US20110046700A1 - Systems and methods for altering one or more rf-response properties of electrical stimulation systems - Google Patents

Systems and methods for altering one or more rf-response properties of electrical stimulation systems Download PDF

Info

Publication number
US20110046700A1
US20110046700A1 US12/544,903 US54490309A US2011046700A1 US 20110046700 A1 US20110046700 A1 US 20110046700A1 US 54490309 A US54490309 A US 54490309A US 2011046700 A1 US2011046700 A1 US 2011046700A1
Authority
US
United States
Prior art keywords
lead
disposed
safety element
conductor
lead body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/544,903
Other versions
US8380324B2 (en
Inventor
Matthew Lee McDonald
Ross Daniel Venook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Neuromodulation Corp
Original Assignee
Boston Scientific Neuromodulation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corp filed Critical Boston Scientific Neuromodulation Corp
Priority to US12/544,903 priority Critical patent/US8380324B2/en
Assigned to BOSTON SCIENTIFIC NEUROMODULATION CORPORATION reassignment BOSTON SCIENTIFIC NEUROMODULATION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCDONALD, MATTHEW LEE, VENOOK, ROSS DANIEL
Publication of US20110046700A1 publication Critical patent/US20110046700A1/en
Priority to US13/769,002 priority patent/US8818526B2/en
Application granted granted Critical
Publication of US8380324B2 publication Critical patent/US8380324B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/12Connectors or connections adapted for particular applications for medicine and surgery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems.
  • the present invention is also directed to implantable electrical stimulation systems having leads that include one or more safety elements for altering one or more RF-response properties of the lead, as well as methods of making and using the leads and electrical stimulation systems.
  • Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders.
  • spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes.
  • Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation.
  • Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients.
  • a stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead.
  • the stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated.
  • the pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
  • MRI magnetic resonance imaging
  • RF radio frequency
  • an implantable lead in one embodiment, includes a lead body and at least one safety element.
  • the lead body has a distal end and a proximal end.
  • the lead body defines at least one lumen extending along at least a portion of the lead body.
  • the lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals.
  • the at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
  • an electrical stimulating system in another embodiment, includes a lead, a control module, and a connector for receiving the lead.
  • the lead includes a lead body and at least one safety element.
  • the lead body has a distal end and a proximal end.
  • the lead body defines at least one lumen extending along at least a portion of the lead body.
  • the lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals.
  • the at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
  • the control module is configured and arranged to electrically couple to the proximal end of the lead body.
  • the control module includes a housing and an electronic subassembly disposed in the housing.
  • the connector has a proximal end, a distal end, and a longitudinal length.
  • the connector is configured and arranged to receive the lead.
  • the connector includes a connector housing defining a port at the distal end of the connector.
  • the port is configured and arranged for receiving the proximal end of the lead body.
  • a plurality of connector contacts are disposed in the connector housing.
  • the connector contacts are configured and arranged to couple to at least one of the plurality of terminals disposed on the proximal end of the lead body.
  • a method for forming an implantable lead includes disposing an elongated conductor in a lead body of the lead. At least one safety element is disposed in at least one lumen defined along at least a portion of the lead body. The safety element is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
  • a first end of the conductor is coupled to an electrode disposed on a distal end of the lead.
  • a second end of the conductor is coupled to a terminal disposed on a proximal end of the lead.
  • the terminal is electrically coupled to a control module configured and arranged to generate electrical signals for stimulating patient tissue via the electrode.
  • FIG. 1 is a schematic view of one embodiment of an electrical stimulation system, according to the invention.
  • FIG. 2 is a schematic view of another embodiment of an electrical stimulation system, according to the invention.
  • FIG. 3A is a schematic view of one embodiment of a proximal portion of a lead and a control module of an electrical stimulation system, according to the invention
  • FIG. 3B is a schematic view of one embodiment of a proximal portion of a lead and a lead extension of an electrical stimulation system, according to the invention.
  • FIG. 4 is a schematic side view of one embodiment of portions of a plurality of conductors disposed along a conductor placement sleeve, the conductors configured into units, according to the invention
  • FIG. 5 is a schematic longitudinal cross-sectional view of one embodiment of portions of a plurality of conductors disposed in an elongated member, according to the invention.
  • FIG. 6A is a schematic side view of one embodiment of a plurality of portions of conductors formed into two units that include alternating single-coil regions and multi-coil regions, according to the invention
  • FIG. 6B is a schematic side view of one embodiment of the portions of conductors of FIG. 6A with a longitudinal cross-sectional view of an outer layer disposed over the portions of conductors, according to the invention;
  • FIG. 7A is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member that includes a conductor coupled to an electrode, the elongated member also defining a lumen in which a safety element is disposed, according to the invention;
  • FIG. 7B is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member that includes a conductor formed into units and coupled to an electrode, the elongated member also defining a lumen in which a safety element is disposed, according to the invention;
  • FIG. 8 is a schematic longitudinal cross-sectional view of one embodiment of a portion of a cooling device disposed on the safety element of FIG. 7B , according to the invention.
  • FIG. 9A is a schematic longitudinal cross-sectional view of one embodiment of an electrode shunt coupling the electrode of FIG. 7B to the safety element of FIG. 7B , according to the invention.
  • FIG. 9B is a schematic longitudinal cross-sectional view of one embodiment of a conductor shunt coupling the conductor of FIG. 7B to the safety element of FIG. 7B , according to the invention.
  • FIG. 10 is a schematic longitudinal view of one embodiment of a safety element with a plurality of sections disposed in the elongated body of FIG. 7B ;
  • FIG. 11 is a schematic overview of one embodiment of components of a stimulation system, including an electronic subassembly disposed within a control module, according to the invention.
  • the present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems.
  • the present invention is also directed to implantable electrical stimulation systems having leads that include one or more safety elements for altering one or more RF-response properties of the lead, as well as methods of making and using the leads and electrical stimulation systems.
  • Suitable implantable electrical stimulation systems include, but are not limited to, an electrode lead (“lead”) with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead.
  • Leads include, for example, percutaneous leads, paddle leads, and cuff leads.
  • Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; and 6,741,892; and U.S. patent applications Ser. Nos. 10/353,101, 10/503,281, 11/238,240; 11/319,291; 11/327,880; 11/375,638; 11/393,991; and 11/396,309, all of which are incorporated by reference.
  • FIG. 1 illustrates schematically one embodiment of an electrical stimulation system 100 .
  • the electrical stimulation system includes a control module (e.g., a stimulator or pulse generator) 102 , a paddle body 104 , and at least one lead body 106 coupling the control module 102 to the paddle body 104 .
  • the paddle body 104 and the one or more lead bodies 106 form a lead.
  • the paddle body 104 typically includes an array of electrodes 134 .
  • the control module 102 typically includes an electronic subassembly 110 and an optional power source 120 disposed in a sealed housing 114 .
  • the control module 102 typically includes a connector 144 ( FIGS. 2 and 3A , see also 322 and 350 of FIG.
  • the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the electrical stimulation system references cited herein.
  • the electrodes 134 can be disposed in an array at or near the distal end of the lead body 106 forming a percutaneous lead, as illustrated in FIG. 2 .
  • a percutaneous lead may be isodiametric along the length of the lead.
  • one or more lead extensions 312 can be disposed between the one or more lead bodies 106 and the control module 102 to extend the distance between the one or more lead bodies 106 and the control module 102 of the embodiments shown in FIGS. 1 and 2 .
  • the electrical stimulation system or components of the electrical stimulation system are typically implanted into the body of a patient.
  • the electrical stimulation system can be used for a variety of applications including, but not limited to, brain stimulation, neural stimulation, spinal cord stimulation, muscle stimulation, and the like.
  • the electrodes 134 can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof.
  • the number of electrodes 134 in the array of electrodes 134 may vary. For example, there can be two, four, six, eight, ten, twelve, fourteen, sixteen, or more electrodes 134 . As will be recognized, other numbers of electrodes 134 may also be used.
  • the electrodes of the paddle body 104 or one or more lead bodies 106 are typically disposed in, or separated by, a non-conductive, biocompatible material including, for example, silicone, polyurethane, polyetheretherketone (“PEEK”), epoxy, and the like or combinations thereof.
  • the paddle body 104 and one or more lead bodies 106 may be formed in the desired shape by any process including, for example, molding (including injection molding), casting, and the like. Electrodes and connecting wires can be disposed onto or within a paddle body either prior to or subsequent to a molding or casting process.
  • the non-conductive material typically extends from the distal end of the lead to the proximal end of each of the one or more lead bodies 106 .
  • the non-conductive, biocompatible material of the paddle body 104 and the one or more lead bodies 106 may be the same or different.
  • the paddle body 104 and the one or more lead bodies 106 may be a unitary structure or can be formed as two separate structures that are permanently or detachably coupled together.
  • Terminals are typically disposed at the proximal end of the one or more lead bodies 106 for connection to corresponding conductive contacts (e.g., 314 in FIG. 3A and 340 of FIG. 3B ) in connectors (e.g., 144 in FIGS. 1-3A and 322 and 350 of FIG. 3B ) disposed on, for example, the control module 102 (or to other devices, such as conductive contacts on a lead extension, an operating room cable, or an adaptor).
  • Conductive wires (“conductors”) (not shown) extend from the terminals (e.g., 310 in FIG. 3A and 336 of FIG.
  • each terminal e.g., 310 in FIG. 3A and 336 of FIG. 3B
  • each terminal e.g., 310 in FIG. 3A and 336 of FIG. 3B
  • the conductive wires may be embedded in the non-conductive material of the lead or can be disposed in one or more lumens (not shown) extending along the lead. In some embodiments, there is an individual lumen for each conductive wire. In other embodiments, two or more conductive wires may extend through a lumen.
  • the one or more lumens may be flushed continually, or on a regular basis, with saline, epidural fluid, or the like.
  • the one or more lumens can be permanently or removably sealable at the distal end.
  • leads are coupled to connectors disposed on control modules.
  • a lead 308 is shown configured and arranged for insertion to the control module 102 .
  • the connector 144 includes a connector housing 302 .
  • the connector housing 302 defines at least one port 304 into which a proximal end 306 of a lead 308 with terminals 310 can be inserted, as shown by directional arrow 312 .
  • the connector housing 302 also includes a plurality of conductive contacts 314 for each port 304 . When the lead 308 is inserted into the port 304 , the conductive contacts 314 can be aligned with the terminals 310 on the lead 308 to electrically couple the control module 102 to the electrodes ( 134 of FIG.
  • a connector 322 is disposed on a lead extension 324 .
  • the connector 322 is shown disposed at a distal end 326 of the lead extension 324 .
  • the connector 322 includes a connector housing 328 .
  • the connector housing 328 defines at least one port 330 into which a proximal end 332 of a lead 334 with terminals 336 can be inserted, as shown by directional arrow 338 .
  • the connector housing 328 also includes a plurality of conductive contacts 340 .
  • the conductive contacts 340 disposed in the connector housing 328 can be aligned with the terminals 336 on the lead 334 to electrically couple the lead extension 324 to the electrodes ( 134 of FIG. 1 ) disposed at a distal end (not shown) of the lead 334 .
  • the proximal end of a lead extension is similarly configured and arranged as a proximal end of a lead.
  • the lead extension 324 may include a plurality of conductive wires (not shown) that electrically couple the conductive contacts 340 to a proximal end 348 of the lead extension 324 that is opposite to the distal end 326 .
  • the conductive wires disposed in the lead extension 324 can be electrically coupled to a plurality of terminals (not shown) disposed on the proximal end 348 of the lead extension 324 .
  • the proximal end 348 of the lead extension 324 is configured and arranged for insertion into a connector disposed in another lead extension.
  • the proximal end 348 of the lead extension 324 is configured and arranged for insertion into a connector disposed in a control module.
  • a connector disposed in a control module As an example, in FIG. 3B the proximal end 348 of the lead extension 324 is inserted into a connector 350 disposed in a control module 352 .
  • One or more of the conductors connecting at least one terminal to an electrode can be arranged in a conductor path to eliminate or reduce the effect of RF irradiation, such as that generated during magnetic resonance imaging (“MRI”).
  • the conductor path includes a plurality of units arranged in series. In some embodiments, the units are disposed along a single continuous conductor. In other embodiments, the units are separate conductive elements electrically coupled together.
  • Each unit includes at least three conductor segments that at least partially overlap one another to form a multi-coil region.
  • each unit includes a first conductor segment that extends in a first direction along a longitudinal length of an elongated member (e.g., a lead or lead extension) from a beginning point to a first position.
  • each unit includes a second conductor segment that extends from the first position back towards (and possibly past) the beginning point to a second position.
  • each unit includes a third conductor segment that extends in the first direction from the second position to an endpoint.
  • the first position is between the second position and the endpoint.
  • the second position is between the beginning point and the first position.
  • the unit may include a single-coil region flanking at least one end of the multi-coil region.
  • the units may be electrically continuous such that the endpoint of a first unit is the beginning point of the next consecutive unit. At least one of the beginning points may be a terminal or an electrode (or other conductive contact). Likewise, at least one of the endpoints may be a terminal or an electrode (or other conductive contact).
  • the conductor segments are each coiled. In at least some embodiments, the conductor segments are coiled around a conductor placement sleeve. In at least some embodiments, the conductor placement sleeve defines a lumen that optionally is configured and arranged to receive a stiffening member (e.g., a stylet, or the like).
  • At least one of the first, second, or third conductor segments is substantially straight. In at least some embodiments, the first and third conductor segments are substantially straight and the second conductor segment is coiled. In at least some other embodiments, all three conductor segments are substantially straight. It will be understood that the term “substantially straight conductor segment” means that the conductor segment is not coiled. A “substantially straight conductor segment” may be curved, particularly when the lead itself is curved (see, for example, FIG. 1 ).
  • the conductor segments are all formed from the same length of conductive material (e.g., wire or the like).
  • the conductors may have a single filament or be multi-filar. In preferred embodiments, the conductors are multi-filar. In at least some embodiments, two or more of the conductor segments can be individual pieces of conductive material that are electrically coupled (e.g., soldered or welded) together. In preferred embodiments, a layer of insulation (“conductor insulation”) is disposed over each of the conductor segments.
  • the length of conductor used in the second conductor segment is at least 1.5, 1.75, 1.9, 2, 2.1, 2.25, or 2.5 times the length of either the first conductor segment or the third conductor segment. It will be recognized, however, that this ratio of conductor-segment lengths may vary among embodiments, particularly if the thickness of the conductor or thickness of the layer of conductor insulation is different for the different segments.
  • FIG. 4 schematically illustrates one embodiment of a plurality of conductors 402 .
  • the conductors 402 are configured into a plurality of units, such as unit 404 .
  • Each unit includes a first conductor segment 404 a , a second conductor segment 404 b , and a third conductor segment 404 c .
  • conductor insulation is disposed over the conductors 402 to electrically isolate each of the conductors 402 from one another.
  • the conductors 402 may be disposed along longitudinal lengths of the conductors 402 including, for example, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, twenty-five, thirty, forty, fifty, or more units. It will be understood that many other numbers of units may be employed as well.
  • the plurality of units When a plurality of units are coupled together in series along a longitudinal length of one or more conductors, the plurality of units form a repeating series of single-coil regions, such as the single-coil regions 406 , separated from one another by a multi-coil region, such as the multi-coil region 408 .
  • the conductors 402 are disposed along a conductor placement sleeve 410 .
  • the conductor placement sleeve 410 can be formed from any suitable biocompatible material including, for example, one or more polymers.
  • one or more conductors having one or more units may be disposed in an elongated member (e.g., a lead or lead extension).
  • the ends of the conductors 402 can be coupled to terminals, electrodes, or conductive contacts.
  • each of the conductors in an elongated member are configured into units.
  • only a subset of the conductors disposed in an elongated member include one or more units, the remaining conductors having a different arrangement (for example, a single conductor segment between the terminal(s) and electrode(s)/conductive contact(s)).
  • Conductors such as the conductors 402 , may be disposed in a lumen of an elongated member (e.g., a lead, lead extension, or the like). In at least some embodiments, the conductors 402 are insulated.
  • FIG. 5 is a schematic longitudinal cross-sectional view of one embodiment of portions of a plurality of conductors 502 disposed in an elongated member 504 . The illustrated portions of the conductors 502 includes unit 506 , shown between two vertical dotted lines. Unit 506 includes a first conductor segment 506 a , a second conductor segment 506 b , and a third conductor segment 506 c .
  • the conductors 502 are disposed over a conductor placement sleeve 508 .
  • the conductor placement sleeve 508 defines a lumen 510 .
  • the elongated member 504 includes a body 512 and a lumen 514 into which the conductors 502 are disposed.
  • FIG. 6A schematically illustrates a side view of one embodiment of a plurality of conductors 602 each including units 604 and 606 .
  • the first, second, and third conductor segments 606 a , 606 b (not shown in FIG. 6A ), and 606 c , respectively, of the unit 606 are each coiled.
  • the conductors 602 are arranged such that the conductors include multi-coil regions 608 and single-coil regions 610 .
  • the conductors 602 may be coiled around one or more objects, such as a conductor placement sleeve 612 .
  • FIG. 6B is a schematic longitudinal cross-sectional view of the plurality of conductors 602 disposed in an outer layer 614 of a body 615 of a lead 616 .
  • open spaces 618 may form between the single-coil regions, such as single-coil region 606 a , and the outer layer 614 .
  • a safety element is disposed in an elongated member for reducing one or more deleterious effects caused by exposure to RF irradiation, such as unwanted heating of patient tissue or undesired induced electrical signals.
  • the safety element alters one or more responses of the elongated member to exposure to RF irradiation. In some embodiments, the safety element reduces heat build-up by actively or passively altering heat conduction within the elongated member. In other embodiments, the safety element reduces undesired induced electrical signals by shunting the undesired induced electrical signals away from patient tissues or by reducing the ability of the elongated member to convert RF irradiation to induced electrical signals.
  • the safety element is incorporated into a stylet that remains disposed in one or more lumens defined in the elongated member after the elongated member is implanted.
  • the stylet is the same stylet that is used to guide the elongated member to the target site during implantation.
  • the safety element is separate from the stylet and is inserted into one or more of the lumens after the elongated member has been guided to the target site and the stylet has been removed.
  • the safety element is disposed along one or more non-lumen portions of the body of the elongated member. In at least some embodiments, the safety element may be disposed external to the body of the elongated member.
  • FIG. 7A is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member (e.g., a lead or lead extension) 702 .
  • the elongated member 702 includes a body 704 .
  • An electrode 706 is disposed along an outer layer of the body 704 .
  • a conductor 708 is disposed in the body 704 and electrically couples the electrode 706 to a terminal disposed at a proximal end of the elongated member 702 .
  • a lumen 710 is defined along at least a portion of the elongated member 702 .
  • a safety element 712 is disposed along at least a portion of the lumen 710 .
  • FIG. 7A is a schematic longitudinal cross-sectional view of another embodiment of the conductor 708 arranged into units and extending along the length of the elongated member 702 .
  • the safety element 712 reduces heat build-up by passively altering heat conduction within the elongated member 704 . In at least some embodiments, the safety element 712 draws heat away from outer surfaces of the elongated member 702 (e.g., the body 704 ) to the lumen 710 . In at least some embodiments, the safety element 712 has a heat capacity that is at least as great as the body 704 . In at least some other embodiments, the safety element 712 has a heat capacity that is substantially greater than the body 704 . In some embodiments, the safety element 712 distributes heat along substantially the entire longitudinal length of the lumen 710 of the elongated member 702 .
  • the safety element 712 additionally distributes heat to at least a portion of the control module ( 102 in FIG. 1 ) or the lead extension ( 324 in FIG. 3B ), when applicable. In at least some embodiments, heat is transferred from the body 704 to the safety element 712 either directly or radiantly.
  • the heat dissipating safety element 712 may be formed with any heat dissipating material suitable for implantation into a patient including, for example, solids (e.g., metals, alloys, polymers, carbon, composite materials, or the like) or fluids (e.g., saline solution, water, or the like).
  • the safety element 712 is a heat sink.
  • the safety element 712 includes a plurality of protrusions (not shown) extending along at least a portion of the length of the safety element 712 for increasing the surface area of the safety element 712 .
  • the safety element 712 reduces heat build-up by actively altering heat conduction within the elongated member 704 .
  • FIG. 8 is a schematic longitudinal cross-sectional view of one embodiment of a cooling device 802 disposed on the safety element 712 .
  • the cooling device 802 can be employed to actively cool at least a portion of the elongated member 702 for some period of time.
  • the safety element 712 employs thermoelectric cooling, wherein a heat flux is formed at the interface between the safety element 712 and the body 704 .
  • an active heat pump e.g., a Peltier cooler 804 is employed to transfer heat from the body 704 , via the safety element 712 , against a temperature gradient.
  • the heat pump 804 may be positioned anywhere within the electrical stimulation system or as a separate, stand-alone unit. Typically, it is preferred to position the heat pump 804 in proximity to the heating or in a location in the body that can efficiently couple heat from the device.
  • the heat pump 804 receives power from the control module ( 102 in FIG. 1 ), as shown schematically in FIG. 11 .
  • a fluid circulation device may be used as a cooling device.
  • the cooling device 802 may be activated using an activator (e.g., a switch, button, knob, or the like) disposed on the control module ( 102 in FIG. 1 ) and accessible through patient tissue, or by using a remote control.
  • the electrical stimulation system includes a sensor 806 that activates the cooling device 804 when the sensor 806 senses RF irradiation, a magnetic field, or both at or above a threshold value or within a certain frequency range.
  • sensors may be employed including, for example, a reed switch, a Hall-effect switch, or the like.
  • FIG. 8 the sensor 806 is shown disposed on the safety element 712 . It will be understood that the sensor 806 may be disposed anywhere on the electrical stimulation system.
  • the cooling device activates in response to a temperature at or above a threshold temperature.
  • the cooling device 802 is adjustable such that the cooling device 802 increases in strength when the sensed temperature increases above other threshold values that are higher than the activation threshold values.
  • the safety element 712 employs a feedback loop, during operation, to adjust the cooling power of the cooling device 802 in response to changes in temperature.
  • some electrical signals transmitting along the electrode 706 and the conductor 708 are desirable (e.g., electrical stimulation via the pulse generator of the control module ( 102 in FIG. 1 )).
  • Some applied electrical signals may be undesirable (e.g., electrical signals induced via exposure to RF irradiation, for example, during an MRI procedure).
  • undesired electrical signals may be shunted away from patient tissue via the safety element 712 .
  • the ability of the elongated member 702 to shunt electrical signals may vary based on one or more characteristics of the electrical signal or based on sensing one or more environmental conditions (e.g., sensing RF irradiation above a threshold level).
  • undesired electrical signals received by the elongated member 702 may be reduced by reducing the ability of the elongated member 702 to convert RF irradiation to an induced electrical signal within the elongated member 702 (i.e., altering the antenna characteristics of the elongated member 702 ).
  • At least one of the electrode 706 or the conductor 708 may be electrically coupled to the safety element 712 for shunting undesired electrical signals away from patient tissue, while not shunting desired electrical signals under normal operating conditions.
  • at least one of the terminals e.g., terminal 400 in FIGS. 4A-4B
  • the safety element 712 may be coupled to the electrode 706 .
  • FIG. 9A is a schematic longitudinal cross-sectional view of one embodiment of at least one electrode shunt 902 coupling the electrode 706 to the safety element 712 . It will be understood that there may be a plurality of electrodes 706 disposed at the distal end of the elongated member 702 . In which case, there may be a plurality of electrode shunts 902 coupling the electrodes 706 to the safety element 712 . It will be understood that, when the elongated member 702 is a lead extension, one or more conductor-contact shunts may also be employed to couple one or more connector contacts (see e.g., 340 in FIG. 3B ) to the safety element 712 .
  • FIG. 9B is a schematic longitudinal cross-sectional view of one embodiment of at least one conductor shunt 904 coupling the conductor 708 to the safety element 712 . It will be understood that there may be a plurality of conductors 708 disposed along the longitudinal length of the elongated member 702 . In which case, there may be at least one conductor shunt 904 coupling each of a plurality of the conductors 708 to the safety element 712 .
  • the shunts 902 and 904 may include any number of different types of connections including, for example, direct electrical connection by a filter (e.g., a high-pass filter, a low-pass filter, a bandpass filter, or the like) coupled to one or more conductors, one or more capacitors, one or more inductors, or the like.
  • a filter e.g., a high-pass filter, a low-pass filter, a bandpass filter, or the like
  • the shunts 902 and 904 may be formed from any conductive material suitable for implantation into a patient.
  • undesired electrical signals may be shunted to portions of the elongated body 402 not directly contacting the patient.
  • at least some of the undesired electrical signals are shunted to the safety element 712 from the electrode 706 or the conductor 708 via the shunts 902 or 904 , respectively.
  • at least some of the undesired electrical signals are shunted to the control module ( 102 in FIG. 1 ), or the lead extension ( 324 in FIG. 3B ), if applicable, for dissipation over a larger region of the body.
  • conduction of electrical signals via one or more of the shunts 902 or 904 may vary based on one or more characteristics of the electrical signal or based on the sensing of one or more environmental conditions. Thus, it is preferred that undesired electrical signals are shunted to the safety element 712 and desired electrical signals are not.
  • the shunting ability of the one or more shunts 902 or 904 is based on the frequency of the electrical signal.
  • one or more filters e.g. high-pass filters, low-pass filters, bandpass filters, or the like
  • the shunts 902 or 904 have high impedance (i.e., an open circuit) to electrical signals with frequencies at or below (or within) a threshold level, thereby allowing the electrical signals to transmit freely along the conductor 708 and the electrode 706 without being shunted to the safety element 712 .
  • the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 1 MHz.
  • the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 2 MHz. In at least some embodiments, the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 5 MHz.
  • the shunts 902 or 904 have low impedance (i.e., a closed circuit) to electrical signals with frequencies at or above a threshold value, thereby shunting the electrical signals to the safety device 712 .
  • the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 8 MHz.
  • the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 9 MHz.
  • the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 10 MHz.
  • the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 11 MHz.
  • the shunts 902 or 904 may, instead, have low or high impedance to electrical signals with frequency ranges. It will also be understood that the shunting ability of the shunts 902 or 904 may be based on other characteristics of the signal (e.g., the amplitude of the signal, the duration of the signal, or the like) or one or more environmental conditions (e.g., sensing RF irradiation or a magnetic field above a threshold level). In at least some embodiments, a sensor (see e.g., sensor 806 in FIG. 8 ) is incorporated into the electrical stimulation system to sense RF irradiation.
  • a sensor see e.g., sensor 806 in FIG. 8
  • the safety element 712 alters the antenna characteristic of the elongated member 702 .
  • the materials and arrangements used to form the safety element 712 may be selected such that the elongated member 702 has a reduced ability to convert RF irradiation to an induced electrical signal (i.e., the elongated member 702 becomes a poor antenna) within one or more undesirable frequency ranges, such as frequency ranges commonly used during MRI procedures.
  • FIG. 10 is a schematic longitudinal cross-sectional view of one embodiment of a safety element 1002 disposed in the lumen 710 of the elongated member 702 .
  • the safety element 1002 includes a plurality of sections of conductive materials 1004 separated from one another by non-conductive connecting material 1006 .
  • the antenna characteristics of the elongated member 702 e.g., the self-resonant frequency, lossiness, frequency-dependent behavior at the frequencies of interest, or the like or combinations thereof
  • the conductive sections 1004 including, for example, metals (e.g., platinum, silver, or the like or combinations thereof), an electrolyte solution (e.g., a saline solution, or the like), one or more polymers or other conductive elements (e.g., one or more polymers embedded with conductive beads), or the like or combinations thereof.
  • metals e.g., platinum, silver, or the like or combinations thereof
  • electrolyte solution e.g., a saline solution, or the like
  • polymers or other conductive elements e.g., one or more polymers embedded with conductive beads
  • a plurality of safety elements may be employed with the elongated member. In at least some embodiments, when a plurality of safety elements are employed, two or more of the safety elements may be coupled to one another. In at least some embodiments, the elongated member defines a plurality of lumens. In at least some embodiments, one or more safety elements are disposed in a single lumen. In at least some other embodiments, one or more safety elements are disposed in multiple lumens. In at least some embodiments, a single safety element is disposed in a plurality of lumens.
  • At least a portion of the safety element is injected into the lumen. In at least some embodiments, at least a portion of the safety element flows when applied to the lumen. In at least some embodiments, at least a portion of the safety element gels, sets, or cross-links subsequent to application.
  • FIG. 11 is a schematic overview of one embodiment of components of an electrical stimulation system 1100 including an electronic subassembly 1110 disposed within a control module. It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the stimulator references cited herein.
  • Some of the components (for example, power source 1112 , antenna 1118 , receiver 1102 , and processor 1104 ) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator, if desired.
  • Any power source 1112 can be used including, for example, a battery such as a primary battery or a rechargeable battery.
  • Examples of other power sources include super capacitors, nuclear or atomic batteries, mechanical resonators, infrared collectors, thermally-powered energy sources, flexural powered energy sources, bioenergy power sources, fuel cells, bioelectric cells, osmotic pressure pumps, and the like including the power sources described in U.S. Patent Application Publication No. 2004/0059392, incorporated herein by reference.
  • power can be supplied by an external power source through inductive coupling via the optional antenna 1118 or a secondary antenna.
  • the external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.
  • the battery may be recharged using the optional antenna 1118 , if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 1116 external to the user. Examples of such arrangements can be found in the references identified above.
  • electrical current is emitted by the electrodes 134 on the paddle or lead body to stimulate nerve fibers, muscle fibers, or other body tissues near the electrical stimulation system.
  • a processor 1104 is generally included to control the timing and electrical characteristics of the electrical stimulation system. For example, the processor 1104 can, if desired, control one or more of the timing, frequency, strength, duration, and waveform of the pulses. In addition, the processor 1104 can select which electrodes can be used to provide stimulation, if desired. In some embodiments, the processor 1104 may select which electrode(s) are cathodes and which electrode(s) are anodes. In some embodiments, the processor 1104 may be used to identify which electrodes provide the most useful stimulation of the desired tissue.
  • Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 1108 that, for example, allows modification of pulse characteristics.
  • the processor 1104 is coupled to a receiver 1102 which, in turn, is coupled to the optional antenna 1118 . This allows the processor 1104 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.
  • the antenna 1118 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 1106 which is programmed by a programming unit 1008 .
  • the programming unit 1108 can be external to, or part of, the telemetry unit 1106 .
  • the telemetry unit 1106 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired.
  • the telemetry unit 1106 may not be worn or carried by the user but may only be available at a home station or at a clinician's office.
  • the programming unit 1108 can be any unit that can provide information to the telemetry unit 1106 for transmission to the electrical stimulation system 1100 .
  • the programming unit 1108 can be part of the telemetry unit 1106 or can provide signals or information to the telemetry unit 1106 via a wireless or wired connection.
  • One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 1106 .
  • the signals sent to the processor 1104 via the antenna 1118 and receiver 1102 can be used to modify or otherwise direct the operation of the electrical stimulation system.
  • the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength.
  • the signals may also direct the electrical stimulation system 1100 to cease operation, to start operation, to start charging the battery, or to stop charging the battery.
  • the stimulation system does not include an antenna 1118 or receiver 1102 and the processor 1104 operates as programmed.
  • the electrical stimulation system 1100 may include a transmitter (not shown) coupled to the processor 1104 and the antenna 1118 for transmitting signals back to the telemetry unit 1106 or another unit capable of receiving the signals.
  • the electrical stimulation system 1100 may transmit signals indicating whether the electrical stimulation system 1100 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery.
  • the processor 1104 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.

Abstract

An implantable lead includes a lead body and at least one safety element. The lead body has a distal end and a proximal end. The lead body defines at least one lumen extending along at least a portion of the lead body. The lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.

Description

    FIELD
  • The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to implantable electrical stimulation systems having leads that include one or more safety elements for altering one or more RF-response properties of the lead, as well as methods of making and using the leads and electrical stimulation systems.
  • BACKGROUND
  • Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients.
  • Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
  • Conventional implanted electrical stimulation systems are often incompatible with magnetic resonance imaging (“MRI”) due to the large radio frequency (“RF”) pulses used during MRI. The RF pulses can generate transient signals in the conductors and electrodes of an implanted lead. These signals can have deleterious effects including, for example, unwanted heating of the tissue causing tissue damage, induced currents in the lead, or premature failure of electronic components.
  • BRIEF SUMMARY
  • In one embodiment, an implantable lead includes a lead body and at least one safety element. The lead body has a distal end and a proximal end. The lead body defines at least one lumen extending along at least a portion of the lead body. The lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
  • In another embodiment, an electrical stimulating system includes a lead, a control module, and a connector for receiving the lead. The lead includes a lead body and at least one safety element. The lead body has a distal end and a proximal end. The lead body defines at least one lumen extending along at least a portion of the lead body. The lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation. The control module is configured and arranged to electrically couple to the proximal end of the lead body. The control module includes a housing and an electronic subassembly disposed in the housing. The connector has a proximal end, a distal end, and a longitudinal length. The connector is configured and arranged to receive the lead. The connector includes a connector housing defining a port at the distal end of the connector. The port is configured and arranged for receiving the proximal end of the lead body. A plurality of connector contacts are disposed in the connector housing. The connector contacts are configured and arranged to couple to at least one of the plurality of terminals disposed on the proximal end of the lead body.
  • In yet another embodiment, a method for forming an implantable lead includes disposing an elongated conductor in a lead body of the lead. At least one safety element is disposed in at least one lumen defined along at least a portion of the lead body. The safety element is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation. A first end of the conductor is coupled to an electrode disposed on a distal end of the lead. A second end of the conductor is coupled to a terminal disposed on a proximal end of the lead. The terminal is electrically coupled to a control module configured and arranged to generate electrical signals for stimulating patient tissue via the electrode.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
  • For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
  • FIG. 1 is a schematic view of one embodiment of an electrical stimulation system, according to the invention;
  • FIG. 2 is a schematic view of another embodiment of an electrical stimulation system, according to the invention;
  • FIG. 3A is a schematic view of one embodiment of a proximal portion of a lead and a control module of an electrical stimulation system, according to the invention;
  • FIG. 3B is a schematic view of one embodiment of a proximal portion of a lead and a lead extension of an electrical stimulation system, according to the invention;
  • FIG. 4 is a schematic side view of one embodiment of portions of a plurality of conductors disposed along a conductor placement sleeve, the conductors configured into units, according to the invention;
  • FIG. 5 is a schematic longitudinal cross-sectional view of one embodiment of portions of a plurality of conductors disposed in an elongated member, according to the invention;
  • FIG. 6A is a schematic side view of one embodiment of a plurality of portions of conductors formed into two units that include alternating single-coil regions and multi-coil regions, according to the invention;
  • FIG. 6B is a schematic side view of one embodiment of the portions of conductors of FIG. 6A with a longitudinal cross-sectional view of an outer layer disposed over the portions of conductors, according to the invention;
  • FIG. 7A is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member that includes a conductor coupled to an electrode, the elongated member also defining a lumen in which a safety element is disposed, according to the invention;
  • FIG. 7B is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member that includes a conductor formed into units and coupled to an electrode, the elongated member also defining a lumen in which a safety element is disposed, according to the invention;
  • FIG. 8 is a schematic longitudinal cross-sectional view of one embodiment of a portion of a cooling device disposed on the safety element of FIG. 7B, according to the invention;
  • FIG. 9A is a schematic longitudinal cross-sectional view of one embodiment of an electrode shunt coupling the electrode of FIG. 7B to the safety element of FIG. 7B, according to the invention;
  • FIG. 9B is a schematic longitudinal cross-sectional view of one embodiment of a conductor shunt coupling the conductor of FIG. 7B to the safety element of FIG. 7B, according to the invention;
  • FIG. 10 is a schematic longitudinal view of one embodiment of a safety element with a plurality of sections disposed in the elongated body of FIG. 7B; and
  • FIG. 11 is a schematic overview of one embodiment of components of a stimulation system, including an electronic subassembly disposed within a control module, according to the invention.
  • DETAILED DESCRIPTION
  • The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to implantable electrical stimulation systems having leads that include one or more safety elements for altering one or more RF-response properties of the lead, as well as methods of making and using the leads and electrical stimulation systems.
  • Suitable implantable electrical stimulation systems include, but are not limited to, an electrode lead (“lead”) with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead. Leads include, for example, percutaneous leads, paddle leads, and cuff leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; and 6,741,892; and U.S. patent applications Ser. Nos. 10/353,101, 10/503,281, 11/238,240; 11/319,291; 11/327,880; 11/375,638; 11/393,991; and 11/396,309, all of which are incorporated by reference.
  • FIG. 1 illustrates schematically one embodiment of an electrical stimulation system 100. The electrical stimulation system includes a control module (e.g., a stimulator or pulse generator) 102, a paddle body 104, and at least one lead body 106 coupling the control module 102 to the paddle body 104. The paddle body 104 and the one or more lead bodies 106 form a lead. The paddle body 104 typically includes an array of electrodes 134. The control module 102 typically includes an electronic subassembly 110 and an optional power source 120 disposed in a sealed housing 114. The control module 102 typically includes a connector 144 (FIGS. 2 and 3A, see also 322 and 350 of FIG. 3B) into which the proximal end of the one or more lead bodies 106 can be plugged to make an electrical connection via conductive contacts on the control module 102 and terminals (e.g., 310 in FIG. 3A and 336 of FIG. 3B) on each of the one or more lead bodies 106. It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the electrical stimulation system references cited herein. For example, instead of a paddle body 104, the electrodes 134 can be disposed in an array at or near the distal end of the lead body 106 forming a percutaneous lead, as illustrated in FIG. 2. A percutaneous lead may be isodiametric along the length of the lead. In addition, one or more lead extensions 312 (see FIG. 3B) can be disposed between the one or more lead bodies 106 and the control module 102 to extend the distance between the one or more lead bodies 106 and the control module 102 of the embodiments shown in FIGS. 1 and 2.
  • The electrical stimulation system or components of the electrical stimulation system, including one or more of the lead bodies 106, the paddle body 104, and the control module 102, are typically implanted into the body of a patient. The electrical stimulation system can be used for a variety of applications including, but not limited to, brain stimulation, neural stimulation, spinal cord stimulation, muscle stimulation, and the like.
  • The electrodes 134 can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof. The number of electrodes 134 in the array of electrodes 134 may vary. For example, there can be two, four, six, eight, ten, twelve, fourteen, sixteen, or more electrodes 134. As will be recognized, other numbers of electrodes 134 may also be used.
  • The electrodes of the paddle body 104 or one or more lead bodies 106 are typically disposed in, or separated by, a non-conductive, biocompatible material including, for example, silicone, polyurethane, polyetheretherketone (“PEEK”), epoxy, and the like or combinations thereof. The paddle body 104 and one or more lead bodies 106 may be formed in the desired shape by any process including, for example, molding (including injection molding), casting, and the like. Electrodes and connecting wires can be disposed onto or within a paddle body either prior to or subsequent to a molding or casting process. The non-conductive material typically extends from the distal end of the lead to the proximal end of each of the one or more lead bodies 106. The non-conductive, biocompatible material of the paddle body 104 and the one or more lead bodies 106 may be the same or different. The paddle body 104 and the one or more lead bodies 106 may be a unitary structure or can be formed as two separate structures that are permanently or detachably coupled together.
  • Terminals (e.g., 310 in FIG. 3A and 336 of FIG. 3B) are typically disposed at the proximal end of the one or more lead bodies 106 for connection to corresponding conductive contacts (e.g., 314 in FIG. 3A and 340 of FIG. 3B) in connectors (e.g., 144 in FIGS. 1-3A and 322 and 350 of FIG. 3B) disposed on, for example, the control module 102 (or to other devices, such as conductive contacts on a lead extension, an operating room cable, or an adaptor). Conductive wires (“conductors”) (not shown) extend from the terminals (e.g., 310 in FIG. 3A and 336 of FIG. 3B) to the electrodes 134. Typically, one or more electrodes 134 are electrically coupled to a terminal (e.g., 310 in FIG. 3A and 336 of FIG. 3B). In some embodiments, each terminal (e.g., 310 in FIG. 3A and 336 of FIG. 3B) is only connected to one electrode 134. The conductive wires may be embedded in the non-conductive material of the lead or can be disposed in one or more lumens (not shown) extending along the lead. In some embodiments, there is an individual lumen for each conductive wire. In other embodiments, two or more conductive wires may extend through a lumen. There may also be one or more lumens (not shown) that open at, or near, the proximal end of the lead, for example, for inserting a stylet rod to facilitate placement of the lead within a body of a patient. Additionally, there may also be one or more lumens (not shown) that open at, or near, the distal end of the lead, for example, for infusion of drugs or medication into the site of implantation of the paddle body 104. In at least one embodiment, the one or more lumens may be flushed continually, or on a regular basis, with saline, epidural fluid, or the like. In at least some embodiments, the one or more lumens can be permanently or removably sealable at the distal end.
  • In at least some embodiments, leads are coupled to connectors disposed on control modules. In FIG. 3A, a lead 308 is shown configured and arranged for insertion to the control module 102. The connector 144 includes a connector housing 302. The connector housing 302 defines at least one port 304 into which a proximal end 306 of a lead 308 with terminals 310 can be inserted, as shown by directional arrow 312. The connector housing 302 also includes a plurality of conductive contacts 314 for each port 304. When the lead 308 is inserted into the port 304, the conductive contacts 314 can be aligned with the terminals 310 on the lead 308 to electrically couple the control module 102 to the electrodes (134 of FIG. 1) disposed at a distal end of the lead 308. Examples of connectors in control modules are found in, for example, U.S. Pat. No. 7,244,150 and U.S. patent application Ser. No. 11/532,844, which are incorporated by reference.
  • In FIG. 3B, a connector 322 is disposed on a lead extension 324. The connector 322 is shown disposed at a distal end 326 of the lead extension 324. The connector 322 includes a connector housing 328. The connector housing 328 defines at least one port 330 into which a proximal end 332 of a lead 334 with terminals 336 can be inserted, as shown by directional arrow 338. The connector housing 328 also includes a plurality of conductive contacts 340. When the lead 334 is inserted into the port 330, the conductive contacts 340 disposed in the connector housing 328 can be aligned with the terminals 336 on the lead 334 to electrically couple the lead extension 324 to the electrodes (134 of FIG. 1) disposed at a distal end (not shown) of the lead 334.
  • In at least some embodiments, the proximal end of a lead extension is similarly configured and arranged as a proximal end of a lead. The lead extension 324 may include a plurality of conductive wires (not shown) that electrically couple the conductive contacts 340 to a proximal end 348 of the lead extension 324 that is opposite to the distal end 326. In at least some embodiments, the conductive wires disposed in the lead extension 324 can be electrically coupled to a plurality of terminals (not shown) disposed on the proximal end 348 of the lead extension 324. In at least some embodiments, the proximal end 348 of the lead extension 324 is configured and arranged for insertion into a connector disposed in another lead extension. In other embodiments, the proximal end 348 of the lead extension 324 is configured and arranged for insertion into a connector disposed in a control module. As an example, in FIG. 3B the proximal end 348 of the lead extension 324 is inserted into a connector 350 disposed in a control module 352.
  • One or more of the conductors connecting at least one terminal to an electrode (or other conductive contact) can be arranged in a conductor path to eliminate or reduce the effect of RF irradiation, such as that generated during magnetic resonance imaging (“MRI”). The conductor path includes a plurality of units arranged in series. In some embodiments, the units are disposed along a single continuous conductor. In other embodiments, the units are separate conductive elements electrically coupled together.
  • Each unit includes at least three conductor segments that at least partially overlap one another to form a multi-coil region. First, each unit includes a first conductor segment that extends in a first direction along a longitudinal length of an elongated member (e.g., a lead or lead extension) from a beginning point to a first position. Second, each unit includes a second conductor segment that extends from the first position back towards (and possibly past) the beginning point to a second position. Third, each unit includes a third conductor segment that extends in the first direction from the second position to an endpoint. In at least some embodiments, the first position is between the second position and the endpoint. In at least some embodiments, the second position is between the beginning point and the first position. In at least some embodiments, the unit may include a single-coil region flanking at least one end of the multi-coil region.
  • The units may be electrically continuous such that the endpoint of a first unit is the beginning point of the next consecutive unit. At least one of the beginning points may be a terminal or an electrode (or other conductive contact). Likewise, at least one of the endpoints may be a terminal or an electrode (or other conductive contact). In preferred embodiments, the conductor segments are each coiled. In at least some embodiments, the conductor segments are coiled around a conductor placement sleeve. In at least some embodiments, the conductor placement sleeve defines a lumen that optionally is configured and arranged to receive a stiffening member (e.g., a stylet, or the like).
  • In at least some embodiments, at least one of the first, second, or third conductor segments is substantially straight. In at least some embodiments, the first and third conductor segments are substantially straight and the second conductor segment is coiled. In at least some other embodiments, all three conductor segments are substantially straight. It will be understood that the term “substantially straight conductor segment” means that the conductor segment is not coiled. A “substantially straight conductor segment” may be curved, particularly when the lead itself is curved (see, for example, FIG. 1).
  • In at least some embodiments, the conductor segments are all formed from the same length of conductive material (e.g., wire or the like). The conductors may have a single filament or be multi-filar. In preferred embodiments, the conductors are multi-filar. In at least some embodiments, two or more of the conductor segments can be individual pieces of conductive material that are electrically coupled (e.g., soldered or welded) together. In preferred embodiments, a layer of insulation (“conductor insulation”) is disposed over each of the conductor segments.
  • In at least some embodiments, the length of conductor used in the second conductor segment is at least 1.5, 1.75, 1.9, 2, 2.1, 2.25, or 2.5 times the length of either the first conductor segment or the third conductor segment. It will be recognized, however, that this ratio of conductor-segment lengths may vary among embodiments, particularly if the thickness of the conductor or thickness of the layer of conductor insulation is different for the different segments.
  • FIG. 4 schematically illustrates one embodiment of a plurality of conductors 402. The conductors 402 are configured into a plurality of units, such as unit 404. Each unit includes a first conductor segment 404 a, a second conductor segment 404 b, and a third conductor segment 404 c. In at least some embodiments, conductor insulation is disposed over the conductors 402 to electrically isolate each of the conductors 402 from one another.
  • Many different numbers of units may be disposed along longitudinal lengths of the conductors 402 including, for example, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, twenty-five, thirty, forty, fifty, or more units. It will be understood that many other numbers of units may be employed as well. When a plurality of units are coupled together in series along a longitudinal length of one or more conductors, the plurality of units form a repeating series of single-coil regions, such as the single-coil regions 406, separated from one another by a multi-coil region, such as the multi-coil region 408.
  • In at least some embodiments, the conductors 402 are disposed along a conductor placement sleeve 410. The conductor placement sleeve 410 can be formed from any suitable biocompatible material including, for example, one or more polymers.
  • In at least some embodiments, one or more conductors having one or more units may be disposed in an elongated member (e.g., a lead or lead extension). In at least some embodiments, the ends of the conductors 402 can be coupled to terminals, electrodes, or conductive contacts. In preferred embodiments, each of the conductors in an elongated member are configured into units. In at least some embodiments, only a subset of the conductors disposed in an elongated member include one or more units, the remaining conductors having a different arrangement (for example, a single conductor segment between the terminal(s) and electrode(s)/conductive contact(s)).
  • Conductors, such as the conductors 402, may be disposed in a lumen of an elongated member (e.g., a lead, lead extension, or the like). In at least some embodiments, the conductors 402 are insulated. FIG. 5 is a schematic longitudinal cross-sectional view of one embodiment of portions of a plurality of conductors 502 disposed in an elongated member 504. The illustrated portions of the conductors 502 includes unit 506, shown between two vertical dotted lines. Unit 506 includes a first conductor segment 506 a, a second conductor segment 506 b, and a third conductor segment 506 c. In at least some embodiments, the conductors 502 are disposed over a conductor placement sleeve 508. In at least some embodiments, the conductor placement sleeve 508 defines a lumen 510. The elongated member 504 includes a body 512 and a lumen 514 into which the conductors 502 are disposed.
  • FIG. 6A schematically illustrates a side view of one embodiment of a plurality of conductors 602 each including units 604 and 606. In FIG. 6A, the first, second, and third conductor segments 604 a, 604 b (not shown in FIG. 6A), and 604 c, respectively, of the unit 604, and the first, second, and third conductor segments 606 a, 606 b (not shown in FIG. 6A), and 606 c, respectively, of the unit 606, are each coiled. The conductors 602 are arranged such that the conductors include multi-coil regions 608 and single-coil regions 610. In at least some embodiments, the conductors 602 may be coiled around one or more objects, such as a conductor placement sleeve 612.
  • FIG. 6B is a schematic longitudinal cross-sectional view of the plurality of conductors 602 disposed in an outer layer 614 of a body 615 of a lead 616. When the outer layer 614 of the body 615 is isodiametric along the longitudinal length of the lead 616, open spaces 618 may form between the single-coil regions, such as single-coil region 606 a, and the outer layer 614.
  • As discussed above, exposure of an implanted electrical stimulation system to RF irradiation (e.g., during an MRI procedure) may cause harm to the patient. In at least some embodiments, a safety element is disposed in an elongated member for reducing one or more deleterious effects caused by exposure to RF irradiation, such as unwanted heating of patient tissue or undesired induced electrical signals.
  • In at least some embodiments, the safety element alters one or more responses of the elongated member to exposure to RF irradiation. In some embodiments, the safety element reduces heat build-up by actively or passively altering heat conduction within the elongated member. In other embodiments, the safety element reduces undesired induced electrical signals by shunting the undesired induced electrical signals away from patient tissues or by reducing the ability of the elongated member to convert RF irradiation to induced electrical signals.
  • In at least some embodiments, the safety element is incorporated into a stylet that remains disposed in one or more lumens defined in the elongated member after the elongated member is implanted. In at least some embodiments, the stylet is the same stylet that is used to guide the elongated member to the target site during implantation. In at least some other embodiments, the safety element is separate from the stylet and is inserted into one or more of the lumens after the elongated member has been guided to the target site and the stylet has been removed. In at least some other embodiments, the safety element is disposed along one or more non-lumen portions of the body of the elongated member. In at least some embodiments, the safety element may be disposed external to the body of the elongated member.
  • In at least some embodiments, the safety element is disposed in a lumen defined in the elongated member. FIG. 7A is a schematic longitudinal cross-sectional view of one embodiment of a portion of an elongated member (e.g., a lead or lead extension) 702. The elongated member 702 includes a body 704. An electrode 706 is disposed along an outer layer of the body 704. A conductor 708 is disposed in the body 704 and electrically couples the electrode 706 to a terminal disposed at a proximal end of the elongated member 702. A lumen 710 is defined along at least a portion of the elongated member 702. A safety element 712 is disposed along at least a portion of the lumen 710.
  • Typically, a plurality of conductors extend along the length of the elongated member 702. Only a single conductor 708 is shown in FIG. 7A, and in subsequent figures, as a single conductor, for clarity of illustration. It will be understood that, when a plurality of conductors are disposed in the elongated member 702, one or more of the conductors may extend in one or more different configurations. FIG. 7B is a schematic longitudinal cross-sectional view of another embodiment of the conductor 708 arranged into units and extending along the length of the elongated member 702.
  • In at least some embodiment, the safety element 712 reduces heat build-up by passively altering heat conduction within the elongated member 704. In at least some embodiments, the safety element 712 draws heat away from outer surfaces of the elongated member 702 (e.g., the body 704) to the lumen 710. In at least some embodiments, the safety element 712 has a heat capacity that is at least as great as the body 704. In at least some other embodiments, the safety element 712 has a heat capacity that is substantially greater than the body 704. In some embodiments, the safety element 712 distributes heat along substantially the entire longitudinal length of the lumen 710 of the elongated member 702. In some embodiments, the safety element 712 additionally distributes heat to at least a portion of the control module (102 in FIG. 1) or the lead extension (324 in FIG. 3B), when applicable. In at least some embodiments, heat is transferred from the body 704 to the safety element 712 either directly or radiantly.
  • The heat dissipating safety element 712 may be formed with any heat dissipating material suitable for implantation into a patient including, for example, solids (e.g., metals, alloys, polymers, carbon, composite materials, or the like) or fluids (e.g., saline solution, water, or the like). In at least some embodiments, the safety element 712 is a heat sink. In at least some embodiments, the safety element 712 includes a plurality of protrusions (not shown) extending along at least a portion of the length of the safety element 712 for increasing the surface area of the safety element 712.
  • In at least some embodiment, the safety element 712 reduces heat build-up by actively altering heat conduction within the elongated member 704. FIG. 8 is a schematic longitudinal cross-sectional view of one embodiment of a cooling device 802 disposed on the safety element 712. In at least some embodiments, the cooling device 802 can be employed to actively cool at least a portion of the elongated member 702 for some period of time. In at least some embodiments, the safety element 712 employs thermoelectric cooling, wherein a heat flux is formed at the interface between the safety element 712 and the body 704. In at least some embodiments, an active heat pump (e.g., a Peltier cooler) 804 is employed to transfer heat from the body 704, via the safety element 712, against a temperature gradient. The heat pump 804 may be positioned anywhere within the electrical stimulation system or as a separate, stand-alone unit. Typically, it is preferred to position the heat pump 804 in proximity to the heating or in a location in the body that can efficiently couple heat from the device. In at least some embodiments, the heat pump 804 receives power from the control module (102 in FIG. 1), as shown schematically in FIG. 11. In at least some embodiments a fluid circulation device may be used as a cooling device.
  • In at least some embodiments, the cooling device 802 may be activated using an activator (e.g., a switch, button, knob, or the like) disposed on the control module (102 in FIG. 1) and accessible through patient tissue, or by using a remote control. In at least some embodiments, the electrical stimulation system includes a sensor 806 that activates the cooling device 804 when the sensor 806 senses RF irradiation, a magnetic field, or both at or above a threshold value or within a certain frequency range. Many different types of sensors may be employed including, for example, a reed switch, a Hall-effect switch, or the like. In FIG. 8 the sensor 806 is shown disposed on the safety element 712. It will be understood that the sensor 806 may be disposed anywhere on the electrical stimulation system.
  • In at least some embodiments, the cooling device activates in response to a temperature at or above a threshold temperature. In at least some embodiments, the cooling device 802 is adjustable such that the cooling device 802 increases in strength when the sensed temperature increases above other threshold values that are higher than the activation threshold values. In at least some embodiments, the safety element 712 employs a feedback loop, during operation, to adjust the cooling power of the cooling device 802 in response to changes in temperature.
  • As discussed above, some electrical signals transmitting along the electrode 706 and the conductor 708 are desirable (e.g., electrical stimulation via the pulse generator of the control module (102 in FIG. 1)). Some applied electrical signals, however, may be undesirable (e.g., electrical signals induced via exposure to RF irradiation, for example, during an MRI procedure). In at least some embodiments, undesired electrical signals may be shunted away from patient tissue via the safety element 712. In at least some embodiments, the ability of the elongated member 702 to shunt electrical signals may vary based on one or more characteristics of the electrical signal or based on sensing one or more environmental conditions (e.g., sensing RF irradiation above a threshold level). In at least some embodiments, undesired electrical signals received by the elongated member 702 may be reduced by reducing the ability of the elongated member 702 to convert RF irradiation to an induced electrical signal within the elongated member 702 (i.e., altering the antenna characteristics of the elongated member 702).
  • In at least some embodiments, at least one of the electrode 706 or the conductor 708 may be electrically coupled to the safety element 712 for shunting undesired electrical signals away from patient tissue, while not shunting desired electrical signals under normal operating conditions. In at least some embodiments, at least one of the terminals (e.g., terminal 400 in FIGS. 4A-4B) may be electrically coupled to the safety element 712 for shunting undesired electrical signals away from patient tissue, while not shunting desired electrical signals under normal operating conditions.
  • In at least some embodiments, the safety element 712 may be coupled to the electrode 706. FIG. 9A is a schematic longitudinal cross-sectional view of one embodiment of at least one electrode shunt 902 coupling the electrode 706 to the safety element 712. It will be understood that there may be a plurality of electrodes 706 disposed at the distal end of the elongated member 702. In which case, there may be a plurality of electrode shunts 902 coupling the electrodes 706 to the safety element 712. It will be understood that, when the elongated member 702 is a lead extension, one or more conductor-contact shunts may also be employed to couple one or more connector contacts (see e.g., 340 in FIG. 3B) to the safety element 712.
  • FIG. 9B is a schematic longitudinal cross-sectional view of one embodiment of at least one conductor shunt 904 coupling the conductor 708 to the safety element 712. It will be understood that there may be a plurality of conductors 708 disposed along the longitudinal length of the elongated member 702. In which case, there may be at least one conductor shunt 904 coupling each of a plurality of the conductors 708 to the safety element 712.
  • The shunts 902 and 904 may include any number of different types of connections including, for example, direct electrical connection by a filter (e.g., a high-pass filter, a low-pass filter, a bandpass filter, or the like) coupled to one or more conductors, one or more capacitors, one or more inductors, or the like. When a direct electrical connection is employed, the shunts 902 and 904 may be formed from any conductive material suitable for implantation into a patient.
  • In at least some embodiments, undesired electrical signals (e.g., RF irradiation from an MRI procedure) may be shunted to portions of the elongated body 402 not directly contacting the patient. In at least some embodiments, at least some of the undesired electrical signals are shunted to the safety element 712 from the electrode 706 or the conductor 708 via the shunts 902 or 904, respectively. In at least some embodiments, at least some of the undesired electrical signals are shunted to the control module (102 in FIG. 1), or the lead extension (324 in FIG. 3B), if applicable, for dissipation over a larger region of the body.
  • In at least some embodiments, conduction of electrical signals via one or more of the shunts 902 or 904 may vary based on one or more characteristics of the electrical signal or based on the sensing of one or more environmental conditions. Thus, it is preferred that undesired electrical signals are shunted to the safety element 712 and desired electrical signals are not.
  • In at least some embodiments, the shunting ability of the one or more shunts 902 or 904 is based on the frequency of the electrical signal. For example, in at least some embodiments, one or more filters (e.g. high-pass filters, low-pass filters, bandpass filters, or the like) are employed so that the shunts 902 or 904 have high impedance (i.e., an open circuit) to electrical signals with frequencies at or below (or within) a threshold level, thereby allowing the electrical signals to transmit freely along the conductor 708 and the electrode 706 without being shunted to the safety element 712. In at least some embodiments, the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 1 MHz. In at least some embodiments, the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 2 MHz. In at least some embodiments, the shunts 902 or 904 have a high impedance when applied electrical signals have frequencies no greater than 5 MHz.
  • In at least some embodiments, the shunts 902 or 904 have low impedance (i.e., a closed circuit) to electrical signals with frequencies at or above a threshold value, thereby shunting the electrical signals to the safety device 712. In at least some embodiments, the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 8 MHz. In at least some embodiments, the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 9 MHz. In at least some embodiments, the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 10 MHz. In at least some embodiments, the shunts 902 or 904 may have low impedance when electrical signals have frequencies no less than 11 MHz.
  • It will be understood that the shunts 902 or 904 may, instead, have low or high impedance to electrical signals with frequency ranges. It will also be understood that the shunting ability of the shunts 902 or 904 may be based on other characteristics of the signal (e.g., the amplitude of the signal, the duration of the signal, or the like) or one or more environmental conditions (e.g., sensing RF irradiation or a magnetic field above a threshold level). In at least some embodiments, a sensor (see e.g., sensor 806 in FIG. 8) is incorporated into the electrical stimulation system to sense RF irradiation.
  • In at least some embodiments, the safety element 712 alters the antenna characteristic of the elongated member 702. For example, in at least some embodiments, the materials and arrangements used to form the safety element 712 may be selected such that the elongated member 702 has a reduced ability to convert RF irradiation to an induced electrical signal (i.e., the elongated member 702 becomes a poor antenna) within one or more undesirable frequency ranges, such as frequency ranges commonly used during MRI procedures.
  • FIG. 10 is a schematic longitudinal cross-sectional view of one embodiment of a safety element 1002 disposed in the lumen 710 of the elongated member 702. The safety element 1002 includes a plurality of sections of conductive materials 1004 separated from one another by non-conductive connecting material 1006. The antenna characteristics of the elongated member 702 (e.g., the self-resonant frequency, lossiness, frequency-dependent behavior at the frequencies of interest, or the like or combinations thereof) may be affected by one or more of the characteristics of the safety element 1002 including, for example, the permittivity or the conductivity of the safety element 1002. Many different materials may be used to form the conductive sections 1004 including, for example, metals (e.g., platinum, silver, or the like or combinations thereof), an electrolyte solution (e.g., a saline solution, or the like), one or more polymers or other conductive elements (e.g., one or more polymers embedded with conductive beads), or the like or combinations thereof.
  • In at least some embodiments, a plurality of safety elements may be employed with the elongated member. In at least some embodiments, when a plurality of safety elements are employed, two or more of the safety elements may be coupled to one another. In at least some embodiments, the elongated member defines a plurality of lumens. In at least some embodiments, one or more safety elements are disposed in a single lumen. In at least some other embodiments, one or more safety elements are disposed in multiple lumens. In at least some embodiments, a single safety element is disposed in a plurality of lumens.
  • In at least some embodiments, at least a portion of the safety element is injected into the lumen. In at least some embodiments, at least a portion of the safety element flows when applied to the lumen. In at least some embodiments, at least a portion of the safety element gels, sets, or cross-links subsequent to application.
  • FIG. 11 is a schematic overview of one embodiment of components of an electrical stimulation system 1100 including an electronic subassembly 1110 disposed within a control module. It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the stimulator references cited herein.
  • Some of the components (for example, power source 1112, antenna 1118, receiver 1102, and processor 1104) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator, if desired. Any power source 1112 can be used including, for example, a battery such as a primary battery or a rechargeable battery. Examples of other power sources include super capacitors, nuclear or atomic batteries, mechanical resonators, infrared collectors, thermally-powered energy sources, flexural powered energy sources, bioenergy power sources, fuel cells, bioelectric cells, osmotic pressure pumps, and the like including the power sources described in U.S. Patent Application Publication No. 2004/0059392, incorporated herein by reference.
  • As another alternative, power can be supplied by an external power source through inductive coupling via the optional antenna 1118 or a secondary antenna. The external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.
  • If the power source 1112 is a rechargeable battery, the battery may be recharged using the optional antenna 1118, if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 1116 external to the user. Examples of such arrangements can be found in the references identified above.
  • In one embodiment, electrical current is emitted by the electrodes 134 on the paddle or lead body to stimulate nerve fibers, muscle fibers, or other body tissues near the electrical stimulation system. A processor 1104 is generally included to control the timing and electrical characteristics of the electrical stimulation system. For example, the processor 1104 can, if desired, control one or more of the timing, frequency, strength, duration, and waveform of the pulses. In addition, the processor 1104 can select which electrodes can be used to provide stimulation, if desired. In some embodiments, the processor 1104 may select which electrode(s) are cathodes and which electrode(s) are anodes. In some embodiments, the processor 1104 may be used to identify which electrodes provide the most useful stimulation of the desired tissue.
  • Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 1108 that, for example, allows modification of pulse characteristics. In the illustrated embodiment, the processor 1104 is coupled to a receiver 1102 which, in turn, is coupled to the optional antenna 1118. This allows the processor 1104 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.
  • In one embodiment, the antenna 1118 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 1106 which is programmed by a programming unit 1008. The programming unit 1108 can be external to, or part of, the telemetry unit 1106. The telemetry unit 1106 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired. As another alternative, the telemetry unit 1106 may not be worn or carried by the user but may only be available at a home station or at a clinician's office. The programming unit 1108 can be any unit that can provide information to the telemetry unit 1106 for transmission to the electrical stimulation system 1100. The programming unit 1108 can be part of the telemetry unit 1106 or can provide signals or information to the telemetry unit 1106 via a wireless or wired connection. One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 1106.
  • The signals sent to the processor 1104 via the antenna 1118 and receiver 1102 can be used to modify or otherwise direct the operation of the electrical stimulation system. For example, the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength. The signals may also direct the electrical stimulation system 1100 to cease operation, to start operation, to start charging the battery, or to stop charging the battery. In other embodiments, the stimulation system does not include an antenna 1118 or receiver 1102 and the processor 1104 operates as programmed.
  • Optionally, the electrical stimulation system 1100 may include a transmitter (not shown) coupled to the processor 1104 and the antenna 1118 for transmitting signals back to the telemetry unit 1106 or another unit capable of receiving the signals. For example, the electrical stimulation system 1100 may transmit signals indicating whether the electrical stimulation system 1100 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery. The processor 1104 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.
  • The above specification, examples and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

Claims (20)

1. An implantable lead comprising:
a lead body having a distal end, and a proximal end, the lead body defining at least one lumen extending along at least a portion of the lead body, the lead body comprising
a plurality of electrodes disposed on the distal end of the lead body,
a plurality of terminals disposed on the proximal end of the lead body, and
a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals; and
at least one safety element disposed along at least a portion of the lead body, the at least one safety element configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
2. The lead of claim 1, wherein the at least one safety element is disposed in the at least one lumen.
3. The lead of claim 1, wherein a stylet comprises the at least one safety element.
4. The lead of claim 1, wherein the at least one safety element has a heat capacity that is substantially greater than the heat capacity of the lead body.
5. The lead of claim 1, wherein the at least one safety element comprises a cooling device configured and arranged for reducing the temperature of the lead.
6. The lead of claim 5, wherein the cooling device comprises a heat pump configured and arranged for transferring heat from the lead body to the at least one safety element against a temperature gradient.
7. The lead of claim 6, wherein the heat pump is configured and arranged to receive power from a control module.
8. The lead of claim 1, further comprising at least one conductor shunt coupling at least one of the conductors, at least one of the electrodes, or at least one of the terminals to the at least one safety element.
9. The lead of claim 8, wherein at least one of the conductor shunts, the electrode shunts, or the terminal shunts is configured and arranged to shunt electrical signals within a selected frequency range.
10. The lead of claim 8, wherein the at least one conductor shunt couples at least one of the conductors, at least one of the electrodes, or at least one of the terminals to the at least one safety element via at least one of a direct electrical connection via a filter, capacitive coupling, or inductive coupling.
11. The lead of claim 10, wherein the filter comprises at least one of a high-pass filter or a bandpass filter.
12. The lead of claim 1, wherein the at least one safety element is configured and arranged to reduce the ability of the lead to convert radio frequency irradiation to induced electrical signals.
13. The lead of claim 1, wherein at least one of the conductors is disposed in the lead body in a substantially straight configuration.
14. The lead of claim 1, wherein at least one of the conductors comprises a plurality of units, each of the units comprising
a first conductor segment extending along the lead body from a beginning point to a first position,
a second conductor segment extending from the first position to a second position, and
a third conductor segment extending along the elongated member from the second position to an endpoint,
wherein the conductor segments are arranged so as to form alternating single-coil regions and multi-coil regions
15. An electrical stimulating system comprising:
a lead body having a distal end, and a proximal end, the lead body defining at least one lumen extending along at least a portion of the lead body, the lead body comprising
a plurality of electrodes disposed on the distal end of the lead body,
a plurality of terminals disposed on the proximal end of the lead body, and
a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals;
at least one safety element disposed along at least a portion of the lead body, the at least one safety element configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation;
a control module configured and arranged to electrically couple to the proximal end of the lead body, the control module comprising
a housing, and
an electronic subassembly disposed in the housing; and
a connector for receiving the lead, the connector having a proximal end, a distal end, and a longitudinal length, the connector configured and arranged to receive the lead, the connector comprising
a connector housing defining a port at the distal end of the connector, the port configured and arranged for receiving the proximal end of the lead body, and
a plurality of connector contacts disposed in the connector housing, the connector contacts configured and arranged to couple to at least one of the plurality of terminals disposed on the proximal end of the lead body.
16. The electrical stimulating system of claim 15, wherein the connector is disposed on the control module.
17. The electrical stimulating system of claim 15, further comprising a lead extension having a proximal end and a distal end, the connector disposed on the distal end of the lead extension.
18. The electrical stimulating system of claim 17, wherein the proximal end of the lead extension is configured and arranged for insertion into another connector.
19. The electrical stimulating system of claim 17, wherein the lead extension comprises:
a lead extension body having a distal end, and a proximal end, the lead extension body defining at least one lumen extending along at least a portion of the lead extension body, the lead extension body comprising
a plurality of electrodes disposed on the distal end of the lead extension body,
a plurality of terminals disposed on the proximal end of the lead extension body, and
a plurality of conductors disposed in the lead extension body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals; and
at least one safety element disposed along at least a portion of the lead extension body, the at least one safety element configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead extension is exposed to radio frequency irradiation.
20. A method for forming an implantable lead, the method comprising:
disposing an elongated conductor in a lead body of the lead;
disposing at least one safety element in at least one lumen defined along at least a portion of the lead body, the safety element configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation;
coupling a first end of the conductor to an electrode disposed on a distal end of the lead;
coupling a second end of the conductor to a terminal disposed on a proximal end of the lead; and
electrically coupling the terminal to a control module configured and arranged to generate electrical signals for stimulating patient tissue via the electrode.
US12/544,903 2009-08-20 2009-08-20 Systems and methods for altering one or more RF-response properties of electrical stimulation systems Expired - Fee Related US8380324B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/544,903 US8380324B2 (en) 2009-08-20 2009-08-20 Systems and methods for altering one or more RF-response properties of electrical stimulation systems
US13/769,002 US8818526B2 (en) 2009-08-20 2013-02-15 Systems and methods for altering one or more RF-response properties of electrical stimulation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/544,903 US8380324B2 (en) 2009-08-20 2009-08-20 Systems and methods for altering one or more RF-response properties of electrical stimulation systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/769,002 Continuation US8818526B2 (en) 2009-08-20 2013-02-15 Systems and methods for altering one or more RF-response properties of electrical stimulation systems

Publications (2)

Publication Number Publication Date
US20110046700A1 true US20110046700A1 (en) 2011-02-24
US8380324B2 US8380324B2 (en) 2013-02-19

Family

ID=43605959

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/544,903 Expired - Fee Related US8380324B2 (en) 2009-08-20 2009-08-20 Systems and methods for altering one or more RF-response properties of electrical stimulation systems
US13/769,002 Active US8818526B2 (en) 2009-08-20 2013-02-15 Systems and methods for altering one or more RF-response properties of electrical stimulation systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/769,002 Active US8818526B2 (en) 2009-08-20 2013-02-15 Systems and methods for altering one or more RF-response properties of electrical stimulation systems

Country Status (1)

Country Link
US (2) US8380324B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012082900A2 (en) 2010-12-15 2012-06-21 Boston Scientific Neuromodulation Corporation Systems and methods for making and using leads for electrical stimulation systems with improved rf compatibility
WO2012103201A2 (en) 2011-01-26 2012-08-02 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems with improved rf compatibility
US20130013033A1 (en) * 2011-04-06 2013-01-10 Coolsystems, Inc. System for Providing Treatment to a Mammal and Method
US20130158642A1 (en) * 2009-08-20 2013-06-20 Boston Scientific Neuromodulation Corporation Systems and methods for altering one or more rf-response properties of electrical stimulation systems
US9248270B2 (en) 2007-03-19 2016-02-02 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible
US9615967B2 (en) 2010-12-30 2017-04-11 Coolsystems, Inc. Reinforced therapeutic wrap and method
US9943437B2 (en) 2009-10-22 2018-04-17 Coolsystems, Inc. Temperature and flow control methods in a thermal therapy device
US10391307B2 (en) 2007-03-19 2019-08-27 Boston Scientific Neuromodulation Corporation MRI and RF compatible leads and related methods of operating and fabricating leads
US10456320B2 (en) 2013-10-01 2019-10-29 Coolsystems, Inc. Hand and foot wraps
US10463565B2 (en) 2011-06-17 2019-11-05 Coolsystems, Inc. Adjustable patient therapy device
US10859295B2 (en) 2016-04-13 2020-12-08 ZeoThermal Technologies, LLC Cooling and heating platform
WO2021003496A1 (en) * 2019-07-01 2021-01-07 Wavegate Corporation Improved surgical electrode and lead for use with implanted pulse generator and method of use
US11224743B2 (en) 2018-09-21 2022-01-18 Boston Scientific Neuromodulation Corporation Systems and methods for making and using modular leads for electrical stimulation systems
US11426595B2 (en) 2018-11-16 2022-08-30 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
US11511127B2 (en) 2016-02-05 2022-11-29 Boston Scientific Neuromodulation Corporation Implantable optical stimulation lead and methods of making and using
US11524174B2 (en) 2018-03-23 2022-12-13 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
US11565131B2 (en) 2018-03-23 2023-01-31 Boston Scientific Neuromodulation Corporation Optical stimulation systems with calibration and methods of making and using
US11672693B2 (en) 2014-08-05 2023-06-13 Avent, Inc. Integrated multisectional heat exchanger
US11806547B2 (en) 2020-09-04 2023-11-07 Boston Scientific Neuromodulation Corporation Stimulation systems with a lens arrangement for light coupling and methods of making and using
US11890466B2 (en) 2019-07-01 2024-02-06 Wavegate Corporation IPG and header combination

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415213B2 (en) 2012-11-13 2016-08-16 Boston Scientific Neuromodulation Corporation Systems and leads for improved RF compatibility and methods of manufacture and use
JP2017505574A (en) * 2014-01-09 2017-02-16 ミニパンプス, エルエルシー Telemetry array for implantable devices
US9782581B2 (en) 2014-06-27 2017-10-10 Boston Scientific Neuromodulation Corporation Methods and systems for electrical stimulation including a shielded sheath
US9802037B2 (en) 2015-03-05 2017-10-31 Bradley D. Vilims Tension loop for a spinal cord stimulator
US10478618B2 (en) 2015-03-05 2019-11-19 Bradley D. Vilims Adjustable length tension sleeve for electrical or thermal stimulation device
US9782582B2 (en) 2015-03-27 2017-10-10 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems to reduce RF-induced tissue heating
WO2016176645A1 (en) 2015-04-30 2016-11-03 Boston Scientific Neuromodulation Corporation Electrical stimulation leads and systems having a rf shield along at least the lead and methods of making and using

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688267A (en) * 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US20020133216A1 (en) * 2001-02-20 2002-09-19 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US6746474B2 (en) * 2002-05-31 2004-06-08 Vahid Saadat Apparatus and methods for cooling a region within the body
US20050090886A1 (en) * 2001-02-20 2005-04-28 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna geometrical shaped member
US20050113676A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US6944489B2 (en) * 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US20050283213A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283214A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283168A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283167A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288757A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288752A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288751A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288750A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288756A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288755A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288754A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288753A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168006A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168005A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168003A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070173911A1 (en) * 2001-02-20 2007-07-26 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070244535A1 (en) * 2006-04-18 2007-10-18 Cyberonics, Inc. Heat dissipation for a lead assembly
US7306621B1 (en) * 2004-11-19 2007-12-11 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US20080058902A1 (en) * 2006-04-07 2008-03-06 Biophan Technologies, Inc. Resonance tuning module for implantable devices and leads
US20080262584A1 (en) * 2007-03-19 2008-10-23 Bottomley Paul A Methods and apparatus for fabricating leads with conductors and related flexible lead configurations

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146036A (en) * 1977-10-06 1979-03-27 Medtronic, Inc. Body-implantable lead with protector for tissue securing means
US5217010A (en) 1991-05-28 1993-06-08 The Johns Hopkins University Ecg amplifier and cardiac pacemaker for use during magnetic resonance imaging
US5366496A (en) 1993-04-01 1994-11-22 Cardiac Pacemakers, Inc. Subcutaneous shunted coil electrode
US5796044A (en) * 1997-02-10 1998-08-18 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US6181969B1 (en) 1998-06-26 2001-01-30 Advanced Bionics Corporation Programmable current output stimulus stage for implantable device
US5876422A (en) * 1998-07-07 1999-03-02 Vitatron Medical B.V. Pacemaker system with peltier cooling of A-V node for treating atrial fibrillation
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US6741892B1 (en) 2000-03-10 2004-05-25 Advanced Bionics Corporation Movable contact locking mechanism for spinal cord stimulator lead connector
US6901292B2 (en) 2001-03-19 2005-05-31 Medtronic, Inc. Control of externally induced current in an implantable pulse generator
US6871091B2 (en) 2001-10-31 2005-03-22 Medtronic, Inc. Apparatus and method for shunting induced currents in an electrical lead
WO2003063951A1 (en) 2002-01-29 2003-08-07 Advanced Bionics Corporation Lead assembly for implantable microstimulator
US6985775B2 (en) 2002-01-29 2006-01-10 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US7127294B1 (en) * 2002-12-18 2006-10-24 Nanoset Llc Magnetically shielded assembly
US6725092B2 (en) 2002-04-25 2004-04-20 Biophan Technologies, Inc. Electromagnetic radiation immune medical assist device adapter
US7177698B2 (en) 2002-06-28 2007-02-13 Advanced Bionics Corporation Telemetry system for use with microstimulator
US7164950B2 (en) 2002-10-30 2007-01-16 Pacesetter, Inc. Implantable stimulation device with isolating system for minimizing magnetic induction
EP1622677B1 (en) 2003-04-02 2013-09-18 Medtronic, Inc. Device for preventing magnetic-device imaging induced damage
CA2553901C (en) 2004-01-22 2015-01-20 Rehabtronics Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
US7174219B2 (en) 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
WO2007008301A2 (en) 2005-07-12 2007-01-18 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US7761165B1 (en) 2005-09-29 2010-07-20 Boston Scientific Neuromodulation Corporation Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
US8700178B2 (en) 2005-12-27 2014-04-15 Boston Scientific Neuromodulation Corporation Stimulator leads and methods for lead fabrication
US7672734B2 (en) 2005-12-27 2010-03-02 Boston Scientific Neuromodulation Corporation Non-linear electrode array
US7244150B1 (en) 2006-01-09 2007-07-17 Advanced Bionics Corporation Connector and methods of fabrication
US8175710B2 (en) 2006-03-14 2012-05-08 Boston Scientific Neuromodulation Corporation Stimulator system with electrode array and the method of making the same
US7974706B2 (en) 2006-03-30 2011-07-05 Boston Scientific Neuromodulation Corporation Electrode contact configurations for cuff leads
WO2007118194A2 (en) 2006-04-07 2007-10-18 Biophan Technologies, Inc. Resonance circuit for implantable devices and leads
US20130226267A9 (en) * 2006-08-21 2013-08-29 Marom Bikson Method to reduce heating at implantable medical devices including neuroprosthetic devices
EP2110154B1 (en) * 2008-04-14 2017-11-15 Biotronik CRM Patent AG Device for reducing the interference susceptibility of elongate impants
US8380324B2 (en) * 2009-08-20 2013-02-19 Boston Scientific Neuromodulation Corporation Systems and methods for altering one or more RF-response properties of electrical stimulation systems
EP2496164B1 (en) * 2009-11-02 2016-02-10 Koninklijke Philips N.V. Radio frequency ablation catheter and magnetic resonance imaging system comprising said ablation catheter
WO2011081701A1 (en) * 2009-12-30 2011-07-07 Cardiac Pacemakers, Inc. Implantable electrical lead including a cooling assembly to dissipate mri induced electrode heat

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688267A (en) * 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US20020133216A1 (en) * 2001-02-20 2002-09-19 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US20020138124A1 (en) * 2001-02-20 2002-09-26 Helfer Jeffrey L. Electromagnetic interference immune tissue invasive system
US20020138102A1 (en) * 2001-02-20 2002-09-26 Weiner Michael L. Electromagnetic interference immune tissue invasive system
US20020138113A1 (en) * 2001-02-20 2002-09-26 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US20020138108A1 (en) * 2001-02-20 2002-09-26 Weiner Michael L. Electromagnetic interference immune tissue invasive system
US20020138107A1 (en) * 2001-02-20 2002-09-26 Weiner Michael L. Electromagnetic interference immune tissue invasive system
US20020138112A1 (en) * 2001-02-20 2002-09-26 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US20020138110A1 (en) * 2001-02-20 2002-09-26 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US20020143258A1 (en) * 2001-02-20 2002-10-03 Weiner Michael L. Electromagnetic interference immune tissue invasive system
US20020147470A1 (en) * 2001-02-20 2002-10-10 Weiner Michael L. Electromagnetic interference immune tissue invasive system
US20020183796A1 (en) * 2001-02-20 2002-12-05 Connelly Patrick R. Electromagnetic interference immune tissue invasive system
US20020198569A1 (en) * 2001-02-20 2002-12-26 Foster Thomas H. Electromagnetic interference immune tissue invasive system
US20070198073A1 (en) * 2001-02-20 2007-08-23 Biophan Technologies, Inc. Medical device with a mri-induced signal attenuating member
US20050090886A1 (en) * 2001-02-20 2005-04-28 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna geometrical shaped member
US20070173911A1 (en) * 2001-02-20 2007-07-26 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168003A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168005A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168006A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050159661A1 (en) * 2001-02-20 2005-07-21 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US6944489B2 (en) * 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US6746474B2 (en) * 2002-05-31 2004-06-08 Vahid Saadat Apparatus and methods for cooling a region within the body
US20050113873A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US20050113676A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US20050113876A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US20050113874A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US20050288752A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283213A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288750A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288756A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288755A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288754A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288753A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288751A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288757A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283167A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283168A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283214A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US7306621B1 (en) * 2004-11-19 2007-12-11 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US20080058902A1 (en) * 2006-04-07 2008-03-06 Biophan Technologies, Inc. Resonance tuning module for implantable devices and leads
US20070244535A1 (en) * 2006-04-18 2007-10-18 Cyberonics, Inc. Heat dissipation for a lead assembly
US20080262584A1 (en) * 2007-03-19 2008-10-23 Bottomley Paul A Methods and apparatus for fabricating leads with conductors and related flexible lead configurations

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9248270B2 (en) 2007-03-19 2016-02-02 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible
US10391307B2 (en) 2007-03-19 2019-08-27 Boston Scientific Neuromodulation Corporation MRI and RF compatible leads and related methods of operating and fabricating leads
US9630000B2 (en) 2007-03-19 2017-04-25 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
US20130158642A1 (en) * 2009-08-20 2013-06-20 Boston Scientific Neuromodulation Corporation Systems and methods for altering one or more rf-response properties of electrical stimulation systems
US8818526B2 (en) * 2009-08-20 2014-08-26 Boston Scientific Neuromodulation Corporation Systems and methods for altering one or more RF-response properties of electrical stimulation systems
US9943437B2 (en) 2009-10-22 2018-04-17 Coolsystems, Inc. Temperature and flow control methods in a thermal therapy device
US8909352B2 (en) 2010-12-15 2014-12-09 Boston Scientific Neuromodulation Corporation Systems and methods for making and using leads for electrical stimulation systems with improved RF compatibility
WO2012082900A2 (en) 2010-12-15 2012-06-21 Boston Scientific Neuromodulation Corporation Systems and methods for making and using leads for electrical stimulation systems with improved rf compatibility
US9155883B2 (en) 2010-12-15 2015-10-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using leads for electrical stimulation systems with improved RF compatibility
US9615967B2 (en) 2010-12-30 2017-04-11 Coolsystems, Inc. Reinforced therapeutic wrap and method
US11547625B2 (en) 2010-12-30 2023-01-10 Avent, Inc. Reinforced therapeutic wrap and method
US8868207B2 (en) 2011-01-26 2014-10-21 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems with improved RF compatibility
WO2012103201A2 (en) 2011-01-26 2012-08-02 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems with improved rf compatibility
US20130013033A1 (en) * 2011-04-06 2013-01-10 Coolsystems, Inc. System for Providing Treatment to a Mammal and Method
US10463565B2 (en) 2011-06-17 2019-11-05 Coolsystems, Inc. Adjustable patient therapy device
US10456320B2 (en) 2013-10-01 2019-10-29 Coolsystems, Inc. Hand and foot wraps
US11672693B2 (en) 2014-08-05 2023-06-13 Avent, Inc. Integrated multisectional heat exchanger
US11511127B2 (en) 2016-02-05 2022-11-29 Boston Scientific Neuromodulation Corporation Implantable optical stimulation lead and methods of making and using
US10859295B2 (en) 2016-04-13 2020-12-08 ZeoThermal Technologies, LLC Cooling and heating platform
US11565131B2 (en) 2018-03-23 2023-01-31 Boston Scientific Neuromodulation Corporation Optical stimulation systems with calibration and methods of making and using
US11524174B2 (en) 2018-03-23 2022-12-13 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
US11771918B2 (en) 2018-03-23 2023-10-03 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
US11224743B2 (en) 2018-09-21 2022-01-18 Boston Scientific Neuromodulation Corporation Systems and methods for making and using modular leads for electrical stimulation systems
US11426595B2 (en) 2018-11-16 2022-08-30 Boston Scientific Neuromodulation Corporation Optical stimulation system with on-demand monitoring and methods of making and using
WO2021003496A1 (en) * 2019-07-01 2021-01-07 Wavegate Corporation Improved surgical electrode and lead for use with implanted pulse generator and method of use
US11890466B2 (en) 2019-07-01 2024-02-06 Wavegate Corporation IPG and header combination
US11806547B2 (en) 2020-09-04 2023-11-07 Boston Scientific Neuromodulation Corporation Stimulation systems with a lens arrangement for light coupling and methods of making and using

Also Published As

Publication number Publication date
US8818526B2 (en) 2014-08-26
US20130158642A1 (en) 2013-06-20
US8380324B2 (en) 2013-02-19

Similar Documents

Publication Publication Date Title
US8380324B2 (en) Systems and methods for altering one or more RF-response properties of electrical stimulation systems
US11224743B2 (en) Systems and methods for making and using modular leads for electrical stimulation systems
US8774939B2 (en) Electrical stimulation leads having RF compatibility and methods of use and manufacture
US8478423B2 (en) Insulator layers for leads of implantable electric stimulation systems and methods of making and using
US8849396B2 (en) Systems and methods for making and using improved connector contacts for electrical stimulation systems
US8600509B2 (en) Lead splitter for an electrical stimulation system and systems and methods for making and using
US8612023B2 (en) Systems and methods of making and using support elements for elongated members of implantable electric stimulation systems
US20150374978A1 (en) Methods and systems for electrical stimulation including a shielded lead
US8406896B2 (en) Multi-element contact assemblies for electrical stimulation systems and systems and methods of making and using
US9351655B2 (en) Systems, devices, and methods for electrically coupling terminals to electrodes of electrical stimulation systems
US8868207B2 (en) Systems and methods for making and using electrical stimulation systems with improved RF compatibility
US20100114278A1 (en) Deposited conductive layers for leads of implantable electric stimulation systems and methods of making and using
US9190793B2 (en) Systems and methods for coupling coiled conductors to conductive contacts of an electrical stimulation system
US8249721B2 (en) Method for fabricating a neurostimulation lead contact array
US20150060136A1 (en) Systems and methods for forming an end of an elongated member of an electrical stimulation system
WO2016160423A1 (en) Systems and methods for making and using electrical stimulation systems to reduce rf-induced tissue heating
US10173055B2 (en) Electrical stimulation leads and systems having a RF shield along at least the lead and methods of making and using

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION, CAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCDONALD, MATTHEW LEE;VENOOK, ROSS DANIEL;REEL/FRAME:023151/0449

Effective date: 20090819

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210219