US20110104997A1 - Apparatuses and methods for polishing and cleaning semiconductor wafers - Google Patents

Apparatuses and methods for polishing and cleaning semiconductor wafers Download PDF

Info

Publication number
US20110104997A1
US20110104997A1 US12/912,738 US91273810A US2011104997A1 US 20110104997 A1 US20110104997 A1 US 20110104997A1 US 91273810 A US91273810 A US 91273810A US 2011104997 A1 US2011104997 A1 US 2011104997A1
Authority
US
United States
Prior art keywords
polishing
wafer
wafer transfer
cleaning
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/912,738
Inventor
In-kwon Jeong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/912,738 priority Critical patent/US20110104997A1/en
Priority to KR1020127013772A priority patent/KR101684228B1/en
Priority to PCT/KR2010/007675 priority patent/WO2011055960A2/en
Priority to TW099137644A priority patent/TW201124233A/en
Publication of US20110104997A1 publication Critical patent/US20110104997A1/en
Priority to KR1020160150955A priority patent/KR101814360B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • B24B37/345Feeding, loading or unloading work specially adapted to lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber

Definitions

  • the invention relates generally to semiconductor wafer processing equipments, and more particularly to apparatuses and methods for polishing and cleaning semiconductor wafers.
  • a preferred method to planarize the wafers is a polishing method, where a surface of a semiconductor wafer is polished using a slurry solution supplied between the wafer and a polishing pad.
  • the polished wafer is cleaned using chemicals and deionized (DI) water and then dried before the wafer is further processed in an apparatus for deposition of metallic or dielectric layers or photolithography.
  • DI deionized
  • a wafer processing apparatus for polishing semiconductor wafers includes a polishing apparatus and a cleaning apparatus.
  • the polishing apparatus generally comprises multiple polishing tables where polishing pads are placed and multiple polishing heads that support and press the wafers against the polishing pads.
  • the cleaning apparatus generally comprises multiple cleaning chambers for cleaning semiconductor wafers and a dry chamber for drying the cleaned wafers. The wafers polished in the polishing apparatus are cleaned sequentially through the multiple cleaning chambers and then dried in the dry chamber.
  • a wafer processing apparatus can comprise two cleaning apparatuses because productivity of a wafer processing apparatus can be limited by low productivity of a single cleaning apparatus.
  • productivity For high productivity, a wafer processing apparatus can comprise two cleaning apparatuses because productivity of a wafer processing apparatus can be limited by low productivity of a single cleaning apparatus.
  • the arrangement of the polishing apparatus and the cleaning apparatuses becomes important to efficiently polish and clean multiple semiconductor wafers.
  • the footprint of a wafer processing apparatus must also be considered since a wafer processing apparatus with a large footprint requires a larger clean room to house the equipment, which translates into greater cost of operation.
  • Another important performance factor of a wafer processing apparatus for polishing and cleaning semiconductor wafers is ease of maintenance.
  • the arrangement of polishing and cleaning apparatuses in a wafer processing apparatus becomes important to provide enough space for engineers to access the polishing and cleaning apparatuses in order to maintain them.
  • productivity of a cleaning apparatus needs to be improved because productivity of a wafer processing apparatus can be limited by low productivity of a cleaning apparatus.
  • polishing apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers
  • productivity One of the most important performance factors of a polishing apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers is productivity.
  • a polishing apparatus typically requires more polishing tables and more polishing heads.
  • the efficient arrangement of the polishing tables and the polishing heads becomes important to design a polishing apparatus providing efficient polishing of semiconductor wafers with a small footprint.
  • defectivity Another important performance factor of a polishing apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers is defectivity. Defectivity can be caused by large foreign particles dropping onto polishing pads from moving parts used to transfer polishing heads between the polishing pads. For low defectivity, a polishing apparatus requires an efficient design to protect polishing pads from the foreign particles.
  • An apparatus for polishing an object in accordance with an embodiment of the present invention comprises at least one polishing surface, at least one polishing head assembly comprising at least one polishing head, at least one object transfer station and a transport mechanism configured to transport the at least one polishing head assembly between the at least one polishing surface and the at least one object transfer station.
  • the transport mechanism comprises a support structure comprising an opening disposed over the at least one polishing surface and the at least one object transfer station, at least one inner guide rail supported by the support structure, wherein the at least one inner guide rail is surrounded by the opening, at least one first guide block slidibly coupled to the at least one inner guide rail, at least one outer guide rail supported by the support structure, wherein the at least one outer guide rail surrounds the opening, at least one second guide block slidibly coupled to the outer guide rail, at least one head supporting member mounted to the at least one first guide block and the at least one second guide block, wherein the at least one head supporting member supports the at least one polishing head assembly, and at least one drive mechanism coupled to the at least one head supporting member, wherein the at least one drive mechanism is configured to transport the at least one polishing head assembly coupled to the at least one head supporting member between the at least one polishing surface and the at least one object transfer station.
  • FIG. 1 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIG. 2 is a top view of a polishing module used in the polishing apparatus of FIG. 1 .
  • FIG. 3 is a side view of the polishing module of FIG. 2 .
  • FIGS. 4( a ) and 4 ( b ) are tops view of polishing apparatuses in accordance with embodiments of the present invention.
  • FIG. 5 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a cleaning apparatus used in the wafer processing apparatus of FIG. 5 .
  • FIG. 7 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 8( a ) and 8 ( b ) are top views of cleaning apparatuses in accordance with embodiments of the present invention.
  • FIGS. 9 and 10 are top views of polishing apparatuses in accordance with embodiments of the present invention.
  • FIGS. 11-13 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • FIG. 14 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 15( a ) and 15 ( b ) are top views of a pivoting wafer transfer device and washing devices used in the polishing apparatus of FIG. 14 .
  • FIG. 16 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIG. 17 is a vertical cross-sectional view of a rotation mechanism in accordance with an embodiment of the present invention.
  • FIGS. 18 and 19 are plan views of the rotation mechanism of FIG. 17 seen from cross sections 600 L 1 and 600 L 2 of the rotation mechanism of FIG. 17 , respectively.
  • FIG. 20 is a vertical cross-sectional view of the rotation mechanism in accordance with an embodiment of the invention.
  • FIG. 21 is a plan view of the rotation mechanism of FIG. 20 seen from a cross section 600 L 3 of the rotation mechanism of FIG. 20 .
  • FIG. 22 is a cross-sectional view of a guide rail, a guide block and air nozzles of the rotation mechanism of FIG. 20 in accordance with an embodiment of the present invention.
  • FIG. 23 is a top view of the rotation mechanism of FIG. 20 seen from a cross section 600 L 4 of the rotation mechanism of FIG. 20 .
  • FIG. 24 is a perspective sectional side view of the rotation mechanism of FIG. 20 .
  • FIG. 25 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 26( a )- 26 ( h ) are sequential top views of the polishing apparatus of FIG. 25 to show a sequence of polishing wafers in accordance with an embodiment of the present invention.
  • FIG. 27-29 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • FIG. 30 is a cross-sectional view of a cleaning apparatus in accordance with an embodiment of the present invention.
  • FIGS. 31( a )- 31 ( u ) are sequential top views of the cleaning apparatus of FIG. 30 to show a method of processing wafers in accordance with an embodiment of the present invention.
  • FIGS. 32( a ) and 32 ( b ) are side views of a wafer output stage in accordance with an embodiment of the present invention.
  • FIGS. 33-35 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • FIG. 1 is a top view of the polishing apparatus 5 .
  • the polishing apparatus 5 comprises a first polishing module 10 , a second polishing module 10 ′ and a wafer transfer device 40 .
  • the polishing apparatus 5 comprises an enclosure 11 to isolate the polishing modules 10 and 10 ′ from the environment.
  • the first polishing module 10 comprises three polishing heads 20 a - 20 c , two polishing surfaces 14 a and 14 b , and one wafer transfer station 18 .
  • the second polishing module 10 ′ comprises three polishing heads 20 a ′- 20 c ′, two polishing surfaces 14 a ′ and 14 b ′, and one wafer transfer station 18 ′.
  • the wafer transfer device 40 is a device to supply wafers to be polished from a wafer source to the wafer transfer stations 18 and 18 ′ and to transfer polished wafers from the wafer transfer stations 18 and 18 ′ to a wafer storage.
  • the first and second polishing modules 10 and 10 ′ are situated in the polishing apparatus 5 such that they are substantially symmetric across an imaginary plane 410 .
  • the polishing apparatus 5 only the components of the first polishing module 10 are described.
  • the components of the second polishing module 10 ′ are not described separately because the components of the first polishing module are used in the same manner as the components of the second polishing module.
  • the components used in the second polishing module 10 ′ are designated with an additional prime symbol (′) after the same reference numbers used to designate the components used in the first polishing module 10 , similar to the designations of the first and second polishing modules 10 and 10 ′.
  • the first polishing heads of the first and second polishing modules 10 and 10 ′ are designated as 20 a and 20 a ′, respectively.
  • FIGS. 2 and 3 are top and side views of the polishing module 10 , respectively.
  • the polishing surfaces 14 a and 14 b of the first polishing module 10 are supported on respective polishing tables 13 a and 13 b and rotated by respective rotation mechanisms about respective rotational axes 15 a and 15 b .
  • Polyurethane pads can be used as the polishing surfaces 14 a and 14 b of the polishing module 10 .
  • the polishing surfaces 14 a and 14 b are situated in the polishing module 10 such that an imaginary plane A connecting the rotational axes 15 a and 15 b is parallel to a depth direction of the polishing module 10 , as indicated in FIG. 1 .
  • the first polishing head 20 a is coupled to an end of a shaft 21 a .
  • the other end of the shaft 21 a is coupled to a rotational-and-vertical drive mechanism 22 a , which controls rotational and vertical motions of the first polishing head 20 a .
  • the rotational-and-vertical drive mechanism 22 a is coupled to an end of an arm 24 a .
  • the other end of the arm 24 a is coupled to a rotation mechanism 26 .
  • the first polishing head 20 a , the shaft 21 a , and the rotational-and-vertical drive mechanism 22 a form a first polishing head assembly.
  • the second and third polishing heads 20 b and 20 c are coupled to the rotation mechanism 26 through respective shafts 21 b and 21 c , respective rotational-and-vertical drive mechanisms 22 b and 22 c and respective arms 23 b and 23 c .
  • the second polishing head 20 b , the shaft 21 b , and the rotational-and-vertical drive mechanism 22 b form a second polishing head assembly.
  • the third polishing head 20 c , the shaft 21 c , and the rotational-and-vertical drive mechanism 22 c form a third polishing head assembly.
  • the rotation mechanism 26 is overhead mounted above the polishing tables 13 a and 13 b to a top frame structure (not shown in FIGS. 2 and 3 ) of the polishing apparatus 5 .
  • the rotation mechanism 26 is configured to rotationally transport the polishing heads 20 a - 20 c about a rotation axis 28 between the wafer transfer station 18 and the polishing surfaces 14 a and 14 b along a circular path 28 a .
  • the rotation mechanism 26 can be considered as a transport mechanism configured to transport polishing head assemblies, which include polishing heads.
  • the circular path 28 a is a trajectory of centers 23 a - 23 c of the polishing heads 20 a - 20 c during the rotation about the rotation axis 28 as shown in FIGS. 1 and 2 .
  • the wafer transfer station 18 and the first and second polishing surfaces 14 a and 14 b are disposed angularly about the rotation axis 28 such that angles from a center 18 c of the wafer transfer station 18 to the respective rotation axes 15 a and 15 b of the first and second polishing surfaces 14 a and 14 b about the rotation axis 28 may be equal to each other and in the range from 100 to 110 degree. Any device that can transfer wafers with the polishing heads 20 a - 20 c can be used as the wafer transfer station 18 .
  • the polishing heads 20 a - 20 c with the wafers are transferred to the polishing surfaces 14 a and 14 b about the rotation axis 28 by the rotation mechanism 26 and then pressed against the polishing surfaces 14 a and 14 b .
  • the polishing heads 20 a - 20 c are rotated about the respective rotation axes 23 a - 23 c and the polishing surfaces 14 a and 14 b are also rotated about the respective rotation axes 15 a and 15 b .
  • Slurry is supplied onto the polishing surfaces 14 a and 14 b during this polishing process.
  • the polishing surfaces 14 a and 14 b , the wafer transfer station 18 and the rotation axis 28 are configured and disposed in the polishing module 10 such that the polishing module 10 can have two polishing positions P 11 and P 12 on the first polishing surface 14 a and two polishing positions P 21 and P 22 on the second polishing surface 14 b .
  • each of the centers 23 a - 23 c of the polishing heads 20 a - 20 c is positioned on either the position P 11 or P 12 .
  • each of the centers 23 a - 23 c of the polishing heads 20 a - 20 c is positioned on either the position P 21 or P 22 .
  • the positions of P 11 , P 12 , P 21 and P 22 are further described using circumferences of the polishing heads 20 a - 20 c and the polishing surfaces 14 a and 14 b .
  • the polishing heads 20 a - 20 c can be positioned on the first polishing surface 14 a such that the circumferences of the polishing heads 20 a - 20 c can have same tangents with the circumference of the first polishing surface 14 a at two points 14 X and 14 X* wherein the point 14 X is adjacent to the wafer transfer station 18 , and the point 14 X* is opposite to the point 14 X.
  • the points 14 X and 14 X* are points on the circumference of the first polishing surface 14 a .
  • the polishing heads 20 a - 20 c can be positioned on the second polishing surface 14 b such that the circumferences of the polishing heads 20 a - 20 c can have same tangents with the circumference of the second polishing surface 14 b at two points 14 Y and 14 Y* wherein the point 14 Y* is adjacent to the wafer transfer station 18 , and the point 14 Y is opposite to the point 14 Y*.
  • the points 14 Y and 14 Y* are points on the circumference of the second polishing surface 14 b .
  • positioning the centers 23 a - 23 c of the polishing heads 20 a - 20 c at the polishing position P 11 means that the centers 23 a - 23 c can be positioned on the circular path 28 a within 1 inch distance range from P 11 toward P 12 ;
  • positioning the centers 23 a - 23 c at the polishing position P 12 means that the centers 23 a - 23 c can be positioned on the circular path 28 a within 1 inch distance range from P 12 toward P 21 ;
  • the centers 23 a - 23 c of the polishing heads 20 a - 20 c can be oscillated clockwise one inch and counterclockwise one inch to and from P 11 , P 12 , P 21 and P 22 respectively about the rotation axis 28 by the rotation mechanism 26 .
  • each pad conditioning device 80 i.e., each of the pad conditioning devices 80 a - 80 b ′, comprises a pivoting mechanism 82 , an arm 84 and a conditioning disc 86 .
  • the pivoting mechanism 82 is configured to pivot the conditioning disc 86 between the center of the polishing surface 14 and a parking position 87 about an axis 81 .
  • Each slurry supply arm 90 i.e., each of the slurry supply arms 90 a - 90 b ′, comprises a pivoting mechanism 92 and an arm 94 .
  • the pivoting mechanism 92 pivots the arm 94 to a central area of the polishing surface 14 about an axis 91 .
  • polishing positions on the polishing surfaces 14 a - 14 b ′ are determined.
  • the polishing apparatus 5 shown in FIG. 1 is configured such that the first polishing module 10 uses P 11 and P 22 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10 ′ uses P 11 ′ and P 22 ′ as its polishing positions on the first and second polishing surfaces 14 a ′ and 14 b ′ respectively.
  • FIG. 4( a ) and 4 ( c ) With different locations of the pad conditioning devices 80 a - 80 b ′ and the slurry arms 90 a - 90 b ′ relative to the polishing surfaces 14 a and 14 b ′ and different arrangement of the polishing modules 10 and 10 ′, different polishing positions can be used as shown in FIGS. 4( a ) and 4 ( c ).
  • FIG. 4( a ) shows a modified version of the polishing apparatus 5 in accordance with an embodiment of the present invention, which is configured such that the first polishing module 10 uses P 12 and P 21 as it polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10 ′ uses P 12 ′ and P 21 ′ as it polishing positions on the first and second polishing surfaces 14 a ′ and 14 b ′ respectively.
  • FIG. 4( b ) shows another modified version of the polishing apparatus 5 in accordance with an embodiment of the present invention, which is configured such that the first polishing module 10 uses P 12 and P 21 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10 ′ uses P 11 ′ and P 22 ′ as its polishing positions on the first and second polishing surfaces 14 a ′ and 14 b ′ respectively.
  • FIG. 5 is a top view of the wafer processing apparatus 100 .
  • the wafer processing apparatus 100 comprises two cleaning apparatuses 120 and 120 ′, the polishing apparatus 5 , a factory interface 64 , a wafer input stage 16 a , two cleaner buffers 16 b and 16 b ′ (equivalent to “cleaner interface stages” used in U.S. Provisional Patent Applications from which this application claims priority), and two wafer output stages 16 c and 16 c′.
  • the cleaner buffers 16 b and 16 b ′ are devices where polished wafers are placed by the wafer transfer device 40 .
  • the first cleaner buffer 16 b is positioned at a first end 120 x of the first cleaning apparatus 120 which is adjacent to the polishing apparatus 5 .
  • the second cleaner buffer 16 b ′ is positioned at a first end 120 x ′ of the second cleaning apparatus 120 ′ which is adjacent to the polishing apparatus 5 .
  • the cleaner buffers 16 b and 16 b ′ may be enclosed in the respective cleaning apparatuses 120 and 120 ′ as one of the components of the respective cleaning apparatuses 120 and 120 ′.
  • Respective second ends 120 y and 120 y ′ of the first and second cleaning apparatuses 120 and 120 ′ are positioned adjacent to the factory interface 64 .
  • the wafer output stages 16 c and 16 c ′ are positioned at the respective second ends 120 y and 120 y ′ of the first and second cleaning apparatuses 120 and 120 ′.
  • the polishing apparatus 5 is disposed in the back side of the wafer processing apparatus 100 such that the respective imaginary planes A and A′ of the polishing modules 10 and 10 ′ are parallel to a depth direction of the wafer processing apparatus 100 .
  • the cleaning apparatuses 120 and 120 ′ are disposed between the factory interface 64 and the polishing apparatus 5 such that longer sides 120 a and 120 a ′ of the cleaning apparatuses 120 and 120 ′ are parallel to the depth direction of the wafer processing apparatus 100 .
  • the cleaning apparatuses 120 and 120 ′ are disposed such that there is a space 120 S, which is surrounded by the factory interface 64 , the cleaning apparatuses 120 and 120 ′, and the polishing apparatus 5 .
  • the wafer input stage 16 a and the wafer transfer device 40 are positioned in the space 120 S.
  • the factory interface 64 includes a cassette 60 and a wafer transfer device 50 .
  • the cassette 60 is a device to store wafers to be processed and the wafers that have been processed.
  • the wafer transfer device 50 transfer wafers from the cassette 60 to the wafer input stage 16 a and from the wafer output stages 16 c and 16 c ′ of the cleaning apparatuses 120 and 120 ′ to the cassette 60 .
  • the factory interface 64 may further comprise a linear track 52 .
  • the wafer transfer device 50 is coupled to the linear track 52 such that the wafer transfer device 50 can move linearly along the track 52 .
  • the linear track 52 is positioned parallel to a width direction of the wafer processing apparatus 100 , as indicated in FIG. 5 .
  • the wafer input stage 16 a is a device where wafers that will be transferred by the wafer transfer device 40 are placed by the wafer transfer device 50 .
  • the wafer input stage 16 a may be coupled to a stage transfer device 77 such that the wafer input stage 16 a can move between a wafer receiving position RP 1 and a wafer release position RP 2 by the stage transfer device 77 .
  • the wafer receiving position RP 1 is adjacent to the factory interface 64 such that the wafer input stage 16 a can receive wafers from the wafer transfer device 50 .
  • the wafer release position RP 2 is adjacent to the wafer transfer device 40 such that the wafer input stage 16 a can release the wafers to the wafer transfer device 40 .
  • the wafer transfer device 40 is positioned in a space surrounded by the wafer transfer stations 18 and 18 ′, the cleaner buffers 16 b and 16 b ′, and the wafer release position RP 2 .
  • the wafer transfer device 40 may be mounted to a linear track 42 .
  • the linear track 42 is designed and disposed such that the wafer transfer device 40 can move between the wafer release position RP 2 , the cleaner buffers 16 b and 16 b ′, and the wafer transfer stations 18 and 18 ′ of the polishing apparatus 5 .
  • FIG. 6 is a cross sectional view of a cleaning apparatus 120 that can be used as the cleaning apparatuses 120 and 120 ′.
  • the cleaning apparatus 120 comprises a cleaning module 124 and a fluid control system 126 .
  • the fluid control system 126 controls supply and drain of chemical fluid to and from the cleaning module 124 .
  • the cleaning module 124 comprises wafer stages 124 a - 124 d . Wafers are placed on the cleaner buffer 16 b by the wafer transfer device 40 .
  • An internal wafer transfer device 122 transfers the wafers from the cleaner buffer 16 b to the wafer output stage 16 c through the wafer stages 124 a - 124 d sequentially.
  • the cleaned and dried wafers are removed from the wafer output stage 16 c by the wafer transfer device 50 .
  • the internal wafer transfer device 122 comprises multiple grippers 162 a - 162 e and a vertical-and-lateral transfer mechanism 164 .
  • the first gripper 162 a transfers a wafer from the cleaner buffer 16 b through a first position CP 1 and a second position CP 2 to the first wafer stage 124 a .
  • the second gripper 162 b transfers the wafer from the first wafer stage 124 a through the second position CP 2 and a third position CP 3 to the second wafer stage 124 b .
  • the third gripper 162 c transfers the wafer from the second stage 124 b through the third position CP 3 and a fourth position CP 4 to the third wafer stage 124 c .
  • the fourth gripper 162 d transfers the wafer from the third stage 124 c through the fourth position CP 4 and a fifth position CP 5 to the fourth wafer stage 124 d .
  • the fifth gripper 162 e transfers the wafer from the fourth stage 124 d through the fifth position CP 5 and a sixth position CP 6 to the wafer output stage 16 c.
  • a first wafer W 1 is transferred from the cassette 60 to the wafer input stage 16 a at the wafer receiving position RP 1 by the wafer transfer device 50 .
  • the wafer input stage 16 a is transferred from the wafer receiving position RP 1 to the wafer release position RP 2 by the stage transfer device 77 .
  • the wafer W 1 is transferred from the wafer input stage 16 a to the wafer transfer station 18 of the first polishing module 10 by the wafer transfer device 40 .
  • the wafer W 1 is picked from the wafer transfer station 18 by the first polishing head 20 a of the first polishing module 10 .
  • the wafer W 1 is polished on the first and second polishing surfaces 14 a and 14 b , and then placed on the wafer transfer station 18 by the first polishing head 20 a .
  • the wafer W 1 is transferred from the wafer transfer station 18 to the cleaner buffer 16 b of the first cleaning apparatus 120 by the wafer transfer device 40 , further transferred from there through the cleaning module 124 to the wafer output stage 16 c by the internal wafer transfer device 122 and then transferred from the wafer output stage 16 c to the cassette 60 by the wafer transfer device 50 .
  • a second wafer W 2 is transferred from the cassette 60 to the wafer input stage 16 a in the same way as the first wafer W 1 .
  • the wafer W 2 is then transferred from the wafer input stage 16 a at the wafer release position RP 2 to the wafer transfer station 18 ′ of the second polishing module 10 ′ by the wafer transfer device 40 .
  • the wafer W 2 is picked from the wafer transfer station 18 ′ by the first polishing head 20 a ′ of the second polishing module 10 ′.
  • the wafer W 2 is polished on the first and second polishing surfaces 14 a ′ and 14 b ′, and then placed on the wafer transfer station 18 ′ by the first polishing head 20 a ′.
  • the wafer W 2 is transferred from the wafer transfer station 18 ′ to the cleaner buffer 16 b ′ of the second cleaning apparatus 120 ′ by the wafer transfer device 40 , further transferred from there through the cleaning module 124 ′ to the wafer output stage 16 c ′ by the internal wafer transfer device 122 ′ and then transferred from the wafer output stage 16 c ′ to the cassette 60 by the wafer transfer device 50 .
  • a first group of wafers such as the first wafer W 1 are processed through one of the polishing modules 10 and 10 ′ and one of the cleaning apparatuses 120 and 120 ′; and a second group of wafers such as the second wafer W 2 are processed through the other of the polishing modules 10 and 10 ′ and the other of the second cleaning apparatuses 120 and 120 ′.
  • FIG. 7 is a top view of the modified wafer processing apparatus 100 a .
  • the wafer processing apparatus 100 a is similar to the wafer processing apparatus 100 shown in FIG. 5 .
  • a difference is that the cleaning apparatuses 120 and 120 ′ are situated at the same side in the wafer processing apparatus 100 a and the wafer input stage 16 a and the wafer transfer device 40 are positioned at the opposite side.
  • the cleaning apparatuses 120 and 120 ′ are situated such that both of the cleaner buffers 16 b and 16 b ′ of the cleaning apparatuses 120 and 120 ′ are adjacent to the first polishing surface 14 a of the first polishing module 10 of the polishing apparatus 5 .
  • the wafer transfer device 40 is configured to transfer wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18 ′; and from the wafer transfer stations 18 and 18 ′ to at least one of the first and second cleaner buffers 16 b and 16 b′.
  • the cleaning apparatuses 120 and 120 ′ used in the wafer processing apparatuses 100 a are configured to share the cleaner buffer 16 b as described with reference to FIG. 8( a ), which is a top view of the cleaning apparatuses 120 and 120 ′.
  • the cleaning apparatuses 120 and 120 ′ comprise a stage transfer device 79 to which the shared cleaner buffer 16 b is slidibly coupled.
  • the stage transfer device 79 is configured to transfer the cleaner buffer 16 b between a first transfer position TP 1 and a second transfer position TP 1 ′.
  • the second transfer position TP 1 ′ is a position where the cleaner buffer 16 b receives wafers from the wafer transfer device 40 and the internal wafer transfer device 122 ′ of the second cleaning apparatus 120 ′ receives the wafers from the cleaner buffer 16 b .
  • the first transfer position TP 1 is a position where the internal wafer transfer device 122 of the first cleaning apparatus 120 receives the wafers from the cleaner buffer 16 b after the cleaner buffer 16 b receives the wafers at the second transfer position TP 1 ′ from the wafer transfer device 40 and then is transferred to the first transfer position TP 1 by the stage transfer device 79 .
  • a wafer relay device 172 can be used as shown in FIG. 8( b ), which is a top view of the cleaning apparatuses 120 and 120 ′.
  • the wafer relay device 172 comprises a linear track 173 , a gripping device 174 and a pair of grippers 175 a and 175 b .
  • the grippers 175 a and 175 b are coupled to the gripping device 174 , which is configured to open and close the grippers 175 a and 175 b .
  • the gripping device 174 is coupled to the linear track 173 such that the gripping device 174 and therefore the grippers 175 a and 175 b can move between the cleaner buffers 16 b and 16 b ′ on the linear track 173 .
  • the wafer transfer device 40 transfers a first wafer to the cleaner buffer 16 b ′ of the second cleaning apparatus 120 ′ from one of the wafer transfer stations 18 and 18 ′.
  • the first wafer is then transferred from the cleaner buffer 16 b ′ by the internal wafer transfer device 122 ′ of the second cleaning apparatus 120 ′.
  • the wafer transfer device 40 transfers a second wafer to the cleaner buffer 16 b ′ from the other of the wafer transfer stations 18 and 18 ′.
  • the second wafer is then gripped by the grippers 175 a and 175 b and transferred to the cleaner buffer 16 b of the first cleaning apparatus 120 by the wafer relay device 172 such that the internal wafer transfer device 122 of the first cleaning apparatus 120 can take the second wafer from the cleaner buffer 16 b.
  • FIG. 9 is a top view of the polishing apparatus 5 a .
  • the polishing apparatus 5 a is similar to the polishing apparatus 5 shown in FIG. 1 .
  • a difference is the orientation of the polishing modules 10 and 10 ′.
  • the polishing modules 10 and 10 ′ are oriented such that the plane A of the first polishing module 10 is perpendicular to a depth direction of the polishing apparatus 5 a and only the plane A′ of the second polishing module 10 ′ is parallel to the depth direction of the polishing apparatus 5 a , as indicated in FIG. 9 .
  • an angle Q between the plane A and the plane A′ in the polishing apparatus 5 a can be any angle in the range of 80 to 95 degree. In another embodiment, the angle Q can have be any angle in the range of 60 to 90 degree.
  • the first polishing module 10 in the polishing apparatus 5 a uses P 12 and P 22 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10 ′ in the polishing apparatus 5 a uses P 12 ′ and P 22 ′ as its polishing positions on the first and second polishing surfaces 14 a and 14 a ′ respectively.
  • FIG. 10 is a top view of the polishing apparatus 5 b .
  • the polishing apparatus 5 b is similar to the polishing apparatus 5 a shown in FIG. 9 .
  • a difference is that the second polishing module 10 ′ may be disposed in the polishing apparatus 5 b such that the rotation axis 15 b ′ of the second polishing surface 14 b ′ of the second polishing module 10 ′ is disposed further away from the plane A of the first polishing module 10 and closer to the wafer transfer station 18 of the first polishing module 10 than it is disposed in the polishing apparatus 5 a in order to make the width of the polishing apparatus 5 b smaller.
  • the polishing apparatus 5 b may use P 21 ′ as its polishing position on the second polishing surface 14 b ′ of the second polishing module 10 ′ while the polishing apparatus 5 a uses P 22 ′.
  • the polishing apparatuses 5 a and 5 b can be also configured to use other polishing positions that were used in the polishing apparatus 5 as described with reference to FIGS. 1 and 2 .
  • the polishing apparatuses 5 a and 5 b can be configured to use P 11 , P 22 , P 11 ′ and P 22 ′; P 12 , P 21 , P 12 ′ and P 21 ′; and P 11 , P 22 , P 21 ′ and P 21 ′ as their polishing positions.
  • the polishing apparatus 5 a and 5 b can be used in the wafer processing apparatus 100 as a replacement of the polishing apparatus 5 shown in FIG. 1 .
  • the wafer processing apparatus 100 comprising the polishing apparatus 5 a is described with reference to FIG. 11 , which is a top view of the wafer processing apparatus 100 comprising the polishing apparatus 5 a .
  • the polishing apparatus 5 a is situated in the wafer processing apparatus 100 such that the plane A′ of the second polishing module 10 ′ is parallel to the depth direction of the wafer processing apparatus 100 .
  • the second polishing module 10 ′ which has the greater depth than the first polishing module 10 is situated adjacent to the first end 120 x ′ of the second cleaning apparatus 120 ′; and the first polishing module 10 which has the smaller depth than the second polishing module 10 ′ is situated at the opposite side.
  • the wafer transfer device 40 and the wafer input stage 16 a are positioned in the space 120 S between the first and second cleaning apparatuses 120 and 120 ′. Because the depth of the first polishing module 10 is smaller than the depth of the second polishing module 10 ′, there is an empty space 130 between the first polishing module 10 and the first cleaning apparatus 120 . Thus, an engineer can access the wafer transfer device 40 and the wafer input stage 16 a disposed at the space 120 S through this empty space 130 to maintain them.
  • the polishing apparatuses 5 a and 5 b can be used in the wafer processing apparatus 100 a shown in FIG. 7 as a replacement of the polishing apparatus 5 .
  • the wafer processing apparatus 100 a comprising the polishing apparatus 5 a is described with reference to FIG. 12 , which is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 a .
  • the second polishing module 10 ′ of the polishing apparatus 5 a is situated adjacent to the first ends 120 x and 120 x ′ of the first and second cleaning apparatuses 120 and 120 ′ such that the first and second cleaning apparatuses 120 and 120 ′ are situated between the second polishing module 10 ′ and the factory interface 64 .
  • the wafer transfer device 40 can be mounted on the linear track 42 such that the wafer transfer device 40 can move between about the cleaner buffer 16 b of the first cleaning apparatus 120 and about the wafer transfer stations 18 and 18 ′ of the polishing modules 10 and 10 ′.
  • the wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18 ′; and from the wafer transfer stations 18 and 18 ′ to at least one of the cleaner buffers 16 b and 16 b ′.
  • An advantage of the wafer processing apparatus 100 a comprising the polishing apparatus 5 a is that there is a large space that can be used to maintain the wafer processing apparatus 100 a between the first polishing module 10 and the factory interface 64 .
  • the cleaning apparatuses 120 and 120 ′ comprises the stage transfer device 79 or the wafer relay device 172 , which were described with reference to FIGS. 8( a ) and 8 ( b ).
  • FIG. 13 is a top view of the wafer processing apparatus 100 b .
  • the wafer processing apparatus 100 b comprises the cleaning apparatuses 120 and 120 ′ and a polishing apparatus such as the polishing apparatus 5 b shown in FIG. 10 .
  • the cleaning apparatuses 120 and 120 ′ are disposed adjacent to each other between the first polishing module 10 of the polishing apparatus 5 b and the factory interface 64 such that the second ends 120 y and 120 y ′ of the cleaning apparatuses 120 and 120 ′ are adjacent to the factory interface 64 and the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′ face the first polishing module 10 of the polishing apparatus 5 b across the wafer transfer device 40 .
  • the polishing apparatus 5 b is disposed such that there are a space 111 a between the first polishing module 10 of the polishing apparatus 5 b and the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′; a space 111 c between the second polishing module 10 ′ of the polishing apparatus 5 b and the factory interface 64 ; and a wafer transfer path 111 b between the second polishing module 10 ′ of the polishing apparatus 5 b and the first end 120 x ′ of the second cleaning apparatus 120 ′.
  • the wafer transfer path 111 b connects the spaces 111 a and 111 c for wafer transfer between the spaces 111 a and 111 c .
  • the polishing apparatus 5 b may be disposed such that a distance 120 D* from the second polishing module 10 ′ to the factory interface 64 is shorter than a distance 120 D from the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′ to the factory interface 64 .
  • the wafer transfer device 40 is disposed in the space 111 a such that the wafer transfer device 40 can transfer wafers from the wafer transfer stations 18 and 18 ′ to at least one of the cleaner buffers 16 b and 16 b ′ of the first and second cleaning apparatuses 120 and 120 ′.
  • the space 111 a also provides a space for an engineer to maintain the cleaning apparatuses 120 and 120 ′ and the polishing apparatus 5 b.
  • a buffer 16 a * is disposed around the wafer transfer path 111 b such that the wafer transfer device 40 can take wafers from the buffer 16 a *.
  • the buffer 16 a * is a device to keep the wafers transferred by a second wafer transfer device 40 *.
  • the buffer 16 a * may be configured to accommodate wafers vertically.
  • the second wafer transfer device 40 * is disposed in the space 111 c .
  • the second wafer transfer device 40 * is configured to transfer wafers to be polished from the wafer input stage 16 a disposed adjacent to the factory interface 64 to the buffer 16 a *.
  • the second wafer transfer device 40 * may be mounted to a linear track 42 *.
  • wafers to be polished are transferred from the wafer input stage 16 a to the buffer 16 a * by the second wafer transfer device 40 *; transferred from the buffer 16 a * to at least one of the wafer transfer stations 18 and 18 ′ of the polishing apparatus 5 b by the wafer transfer device 40 ′; polished in the polishing apparatus 5 b by at least one of the polishing heads 20 a - 20 c ′; transferred back to at least one of the wafer transfer stations 18 and 18 ′ by the at least one of the polishing heads 20 a - 20 c ′; and transferred from the at least one of the wafer transfer stations 18 and 18 ′ to at least one of the cleaner buffers 16 b and 16 b ′ of the cleaning apparatuses 120 and 120 ′ by the wafer transfer device 40 .
  • the wafer processing apparatus 100 b may be configured such that the wafer transfer device 40 transfers the wafers polished in the polishing apparatus 5 b back to the buffer 16 a * instead of transferring them to the cleaner buffers 16 b and 16 b ′.
  • the wafer transfer device 40 * transfers the wafers from the buffer 16 a * to at least one of the cleaner buffers 16 b and 16 b′.
  • the polishing apparatus 5 c is similar to the polishing apparatus 5 shown in FIG. 1 . A difference is that the polishing apparatus 5 c comprises a pivoting wafer transfer device 180 as a replacement of the wafer transfer stations 18 and 18 ′ of the polishing apparatus 5 . In addition, the polishing apparatus 5 c can further comprise a first washing device 118 and a second washing device 118 ′.
  • the pivoting wafer transfer device 180 is configured to transfer wafers with the polishing heads 20 a - 20 c of the first polishing module 10 at a first transfer position 20 P; with the wafer transfer device 40 at a parking position; and with the polishing heads 20 a ′- 20 c ′ of the second polishing module 10 ′ at a second transfer position 20 P′.
  • the first transfer position 20 P is a position where the wafer transfer station 18 of the first polishing module 10 was situated in the polishing apparatus 5 shown in FIG. 1 ;
  • the second transfer position 20 P′ is a position where the wafer transfer station 18 ′ of the second polishing module 10 ′ was situated in the polishing apparatus 5 shown in FIG. 1 ;
  • the parking position is a position where a loader 188 of the pivoting wafer transfer device 180 is positioned among the wafer transfer device 40 , the first transfer position 20 P and the second transfer position 20 P′.
  • the first washing device 118 is disposed about the transfer position 20 P and can spray DI water to the polishing heads 20 a - 20 c and the wafers held by the polishing heads 20 a - 20 c when the polishing heads 20 a - 20 c are positioned at the transfer position 20 P.
  • the second washing device 118 ′ is disposed about the transfer position 20 P′ of the second polishing module 10 ′ and can spray DI water to the polishing heads 20 a ′- 20 c ′ and the wafers held by the polishing heads 20 a ′- 20 c ′ when the polishing heads 20 a ′- 20 c ′ are positioned at the transfer position 20 P′.
  • FIGS. 15( a ) and 15 ( b ) are side views of the pivoting wafer transfer device 180 and the washing devices 118 and 118 ′.
  • the loader 188 is positioned at the parking position and the polishing heads 20 a and 20 a ′ are positioned at the first and second transfer positions 20 P and 20 P′ respectively over the respective washing devices 118 and 118 ′.
  • the loader 188 is positioned at the first transfer position 20 P under the first polishing head 20 a.
  • the pivoting wafer transfer device 180 comprises the loader 188 , an arm 186 , a shaft 184 , a pivoting-and-vertical drive mechanism 182 and a pivoting axis 181 .
  • the loader 188 is a device to transfer wafers with the polishing heads.
  • the load 188 is coupled to an end of the arm 186 .
  • the other end of the arm 186 is coupled to an end of the shaft 184 as shown in FIGS. 15( a ) and 15 ( b ).
  • the other end of the shaft 184 is coupled to the pivoting-and-vertical drive mechanism 182 .
  • the pivoting-and-vertical drive mechanism 182 is configured to move the loader 188 up and down by moving the shaft 184 up and down; and configured to pivot the loader 188 by pivoting the shaft 184 about the pivoting axis 181 .
  • a procedure of transferring wafers to the polishing heads 20 a and 20 a ′ by the loader 188 is described using the polishing head 20 a as an example with reference to FIGS. 14 , 15 ( a ) and 15 ( b ).
  • the procedure comprises steps of (1) transferring a first wafer from the wafer transfer device 40 to the loader 188 positioned at the parking position; (2) pivoting the loader 188 to the first transfer position 20 P; (3) moving the loader 188 upward to the polishing head 20 a ; (4) transferring the first wafer to the polishing head 20 a ; (5) moving the loader 188 down from the polishing head 20 a ; and (6) pivoting the loader 188 back to the parking position.
  • the pivoting wafer transfer device 180 transfers a second wafer to the polishing head 20 a ′ in the same manner as the pivoting wafer transfer device 180 transferred the first wafer to the polishing head 20 a.
  • the polishing modules 10 and 10 ′ in the polishing apparatus 5 c preferably uses P 12 and P 12 ′ as its polishing positions to polish the wafers on the first polishing surfaces 14 a and 14 a ′ of the polishing modules 10 and 10 ′ respectively.
  • FIG. 16 is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 c .
  • the polishing apparatus 5 c and the cleaning apparatuses 120 and 120 ′ are disposed in the wafer processing apparatus 100 a such that the first polishing surface 14 a of the polishing module 10 is adjacent to the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′.
  • the wafer transfer device 40 is positioned adjacent to the loader 188 of the pivoting wafer transfer device 180 and the first end 120 x ′ of the cleaning apparatus 120 ′.
  • the wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the loader 188 ; and from the loader 188 to at least one of the cleaner buffers 16 b and 16 b′.
  • FIG. 17 is a vertical cross-sectional view of the rotation mechanism 600 in accordance with an embodiment of the present invention.
  • FIGS. 18 and 19 are plan views of the rotation mechanism 600 seen from cross sections 600 L 1 and 600 L 2 shown in FIG. 17 respectively.
  • the rotation mechanism 600 comprises a top support 600 a , an outer cylindrical support 600 b , an inner cylindrical support 600 c , and a circular bottom support 600 d .
  • the supports 600 a , 600 b and 600 c with or without the support 600 d form a support structure of the rotation mechanism 600 .
  • the outer and inner cylindrical supports 600 b and 600 c are mounted to and suspended from the top support 600 a such that there is an annular shaped opening 650 between respective lower ends of the outer and inner cylindrical supports 600 b and 600 c .
  • the outer cylindrical support 600 b comprises at least one opening 602 , through which the rotation mechanism 600 can be maintained and air can be exhausted from the rotation mechanism 600 .
  • An annular gear 630 is mounted coaxially to the inner cylindrical support 600 c about the rotation axis 28 .
  • the circular bottom support 600 d is mounted to the lower end of the inner cylindrical support 600 c such that the bottom support 600 d encloses a space 600 S surrounded by the inner cylindrical support 600 c .
  • the inner space 600 S is used for fluid supply channels such as vacuum and pressurized air, electrical power supply cables and data communication cables.
  • a first annular rim 605 is mounted to the lower end of the outer cylindrical support 600 b such that the first annular rim 605 surrounds the annular opening 650 .
  • An annular outer guide rail 640 a is mounted to the first annular rim 605 and an annular inner guide rail 640 b is mounted to the bottom support 600 d such that the outer and inner annular guide rails 640 a and 640 b surround the annular opening 650 .
  • Second and third annular rims 608 a and 608 b are mounted to the outer and inner guide rails 640 a and 640 b respectively such that they surround the annular opening 650 .
  • a first group of nozzles 610 a are mounted to the first annular rim 605 along the first annular rim 605 such that the first group of nozzles 610 a can inject pressurized air toward an annular opening 655 a (shown in FIG. 17 ) between the outer cylindrical support 600 b and an annular shield 655 .
  • a second group of nozzles 610 b are mounted to the second annular rim 608 a along the second annular rim 608 a such that the second group of nozzles 610 b can inject pressurized air toward the annular opening 655 a (through a space over the outer annular guide rail 640 a ).
  • a third group of nozzles 610 c are mounted to the third annular rim 608 b along the third annular rim 608 b such that the third group of nozzles 610 c can inject pressurized air upwardly toward an annular opening 655 b (shown in FIG. 17 ) between the inner cylindrical support 610 c and the annular shield 655 (through a space over the inner annular guide rail 640 b ).
  • a fourth group of nozzles 610 d are mounted to the bottom support 600 d along a perimeter of the bottom support 600 d such that the fourth group of nozzles 610 d can inject pressurized air upwardly toward the annular opening 655 b .
  • a fifth group of nozzles 610 e may be mounted to the second annular rim 608 a along the second annular rim 608 a such that the fifth group of nozzles 610 e can inject pressurized air toward the annular opening 650 .
  • a sixth group of nozzles 610 f may be mounted to the third annular rim 608 b along the third annular rim 608 b such that the sixth group of nozzles 610 f can inject pressurized air toward the annular opening 650 .
  • Each group of nozzles 610 a - 610 f is connected to a source of the pressurized air (not shown in FIG. 17 ) through a respective pressure control device such that pressure and flow rate of the pressurized air injected from each group of nozzles can be controlled individually.
  • the annular shield 655 is disposed over the opening 650 as shown in FIG. 17 such that it covers the opening 650 ; an outer radial end of the annular shield 655 is disposed over at least a portion of the outer rail 640 a ; and an inner radial end of the annular shield 655 is disposed over at least a portion of the inner rail 640 b .
  • the annular shield 655 is mounted to the outer cylindrical support 600 b through mounting plates 656 as shown in FIG. 19 .
  • the annular shield 655 is not connected to the inner cylindrical support 600 c .
  • the annular shield 655 may be configured to have the openings 655 a between the outer annular support 600 b and the annular shield 655 .
  • the openings 655 a are used to exhaust air from the first and second groups of nozzles 610 a and 610 b as shown in FIG. 17 .
  • the annular shield 655 is also configured such that there is the annular opening 655 b between the annular shield 655 and the inner annular support 600 c .
  • the opening 655 b is used to exhaust air from the third and fourth groups of nozzles 610 c and 610 d as shown in FIG. 17 .
  • the annular shield 655 and the first, second, third and fourth groups of nozzles 610 a - 610 d are used to isolate the annular opening 650 from a space above the annular shield 655 .
  • Air injected from the nozzles 610 a - 610 d is used to protect dirty air from flowing into the opening 650 and to blow particles, which may be generated from the guide rails 640 a and 640 b , to the openings 655 a and 655 b.
  • FIG. 20 is a vertical cross sectional view of the rotation mechanism 600 along a vertical plane Z shown in FIG. 21 .
  • FIG. 21 is a plan view of the rotation mechanism 600 seen from a cross section 600 L 3 shown in FIG. 20 .
  • the rotational-and-vertical drive mechanisms 22 a - 22 c of the polishing heads 20 a - 20 c described with reference to FIGS. 2 and 3 are mounted to the head supports 615 a - 615 c respectively.
  • the head supports 615 a - 615 c are used as head supporting members that support polishing head assemblies, which include polishing heads.
  • the head supports 615 a - 615 c are similar to each other, details of the head supports 615 a - 615 c are described using the first head support 615 a as an example.
  • the head support 615 a is configured such that its outer radial end is positioned over the outer guide rail 640 a and movably coupled to the outer guide rail 640 a through at least one guide block 645 a .
  • the guide block 645 a which is fixedly mounted to the outer radial end of the head support 615 a , is movably coupled to the outer guide rail 640 a .
  • the head support 615 a is also configured such that its inner radial end is positioned over the inner guide rail 640 b and movably coupled to the inner guide rail 640 b through at least one guide block 647 a .
  • the guide blocks 647 a which is fixedly mounted to the inner radial end of the head support 615 a , is movably coupled to the inner guide rail 640 b .
  • the annular opening 650 is exposed between the head supports 615 a - 615 c as shown in FIG. 21 .
  • FIG. 22 shows a cross-sectional view of the head support 615 a , the guide rail 640 a or 640 b , the guide block 645 a or 647 a and the air injection nozzles 610 a , 610 b and 610 e or 610 c , 610 d and 610 f of the rotation mechanism 600 of FIG. 20 .
  • FIG. 22 shows a cross-sectional view of the head support 615 a , the guide rail 640 a or 640 b , the guide block 645 a or 647 a and the air injection nozzles 610 a , 610 b and 610 e or 610 c , 610 d and 610 f of the rotation mechanism 600 .
  • the head support 615 a may be configured to comprise outer and inner portions 616 and 616 * downwardly extended from the outer and inner radial ends of the head support 615 a respectively.
  • the portions 616 and 616 * are mounted to the respective guide blocks 645 a and 647 a .
  • the portions 616 and 616 * comprise at least one opening 644 through the portions 616 and 616 * respectively.
  • the outer portion 616 is positioned between the first and second groups of nozzles 610 a and 610 b .
  • the second group of nozzles 610 b is configured to inject pressurized air through the openings 644 .
  • the first group of nozzles 610 a is configured to inject pressurized air upwardly.
  • the inner portion 616 * is positioned between the third and fourth groups of nozzles 610 c and 610 d .
  • the third group of nozzles 610 c is configured to inject pressurized air through the openings 644 .
  • the fourth group of nozzles 610 d is configured to inject pressurized air upwardly.
  • the fifth and sixth group of nozzles 610 e and 610 f are configured to inject pressurized air toward the annular opening 650 in order to supply clean air to wafer processing area under the annular opening 650 .
  • the first and fourth groups of nozzles 610 a and 610 d may be configured to suction the air injected from the second and third groups of nozzles 610 b and 610 c respectively.
  • FIG. 23 is a plan view of the rotation mechanism 600 seen from a cross section 600 L 4 shown in FIG. 20 .
  • the annular shield 655 is disposed over the head supports 615 a - 615 c .
  • the annular shield 655 is used as a shield member that shields the opening 650 from the gear 630 .
  • a servo motor 642 a which is used to rotate the first head support 615 a about the rotation axis 28 , is mounted to the first head support 615 a as shown in FIG. 20 .
  • a gear 643 a which is attached to a spinning part of the motor 642 a is coupled to the gear 630 .
  • Respective gears 643 b and 643 c of servo motors 642 b and 642 c to drive the head supports 615 b and 615 c are also coupled with the gear 630 as shown in FIG. 23 such that the head supports 615 b and 615 c can rotate around the gear 630 on the guide rails 640 a and 640 b about the rotation axis 28 .
  • the servo motor 642 a with the gear 642 a and the gear 630 can be considered as one drive mechanism to rotate or transport the connected polishing head assembly.
  • Angular positions of the head supports 615 a - 615 c relative to the rotation axis 28 are controlled individually by a controller 670 .
  • the inner cylindrical support 600 c comprises outlet port 680 a .
  • the outlet port 680 a provides an interface with a channel assembly 682 a .
  • the channel assembly 682 a is connected to fluid sources such as vacuum and pressurized air, electric power source and a controller through the outlet port 680 a .
  • the outlet port 680 a is connected to an inlet port 680 a *, which is mounted to the head support 615 a , through the channel assembly 682 a .
  • the inlet port 680 a * provides an interface with the servo motor 642 a and the rotational-and-vertical drive mechanism 22 a which will be mounted to the head support 615 a.
  • the channel assembly 682 a is suspended from the top support 600 a using at least one bendable support 684 a .
  • the bendable support 684 a supports the channel assembly 682 a in a bendable manner such that stretching of the channel assembly 682 a is not disturbed by the support 684 a .
  • the outlet and inlet ports and the channel assemblies of the second and third head supports 615 b and 615 c have similar configuration with those of the first head support 615 a.
  • FIG. 24 is a perspective sectional side view of the rotation mechanism 600 .
  • the polishing heads 20 a - 20 c are coupled to the head supports 615 a - 615 c respectively through the respective shafts 21 a - 21 c and the respective rotational-and-vertical drive mechanisms 22 a - 22 c .
  • the first polishing head assembly comprising the rotational-and-vertical drive mechanism 22 a and the first polishing head 20 a is coupled to the first head support 615 a ;
  • the second polishing head assembly comprising the rotational-and-vertical drive mechanism 22 b and the second polishing head 20 b is coupled to the second head support 615 b ;
  • the third polishing head assembly comprising the rotational-and-vertical drive mechanism 22 c and the third polishing head 20 c is coupled to the third head support 615 c.
  • the polishing heads 20 a - 20 c can be transferred among the first and second polishing surfaces 14 a and 14 b and the wafer transfer station 18 by rotating the respective gears 643 a - 643 c using the respective motors 642 a - 642 c .
  • the inlet ports 680 a *- 680 c * are coupled to the respective rotational-and-vertical drive mechanisms 22 a - 22 c and the respective polishing heads 20 a - 20 c to supply vacuum, pressurized air and electrical power and to communicate with them.
  • FIG. 25 is a top view of the polishing apparatus 5 c *.
  • the polishing apparatus 5 c * comprises a single polishing module 110 and the wafer transfer device 40 .
  • the polishing module 110 is modified from the polishing module 10 shown in FIGS. 2 and 3 such that the polishing module 110 further comprises a third polishing surface 14 c , a fourth polishing head 20 d and a second wafer transfer station 18 * over the polishing module 10 .
  • the three polishing surfaces 14 a - 14 c and the two wafer transfer stations 18 and 18 * of the polishing module 110 are angularly disposed about the rotation axis 28 in a sequence of the first wafer transfer station 18 , the first polishing surface 14 a , the second polishing surface 14 b , the third polishing surface 14 c and the second wafer transfer station 18 *.
  • the second wafer transfer station 18 * is disposed such that the center 18 c * of the second wafer transfer station 18 * is also positioned on the circular path 28 a .
  • the polishing module 110 is configured such that the polishing heads 20 a - 20 d can transfer wafers with any of the wafer transfer stations 18 and 18 * and polish wafers on any of the polishing surfaces 14 a - 14 c .
  • the wafer transfer device 40 transfers the wafers with the first and second wafer transfer stations 18 and 18 *.
  • the wafer transfer device 40 sequentially supplies wafers to the first transfer station 18 ; the polishing heads 20 a - 20 d are sequentially transferred from the second wafer transfer station 18 * to the first wafer transfer station 18 in order to sequentially load the wafers from the first transfer station 18 ; the polishing heads 20 a - 20 d are sequentially transferred from the first wafer transfer station 18 through the polishing surfaces 14 a - 14 c after loading the wafers; the wafers held by the polishing heads 20 a - 20 d are sequentially polished on the polishing surfaces 14 a - 14 c ; the polishing heads 20 a - 20 d are sequentially transferred from the third polishing surface 14 c to the second wafer transfer station 18 *; the wafers are sequentially unloaded from the polishing heads 20 a - 20 d to the second transfer station 18 *; and the wafers are sequentially removed from the second transfer station 18 * by the wafer transfer device 40 .
  • FIGS. 26( a )- 26 ( h ) are sequential top views of the polishing apparatus 5 c * to show a sequence of polishing wafers in accordance with an embodiment of the present invention. The method comprises steps of:
  • the wafer W 2 is then transferred from the second wafer transfer station 18 * by the wafer transfer device 40 and a fourth wafer W 4 is supplied to the second wafer transfer station 18 * by the wafer transfer device 40 .
  • the wafer W 4 is processed in the same way as the wafer W 2 was processed on the third polishing surface 14 c by the third polishing head 20 c.
  • the polishing apparatus 5 c * is configured to carry out the above method by positioning the fourth polishing head 20 d over the second polishing surface 14 b during the entire process; by reciprocating the first polishing head 20 a between the first wafer transfer station 18 and the first polishing surface 14 a in order to polish a first group of wafers on the first polishing surface 14 a by the first polishing head 20 a ; by reciprocating the third polishing head 20 c between the second wafer transfer station 18 * and the third polishing surface 14 c in order to polish a second group of wafers on the third polishing surface 14 c by the third polishing head 20 c ; and by reciprocating the second polishing head 20 b between the first and second wafer transfer stations 18 and 18 * such that the second polishing head 20 b dose not disturb the reciprocating motions of the first and third polishing heads 20 a and 20 c.
  • FIG. 27 is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 c *.
  • the polishing apparatus 5 c * is disposed such that the third and second polishing surfaces 14 c and 14 b are aligned to the cleaning apparatuses 120 and 120 ′ in the depth direction of the wafer processing apparatus 100 a ; and the third polishing surface 14 c is positioned adjacent to the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′.
  • the wafer transfer device 40 and the wafer input stage 16 a are disposed at the opposite side of the cleaning apparatuses 120 and 120 ′.
  • the wafer transfer device 40 may be mounted on the linear track 42 such that the wafer transfer device 40 can be transferred between the wafer input stage 16 a and the wafer transfer stations 18 and 18 * of the polishing apparatus 5 c *.
  • the wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18 * and from the wafer transfer stations 18 and 18 * to at least one of the cleaner buffers 16 b and 16 b′.
  • the polishing apparatus 5 c * shown in FIG. 25 can be also used in the wafer processing apparatus 100 b shown in FIG. 13 as a replacement of the polishing apparatus 5 b .
  • FIG. 28 is a top view of the wafer processing apparatus 100 b comprising the polishing apparatus Sc*.
  • the polishing apparatus 5 c * is disposed in the wafer processing apparatus 100 b such that the wafer transfer device 40 disposed adjacent to the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′ is surrounded by the first ends 120 x and 120 x ′ of the cleaning apparatuses 120 and 120 ′, the first and second wafer transfer stations 18 and 18 * of the polishing apparatus 5 c * and the buffer 16 a *.
  • the buffer 16 a * is disposed between the first end 120 x ′ of the cleaning apparatus 120 ′ and the polishing apparatus Sc*.
  • the polishing apparatus 5 c * is also disposed in the wafer processing apparatus 100 b such that the third polishing surface 14 c faces the factory interface 64 across the second wafer transfer device 40 * disposed in the space 111 c .
  • the second wafer transfer device 40 * transfers wafers from the wafer input stage 16 a to the buffer 16 a *; the wafer transfer device 40 transfers the wafers from the buffer 16 a * to the wafer transfer stations 18 and 18 * of the polishing apparatus 5 c * and from the wafer transfer stations 18 and 18 * to at least one of the cleaner buffers 16 b and 16 b ′ of the cleaning apparatuses 120 and 120 ′.
  • FIG. 29 is a top view of the wafer processing apparatus 200 .
  • the wafer processing apparatus 200 comprises the factory interface 64 , two cleaning apparatuses 120 V and 120 V′, two polishing modules 110 a and 110 a ′, the wafer transfer device 40 , and the wafer input stage 16 a .
  • Each of the two polishing modules 110 a and 110 a ′ is modified from the polishing module 110 shown in FIG. 25 by removing the second wafer transfer station 18 * from the polishing module 110 .
  • Each of the polishing modules 110 a and 110 a ′ may comprise one, two or three polishing heads instead of comprising all of the four polishing heads 20 a - 20 d.
  • the wafer input stage 16 a is disposed between a first end 120 Vx of the first cleaning apparatus 120 V and a second end 120 Vy′ of the second cleaning apparatus 120 V′ such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a .
  • the wafer input stage 16 a may be configured to accommodate the wafers vertically or horizontally.
  • the wafer transfer device 40 transfers wafers to be polished from the wafer input stage 16 a to wafer transfer stations 18 and 18 ′ of the polishing modules 110 a and 110 a ′ and transfers polished wafers from the wafer transfer stations 18 and 18 ′ to respective cleaner buffers 16 Vb and 16 Vb′ of the cleaning apparatuses 120 V and 120 V′.
  • the wafer transfer device 40 may be mounted on the linear track 42 which extends between the wafer transfer stations 18 and 18 ′ and the wafer input stage 16 a.
  • the first cleaning apparatus 120 V is disposed adjacent to the factory interface 64 such that (1) its longer side 120 Va is parallel to a longer side 64 a of the factory interface 64 and therefore parallel to a width direction of the wafer processing apparatus 200 ; and (2) the first end 120 Vx of the first cleaning apparatus 120 V is adjacent to the wafer input stage 16 a and a second end 120 Vy of the first cleaning apparatus 120 V which is opposite to the first end 120 Vx is disposed adjacent to a second end 64 y of the factory interface 64 .
  • the cleaner buffer 16 Vb of the first cleaning apparatus 120 V is disposed in the first end 120 Vx of the first cleaning apparatus 120 V such that the wafer transfer device 40 can transfer wafers to the cleaner buffer 16 Vb; and a wafer output stage 16 Vc is disposed in the second end 120 Vy of the first cleaning apparatus 120 V such that the wafer transfer device 50 of the factory interface 64 can transfer the wafers from the wafer output stage 16 Vc.
  • the second cleaning apparatus 120 V′ is disposed either in the left side or in the right side of the wafer processing apparatus 200 such that (1) its longer side 120 Va′ is parallel to a depth direction of the wafer processing apparatus 200 ; and (2) a second end 120 Vy′ of the second cleaning apparatus 120 V′ is disposed adjacent to a first end 64 x of the factory interface 64 such that the wafer transfer device 50 of the factory interface 64 can transfer wafers from a wafer output stage 16 Vc′ disposed in the second end 120 Vy′ of the second cleaning apparatus 120 V′.
  • a cleaner buffer 16 Vb′ of the second cleaning apparatus 120 V′ is disposed in a first end 120 Vx′ of the second cleaning apparatus 120 V′ which is opposite to the second end 120 Vy′ of the cleaning apparatus 120 V′ such that the wafer transfer device 40 can transfer wafers to the cleaner buffer 16 Vb′.
  • FIG. 30 shows a cross sectional view of the cleaning apparatus 120 V in accordance with an embodiment of the present invention.
  • the cleaning apparatus 120 V comprises a cleaning module 124 V to clean and dry the wafers.
  • the cleaning module 124 V comprises cleaning chambers 125 Va- 125 Vd and two dry chambers 125 Vx and 125 Vy.
  • the cleaning chambers 125 Va- 125 Vd are configured to clean wafers by spraying DI water and chemicals to the wafers placed on respective wafer stages 124 Va- 124 Vd.
  • the dry chambers 125 Vx and 125 Vy are configured to dry the wafers placed on respective wafer stages 124 Vx and 124 Vy by spinning the wafers or using isopropyl alcohol (IPA) chemical.
  • the cleaning apparatus 120 V further comprises a fluid control system 126 V under the cleaning module 124 V.
  • the fluid control system 126 V controls supply and drain of chemical fluid to and from the cleaning module 124 V.
  • the cleaning apparatus 120 V further comprises two internal wafer transfer devices 122 a and 122 b .
  • the first internal wafer transfer device 122 a comprises four gripping devices 70 a - 70 d .
  • Each gripping device comprises a gripper 71 and a vertical-and-gripping drive mechanism 72 .
  • the vertical-and-gripping drive mechanism 72 is configured to move the gripper 71 vertically as shown in FIG. 30 by the arrow V and to open and close the gripper 71 to hold a wafer W and release the wafer W.
  • the gripping devices 70 a - 70 d are fixedly mounted to a supporting member 73 a , which is coupled to a linear drive mechanism 74 a.
  • the linear drive mechanism 74 a is configured to reciprocate the supporting member 73 a between a wafer taking position WT 1 and a wafer release position WT 2 as shown in FIG. 30 by the arrow L 1 .
  • the gripping devices 70 a - 70 d are positioned at gripper positions C 1 -C 4 respectively.
  • the gripping devices 70 a - 70 d are positioned at gripper positions C 2 -C 5 respectively.
  • the gripper positions C 1 -C 5 are vertically aligned to the cleaner buffer 16 Vb and the wafer stages 124 Va- 124 Vd of the cleaning chambers 125 Va- 125 Vd respectively.
  • the second internal wafer transfer device 122 b comprises two gripping devices 70 x and 70 y .
  • the gripping devices 70 x and 70 y are fixedly mounted to respective supporting members 73 x and 73 y , which are slidibly coupled to a liner drive mechanism 74 b .
  • the linear drive mechanism 74 b is configured to reciprocate the supporting member 73 x and therefore the gripping device 70 x between fifth, sixth and seventh gripper positions C 5 -C 7 and a parking position 70 xp as shown in FIG. 30 with the arrow L 2 ; and to reciprocate the supporting member 73 y and therefore the gripping device 70 y between the sixth, seventh and eighth gripper positions C 6 -C 8 and a parking position 70 yp as shown in FIG.
  • the linear drive mechanism 74 b is configured to transfer the gripping devices 70 x and 70 y individually.
  • each of the gripping devices 70 x and 70 y can be coupled to respective linear drive mechanism instead of being coupled to the same linear drive mechanism 74 b such that the gripping devices 70 x and 70 y can be controlled by the respective linear drive mechanisms.
  • the gripping devices 70 x and 70 y are positioned at C 5 -C 8 , the gripping devices 70 x and 70 y are vertically aligned to the wafer stage 124 Vd of the fourth cleaning chamber 125 Vd, wafer stages 124 Vy and 124 Vx of the second and first dry chambers 125 Vy and 125 Vx, and the wafer output stage 16 Vc respectively.
  • FIGS. 31( a )- 31 ( u ) are sequential top views of the cleaning apparatus 120 V. The method comprises steps of:
  • placing the wafers to the dry and cleaning chambers 125 Vx, 125 Vy and 125 Vd- 125 Va means placing the wafers on the respective wafer stages 124 Vx, 124 Vy and 124 Vd- 124 Va of the dry and cleaning chambers.
  • a first group of the wafers cleaned in the cleaning chambers 125 Va- 125 Vd are dried in the first dry chamber 125 Vx and a second group of the wafers cleaned in the cleaning chambers 125 Va- 125 Vd are dried in the second dry chamber 125 Vy.
  • the cleaning apparatus 120 V may comprise more than two dry chambers between the wafer output stage 16 Vc and the last cleaning chamber such as the fourth cleaning chamber 125 Vd.
  • the gripping device 70 x of the second internal wafer transfer device 122 b transfers wafers from the last cleaning chamber to the plurality of dry chambers
  • the gripping device 70 y of the second internal wafer transfer device 122 b transfers the wafers from the plurality of dry chambers to the wafer output stage 16 Vc.
  • the second internal wafer transfer device 122 b comprises either one of the gripping devices 70 x and 70 y and is configured such that the one of the gripping devices can transfer wafers from the fourth cleaning chamber 125 Vd to the dry chambers 125 Vy and 125 Vx and from the dry chambers 125 Vy and 125 Vx to the wafer output stage 16 Vc.
  • the cleaner buffer 16 Vb may be also disposed in a cleaning chamber configured to spray DI water or chemicals to a wafer placed on the cleaner buffer 16 Vb.
  • the cleaning apparatus 120 V may comprise two, three or five cleaning chambers between the dry chamber 125 y and the cleaner buffer 16 Vb,
  • the first internal wafer transfer device 122 a comprises two, three or five gripping devices 70 respectively.
  • the cleaning apparatuses 120 and 120 ′ configured to transfer and process the wafers with the surfaces of the wafers laid horizontal as shown in FIG. 6 were used.
  • a cleaning apparatus configured to transfer and process the wafers with the surfaces of the wafers standing vertical such as the cleaning apparatus 120 V can be used as replacements of the cleaning apparatuses 120 and 120 ′.
  • the wafer output stage 16 Vc′ of the second cleaning apparatus 120 V′ shown in FIG. 29 may further comprise a pivoting device 16 P as shown in FIGS. 32( a ) and 32 ( b ), which are side views of the wafer output stage 16 Vc′ comprising the pivoting device 16 P when a wafer is positioned at first and second angles respectively.
  • the pivoting device 16 P is configured to pivot the wafer placed on the wafer output stage 16 Vc′ between the first and second angles about a pivoting axis 16 cx which passes vertically through a diameter of the wafer.
  • the wafer output stage 16 Vc′ receives the wafer from the internal wafer transfer device 122 V′ of the second cleaning apparatus 120 V′ at the first angle as shown in FIG. 32( a ) and then the wafer is pivoted to the second angle by the pivoting device 16 P about the pivoting axis 16 cx as shown in FIG. 32( b ).
  • the wafer transfer device 50 transfers the wafer from the wafer output stage 16 Vc′ after the wafer is positioned at the second angle.
  • a difference between the first and second angles may be 90 degree.
  • the cleaner buffer 16 Vb′ of the second cleaning apparatus 120 V′ may also comprise the pivoting device 16 P.
  • the cleaner buffer 16 Vb′ receives a wafer from the wafer transfer device 40 at a third angle and then is pivoted to the first angle by the pivoting device 16 P.
  • the internal wafer transfer device 122 V′ of the second cleaning apparatus 120 V′ transfers the wafers from the cleaner buffer 16 Vb′ after the cleaner buffer 16 Vb′ changes the orientation to the first angle from the third angle.
  • the second polishing module 110 a ′ is disposed in the back side of the wafer processing apparatus 200 such that (1) the first polishing surface 14 a ′ is adjacent to the first end 120 Vx′ of the second cleaning apparatus 120 V′; (2) the second polishing surface 14 b ′ is disposed at a corner of the wafer processing apparatus 200 in the back side of the wafer processing apparatus 200 ; (3) the third polishing surface 14 c ′ is disposed in the back side of the wafer processing apparatus 200 such that it faces the first polishing surface 14 a of the first polishing module 110 a across a line 200 L; and (4) the wafer transfer station 18 ′ faces the wafer transfer station 18 of the first polishing module 110 a across the line 200 L.
  • the first polishing module 110 a is disposed in the opposite side of the second polishing module 110 a ′ across the line 200 L such that (1) the second and third polishing surfaces 14 b and 14 c face the first cleaning apparatus 120 V across a space SP 1 ; (2) the third polishing surface 14 c faces the second cleaning apparatus 120 V′ across a space SP 2 ; (3) the first polishing surface 14 a faces the third polishing surface 14 c ′ of the second polishing module 110 a ′ across the line 200 L; and (4) the wafer transfer station 18 is adjacent to the wafer transfer station 18 ′ of the second polishing module 110 a ′ and the wafer transfer device 40 .
  • the space SP 1 is disposed between the first cleaning apparatus 120 V and the first polishing module 110 a such that an engineer can access to the first cleaning apparatus 120 V through the space SP 1 to maintain the first cleaning apparatus 120 V.
  • the space SP 2 is disposed between the first polishing module 110 a and the second cleaning apparatus 120 V′.
  • the space SP 2 is surrounded by the wafer input stage 16 a , the second cleaning apparatus 120 V′, the first polishing module 110 a , the first cleaning polishing apparatus 120 V and the space SP 1 .
  • the wafer transfer device 40 is disposed in the space SP 2 .
  • the method comprises steps of (1) transferring a first wafer W 1 from the cassette 60 to the wafer input stage 16 a by the wafer transfer device 50 ; (2) transferring the wafer W 1 from wafer input stage 16 a to the wafer transfer station 18 of the first polishing module 110 a by the wafer transfer device 40 ; (3) loading the wafer W 1 from the wafer transfer station 18 to the first polishing head 20 a of the first polishing module 110 a ; (4) transferring the first polishing head 20 a from the wafer transfer station 18 to the polishing surfaces 14 a - 14 c sequentially about the rotation axis 28 in order to polish the wafer W 1 on the polishing surfaces 14 a - 14 c ; (5) transferring the first polishing head 20 a to the wafer transfer station 18 after polishing the wafer W 1 ; (6) unloading the wafer W 1 to the wafer transfer station 18 ; (7)
  • the method further comprises steps of (1) transferring a second wafer W 2 from the cassette 60 to the wafer input stage 16 a by the wafer transfer device 50 ; (2) transferring the wafer W 2 from wafer input stage 16 a to the wafer transfer station 18 ′ of the second polishing module 110 a ′ by the wafer transfer device 40 ; (3) loading W 2 from the wafer transfer station 18 ′ to the first polishing head 20 a ′ of the second polishing module 110 a ′; (4) transferring the first polishing head 20 a ′ from the wafer transfer station 18 ′ to the polishing surfaces 14 a ′- 14 c ′ sequentially about the rotation axis 28 ′ in order to polish the wafer W 2 on the polishing surfaces 14 a ′- 14 c ′; (5) transferring the first polishing head 20 a ′ to the wafer transfer station 18 ′ after polishing W 2 ; (6) unloading the wafer W 2 to the wafer transfer station 18 ′; (7) transferring the wafer W 2
  • the wafer input stage 16 a may be disposed inside the first cleaning apparatus 120 V such that the wafer input stage 16 a is disposed between the second end 120 Vy′ of the second cleaning apparatus 120 V′ and the cleaner buffer 16 Vb of the first cleaning apparatus 120 V.
  • the wafer input stage 16 a may be positioned over or under the cleaner buffer 16 Vb of the first cleaning apparatus 120 V.
  • the wafer processing apparatus 200 may further comprises the second wafer transfer device 40 * and the buffer 16 a *, which are shown in FIG. 28 , in the space SP 2 of the polishing apparatus 200 shown in FIG. 29 .
  • the second wafer transfer device 40 * is disposed between the wafer input stage 16 a and the buffer 16 a *, and configured to transfer wafers from the wafer input stage 16 a to the buffer 16 a * and from the buffer 16 a * to the cleaner buffer 16 Vb of the first cleaning apparatus 120 V.
  • the buffer 16 a * is disposed between the first and second wafer transfer devices 40 and 40 * such that the buffer 16 a * can be also reached by the first wafer transfer device 40 .
  • the buffer 16 a * accommodates wafers transferred by the first and second wafer transfer devices 40 and 40 * vertically or horizontally.
  • wafers to be polished are transferred from the wafer input stage 16 a to the buffer 16 a * by the second wafer transfer device 40 * and then transferred from there to the wafer transfer stations 18 and 18 ′ of the polishing modules 110 a and 110 a ′ by the wafer transfer device 40 .
  • a first group of the polished wafers are transferred from one of the wafer transfer stations 18 and 18 ′ to the buffer 16 a * by the wafer transfer device 40 and then further transferred from the buffer 16 a * to the cleaner buffer 16 Vb of the first cleaning apparatus 120 V by the second wafer transfer device 40 * in order to clean and dry the wafers in the first cleaning apparatus 120 V.
  • a second group of the polished wafers are transferred from the other of the wafer transfer stations 18 and 18 ′ to the cleaning buffer 16 Vb′ of the second cleaning apparatus 120 V′ by the wafer transfer device 40 in order to clean and dry the wafers in the second cleaning apparatus 120 V′.
  • FIG. 33 is a top view of the wafer processing apparatus 300 .
  • the wafer processing apparatus 300 comprises the factory interface 64 , the wafer transfer device 40 and a polishing apparatus 305 .
  • the polishing apparatus 305 comprises two polishing modules 110 a and 110 a ′ used in the wafer processing apparatus 200 shown in FIG. 29 .
  • At least one cleaning and dry chambers can be disposed between the factory interface 64 and the polishing apparatus 305 in order to clean and dry wafers polished in the polishing apparatus 305 .
  • the polishing surfaces 14 a - 14 c ′ of the polishing modules 110 a and 110 a ′ are disposed such that a line N 1 connecting the rotational axes 15 a and 15 b of the first and second polishing surfaces 14 a and 14 b of the first polishing module 110 a is substantially parallel to a depth direction of the wafer processing apparatus 300 ; a line N 2 connecting the rotational axes 15 b and 15 c of the second and third polishing surfaces 14 b and 14 c of the first polishing module 110 a is substantially parallel to a width direction of the wafer processing apparatus 300 ; a line N 3 connecting the rotational axes 15 a ′ and 15 b ′ of the first and second polishing surfaces 14 a ′ and 14 b ′ of the second polishing module 110 a ′ is substantially parallel to the width direction; a line N 4 connecting the rotational axes 15 b ′ and 15 c ′ of the second and third polishing surfaces 14 b ′ and 14 c
  • the wafer transfer device 40 is disposed around the third polishing surfaces 14 c and 14 c ′ of the first and second polishing modules 110 a and 110 a ′ such that the wafer transfer device 40 can transfer wafers to and from the wafer transfer stations 18 and 18 ′ of the polishing modules 110 a and 110 a ′ through a space G 2 between the respective third polishing surfaces 14 c and 14 c ′ of the first and second polishing modules 110 a and 110 a′.
  • FIG. 34 is a top view of the wafer processing apparatus 500 .
  • the wafer processing apparatus 500 comprises a cleaning apparatus 520 , two polishing modules 10 a and 10 a ′, the factory interface 64 , the wafer transfer device 40 , a wafer transfer device 40 C, the wafer input stage 16 a , the buffer 16 a *, and the cleaner buffer 16 b .
  • the polishing module 10 shown in FIG. 1 can be used as the polishing modules 10 a and 10 a′.
  • the cleaning apparatus 520 comprises three cleaning chambers 125 a - 125 c and two dry chambers 125 x and 125 y .
  • the cleaning apparatus 520 may comprise six cleaning chambers 125 a - 125 c and 125 a ′- 125 c ′ and four dry chambers 125 x , 125 y , 125 x ′ and 125 y ′ (the cleaning chambers 125 a ′- 125 c ′ and the dry chambers 125 x ′ and 125 y ′ are not shown in FIG. 34 ).
  • the cleaning chambers 125 a ′- 125 c ′ may be stacked on the cleaning chambers 125 a - 125 c .
  • the dry chambers 125 x ′ and 125 y ′ may be stacked on the dry chambers 125 x and 125 y.
  • the cleaning apparatus 520 is disposed adjacent to the factory interface 64 such that a longer side 520 a of the cleaning apparatus 520 is parallel to the longer side 64 a of the factory interface 64 ; and the cleaning apparatus 520 is sandwiched between the factory interface 64 and a linear track 42 C which is also disposed parallel to the longer side of the factory interface 64 .
  • the wafer transfer device 40 C is mounted on the linear track 42 C such that the wafer transfer device 40 C can transfer wafers from the cleaner buffer 16 b to the cleaning chambers 125 a - 125 c and from the cleaning chambers 125 a - 125 c to the dry chambers 125 x and 125 y .
  • the wafer transfer device 40 C is configured to comprise first and second arms 41 a and 41 b such that the first arm 41 a is used to transfer wafers to be cleaned from the cleaner buffer 16 b to the cleaning chambers 125 a - 125 c and the second arm 41 b is used to transfer wafers cleaned in the cleaning chambers 125 a - 125 c to the dry chambers 125 x and 125 y .
  • the wafer transfer device 40 C is also configured to transfer wafers from the wafer input stage 16 a to the buffer 16 a *.
  • the wafer input stage 16 a is disposed between the cleaning chamber 125 a and the dry chamber 125 x which are adjacent to each other or disposed over any of the cleaning chambers 125 a - 125 c and the dry chambers 125 x and 125 y such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a and the wafer transfer device 40 C can transfer wafers from the wafer input stage 16 a.
  • the cleaning chambers 125 a - 125 c and the dry chambers 125 x and 125 y are configured to have respective first openings toward the wafer transfer device 40 C such that the cleaning chambers 125 a - 125 c and the dry chambers 125 x and 125 y can receive wafers from the wafer transfer device 40 C through the respective first openings.
  • the dry chambers 125 x and 125 y are further configured to have respective second openings toward the wafer transfer device 50 such that the wafer transfer device 50 can take the wafers from the dry chambers 125 x and 125 y through the respective second openings.
  • the polishing modules 10 a and 10 a ′ and the wafer transfer device 40 are disposed opposite to the factory interface 64 across the wafer transfer device 40 C.
  • the buffer 16 a * and the cleaner buffer 16 b are disposed between the wafer transfer device 40 C and the wafer transfer device 40 .
  • the wafer transfer device 40 transfers wafers from the buffer 16 a * to the wafer transfer stations 18 and 18 ′ of the polishing modules 10 a and 10 a ′ and from the wafer transfer stations 18 and 18 ′ to the cleaner buffer 16 b.
  • the first polishing module 10 a is disposed such that a line connecting the rotation axes 15 a and 15 b of the polishing surfaces 14 a and 14 b is substantially parallel to a depth direction of the wafer processing apparatus 500 , the first polishing surface 14 a is adjacent to the linear track 42 C, and the wafer transfer station 18 is adjacent to the wafer transfer station 18 ′ of the second polishing module 10 a ′ and the wafer transfer device 40 .
  • the second polishing module 10 a ′ is disposed in the back side of the wafer processing apparatus 500 such that a line connecting the rotation axes 15 a ′ and 15 b ′ of the polishing surfaces 14 a ′ and 14 b ′ is substantially parallel to a width direction of the wafer processing apparatus 500 ; distances from the rotational axes 15 a ′ and 15 b ′ of the polishing surfaces 14 a ′ and 14 b ′ of the second polishing module 10 a ′ to the factory interface 64 is greater than a distance from the rotation axis 15 b of the second polishing surface 14 b of the first polishing module 10 a to the factory interface 64 ; the wafer transfer station 18 ′ faces the wafer transfer device 40 ; and there is a space SP 4 between the second polishing module 10 a ′ and the linear track 42 C.
  • the space SP 4 provides a space for the wafer transfer device 40 , the buffer 16 a * and the cleaner buffer 16 b .
  • the space SP 4 also provides a space through which an engineer can access the polishing modules 10 a and 10 a ′ and the cleaning apparatus 520 in order to maintain them.
  • FIG. 35 is a top view of the wafer processing apparatus 600 .
  • the wafer processing apparatus 600 comprises two cleaning apparatuses 620 and 620 ′, the factory interface 64 and the wafer transfer device 40 C.
  • the wafer transfer device 40 C is mounted on the linear track 42 C.
  • Each of the cleaning apparatuses 620 and 620 ′ comprises the cleaner buffer 16 b , multiple cleaning chambers 125 a - 125 c , the dry chamber 125 x and multiple internal wafer transfer devices 127 .
  • the cleaning chambers 125 a - 125 c are disposed between the cleaner buffer 16 b and the dry chamber 125 x .
  • the internal wafer transfer devices 127 are disposed and configured to transfer wafers between the cleaner buffer 16 b and the cleaning and dry chambers 125 a - 125 c and 125 x.
  • the first cleaning apparatus 620 is disposed adjacent to the factory interface 64 such that a longer side 620 a of the cleaning apparatus 620 is substantially parallel to the longer side 64 a of the factory interface 64 ; and the first cleaning apparatus 620 is sandwiched between the factory interface 64 and the linear track 42 C which is also disposed parallel to the longer side of the factory interface 64 .
  • the second cleaning apparatus 620 ′ is disposed such that the linear track 42 C is sandwiched between the first and second cleaning apparatuses 620 and 620 ′; and a longer side 620 a ′ of the second cleaning apparatus 620 ′ is substantially parallel to the longer side 620 a of the first cleaning apparatus 620 .
  • the wafer processing apparatus 600 further comprises the wafer input stage 16 a , the buffer 16 a *, the wafer output stage 16 c , a second buffer 16 b * and the wafer transfer device 40 .
  • the wafer input stage 16 a and the wafer output stage 16 c are disposed about the first cleaning apparatus 620 such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a and from the wafer output stage 16 c ; and the wafer transfer device 40 C can transfer wafers from the wafer input stage 16 a and to the wafer output stage 16 c .
  • the wafer input stage 16 a and the wafer output stage 16 c may be disposed over any of the wafer stages 16 b , 124 a - 124 c and 124 x of the first cleaning apparatus 620 .
  • the buffer 16 a * and the second buffer 16 b * are disposed about the second cleaning apparatus 620 ′ such that the wafer transfer device 40 C can transfer wafers to the buffer 16 a * and from the second buffer 16 b *; and the wafer transfer device 40 can transfer wafers from the buffer 16 a * and to the second buffer 16 b *.
  • the buffer 16 a * and the second buffer 16 b * may be disposed over any of the wafer stages 16 b ′, 124 a ′- 124 c ′ and 124 x ′ of the second cleaning apparatus 620 ′.
  • the wafer processing apparatus 600 uses the same polishing modules 10 a and 10 a ′ used in the wafer processing apparatus 500 shown in FIG. 34 .
  • the wafer transfer device 40 transfers wafers from the buffer 16 a * to the wafer transfer stations 18 and 18 ′ of the polishing modules 10 a and 10 a ′ and from there to the second buffer 16 b * and the cleaner buffer 16 b ′ of the second cleaning apparatus 620 ′.
  • a method of processing wafers in the wafer processing apparatus 600 comprises steps of:
  • the method of processing wafers in the wafer processing apparatus 600 further comprises steps of: (1) transferring a second wafer W 2 from the cassette 60 to the buffer 16 a * in the same manner as the first wafer W 1 is transferred to the buffer 16 a *; and transferring W 2 from the buffer 16 a * to the wafer transfer station 18 ′ of the second polishing module 10 a ′ by the wafer transfer device 40 ;

Abstract

Wafer processing apparatuses and methods for polishing and cleaning semiconductor wafers with high productivity, small footprint, easy maintenance and low defectivity are provided. The apparatuses comprise a polishing apparatus and a cleaning apparatus. The polishing apparatus comprises at least one polishing module. Each module comprises at least one polishing surface, at least one polishing head, at least one wafer transfer station and a transport mechanism to transfer the at least one polishing head between the at least one polishing surface and the at least one wafer transfer station. The polishing module may comprise a shield member and fluid injection devices to protect the at least one polishing surface from foreign particles. The cleaning apparatus can comprise two or more dry chambers for high productivity. The wafer processing apparatuses can comprise two cleaning apparatuses for high productivity.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is entitled to the benefit of U.S. Provisional Patent Application Ser. Nos. 61/280,441 filed on Nov. 3, 2009, 61/283,324 filed on Dec. 2, 2009, 61/283,479 filed on Dec. 4, 2009, 61/283,694 filed on Dec. 8, 2009, 61/284,160 filed on Dec. 14, 2009, 61/284,448 filed on Dec. 21, 2009, and 61/399,096 filed on Jul. 6, 2010, which are all incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates generally to semiconductor wafer processing equipments, and more particularly to apparatuses and methods for polishing and cleaning semiconductor wafers.
  • BACKGROUND OF THE INVENTION
  • Local and global planarization of semiconductor wafers becomes increasingly important as more metal layers and interlayer dielectric layers are stacked on the wafers. A preferred method to planarize the wafers is a polishing method, where a surface of a semiconductor wafer is polished using a slurry solution supplied between the wafer and a polishing pad. The polished wafer is cleaned using chemicals and deionized (DI) water and then dried before the wafer is further processed in an apparatus for deposition of metallic or dielectric layers or photolithography.
  • In general, a wafer processing apparatus for polishing semiconductor wafers includes a polishing apparatus and a cleaning apparatus. The polishing apparatus generally comprises multiple polishing tables where polishing pads are placed and multiple polishing heads that support and press the wafers against the polishing pads. The cleaning apparatus generally comprises multiple cleaning chambers for cleaning semiconductor wafers and a dry chamber for drying the cleaned wafers. The wafers polished in the polishing apparatus are cleaned sequentially through the multiple cleaning chambers and then dried in the dry chamber.
  • One of the most important performance factors of a wafer processing apparatus for polishing and cleaning semiconductor wafers is productivity. For high productivity, a wafer processing apparatus can comprise two cleaning apparatuses because productivity of a wafer processing apparatus can be limited by low productivity of a single cleaning apparatus. When integrating two cleaning apparatuses with a polishing apparatus, the arrangement of the polishing apparatus and the cleaning apparatuses becomes important to efficiently polish and clean multiple semiconductor wafers. In addition, the footprint of a wafer processing apparatus must also be considered since a wafer processing apparatus with a large footprint requires a larger clean room to house the equipment, which translates into greater cost of operation.
  • Another important performance factor of a wafer processing apparatus for polishing and cleaning semiconductor wafers is ease of maintenance. For easy maintenance, the arrangement of polishing and cleaning apparatuses in a wafer processing apparatus becomes important to provide enough space for engineers to access the polishing and cleaning apparatuses in order to maintain them.
  • One of the most important performance factors of a cleaning apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers is productivity. For high productivity of a wafer processing apparatus, productivity of a cleaning apparatus needs to be improved because productivity of a wafer processing apparatus can be limited by low productivity of a cleaning apparatus.
  • One of the most important performance factors of a polishing apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers is productivity. For higher productivity, a polishing apparatus typically requires more polishing tables and more polishing heads. As the numbers of polishing tables and polishing heads included in a polishing apparatus are increased, the efficient arrangement of the polishing tables and the polishing heads becomes important to design a polishing apparatus providing efficient polishing of semiconductor wafers with a small footprint.
  • Another important performance factor of a polishing apparatus used in a wafer processing apparatus for polishing and cleaning semiconductor wafers is defectivity. Defectivity can be caused by large foreign particles dropping onto polishing pads from moving parts used to transfer polishing heads between the polishing pads. For low defectivity, a polishing apparatus requires an efficient design to protect polishing pads from the foreign particles.
  • In view of these issues, what is needed is an apparatus and method for polishing and cleaning semiconductor wafers with high productivity, small footprint, sufficient maintenance space and low defectivity.
  • SUMMARY OF THE INVENTION
  • An apparatus for polishing an object in accordance with an embodiment of the present invention comprises at least one polishing surface, at least one polishing head assembly comprising at least one polishing head, at least one object transfer station and a transport mechanism configured to transport the at least one polishing head assembly between the at least one polishing surface and the at least one object transfer station. The transport mechanism comprises a support structure comprising an opening disposed over the at least one polishing surface and the at least one object transfer station, at least one inner guide rail supported by the support structure, wherein the at least one inner guide rail is surrounded by the opening, at least one first guide block slidibly coupled to the at least one inner guide rail, at least one outer guide rail supported by the support structure, wherein the at least one outer guide rail surrounds the opening, at least one second guide block slidibly coupled to the outer guide rail, at least one head supporting member mounted to the at least one first guide block and the at least one second guide block, wherein the at least one head supporting member supports the at least one polishing head assembly, and at least one drive mechanism coupled to the at least one head supporting member, wherein the at least one drive mechanism is configured to transport the at least one polishing head assembly coupled to the at least one head supporting member between the at least one polishing surface and the at least one object transfer station.
  • Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIG. 2 is a top view of a polishing module used in the polishing apparatus of FIG. 1.
  • FIG. 3 is a side view of the polishing module of FIG. 2.
  • FIGS. 4( a) and 4(b) are tops view of polishing apparatuses in accordance with embodiments of the present invention.
  • FIG. 5 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a cleaning apparatus used in the wafer processing apparatus of FIG. 5.
  • FIG. 7 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 8( a) and 8(b) are top views of cleaning apparatuses in accordance with embodiments of the present invention.
  • FIGS. 9 and 10 are top views of polishing apparatuses in accordance with embodiments of the present invention.
  • FIGS. 11-13 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • FIG. 14 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 15( a) and 15(b) are top views of a pivoting wafer transfer device and washing devices used in the polishing apparatus of FIG. 14.
  • FIG. 16 is a top view of a wafer processing apparatus in accordance with an embodiment of the present invention.
  • FIG. 17 is a vertical cross-sectional view of a rotation mechanism in accordance with an embodiment of the present invention.
  • FIGS. 18 and 19 are plan views of the rotation mechanism of FIG. 17 seen from cross sections 600L1 and 600L2 of the rotation mechanism of FIG. 17, respectively.
  • FIG. 20 is a vertical cross-sectional view of the rotation mechanism in accordance with an embodiment of the invention.
  • FIG. 21 is a plan view of the rotation mechanism of FIG. 20 seen from a cross section 600L3 of the rotation mechanism of FIG. 20.
  • FIG. 22 is a cross-sectional view of a guide rail, a guide block and air nozzles of the rotation mechanism of FIG. 20 in accordance with an embodiment of the present invention.
  • FIG. 23 is a top view of the rotation mechanism of FIG. 20 seen from a cross section 600L4 of the rotation mechanism of FIG. 20.
  • FIG. 24 is a perspective sectional side view of the rotation mechanism of FIG. 20.
  • FIG. 25 is a top view of a polishing apparatus in accordance with an embodiment of the present invention.
  • FIGS. 26( a)-26(h) are sequential top views of the polishing apparatus of FIG. 25 to show a sequence of polishing wafers in accordance with an embodiment of the present invention.
  • FIG. 27-29 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • FIG. 30 is a cross-sectional view of a cleaning apparatus in accordance with an embodiment of the present invention.
  • FIGS. 31( a)-31(u) are sequential top views of the cleaning apparatus of FIG. 30 to show a method of processing wafers in accordance with an embodiment of the present invention.
  • FIGS. 32( a) and 32(b) are side views of a wafer output stage in accordance with an embodiment of the present invention.
  • FIGS. 33-35 are top views of wafer processing apparatuses in accordance with embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1, a polishing apparatus 5 in accordance with an embodiment of the present invention is described. FIG. 1 is a top view of the polishing apparatus 5. The polishing apparatus 5 comprises a first polishing module 10, a second polishing module 10′ and a wafer transfer device 40. The polishing apparatus 5 comprises an enclosure 11 to isolate the polishing modules 10 and 10′ from the environment. The first polishing module 10 comprises three polishing heads 20 a-20 c, two polishing surfaces 14 a and 14 b, and one wafer transfer station 18. The second polishing module 10′ comprises three polishing heads 20 a′-20 c′, two polishing surfaces 14 a′ and 14 b′, and one wafer transfer station 18′. The wafer transfer device 40 is a device to supply wafers to be polished from a wafer source to the wafer transfer stations 18 and 18′ and to transfer polished wafers from the wafer transfer stations 18 and 18′ to a wafer storage. The first and second polishing modules 10 and 10′ are situated in the polishing apparatus 5 such that they are substantially symmetric across an imaginary plane 410.
  • In the following description of the polishing apparatus 5, only the components of the first polishing module 10 are described. The components of the second polishing module 10′ are not described separately because the components of the first polishing module are used in the same manner as the components of the second polishing module. The components used in the second polishing module 10′ are designated with an additional prime symbol (′) after the same reference numbers used to designate the components used in the first polishing module 10, similar to the designations of the first and second polishing modules 10 and 10′. For example, the first polishing heads of the first and second polishing modules 10 and 10′ are designated as 20 a and 20 a′, respectively.
  • With reference to FIGS. 2 and 3, the configuration of the polishing module 10 is further described. FIGS. 2 and 3 are top and side views of the polishing module 10, respectively. The polishing surfaces 14 a and 14 b of the first polishing module 10 are supported on respective polishing tables 13 a and 13 b and rotated by respective rotation mechanisms about respective rotational axes 15 a and 15 b. Polyurethane pads can be used as the polishing surfaces 14 a and 14 b of the polishing module 10. The polishing surfaces 14 a and 14 b are situated in the polishing module 10 such that an imaginary plane A connecting the rotational axes 15 a and 15 b is parallel to a depth direction of the polishing module 10, as indicated in FIG. 1.
  • As shown in FIG. 3, the first polishing head 20 a is coupled to an end of a shaft 21 a. The other end of the shaft 21 a is coupled to a rotational-and-vertical drive mechanism 22 a, which controls rotational and vertical motions of the first polishing head 20 a. The rotational-and-vertical drive mechanism 22 a is coupled to an end of an arm 24 a. The other end of the arm 24 a is coupled to a rotation mechanism 26. The first polishing head 20 a, the shaft 21 a, and the rotational-and-vertical drive mechanism 22 a form a first polishing head assembly. In the same manner as the first polishing head 20 a is coupled to the rotation mechanism 26, the second and third polishing heads 20 b and 20 c are coupled to the rotation mechanism 26 through respective shafts 21 b and 21 c, respective rotational-and- vertical drive mechanisms 22 b and 22 c and respective arms 23 b and 23 c. The second polishing head 20 b, the shaft 21 b, and the rotational-and-vertical drive mechanism 22 b form a second polishing head assembly. The third polishing head 20 c, the shaft 21 c, and the rotational-and-vertical drive mechanism 22 c form a third polishing head assembly.
  • The rotation mechanism 26 is overhead mounted above the polishing tables 13 a and 13 b to a top frame structure (not shown in FIGS. 2 and 3) of the polishing apparatus 5. The rotation mechanism 26 is configured to rotationally transport the polishing heads 20 a-20 c about a rotation axis 28 between the wafer transfer station 18 and the polishing surfaces 14 a and 14 b along a circular path 28 a. Thus, the rotation mechanism 26 can be considered as a transport mechanism configured to transport polishing head assemblies, which include polishing heads. The circular path 28 a is a trajectory of centers 23 a-23 c of the polishing heads 20 a-20 c during the rotation about the rotation axis 28 as shown in FIGS. 1 and 2.
  • The wafer transfer station 18 and the first and second polishing surfaces 14 a and 14 b are disposed angularly about the rotation axis 28 such that angles from a center 18 c of the wafer transfer station 18 to the respective rotation axes 15 a and 15 b of the first and second polishing surfaces 14 a and 14 b about the rotation axis 28 may be equal to each other and in the range from 100 to 110 degree. Any device that can transfer wafers with the polishing heads 20 a-20 c can be used as the wafer transfer station 18.
  • For polishing wafers, the polishing heads 20 a-20 c with the wafers are transferred to the polishing surfaces 14 a and 14 b about the rotation axis 28 by the rotation mechanism 26 and then pressed against the polishing surfaces 14 a and 14 b. The polishing heads 20 a-20 c are rotated about the respective rotation axes 23 a-23 c and the polishing surfaces 14 a and 14 b are also rotated about the respective rotation axes 15 a and 15 b. Slurry is supplied onto the polishing surfaces 14 a and 14 b during this polishing process.
  • As shown in FIGS. 1 and 2, the polishing surfaces 14 a and 14 b, the wafer transfer station 18 and the rotation axis 28 are configured and disposed in the polishing module 10 such that the polishing module 10 can have two polishing positions P11 and P12 on the first polishing surface 14 a and two polishing positions P21 and P22 on the second polishing surface 14 b. In order to polish the wafers held by the polishing heads 20 a-20 c on the first polishing surface 14 a, each of the centers 23 a-23 c of the polishing heads 20 a-20 c is positioned on either the position P11 or P12. In order to polish the wafers held by the polishing heads 20 a-20 c on the second polishing surface 14 b, each of the centers 23 a-23 c of the polishing heads 20 a-20 c is positioned on either the position P21 or P22.
  • Still referring to FIG. 2, the positions of P11, P12, P21 and P22 are further described using circumferences of the polishing heads 20 a-20 c and the polishing surfaces 14 a and 14 b. As shown in FIG. 2, the polishing heads 20 a-20 c can be positioned on the first polishing surface 14 a such that the circumferences of the polishing heads 20 a-20 c can have same tangents with the circumference of the first polishing surface 14 a at two points 14X and 14X* wherein the point 14X is adjacent to the wafer transfer station 18, and the point 14X* is opposite to the point 14X. The points 14X and 14X* are points on the circumference of the first polishing surface 14 a. The polishing heads 20 a-20 c can be positioned on the second polishing surface 14 b such that the circumferences of the polishing heads 20 a-20 c can have same tangents with the circumference of the second polishing surface 14 b at two points 14Y and 14Y* wherein the point 14Y* is adjacent to the wafer transfer station 18, and the point 14Y is opposite to the point 14Y*. The points 14Y and 14Y* are points on the circumference of the second polishing surface 14 b. When the circumference of one of the polishing heads 20 a-20 c has a tangent at either the point 14X or 14X*, the center of that polishing head will be positioned at the polishing position P11 or P12 respectively on the first polishing surface 14 a. When the circumference of one of the polishing heads 20 a-20 c has a tangent at either the point 14Y or 14Y*, the center of that polishing head will be positioned at the polishing position P21 or P22 respectively on the second polishing surface 14 b.
  • In the description of the polishing apparatus 5, positioning the centers 23 a-23 c of the polishing heads 20 a-20 c at the polishing position P11 means that the centers 23 a-23 c can be positioned on the circular path 28 a within 1 inch distance range from P11 toward P12; positioning the centers 23 a-23 c at the polishing position P12 means that the centers 23 a-23 c can be positioned on the circular path 28 a within 1 inch distance range from P12 toward P21; positioning the centers 23 a-23 c at the polishing position P21 means that the centers 23 a-23 c can be positioned on the circular path 28 a within 1 inch distance range from P21 toward P22; and positioning the centers 23 a-23 c at the polishing position P22 means that the centers 23 a-23 c can be positioned on the circular path 28 a within 1 inch distance range from P22 toward P21. During the polishing process on the polishing positions P11-P22, the centers 23 a-23 c of the polishing heads 20 a-20 c can be oscillated clockwise one inch and counterclockwise one inch to and from P11, P12, P21 and P22 respectively about the rotation axis 28 by the rotation mechanism 26.
  • Turning back to FIG. 1, the polishing surfaces 14 a-14 b′ of the polishing apparatus 5 are coupled with respective pad conditioning devices 80 a-80 b′ and respective slurry supply arms 90 a-90 b′. Each pad conditioning device 80, i.e., each of the pad conditioning devices 80 a-80 b′, comprises a pivoting mechanism 82, an arm 84 and a conditioning disc 86. The pivoting mechanism 82 is configured to pivot the conditioning disc 86 between the center of the polishing surface 14 and a parking position 87 about an axis 81. Each slurry supply arm 90, i.e., each of the slurry supply arms 90 a-90 b′, comprises a pivoting mechanism 92 and an arm 94. The pivoting mechanism 92 pivots the arm 94 to a central area of the polishing surface 14 about an axis 91.
  • Depending on the locations of the pad conditioning devices 80 a-80 b′ and the slurry arms 90 a-90 b′ relative to the polishing surfaces 14 a-14 b′, polishing positions on the polishing surfaces 14 a-14 b′ are determined. For example, the polishing apparatus 5 shown in FIG. 1 is configured such that the first polishing module 10 uses P11 and P22 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10′ uses P11′ and P22′ as its polishing positions on the first and second polishing surfaces 14 a′ and 14 b′ respectively.
  • With different locations of the pad conditioning devices 80 a-80 b′ and the slurry arms 90 a-90 b′ relative to the polishing surfaces 14 a and 14 b′ and different arrangement of the polishing modules 10 and 10′, different polishing positions can be used as shown in FIGS. 4( a) and 4(c). FIG. 4( a) shows a modified version of the polishing apparatus 5 in accordance with an embodiment of the present invention, which is configured such that the first polishing module 10 uses P12 and P21 as it polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10′ uses P12′ and P21′ as it polishing positions on the first and second polishing surfaces 14 a′ and 14 b′ respectively. FIG. 4( b) shows another modified version of the polishing apparatus 5 in accordance with an embodiment of the present invention, which is configured such that the first polishing module 10 uses P12 and P21 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10′ uses P11′ and P22′ as its polishing positions on the first and second polishing surfaces 14 a′ and 14 b′ respectively.
  • With reference to FIG. 5, a wafer processing apparatus 100 in accordance with an embodiment of the present invention is described. FIG. 5 is a top view of the wafer processing apparatus 100. The wafer processing apparatus 100 comprises two cleaning apparatuses 120 and 120′, the polishing apparatus 5, a factory interface 64, a wafer input stage 16 a, two cleaner buffers 16 b and 16 b′ (equivalent to “cleaner interface stages” used in U.S. Provisional Patent Applications from which this application claims priority), and two wafer output stages 16 c and 16 c′.
  • The cleaner buffers 16 b and 16 b′ are devices where polished wafers are placed by the wafer transfer device 40. The first cleaner buffer 16 b is positioned at a first end 120 x of the first cleaning apparatus 120 which is adjacent to the polishing apparatus 5. The second cleaner buffer 16 b′ is positioned at a first end 120 x′ of the second cleaning apparatus 120′ which is adjacent to the polishing apparatus 5. The cleaner buffers 16 b and 16 b′ may be enclosed in the respective cleaning apparatuses 120 and 120′ as one of the components of the respective cleaning apparatuses 120 and 120′. Respective second ends 120 y and 120 y′ of the first and second cleaning apparatuses 120 and 120′ are positioned adjacent to the factory interface 64. The wafer output stages 16 c and 16 c′ are positioned at the respective second ends 120 y and 120 y′ of the first and second cleaning apparatuses 120 and 120′.
  • The polishing apparatus 5 is disposed in the back side of the wafer processing apparatus 100 such that the respective imaginary planes A and A′ of the polishing modules 10 and 10′ are parallel to a depth direction of the wafer processing apparatus 100. The cleaning apparatuses 120 and 120′ are disposed between the factory interface 64 and the polishing apparatus 5 such that longer sides 120 a and 120 a′ of the cleaning apparatuses 120 and 120′ are parallel to the depth direction of the wafer processing apparatus 100. The cleaning apparatuses 120 and 120′ are disposed such that there is a space 120S, which is surrounded by the factory interface 64, the cleaning apparatuses 120 and 120′, and the polishing apparatus 5. The wafer input stage 16 a and the wafer transfer device 40 are positioned in the space 120S.
  • The factory interface 64 includes a cassette 60 and a wafer transfer device 50. The cassette 60 is a device to store wafers to be processed and the wafers that have been processed. The wafer transfer device 50 transfer wafers from the cassette 60 to the wafer input stage 16 a and from the wafer output stages 16 c and 16 c′ of the cleaning apparatuses 120 and 120′ to the cassette 60. The factory interface 64 may further comprise a linear track 52. The wafer transfer device 50 is coupled to the linear track 52 such that the wafer transfer device 50 can move linearly along the track 52. The linear track 52 is positioned parallel to a width direction of the wafer processing apparatus 100, as indicated in FIG. 5.
  • The wafer input stage 16 a is a device where wafers that will be transferred by the wafer transfer device 40 are placed by the wafer transfer device 50. The wafer input stage 16 a may be coupled to a stage transfer device 77 such that the wafer input stage 16 a can move between a wafer receiving position RP1 and a wafer release position RP2 by the stage transfer device 77. The wafer receiving position RP1 is adjacent to the factory interface 64 such that the wafer input stage 16 a can receive wafers from the wafer transfer device 50. The wafer release position RP2 is adjacent to the wafer transfer device 40 such that the wafer input stage 16 a can release the wafers to the wafer transfer device 40.
  • The wafer transfer device 40 is positioned in a space surrounded by the wafer transfer stations 18 and 18′, the cleaner buffers 16 b and 16 b′, and the wafer release position RP2. The wafer transfer device 40 may be mounted to a linear track 42. The linear track 42 is designed and disposed such that the wafer transfer device 40 can move between the wafer release position RP2, the cleaner buffers 16 b and 16 b′, and the wafer transfer stations 18 and 18′ of the polishing apparatus 5.
  • With reference to FIG. 6, the cleaning apparatuses 120 and 120′ are further described. FIG. 6 is a cross sectional view of a cleaning apparatus 120 that can be used as the cleaning apparatuses 120 and 120′. The cleaning apparatus 120 comprises a cleaning module 124 and a fluid control system 126. The fluid control system 126 controls supply and drain of chemical fluid to and from the cleaning module 124. The cleaning module 124 comprises wafer stages 124 a-124 d. Wafers are placed on the cleaner buffer 16 b by the wafer transfer device 40. An internal wafer transfer device 122 transfers the wafers from the cleaner buffer 16 b to the wafer output stage 16 c through the wafer stages 124 a-124 d sequentially. The cleaned and dried wafers are removed from the wafer output stage 16 c by the wafer transfer device 50.
  • The internal wafer transfer device 122 comprises multiple grippers 162 a-162 e and a vertical-and-lateral transfer mechanism 164. The first gripper 162 a transfers a wafer from the cleaner buffer 16 b through a first position CP1 and a second position CP2 to the first wafer stage 124 a. The second gripper 162 b transfers the wafer from the first wafer stage 124 a through the second position CP2 and a third position CP3 to the second wafer stage 124 b. The third gripper 162 c transfers the wafer from the second stage 124 b through the third position CP3 and a fourth position CP4 to the third wafer stage 124 c. The fourth gripper 162 d transfers the wafer from the third stage 124 c through the fourth position CP4 and a fifth position CP5 to the fourth wafer stage 124 d. The fifth gripper 162 e transfers the wafer from the fourth stage 124 d through the fifth position CP5 and a sixth position CP6 to the wafer output stage 16 c.
  • Turning back to FIG. 5, a method of processing wafers in the wafer processing apparatus 100 is described. A first wafer W1 is transferred from the cassette 60 to the wafer input stage 16 a at the wafer receiving position RP1 by the wafer transfer device 50. The wafer input stage 16 a is transferred from the wafer receiving position RP1 to the wafer release position RP2 by the stage transfer device 77. The wafer W1 is transferred from the wafer input stage 16 a to the wafer transfer station 18 of the first polishing module 10 by the wafer transfer device 40. The wafer W1 is picked from the wafer transfer station 18 by the first polishing head 20 a of the first polishing module 10. The wafer W1 is polished on the first and second polishing surfaces 14 a and 14 b, and then placed on the wafer transfer station 18 by the first polishing head 20 a. The wafer W1 is transferred from the wafer transfer station 18 to the cleaner buffer 16 b of the first cleaning apparatus 120 by the wafer transfer device 40, further transferred from there through the cleaning module 124 to the wafer output stage 16 c by the internal wafer transfer device 122 and then transferred from the wafer output stage 16 c to the cassette 60 by the wafer transfer device 50.
  • A second wafer W2 is transferred from the cassette 60 to the wafer input stage 16 a in the same way as the first wafer W1. The wafer W2 is then transferred from the wafer input stage 16 a at the wafer release position RP2 to the wafer transfer station 18′ of the second polishing module 10′ by the wafer transfer device 40. The wafer W2 is picked from the wafer transfer station 18′ by the first polishing head 20 a′ of the second polishing module 10′. The wafer W2 is polished on the first and second polishing surfaces 14 a′ and 14 b′, and then placed on the wafer transfer station 18′ by the first polishing head 20 a′. The wafer W2 is transferred from the wafer transfer station 18′ to the cleaner buffer 16 b′ of the second cleaning apparatus 120′ by the wafer transfer device 40, further transferred from there through the cleaning module 124′ to the wafer output stage 16 c′ by the internal wafer transfer device 122′ and then transferred from the wafer output stage 16 c′ to the cassette 60 by the wafer transfer device 50.
  • In general, a first group of wafers such as the first wafer W1 are processed through one of the polishing modules 10 and 10′ and one of the cleaning apparatuses 120 and 120′; and a second group of wafers such as the second wafer W2 are processed through the other of the polishing modules 10 and 10′ and the other of the second cleaning apparatuses 120 and 120′.
  • With reference to FIG. 7, a modified embodiment 100 a of the wafer processing apparatus 100 is described. FIG. 7 is a top view of the modified wafer processing apparatus 100 a. The wafer processing apparatus 100 a is similar to the wafer processing apparatus 100 shown in FIG. 5. A difference is that the cleaning apparatuses 120 and 120′ are situated at the same side in the wafer processing apparatus 100 a and the wafer input stage 16 a and the wafer transfer device 40 are positioned at the opposite side. The cleaning apparatuses 120 and 120′ are situated such that both of the cleaner buffers 16 b and 16 b′ of the cleaning apparatuses 120 and 120′ are adjacent to the first polishing surface 14 a of the first polishing module 10 of the polishing apparatus 5. The wafer transfer device 40 is configured to transfer wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18′; and from the wafer transfer stations 18 and 18′ to at least one of the first and second cleaner buffers 16 b and 16 b′.
  • In an embodiment, the cleaning apparatuses 120 and 120′ used in the wafer processing apparatuses 100 a are configured to share the cleaner buffer 16 b as described with reference to FIG. 8( a), which is a top view of the cleaning apparatuses 120 and 120′. In this embodiment, the cleaning apparatuses 120 and 120′ comprise a stage transfer device 79 to which the shared cleaner buffer 16 b is slidibly coupled. The stage transfer device 79 is configured to transfer the cleaner buffer 16 b between a first transfer position TP1 and a second transfer position TP1′. The second transfer position TP1′ is a position where the cleaner buffer 16 b receives wafers from the wafer transfer device 40 and the internal wafer transfer device 122′ of the second cleaning apparatus 120′ receives the wafers from the cleaner buffer 16 b. The first transfer position TP1 is a position where the internal wafer transfer device 122 of the first cleaning apparatus 120 receives the wafers from the cleaner buffer 16 b after the cleaner buffer 16 b receives the wafers at the second transfer position TP1′ from the wafer transfer device 40 and then is transferred to the first transfer position TP1 by the stage transfer device 79.
  • In an alternative embodiment of the stage transfer device 79, a wafer relay device 172 can be used as shown in FIG. 8( b), which is a top view of the cleaning apparatuses 120 and 120′. The wafer relay device 172 comprises a linear track 173, a gripping device 174 and a pair of grippers 175 a and 175 b. The grippers 175 a and 175 b are coupled to the gripping device 174, which is configured to open and close the grippers 175 a and 175 b. The gripping device 174 is coupled to the linear track 173 such that the gripping device 174 and therefore the grippers 175 a and 175 b can move between the cleaner buffers 16 b and 16 b′ on the linear track 173. In an operation, the wafer transfer device 40 transfers a first wafer to the cleaner buffer 16 b′ of the second cleaning apparatus 120′ from one of the wafer transfer stations 18 and 18′. The first wafer is then transferred from the cleaner buffer 16 b′ by the internal wafer transfer device 122′ of the second cleaning apparatus 120′. After the first wafer is transferred from the cleaner buffer 16 b′ by the internal wafer transfer device 122′ of the second cleaning apparatus 120′, the wafer transfer device 40 transfers a second wafer to the cleaner buffer 16 b′ from the other of the wafer transfer stations 18 and 18′. The second wafer is then gripped by the grippers 175 a and 175 b and transferred to the cleaner buffer 16 b of the first cleaning apparatus 120 by the wafer relay device 172 such that the internal wafer transfer device 122 of the first cleaning apparatus 120 can take the second wafer from the cleaner buffer 16 b.
  • With reference to FIG. 9, a polishing apparatus 5 a in accordance with an embodiment of the present invention is described. FIG. 9 is a top view of the polishing apparatus 5 a. The polishing apparatus 5 a is similar to the polishing apparatus 5 shown in FIG. 1. A difference is the orientation of the polishing modules 10 and 10′. In the polishing apparatus 5 a, the polishing modules 10 and 10′ are oriented such that the plane A of the first polishing module 10 is perpendicular to a depth direction of the polishing apparatus 5 a and only the plane A′ of the second polishing module 10′ is parallel to the depth direction of the polishing apparatus 5 a, as indicated in FIG. 9. In another embodiment, an angle Q between the plane A and the plane A′ in the polishing apparatus 5 a can be any angle in the range of 80 to 95 degree. In another embodiment, the angle Q can have be any angle in the range of 60 to 90 degree. In an embodiment, the first polishing module 10 in the polishing apparatus 5 a uses P12 and P22 as its polishing positions on the first and second polishing surfaces 14 a and 14 b respectively; and the second polishing module 10′ in the polishing apparatus 5 a uses P12′ and P22′ as its polishing positions on the first and second polishing surfaces 14 a and 14 a′ respectively.
  • With reference to FIG. 10, a polishing apparatus 5 b in accordance with a modified embodiment of the present invention is described. FIG. 10 is a top view of the polishing apparatus 5 b. The polishing apparatus 5 b is similar to the polishing apparatus 5 a shown in FIG. 9. A difference is that the second polishing module 10′ may be disposed in the polishing apparatus 5 b such that the rotation axis 15 b′ of the second polishing surface 14 b′ of the second polishing module 10′ is disposed further away from the plane A of the first polishing module 10 and closer to the wafer transfer station 18 of the first polishing module 10 than it is disposed in the polishing apparatus 5 a in order to make the width of the polishing apparatus 5 b smaller. Another difference is that the polishing apparatus 5 b may use P21′ as its polishing position on the second polishing surface 14 b′ of the second polishing module 10′ while the polishing apparatus 5 a uses P22′. The polishing apparatuses 5 a and 5 b can be also configured to use other polishing positions that were used in the polishing apparatus 5 as described with reference to FIGS. 1 and 2. For example, the polishing apparatuses 5 a and 5 b can be configured to use P11, P22, P11′ and P22′; P12, P21, P12′ and P21′; and P11, P22, P21′ and P21′ as their polishing positions.
  • The polishing apparatus 5 a and 5 b can be used in the wafer processing apparatus 100 as a replacement of the polishing apparatus 5 shown in FIG. 1. As an example, the wafer processing apparatus 100 comprising the polishing apparatus 5 a is described with reference to FIG. 11, which is a top view of the wafer processing apparatus 100 comprising the polishing apparatus 5 a. The polishing apparatus 5 a is situated in the wafer processing apparatus 100 such that the plane A′ of the second polishing module 10′ is parallel to the depth direction of the wafer processing apparatus 100. In addition, the second polishing module 10′ which has the greater depth than the first polishing module 10 is situated adjacent to the first end 120 x′ of the second cleaning apparatus 120′; and the first polishing module 10 which has the smaller depth than the second polishing module 10′ is situated at the opposite side. The wafer transfer device 40 and the wafer input stage 16 a are positioned in the space 120S between the first and second cleaning apparatuses 120 and 120′. Because the depth of the first polishing module 10 is smaller than the depth of the second polishing module 10′, there is an empty space 130 between the first polishing module 10 and the first cleaning apparatus 120. Thus, an engineer can access the wafer transfer device 40 and the wafer input stage 16 a disposed at the space 120S through this empty space 130 to maintain them.
  • The polishing apparatuses 5 a and 5 b can be used in the wafer processing apparatus 100 a shown in FIG. 7 as a replacement of the polishing apparatus 5. As an example, the wafer processing apparatus 100 a comprising the polishing apparatus 5 a is described with reference to FIG. 12, which is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 a. The second polishing module 10′ of the polishing apparatus 5 a is situated adjacent to the first ends 120 x and 120 x′ of the first and second cleaning apparatuses 120 and 120′ such that the first and second cleaning apparatuses 120 and 120′ are situated between the second polishing module 10′ and the factory interface 64. The wafer transfer device 40 can be mounted on the linear track 42 such that the wafer transfer device 40 can move between about the cleaner buffer 16 b of the first cleaning apparatus 120 and about the wafer transfer stations 18 and 18′ of the polishing modules 10 and 10′. The wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18′; and from the wafer transfer stations 18 and 18′ to at least one of the cleaner buffers 16 b and 16 b′. An advantage of the wafer processing apparatus 100 a comprising the polishing apparatus 5 a is that there is a large space that can be used to maintain the wafer processing apparatus 100 a between the first polishing module 10 and the factory interface 64. In an embodiment, the cleaning apparatuses 120 and 120′ comprises the stage transfer device 79 or the wafer relay device 172, which were described with reference to FIGS. 8( a) and 8(b).
  • With reference to FIG. 13, a wafer processing apparatus 100 b in accordance with an embodiment of the present invention is described. FIG. 13 is a top view of the wafer processing apparatus 100 b. The wafer processing apparatus 100 b comprises the cleaning apparatuses 120 and 120′ and a polishing apparatus such as the polishing apparatus 5 b shown in FIG. 10. The cleaning apparatuses 120 and 120′ are disposed adjacent to each other between the first polishing module 10 of the polishing apparatus 5 b and the factory interface 64 such that the second ends 120 y and 120 y′ of the cleaning apparatuses 120 and 120′ are adjacent to the factory interface 64 and the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′ face the first polishing module 10 of the polishing apparatus 5 b across the wafer transfer device 40.
  • The polishing apparatus 5 b is disposed such that there are a space 111 a between the first polishing module 10 of the polishing apparatus 5 b and the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′; a space 111 c between the second polishing module 10′ of the polishing apparatus 5 b and the factory interface 64; and a wafer transfer path 111 b between the second polishing module 10′ of the polishing apparatus 5 b and the first end 120 x′ of the second cleaning apparatus 120′. The wafer transfer path 111 b connects the spaces 111 a and 111 c for wafer transfer between the spaces 111 a and 111 c. The polishing apparatus 5 b may be disposed such that a distance 120D* from the second polishing module 10′ to the factory interface 64 is shorter than a distance 120D from the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′ to the factory interface 64.
  • The wafer transfer device 40 is disposed in the space 111 a such that the wafer transfer device 40 can transfer wafers from the wafer transfer stations 18 and 18′ to at least one of the cleaner buffers 16 b and 16 b′ of the first and second cleaning apparatuses 120 and 120′. The space 111 a also provides a space for an engineer to maintain the cleaning apparatuses 120 and 120′ and the polishing apparatus 5 b.
  • A buffer 16 a* is disposed around the wafer transfer path 111 b such that the wafer transfer device 40 can take wafers from the buffer 16 a*. The buffer 16 a* is a device to keep the wafers transferred by a second wafer transfer device 40*. The buffer 16 a* may be configured to accommodate wafers vertically.
  • The second wafer transfer device 40* is disposed in the space 111 c. The second wafer transfer device 40* is configured to transfer wafers to be polished from the wafer input stage 16 a disposed adjacent to the factory interface 64 to the buffer 16 a*. The second wafer transfer device 40* may be mounted to a linear track 42*.
  • In an operation of the wafer processing apparatus 100 b, wafers to be polished are transferred from the wafer input stage 16 a to the buffer 16 a* by the second wafer transfer device 40*; transferred from the buffer 16 a* to at least one of the wafer transfer stations 18 and 18′ of the polishing apparatus 5 b by the wafer transfer device 40′; polished in the polishing apparatus 5 b by at least one of the polishing heads 20 a-20 c′; transferred back to at least one of the wafer transfer stations 18 and 18′ by the at least one of the polishing heads 20 a-20 c′; and transferred from the at least one of the wafer transfer stations 18 and 18′ to at least one of the cleaner buffers 16 b and 16 b′ of the cleaning apparatuses 120 and 120′ by the wafer transfer device 40.
  • Alternatively, the wafer processing apparatus 100 b may be configured such that the wafer transfer device 40 transfers the wafers polished in the polishing apparatus 5 b back to the buffer 16 a* instead of transferring them to the cleaner buffers 16 b and 16 b′. In this embodiment, the wafer transfer device 40* transfers the wafers from the buffer 16 a* to at least one of the cleaner buffers 16 b and 16 b′.
  • With reference to FIG. 14, a polishing apparatus 5 c in accordance with an embodiment of the present invention is described. The polishing apparatus 5 c is similar to the polishing apparatus 5 shown in FIG. 1. A difference is that the polishing apparatus 5 c comprises a pivoting wafer transfer device 180 as a replacement of the wafer transfer stations 18 and 18′ of the polishing apparatus 5. In addition, the polishing apparatus 5 c can further comprise a first washing device 118 and a second washing device 118′.
  • The pivoting wafer transfer device 180 is configured to transfer wafers with the polishing heads 20 a-20 c of the first polishing module 10 at a first transfer position 20P; with the wafer transfer device 40 at a parking position; and with the polishing heads 20 a′-20 c′ of the second polishing module 10′ at a second transfer position 20P′. The first transfer position 20P is a position where the wafer transfer station 18 of the first polishing module 10 was situated in the polishing apparatus 5 shown in FIG. 1; the second transfer position 20P′ is a position where the wafer transfer station 18′ of the second polishing module 10′ was situated in the polishing apparatus 5 shown in FIG. 1; and the parking position is a position where a loader 188 of the pivoting wafer transfer device 180 is positioned among the wafer transfer device 40, the first transfer position 20P and the second transfer position 20P′.
  • The first washing device 118 is disposed about the transfer position 20P and can spray DI water to the polishing heads 20 a-20 c and the wafers held by the polishing heads 20 a-20 c when the polishing heads 20 a-20 c are positioned at the transfer position 20P. The second washing device 118′ is disposed about the transfer position 20P′ of the second polishing module 10′ and can spray DI water to the polishing heads 20 a′-20 c′ and the wafers held by the polishing heads 20 a′-20 c′ when the polishing heads 20 a′-20 c′ are positioned at the transfer position 20P′.
  • With reference to FIGS. 15( a) and 15(b), the pivoting wafer transfer device 180 and the wafer washing devices 118 and 118′ are further described. FIGS. 15( a) and 15(b) are side views of the pivoting wafer transfer device 180 and the washing devices 118 and 118′. In FIG. 15( a), the loader 188 is positioned at the parking position and the polishing heads 20 a and 20 a′ are positioned at the first and second transfer positions 20P and 20P′ respectively over the respective washing devices 118 and 118′. In FIG. 15( b), the loader 188 is positioned at the first transfer position 20P under the first polishing head 20 a.
  • The pivoting wafer transfer device 180 comprises the loader 188, an arm 186, a shaft 184, a pivoting-and-vertical drive mechanism 182 and a pivoting axis 181. The loader 188 is a device to transfer wafers with the polishing heads. The load 188 is coupled to an end of the arm 186. The other end of the arm 186 is coupled to an end of the shaft 184 as shown in FIGS. 15( a) and 15(b). The other end of the shaft 184 is coupled to the pivoting-and-vertical drive mechanism 182. The pivoting-and-vertical drive mechanism 182 is configured to move the loader 188 up and down by moving the shaft 184 up and down; and configured to pivot the loader 188 by pivoting the shaft 184 about the pivoting axis 181.
  • A procedure of transferring wafers to the polishing heads 20 a and 20 a′ by the loader 188 is described using the polishing head 20 a as an example with reference to FIGS. 14, 15(a) and 15(b). The procedure comprises steps of (1) transferring a first wafer from the wafer transfer device 40 to the loader 188 positioned at the parking position; (2) pivoting the loader 188 to the first transfer position 20P; (3) moving the loader 188 upward to the polishing head 20 a; (4) transferring the first wafer to the polishing head 20 a; (5) moving the loader 188 down from the polishing head 20 a; and (6) pivoting the loader 188 back to the parking position. The pivoting wafer transfer device 180 transfers a second wafer to the polishing head 20 a′ in the same manner as the pivoting wafer transfer device 180 transferred the first wafer to the polishing head 20 a.
  • In an embodiment, as shown in FIG. 14, in order to avoid interference between the loader 188 and the polishing heads 20 a-20 c and 20 a′-20 c′ when the loader 188 is pivoted to the transfer positions 20P and 20P′, the polishing modules 10 and 10′ in the polishing apparatus 5 c preferably uses P12 and P12′ as its polishing positions to polish the wafers on the first polishing surfaces 14 a and 14 a′ of the polishing modules 10 and 10′ respectively.
  • The polishing apparatus 5 c shown in FIG. 14 can be used in the wafer processing apparatus 100 a shown in FIG. 7 as a replacement of the polishing apparatus 5. FIG. 16 is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 c. The polishing apparatus 5 c and the cleaning apparatuses 120 and 120′ are disposed in the wafer processing apparatus 100 a such that the first polishing surface 14 a of the polishing module 10 is adjacent to the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′. The wafer transfer device 40 is positioned adjacent to the loader 188 of the pivoting wafer transfer device 180 and the first end 120 x′ of the cleaning apparatus 120′. The wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the loader 188; and from the loader 188 to at least one of the cleaner buffers 16 b and 16 b′.
  • With reference to FIGS. 17, 18 and 19, a rotation mechanism 600 that can be used as the rotation mechanism 26 of the polishing module 10 shown in FIGS. 2 and 3 is described. FIG. 17 is a vertical cross-sectional view of the rotation mechanism 600 in accordance with an embodiment of the present invention. FIGS. 18 and 19 are plan views of the rotation mechanism 600 seen from cross sections 600L1 and 600L2 shown in FIG. 17 respectively.
  • Referring to FIGS. 17 and 18, the rotation mechanism 600 comprises a top support 600 a, an outer cylindrical support 600 b, an inner cylindrical support 600 c, and a circular bottom support 600 d. The supports 600 a, 600 b and 600 c with or without the support 600 d form a support structure of the rotation mechanism 600. The outer and inner cylindrical supports 600 b and 600 c are mounted to and suspended from the top support 600 a such that there is an annular shaped opening 650 between respective lower ends of the outer and inner cylindrical supports 600 b and 600 c. The outer cylindrical support 600 b comprises at least one opening 602, through which the rotation mechanism 600 can be maintained and air can be exhausted from the rotation mechanism 600.
  • An annular gear 630 is mounted coaxially to the inner cylindrical support 600 c about the rotation axis 28. After the gear 630 is mounted, the circular bottom support 600 d is mounted to the lower end of the inner cylindrical support 600 c such that the bottom support 600 d encloses a space 600S surrounded by the inner cylindrical support 600 c. The inner space 600S is used for fluid supply channels such as vacuum and pressurized air, electrical power supply cables and data communication cables.
  • A first annular rim 605 is mounted to the lower end of the outer cylindrical support 600 b such that the first annular rim 605 surrounds the annular opening 650. An annular outer guide rail 640 a is mounted to the first annular rim 605 and an annular inner guide rail 640 b is mounted to the bottom support 600 d such that the outer and inner annular guide rails 640 a and 640 b surround the annular opening 650. Second and third annular rims 608 a and 608 b are mounted to the outer and inner guide rails 640 a and 640 b respectively such that they surround the annular opening 650.
  • A first group of nozzles 610 a are mounted to the first annular rim 605 along the first annular rim 605 such that the first group of nozzles 610 a can inject pressurized air toward an annular opening 655 a (shown in FIG. 17) between the outer cylindrical support 600 b and an annular shield 655. A second group of nozzles 610 b are mounted to the second annular rim 608 a along the second annular rim 608 a such that the second group of nozzles 610 b can inject pressurized air toward the annular opening 655 a (through a space over the outer annular guide rail 640 a). A third group of nozzles 610 c are mounted to the third annular rim 608 b along the third annular rim 608 b such that the third group of nozzles 610 c can inject pressurized air upwardly toward an annular opening 655 b (shown in FIG. 17) between the inner cylindrical support 610 c and the annular shield 655 (through a space over the inner annular guide rail 640 b). A fourth group of nozzles 610 d are mounted to the bottom support 600 d along a perimeter of the bottom support 600 d such that the fourth group of nozzles 610 d can inject pressurized air upwardly toward the annular opening 655 b. A fifth group of nozzles 610 e may be mounted to the second annular rim 608 a along the second annular rim 608 a such that the fifth group of nozzles 610 e can inject pressurized air toward the annular opening 650. A sixth group of nozzles 610 f may be mounted to the third annular rim 608 b along the third annular rim 608 b such that the sixth group of nozzles 610 f can inject pressurized air toward the annular opening 650. Each group of nozzles 610 a-610 f is connected to a source of the pressurized air (not shown in FIG. 17) through a respective pressure control device such that pressure and flow rate of the pressurized air injected from each group of nozzles can be controlled individually.
  • Referring to FIG. 17 and FIG. 19, the annular shield 655 is disposed over the opening 650 as shown in FIG. 17 such that it covers the opening 650; an outer radial end of the annular shield 655 is disposed over at least a portion of the outer rail 640 a; and an inner radial end of the annular shield 655 is disposed over at least a portion of the inner rail 640 b. The annular shield 655 is mounted to the outer cylindrical support 600 b through mounting plates 656 as shown in FIG. 19. The annular shield 655 is not connected to the inner cylindrical support 600 c. The annular shield 655 may be configured to have the openings 655 a between the outer annular support 600 b and the annular shield 655. The openings 655 a are used to exhaust air from the first and second groups of nozzles 610 a and 610 b as shown in FIG. 17. The annular shield 655 is also configured such that there is the annular opening 655 b between the annular shield 655 and the inner annular support 600 c. The opening 655 b is used to exhaust air from the third and fourth groups of nozzles 610 c and 610 d as shown in FIG. 17. The annular shield 655 and the first, second, third and fourth groups of nozzles 610 a-610 d are used to isolate the annular opening 650 from a space above the annular shield 655. Air injected from the nozzles 610 a-610 d is used to protect dirty air from flowing into the opening 650 and to blow particles, which may be generated from the guide rails 640 a and 640 b, to the openings 655 a and 655 b.
  • With reference to FIGS. 20 and 21, head supports 615 a-615 c of the rotation mechanism 600 are described. FIG. 20 is a vertical cross sectional view of the rotation mechanism 600 along a vertical plane Z shown in FIG. 21. FIG. 21 is a plan view of the rotation mechanism 600 seen from a cross section 600L3 shown in FIG. 20. The rotational-and-vertical drive mechanisms 22 a-22 c of the polishing heads 20 a-20 c described with reference to FIGS. 2 and 3 are mounted to the head supports 615 a-615 c respectively. Thus, the head supports 615 a-615 c are used as head supporting members that support polishing head assemblies, which include polishing heads. As the head supports 615 a-615 c are similar to each other, details of the head supports 615 a-615 c are described using the first head support 615 a as an example.
  • The head support 615 a is configured such that its outer radial end is positioned over the outer guide rail 640 a and movably coupled to the outer guide rail 640 a through at least one guide block 645 a. The guide block 645 a, which is fixedly mounted to the outer radial end of the head support 615 a, is movably coupled to the outer guide rail 640 a. The head support 615 a is also configured such that its inner radial end is positioned over the inner guide rail 640 b and movably coupled to the inner guide rail 640 b through at least one guide block 647 a. The guide blocks 647 a, which is fixedly mounted to the inner radial end of the head support 615 a, is movably coupled to the inner guide rail 640 b. When the head supports 615 a-615 c are assembled to the rotation mechanism 600, the annular opening 650 is exposed between the head supports 615 a-615 c as shown in FIG. 21.
  • With reference to FIG. 22, the head support 615 a, the guide rail 640 a or 640 b, the guide block 645 a or 647 a and the air nozzles 610 a, 610 b and 610 e or 610 c, 610 d and 610 f of the rotation mechanism 600 of FIG. 20 are further described. FIG. 22 shows a cross-sectional view of the head support 615 a, the guide rail 640 a or 640 b, the guide block 645 a or 647 a and the air injection nozzles 610 a, 610 b and 610 e or 610 c, 610 d and 610 f of the rotation mechanism 600. The head support 615 a may be configured to comprise outer and inner portions 616 and 616* downwardly extended from the outer and inner radial ends of the head support 615 a respectively. The portions 616 and 616* are mounted to the respective guide blocks 645 a and 647 a. The portions 616 and 616* comprise at least one opening 644 through the portions 616 and 616* respectively. The outer portion 616 is positioned between the first and second groups of nozzles 610 a and 610 b. The second group of nozzles 610 b is configured to inject pressurized air through the openings 644. The first group of nozzles 610 a is configured to inject pressurized air upwardly. The inner portion 616* is positioned between the third and fourth groups of nozzles 610 c and 610 d. The third group of nozzles 610 c is configured to inject pressurized air through the openings 644. The fourth group of nozzles 610 d is configured to inject pressurized air upwardly. The fifth and sixth group of nozzles 610 e and 610 f are configured to inject pressurized air toward the annular opening 650 in order to supply clean air to wafer processing area under the annular opening 650. In an alternative embodiment, the first and fourth groups of nozzles 610 a and 610 d may be configured to suction the air injected from the second and third groups of nozzles 610 b and 610 c respectively.
  • With reference to FIGS. 20 and 23, the rotation mechanism 600 is further described. FIG. 23 is a plan view of the rotation mechanism 600 seen from a cross section 600L4 shown in FIG. 20. The annular shield 655 is disposed over the head supports 615 a-615 c. Thus, the annular shield 655 is used as a shield member that shields the opening 650 from the gear 630. A servo motor 642 a, which is used to rotate the first head support 615 a about the rotation axis 28, is mounted to the first head support 615 a as shown in FIG. 20. A gear 643 a which is attached to a spinning part of the motor 642 a is coupled to the gear 630. When the motor 642 a rotates the gear 643 a, the gear 643 a revolves around the gear 630. A revolution force of the gear 643 a is transmitted to the head support 615 a such that the head support 615 a rotates around the gear 630 on the guide rails 640 a and 640 b about the rotation axis 28. Respective gears 643 b and 643 c of servo motors 642 b and 642 c to drive the head supports 615 b and 615 c are also coupled with the gear 630 as shown in FIG. 23 such that the head supports 615 b and 615 c can rotate around the gear 630 on the guide rails 640 a and 640 b about the rotation axis 28. Thus, the servo motor 642 a with the gear 642 a and the gear 630 can be considered as one drive mechanism to rotate or transport the connected polishing head assembly. Angular positions of the head supports 615 a-615 c relative to the rotation axis 28 are controlled individually by a controller 670.
  • Referring to FIG. 20, the rotation mechanism 600 is further described. The inner cylindrical support 600 c comprises outlet port 680 a. The outlet port 680 a provides an interface with a channel assembly 682 a. The channel assembly 682 a is connected to fluid sources such as vacuum and pressurized air, electric power source and a controller through the outlet port 680 a. The outlet port 680 a is connected to an inlet port 680 a*, which is mounted to the head support 615 a, through the channel assembly 682 a. The inlet port 680 a* provides an interface with the servo motor 642 a and the rotational-and-vertical drive mechanism 22 a which will be mounted to the head support 615 a.
  • The channel assembly 682 a is suspended from the top support 600 a using at least one bendable support 684 a. When the head support 615 a reciprocates clockwise and counterclockwise about the rotation axis 28 in order to transfer the polishing head 20 a coupled to the rotational-and-vertical drive mechanism 22 a between the polishing surfaces 14 a and 14 b and the wafer transfer station 18, the bendable support 684 a supports the channel assembly 682 a in a bendable manner such that stretching of the channel assembly 682 a is not disturbed by the support 684 a. The outlet and inlet ports and the channel assemblies of the second and third head supports 615 b and 615 c have similar configuration with those of the first head support 615 a.
  • With reference to FIG. 24, the rotation mechanism 600 having the polishing heads 20 a-20 c is described. FIG. 24 is a perspective sectional side view of the rotation mechanism 600. The polishing heads 20 a-20 c are coupled to the head supports 615 a-615 c respectively through the respective shafts 21 a-21 c and the respective rotational-and-vertical drive mechanisms 22 a-22 c. Therefore the first polishing head assembly comprising the rotational-and-vertical drive mechanism 22 a and the first polishing head 20 a is coupled to the first head support 615 a; the second polishing head assembly comprising the rotational-and-vertical drive mechanism 22 b and the second polishing head 20 b is coupled to the second head support 615 b; and the third polishing head assembly comprising the rotational-and-vertical drive mechanism 22 c and the third polishing head 20 c is coupled to the third head support 615 c.
  • The polishing heads 20 a-20 c can be transferred among the first and second polishing surfaces 14 a and 14 b and the wafer transfer station 18 by rotating the respective gears 643 a-643 c using the respective motors 642 a-642 c. The inlet ports 680 a*-680 c* are coupled to the respective rotational-and-vertical drive mechanisms 22 a-22 c and the respective polishing heads 20 a-20 c to supply vacuum, pressurized air and electrical power and to communicate with them.
  • With reference to FIG. 25, a polishing apparatus 5 c* in accordance with an embodiment of the present invention is described. FIG. 25 is a top view of the polishing apparatus 5 c*. The polishing apparatus 5 c* comprises a single polishing module 110 and the wafer transfer device 40. The polishing module 110 is modified from the polishing module 10 shown in FIGS. 2 and 3 such that the polishing module 110 further comprises a third polishing surface 14 c, a fourth polishing head 20 d and a second wafer transfer station 18* over the polishing module 10.
  • The three polishing surfaces 14 a-14 c and the two wafer transfer stations 18 and 18* of the polishing module 110 are angularly disposed about the rotation axis 28 in a sequence of the first wafer transfer station 18, the first polishing surface 14 a, the second polishing surface 14 b, the third polishing surface 14 c and the second wafer transfer station 18*. The second wafer transfer station 18* is disposed such that the center 18 c* of the second wafer transfer station 18* is also positioned on the circular path 28 a. The polishing module 110 is configured such that the polishing heads 20 a-20 d can transfer wafers with any of the wafer transfer stations 18 and 18* and polish wafers on any of the polishing surfaces 14 a-14 c. The wafer transfer device 40 transfers the wafers with the first and second wafer transfer stations 18 and 18*.
  • In an operation of the polishing apparatus 5 c*, the wafer transfer device 40 sequentially supplies wafers to the first transfer station 18; the polishing heads 20 a-20 d are sequentially transferred from the second wafer transfer station 18* to the first wafer transfer station 18 in order to sequentially load the wafers from the first transfer station 18; the polishing heads 20 a-20 d are sequentially transferred from the first wafer transfer station 18 through the polishing surfaces 14 a-14 c after loading the wafers; the wafers held by the polishing heads 20 a-20 d are sequentially polished on the polishing surfaces 14 a-14 c; the polishing heads 20 a-20 d are sequentially transferred from the third polishing surface 14 c to the second wafer transfer station 18*; the wafers are sequentially unloaded from the polishing heads 20 a-20 d to the second transfer station 18*; and the wafers are sequentially removed from the second transfer station 18* by the wafer transfer device 40.
  • With reference to FIGS. 26( a)-26(h), another method of processing wafers in the polishing apparatus 5 c* is described. FIGS. 26( a)-26(h) are sequential top views of the polishing apparatus 5 c* to show a sequence of polishing wafers in accordance with an embodiment of the present invention. The method comprises steps of:
  • (1) positioning the first, second, third and fourth polishing heads 20 a-20 d at the first wafer transfer station 18, the second wafer transfer station 18*, the third polishing surface 14 c and the second polishing surface 14 b respectively; transferring a first wafer W1 to the first wafer transfer station 18 by the wafer transfer device 40; and loading the wafer W1 to the first polishing head 20 a from the first wafer transfer station 18 as shown in FIG. 26( a);
  • (2) transferring the first polishing head 20 a from the first wafer transfer station 18 to the first polishing surface 14 a; transferring the second polishing head 20 b from the second wafer transfer station 18* to the first wafer transfer station 18 such that the second wafer transfer station 18* is cleared to receive the third polishing head 20 c; polishing the wafer W1 on the first polishing surface 14 a by the first polishing head 20 a; and transferring a second wafer W2 to the second wafer transfer station 18* by the wafer transfer device 40 as shown in FIG. 26( b);
  • (3) transferring the third polishing head 20 c to the second wafer transfer station 18*; and loading the wafer W2 to the third polishing head 20 c from the second wafer transfer station 18* as shown in FIG. 26( c);
  • (4) transferring the third polishing head 20 c from the second wafer transfer station 18* to the third polishing surface 14 c; transferring the second polishing head 20 b from the first wafer transfer station 18 to the second wafer transfer station 18* such that the first wafer transfer station 18 is cleared to receive the first polishing head 20 a; and polishing the wafer W2 on the third polishing surface 14 c by the third polishing head 20 c as shown in FIG. 26( d);
  • (5) transferring the first polishing head 20 a from the first polishing surface 14 a to the first wafer transfer station 18; and unloading W1 from the first polishing head 20 a to the first wafer transfer station 18 as shown in FIG. 26( e);
  • (6) transferring the wafer W1 from the first wafer transfer station 18 by the wafer transfer device 40; supplying a third wafer W3 to the first wafer transfer station 18 by the wafer transfer device 40; and loading the wafer W3 to the first polishing head 20 a as shown in FIG. 26( f);
  • (7) transferring the first polishing head 20 a from the first wafer transfer station 18 to the first polishing surface 14 a; transferring the second polishing head 20 b from the second wafer transfer station 18* to the first wafer transfer station 18; and polishing W3 on the first polishing surface 14 a by the first polishing head 20 a as shown in FIGS. 26( g); and
  • (8) transferring the third polishing head 20 c from the third polishing surface 14 c to the second wafer transfer station 18*; and unloading the wafer W2 from the third polishing head 20 c to the second wafer transfer station 18* as shown in FIG. 26( h).
  • The wafer W2 is then transferred from the second wafer transfer station 18* by the wafer transfer device 40 and a fourth wafer W4 is supplied to the second wafer transfer station 18* by the wafer transfer device 40. The wafer W4 is processed in the same way as the wafer W2 was processed on the third polishing surface 14 c by the third polishing head 20 c.
  • As understandable from the method described with reference to FIGS. 26( a)-26(h), the polishing apparatus 5 c* is configured to carry out the above method by positioning the fourth polishing head 20 d over the second polishing surface 14 b during the entire process; by reciprocating the first polishing head 20 a between the first wafer transfer station 18 and the first polishing surface 14 a in order to polish a first group of wafers on the first polishing surface 14 a by the first polishing head 20 a; by reciprocating the third polishing head 20 c between the second wafer transfer station 18* and the third polishing surface 14 c in order to polish a second group of wafers on the third polishing surface 14 c by the third polishing head 20 c; and by reciprocating the second polishing head 20 b between the first and second wafer transfer stations 18 and 18* such that the second polishing head 20 b dose not disturb the reciprocating motions of the first and third polishing heads 20 a and 20 c.
  • The polishing apparatus 5 c* shown in FIG. 25 can be used in the wafer processing apparatus 100 a shown in FIG. 12 as a replacement of the polishing apparatus 5 a. FIG. 27 is a top view of the wafer processing apparatus 100 a comprising the polishing apparatus 5 c*. In the wafer processing apparatus 100 a, the polishing apparatus 5 c* is disposed such that the third and second polishing surfaces 14 c and 14 b are aligned to the cleaning apparatuses 120 and 120′ in the depth direction of the wafer processing apparatus 100 a; and the third polishing surface 14 c is positioned adjacent to the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′. The wafer transfer device 40 and the wafer input stage 16 a are disposed at the opposite side of the cleaning apparatuses 120 and 120′. The wafer transfer device 40 may be mounted on the linear track 42 such that the wafer transfer device 40 can be transferred between the wafer input stage 16 a and the wafer transfer stations 18 and 18* of the polishing apparatus 5 c*. The wafer transfer device 40 transfers wafers from the wafer input stage 16 a to the wafer transfer stations 18 and 18* and from the wafer transfer stations 18 and 18* to at least one of the cleaner buffers 16 b and 16 b′.
  • The polishing apparatus 5 c* shown in FIG. 25 can be also used in the wafer processing apparatus 100 b shown in FIG. 13 as a replacement of the polishing apparatus 5 b. FIG. 28 is a top view of the wafer processing apparatus 100 b comprising the polishing apparatus Sc*. The polishing apparatus 5 c* is disposed in the wafer processing apparatus 100 b such that the wafer transfer device 40 disposed adjacent to the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′ is surrounded by the first ends 120 x and 120 x′ of the cleaning apparatuses 120 and 120′, the first and second wafer transfer stations 18 and 18* of the polishing apparatus 5 c* and the buffer 16 a*. The buffer 16 a* is disposed between the first end 120 x′ of the cleaning apparatus 120′ and the polishing apparatus Sc*. The polishing apparatus 5 c* is also disposed in the wafer processing apparatus 100 b such that the third polishing surface 14 c faces the factory interface 64 across the second wafer transfer device 40* disposed in the space 111 c. In an operation, the second wafer transfer device 40* transfers wafers from the wafer input stage 16 a to the buffer 16 a*; the wafer transfer device 40 transfers the wafers from the buffer 16 a* to the wafer transfer stations 18 and 18* of the polishing apparatus 5 c* and from the wafer transfer stations 18 and 18* to at least one of the cleaner buffers 16 b and 16 b′ of the cleaning apparatuses 120 and 120′.
  • With reference to FIG. 29, a wafer processing apparatus 200 in accordance with an embodiment of the present invention is described. FIG. 29 is a top view of the wafer processing apparatus 200. The wafer processing apparatus 200 comprises the factory interface 64, two cleaning apparatuses 120V and 120V′, two polishing modules 110 a and 110 a′, the wafer transfer device 40, and the wafer input stage 16 a. Each of the two polishing modules 110 a and 110 a′ is modified from the polishing module 110 shown in FIG. 25 by removing the second wafer transfer station 18* from the polishing module 110. Each of the polishing modules 110 a and 110 a′ may comprise one, two or three polishing heads instead of comprising all of the four polishing heads 20 a-20 d.
  • The wafer input stage 16 a is disposed between a first end 120Vx of the first cleaning apparatus 120V and a second end 120Vy′ of the second cleaning apparatus 120V′ such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a. The wafer input stage 16 a may be configured to accommodate the wafers vertically or horizontally.
  • The wafer transfer device 40 transfers wafers to be polished from the wafer input stage 16 a to wafer transfer stations 18 and 18′ of the polishing modules 110 a and 110 a′ and transfers polished wafers from the wafer transfer stations 18 and 18′ to respective cleaner buffers 16Vb and 16Vb′ of the cleaning apparatuses 120V and 120V′. The wafer transfer device 40 may be mounted on the linear track 42 which extends between the wafer transfer stations 18 and 18′ and the wafer input stage 16 a.
  • The first cleaning apparatus 120V is disposed adjacent to the factory interface 64 such that (1) its longer side 120Va is parallel to a longer side 64 a of the factory interface 64 and therefore parallel to a width direction of the wafer processing apparatus 200; and (2) the first end 120Vx of the first cleaning apparatus 120V is adjacent to the wafer input stage 16 a and a second end 120Vy of the first cleaning apparatus 120V which is opposite to the first end 120Vx is disposed adjacent to a second end 64 y of the factory interface 64.
  • The cleaner buffer 16Vb of the first cleaning apparatus 120V is disposed in the first end 120Vx of the first cleaning apparatus 120V such that the wafer transfer device 40 can transfer wafers to the cleaner buffer 16Vb; and a wafer output stage 16Vc is disposed in the second end 120Vy of the first cleaning apparatus 120V such that the wafer transfer device 50 of the factory interface 64 can transfer the wafers from the wafer output stage 16Vc.
  • The second cleaning apparatus 120V′ is disposed either in the left side or in the right side of the wafer processing apparatus 200 such that (1) its longer side 120Va′ is parallel to a depth direction of the wafer processing apparatus 200; and (2) a second end 120Vy′ of the second cleaning apparatus 120V′ is disposed adjacent to a first end 64 x of the factory interface 64 such that the wafer transfer device 50 of the factory interface 64 can transfer wafers from a wafer output stage 16Vc′ disposed in the second end 120Vy′ of the second cleaning apparatus 120V′. A cleaner buffer 16Vb′ of the second cleaning apparatus 120V′ is disposed in a first end 120Vx′ of the second cleaning apparatus 120V′ which is opposite to the second end 120Vy′ of the cleaning apparatus 120V′ such that the wafer transfer device 40 can transfer wafers to the cleaner buffer 16Vb′.
  • With reference to FIG. 30, the cleaning apparatus 120V is further described. The cleaning apparatus 120V can be used as the second cleaning apparatus 120V′. That is, the second cleaning apparatus 120V′ can be identical to the cleaning apparatus 120V. FIG. 30 shows a cross sectional view of the cleaning apparatus 120V in accordance with an embodiment of the present invention. The cleaning apparatus 120V comprises a cleaning module 124V to clean and dry the wafers. The cleaning module 124V comprises cleaning chambers 125Va-125Vd and two dry chambers 125Vx and 125Vy. The cleaning chambers 125Va-125Vd are configured to clean wafers by spraying DI water and chemicals to the wafers placed on respective wafer stages 124Va-124Vd. The dry chambers 125Vx and 125Vy are configured to dry the wafers placed on respective wafer stages 124Vx and 124Vy by spinning the wafers or using isopropyl alcohol (IPA) chemical. The cleaning apparatus 120V further comprises a fluid control system 126V under the cleaning module 124V. The fluid control system 126V controls supply and drain of chemical fluid to and from the cleaning module 124V.
  • The cleaning apparatus 120V further comprises two internal wafer transfer devices 122 a and 122 b. The first internal wafer transfer device 122 a comprises four gripping devices 70 a-70 d. Each gripping device comprises a gripper 71 and a vertical-and-gripping drive mechanism 72. The vertical-and-gripping drive mechanism 72 is configured to move the gripper 71 vertically as shown in FIG. 30 by the arrow V and to open and close the gripper 71 to hold a wafer W and release the wafer W. The gripping devices 70 a-70 d are fixedly mounted to a supporting member 73 a, which is coupled to a linear drive mechanism 74 a.
  • The linear drive mechanism 74 a is configured to reciprocate the supporting member 73 a between a wafer taking position WT1 and a wafer release position WT2 as shown in FIG. 30 by the arrow L1. When the supporting member 73 a is positioned at WT1, the gripping devices 70 a-70 d are positioned at gripper positions C1-C4 respectively. When the supporting member 73 a is positioned at WT2, the gripping devices 70 a-70 d are positioned at gripper positions C2-C5 respectively. The gripper positions C1-C5 are vertically aligned to the cleaner buffer 16Vb and the wafer stages 124Va-124Vd of the cleaning chambers 125Va-125Vd respectively.
  • The second internal wafer transfer device 122 b comprises two gripping devices 70 x and 70 y. The gripping devices 70 x and 70 y are fixedly mounted to respective supporting members 73 x and 73 y, which are slidibly coupled to a liner drive mechanism 74 b. The linear drive mechanism 74 b is configured to reciprocate the supporting member 73 x and therefore the gripping device 70 x between fifth, sixth and seventh gripper positions C5-C7 and a parking position 70 xp as shown in FIG. 30 with the arrow L2; and to reciprocate the supporting member 73 y and therefore the gripping device 70 y between the sixth, seventh and eighth gripper positions C6-C8 and a parking position 70 yp as shown in FIG. 30 with the arrow L3. The linear drive mechanism 74 b is configured to transfer the gripping devices 70 x and 70 y individually. Alternatively, each of the gripping devices 70 x and 70 y can be coupled to respective linear drive mechanism instead of being coupled to the same linear drive mechanism 74 b such that the gripping devices 70 x and 70 y can be controlled by the respective linear drive mechanisms. When the gripping devices 70 x and 70 y are positioned at C5-C8, the gripping devices 70 x and 70 y are vertically aligned to the wafer stage 124Vd of the fourth cleaning chamber 125Vd, wafer stages 124Vy and 124Vx of the second and first dry chambers 125Vy and 125Vx, and the wafer output stage 16Vc respectively.
  • With reference to FIGS. 31( a)-31(u), a method of transferring and cleaning wafers in the cleaning apparatus 120V is described. FIGS. 31( a)-31(u) are sequential top views of the cleaning apparatus 120V. The method comprises steps of:
  • (1) positioning the supporting member 73 a of the first internal wafer transfer device 122 a at the position WT1; positioning the gripping devices 70 x and 70 y at the respective parking positions 70 xp and 70 yp; transferring a first wafer W1 to the cleaner buffer 16Vb by the wafer transfer device 40 (not shown in FIGS. 31( a)-31(u)); lowering the gripping device 70 a to the cleaner buffer 16Vb; gripping the wafer W1 from the cleaner buffer 16Vb; and moving the gripping device 70 a upward as shown in FIG. 31( a);
  • (2) transferring the supporting member 73 a to the position WT2; transferring a second wafer W2 to the cleaner buffer 16Vb by the wafer transfer device 40; lowering the gripping device 70 a to the first cleaning chamber 125Va; placing the wafer W1 to the first cleaning chamber 125Va; moving the gripping device 70 a upward; and cleaning the wafer W1 in the first cleaning chamber 125Va as shown in FIG. 31( b);
  • (3) returning the supporting member 73 a to the position WT1; lowering the gripping devices 70 b and 70 a to the first cleaning chamber 125Va and the cleaner buffer 16Vb respectively; gripping the wafers W1 and W2 from the first cleaning chamber 125Va and the cleaner buffer 16Vb respectively; and moving the gripping devices 70 b and 70 a upward as shown in FIG. 31( c);
  • (4) transferring the supporting member 73 a to the position WT2; transferring a third wafer W3 to the cleaner buffer 16Vb by the wafer transfer device 40; lowering the gripping devices 70 b and 70 a to the second and first cleaning chambers 125Vb and 125Va respectively; placing the wafers W1 and W2 to the second and first cleaning chambers 125Vb and 125Va respectively; moving the gripping devices 70 b and 70 a upward; and cleaning the wafers W1 and W2 in the respective cleaning chambers as shown in FIG. 31( d);
  • (5) returning the supporting member 73 a to the position WT1; lowering the gripping devices 70 c-70 a to the second and first cleaning chambers 125Vb and 125Va and the cleaner buffer 16Vb respectively; gripping the wafers W1-W3 from the second and first cleaning chambers 125Vb and 125Va and the cleaner buffer 16Vb respectively; and moving the gripping devices 70 c-70 a upward as shown in FIG. 31( e);
  • (6) transferring the supporting member 73 a to the position WT2; transferring a fourth wafer W4 to the cleaner buffer 16Vb by the wafer transfer device 40; lowering the gripping devices 70 c-70 a to the third, second and first cleaning chambers 125Vc-125Va respectively; placing the wafers W1-W3 to the third, second and first cleaning chambers 125Vc-125Va respectively; moving the gripping devices 70 c-70 a upward; and cleaning the wafers W1-W3 in the respective cleaning chambers as shown in FIG. 31( f);
  • (7) returning the supporting member 73 a to the position WT1; lowering the gripping devices 70 d-70 a to the third, second and first cleaning chambers 125Vc-125Va and the cleaner buffer 16Vb respectively; gripping the wafers W1-W4 from the third, second and first cleaning chambers 125Vc-125Va and the cleaner buffer 16Vb respectively; and moving the gripping devices 70 d-70 a upward as shown in FIG. 31( g);
  • (8) transferring the supporting member 73 a to the position WT2; lowering the gripping devices 70 d-70 a to the fourth, third, second and first cleaning chambers 125Vd-125Va respectively; placing the wafers W1-W4 to the fourth, third, second and first cleaning chambers 125Vd-125Va respectively; moving the gripping devices 70 d-70 a upward; and cleaning the wafers W1-W4 in the respective cleaning chambers as shown in FIG. 31( h);
  • (9) returning the supporting member 73 a to the position WT1; transferring the gripping device 70 x of the second internal wafer transfer device 122 b to the position C5; lowering the gripping devices 70 x and 70 d-70 b to the fourth, third, second and first cleaning chambers 125Vd-125Va respectively; gripping the wafers W1-W4 from the fourth, third, second and first cleaning chambers 125Vd-125Va respectively; and moving the gripping devices 70 x and 70 d-70 b upward as shown in FIG. 31( i);
  • (10) transferring the supporting member 73 a of the first internal wafer transfer device 122 a to the position WT2; transferring the gripping device 70 x of the second internal wafer transfer device 122 b to the position C7; lowering the gripping devices 70 x and 70 d-70 b to the first dry chamber 125Vx, the fourth, third and second cleaning chambers 125Vd-125Vb respectively; placing the wafers W1-W4 to the respective chambers; moving the gripping devices 70 x and 70 d-70 b upward; and drying the wafer W1 and cleaning the wafers W2-W4 in the respective chambers as shown in FIG. 31( j);
  • (11) returning the supporting member 73 a of the first internal wafer transfer device 122 a to the position WT1; transferring the gripping device 70 x to the position C5; lowering the gripping devices 70 x, 70 d and 70 c to the fourth, third and second cleaning chambers 125Vd-125Vb respectively; gripping the wafers W2-W4 from the respective chambers; and moving the gripping devices 70 x, 70 d and 70 c upward as shown in FIG. 31( k);
  • (12) transferring the supporting member 73 a to the position WT2; transferring the gripping device 70 x to the position C6; lowering the gripping devices 70 x, 70 d and 70 c to the second dry chamber 125Vy, the fourth cleaning chamber 125Vd and the third cleaning chamber 125Vc respectively; placing the wafers W2-W4 to the respective chambers; moving the gripping devices 70 x, 70 d and 70 c upward; and drying the wafer W2 and cleaning the wafers W3 and W4 in the respective chambers as shown in FIG. 31( l);
  • (13) returning the supporting member 73 a to the position WT1; transferring the gripping device 70 x to the position C5; transferring the gripping device 70 y of the second internal wafer transfer device 122 b to the position C7; lowering the gripping devices 70 y, 70 x and 70 d to the first dry chamber 125Vx and the fourth and third cleaning chambers 125Vd and 125Vc respectively; gripping the wafers W1, W3 and W4 from the respective chambers; and moving the gripping devices 70 y, 70 x and 70 d upward as shown in FIG. 31( m);
  • (14) transferring the supporting member 73 a to WT2; transferring the gripping device 70 y to C8; transferring the gripping device 70 x to C7; lowering the gripping devices 70 y, 70 x and 70 d to the wafer output stage 16Vc, the first dry chamber 125Vx and the fourth cleaning chamber 125Vd respectively; placing W1, W3 and W4 to the wafer output stage 16Vc, the first dry chamber 125Vx and the respective chambers respectively; moving the gripping devices 70 y, 70 x and 70 d upward; and drying W3 in the first dry chamber 125Vx and cleaning W4 in the fourth cleaning chamber 125Vd as shown in FIG. 31( n);
  • (15) returning the supporting member 73 a to the position WT1; transferring the gripping device 70 x to C5; transferring the gripping device 70 y to the position C6; lowering the gripping devices 70 y and 70 x to the second dry chamber 125Vy and the fourth cleaning chamber 125Vd respectively; gripping the wafers W2 and W4 from the respective chambers; moving the gripping devices 70 y and 70 x upward; and transferring the wafer W1 from the wafer output stage 16Vc by the wafer transfer device 50 (not shown in FIGS. 31( a)-31(u)) as shown in FIG. 31( o);
  • (16) transferring the gripping device 70 y to the position C8; transferring the gripping device 70 x to the position C6; lowering the gripping devices 70 y and 70 x to the wafer output stage 16Vc and the second dry chamber 125Vy respectively; placing the wafers W2 and W4 to the wafer output stage 16Vc and the second dry chamber 125Vy respectively; moving the gripping devices 70 y and 70 x upward; and drying the wafer W4 in the second dry chamber 125Vy as shown in FIG. 31( p);
  • (17) transferring the gripping device 70 x to its parking position 70 xp; transferring the gripping device 70 y to the position C7; lowering the gripping device 70 y to the first dry chamber 125Vx; gripping the wafer W3 from the first dry chamber 125Vx; moving the gripping device 70 y upward; and transferring the wafer W2 from the wafer output stage 16Vc by the wafer transfer device 50 as shown in FIG. 31( q);
  • (18) transferring the gripping device 70 y to the position C8; lowering the gripping device 70 y to the wafer output stage 16Vc; placing the wafer W3 to the wafer output stage 16Vc; and moving the gripping device 70 y upward as shown in FIG. 31( r);
  • (19) transferring the gripping device 70 y to the position C6; lowering the gripping device 70 y to the second dry chamber 125Vy; gripping the wafer W4 from the second dry chamber 125Vy; moving the gripping device 70 y upward; and transferring the wafer W3 from the wafer output stage 16Vc by the wafer transfer device 50 as shown in FIG. 31( s);
  • (20) transferring the gripping device 70 y to the position C8; lowering the gripping device 70 y to the wafer output stage 16Vc; placing the wafer W4 to the wafer output stage 16Vc; and moving the gripping device 70 y upward as shown in FIGS. 31( t); and
  • (21) transferring the gripping device 70 y to its parking position 70 yp; and transferring the wafer W4 from the wafer output stage 16Vc by the wafer transfer device 50 as shown in FIG. 31( u).
  • In the method described above, placing the wafers to the dry and cleaning chambers 125Vx, 125Vy and 125Vd-125Va means placing the wafers on the respective wafer stages 124Vx, 124Vy and 124Vd-124Va of the dry and cleaning chambers.
  • In this sequential manner, a first group of the wafers cleaned in the cleaning chambers 125Va-125Vd are dried in the first dry chamber 125Vx and a second group of the wafers cleaned in the cleaning chambers 125Va-125Vd are dried in the second dry chamber 125Vy.
  • In an embodiment, the cleaning apparatus 120V may comprise more than two dry chambers between the wafer output stage 16Vc and the last cleaning chamber such as the fourth cleaning chamber 125Vd. In this embodiment, the gripping device 70 x of the second internal wafer transfer device 122 b transfers wafers from the last cleaning chamber to the plurality of dry chambers, and the gripping device 70 y of the second internal wafer transfer device 122 b transfers the wafers from the plurality of dry chambers to the wafer output stage 16Vc.
  • In an embodiment, the second internal wafer transfer device 122 b comprises either one of the gripping devices 70 x and 70 y and is configured such that the one of the gripping devices can transfer wafers from the fourth cleaning chamber 125Vd to the dry chambers 125Vy and 125Vx and from the dry chambers 125Vy and 125Vx to the wafer output stage 16Vc.
  • In an embodiment, the cleaner buffer 16Vb may be also disposed in a cleaning chamber configured to spray DI water or chemicals to a wafer placed on the cleaner buffer 16Vb.
  • In an embodiment, the cleaning apparatus 120V may comprise two, three or five cleaning chambers between the dry chamber 125 y and the cleaner buffer 16Vb, In this embodiment, the first internal wafer transfer device 122 a comprises two, three or five gripping devices 70 respectively.
  • In the wafer processing apparatuses 100, 100 a and 100 b described with reference to FIGS. 5, 7, 11-13, 17, 27 and 28, the cleaning apparatuses 120 and 120′ configured to transfer and process the wafers with the surfaces of the wafers laid horizontal as shown in FIG. 6 were used. However, it is also possible that a cleaning apparatus configured to transfer and process the wafers with the surfaces of the wafers standing vertical such as the cleaning apparatus 120V can be used as replacements of the cleaning apparatuses 120 and 120′.
  • Turning back to FIG. 29, the wafer processing apparatus 200 is further described. In an embodiment, the wafer output stage 16Vc′ of the second cleaning apparatus 120V′ shown in FIG. 29 may further comprise a pivoting device 16P as shown in FIGS. 32( a) and 32(b), which are side views of the wafer output stage 16Vc′ comprising the pivoting device 16P when a wafer is positioned at first and second angles respectively. The pivoting device 16P is configured to pivot the wafer placed on the wafer output stage 16Vc′ between the first and second angles about a pivoting axis 16 cx which passes vertically through a diameter of the wafer. In an operation, the wafer output stage 16Vc′ receives the wafer from the internal wafer transfer device 122V′ of the second cleaning apparatus 120V′ at the first angle as shown in FIG. 32( a) and then the wafer is pivoted to the second angle by the pivoting device 16P about the pivoting axis 16 cx as shown in FIG. 32( b). The wafer transfer device 50 transfers the wafer from the wafer output stage 16Vc′ after the wafer is positioned at the second angle. A difference between the first and second angles may be 90 degree.
  • The cleaner buffer 16Vb′ of the second cleaning apparatus 120V′ may also comprise the pivoting device 16P. The cleaner buffer 16Vb′ receives a wafer from the wafer transfer device 40 at a third angle and then is pivoted to the first angle by the pivoting device 16P. The internal wafer transfer device 122V′ of the second cleaning apparatus 120V′ transfers the wafers from the cleaner buffer 16Vb′ after the cleaner buffer 16Vb′ changes the orientation to the first angle from the third angle.
  • Referring to FIG. 29, the layout of the polishing modules 110 a and 110 a′ in the wafer processing apparatus 200 is further described. The second polishing module 110 a′ is disposed in the back side of the wafer processing apparatus 200 such that (1) the first polishing surface 14 a′ is adjacent to the first end 120Vx′ of the second cleaning apparatus 120V′; (2) the second polishing surface 14 b′ is disposed at a corner of the wafer processing apparatus 200 in the back side of the wafer processing apparatus 200; (3) the third polishing surface 14 c′ is disposed in the back side of the wafer processing apparatus 200 such that it faces the first polishing surface 14 a of the first polishing module 110 a across a line 200L; and (4) the wafer transfer station 18′ faces the wafer transfer station 18 of the first polishing module 110 a across the line 200L.
  • The first polishing module 110 a is disposed in the opposite side of the second polishing module 110 a′ across the line 200L such that (1) the second and third polishing surfaces 14 b and 14 c face the first cleaning apparatus 120V across a space SP1; (2) the third polishing surface 14 c faces the second cleaning apparatus 120V′ across a space SP2; (3) the first polishing surface 14 a faces the third polishing surface 14 c′ of the second polishing module 110 a′ across the line 200L; and (4) the wafer transfer station 18 is adjacent to the wafer transfer station 18′ of the second polishing module 110 a′ and the wafer transfer device 40.
  • The space SP1 is disposed between the first cleaning apparatus 120V and the first polishing module 110 a such that an engineer can access to the first cleaning apparatus 120V through the space SP1 to maintain the first cleaning apparatus 120V. The space SP2 is disposed between the first polishing module 110 a and the second cleaning apparatus 120V′. The space SP2 is surrounded by the wafer input stage 16 a, the second cleaning apparatus 120V′, the first polishing module 110 a, the first cleaning polishing apparatus 120V and the space SP1. The wafer transfer device 40 is disposed in the space SP2.
  • Still referring to FIG. 29, a method of processing wafers in the wafer processing apparatus 200 is described. The method comprises steps of (1) transferring a first wafer W1 from the cassette 60 to the wafer input stage 16 a by the wafer transfer device 50; (2) transferring the wafer W1 from wafer input stage 16 a to the wafer transfer station 18 of the first polishing module 110 a by the wafer transfer device 40; (3) loading the wafer W1 from the wafer transfer station 18 to the first polishing head 20 a of the first polishing module 110 a; (4) transferring the first polishing head 20 a from the wafer transfer station 18 to the polishing surfaces 14 a-14 c sequentially about the rotation axis 28 in order to polish the wafer W1 on the polishing surfaces 14 a-14 c; (5) transferring the first polishing head 20 a to the wafer transfer station 18 after polishing the wafer W1; (6) unloading the wafer W1 to the wafer transfer station 18; (7) transferring the wafer W1 from the wafer transfer station 18 to the cleaner buffer 16Vb of the first cleaning apparatus 120V by the wafer transfer device 40; (8) transferring the wafer W1 from the cleaner buffer 16Vb to the wafer output stage 16Vc of the first cleaning apparatus 120V through the cleaning module 124V by the internal wafer transfer device 122V of the first cleaning apparatus 120V in order to clean and dry the wafer W1; and (9) transferring the wafer W1 from the wafer output stage 16Vc to the cassette 60 by the wafer transfer device 50.
  • The method further comprises steps of (1) transferring a second wafer W2 from the cassette 60 to the wafer input stage 16 a by the wafer transfer device 50; (2) transferring the wafer W2 from wafer input stage 16 a to the wafer transfer station 18′ of the second polishing module 110 a′ by the wafer transfer device 40; (3) loading W2 from the wafer transfer station 18′ to the first polishing head 20 a′ of the second polishing module 110 a′; (4) transferring the first polishing head 20 a′ from the wafer transfer station 18′ to the polishing surfaces 14 a′-14 c′ sequentially about the rotation axis 28′ in order to polish the wafer W2 on the polishing surfaces 14 a′-14 c′; (5) transferring the first polishing head 20 a′ to the wafer transfer station 18′ after polishing W2; (6) unloading the wafer W2 to the wafer transfer station 18′; (7) transferring the wafer W2 from the wafer transfer station 18′ to the cleaner buffer 16Vb′ of the second cleaning apparatus 120V′ by the wafer transfer device 40; (8) transferring the wafer W2 from the cleaner buffer 16Vb′ to the wafer output stage 16Vc′ of the second cleaning apparatus 120V′ through the cleaning module 124V′ by the internal wafer transfer device 122V′ of the second cleaning apparatus 120V′ in order to clean and dry the wafer W2; and (9) transferring the wafer W2 from the wafer output stage 16Vc′ to the cassette 60 by the wafer transfer device 50.
  • According to a modified embodiment of the wafer processing apparatus 200, the wafer input stage 16 a may be disposed inside the first cleaning apparatus 120V such that the wafer input stage 16 a is disposed between the second end 120Vy′ of the second cleaning apparatus 120V′ and the cleaner buffer 16Vb of the first cleaning apparatus 120V. In an embodiment the wafer input stage 16 a may be positioned over or under the cleaner buffer 16Vb of the first cleaning apparatus 120V.
  • In another modified embodiment, the wafer processing apparatus 200 may further comprises the second wafer transfer device 40* and the buffer 16 a*, which are shown in FIG. 28, in the space SP2 of the polishing apparatus 200 shown in FIG. 29. The second wafer transfer device 40* is disposed between the wafer input stage 16 a and the buffer 16 a*, and configured to transfer wafers from the wafer input stage 16 a to the buffer 16 a* and from the buffer 16 a* to the cleaner buffer 16Vb of the first cleaning apparatus 120V. The buffer 16 a* is disposed between the first and second wafer transfer devices 40 and 40* such that the buffer 16 a* can be also reached by the first wafer transfer device 40. The buffer 16 a* accommodates wafers transferred by the first and second wafer transfer devices 40 and 40* vertically or horizontally.
  • In an operation of the wafer processing apparatus 200 further comprising the second wafer transfer device 40* and the buffer 16 a*, wafers to be polished are transferred from the wafer input stage 16 a to the buffer 16 a* by the second wafer transfer device 40* and then transferred from there to the wafer transfer stations 18 and 18′ of the polishing modules 110 a and 110 a′ by the wafer transfer device 40. After the wafers are polished at one of the polishing modules 110 a and 110 a′, a first group of the polished wafers are transferred from one of the wafer transfer stations 18 and 18′ to the buffer 16 a* by the wafer transfer device 40 and then further transferred from the buffer 16 a* to the cleaner buffer 16Vb of the first cleaning apparatus 120V by the second wafer transfer device 40* in order to clean and dry the wafers in the first cleaning apparatus 120V. A second group of the polished wafers are transferred from the other of the wafer transfer stations 18 and 18′ to the cleaning buffer 16Vb′ of the second cleaning apparatus 120V′ by the wafer transfer device 40 in order to clean and dry the wafers in the second cleaning apparatus 120V′.
  • With reference to FIG. 33, a wafer processing apparatus 300 in accordance with an embodiment of the present invention is described. FIG. 33 is a top view of the wafer processing apparatus 300. The wafer processing apparatus 300 comprises the factory interface 64, the wafer transfer device 40 and a polishing apparatus 305. The polishing apparatus 305 comprises two polishing modules 110 a and 110 a′ used in the wafer processing apparatus 200 shown in FIG. 29. At least one cleaning and dry chambers (not shown in FIG. 33) can be disposed between the factory interface 64 and the polishing apparatus 305 in order to clean and dry wafers polished in the polishing apparatus 305.
  • The polishing surfaces 14 a-14 c′ of the polishing modules 110 a and 110 a′ are disposed such that a line N1 connecting the rotational axes 15 a and 15 b of the first and second polishing surfaces 14 a and 14 b of the first polishing module 110 a is substantially parallel to a depth direction of the wafer processing apparatus 300; a line N2 connecting the rotational axes 15 b and 15 c of the second and third polishing surfaces 14 b and 14 c of the first polishing module 110 a is substantially parallel to a width direction of the wafer processing apparatus 300; a line N3 connecting the rotational axes 15 a′ and 15 b′ of the first and second polishing surfaces 14 a′ and 14 b′ of the second polishing module 110 a′ is substantially parallel to the width direction; a line N4 connecting the rotational axes 15 b′ and 15 c′ of the second and third polishing surfaces 14 b′ and 14 c′ of the second polishing module 110 a′ is substantially parallel to the depth direction; the polishing surfaces 14 a′ and 14 b′ of the second polishing module 110 a′ are disposed opposite to the factory interface 64 in the back side of the wafer processing apparatus 300; the first polishing surface 14 a of the first polishing module 110 a, the third polishing surface 14 c′ of the second polishing module 110 a′ and the wafer transfer stations 18 and 18′ are disposed between the line N2 and the line N3; and the third polishing surface 14 c of the first polishing module 110 a, the first polishing surface 14 a′ of the second polishing module 110 a′ and the wafer transfer stations 18 and 18′ are disposed between the line N1 and the line N4.
  • The wafer transfer device 40 is disposed around the third polishing surfaces 14 c and 14 c′ of the first and second polishing modules 110 a and 110 a′ such that the wafer transfer device 40 can transfer wafers to and from the wafer transfer stations 18 and 18′ of the polishing modules 110 a and 110 a′ through a space G2 between the respective third polishing surfaces 14 c and 14 c′ of the first and second polishing modules 110 a and 110 a′.
  • With reference to FIG. 34, a wafer processing apparatus 500 in accordance with an embodiment of the invention is described. FIG. 34 is a top view of the wafer processing apparatus 500. The wafer processing apparatus 500 comprises a cleaning apparatus 520, two polishing modules 10 a and 10 a′, the factory interface 64, the wafer transfer device 40, a wafer transfer device 40C, the wafer input stage 16 a, the buffer 16 a*, and the cleaner buffer 16 b. The polishing module 10 shown in FIG. 1 can be used as the polishing modules 10 a and 10 a′.
  • The cleaning apparatus 520 comprises three cleaning chambers 125 a-125 c and two dry chambers 125 x and 125 y. However, the cleaning apparatus 520 may comprise six cleaning chambers 125 a-125 c and 125 a′-125 c′ and four dry chambers 125 x, 125 y, 125 x′ and 125 y′ (the cleaning chambers 125 a′-125 c′ and the dry chambers 125 x′ and 125 y′ are not shown in FIG. 34). The cleaning chambers 125 a′-125 c′ may be stacked on the cleaning chambers 125 a-125 c. The dry chambers 125 x′ and 125 y′ may be stacked on the dry chambers 125 x and 125 y.
  • The cleaning apparatus 520 is disposed adjacent to the factory interface 64 such that a longer side 520 a of the cleaning apparatus 520 is parallel to the longer side 64 a of the factory interface 64; and the cleaning apparatus 520 is sandwiched between the factory interface 64 and a linear track 42C which is also disposed parallel to the longer side of the factory interface 64. The wafer transfer device 40C is mounted on the linear track 42C such that the wafer transfer device 40C can transfer wafers from the cleaner buffer 16 b to the cleaning chambers 125 a-125 c and from the cleaning chambers 125 a-125 c to the dry chambers 125 x and 125 y. The wafer transfer device 40C is configured to comprise first and second arms 41 a and 41 b such that the first arm 41 a is used to transfer wafers to be cleaned from the cleaner buffer 16 b to the cleaning chambers 125 a-125 c and the second arm 41 b is used to transfer wafers cleaned in the cleaning chambers 125 a-125 c to the dry chambers 125 x and 125 y. The wafer transfer device 40C is also configured to transfer wafers from the wafer input stage 16 a to the buffer 16 a*. The wafer input stage 16 a is disposed between the cleaning chamber 125 a and the dry chamber 125 x which are adjacent to each other or disposed over any of the cleaning chambers 125 a-125 c and the dry chambers 125 x and 125 y such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a and the wafer transfer device 40C can transfer wafers from the wafer input stage 16 a.
  • The cleaning chambers 125 a-125 c and the dry chambers 125 x and 125 y are configured to have respective first openings toward the wafer transfer device 40C such that the cleaning chambers 125 a-125 c and the dry chambers 125 x and 125 y can receive wafers from the wafer transfer device 40C through the respective first openings. The dry chambers 125 x and 125 y are further configured to have respective second openings toward the wafer transfer device 50 such that the wafer transfer device 50 can take the wafers from the dry chambers 125 x and 125 y through the respective second openings.
  • The polishing modules 10 a and 10 a′ and the wafer transfer device 40 are disposed opposite to the factory interface 64 across the wafer transfer device 40C. The buffer 16 a* and the cleaner buffer 16 b are disposed between the wafer transfer device 40C and the wafer transfer device 40. The wafer transfer device 40 transfers wafers from the buffer 16 a* to the wafer transfer stations 18 and 18′ of the polishing modules 10 a and 10 a′ and from the wafer transfer stations 18 and 18′ to the cleaner buffer 16 b.
  • The first polishing module 10 a is disposed such that a line connecting the rotation axes 15 a and 15 b of the polishing surfaces 14 a and 14 b is substantially parallel to a depth direction of the wafer processing apparatus 500, the first polishing surface 14 a is adjacent to the linear track 42C, and the wafer transfer station 18 is adjacent to the wafer transfer station 18′ of the second polishing module 10 a′ and the wafer transfer device 40.
  • The second polishing module 10 a′ is disposed in the back side of the wafer processing apparatus 500 such that a line connecting the rotation axes 15 a′ and 15 b′ of the polishing surfaces 14 a′ and 14 b′ is substantially parallel to a width direction of the wafer processing apparatus 500; distances from the rotational axes 15 a′ and 15 b′ of the polishing surfaces 14 a′ and 14 b′ of the second polishing module 10 a′ to the factory interface 64 is greater than a distance from the rotation axis 15 b of the second polishing surface 14 b of the first polishing module 10 a to the factory interface 64; the wafer transfer station 18′ faces the wafer transfer device 40; and there is a space SP4 between the second polishing module 10 a′ and the linear track 42C. The space SP4 provides a space for the wafer transfer device 40, the buffer 16 a* and the cleaner buffer 16 b. The space SP4 also provides a space through which an engineer can access the polishing modules 10 a and 10 a′ and the cleaning apparatus 520 in order to maintain them.
  • With reference to FIG. 35, a wafer processing apparatus 600 in accordance with an embodiment of the present invention is described. FIG. 35 is a top view of the wafer processing apparatus 600. The wafer processing apparatus 600 comprises two cleaning apparatuses 620 and 620′, the factory interface 64 and the wafer transfer device 40C. The wafer transfer device 40C is mounted on the linear track 42C.
  • Each of the cleaning apparatuses 620 and 620′ comprises the cleaner buffer 16 b, multiple cleaning chambers 125 a-125 c, the dry chamber 125 x and multiple internal wafer transfer devices 127. The cleaning chambers 125 a-125 c are disposed between the cleaner buffer 16 b and the dry chamber 125 x. The internal wafer transfer devices 127 are disposed and configured to transfer wafers between the cleaner buffer 16 b and the cleaning and dry chambers 125 a-125 c and 125 x.
  • The first cleaning apparatus 620 is disposed adjacent to the factory interface 64 such that a longer side 620 a of the cleaning apparatus 620 is substantially parallel to the longer side 64 a of the factory interface 64; and the first cleaning apparatus 620 is sandwiched between the factory interface 64 and the linear track 42C which is also disposed parallel to the longer side of the factory interface 64. The second cleaning apparatus 620′ is disposed such that the linear track 42C is sandwiched between the first and second cleaning apparatuses 620 and 620′; and a longer side 620 a′ of the second cleaning apparatus 620′ is substantially parallel to the longer side 620 a of the first cleaning apparatus 620.
  • The wafer processing apparatus 600 further comprises the wafer input stage 16 a, the buffer 16 a*, the wafer output stage 16 c, a second buffer 16 b* and the wafer transfer device 40. The wafer input stage 16 a and the wafer output stage 16 c are disposed about the first cleaning apparatus 620 such that the wafer transfer device 50 of the factory interface 64 can transfer wafers to the wafer input stage 16 a and from the wafer output stage 16 c; and the wafer transfer device 40C can transfer wafers from the wafer input stage 16 a and to the wafer output stage 16 c. The wafer input stage 16 a and the wafer output stage 16 c may be disposed over any of the wafer stages 16 b, 124 a-124 c and 124 x of the first cleaning apparatus 620.
  • The buffer 16 a* and the second buffer 16 b* are disposed about the second cleaning apparatus 620′ such that the wafer transfer device 40C can transfer wafers to the buffer 16 a* and from the second buffer 16 b*; and the wafer transfer device 40 can transfer wafers from the buffer 16 a* and to the second buffer 16 b*. The buffer 16 a* and the second buffer 16 b* may be disposed over any of the wafer stages 16 b′, 124 a′-124 c′ and 124 x′ of the second cleaning apparatus 620′.
  • The wafer processing apparatus 600 uses the same polishing modules 10 a and 10 a′ used in the wafer processing apparatus 500 shown in FIG. 34. The wafer transfer device 40 transfers wafers from the buffer 16 a* to the wafer transfer stations 18 and 18′ of the polishing modules 10 a and 10 a′ and from there to the second buffer 16 b* and the cleaner buffer 16 b′ of the second cleaning apparatus 620′.
  • A method of processing wafers in the wafer processing apparatus 600 comprises steps of:
  • (1) transferring a first wafer W1 from the cassette 60 to the wafer input stage 16 a by the wafer transfer device 50; transferring the wafer W1 from the wafer input stage 16 a to the buffer 16 a* by the wafer transfer device 40C; and transferring the wafer W1 from the buffer 16 a* to the wafer transfer station 18 of the first polishing module 10 a by the wafer transfer device 40;
  • (2) loading the wafer W1 to the first polishing head 20 a of the polishing module 10 a from the wafer transfer station 18; transferring the first polishing head 20 a to the first and second polishing surfaces 14 a and 14 b; returning the first polishing head 20 a to the wafer transfer station 18; and unloading the wafer W1 from the first polishing head 20 a to the wafer transfer station 18;
  • (3) transferring the wafer W1 from the wafer transfer station 18 to the second buffer 16 b* by the wafer transfer device 40; and transferring W1 from the second buffer 16 b* to the cleaner buffer 16 b of the first cleaning apparatus 620 by the first arm 41 a of the wafer transfer device 40C;
  • (4) transferring the wafer W1 from the cleaner buffer 16 b through the cleaning chambers 125 a-125 c to the dry chamber 125 x by the internal wafer transfer devices 127 in order to clean the wafer W1 in the cleaning chambers 125 a-125 c and dry W1 in the dry chamber 125 x; and
  • (5) transferring the wafer W1 from the dry chamber 125 x of the first cleaning apparatus 620 to the cassette 60 by the wafer transfer device 50.
  • The method of processing wafers in the wafer processing apparatus 600 further comprises steps of: (1) transferring a second wafer W2 from the cassette 60 to the buffer 16 a* in the same manner as the first wafer W1 is transferred to the buffer 16 a*; and transferring W2 from the buffer 16 a* to the wafer transfer station 18′ of the second polishing module 10 a′ by the wafer transfer device 40;
  • (2) loading the wafer W2 to the first polishing head 20 a′ of the polishing module 10 a′ from the wafer transfer station 18′; transferring the first polishing head 20 a′ to the first and second polishing surfaces 14 a′ and 14 b′; returning the first polishing head 20 a′ to the wafer transfer station 18′; and unloading the wafer W2 from the first polishing head 20 a′ to the wafer transfer station 18′;
  • (3) transferring the wafer W2 from the wafer transfer station 18′ to the cleaner buffer 16 b′ of the second cleaning apparatus 620′ by the wafer transfer device 40; and transferring the wafer W2 from the cleaner buffer 16 b′ through the cleaning chambers 125 a′-125 c′ to the dry chamber 125 x′ by the internal wafer transfer devices 127 in order to clean the wafer W2 in the cleaning chambers 125 a′-125 c′ and dry the wafer W2 in the dry chamber 125 x′; and
  • (4) transferring the wafer W2 from the dry chamber 125 x′ to the wafer output stage 16 c by the second arm 41 b of the wafer transfer device 40C; and transferring the wafer W2 from the wafer output stage 16 c to the cassette 60 by the wafer transfer device 50.
  • While the present invention has been described with reference to the embodiments thereof, it will be understood by those skilled in the art that the present invention is not limited to the particular embodiments described above, but it is intended to cover modifications within the inventive concept. As an example, although various apparatuses and methods have been described for polishing and cleaning semiconductor wafers, these apparatuses and methods may be used to polish and clean objects other than semiconductor wafers.

Claims (13)

1. An apparatus for polishing an object comprising:
at least one polishing surface supported on at least one polishing table;
at least one polishing head assembly comprising at least one polishing head;
at least one object transfer station configured to transfer said object with said at least one polishing head when said at least one polishing head is positioned about said object transfer station; and
a transport mechanism configured to transport said at least one polishing head assembly between said at least one polishing surface and said at least one object transfer station, said transport mechanism comprising;
a support structure comprising an opening disposed over said at least one polishing surface and said at least one object transfer station;
at least one inner guide rail supported by said support structure, wherein said at least one inner guide rail is surrounded by said opening;
at least one first guide block slidibly coupled to said at least one inner guide rail;
at least one outer guide rail supported by said support structure, wherein said at least one outer guide rail surrounds said opening;
at least one second guide block slidibly coupled to said outer guide rail;
at least one head supporting member mounted to said at least one first guide block and said at least one second guide block, wherein said at least one head supporting member supports said at least one polishing head assembly; and
at least one drive mechanism coupled to said at least one head supporting member, wherein said at least one drive mechanism is configured to transport said at least one polishing head assembly coupled to said at least one head supporting member between said at least one polishing surface and said at least one object transfer station.
2. The apparatus of claim 1, wherein said transport mechanism further comprises at least one shield member disposed in a space over said at least one head supporting member and below said at least one drive mechanism.
3. The apparatus of claim 1, wherein said opening and said at least one inner and outer guide rails of said transport mechanism have annular shapes.
4. The apparatus of claim 2, wherein said shield member of said transport mechanism has an annular shape.
5. The apparatus of claim 2, wherein said shield member of said transport mechanism is disposed over said opening, at least a part of said at least one inner guide rail, and at least a part of said at least one outer guide rail.
6. The apparatus of claim 1, wherein said transport mechanism is configured to transport said at least one polishing head assembly rotationally about an axis between said at least one polishing surface and said at least one object transfer station.
7. The apparatus of claim 1, wherein said at least one drive mechanism of said transport mechanism comprises a gear mounted to said support structure and at least one servo motor mounted to said at least one head support member, wherein said at least one servo motor is movably coupled to said gear.
8. The apparatus of claim 1, wherein said at least one polishing surface comprises two polishing surfaces and said at least one object transfer station comprises one object transfer station, wherein said two polishing surfaces and said one object transfer station are disposed angularly about an axis.
9. The apparatus of claim 1, wherein said at least one polishing surface comprises three polishing surfaces and said at least one object transfer station comprises two object transfer station, wherein said three polishing surfaces and said two object transfer stations are disposed angularly about an axis such that said two object transfer stations are disposed adjacent to each other.
10. The apparatus of claim 1, wherein said transport mechanism further comprises an inner fluid injection device disposed about said at least one inner guide rail, wherein said inner fluid injection device is configured to inject pressurized air toward opposite to said opening.
11. The apparatus of claim 1, wherein said transport mechanism further comprises an outer fluid injection device disposed about said at least one outer guide rail, wherein said outer fluid injection device is configured to inject pressurized air toward opposite to said opening.
12. The apparatus of claim 1, wherein said transport mechanism further comprises an inner fluid injection device disposed about said at least one inner guide rail, wherein said inner fluid injection device is configured to inject pressurized air toward said opening.
13. The apparatus of claim 1, wherein said transport mechanism further comprises an outer fluid injection device disposed about said at least one outer guide rail, wherein said outer fluid injection device is configured to inject pressurized air toward said opening.
US12/912,738 2009-11-03 2010-10-26 Apparatuses and methods for polishing and cleaning semiconductor wafers Abandoned US20110104997A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/912,738 US20110104997A1 (en) 2009-11-03 2010-10-26 Apparatuses and methods for polishing and cleaning semiconductor wafers
KR1020127013772A KR101684228B1 (en) 2009-11-03 2010-11-02 Apparatus for polishing semiconductor wafer
PCT/KR2010/007675 WO2011055960A2 (en) 2009-11-03 2010-11-02 Apparatus and method for polishing and washing a semiconductor wafer
TW099137644A TW201124233A (en) 2009-11-03 2010-11-02 Apparatuses and methods for polishing and cleaning semiconductor wafers
KR1020160150955A KR101814360B1 (en) 2009-11-03 2016-11-14 Apparatus for polishing and washing a semiconductor wafer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US28044109P 2009-11-03 2009-11-03
US28332409P 2009-12-02 2009-12-02
US28347909P 2009-12-04 2009-12-04
US28369409P 2009-12-08 2009-12-08
US28416009P 2009-12-14 2009-12-14
US28444809P 2009-12-21 2009-12-21
US39909610P 2010-07-06 2010-07-06
US12/912,738 US20110104997A1 (en) 2009-11-03 2010-10-26 Apparatuses and methods for polishing and cleaning semiconductor wafers

Publications (1)

Publication Number Publication Date
US20110104997A1 true US20110104997A1 (en) 2011-05-05

Family

ID=43925928

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/912,738 Abandoned US20110104997A1 (en) 2009-11-03 2010-10-26 Apparatuses and methods for polishing and cleaning semiconductor wafers

Country Status (4)

Country Link
US (1) US20110104997A1 (en)
KR (2) KR101684228B1 (en)
TW (1) TW201124233A (en)
WO (1) WO2011055960A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170304992A1 (en) * 2014-10-21 2017-10-26 Shin-Etsu Handotai Co., Ltd. Polishing apparatus and wafer polishing method
CN109037101A (en) * 2018-07-13 2018-12-18 清华大学 Wafer processing
US20220111486A1 (en) * 2020-10-08 2022-04-14 Kctech Co., Ltd. Substrate processing system
US20220111485A1 (en) * 2020-10-08 2022-04-14 Kctech Co., Ltd. Substrate processing system
US20220277963A1 (en) * 2021-02-26 2022-09-01 Kctech Co., Ltd. Substrate polishing system
CN115338718A (en) * 2022-10-18 2022-11-15 杭州众硅电子科技有限公司 Wafer polishing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581862B1 (en) * 2014-04-28 2015-12-31 이성수 Grinding Module and Device having the Same
KR102177123B1 (en) * 2014-08-28 2020-11-11 삼성전자주식회사 Chemical mechanical polishing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655954A (en) * 1994-11-29 1997-08-12 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US5816891A (en) * 1995-06-06 1998-10-06 Advanced Micro Devices, Inc. Performing chemical mechanical polishing of oxides and metals using sequential removal on multiple polish platens to increase equipment throughput
US5947802A (en) * 1997-11-05 1999-09-07 Aplex, Inc. Wafer shuttle system
US6296555B1 (en) * 1998-10-19 2001-10-02 Tokyo Seimitsu Co., Ltd. Wafer machining apparatus
US7255632B2 (en) * 1995-10-27 2007-08-14 Applied Materials, Inc. Chemical mechanical polishing system having multiple polishing stations and providing relative linear polishing motion
US20090258574A1 (en) * 2008-04-09 2009-10-15 Applied Materials, Inc Polishing system having a track

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374644B2 (en) * 2000-02-17 2008-05-20 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
JP2003332274A (en) * 2002-05-17 2003-11-21 Tokyo Seimitsu Co Ltd Chemical mechanical polishing method and chemical mechanical polishing apparatus
JP5155517B2 (en) * 2005-04-21 2013-03-06 株式会社荏原製作所 Wafer delivery apparatus and polishing apparatus
US7674154B2 (en) * 2005-09-09 2010-03-09 Komico Technology, Inc. Apparatus and method for polishing objects using object cleaners
KR100759453B1 (en) * 2006-06-20 2007-09-20 세크론 주식회사 Method for wafer hardening
KR100902177B1 (en) * 2008-02-19 2009-06-10 박용길 Carousel rotating type cmp apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655954A (en) * 1994-11-29 1997-08-12 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US5816891A (en) * 1995-06-06 1998-10-06 Advanced Micro Devices, Inc. Performing chemical mechanical polishing of oxides and metals using sequential removal on multiple polish platens to increase equipment throughput
US7255632B2 (en) * 1995-10-27 2007-08-14 Applied Materials, Inc. Chemical mechanical polishing system having multiple polishing stations and providing relative linear polishing motion
US7614939B2 (en) * 1995-10-27 2009-11-10 Applied Materials, Inc. Chemical mechanical polishing system having multiple polishing stations and providing relative linear polishing motion
US8079894B2 (en) * 1995-10-27 2011-12-20 Applied Materials, Inc. Chemical mechanical polishing system having multiple polishing stations and providing relative linear polishing motion
US5947802A (en) * 1997-11-05 1999-09-07 Aplex, Inc. Wafer shuttle system
US6296555B1 (en) * 1998-10-19 2001-10-02 Tokyo Seimitsu Co., Ltd. Wafer machining apparatus
US20090258574A1 (en) * 2008-04-09 2009-10-15 Applied Materials, Inc Polishing system having a track

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170304992A1 (en) * 2014-10-21 2017-10-26 Shin-Etsu Handotai Co., Ltd. Polishing apparatus and wafer polishing method
US10532442B2 (en) * 2014-10-21 2020-01-14 Shin-Etsu Handotai Co., Ltd. Polishing apparatus and wafer polishing method
CN109037101A (en) * 2018-07-13 2018-12-18 清华大学 Wafer processing
US20220111486A1 (en) * 2020-10-08 2022-04-14 Kctech Co., Ltd. Substrate processing system
US20220111485A1 (en) * 2020-10-08 2022-04-14 Kctech Co., Ltd. Substrate processing system
US20220277963A1 (en) * 2021-02-26 2022-09-01 Kctech Co., Ltd. Substrate polishing system
CN115338718A (en) * 2022-10-18 2022-11-15 杭州众硅电子科技有限公司 Wafer polishing system

Also Published As

Publication number Publication date
WO2011055960A2 (en) 2011-05-12
WO2011055960A3 (en) 2011-11-03
KR101684228B1 (en) 2016-12-12
KR20120099702A (en) 2012-09-11
TW201124233A (en) 2011-07-16
KR101814360B1 (en) 2018-01-04
KR20160135117A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US20110104997A1 (en) Apparatuses and methods for polishing and cleaning semiconductor wafers
KR101887110B1 (en) Compact substrate transport system with fast swap robot
US6500051B1 (en) Polishing apparatus and method
US9700988B2 (en) Substrate processing apparatus
JP5139253B2 (en) Vacuum processing device and vacuum transfer device
US6309279B1 (en) Arrangements for wafer polishing
JP4767783B2 (en) Liquid processing equipment
CN104015109A (en) Polishing apparatus and polishing method
JP3735175B2 (en) Substrate processing equipment
KR20120075429A (en) Liquid processing apparatus
US20210323117A1 (en) High throughput polishing modules and modular polishing systems
US9737973B2 (en) Substrate processing apparatus
US20080038993A1 (en) Apparatus and method for polishing semiconductor wafers
US7223153B2 (en) Apparatus and method for polishing semiconductor wafers using one or more polishing surfaces
US20210278768A1 (en) Substrate processing apparatus and substrate processing method
US10573509B2 (en) Cleaning apparatus and substrate processing apparatus
KR20120075430A (en) Liquid processing apparatus
US20040216842A1 (en) Apparatus and method for polishing semiconductor wafers using one or more pivotable load-and-unload cups
KR101591957B1 (en) Substrate treating apparatus and substrate treating method
JP2001135699A (en) Substrate carrying device
JP2015056468A (en) Unit control board, method of substrate transfer/reception test, and substrate processing apparatus
US20220139741A1 (en) Method, device, and non-transitory computer readable medium for determining timing of removing substrate from cassette in substrate processing device, and substrate processing device
KR102368797B1 (en) Carrier unit and substrate processing system having the same
KR20220048507A (en) Wafer cleaning device and wafer polishing equipment
JP6353266B2 (en) Cooling device and substrate processing apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION