP multimedia subsystem from a policy control rules server
EP2232822B1 (en) Control of quality-of-service preconditions in an ip multimedia subsystem
JP4875165B2 (en) Apparatus and method for guaranteeing service requirements for each user equipment to bearer
US7941547B2 (en) Policy information in multiple PDFs
CN104322136A (en) Handling communication sessions in a communications network
US7437142B2 (en) Method and system for enabling emergency sessions to be established in abnormal cases
JP2007251977A (en) Method for giving access to ip multimedia subsystem
US20050154780A1 (en) Pdp context error handling method
TW201114226A (en) Control of session parameter negotiation for communication connection
RU2387103C2 (en) Method and system for establishing connection between network elements
KR100730397B1 (en) Method and system for establishing a connection between network elements
JP2009065683A (en) Method and system for establishing connection between network elements
JP2007195211A (en) Method and system for establishing connection between network elements

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOKIA TECHNOLOGIES OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA CORPORATION;REEL/FRAME:035602/0408

Effective date: 20150116

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION