US20110107503A1 - Compressible Liner for Impact Protection - Google Patents

Compressible Liner for Impact Protection Download PDF

Info

Publication number
US20110107503A1
US20110107503A1 US12/999,004 US99900409A US2011107503A1 US 20110107503 A1 US20110107503 A1 US 20110107503A1 US 99900409 A US99900409 A US 99900409A US 2011107503 A1 US2011107503 A1 US 2011107503A1
Authority
US
United States
Prior art keywords
liner
compressible liner
protuberances
range
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/999,004
Inventor
Donald Edward Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strategic Sports Ltd
Original Assignee
Donald Edward Morgan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donald Edward Morgan filed Critical Donald Edward Morgan
Priority to US12/999,004 priority Critical patent/US20110107503A1/en
Publication of US20110107503A1 publication Critical patent/US20110107503A1/en
Assigned to Strategic Sports Limited, MORGAN, DONALD EDWARD reassignment Strategic Sports Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN, DONALD EDWARD
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/124Cushioning devices with at least one corrugated or ribbed layer
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/125Cushioning devices with a padded structure, e.g. foam
    • A42B3/128Cushioning devices with a padded structure, e.g. foam with zones of different density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/04Protection helmets
    • F41H1/08Protection helmets of plastics; Plastic head-shields

Definitions

  • the present invention relates to an apparatus and a method for improved impact protection using a compressible liner.
  • the brain is also susceptible to impact injury against the inside of the skull.
  • the brain is a jelly like soft tissue suspended within the enclosure of the hard skull in a bath of cerebral spinal fluid.
  • the brain is flexibly supported within the skull by the brain stem and spinal cord at the base of the brain, whilst about the general outer periphery of the brain the dura-mater membrane connects the brain to the skull at various suture points.
  • An impact to the travelling skull may cause the skull to rapidly decelerate whilst the flexibly supported brain continues to travel and impact against the inside of the skull.
  • the impact of the brain against the skull may cause contusions and/or haemorrhaging to the brain. Thus it may be important to decelerate the head appropriately to minimise internal injuries.
  • Bone tests for the human skull have indicated that the temporal portion of the skull has a significantly reduced bone strength compared with other portions of the skull. Consequently the temporal portion of the skull is more vulnerable to impact injury compared with other portions of the skull.
  • current helmets are not manufactured with a compressible liner to provide different zones of impact protection about the skull.
  • baby capsule in the specification and the claims is taken to include one or more of rear facing infant or baby seats for the seat of a car, reclining rear facing seats for an infant or a baby and seats or capsules for children up to approximately 1 year of age.
  • child safety seat in the specification and the claims is taken to include one or more of forward facing toddler seats, toddler seats in general, seating for children up to approximately 4 years of age, booster seats/cushions, seats without a backrest and seating in general for children for approximate ages of 4 to 8 years of age.
  • Booster seats may be described as seats without a backrest that are designed so as to raise the seating position of the child so that the sash of the existing adult lap-sash seatbelt appropriately engages the child's shoulder and chest.
  • Toddler seats may be differentiated from booster seats in that they may have an independent five point harness to secure the child to the toddler seat, the toddler seat then being secured to the existing seat or other attachments points within a car or other vehicle.
  • Baby capsules and child safety seats may have protective side panels or thigh, torso and head bolsters (or projections or “wings”) on the sides of the baby capsule or child safety seats. These side panels or bolsters serve to limit the amount of sideways movement that a baby or child may experience in a side impact. They may also serve to protect the baby or child from impact of a side air bag in the event that the air bag is triggered in a collision. In other terminology the protective side panels may form a protective “channel” about the baby or child.
  • Baby capsules and child safety seats typically do not differentiate between the head and the torso of the baby or child in terms of the level of impact protection required.
  • a rear facing baby capsule for a car may be lined with a single density foam liner sufficient to provide impact protection to the baby externally as a whole, but may be insufficient to prevent contusions and/or haemorrhaging to the back of the baby's brain in the event of a head on collision by the car.
  • Child safety seats that are typically used for children above an approximate age of one year are commonly constructed of or have liners of polystyrene foam which may be as hard or harder than typical single density polystyrene foam liners used in helmets for adults. Such low compressibility (high stiffness) polystyrene foams do not provide adequate impact protection for children since they are too hard. Child safety seats may also be augmented with a thick liner or structure of a very compressible upholstery or cushioning foam which is so soft and pliable as to provide minimal or nil impact protection to a child. The purpose of such upholstery or cushioning foam liners or structures is primarily for comfort and appearance.
  • None of the prior art provides and entirely satisfactory solution to the problem of providing different levels of appropriate impact protection for the head or to other parts of the body, nor to the ease of manufacture to obtain a more satisfactory impact protection with a compressible liner.
  • the present invention aims to provide embodiments of a compressible liner for impact protection which overcome or ameliorate the disadvantages of the prior art.
  • the invention provides a compressible liner for impact protection for at least part of a human body.
  • the compressible liner includes: an inner layer and an outer layer, where the inner layer has a contact surface and a first joining surface with a plurality of protuberances.
  • the outer layer has a second joining surface and an outer surface, where the second joining surface includes a plurality of recesses which are adapted to receive the protuberances of the inner layer.
  • the inner layer includes a first material of a first compressibility and the outer layer includes a second material of a second compressibility; preferably the first compressibility being greater than the second compressibility.
  • the contact surface of the inner layer of the compressible liner is adapted to be adjacent or engage with part of the human body.
  • the protuberances are conical.
  • the compressible liner of the invention may be installed within or form for example, a vehicle cabin liner, a baby capsule, a child safety seat, a seat, a head rest or body armour.
  • the compressible liner may be a removable and replaceable fitting
  • the compressible liner may be formed from one or more inner or outer layer segments and the compressibility between the respective layer segments may differ.
  • one or more of the materials forming the compressible liner may be foam, preferably Expanded Polystyrene (EPS).
  • EPS Expanded Polystyrene
  • one or more of the materials may be viscoelastic.
  • the densities of the EPS foam materials may be:
  • the penetration of one or more protuberances from the inner layer into the outer layer may be in the range of 50 to 100%.
  • an apex end of one or more protuberances is contiguous with the outer surface.
  • the distance between adjacent circular bases is in the range of 0 to 20 mm and more preferably in the range of 5 to 15 mm.
  • the diameter of the circular base is in the range of 15 to 22 mm.
  • the compressible liner may have a thickness in the range of 15 to 45 mm, a height of one or more protuberances from the circular base may be in the range of 20 to 25 mm and a distance from the circular base of one or more protuberances to the contact surface may be in the range of 5 to 10 mm.
  • the inner layer is visible through the outer layer.
  • the invention provides a method of impact protection for at least a part of the human body, wherein the method provides an initial low resistance to an impact to at least a part of a human body and then progressively increases the level of resistance to the impact to at least a part of the human body, as the impact progresses.
  • the invention provides an apparatus for impact protection of a least a part of an article, wherein the apparatus includes a compressible liner with a stiffness gradient.
  • the stiffness gradient during an impact preferably varies from a low stiffness adjacent to the article to a higher stiffness through the thickness of the compressible liner.
  • FIG. 1 is a schematic cross-sectional view of the compressible liner in a helmet in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line 2 - 2 of FIG. 1 .
  • FIG. 3 is a schematic, perspective, part-sectional view of an alternate embodiment of a compressible liner in the helmet embodiment.
  • FIG. 4 is an exploded view of FIG. 3 .
  • FIG. 5 is a schematic cross-sectional view of the compressible liner.
  • FIG. 6 is an alternate embodiment of the compressible liner in FIG. 5 .
  • FIG. 7 is a schematic cross-sectional view of the compressible liner in a portion of a vehicle cabin, in an embodiment of the invention.
  • FIG. 8 is a schematic cut-away illustration of the interior of a civilian passenger car with an installed embodiment of the vehicle cabin liner compressible liner of FIG. 7 .
  • FIG. 9 schematically illustrates, in a perspective view, an example of an embodiment of a baby compressible liner for a baby capsule.
  • FIG. 10 is a schematic perspective view of a child safety seat with a child safety seat compressible liner.
  • FIG. 11 is a schematic of a front elevation view of a protective vest with inserts of a body armour compressible liner.
  • FIG. 12 is a schematic cross-sectional view of a double compressible liner, in an embodiment of the invention.
  • FIG. 13 is a schematic view of the inner liner in strip form.
  • FIGS. 1 and 2 are orthogonal cross-sectional views, schematically showing a first embodiment of a compressible liner 110 installed in a helmet 112 worn by a person 114 .
  • the helmet 112 may include a hard outer shell 116 against the outer surface 118 of the compressible liner 110 and also may include a comfort liner 120 against the contact surface 122 of the compressible liner 110 . If a comfort liner 120 is present then it is appreciated that the head is immediately adjacent the contact surface 122 via the comfort liner 120 . If the comfort liner is not present the contact surface 122 engages the head directly.
  • the compressible liner 110 may have a relatively low density foam inner layer 124 fused, adhered or otherwise attached at respective joining surfaces 126 to a relatively high density foam outer layer 128 , where the lower density foam is more easily compressed than the higher density foam. That is, the first material forming the inner layer 124 is more compressible than the second material forming the outer layer 128 .
  • the inner layer 124 has many protuberances 130 which project into matching recesses 132 of the outer layer 128 at the joining surface 126 .
  • the inner layer 124 has a first region 134 of a relatively uniform thickness layer. Extending radially outwardly from the first region 134 is the multiplicity of protuberances 130 integrally formed with the inner layer 124 .
  • the protuberances 130 have apex ends 136 as well as bases 138 having outer peripheries 140 closely spaced from bases 138 of adjacent protuberances 130 .
  • the outer peripheries 140 distance may also be considered as the closest distance between adjacent bases 138 of the protuberances 130 .
  • the foam material may be expanded polystyrene foam (EPS) where the density of the foam is commonly proportional to a compressibility or a stiffness of the foam, where stiffness has an inverse proportional relationship to compressibility.
  • EPS expanded polystyrene foam
  • the inner layer 124 may have a density of in the range of 20 to 50 kgm ⁇ 3 , (or 1.25 to 3.12 pounds per cubic foot).
  • the outer layer 128 may have a density of in the range of 35 to 90 kgm ⁇ 3 (or 2.18 to 5.62 pounds per cubic foot) and more preferably 35 to 55 kgm ⁇ 3 .
  • the foam density of the inner layer 124 is less than that of the outer layer 128 .
  • the inner layer 124 foam density may be in the range of 25 to 35 kgm ⁇ 3 and the outer layer 128 foam density may be in the range of 35 to 50 kgm ⁇ 3 .
  • the foam employed may be of any suitable type that permits the desired compressibility or stiffness to be achieved as for the EPS foam embodiment given above and below.
  • the first material forming the inner layer 124 has a first compressibility which is more than second material forming the outer layer 128 , which has a second compressibility.
  • the lines 142 represent the boundaries 142 between adjacent segments 144 , 146 , 148 , 150 of the compressible liner 110 .
  • the division of the compressible liner 110 into a number of segments as illustrated in FIG. 1 allows different zones of impact protection to be customised for the helmet 112 .
  • the rear segment 150 of the compressible liner 110 may be configured and constructed to offer a higher level of impact protection than crown segment 146 .
  • FIG. 2 another example of the division of the compressible liner 110 into a number of segments 210 , 212 , 214 , 216 to provide different zones of impact protection is shown.
  • the temporal segments 210 , 216 may be configured and constructed to offer a higher level of impact protection compared to the crown segments 212 , 214 due to the higher level of vulnerability of the temporal portions of the skull.
  • FIG. 3 is a perspective, part-sectional view of an alternate embodiment of the compressible liner 310 with an emphasis to illustrating the protuberances 130 of the inner layer 124 .
  • the protuberances 130 are conical with circular bases 138 .
  • the conical protuberances may have bases 138 that are polygonal in configuration, for example, trigonal, square, pentagonal, hexagonal, octagonal, etc.
  • the protuberances 130 may be made frustoconical rather than conical with pointed apexes 136 .
  • the protuberances may be hemispherical.
  • segmentation of compressible liner 310 is again shown with the boundary lines 142 .
  • the inner layer 124 is segmented whilst the outer layer is not segmented.
  • the segmentation of the inner layer 124 for this embodiment of the compressible liner 310 , is described in detail with respect to FIG. 4 .
  • FIG. 4 is an exploded view of the inner layer 124 and outer layer 128 of FIG. 3 .
  • the outer layer 128 includes a multiplicity of conical recesses 132 sized and configured to receive the protuberances 130 with surface contact in the manner shown in FIGS. 1 and 2 .
  • the inner layer 124 may be divided into a number of segments, 410 , 412 , 414 , 416 , 418 , 420 , 422 , 424 , 426 , 428 . In the illustrated embodiment 10 segments are given. However alternate embodiments may have range in number of segments from one to ten with a most preferable number of segments being five.
  • the use of a number of segments 410 - 428 allows the compressibility or stiffness of the inner layer 124 to be adjusted according to the level of customised impact protection required for a portion or segment of the skull.
  • the temporal segments 414 , 416 may be more compressible compared with the top of skull segments 418 , 420 .
  • the temporal sections of the skull being more vulnerable to impact injury than other sections of the skull, bone tests have indicated that the temporal portion of the skull is a half to a third of the strength of other portions of the skull.
  • the EPS foam densities of the various segments may be as follows: front segments 410 , 412 of density 30 kgm ⁇ 3 , temporal segments 414 , 416 of density 25 kgm ⁇ 3 , top segments 418 , 420 of density 35 kgm ⁇ 3 and rear segments 422 , 424 , 426 , 428 of density 30 kgm ⁇ 3 .
  • the segments may have circumferential shapes as defined by the boundary lines 142 as illustrated in FIG. 4 or any other range of circumferential shapes that allows adjoining segments to engage in a close fitting manner along the boundaries 142 .
  • the choice of the circumferential shapes of the individual segments being such that when the compressible liner 110 is assembled the segments form a continuous inner layer 124 within the compressible liner 110 .
  • a segment's planar circumferential shape may be any number of polygonal shapes.
  • the outer layer 128 may also be segmented (not shown) so that different foam densities may be used about the skull for the outer layer 128 .
  • This embodiment may allow for further, independent tailoring of the impact protection about the skull.
  • This embodiment may also be used to provide different levels of protection required between, for example, a child and an adult.
  • the outer layer 128 may be segmented in a similar manner to that described above for the inner layer 124 .
  • the planar circumferential shapes of the outer layer 128 segments may or may not correspond to segments of the inner layer.
  • the boundary lines 142 for the inner layer 124 and outer layer 128 segments may correspond as shown in FIGS. 1 and 2 or the boundary lines 142 may be discontinuous between the inner layer 124 and the outer layer 128 segments, described in detail with respect to FIG. 5 .
  • the density and dimensions of the protuberances 130 and matching recesses 132 and the overall compressible liner dimensions may be varied between segments of the inner layer 124 and/or the outer layer 128 in order to vary the compression or stiffness properties of the compressible liner 110 .
  • the temporal segments 414 , 416 may have conical protuberances 130 of reduced base 138 diameter compared with the other segments of the inner layer 124 , however the temporal segments 414 , 416 may have a greater areal density of conical protuberances 130 compared with the other segments of the inner layer 124 .
  • the front segments 410 , 412 may together have 23 conical protuberances 130 with a base 138 diameter of 20 mm
  • the top segments 418 , 420 may together have 47 conical protuberances 130 with the base 138 diameter also of 20 mm
  • the rear segments together may have 39 conical protuberances 130 also with the base 138 diameter of 20 mm
  • the temporal segments may together have 36 conical protuberances 130 but with a base 138 diameter of 15 mm.
  • the range in the outer peripheries 140 distance (or the closest distance between adjacent bases 138 ) may be from 0 to 20 mm and more preferably 5 to 15 mm, depending on the segment.
  • Corresponding separations between adjacent apex ends 136 of protuberances 130 may be up to 40 mm with most being between 25 to 35 mm.
  • the outer layer 128 may be formed in one or a number of pieces or segments using moulding techniques.
  • the inner layer 124 may be formed separately in one or a number of pieces or segments.
  • the pieces of the outer layer 128 and inner layer 124 are then assembled and fused together to form the compressible liner 110 suitable for a helmet or other impact protection application.
  • the dimensions, number and configuration of the protuberances 130 and recesses 132 may be adjusted by a person skilled in the art of fabrication techniques in order to be able to form the compressible liner.
  • the angle of the side of the conical protuberances 130 and the shape of the apex end 136 may be adjusted to enable suitable mould release properties depending on a particular foam type or other material used.
  • FIG. 5 is a cross-sectional view of another embodiment of a compressible liner 510 which schematically illustrates the dimensions of the various elements of the compressible liner 110 , 310 , 510 as well as showing a discontinuous boundary line 142 for segmentation.
  • the dimensions given are by way of example for the various embodiments described above and below.
  • the compressible liner 510 may have a thickness 524 ranging from 20 to 45 mm depending on the application area and/or the portion of the skull to be protected. In a preferred embodiment for a motorcycle helmet the thickness 524 may be 25 mm in the temporal portion of a helmet and 42 mm thick for the top or crown portions of the helmet.
  • the preferred thickness 524 may be in a range from 30 to 35 mm for motorcycle helmets.
  • the thickness 524 of a compressible liner may be reduced to the range of 15 to 25 mm or to a more preferable uniform thickness 524 of 20 mm.
  • the outer periphery 140 spacing (between bases 138 ) is between the two inward pointing arrows.
  • the joining surface 126 of the outer periphery 140 may be flat or radiused.
  • the radius of curvature may be in a range from 0 to 2.5 mm or more. Consequently the protuberances 130 may cover the entirety of the radially outward portion of the inner layer 124 or be spaced apart.
  • the apex ends 136 of the protuberances 130 are spaced from the outer surface 118 of the outer layer 128 by a spaced region 526 .
  • the spaced region 526 may have a thickness in the range of 1 to 5 mm or more.
  • the apex ends 136 of the protuberances 130 of the inner layer 124 may extend to be contiguous with the outer surface 118 of the outer layer 128 .
  • the spaced region 526 thickness would effectively be 0 mm.
  • the apex end 136 of the protuberance 130 may be pointed (or sharp), rounded off with a radius of curvature in the range of 1 to 2 mm or simply truncated.
  • FIG. 5 also illustrates an embodiment of the segmented compressible liner 510 where the boundary lines between the inner layer 124 and outer layer 128 segments is discontinuous.
  • the inner layer 124 is divided into two segments 512 , 514 by a boundary line 516 .
  • the outer layer 128 is divided into two segments 518 , 520 at a different boundary line 522 .
  • FIG. 6 illustrates an example alternate embodiment to FIG. 5 .
  • the space region 526 is increased so that the protuberances 130 project into the outer layer 128 to approximately 50% of the thickness of the outer layer 128 .
  • the range in penetration of the protuberances 130 into the outer layer 128 may be from 50 to 100%.
  • the corresponding boundary line 522 between the two segments 518 , 520 of the outer layer 128 is extended to correspond to the increased space region 526 .
  • the protuberances 130 may have a height from base 138 to apex 136 in the range of approximately 20 to 25 mm.
  • the base 138 of the protuberances 130 may have a diameter or width in the range of approximately 15 to 22 mm.
  • the first region 134 of the inner layer 124 forms a thin layer upon which the bases 138 of the protuberances 130 are linked.
  • the thickness of the first region 134 may range from 5 to 10 mm or more, with the most preferable thickness being 5 mm.
  • the compressible liner may be employed with any desired helmet, including motorcycle helmets as well as helmets used by construction personnel, riders of bicycles, horse riders, rodeo riders, football players, baseball players and cricket players.
  • the compressible liner may be retro-fitted into a helmet in order to improve its impact protection.
  • the retro-fitting of the compressible liner may be to replace all the previous liner in a helmet or just particular sections in a helmet's liner may only be replaced.
  • a partial retro-fitting may be particularly useful for those portions of the liner adjacent to the temporal sections of the skull.
  • Alternative materials that may used for the inner layer 124 and/or outer layer 128 include foams that are elastic.
  • An alternative material to an elastic foam may be a synthetic or natural rubber, either as a continuous solid or as a composite with other materials, for example air, fabric or as designed or selected by a person skilled in the art of shock, vibration or impact absorber design or manufacture.
  • Other alternative materials to the foam for the compressible liner may be viscoelastic or thixotropic. Such materials exhibits viscous or liquid behaviour when no force or stress is applied to them, however when a force is applied, such as an impact, the material acts in an elastic fashion exhibiting stiffness to the impacting force.
  • a force is applied, such as an impact
  • the inner layer 124 and/or outer layer 128 may be fully or partially viscoelastic.
  • An advantage of the use of viscoelastic materials is that a compressible liner may be constructed that readily conforms to the various skull shapes (or any other body part) present in the human population and may recover after impact sufficiently for the compressible liner to be readily re-used.
  • the outer layer 128 may be replaced by a suitably transparent or translucent material.
  • the transparent or translucent material may be a viscoelastic jell or a transparent synthetic rubber material with the appropriate compressible and/or stiffness properties.
  • the outer shell 116 of the helmet may either be absent or a suitably transparent or translucent material.
  • the inner layer 124 may be of an opaque material for example black expanded polystyrene (EPS) foam.
  • EPS black expanded polystyrene
  • FIG. 7 schematically illustrates the use of the compressible liner 710 as a vehicle cabin liner (VCL) within a portion of a vehicle cabin carrying people.
  • VCL vehicle cabin liner
  • the VCL compressible liner 710 may be attached via an attachment layer 714 to the vehicle structure 712 that forms the interior of the vehicle cabin (not shown).
  • the vehicle structure 712 may be a door pillor, dashboard, ceiling or any structure within the cabin of a car.
  • the use of the VCL compressible liner 710 within a vehicle cabin is of particular interest for side impact collisions of passenger vehicle cars where there is a tendency to a higher proportion of head injuries form the impact of a passenger (or driver) head with the vehicle cabin interior.
  • the VCL compressible liner 710 may be permanently affixed to the vehicle structure 712 via the attachment layer 714 adhering to the outer surface 118 of the compressible liner 710 .
  • the VCL compressible liner 710 may be a removable and replaceable fitting which may be retrofitted to existing vehicles.
  • the attachment layer 714 may comprise of a material such as Velcro or incorporate any one of many fastening methods known to a person skilled in the art of interior fittings for vehicles.
  • the installation of the VCL compressible liner 710 within a vehicle may further incorporate an optional interior trim liner 716 attached to the contact surface 122 of the VCL compressible liner 710 .
  • the interior trim liner 716 may provide aesthetic, tactile and/or sound proofing properties.
  • the interior trim liner 716 or comfort liner, may be made of fabric, cushioning foam, “bubble wrap” plastic and/or a plastic scuff lining.
  • VCL compressible liner 710 examples include: civilian cars and trucks, military craft such as tanks, aircraft and the like, marine craft and spacecraft. Yet another application area is the seat and head rests of vehicles and in particular aircraft and spacecraft where severe impacts may be encountered by those craft.
  • FIG. 8 is a cut-away illustration of the interior of a civilian passenger car.
  • FIG. 8 schematically shows the application of the VCL compressible liner 710 to provide different zones of impact protection about the vehicle cabin interior. For example three different zones of protection may be identified, the front and side pillars with the door window sills 810 , the rear of the front seats 812 and the dashboard and central console 814 .
  • the outer layer 128 of the VCL compressible liner 710 may be the same stiffness or compressibility whilst the inner layer 124 varies in compressibility between the zones 810 , 812 , 814 to provide the desired level of impact protection with additional consideration of the day to day wear and tear durability expected of an interior cabin lining for a car.
  • a zone of impact protection may be further divided.
  • the rear of the front seats 812 may have a higher portion with an inner layer 124 segment that may be more compressible than an inner layer 124 segment for a lower portion of the rear of the front seats 812 .
  • This arrangement may provide a zone of higher impact protection for the head of an unsecured rear passenger where they are most likely to initially impact on the upper portion of the rear of the front seats 812 .
  • the less compressible lower portion of the rear of the front seats 812 allows for an increased durability to scuffing by the feet and legs of rear passengers entering and exiting the rear of the passenger cabin.
  • an embodiment of the compressible liner 110 may be applied to the exterior front surfaces of cars and trucks to aid in the impact protection of pedestrians that may be struck by the car or truck.
  • Yet another application of the compressible liner within a vehicle is for baby capsules and child safety seats that are typically used in cars, trucks or aircraft.
  • a baby capsule or child safety seat may incorporate segmented compressible liners according to the location of the torso and head of the baby or child within the baby capsule or CSS so as to offer the appropriate impact protection for those parts of the baby's body. In other words different zones of impact protection within a baby capsule or CSS may be provided.
  • the compressible liner may be added to the interior of the baby capsule or CSS, either as a number of panels to form the complete compressible liner or the compressible liner may be inserted as one unit liner.
  • the compressible liner may form the baby capsule or CSS.
  • the compressible liner may also form the protective side panels or bolsters or in another embodiment may be added to the existing side panels or bolsters of a baby capsule or a child safety seat.
  • a comfort liner may also be added to the baby capsule or CSS.
  • FIG. 9 schematically illustrates, in a perspective view, an example of an embodiment of a baby compressible liner 910 for a baby capsule.
  • a baby capsule 912 is secured into an adult car seat 914 by the use of the baby capsule base 916 in the adult car seat 914 with rearward securing straps 918 anchoring to a suitable point on the vehicle structure.
  • a baby (not shown) is secured within the removable cradle 920 of the baby capsule 912 .
  • the baby compressible liner 910 may be segmented into two zones of impact protection, the baby head zone 922 and a baby torso zone 924 .
  • the baby compressible liner 910 is shown as an inserted liner into the structure of the cradle 920 .
  • the density of the EPS foam for the baby compressible liner 910 may be in a lower range to that described above for helmets.
  • the inner layer 124 may have density in the range of 15 to 25 kgm ⁇ 3 , with an outer layer 128 of density in the range of 35 to 45 kgm ⁇ 3 .
  • the segments comprising the baby head zone 922 of the baby compressible liner 910 may have EPS densities for the inner and outer layers 124 , 128 lower than the segments comprising the baby torso zone 924 .
  • the baby head zone 922 may be shaped in the partial form of a helmet. With reference to FIG. 4 the baby head zone 922 may be shaped in a form approximated by the rear segments 422 , 424 , 426 , 428 and temporal segments 414 , 416 , with corresponding segments of the outer layer 128 .
  • FIG. 10 is a perspective view of a CSS 1012 with a CSS compressible liner 1010 .
  • the CSS 1012 may have a base 1014 resting upon an adult car seat 914 .
  • the child seat 1016 Upon the base 1014 is the child seat 1016 that typically includes a seat, back rest and side bolsters.
  • the CSS 1012 is secured to the car seat 914 by use of the adult lap sash seat belt (not shown) and/or additional securing straps (not shown) to vehicle anchor points.
  • the CSS compressible liner 1010 may be segmented into two zones for impact protection; the CSS head zone 1018 and the CSS torso zone 1020 .
  • Each zone 1018 , 1020 may also feature side bolsters (or wings) 1022 , 1024 to “channel” or further confine and protect the child.
  • the CSS compressible liner 1010 is shown as an inserted liner onto the structure of the child seat 1016 .
  • the density of the EPS foam for the CSS compressible liner 1010 may be as described above for the baby compressible liner 910
  • a body armour compressible liner 110 may have an embodiment adapted to impact protection in sports.
  • the body armour compressible liner may be a reduced thickness 524 appropriate to the sport, in the range of 5 to 30 mm.
  • Materials selected for the body armour compressible liner may be elastic and robust to enable the compressible liner to be serviceable over many impacts.
  • the body armour compressible liner may be used in conjunction with ballistic armour.
  • the body armour compressible liner may absorb the impact force of the ballistic armour in its reaction to an impacting projectile.
  • FIG. 11 is a front elevation view of a protective vest 1112 with inserts of a body armour compressible liner 1110 .
  • the protective vest 1112 may have Velcro shoulder tabs 1114 to aid the wearer to put on and take off the protective vest 1112 garment.
  • Chest 1116 and abdominal 1118 compressible liner 1110 segments as panels are shown inserted into the protective vest 1112 , where dashed lines 1120 indicate the extent of each segment 1116 , 1118 for the front of the protective vest 1112 garment.
  • the abdominal compressible liner 1118 segments may offer a higher level of impact protection compared with the chest compressible liner 1116 segments because the rib cage in the chest offers a level protection for internal organs that is absent for the abdomen.
  • compressible liner may be for the protection of high value articles such as: goods, electronic devices, fragile mechanisms, animals, plants and the like.
  • Embodiments of the compressible liner may be used protect high value articles in freight transit.
  • Other embodiments may be incorporated into military craft, aircraft and spacecraft for the protection of sensitive equipment for improved survivability of equipment in the event of a catastrophic impact to the craft.
  • the compressible liner provides an initial low resistance to the impact for the desired part of the human body, for example the skull for a motorcycle helmet when a motorcycle rider's helmet impacts the road surface. As the impact progresses the level of resistance provided by the compressible liner increases in a controlled manner so that controlled deceleration of the skull and brain (continuing the prior example) is occurring throughout the impact.
  • the example embodiment of a compressible liner with an EPS foam material in a motorcycle helmet will be used, however it will be appreciated that similar remarks may be made for all the other embodiments of the compressible liner discussed above and below.
  • the particular configuration of the compressible liner with the inner layer 124 and outer layer 128 of materials differing in relative compressibility enables the compressible liner to provide a continuous and gradual variation in compressibility and/or stiffness as the compressible liner is compressed or crushed in an impact.
  • the particular configuration of the compressible liner also enables it to be readily manufactured with a reduced overall mass for a helmet, in particular in comparison to single foam density helmets. This is an advantage in reducing the effect of rotational acceleration to the head and the neck during an impact.
  • the compressible liner provides extended controlled compression and crushing so as to extend the time period over which the impact occurs.
  • the human skull or any other body part may then be more gradually decelerated to rest.
  • the crush, or deformation time, for the compressible liner may occur for a time up to and beyond 20% over that for a liner with a single foam density.
  • the impact force translated to the skull is reduced because the deceleration of the skull is slower due to the action of the compressible liner.
  • Crushing is the penetration into the compressible liner by the skull during an impact.
  • the compression of the compressible liner dissipates the energy of the impact.
  • the compressible liner may crush up to and beyond 10% that of a liner constructed of a single foam density.
  • Slab and arc cracking during compression of an EPS foam liner are commonly part of impact protection.
  • Arc cracking is a line of circumferential surface cracks about the penetration of the skull into the foam liner.
  • Slab cracking is a full thickness crack through the foam liner in the region of the penetration into the foam liner. Slab cracking is commonly seen in single density foam liners and is to be avoided since impact protection by the foam liner has then begun to fail.
  • the compressible liner exhibits no slab cracking during impact tests. Arc cracking is considerably reduced for the compressible liner. The reduction in arc cracking may in part be due to the inner layer 124 making use of lower density foam in comparison to common single density foam liners which commonly use a foam density in the range of 45 to 90 kgm ⁇ 3 . Lower density EPS foams will yield more in a plastic and/or elastic fashion than higher density EPS foams, consequently a lower density foam inner layer 124 is less likely to exhibit arc cracking. In addition the use of lower density foam for the inner layer 124 allows the contact surface 122 of the compressible liner to conform to the skull better than a single density foam liner. Accordingly the impact force is spread more evenly over a greater area of the skull, a desirable feature.
  • the mass of the compressible liner within a helmet may contribute to rotational forces experienced by the head in an accident. It is a safety advantage for the helmet and the compressible liner to be lightweight so as to reduce injuries associated with rotational forces.
  • Helmets with single density foam liners that may perform similarly to the equivalent with a compressible liner, in terms of the other performance tests described above, are significantly larger and heavier. This is because the single density foam liner must be thicker and of a lower single density foam, resulting in extra liner mass as well as a larger and heavier outer shell for the helmet.
  • the configuration of the protuberances 130 and recesses 132 may be reversed such that the protuberances are associated with the outer layer 128 and the recesses with the inner layer 124 so that the invention is still performed.
  • the joining surface 126 may be symmetric such that both the inner layer 124 and the outer layer 128 both have protuberances and recesses in an arrangement that allows engagement of the inner layer 124 to the outer layer 128 at the joining surface 126 .
  • the compressibility of the inner layer 124 is more than the compressibility of the outer layer 128 .
  • stiffness of the inner layer 124 is less than that of the outer layer 128 .
  • FIG. 12 schematically illustrates a cross-sectional view of a double compressible liner 1210 .
  • the double compressible liner 1210 is an alternate embodiment of the compressible liner 510 shown in FIG. 5 .
  • the double compressible liner 1212 is two compressible liners 510 joined together at the outer surface 118 , to form the new join 1212 .
  • the double compressible liner 1210 may useful in such applications as contact sports where vigorous body contact between participants is common. In such situations it is desirable that when two participants impact each other that both participants receive the benefits of the initial low resistance of the inner layer 124 .
  • Another example is the use of the double compressible liner 1210 between sensitive mechanisms, or articles, so that the two mechanisms both receive the benefit of the inner layer 124 .
  • the double compressible liner 1210 may also be segmented (not shown) to provide different zones of impact protection as described above.
  • a continuum liner may be constructed with similar or superior properties to the compressible liner.
  • the continuum liner may include a liner fabricated in the desired shape, for example a helmet, of a first material.
  • the first material may be highly compressible and/or a low stiffness, for example a viscoelastic jell. It is then desired to produce the effect of decreasing the compressibility (increased stiffness) through the thickness of liner, proceeding in the direction from the inside of the helmet to the outside of the helmet.
  • the first material may be transformed in a continuous fashion to a second material. Where the second material has less compressibility (more stiffness) than the first material and that the second material and first material exist in various proportions throughout the continuum liner so as to produce the desired stiffening gradient.
  • the second material may be produced by a number of processes, including:
  • the ionising radiation or chemical agent may be applied to the exterior of the helmet form, or other forms, made of the first material.
  • the level of transformation from the first material to the second material would be carefully controlled by the level of depth attenuation through the thickness of the continuum liner.
  • the level of ionising radiation or chemical agent applied about the helmet form of the first material may be controlled to impart different levels zones of impact protection required about the helmet form.
  • the boundary between the segments for each zone may not be a discrete boundary line but a gradient as results from the particular technique used to transform the first material to the second material.
  • a different type of bicycle helmet may be produced without the presence of the outer layer 128 .
  • the apexes 136 of the protuberances 130 of the inner layer 124 are connected to the outer shell 116 .
  • a person skilled in the art of helmet design and manufacture may select a suitable material or materials to form the inner layer 128 so that appropriate safety standards are met for this different bicycle helmet.
  • the inner layer 124 EPS foam density may be as described above or transformed into two materials as per the continuum liner described above.
  • the outer shell 116 may be conformal with the outer surface of the inner layer 124 so as to form a hard outer layer in the shape of the conical protuberances.
  • a segmented liner in which zones of different impact protection are provided, can substantially reduce the weight of the liner as compared with a non-segmented construction. Weight saving is possible by using reduced density material where a high resistance to applied force is not required. In the case of a segmented helmet liner, the weight of the helmet may be reduced by up to 20%, which is of considerable benefit to the wearer.
  • the liner of the invention may be pierced or apertured to provide areas of no protection, for example to allow ventilation openings. Such an arrangement is particularly useful for helmets and the like.
  • one of the layers is constituted by a panel in the form of a strip having protuberances or recesses thereon for co-operation into apertures with the other layer.
  • a strip may for example comprise a single row of protuberances, and be moulded with a curvature to suit the other layer, as would be required in for example a helmet.
  • sprue may comprise the layer of material from which the protuberances project, and is typically a single moulding. In one embodiment the sprue extends transversely to the general direction of the strips. This embodiment is particularly suitable for a helmet because the gap between the strips can be aliged with the usual ventilation openings.

Abstract

A compressible liner for impact protection, which may be installed in a helmet worn by a person. The compressible liner may also be applied to other impact protection situations, for example to baby capsules and child safety seats, as well as offering customised zones of impact protection. The compressible liner may have a relatively low density foam inner layer fused to a relatively high density foam outer layer. The inner layer may have many cone shaped protuberances which project into matching recesses of the outer layer. The compressible liner provides an initial low resistance to the impact for a desired part of the human body. As the impact progresses the level of resistance provided by the compressible liner increases in a controlled manner so that controlled deceleration of the part of the body is occurring throughout the impact for a desired impact protection zone of the compressible liner.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an apparatus and a method for improved impact protection using a compressible liner.
  • 2. Description of the Art
  • Applicant was co-author of a study titled “Improved Shock Absorbing Liner for Helmets”, Australian Transport Safety Bureau (ATSB), www.atsb.gov.au, published in July, 2001. In that publication, a combination of low density foam embedded into high density foam was disclosed as one subject of the study. However, the study did not contemplate or discuss the combination of structural elements or method disclosed herein.
  • Past research has shown that common single density foam liners used in current helmets are too hard and too stiff to effectively absorb an impact force. A single density foam liner is also limited in its ability to accommodate the variation in strength about the human skull. In addition liners in bicycle helmets for children use liners designed for adult skulls, they do not account for a child's more deformable skull in comparison to an adult. The more deformable skull of a child is less protective of the brain. Incorporated by way of reference is: Corner et al, “Motorcycle and Bicycle Protective Helmets—Requirement Resulting from a Post Crash Study and Experimental Research”, Report No. CR 55, 1987, Federal Office of Road Safety, Canberra, Australia and Mohan et al; and “A Biomechanical Analysis of Head Impact Injuries to Children” Vol. 101, 1979, Transactions of the ASME, Journal of Biomechanical Engineering.
  • In addition the brain is also susceptible to impact injury against the inside of the skull. The brain is a jelly like soft tissue suspended within the enclosure of the hard skull in a bath of cerebral spinal fluid. Additionally the brain is flexibly supported within the skull by the brain stem and spinal cord at the base of the brain, whilst about the general outer periphery of the brain the dura-mater membrane connects the brain to the skull at various suture points. An impact to the travelling skull may cause the skull to rapidly decelerate whilst the flexibly supported brain continues to travel and impact against the inside of the skull. The impact of the brain against the skull may cause contusions and/or haemorrhaging to the brain. Thus it may be important to decelerate the head appropriately to minimise internal injuries.
  • Bone tests for the human skull have indicated that the temporal portion of the skull has a significantly reduced bone strength compared with other portions of the skull. Consequently the temporal portion of the skull is more vulnerable to impact injury compared with other portions of the skull. However, current helmets are not manufactured with a compressible liner to provide different zones of impact protection about the skull.
  • Similarly for other application areas for impact protection such as baby capsules and child safety seats for passenger vehicles, vehicle cabin liners and body armour there are profound deficits in the provision of different zones of impact protection about the human body. The word “baby capsule” in the specification and the claims is taken to include one or more of rear facing infant or baby seats for the seat of a car, reclining rear facing seats for an infant or a baby and seats or capsules for children up to approximately 1 year of age. The word “child safety seat” in the specification and the claims is taken to include one or more of forward facing toddler seats, toddler seats in general, seating for children up to approximately 4 years of age, booster seats/cushions, seats without a backrest and seating in general for children for approximate ages of 4 to 8 years of age. Booster seats may be described as seats without a backrest that are designed so as to raise the seating position of the child so that the sash of the existing adult lap-sash seatbelt appropriately engages the child's shoulder and chest. Toddler seats may be differentiated from booster seats in that they may have an independent five point harness to secure the child to the toddler seat, the toddler seat then being secured to the existing seat or other attachments points within a car or other vehicle.
  • Baby capsules and child safety seats may have protective side panels or thigh, torso and head bolsters (or projections or “wings”) on the sides of the baby capsule or child safety seats. These side panels or bolsters serve to limit the amount of sideways movement that a baby or child may experience in a side impact. They may also serve to protect the baby or child from impact of a side air bag in the event that the air bag is triggered in a collision. In other terminology the protective side panels may form a protective “channel” about the baby or child.
  • Baby capsules and child safety seats typically do not differentiate between the head and the torso of the baby or child in terms of the level of impact protection required. A rear facing baby capsule for a car may be lined with a single density foam liner sufficient to provide impact protection to the baby externally as a whole, but may be insufficient to prevent contusions and/or haemorrhaging to the back of the baby's brain in the event of a head on collision by the car.
  • Child safety seats that are typically used for children above an approximate age of one year are commonly constructed of or have liners of polystyrene foam which may be as hard or harder than typical single density polystyrene foam liners used in helmets for adults. Such low compressibility (high stiffness) polystyrene foams do not provide adequate impact protection for children since they are too hard. Child safety seats may also be augmented with a thick liner or structure of a very compressible upholstery or cushioning foam which is so soft and pliable as to provide minimal or nil impact protection to a child. The purpose of such upholstery or cushioning foam liners or structures is primarily for comfort and appearance.
  • None of the prior art provides and entirely satisfactory solution to the problem of providing different levels of appropriate impact protection for the head or to other parts of the body, nor to the ease of manufacture to obtain a more satisfactory impact protection with a compressible liner.
  • SUMMARY OF THE INVENTION
  • The present invention aims to provide embodiments of a compressible liner for impact protection which overcome or ameliorate the disadvantages of the prior art.
  • In one form, the invention provides a compressible liner for impact protection for at least part of a human body. The compressible liner includes: an inner layer and an outer layer, where the inner layer has a contact surface and a first joining surface with a plurality of protuberances. The outer layer has a second joining surface and an outer surface, where the second joining surface includes a plurality of recesses which are adapted to receive the protuberances of the inner layer. Additionally the inner layer includes a first material of a first compressibility and the outer layer includes a second material of a second compressibility; preferably the first compressibility being greater than the second compressibility. The contact surface of the inner layer of the compressible liner is adapted to be adjacent or engage with part of the human body.
  • Preferably the protuberances are conical. The compressible liner of the invention may be installed within or form for example, a vehicle cabin liner, a baby capsule, a child safety seat, a seat, a head rest or body armour. Preferably, in all applications, the compressible liner may be a removable and replaceable fitting
  • Optionally the compressible liner may be formed from one or more inner or outer layer segments and the compressibility between the respective layer segments may differ.
  • Optionally one or more of the materials forming the compressible liner may be foam, preferably Expanded Polystyrene (EPS). Alternatively one or more of the materials may be viscoelastic. Preferably the densities of the EPS foam materials may be:
      • The inner layer may have a density in the range of 15 to 50 kgm−3.
      • The outer layer may have a density in the range of 35 to 90 kgm−3 or more preferably a density in the range of 35 to 55 kgm−3.
      • The inner layer may have a density in the range of 25 to 35 kgm−3 and outer layer may have a density in the range of 35 to 50 kgm−3.
      • The inner layer may have a density in the range of 15 to 25 kgm−3 and outer layer may have a density in the range of 35 to 45 kgm−3.
  • Optionally the penetration of one or more protuberances from the inner layer into the outer layer may be in the range of 50 to 100%. Preferably, an apex end of one or more protuberances is contiguous with the outer surface.
  • Preferably the distance between adjacent circular bases is in the range of 0 to 20 mm and more preferably in the range of 5 to 15 mm.
  • Preferably the diameter of the circular base is in the range of 15 to 22 mm.
  • Optionally the compressible liner may have a thickness in the range of 15 to 45 mm, a height of one or more protuberances from the circular base may be in the range of 20 to 25 mm and a distance from the circular base of one or more protuberances to the contact surface may be in the range of 5 to 10 mm.
  • In a further form of the invention the inner layer is visible through the outer layer.
  • In a further form the invention provides a method of impact protection for at least a part of the human body, wherein the method provides an initial low resistance to an impact to at least a part of a human body and then progressively increases the level of resistance to the impact to at least a part of the human body, as the impact progresses.
  • In yet a further form, the invention provides an apparatus for impact protection of a least a part of an article, wherein the apparatus includes a compressible liner with a stiffness gradient. The stiffness gradient during an impact preferably varies from a low stiffness adjacent to the article to a higher stiffness through the thickness of the compressible liner. ‘Articles’ includes goods, humans, animals or anything of value.
  • Further forms of the invention are as set out in the appended claims and as apparent from the description.
  • DISCLOSURE OF THE INVENTION Brief Description of the Drawings
  • Further preferred embodiments of the invention will now be described with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic cross-sectional view of the compressible liner in a helmet in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line 2-2 of FIG. 1.
  • FIG. 3 is a schematic, perspective, part-sectional view of an alternate embodiment of a compressible liner in the helmet embodiment.
  • FIG. 4 is an exploded view of FIG. 3.
  • FIG. 5 is a schematic cross-sectional view of the compressible liner.
  • FIG. 6 is an alternate embodiment of the compressible liner in FIG. 5.
  • FIG. 7 is a schematic cross-sectional view of the compressible liner in a portion of a vehicle cabin, in an embodiment of the invention.
  • FIG. 8 is a schematic cut-away illustration of the interior of a civilian passenger car with an installed embodiment of the vehicle cabin liner compressible liner of FIG. 7.
  • FIG. 9 schematically illustrates, in a perspective view, an example of an embodiment of a baby compressible liner for a baby capsule.
  • FIG. 10 is a schematic perspective view of a child safety seat with a child safety seat compressible liner.
  • FIG. 11 is a schematic of a front elevation view of a protective vest with inserts of a body armour compressible liner.
  • FIG. 12 is a schematic cross-sectional view of a double compressible liner, in an embodiment of the invention. FIG. 13 is a schematic view of the inner liner in strip form.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference is first made to FIGS. 1 and 2 which are orthogonal cross-sectional views, schematically showing a first embodiment of a compressible liner 110 installed in a helmet 112 worn by a person 114. The helmet 112 may include a hard outer shell 116 against the outer surface 118 of the compressible liner 110 and also may include a comfort liner 120 against the contact surface 122 of the compressible liner 110. If a comfort liner 120 is present then it is appreciated that the head is immediately adjacent the contact surface 122 via the comfort liner 120. If the comfort liner is not present the contact surface 122 engages the head directly.
  • The compressible liner 110 may have a relatively low density foam inner layer 124 fused, adhered or otherwise attached at respective joining surfaces 126 to a relatively high density foam outer layer 128, where the lower density foam is more easily compressed than the higher density foam. That is, the first material forming the inner layer 124 is more compressible than the second material forming the outer layer 128. The inner layer 124 has many protuberances 130 which project into matching recesses 132 of the outer layer 128 at the joining surface 126. The inner layer 124 has a first region 134 of a relatively uniform thickness layer. Extending radially outwardly from the first region 134 is the multiplicity of protuberances 130 integrally formed with the inner layer 124. The protuberances 130 have apex ends 136 as well as bases 138 having outer peripheries 140 closely spaced from bases 138 of adjacent protuberances 130. The outer peripheries 140 distance may also be considered as the closest distance between adjacent bases 138 of the protuberances 130.
  • In an embodiment of the compressible liner 110 the foam material may be expanded polystyrene foam (EPS) where the density of the foam is commonly proportional to a compressibility or a stiffness of the foam, where stiffness has an inverse proportional relationship to compressibility. In a preferred embodiment, the inner layer 124 may have a density of in the range of 20 to 50 kgm−3, (or 1.25 to 3.12 pounds per cubic foot). The outer layer 128 may have a density of in the range of 35 to 90 kgm−3 (or 2.18 to 5.62 pounds per cubic foot) and more preferably 35 to 55 kgm−3. In all choices of the respective foam density for the inner layer 124 and outer layer 128, the foam density of the inner layer 124 is less than that of the outer layer 128. In a more preferable embodiment the inner layer 124 foam density may be in the range of 25 to 35 kgm−3 and the outer layer 128 foam density may be in the range of 35 to 50 kgm−3. In accordance with the teachings of the present invention, the foam employed may be of any suitable type that permits the desired compressibility or stiffness to be achieved as for the EPS foam embodiment given above and below. In all instances described above and below it will be noted that the first material forming the inner layer 124 has a first compressibility which is more than second material forming the outer layer 128, which has a second compressibility.
  • The lines 142 represent the boundaries 142 between adjacent segments 144, 146, 148, 150 of the compressible liner 110. The division of the compressible liner 110 into a number of segments as illustrated in FIG. 1 allows different zones of impact protection to be customised for the helmet 112. For example the rear segment 150 of the compressible liner 110 may be configured and constructed to offer a higher level of impact protection than crown segment 146.
  • In FIG. 2 another example of the division of the compressible liner 110 into a number of segments 210, 212, 214, 216 to provide different zones of impact protection is shown. The temporal segments 210, 216 may be configured and constructed to offer a higher level of impact protection compared to the crown segments 212, 214 due to the higher level of vulnerability of the temporal portions of the skull.
  • FIG. 3 is a perspective, part-sectional view of an alternate embodiment of the compressible liner 310 with an emphasis to illustrating the protuberances 130 of the inner layer 124. For clarity the portion of the helmet 112 covering the ear is omitted from FIG. 3. In the embodiment illustrated the protuberances 130 are conical with circular bases 138. In alternate embodiments the conical protuberances may have bases 138 that are polygonal in configuration, for example, trigonal, square, pentagonal, hexagonal, octagonal, etc. Also, if desired, the protuberances 130 may be made frustoconical rather than conical with pointed apexes 136. In yet another embodiment the protuberances may be hemispherical.
  • In FIG. 3 segmentation of compressible liner 310 is again shown with the boundary lines 142. However in this embodiment only the inner layer 124 is segmented whilst the outer layer is not segmented. The segmentation of the inner layer 124, for this embodiment of the compressible liner 310, is described in detail with respect to FIG. 4.
  • FIG. 4 is an exploded view of the inner layer 124 and outer layer 128 of FIG. 3. It can be seen that the outer layer 128 includes a multiplicity of conical recesses 132 sized and configured to receive the protuberances 130 with surface contact in the manner shown in FIGS. 1 and 2. The inner layer 124 may be divided into a number of segments, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428. In the illustrated embodiment 10 segments are given. However alternate embodiments may have range in number of segments from one to ten with a most preferable number of segments being five. The use of a number of segments 410-428 allows the compressibility or stiffness of the inner layer 124 to be adjusted according to the level of customised impact protection required for a portion or segment of the skull. For example the temporal segments 414, 416 may be more compressible compared with the top of skull segments 418, 420. The temporal sections of the skull being more vulnerable to impact injury than other sections of the skull, bone tests have indicated that the temporal portion of the skull is a half to a third of the strength of other portions of the skull. In another embodiment of the invention the EPS foam densities of the various segments may be as follows: front segments 410, 412 of density 30 kgm−3, temporal segments 414, 416 of density 25 kgm−3, top segments 418, 420 of density 35 kgm−3 and rear segments 422, 424, 426, 428 of density 30 kgm−3.
  • In accordance with the above, the segments may have circumferential shapes as defined by the boundary lines 142 as illustrated in FIG. 4 or any other range of circumferential shapes that allows adjoining segments to engage in a close fitting manner along the boundaries 142. The choice of the circumferential shapes of the individual segments being such that when the compressible liner 110 is assembled the segments form a continuous inner layer 124 within the compressible liner 110. For example a segment's planar circumferential shape may be any number of polygonal shapes.
  • In yet another embodiment the outer layer 128 may also be segmented (not shown) so that different foam densities may be used about the skull for the outer layer 128. This embodiment may allow for further, independent tailoring of the impact protection about the skull. This embodiment may also be used to provide different levels of protection required between, for example, a child and an adult. The outer layer 128 may be segmented in a similar manner to that described above for the inner layer 124. The planar circumferential shapes of the outer layer 128 segments may or may not correspond to segments of the inner layer. For example the boundary lines 142 for the inner layer 124 and outer layer 128 segments may correspond as shown in FIGS. 1 and 2 or the boundary lines 142 may be discontinuous between the inner layer 124 and the outer layer 128 segments, described in detail with respect to FIG. 5.
  • In still yet another embodiment the density and dimensions of the protuberances 130 and matching recesses 132 and the overall compressible liner dimensions may be varied between segments of the inner layer 124 and/or the outer layer 128 in order to vary the compression or stiffness properties of the compressible liner 110. For example the temporal segments 414, 416 may have conical protuberances 130 of reduced base 138 diameter compared with the other segments of the inner layer 124, however the temporal segments 414, 416 may have a greater areal density of conical protuberances 130 compared with the other segments of the inner layer 124. For example for FIG. 4 the front segments 410, 412 may together have 23 conical protuberances 130 with a base 138 diameter of 20 mm, the top segments 418, 420 may together have 47 conical protuberances 130 with the base 138 diameter also of 20 mm, the rear segments together may have 39 conical protuberances 130 also with the base 138 diameter of 20 mm whilst the temporal segments may together have 36 conical protuberances 130 but with a base 138 diameter of 15 mm. In addition the range in the outer peripheries 140 distance (or the closest distance between adjacent bases 138) may be from 0 to 20 mm and more preferably 5 to 15 mm, depending on the segment. Corresponding separations between adjacent apex ends 136 of protuberances 130 may be up to 40 mm with most being between 25 to 35 mm.
  • In manufacture typically the outer layer 128 may be formed in one or a number of pieces or segments using moulding techniques. Similarly the inner layer 124 may be formed separately in one or a number of pieces or segments. The pieces of the outer layer 128 and inner layer 124 are then assembled and fused together to form the compressible liner 110 suitable for a helmet or other impact protection application. The dimensions, number and configuration of the protuberances 130 and recesses 132 may be adjusted by a person skilled in the art of fabrication techniques in order to be able to form the compressible liner. For example the angle of the side of the conical protuberances 130 and the shape of the apex end 136 may be adjusted to enable suitable mould release properties depending on a particular foam type or other material used.
  • FIG. 5 is a cross-sectional view of another embodiment of a compressible liner 510 which schematically illustrates the dimensions of the various elements of the compressible liner 110, 310, 510 as well as showing a discontinuous boundary line 142 for segmentation. The dimensions given are by way of example for the various embodiments described above and below. The compressible liner 510 may have a thickness 524 ranging from 20 to 45 mm depending on the application area and/or the portion of the skull to be protected. In a preferred embodiment for a motorcycle helmet the thickness 524 may be 25 mm in the temporal portion of a helmet and 42 mm thick for the top or crown portions of the helmet. For a compressible liner of uniform thickness, the preferred thickness 524 may be in a range from 30 to 35 mm for motorcycle helmets. For helmets for use in horse related sports the thickness 524 of a compressible liner may be reduced to the range of 15 to 25 mm or to a more preferable uniform thickness 524 of 20 mm.
  • In FIG. 5 the outer periphery 140 spacing (between bases 138) is between the two inward pointing arrows. The joining surface 126 of the outer periphery 140 may be flat or radiused. For example the radius of curvature may be in a range from 0 to 2.5 mm or more. Consequently the protuberances 130 may cover the entirety of the radially outward portion of the inner layer 124 or be spaced apart.
  • In FIG. 5 the apex ends 136 of the protuberances 130 are spaced from the outer surface 118 of the outer layer 128 by a spaced region 526. The spaced region 526 may have a thickness in the range of 1 to 5 mm or more. In an alternative embodiment the apex ends 136 of the protuberances 130 of the inner layer 124 may extend to be contiguous with the outer surface 118 of the outer layer 128. For this embodiment the spaced region 526 thickness would effectively be 0 mm.
  • The apex end 136 of the protuberance 130 may be pointed (or sharp), rounded off with a radius of curvature in the range of 1 to 2 mm or simply truncated.
  • FIG. 5 also illustrates an embodiment of the segmented compressible liner 510 where the boundary lines between the inner layer 124 and outer layer 128 segments is discontinuous. The inner layer 124 is divided into two segments 512, 514 by a boundary line 516. Whilst the outer layer 128 is divided into two segments 518, 520 at a different boundary line 522.
  • FIG. 6 illustrates an example alternate embodiment to FIG. 5. In FIG. 6 the space region 526 is increased so that the protuberances 130 project into the outer layer 128 to approximately 50% of the thickness of the outer layer 128. The range in penetration of the protuberances 130 into the outer layer 128 may be from 50 to 100%. The corresponding boundary line 522 between the two segments 518, 520 of the outer layer 128 is extended to correspond to the increased space region 526.
  • With reference to FIGS. 5 and 6, the protuberances 130 may have a height from base 138 to apex 136 in the range of approximately 20 to 25 mm. The base 138 of the protuberances 130 may have a diameter or width in the range of approximately 15 to 22 mm.
  • In FIGS. 1, 2, 5 and 6 the first region 134 of the inner layer 124 forms a thin layer upon which the bases 138 of the protuberances 130 are linked. The thickness of the first region 134 may range from 5 to 10 mm or more, with the most preferable thickness being 5 mm.
  • The compressible liner may be employed with any desired helmet, including motorcycle helmets as well as helmets used by construction personnel, riders of bicycles, horse riders, rodeo riders, football players, baseball players and cricket players.
  • In yet another embodiment the compressible liner may be retro-fitted into a helmet in order to improve its impact protection. The retro-fitting of the compressible liner may be to replace all the previous liner in a helmet or just particular sections in a helmet's liner may only be replaced. A partial retro-fitting may be particularly useful for those portions of the liner adjacent to the temporal sections of the skull.
  • Foam Alternatives
  • Alternative materials that may used for the inner layer 124 and/or outer layer 128 include foams that are elastic. An elastic foam having the property of enabling the compressible liner to elastically compress so that the original dimensions and impact protection performance prior to the impact are restored after the impact. An alternative material to an elastic foam may be a synthetic or natural rubber, either as a continuous solid or as a composite with other materials, for example air, fabric or as designed or selected by a person skilled in the art of shock, vibration or impact absorber design or manufacture.
  • Other alternative materials to the foam for the compressible liner may be viscoelastic or thixotropic. Such materials exhibits viscous or liquid behaviour when no force or stress is applied to them, however when a force is applied, such as an impact, the material acts in an elastic fashion exhibiting stiffness to the impacting force. An example of such material is a children's toy commonly known as “silly putty”. The inner layer 124 and/or outer layer 128 may be fully or partially viscoelastic. An advantage of the use of viscoelastic materials is that a compressible liner may be constructed that readily conforms to the various skull shapes (or any other body part) present in the human population and may recover after impact sufficiently for the compressible liner to be readily re-used.
  • Alternate Bicycle or Motorcycle Helmet
  • In an alternate embodiment to the compressible liner for a helmet, the outer layer 128 may be replaced by a suitably transparent or translucent material. For example the transparent or translucent material may be a viscoelastic jell or a transparent synthetic rubber material with the appropriate compressible and/or stiffness properties. The outer shell 116 of the helmet may either be absent or a suitably transparent or translucent material. The inner layer 124 may be of an opaque material for example black expanded polystyrene (EPS) foam. Such a helmet may have the striking visual appearance of many visible cones or spikes radiating from the person's head, an aesthetically appealing feature to some bicycle and motorcycle riders, which may still provide impact protection to the wearer of the helmet.
  • Vehicle Cabin Liner
  • FIG. 7 schematically illustrates the use of the compressible liner 710 as a vehicle cabin liner (VCL) within a portion of a vehicle cabin carrying people. The VCL compressible liner 710 may be attached via an attachment layer 714 to the vehicle structure 712 that forms the interior of the vehicle cabin (not shown). For car the vehicle structure 712 may be a door pillor, dashboard, ceiling or any structure within the cabin of a car. The use of the VCL compressible liner 710 within a vehicle cabin is of particular interest for side impact collisions of passenger vehicle cars where there is a tendency to a higher proportion of head injuries form the impact of a passenger (or driver) head with the vehicle cabin interior.
  • The VCL compressible liner 710 may be permanently affixed to the vehicle structure 712 via the attachment layer 714 adhering to the outer surface 118 of the compressible liner 710. For example attached to side door pillars and windscreen pillars in passenger vehicle cars. Alternatively the VCL compressible liner 710 may a removable and replaceable fitting which may be retrofitted to existing vehicles. For the removable and replaceable fitting the attachment layer 714 may comprise of a material such as Velcro or incorporate any one of many fastening methods known to a person skilled in the art of interior fittings for vehicles.
  • The installation of the VCL compressible liner 710 within a vehicle may further incorporate an optional interior trim liner 716 attached to the contact surface 122 of the VCL compressible liner 710. The interior trim liner 716 may provide aesthetic, tactile and/or sound proofing properties. The interior trim liner 716, or comfort liner, may be made of fabric, cushioning foam, “bubble wrap” plastic and/or a plastic scuff lining.
  • Examples of vehicles that may be applicable to the use of the VCL compressible liner 710 include: civilian cars and trucks, military craft such as tanks, aircraft and the like, marine craft and spacecraft. Yet another application area is the seat and head rests of vehicles and in particular aircraft and spacecraft where severe impacts may be encountered by those craft.
  • FIG. 8 is a cut-away illustration of the interior of a civilian passenger car. FIG. 8 schematically shows the application of the VCL compressible liner 710 to provide different zones of impact protection about the vehicle cabin interior. For example three different zones of protection may be identified, the front and side pillars with the door window sills 810, the rear of the front seats 812 and the dashboard and central console 814. For each of the three zones 810, 812, 814 the outer layer 128 of the VCL compressible liner 710 may be the same stiffness or compressibility whilst the inner layer 124 varies in compressibility between the zones 810, 812, 814 to provide the desired level of impact protection with additional consideration of the day to day wear and tear durability expected of an interior cabin lining for a car.
  • In yet another embodiment of the VCL compressible liner 710 (not shown), a zone of impact protection may be further divided. For example the rear of the front seats 812 may have a higher portion with an inner layer 124 segment that may be more compressible than an inner layer 124 segment for a lower portion of the rear of the front seats 812. This arrangement may provide a zone of higher impact protection for the head of an unsecured rear passenger where they are most likely to initially impact on the upper portion of the rear of the front seats 812. The less compressible lower portion of the rear of the front seats 812 allows for an increased durability to scuffing by the feet and legs of rear passengers entering and exiting the rear of the passenger cabin.
  • In another example application an embodiment of the compressible liner 110 may be applied to the exterior front surfaces of cars and trucks to aid in the impact protection of pedestrians that may be struck by the car or truck.
  • Baby Capsules and Child Safety Seats
  • Yet another application of the compressible liner within a vehicle is for baby capsules and child safety seats that are typically used in cars, trucks or aircraft.
  • A baby capsule or child safety seat (CSS) may incorporate segmented compressible liners according to the location of the torso and head of the baby or child within the baby capsule or CSS so as to offer the appropriate impact protection for those parts of the baby's body. In other words different zones of impact protection within a baby capsule or CSS may be provided. Typically the compressible liner may be added to the interior of the baby capsule or CSS, either as a number of panels to form the complete compressible liner or the compressible liner may be inserted as one unit liner. In another embodiment the compressible liner may form the baby capsule or CSS. In addition the compressible liner may also form the protective side panels or bolsters or in another embodiment may be added to the existing side panels or bolsters of a baby capsule or a child safety seat. Optionally, a comfort liner may also be added to the baby capsule or CSS.
  • FIG. 9 schematically illustrates, in a perspective view, an example of an embodiment of a baby compressible liner 910 for a baby capsule. A baby capsule 912 is secured into an adult car seat 914 by the use of the baby capsule base 916 in the adult car seat 914 with rearward securing straps 918 anchoring to a suitable point on the vehicle structure. A baby (not shown) is secured within the removable cradle 920 of the baby capsule 912. Within the cradle 920 the baby compressible liner 910 may be segmented into two zones of impact protection, the baby head zone 922 and a baby torso zone 924. In FIG. 9 the baby compressible liner 910 is shown as an inserted liner into the structure of the cradle 920. In a preferred embodiment the density of the EPS foam for the baby compressible liner 910 may be in a lower range to that described above for helmets. The inner layer 124 may have density in the range of 15 to 25 kgm−3, with an outer layer 128 of density in the range of 35 to 45 kgm−3. For increased impact protection for the baby's head, the segments comprising the baby head zone 922 of the baby compressible liner 910 may have EPS densities for the inner and outer layers 124, 128 lower than the segments comprising the baby torso zone 924.
  • In yet another embodiment of the baby compressible liner 910, the baby head zone 922 may be shaped in the partial form of a helmet. With reference to FIG. 4 the baby head zone 922 may be shaped in a form approximated by the rear segments 422, 424, 426, 428 and temporal segments 414, 416, with corresponding segments of the outer layer 128.
  • FIG. 10 is a perspective view of a CSS 1012 with a CSS compressible liner 1010. Typically the CSS 1012 may have a base 1014 resting upon an adult car seat 914. Upon the base 1014 is the child seat 1016 that typically includes a seat, back rest and side bolsters. The CSS 1012 is secured to the car seat 914 by use of the adult lap sash seat belt (not shown) and/or additional securing straps (not shown) to vehicle anchor points. The CSS compressible liner 1010 may be segmented into two zones for impact protection; the CSS head zone 1018 and the CSS torso zone 1020. Each zone 1018, 1020 may also feature side bolsters (or wings) 1022, 1024 to “channel” or further confine and protect the child. In FIG. 10 the CSS compressible liner 1010 is shown as an inserted liner onto the structure of the child seat 1016. In a preferred embodiment the density of the EPS foam for the CSS compressible liner 1010 may be as described above for the baby compressible liner 910
  • Body Armour
  • Another application area of an embodiment of the compressible liner 110 is its use in body armour, including protective vests. For sports involving impacts such as motorcycle riding, rodeo riding, football, gridiron, cricket and baseball, body armour in the form of protective vests and pads are often worn about the body. A body armour compressible liner may have an embodiment adapted to impact protection in sports. For example the body armour compressible liner may be a reduced thickness 524 appropriate to the sport, in the range of 5 to 30 mm. Materials selected for the body armour compressible liner may be elastic and robust to enable the compressible liner to be serviceable over many impacts.
  • For ballistic body armour an embodiment of the body armour compressible liner may be used in conjunction with ballistic armour. The body armour compressible liner may absorb the impact force of the ballistic armour in its reaction to an impacting projectile.
  • FIG. 11 is a front elevation view of a protective vest 1112 with inserts of a body armour compressible liner 1110. The protective vest 1112 may have Velcro shoulder tabs 1114 to aid the wearer to put on and take off the protective vest 1112 garment. Chest 1116 and abdominal 1118 compressible liner 1110 segments as panels are shown inserted into the protective vest 1112, where dashed lines 1120 indicate the extent of each segment 1116, 1118 for the front of the protective vest 1112 garment. The abdominal compressible liner 1118 segments may offer a higher level of impact protection compared with the chest compressible liner 1116 segments because the rib cage in the chest offers a level protection for internal organs that is absent for the abdomen.
  • Protection of High Value Articles
  • Another application area for the compressible liner may be for the protection of high value articles such as: goods, electronic devices, fragile mechanisms, animals, plants and the like. Embodiments of the compressible liner may be used protect high value articles in freight transit. Other embodiments may be incorporated into military craft, aircraft and spacecraft for the protection of sensitive equipment for improved survivability of equipment in the event of a catastrophic impact to the craft.
  • Performance of the Compressible Liner
  • The performance of the compressible liner in the embodiments described above may be further understood in terms of the following descriptions of how the performance of impact protection apparatus and methods are evaluated by those skilled in the art together with the relative performance of the compressible liner. By way of reference and example the following is incorporated herein: “Improved Shock Absorbing Liner for Helmets”, Australian Transport Safety Bureau (ATSB), published in July, 2001, www.atsb.gov.au.
  • The compressible liner provides an initial low resistance to the impact for the desired part of the human body, for example the skull for a motorcycle helmet when a motorcycle rider's helmet impacts the road surface. As the impact progresses the level of resistance provided by the compressible liner increases in a controlled manner so that controlled deceleration of the skull and brain (continuing the prior example) is occurring throughout the impact. In the following discussion the example embodiment of a compressible liner with an EPS foam material in a motorcycle helmet will be used, however it will be appreciated that similar remarks may be made for all the other embodiments of the compressible liner discussed above and below.
  • The particular configuration of the compressible liner with the inner layer 124 and outer layer 128 of materials differing in relative compressibility enables the compressible liner to provide a continuous and gradual variation in compressibility and/or stiffness as the compressible liner is compressed or crushed in an impact.
  • The particular configuration of the compressible liner also enables it to be readily manufactured with a reduced overall mass for a helmet, in particular in comparison to single foam density helmets. This is an advantage in reducing the effect of rotational acceleration to the head and the neck during an impact.
  • Impact—Time Duration (Deceleration Time)
  • The compressible liner provides extended controlled compression and crushing so as to extend the time period over which the impact occurs. The human skull or any other body part may then be more gradually decelerated to rest. The crush, or deformation time, for the compressible liner may occur for a time up to and beyond 20% over that for a liner with a single foam density. In other terminology: the impact force translated to the skull is reduced because the deceleration of the skull is slower due to the action of the compressible liner.
  • Crushing
  • Crushing is the penetration into the compressible liner by the skull during an impact. The compression of the compressible liner dissipates the energy of the impact. The compressible liner may crush up to and beyond 10% that of a liner constructed of a single foam density.
  • Cracking
  • Slab and arc cracking during compression of an EPS foam liner are commonly part of impact protection. Arc cracking is a line of circumferential surface cracks about the penetration of the skull into the foam liner. Slab cracking is a full thickness crack through the foam liner in the region of the penetration into the foam liner. Slab cracking is commonly seen in single density foam liners and is to be avoided since impact protection by the foam liner has then begun to fail.
  • The compressible liner exhibits no slab cracking during impact tests. Arc cracking is considerably reduced for the compressible liner. The reduction in arc cracking may in part be due to the inner layer 124 making use of lower density foam in comparison to common single density foam liners which commonly use a foam density in the range of 45 to 90 kgm−3. Lower density EPS foams will yield more in a plastic and/or elastic fashion than higher density EPS foams, consequently a lower density foam inner layer 124 is less likely to exhibit arc cracking. In addition the use of lower density foam for the inner layer 124 allows the contact surface 122 of the compressible liner to conform to the skull better than a single density foam liner. Accordingly the impact force is spread more evenly over a greater area of the skull, a desirable feature.
  • Peak Deceleration (Impact Energy Attenuation or Shock Attenuation, “g-force”)
  • Australian and New Zealand national standards require that the peak deceleration experienced within a helmet during a type of simulated impact must be less than 300 g (“g” being the gravitational acceleration of 9.8 ms−2). Similar standards exist in North America and Europe. The peak deceleration for the compressible liner in all situations tested was lower than conventional single foam density liners and well below the mandatory national standards requirements for Australia and New Zealand.
  • Rotational Forces
  • The mass of the compressible liner within a helmet may contribute to rotational forces experienced by the head in an accident. It is a safety advantage for the helmet and the compressible liner to be lightweight so as to reduce injuries associated with rotational forces. Helmets with single density foam liners that may perform similarly to the equivalent with a compressible liner, in terms of the other performance tests described above, are significantly larger and heavier. This is because the single density foam liner must be thicker and of a lower single density foam, resulting in extra liner mass as well as a larger and heavier outer shell for the helmet.
  • It will be appreciated for the above description that whilst the inner layer 124 is required to be more compressible and/or a lower stiffness than the outer layer 128, the configuration of the protuberances 130 and recesses 132 may be reversed such that the protuberances are associated with the outer layer 128 and the recesses with the inner layer 124 so that the invention is still performed. In another embodiment the joining surface 126 may be symmetric such that both the inner layer 124 and the outer layer 128 both have protuberances and recesses in an arrangement that allows engagement of the inner layer 124 to the outer layer 128 at the joining surface 126. However in all configurations, described above and below, the compressibility of the inner layer 124 is more than the compressibility of the outer layer 128. Or in stiffness terms, the stiffness of the inner layer 124 is less than that of the outer layer 128.
  • It will also be appreciated that the dimensions, capacities and materials of the compressible liner given above and later are given by way as examples for the embodiments described. Other dimensions, capacities and materials to those given may also be selected or designed by a person skilled in the art, for example for other impact protection applications.
  • FIG. 12 schematically illustrates a cross-sectional view of a double compressible liner 1210. The double compressible liner 1210 is an alternate embodiment of the compressible liner 510 shown in FIG. 5. The double compressible liner 1212 is two compressible liners 510 joined together at the outer surface 118, to form the new join 1212. The double compressible liner 1210 may useful in such applications as contact sports where vigorous body contact between participants is common. In such situations it is desirable that when two participants impact each other that both participants receive the benefits of the initial low resistance of the inner layer 124. Another example is the use of the double compressible liner 1210 between sensitive mechanisms, or articles, so that the two mechanisms both receive the benefit of the inner layer 124. The double compressible liner 1210 may also be segmented (not shown) to provide different zones of impact protection as described above.
  • A continuum liner (not shown) may be constructed with similar or superior properties to the compressible liner. The continuum liner may include a liner fabricated in the desired shape, for example a helmet, of a first material. The first material may be highly compressible and/or a low stiffness, for example a viscoelastic jell. It is then desired to produce the effect of decreasing the compressibility (increased stiffness) through the thickness of liner, proceeding in the direction from the inside of the helmet to the outside of the helmet. To apply such an increasing stiffening gradient the first material may be transformed in a continuous fashion to a second material. Where the second material has less compressibility (more stiffness) than the first material and that the second material and first material exist in various proportions throughout the continuum liner so as to produce the desired stiffening gradient.
  • The second material may be produced by a number of processes, including:
      • Ionising radiation to cross link the molecules of the first material to various degrees of cross linking to form a second material.
      • A chemical agent to transform the first material to the second material to various degrees.
  • The ionising radiation or chemical agent may be applied to the exterior of the helmet form, or other forms, made of the first material. The level of transformation from the first material to the second material would be carefully controlled by the level of depth attenuation through the thickness of the continuum liner.
  • In a similar manner the level of ionising radiation or chemical agent applied about the helmet form of the first material may be controlled to impart different levels zones of impact protection required about the helmet form. For the alternate embodiment with zones of impact protection the boundary between the segments for each zone may not be a discrete boundary line but a gradient as results from the particular technique used to transform the first material to the second material.
  • A different type of bicycle helmet (not shown) may be produced without the presence of the outer layer 128. For this helmet the apexes 136 of the protuberances 130 of the inner layer 124 are connected to the outer shell 116. A person skilled in the art of helmet design and manufacture may select a suitable material or materials to form the inner layer 128 so that appropriate safety standards are met for this different bicycle helmet. For example the inner layer 124 EPS foam density may be as described above or transformed into two materials as per the continuum liner described above. In another embodiment (not shown), of the different bicycle helmet, the outer shell 116 may be conformal with the outer surface of the inner layer 124 so as to form a hard outer layer in the shape of the conical protuberances.
  • The use of a segmented liner, in which zones of different impact protection are provided, can substantially reduce the weight of the liner as compared with a non-segmented construction. Weight saving is possible by using reduced density material where a high resistance to applied force is not required. In the case of a segmented helmet liner, the weight of the helmet may be reduced by up to 20%, which is of considerable benefit to the wearer.
  • The liner of the invention may be pierced or apertured to provide areas of no protection, for example to allow ventilation openings. Such an arrangement is particularly useful for helmets and the like.
  • In an embodiment of the invention one of the layers, typically the inner layer, is constituted by a panel in the form of a strip having protuberances or recesses thereon for co-operation into apertures with the other layer. A strip may for example comprise a single row of protuberances, and be moulded with a curvature to suit the other layer, as would be required in for example a helmet.
  • Several such strips may form part of an insert and be moulded with a sprue to connect them. The sprue may comprise the layer of material from which the protuberances project, and is typically a single moulding. In one embodiment the sprue extends transversely to the general direction of the strips. This embodiment is particularly suitable for a helmet because the gap between the strips can be aliged with the usual ventilation openings.
  • Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiments, it is recognized that departures can be made within the scope of the invention, which are not to be limited to the details described herein but are to be accorded the full scope of the appended claims so as to embrace any and all equivalent assemblies, devices and apparatus.
  • In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise, comprised and comprises” where they appear.
  • It will further be understood that any reference herein to known prior art does not, unless the contrary indication appears, constitute an admission that such prior art is commonly known by those skilled in the art to which the invention relates.

Claims (30)

1. An apparatus for impact protection for at least a part of a human body comprising:
a compressible liner with an inner layer and an outer layer, wherein the inner layer has a contact surface and a first joining surface, wherein the first joining surface includes a plurality of protuberances;
wherein the outer layer has a second joining surface and an outer surface, wherein the second joining surface includes a plurality of recesses adapted to receive the protuberances of the inner layer;
wherein the inner layer includes a first material of a first compressibility and the outer layer includes a second material of a second compressibility; and
wherein the first compressibility is greater than the second compressibility.
2. An apparatus according to claim 1, wherein:
at least part of the contact surface of the inner layer of the compressible liner is adapted to be immediately adjacent or to engage with part of the human body.
3. An apparatus according to claim 1, wherein:
the protuberances are conical.
4. An apparatus according to claim 1, wherein:
said inner layer is formed from one or more inner layer segments.
5. An apparatus according to claim 4, wherein:
the first compressibility is different between one or more inner layer segments.
6. An apparatus according to claim 1, wherein:
said outer layer is formed from one or more outer layer segments.
7. An apparatus according to claim 6, wherein:
the second compressibility is different between one or more outer layer segments.
8. An apparatus according to claim 1, wherein:
one or more of the first material and the second material are foam.
9. An apparatus according to claim 8, wherein:
said foam includes expanded polystyrene.
10. An apparatus according to claim 9, wherein:
the first material has a density in the range of 15 to 50 kgm−3.
11. An apparatus according to claim 10, wherein:
the first material has a density in the range of 25 to 35 kgm−3 and the second material has a density in the range of 35 to 50 kgm−3.
12. An apparatus according to claim 10, wherein:
the first material has a density in the range of 15 to 25 kgm−3 and the second material has a density in the range of 35 to 45 kgm−3.
13. An apparatus according to claim 9, wherein:
the second material has a density in the range of 35 to 90 kgm−3.
14. An apparatus according to claim 13, wherein:
the second material has a density in the range of 35 to 55 kgm−3.
15. An apparatus according to claim 1, wherein:
one or more of the first material and the second material are viscoelastic or thixotropic.
16. An apparatus according to claim 1, wherein:
a penetration of one or more protuberances into the outer layer is in the range of 50 to 100%.
17. An apparatus according to claim 1, wherein:
an apex of one or more protuberances is contiguous with the outer surface.
18. An apparatus according to claim 1, wherein:
the distance between adjacent bases of the protuberances is in the range of 0 to 20 mm.
19. An apparatus according to claim 18, wherein:
the distance between adjacent bases of the protuberances is in the range of 5 to 15 mm.
20. An apparatus according to claim 1, wherein:
the maximum transverse dimension of a base of the protuberances is in the range of 15 to 22 mm.
21. An apparatus according to claim 1, wherein:
the compressible liner has a thickness in the range of 15 to 45 mm;
a height of one or more protuberances from the base of the respective protuberance is in the range of 20 to 25 mm; and
a distance from the base of one or more protuberances to the contact surface is in the range of 5 to 10 mm.
22. An apparatus according to claim 1, wherein:
the inner layer is visible through the outer layer.
23. An apparatus according to claim 1, wherein:
the compressible liner comprises a removable and replaceable fitting.
24. An apparatus according to claim 1, wherein:
one of the inner and outer layer comprises a strip from which a line of protuberances project.
25. An apparatus according to claim 24, wherein:
said layer is the inner layer.
26. An apparatus according to claim 24, wherein:
a plurality of said strips are connected to the compressible liner so as to form a one-piece component.
27. An apparatus according to claim 1, wherein:
the compressible liner is installed within or forms an article selected from the group including: a vehicle cabin liner, a baby capsule, a child safety seat, a seat, a head rest and a body armour.
28. An apparatus according to claim 1, wherein:
the compressible liner is installed within or forms a helmet.
29. A method of impact protection for at least a part of the human body by providing apparatus having:
an initial low resistance to an impact to at least a part of a human body; and then progressively increasing the level of resistance to the impact to at least a part of the human body as the impact progresses.
30. An apparatus for impact protection of at least part of an article, the apparatus comprising:
a compressible inner with a stiffness gradient;
wherein the stiffness gradient during an impact varies from a low stiffness adjacent to the article to a higher stiffness through the thickness of the compressible liner.
US12/999,004 2008-07-02 2009-07-02 Compressible Liner for Impact Protection Abandoned US20110107503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/999,004 US20110107503A1 (en) 2008-07-02 2009-07-02 Compressible Liner for Impact Protection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/166,447 US20100000009A1 (en) 2008-07-02 2008-07-02 Compressible Liner for Impact Protection
US12/999,004 US20110107503A1 (en) 2008-07-02 2009-07-02 Compressible Liner for Impact Protection
PCT/IB2009/006133 WO2010001230A1 (en) 2008-07-02 2009-07-02 A compressible liner for impact protection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/166,447 Continuation US20100000009A1 (en) 2008-07-02 2008-07-02 Compressible Liner for Impact Protection

Publications (1)

Publication Number Publication Date
US20110107503A1 true US20110107503A1 (en) 2011-05-12

Family

ID=41463207

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/166,447 Abandoned US20100000009A1 (en) 2008-07-02 2008-07-02 Compressible Liner for Impact Protection
US12/999,004 Abandoned US20110107503A1 (en) 2008-07-02 2009-07-02 Compressible Liner for Impact Protection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/166,447 Abandoned US20100000009A1 (en) 2008-07-02 2008-07-02 Compressible Liner for Impact Protection

Country Status (7)

Country Link
US (2) US20100000009A1 (en)
EP (1) EP2293696B1 (en)
JP (2) JP2011506782A (en)
KR (1) KR101255716B1 (en)
CN (1) CN101827537A (en)
ES (1) ES2599957T3 (en)
WO (1) WO2010001230A1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100306903A1 (en) * 2007-09-10 2010-12-09 Msa Gallet Improvement to a plastic part of a protective helmet
US20120266365A1 (en) * 2010-01-21 2012-10-25 Cohen Elie Helmet using shock absorbing material
US20120297526A1 (en) * 2011-05-23 2012-11-29 Leon Robert L Helmet System
US20120297525A1 (en) * 2011-05-23 2012-11-29 Juliana Bain Helmet for Reducing Concussive Forces During Collision
WO2013055743A1 (en) * 2011-10-10 2013-04-18 Intellectual Property Holdings, Llc Helmet impact liner system
USD683079S1 (en) 2011-10-10 2013-05-21 Intellectual Property Holdings, Llc Helmet liner
US8640267B1 (en) * 2012-09-14 2014-02-04 Yochanan Cohen Protective helmet
US8726424B2 (en) 2010-06-03 2014-05-20 Intellectual Property Holdings, Llc Energy management structure
US20140201889A1 (en) * 2013-01-18 2014-07-24 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
US8911015B2 (en) 2013-03-05 2014-12-16 Yochanan Cohen Car seat
USD733972S1 (en) 2013-09-12 2015-07-07 Intellectual Property Holdings, Llc Helmet
US20150272237A1 (en) * 2014-04-01 2015-10-01 Bereshith ADAMS Protective padded garments
US20160015111A1 (en) * 2014-07-18 2016-01-21 Salomon S.A.S. Impact-absorbing helmet
US9320311B2 (en) 2012-05-02 2016-04-26 Intellectual Property Holdings, Llc Helmet impact liner system
US20160113346A1 (en) * 2014-10-28 2016-04-28 Bell Sports, Inc. In-Mold Rotation Helmet
US9332799B1 (en) * 2014-10-14 2016-05-10 Helmet Technologies LLC Protective apparatus and method for dissipating force
US9408423B2 (en) * 2014-09-25 2016-08-09 David A. Guerra Impact reducing sport equipment
US9487110B2 (en) 2014-03-05 2016-11-08 Pidyon Controls Inc. Car seat
US9516910B2 (en) 2011-07-01 2016-12-13 Intellectual Property Holdings, Llc Helmet impact liner system
US9578917B2 (en) 2012-09-14 2017-02-28 Pidyon Controls Inc. Protective helmets
US9616782B2 (en) 2014-08-29 2017-04-11 Pidyon Controls Inc. Car seat vehicle connection system, apparatus, and method
US9717297B2 (en) 2013-05-31 2017-08-01 Lenard Harris Shell for a protective helmet
US9743701B2 (en) 2013-10-28 2017-08-29 Intellectual Property Holdings, Llc Helmet retention system
US9894953B2 (en) 2012-10-04 2018-02-20 Intellectual Property Holdings, Llc Helmet retention system
US20180132557A1 (en) * 2015-05-19 2018-05-17 Maurício Paranhos Torres Improvements to Skull Protection Cell
US10150389B2 (en) 2013-03-05 2018-12-11 Pidyon Controls Inc. Car seat and connection system
US10220734B2 (en) 2013-03-05 2019-03-05 Pidyon Controls Inc. Car seat
US20190133233A1 (en) * 2017-11-07 2019-05-09 Locatelli S.P.A. Protective helmet
USD850011S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD850012S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD850013S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
US10327482B1 (en) * 2014-10-14 2019-06-25 Helmet Technologies LLC Apparatus and method for dissipating force
US10362829B2 (en) 2013-12-06 2019-07-30 Bell Sports, Inc. Multi-layer helmet and method for making the same
US10780338B1 (en) 2016-07-20 2020-09-22 Riddell, Inc. System and methods for designing and manufacturing bespoke protective sports equipment
US10834987B1 (en) * 2012-07-11 2020-11-17 Apex Biomedical Company, Llc Protective liner for helmets and other articles
US10869520B1 (en) 2019-11-07 2020-12-22 Lionhead Helmet Intellectual Properties, Lp Helmet
US10874162B2 (en) 2011-09-09 2020-12-29 Riddell, Inc. Protective sports helmet
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
US11122848B2 (en) * 2013-04-30 2021-09-21 Aldino Albertelli Protective headwear
US11167198B2 (en) 2018-11-21 2021-11-09 Riddell, Inc. Football helmet with components additively manufactured to manage impact forces
US11234474B2 (en) 2020-01-30 2022-02-01 Theron Tephabock Protective helmet liner apparatus
US11399589B2 (en) 2018-08-16 2022-08-02 Riddell, Inc. System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers
US11547166B1 (en) 2022-02-11 2023-01-10 Lionhead Helmet Intellectual Properties, Lp Helmet
US11641904B1 (en) 2022-11-09 2023-05-09 Lionhead Helmet Intellectual Properties, Lp Helmet

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802320B2 (en) * 2005-06-30 2010-09-28 Morgan Don E Helmet padding
US20100258988A1 (en) * 2005-09-20 2010-10-14 Sport Helmets, Inc. Embodiments of Lateral Displacement Shock Absorbing Technology and Applications Thereof
US20100000009A1 (en) * 2008-07-02 2010-01-07 Morgan Donald E Compressible Liner for Impact Protection
US8720153B2 (en) 2010-01-25 2014-05-13 Keystone Tower Systems, Inc. Tapered spiral welded structure
US7884797B1 (en) * 2010-06-28 2011-02-08 Alice Ning Conductive cap
WO2012088545A2 (en) * 2010-12-24 2012-06-28 Applied Ft Composite Solutions Inc. Variably-tensed composite cushioning material and method for making the same
US11766085B2 (en) 2011-02-09 2023-09-26 6D Helmets, Llc Omnidirectional energy management systems and methods
US11324273B2 (en) 2011-02-09 2022-05-10 6D Helmets, Llc Omnidirectional energy management systems and methods
CN103635112B (en) * 2011-02-09 2015-12-23 6D头盔有限责任公司 Helmet omnidirectional EMS
US10561192B2 (en) 2011-02-09 2020-02-18 6D Helmets, Llc Omnidirectional energy management systems and methods
DE102011100642B4 (en) * 2011-05-05 2012-11-15 Vaco Technology Ag Padding arrangement for a body protection pad and method for its production
USD666779S1 (en) 2011-06-15 2012-09-04 A7 Helmet Systems, Llc Helmet padding
USD679058S1 (en) 2011-07-01 2013-03-26 Intellectual Property Holdings, Llc Helmet liner
CN102310788B (en) * 2011-09-06 2013-05-01 何昌宪 Fully-coated light infant safety seat
DE102012022542A1 (en) * 2011-12-19 2013-06-20 Oliver Schimpf Helmet; Method for reducing or preventing head injury
US11278076B2 (en) 2012-03-06 2022-03-22 Loubert S. Suddaby Protective helmet with energy storage mechanism
US10517347B2 (en) 2012-03-06 2019-12-31 Loubert S. Suddaby Helmet with multiple protective zones
US9795178B2 (en) * 2012-03-06 2017-10-24 Loubert S. Suddaby Helmet with multiple protective zones
US9980531B2 (en) 2012-03-06 2018-05-29 Loubert S. Suddaby Protective helmet with energy storage mechanism
US8776272B1 (en) * 2012-03-08 2014-07-15 Protective Sports Equipment International Inc. Helmet cover
US9795179B2 (en) * 2012-03-08 2017-10-24 Protective Sports Equipment International, Inc. Helmet
WO2013150472A1 (en) * 2012-04-05 2013-10-10 Sanath Reddy A An impact energy management system, sports apparel and methods thereof
DE13782498T1 (en) * 2012-04-24 2015-04-23 Bell Sports, Inc. Snow protection and ski helmet
US9572390B1 (en) 2012-10-05 2017-02-21 Elwood J. B. Simpson Football helmet having improved impact absorption
US9642410B2 (en) * 2013-02-06 2017-05-09 Turtle Shell Protective Systems Llc Helmet with external shock wave dampening panels
JP6286137B2 (en) * 2013-05-13 2018-02-28 東洋物産工業株式会社 Shock absorbing liner in work helmet
US20160021965A1 (en) * 2013-10-03 2016-01-28 Myron Dave Mayerovitch Multi-layer safety helmet assembly
JP5902664B2 (en) * 2013-12-25 2016-04-13 ファナック株式会社 Human cooperative industrial robot with protective member
NO338505B1 (en) 2014-09-05 2016-08-29 Torgersen Hans & Soenn Child safety seat
JP6335043B2 (en) * 2014-06-24 2018-05-30 株式会社谷沢製作所 Industrial safety cap
DE102014109219A1 (en) * 2014-07-01 2016-01-07 Cybex Gmbh Child safety seat
JP2016047971A (en) * 2014-08-27 2016-04-07 株式会社金星 helmet
US9770836B2 (en) * 2014-09-17 2017-09-26 Andis Company Blade assembly having entrapped spring
GB2530309A (en) 2014-09-19 2016-03-23 Strategic Sports Ltd A triple layered compressible liner for impact protection
US9918507B2 (en) * 2014-11-25 2018-03-20 Charles Eaton Protective helmet
JP6715846B2 (en) * 2014-12-23 2020-07-01 サフィーロ・ソシエタ・アツィオナリア・ファブリカ・イタリアナ・ラボラツィオーネ・オッチアリ・エス・ピー・エー Protective helmet for sports, especially when skiing
CN107404961B (en) * 2015-02-05 2020-12-04 劳伯特·S·萨德达比 Helmet with multiple protection zones
EP3258803B1 (en) * 2015-02-19 2019-08-28 Donald, Edward Morgan Pendulum impact damping system
EP3270724B1 (en) 2015-03-17 2021-02-17 Major League Baseball Properties, Inc. Protective headgear for sports participants, especially baseball fielders
JP6595628B2 (en) * 2015-06-17 2019-10-23 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Frequency adjustment and mitigation by impact / impact
WO2017017654A1 (en) 2015-07-30 2017-02-02 Donald Edward Morgan Compressible damping system for head protection
US11419379B2 (en) 2015-07-30 2022-08-23 Donald Edward Morgan Compressible damping system for body part protection
CN108348027A (en) * 2015-09-22 2018-07-31 阿克伦大学 Surge protection and damping device
CN106605992B (en) * 2015-10-26 2020-04-10 何昌宪 Integrated safety helmet structure
CN105383569A (en) * 2015-12-08 2016-03-09 厦门金龙联合汽车工业有限公司 Double-gradient-strength passenger car stand column structure
US11109633B2 (en) * 2016-02-02 2021-09-07 Mips Ab Helmet
AU2017222224B2 (en) * 2016-02-25 2022-02-10 Contego Sports Limited Protective headgear
US20170265556A1 (en) * 2016-03-18 2017-09-21 Fox Head, Inc. Multi-layer progressive padding
FR3049826B1 (en) * 2016-04-12 2018-04-13 Salomon Sas SPORT HELMET
CN105962516A (en) * 2016-06-03 2016-09-28 太仓市飞鸿塑钢制品有限公司 Impact-resistant and high-elasticity safety helmet lining
CN205963032U (en) * 2016-08-17 2017-02-22 东莞市益安运动用品有限公司 Fashioned double -deck shock attenuation campaign helmet of steam
US10736371B2 (en) 2016-10-01 2020-08-11 Choon Kee Lee Mechanical-waves attenuating protective headgear
US20180125141A1 (en) * 2016-11-10 2018-05-10 Hobart-Mayfield, LLC Helmet
WO2018144131A1 (en) * 2016-12-06 2018-08-09 KIRSH Helmets, Inc. Impact-dissipating liners and methods of fabricating impact-dissipating liners
CN107328302B (en) * 2017-09-07 2019-02-12 北京普凡防护科技有限公司 A kind of energy-absorbing buffering bulletproof halmet liner and preparation method thereof
US11134738B2 (en) 2017-10-25 2021-10-05 Turtle Shell Protective Systems Llc Helmet with external flexible cage
US10433610B2 (en) * 2017-11-16 2019-10-08 Choon Kee Lee Mechanical-waves attenuating protective headgear
US10561189B2 (en) 2017-12-06 2020-02-18 Choon Kee Lee Protective headgear
CN108158101B (en) * 2017-12-20 2019-12-03 浙江海洋大学 It is a kind of navigation and the early warning security helmet
KR102190789B1 (en) * 2018-11-27 2020-12-16 울산대학교 산학협력단 Assistance apparatus for brain surgery
CN109435785B (en) * 2018-11-28 2021-10-08 扬州恒新座椅有限公司 Shock absorption and isolation seat
USD927073S1 (en) 2019-04-16 2021-08-03 Safer Sports, LLC Football helmet
CN110053316A (en) * 2019-05-15 2019-07-26 苏州高甲防护科技有限公司 A kind of anti-needled fabric structure of the two-layer compound of high flexibility
TWI716914B (en) * 2019-06-26 2021-01-21 劉彥昭 Safety helmet with rolling ball type side impact protection
USD935106S1 (en) 2019-11-22 2021-11-02 Safer Sports, LLC Helmet
USD951553S1 (en) * 2019-12-06 2022-05-10 Maui Kahawaiolaa Shock absorber helmet padding
USD973282S1 (en) * 2020-01-28 2022-12-20 Maui Kahawaiolaa Helmet padding
CN111297563A (en) * 2020-02-13 2020-06-19 马全锋 Skull defect protector
US20210330018A1 (en) * 2020-04-27 2021-10-28 Honeywell International Inc. Protective helmet
CN112078782B (en) * 2020-09-28 2022-04-22 重庆工程职业技术学院 Unmanned aerial vehicle shock-absorbing structure
GB2606179A (en) * 2021-04-28 2022-11-02 Bill Bruckner Christopher Impact absorbing structure
KR102536466B1 (en) 2022-11-25 2023-05-26 주식회사 로드원 Honeycomb helmet

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197357A (en) * 1955-11-21 1965-07-27 Karel H N Schulpen Yieldably deformable material having open or closed cells and at least one undulatedsurface, or object of this material
US3425061A (en) * 1967-09-08 1969-02-04 Daniel D Webb Energy absorbing helmet shell
US3529306A (en) * 1968-12-17 1970-09-22 Edward P Thorne Equalizer device
US3877076A (en) * 1974-05-08 1975-04-15 Mine Safety Appliances Co Safety hat energy absorbing liner
US4016734A (en) * 1975-04-23 1977-04-12 Morton William G Safety helmet with individualized head-contoured inter-liner
US4064565A (en) * 1976-05-13 1977-12-27 Griffiths William S Helmet structure
US4239106A (en) * 1979-01-11 1980-12-16 Gentex Corporation Individually fitted helmet and method of and apparatus for making the same
US4290149A (en) * 1978-05-12 1981-09-22 Gentex Corporation Method of making an individually fitted helmet
US4307471A (en) * 1976-12-20 1981-12-29 Du Pont Canada Inc. Protective helmet
US4353573A (en) * 1980-08-18 1982-10-12 Morgan Donald F Knee engaging ski
US4432099A (en) * 1982-07-09 1984-02-21 Gentex Corporation Individually fitted helmet liner
US4534068A (en) * 1982-10-26 1985-08-13 Figgie International Inc. Shock attenuation system
US4586200A (en) * 1984-03-26 1986-05-06 Poon Melvyn C Protective crash helmet
US4627114A (en) * 1984-08-23 1986-12-09 Figgie International, Inc. Shock attenuation structure
US4766614A (en) * 1986-12-31 1988-08-30 Cantwell Jay S Ventilated protective headgear
US4972527A (en) * 1989-08-24 1990-11-27 Jack Bauman Safety helmet with fin cushioning
US5309576A (en) * 1991-06-19 1994-05-10 Bell Helmets Inc. Multiple density helmet body compositions to strengthen helmet
US5343569A (en) * 1993-07-26 1994-09-06 Asare Michael K Protective helmet containing dye capsules
US5511260A (en) * 1991-09-06 1996-04-30 Rik Medical Anti-decubitus mattress pad
US5669079A (en) * 1995-10-31 1997-09-23 Morgan; Don E. Safety enhanced motorcycle helmet
US5867840A (en) * 1995-10-30 1999-02-09 Shoei Kako Co., Ltd. Safety helmet and a head protector therefor
US5920915A (en) * 1998-09-22 1999-07-13 Brock Usa, Llc Protective padding for sports gear
US5950244A (en) * 1998-01-23 1999-09-14 Sport Maska Inc. Protective device for impact management
US5956777A (en) * 1998-07-22 1999-09-28 Grand Slam Cards Helmet
US6032300A (en) * 1998-09-22 2000-03-07 Brock Usa, Llc Protective padding for sports gear
US6070271A (en) * 1996-07-26 2000-06-06 Williams; Gilbert J. Protective helmet
US6070905A (en) * 1996-06-05 2000-06-06 Rieter Automotive (International) Ag Shock-absorbing inner lining
US6159324A (en) * 1999-03-05 2000-12-12 Sportscope Process for manufacturing protective helmets
US6216268B1 (en) * 2000-01-31 2001-04-17 Smr Products, Inc. Elbow protection device and method for applying same
US6240570B1 (en) * 2000-08-07 2001-06-05 Shih-Hsiung Wu Protective hat for an infant
US6292952B1 (en) * 1998-09-25 2001-09-25 Sportscope, Inc. Insert-molded helmet
US6295653B1 (en) * 1997-10-08 2001-10-02 Michael Puleo Helmet providing improved frontal and peripheral view
US20010032351A1 (en) * 2000-04-04 2001-10-25 Kengo Nakayama Helmet
US6317895B1 (en) * 1999-02-26 2001-11-20 Mine Safety Appliances Company Safety helmet assembly
US6343385B1 (en) * 1996-12-02 2002-02-05 Jeffrey P. Katz Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull
US20020029421A1 (en) * 2000-04-12 2002-03-14 Sereboff Joel L. Viscous liquid cushions
US6453476B1 (en) * 2000-09-27 2002-09-24 Team Wendy, Llc Protective helmet
US20030005511A1 (en) * 2000-12-04 2003-01-09 Lucky Bell Plastic Factory, Ltd. Safety helmets with cellular textile composite structure as energy absorber
US20030098113A1 (en) * 2001-11-28 2003-05-29 Tachi-S Co., Ltd. Method for forming a foamed product integral with trim cover assembly
US6604246B1 (en) * 1998-12-07 2003-08-12 Catalin Obreja Protective helmet
US20030173816A1 (en) * 2002-01-24 2003-09-18 Minoru Fujita Posture correcting device, method for manufacturing the same, and a chair
US20030186044A1 (en) * 2002-02-25 2003-10-02 Jean Sauniere Cushioning made of flexible melamine foam and applications thereof
US20040025229A1 (en) * 2002-08-09 2004-02-12 Masami Takahashi Head protecting body for safety helmet and safty helmet having head protecting body
US20040226098A1 (en) * 1996-02-14 2004-11-18 Pearce Tony M. Stacked cushions
US6854133B2 (en) * 2002-05-14 2005-02-15 Whitewater Research And Safety Institute Protective headgear for whitewater use
US20050060809A1 (en) * 2003-09-18 2005-03-24 Rogers John E. Methods and devices for reducing stress concentration when supporting a body
US20050246824A1 (en) * 2004-04-07 2005-11-10 Crescendo As Helmet, helmet liner and method for manufacturing the same
US20060059605A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Layered construction of protective headgear with one or more compressible layers of thermoplastic elastomer material
USD521191S1 (en) * 2004-04-07 2006-05-16 Crescendo As Helmet liner
US20070000032A1 (en) * 2005-06-30 2007-01-04 Morgan Don E Helmet padding
US7244477B2 (en) * 2003-08-20 2007-07-17 Brock Usa, Llc Multi-layered sports playing field with a water draining, padding layer
US7341776B1 (en) * 2002-10-03 2008-03-11 Milliren Charles M Protective foam with skin
US7507468B2 (en) * 1994-06-03 2009-03-24 Tempur-Pedic Management, Inc. Laminated visco-elastic support
US20100000009A1 (en) * 2008-07-02 2010-01-07 Morgan Donald E Compressible Liner for Impact Protection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US40422A (en) * 1863-10-27 Improvement in wagon-standards
JPH0223122Y2 (en) * 1985-12-23 1990-06-22
US5731062A (en) * 1995-12-22 1998-03-24 Hoechst Celanese Corp Thermoplastic three-dimensional fiber network
JP3198927B2 (en) * 1996-07-15 2001-08-13 トヨタ自動車株式会社 Energy absorbing material
EP1016352A1 (en) * 1998-12-31 2000-07-05 Camau System di Casale & C. s.n.c. Helmet with multiple density inner cap
KR19990022130U (en) * 1999-03-04 1999-06-25 김대환 Autobicycle helmet system for ventilation &collision mitigation
KR200236648Y1 (en) 2001-03-14 2001-10-08 휴먼센스 주식회사 Helmet of reducing shock using human technology

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197357A (en) * 1955-11-21 1965-07-27 Karel H N Schulpen Yieldably deformable material having open or closed cells and at least one undulatedsurface, or object of this material
US3425061A (en) * 1967-09-08 1969-02-04 Daniel D Webb Energy absorbing helmet shell
US3529306A (en) * 1968-12-17 1970-09-22 Edward P Thorne Equalizer device
US3877076A (en) * 1974-05-08 1975-04-15 Mine Safety Appliances Co Safety hat energy absorbing liner
US4016734A (en) * 1975-04-23 1977-04-12 Morton William G Safety helmet with individualized head-contoured inter-liner
US4064565A (en) * 1976-05-13 1977-12-27 Griffiths William S Helmet structure
US4307471A (en) * 1976-12-20 1981-12-29 Du Pont Canada Inc. Protective helmet
US4290149A (en) * 1978-05-12 1981-09-22 Gentex Corporation Method of making an individually fitted helmet
US4239106A (en) * 1979-01-11 1980-12-16 Gentex Corporation Individually fitted helmet and method of and apparatus for making the same
US4353573A (en) * 1980-08-18 1982-10-12 Morgan Donald F Knee engaging ski
US4432099A (en) * 1982-07-09 1984-02-21 Gentex Corporation Individually fitted helmet liner
US4534068A (en) * 1982-10-26 1985-08-13 Figgie International Inc. Shock attenuation system
US4586200A (en) * 1984-03-26 1986-05-06 Poon Melvyn C Protective crash helmet
US4627114A (en) * 1984-08-23 1986-12-09 Figgie International, Inc. Shock attenuation structure
US4766614A (en) * 1986-12-31 1988-08-30 Cantwell Jay S Ventilated protective headgear
US4972527A (en) * 1989-08-24 1990-11-27 Jack Bauman Safety helmet with fin cushioning
US5309576A (en) * 1991-06-19 1994-05-10 Bell Helmets Inc. Multiple density helmet body compositions to strengthen helmet
US5511260A (en) * 1991-09-06 1996-04-30 Rik Medical Anti-decubitus mattress pad
US5343569A (en) * 1993-07-26 1994-09-06 Asare Michael K Protective helmet containing dye capsules
US7507468B2 (en) * 1994-06-03 2009-03-24 Tempur-Pedic Management, Inc. Laminated visco-elastic support
US5867840A (en) * 1995-10-30 1999-02-09 Shoei Kako Co., Ltd. Safety helmet and a head protector therefor
US5669079A (en) * 1995-10-31 1997-09-23 Morgan; Don E. Safety enhanced motorcycle helmet
US20040226098A1 (en) * 1996-02-14 2004-11-18 Pearce Tony M. Stacked cushions
US7076822B2 (en) * 1996-02-14 2006-07-18 Edizone, Lc Stacked cushions
US6070905A (en) * 1996-06-05 2000-06-06 Rieter Automotive (International) Ag Shock-absorbing inner lining
US6070271A (en) * 1996-07-26 2000-06-06 Williams; Gilbert J. Protective helmet
US6343385B1 (en) * 1996-12-02 2002-02-05 Jeffrey P. Katz Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull
US6295653B1 (en) * 1997-10-08 2001-10-02 Michael Puleo Helmet providing improved frontal and peripheral view
US5950244A (en) * 1998-01-23 1999-09-14 Sport Maska Inc. Protective device for impact management
US5956777A (en) * 1998-07-22 1999-09-28 Grand Slam Cards Helmet
US6055676A (en) * 1998-09-22 2000-05-02 Brock Usa, Llc Protective padding for sports gear
US6301722B1 (en) * 1998-09-22 2001-10-16 Brock Usa, Llc Pads and padding for sports gear and accessories
US6098209A (en) * 1998-09-22 2000-08-08 Brock Usa, Llc Protective padding for sports gear
US6032300A (en) * 1998-09-22 2000-03-07 Brock Usa, Llc Protective padding for sports gear
US5920915A (en) * 1998-09-22 1999-07-13 Brock Usa, Llc Protective padding for sports gear
US6357054B1 (en) * 1998-09-22 2002-03-19 Brock Usa, Llc Protective padding for sports gear
US6453477B1 (en) * 1998-09-22 2002-09-24 Brock Usa, Llc Protective padding for sports gear
US6532602B2 (en) * 1998-09-25 2003-03-18 Sportscope, Inc. Insert-molded helmet
US6292952B1 (en) * 1998-09-25 2001-09-25 Sportscope, Inc. Insert-molded helmet
US6604246B1 (en) * 1998-12-07 2003-08-12 Catalin Obreja Protective helmet
US6317895B1 (en) * 1999-02-26 2001-11-20 Mine Safety Appliances Company Safety helmet assembly
US6159324A (en) * 1999-03-05 2000-12-12 Sportscope Process for manufacturing protective helmets
US6216268B1 (en) * 2000-01-31 2001-04-17 Smr Products, Inc. Elbow protection device and method for applying same
US20010032351A1 (en) * 2000-04-04 2001-10-25 Kengo Nakayama Helmet
US20020029421A1 (en) * 2000-04-12 2002-03-14 Sereboff Joel L. Viscous liquid cushions
US6240570B1 (en) * 2000-08-07 2001-06-05 Shih-Hsiung Wu Protective hat for an infant
US6453476B1 (en) * 2000-09-27 2002-09-24 Team Wendy, Llc Protective helmet
US20030005511A1 (en) * 2000-12-04 2003-01-09 Lucky Bell Plastic Factory, Ltd. Safety helmets with cellular textile composite structure as energy absorber
US20030098113A1 (en) * 2001-11-28 2003-05-29 Tachi-S Co., Ltd. Method for forming a foamed product integral with trim cover assembly
US20030173816A1 (en) * 2002-01-24 2003-09-18 Minoru Fujita Posture correcting device, method for manufacturing the same, and a chair
US20030186044A1 (en) * 2002-02-25 2003-10-02 Jean Sauniere Cushioning made of flexible melamine foam and applications thereof
US6854133B2 (en) * 2002-05-14 2005-02-15 Whitewater Research And Safety Institute Protective headgear for whitewater use
US20040025229A1 (en) * 2002-08-09 2004-02-12 Masami Takahashi Head protecting body for safety helmet and safty helmet having head protecting body
US7341776B1 (en) * 2002-10-03 2008-03-11 Milliren Charles M Protective foam with skin
US7244477B2 (en) * 2003-08-20 2007-07-17 Brock Usa, Llc Multi-layered sports playing field with a water draining, padding layer
US20050060809A1 (en) * 2003-09-18 2005-03-24 Rogers John E. Methods and devices for reducing stress concentration when supporting a body
USD521191S1 (en) * 2004-04-07 2006-05-16 Crescendo As Helmet liner
US20050246824A1 (en) * 2004-04-07 2005-11-10 Crescendo As Helmet, helmet liner and method for manufacturing the same
US20060059605A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Layered construction of protective headgear with one or more compressible layers of thermoplastic elastomer material
US20070000032A1 (en) * 2005-06-30 2007-01-04 Morgan Don E Helmet padding
US7802320B2 (en) * 2005-06-30 2010-09-28 Morgan Don E Helmet padding
US20100299813A1 (en) * 2005-06-30 2010-12-02 Morgan Don E Head Protection Apparatus
US20100000009A1 (en) * 2008-07-02 2010-01-07 Morgan Donald E Compressible Liner for Impact Protection

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100306903A1 (en) * 2007-09-10 2010-12-09 Msa Gallet Improvement to a plastic part of a protective helmet
US20120266365A1 (en) * 2010-01-21 2012-10-25 Cohen Elie Helmet using shock absorbing material
US8726424B2 (en) 2010-06-03 2014-05-20 Intellectual Property Holdings, Llc Energy management structure
US9554608B2 (en) 2011-05-23 2017-01-31 Lionhead Helmet Intellectual Properties, Lp Helmet system
US10130133B2 (en) 2011-05-23 2018-11-20 Lionhead Helmet Intellectual Properties, Lp Helmet system
US9560892B2 (en) 2011-05-23 2017-02-07 Lionhead Helmet Intellectual Properties, Lp Helmet system
US9119433B2 (en) 2011-05-23 2015-09-01 Lionhead Helmet Intellectual Properties, Lp Helmet system
US20120297525A1 (en) * 2011-05-23 2012-11-29 Juliana Bain Helmet for Reducing Concussive Forces During Collision
US9468248B2 (en) 2011-05-23 2016-10-18 Lionhead Helmet Intellectual Properties, Lp Helmet system
US9462840B2 (en) 2011-05-23 2016-10-11 Lionhead Helmet Intellectual Properties, Lp Helmet system
US9032558B2 (en) * 2011-05-23 2015-05-19 Lionhead Helmet Intellectual Properties, Lp Helmet system
US20120297526A1 (en) * 2011-05-23 2012-11-29 Leon Robert L Helmet System
US9119431B2 (en) * 2011-05-23 2015-09-01 Juliana Bain Helmet for reducing concussive forces during collision
US9516910B2 (en) 2011-07-01 2016-12-13 Intellectual Property Holdings, Llc Helmet impact liner system
US11503872B2 (en) 2011-09-09 2022-11-22 Riddell, Inc. Protective sports helmet
US11311067B2 (en) 2011-09-09 2022-04-26 Riddell, Inc. Protective sports helmet
US10874162B2 (en) 2011-09-09 2020-12-29 Riddell, Inc. Protective sports helmet
WO2013055743A1 (en) * 2011-10-10 2013-04-18 Intellectual Property Holdings, Llc Helmet impact liner system
USD683079S1 (en) 2011-10-10 2013-05-21 Intellectual Property Holdings, Llc Helmet liner
US9320311B2 (en) 2012-05-02 2016-04-26 Intellectual Property Holdings, Llc Helmet impact liner system
US10834987B1 (en) * 2012-07-11 2020-11-17 Apex Biomedical Company, Llc Protective liner for helmets and other articles
US8640267B1 (en) * 2012-09-14 2014-02-04 Yochanan Cohen Protective helmet
US9578917B2 (en) 2012-09-14 2017-02-28 Pidyon Controls Inc. Protective helmets
US9894953B2 (en) 2012-10-04 2018-02-20 Intellectual Property Holdings, Llc Helmet retention system
US10595578B2 (en) 2012-10-04 2020-03-24 Intellectual Property Holdings, Llc Helmet retention system
AU2014207532B2 (en) * 2013-01-18 2018-04-19 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
US11419383B2 (en) 2013-01-18 2022-08-23 Riddell, Inc. System and method for custom forming a protective helmet for a customer's head
US20140201889A1 (en) * 2013-01-18 2014-07-24 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
US10159296B2 (en) * 2013-01-18 2018-12-25 Riddell, Inc. System and method for custom forming a protective helmet for a customer's head
US10948898B1 (en) 2013-01-18 2021-03-16 Bell Sports, Inc. System and method for custom forming a protective helmet for a customer's head
US11889883B2 (en) 2013-01-18 2024-02-06 Bell Sports, Inc. System and method for forming a protective helmet for a customer's head
US10150389B2 (en) 2013-03-05 2018-12-11 Pidyon Controls Inc. Car seat and connection system
US8911015B2 (en) 2013-03-05 2014-12-16 Yochanan Cohen Car seat
US10500990B2 (en) 2013-03-05 2019-12-10 Pidyon Controls Inc. Car seat
US10220734B2 (en) 2013-03-05 2019-03-05 Pidyon Controls Inc. Car seat
US10829013B2 (en) 2013-03-05 2020-11-10 Pidyon Controls Inc. Car seat and connection system
US11122848B2 (en) * 2013-04-30 2021-09-21 Aldino Albertelli Protective headwear
US9717297B2 (en) 2013-05-31 2017-08-01 Lenard Harris Shell for a protective helmet
USD733972S1 (en) 2013-09-12 2015-07-07 Intellectual Property Holdings, Llc Helmet
US9743701B2 (en) 2013-10-28 2017-08-29 Intellectual Property Holdings, Llc Helmet retention system
US11871809B2 (en) 2013-12-06 2024-01-16 Bell Sports, Inc. Multi-layer helmet and method for making the same
US11291263B2 (en) 2013-12-06 2022-04-05 Bell Sports, Inc. Multi-layer helmet and method for making the same
US10362829B2 (en) 2013-12-06 2019-07-30 Bell Sports, Inc. Multi-layer helmet and method for making the same
US9487110B2 (en) 2014-03-05 2016-11-08 Pidyon Controls Inc. Car seat
US20150272237A1 (en) * 2014-04-01 2015-10-01 Bereshith ADAMS Protective padded garments
US20160015111A1 (en) * 2014-07-18 2016-01-21 Salomon S.A.S. Impact-absorbing helmet
US9616782B2 (en) 2014-08-29 2017-04-11 Pidyon Controls Inc. Car seat vehicle connection system, apparatus, and method
US20160316829A1 (en) * 2014-09-25 2016-11-03 David A. Guerra Impact reducing sport equipment
US9408423B2 (en) * 2014-09-25 2016-08-09 David A. Guerra Impact reducing sport equipment
US9332799B1 (en) * 2014-10-14 2016-05-10 Helmet Technologies LLC Protective apparatus and method for dissipating force
US10327482B1 (en) * 2014-10-14 2019-06-25 Helmet Technologies LLC Apparatus and method for dissipating force
US10721987B2 (en) * 2014-10-28 2020-07-28 Bell Sports, Inc. Protective helmet
US20160113346A1 (en) * 2014-10-28 2016-04-28 Bell Sports, Inc. In-Mold Rotation Helmet
US11638457B2 (en) 2014-10-28 2023-05-02 Bell Sports, Inc. Protective helmet
US11419381B2 (en) * 2015-05-19 2022-08-23 Maurício Paranhos Torres Cranial protection cell
US20180132557A1 (en) * 2015-05-19 2018-05-17 Maurício Paranhos Torres Improvements to Skull Protection Cell
US11213736B2 (en) 2016-07-20 2022-01-04 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
US10780338B1 (en) 2016-07-20 2020-09-22 Riddell, Inc. System and methods for designing and manufacturing bespoke protective sports equipment
US11033796B2 (en) 2016-07-20 2021-06-15 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
US11712615B2 (en) 2016-07-20 2023-08-01 Riddell, Inc. System and method of assembling a protective sports helmet
USD850013S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD939150S1 (en) 2017-07-20 2021-12-21 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD850012S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD850011S1 (en) 2017-07-20 2019-05-28 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD926389S1 (en) 2017-07-20 2021-07-27 Riddell, Inc. Internal padding assembly of a protective sports helmet
USD925836S1 (en) 2017-07-20 2021-07-20 Riddell, Inc. Internal padding assembly of a protective sports helmet
US20190133233A1 (en) * 2017-11-07 2019-05-09 Locatelli S.P.A. Protective helmet
US11399589B2 (en) 2018-08-16 2022-08-02 Riddell, Inc. System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers
US11167198B2 (en) 2018-11-21 2021-11-09 Riddell, Inc. Football helmet with components additively manufactured to manage impact forces
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
US11696612B2 (en) 2019-11-07 2023-07-11 Lionhead Helmet Intellectual Properties, Lp Helmet
US10869520B1 (en) 2019-11-07 2020-12-22 Lionhead Helmet Intellectual Properties, Lp Helmet
US11234474B2 (en) 2020-01-30 2022-02-01 Theron Tephabock Protective helmet liner apparatus
US11547166B1 (en) 2022-02-11 2023-01-10 Lionhead Helmet Intellectual Properties, Lp Helmet
US11641904B1 (en) 2022-11-09 2023-05-09 Lionhead Helmet Intellectual Properties, Lp Helmet

Also Published As

Publication number Publication date
KR20100088661A (en) 2010-08-10
ES2599957T3 (en) 2017-02-06
CN101827537A (en) 2010-09-08
JP2011506782A (en) 2011-03-03
EP2293696A4 (en) 2013-07-17
WO2010001230A1 (en) 2010-01-07
WO2010001230A8 (en) 2014-03-13
US20100000009A1 (en) 2010-01-07
EP2293696A1 (en) 2011-03-16
JP2013227716A (en) 2013-11-07
EP2293696B1 (en) 2016-10-05
KR101255716B1 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
EP2293696B1 (en) A compressible liner for impact protection
US8911015B2 (en) Car seat
US20190232601A1 (en) Protective material
US20180192730A1 (en) A Helmet
US5745923A (en) Impact absorbing protective apparatus for the frontal temporal and occipital basilar skull
US20190193606A1 (en) Car Seat
US5054845A (en) Passenger seat having yielding band structure
US6343385B1 (en) Impact absorbing protective apparatus for the frontal, temporal and occipital basilar skull
US20120060251A1 (en) Protective helmet; Method for mitigating or preventing a head injury
US9487110B2 (en) Car seat
JP6419088B2 (en) Vehicle seat with an area that can be deformed in the event of a collision
EP3307062B1 (en) Ecostructural bicycle/activity safety helmet
US20160068088A1 (en) Carrier with shock absorbing material
TWI494066B (en) A compressible liner for impact protection
WO2007060405A2 (en) A seat cushion for absorbing shocks from exploding mines
KR20140001093U (en) Driver's cover with transparent rubber plate
CA2331441C (en) Crash energy absorbing glareshield and method of protecting against head injury in aircraft crashes
GB2504515A (en) An impact protection device for attachment to the inside of a vehicle door

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN, DONALD EDWARD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORGAN, DONALD EDWARD;REEL/FRAME:026901/0422

Effective date: 20110704

Owner name: STRATEGIC SPORTS LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORGAN, DONALD EDWARD;REEL/FRAME:026901/0422

Effective date: 20110704

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION