US20110033405A1 - Stable solid deodorant product and method for manufacturing same - Google Patents

Stable solid deodorant product and method for manufacturing same Download PDF

Info

Publication number
US20110033405A1
US20110033405A1 US12/538,379 US53837909A US2011033405A1 US 20110033405 A1 US20110033405 A1 US 20110033405A1 US 53837909 A US53837909 A US 53837909A US 2011033405 A1 US2011033405 A1 US 2011033405A1
Authority
US
United States
Prior art keywords
deodorant
composition according
weight
deodorant composition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/538,379
Inventor
Hany Abo-El-Magd Mobarak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knowlton Development Corp Inc
Original Assignee
Knowlton Development Corp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to Knowlton Development Corporation Inc. reassignment Knowlton Development Corporation Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOBARAK, HANY ABO-EL-MAGD
Application filed by Knowlton Development Corp Inc filed Critical Knowlton Development Corp Inc
Publication of US20110033405A1 publication Critical patent/US20110033405A1/en
Priority to US13/272,736 priority Critical patent/US8425886B2/en
Priority to US13/800,321 priority patent/US9247800B2/en
Priority to US14/817,787 priority patent/US9307821B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D40/00Casings or accessories specially adapted for storing or handling solid or pasty toiletry or cosmetic substances, e.g. shaving soaps or lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • A61K8/0229Sticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/361Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/26Methods or devices for controlling the quantity of the material fed or filled
    • B65B3/28Methods or devices for controlling the quantity of the material fed or filled by weighing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/592Mixtures of compounds complementing their respective functions

Definitions

  • the present invention relates to a novel solid deodorant formulation, and a method for manufacturing a deodorant stick product having excellent stability and efficacy.
  • Topical deodorant formulations for use in controlling odour in the underarm area have been available in the market for many years, in solid stick or liquid form.
  • Deodorant compositions have contained deodorizing active ingredients of several types.
  • antimicrobial agents function to inhibit bacterial growth, thus reducing bacterial interactions with sweat gland secretions, which are responsible for producing undesirable odours.
  • Malodour masking agents such as perfumes and fragrances function to mask the malodours produced by bacterial interactions.
  • Malodour neutralizers are also available which serve to chemically fix malodours.
  • deodorant actives known in the art have generally referred to topical materials which inhibit the formation of, mask, or neutralize malodours resulting from perspiration.
  • Solid deodorant formulations of the prior art have commonly contained propylene glycol as the principal ingredient, and triclosan as a deodorizing active.
  • the general manufacturing process for solid deodorants and cosmetics is also known.
  • Deodorant formulations are typically mixed in relatively large quantities under heat, then poured into individual product containers, which act as molds to permit the sticks to be cast directly in them.
  • Such product containers may be filled from the bottom or the top, and the deodorant stick may be shaped with a domed top or flat top.
  • a solid stick deodorant formulation that preferably contains all natural or naturally sourced ingredients, and is stable once formed into a deodorant stick product in a container.
  • the present invention provides a natural deodorant formulation that exhibits excellent efficacy, at levels beyond those seen for other such formulations available in the prior art. Further, the formulation of the present invention exhibits improved stability once formed into a deodorant stick product in a container that is filled from the top opening compared with a bottom filled container. This product addresses the above-mentioned drawbacks of solid natural deodorant formulations and provides for a product with increased stability and therefore increased shelf life and commercial value.
  • the invention comprises a novel deodorant formulation having propanediol as the base, combined with the deodorizing active materials ethylhexylglycerin and grapefruit seed extract. It has been found that the combination of propanediol, grapefruit seed extract and ethylhexylglycerin, when applied topically to the skin, provides improved deodorant efficacy, that is greater than the additive deodorant benefits that would otherwise be expected from such a combination. When manufactured into solid stick deodorant product in a container in accordance with the process outlined herein, a deodorant stick product displaying excellent efficacy and stability is formed.
  • the present invention is further directed to a novel manufacturing method for making and forming deodorant products in accordance with the described formulations.
  • the present invention is also directed to a stable and useful deodorant stick product manufactured in accordance with the specified method and in accordance with the claimed formulations.
  • FIG. 1 is a table outlining a sample deodorant stick formulation in accordance with the invention
  • FIG. 2 is a table summarizing the efficacy results obtained with the deodorant formulation described in FIG. 1 , as compared to a control formulation;
  • FIG. 3 is a flowchart showing an exemplary embodiment of a method of manufacturing a deodorant stick product in accordance with one aspect of the present invention
  • FIG. 4 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a top filled, domed deodorant product made in accordance with the formula in FIG. 1 ;
  • FIG. 5 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a top filled, flat-finish deodorant product made in accordance with the formula in FIG. 1 ;
  • FIG. 6 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a bottom filled deodorant product made in accordance with the formula in FIG. 1 ;
  • FIG. 7 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 4° C.;
  • FIG. 8 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 25° C.
  • FIG. 9 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 45° C.
  • the present invention relates to a deodorant composition or formulation that shows remarkable qualities of stability once formed into a solid stick product in accordance with the manufacturing method described herein.
  • the solid stick product made in accordance with the formulation of the invention may be formulated to be clear, translucent, or substantially opaque in appearance. It is preferably clear or translucent.
  • the ingredients used in the deodorant composition of the invention are preferably natural, or substantially natural, ingredients.
  • the term “natural” indicates that the ingredient is derived from a plant or animal source. This is in contrast to synthetically derived chemicals which cannot typically be considered to be “natural” ingredients.
  • the deodorant composition comprises propanediol (chemical name: 1,3-propanediol), combined with further deodorizing active ingredients, namely ethylhexylglycerin and grapefruit seed extract.
  • propanediol chemical name: 1,3-propanediol
  • further deodorizing active ingredients namely ethylhexylglycerin and grapefruit seed extract.
  • the propanediol used is commercially available from DUPONTTM under the trade-mark ZEMEATM.
  • ZEMEATM is particularly beneficial to use in a natural deodorant formulation as it is a biodegradable product that is manufactured from corn with reduced environmental impact, using 40% less energy in the manufacturing process as compared with a petroleum-based propanediol.
  • Ethylhexylglycerin is a known deodorizing active ingredient, which is a representative of the 1-alkyl glycerin ethers, and which operates to inhibit the growth and multiplication of malodour-causing bacteria. Substances with a similar structure to ethylhexylglycerin occur in nature. Grapefruit seed extract is also a known deodorizing active ingredient, which is made by converting grapefruit seeds and pulp into acidic liquid. The resulting extract is effective as an antibacterial agent.
  • deodorizing active ingredients for use in cosmetic formulations such as stick deodorants. While each of the above ingredients are known generally to have activity as deodorizing agents, they have not been known to stand out as particularly effective deodorizing agents as compared to other available agents. However, as detailed below, the combination of the above three ingredients in a deodorant composition gives unexpectedly high levels of deodorant activity, which is long-lasting. Such levels have not been seen in the prior art deodorant formulations lacking propylene glycol and triclosan.
  • additional ingredients may be incorporated in the deodorant formulation.
  • vegetable glycerin may be included as a solvent ingredient for water-soluble components of the formulation, and to contribute structure to the solidified product.
  • propanediol other polymeric or nonpolymeric alcohols may be included.
  • ingredients include but are not limited to, quantities of diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, tetraethylene glycol, dibutylene glycol, diethylene glycol, monoethylether, PEG-8, 1,3-butanediol, 1,4-butanediol, glycerol propoxylate, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, hexylene glycol, 1,2-hexanediol, 1,3-butylene glycol, 1,2,6-trihyroxyhexane, 1,2,3-trihydroxyhexane, hexylene glycol, and 1,2-henediol.
  • Gelling agents are also known as structurants.
  • a particularly preferred and common gelling agent used in solid deodorant formulations is sodium stearate.
  • Other optional gelling agents which may be used include, but are not limited to: glyceryl laurate, beeswax, colloids, cocoa butter, shea butter, mango butter, hydrogenated vegetable oils, sodium oleate, sodium palmitate, sodium laurate, sodium arachidate, sodium behenate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, 16-hydroxyhexadecanoyl acid, fatty acid amides, fatty acid alkanol amides, dibenzalsorbitol, alkyl amides of citric acids, tricarballylic acid, aconitic acid, nitrilotriacetic acid, succinic acid, 2-hydroxy-1,2,3-propane tributylamide, 1-propene-1,2,3-trio
  • Emulsifiers may also be included in the formulation.
  • non-volatile saturated fatty alcohols such as behenyl alcohol, also known as docosanol
  • emulsifiers are cetearyl alcohol and cetearyl glucoside.
  • Other emulsifiers available for use for this application include, but are not limited to: inulin lauryl carbamate, citric acid esters, polyglycerol esters of fatty acids, sorbitan esters of fatty acids, saponins, lecithins, and carageenan.
  • Thickening agents may also be included in the formulation, to increase viscosity.
  • known thickening agents that may be used in this application include, but are not limited to, sodium chloride, hydroxyethylcellulose, carbomer, polyethylene glycol, vegetable gums, waxes, and petroleum jelly.
  • Starch may also be added to the formulation, principally to improve the texture and feel of the solid product.
  • Types of starch that may be used in the formulations of the invention include, but are not limited to, corn ( Zea Mays ) starch and distarch phosphate acetate.
  • sodium bicarbonate is a known ingredient with deodorizing properties.
  • other ingredients with such properties including, but not limited to: alpha bisabolol, benzoic acid, rosemarinic acid, caffeic acid, carnosic acid, ferrulic acid, galic acid, perillic acid, glucose methyl rapesseedate ferment, C12-13 alkyl lactate, chitosan, hinokitiol, eucalyptol, linalool, limonene, geraniaol, citral, benzyl benzoate, citronellol, sodium citronellate, citronellyl methylcrotonate, coumarin, engenool, benzyl salicylate, alum, farnesol, glucose oxidase, lactoperoxidase, glycerin monolaurate, levulinic acid, nisin, phenoxy
  • malodor masking agents such as perfumes and fragrances may be incorporated.
  • any essential oils or perfumes such as florals, herbs, fruits, trees, shrubs, fungi, corals, grasses such as rosewood, lavender, litsea cubeba, tea tree, lemon, lime, orange, petitgrain, geranium, lemongrass, palmarosa, mandarin, coriander, rose, patchouli, yarrow, cypress, cedar, citronella, bergamot, pine, myrtle, cypress, orange blossom, pine oil, citrus oil, jasmine oil, lily oil, rose oil, ylang ylang oil, sage oil, chamomile oil, oil of cloves, Melissa oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, iolibanum oil, galbanum oil,
  • varying the amounts of certain ingredients can result in alterations to the appearance of the final solid product, but have not been found to impact the performance of the product or its stability.
  • ranges are provided for the respective amounts of starch and the cetearyl alcohol/cetearyl glucoside.
  • the product of the invention may be given a transparent appearance by using cetearyl alcohol/cetearyl glucoside in an amount closer to the upper end of the range, in combination with an amount of starch provided closer to the lower end of the range.
  • cetearyl alcohol/cetearyl glucoside may be incorporated in an amount closer to the lower end of the range, in combination with an amount of starch provided closer to the upper end of the range. Clarity of the formulation may be further enhanced by including known clarifying agents such as sodium bicarbonate.
  • the present invention provides a deodorant formulation comprising by weight, based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; and from about 0.5-2% grapefruit seed extract. It will be understood that the use of the term “about” in relation to a range applies to both ends of the range provided.
  • the deodorant formulation further comprises at least one of a gelling agent, a thickening agent, an emulsifier, starch, a clarifying agent, further deodorizing active ingredients, and mixtures thereof.
  • the deodorant formulation comprises, by weight based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; from about 0.5-2% grapefruit seed extract; from about 2-10% gelling agent; from about 0.1-1% thickening agent; from about 0.1-1% of an emulsifier; from about 0.01-2% starch; from about 0.01-0.1% of a clarifying agent; and from about 0.001-5% of one or more further deodorizing active ingredients.
  • the deodorant formulation comprises, by weight based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; from about 0.5-2% grapefruit seed extract; from about 2-10% sodium stearate; from about 0.1-1% hydroxyethylcellulose; from about 0.1-1% sodium chloride; from about 0.1-1% behenyl alcohol; from about 0.1-1% cetearyl alcohol, from about 0.1-1% cetearyl glucoside, from about 0.01-2% distarch phosphate acetate; from about 0.01-2% corn starch, from about 0.01-0.1% of sodium bicarbonate; about 20-30% water; and from about 0.001-5% of one or more further deodorizing active ingredients.
  • the deodorant formulation comprises, by weight based on the total weight of the composition: about 45% propanediol; about 0.6% ethylhexylglycerin; about 0.9% grapefruit seed extract; from about 0.01-0.3% cetearyl alcohol, cetearyl glucoside or mixtures thereof; from about 0.01-0.9% distarch phosphate acetate; about 0.10% behenyl alcohol; about 0.05% hydroxyethylcellulose; about 20% glycerin; about 0.01% sodium bicarbonate; about 0.05% sodium chloride; about 4% sodium stearate; about 28% water; and additives, essential oils and/or perfume q.s.
  • a sample formulation of the invention displays excellent efficacy.
  • efficacy testing for deodorants is typically conducted by way of panel studies, in which the test substances and control substances are applied to the axilla of human subjects, and odour is then assessed at intervals by an objective panel of reviewers.
  • This type of deodorant testing is referred to in the industry as a “sniff test”.
  • sniff test Such a sniff test was conducted in this case, involving twenty subjects and three judges.
  • the twenty subjects were tested using a 7-point subjective axillary odour scale, with a ranking of 1 indicating a pleasant odour, and a ranking of 7 indicating a strong unpleasant odour.
  • a middle ranking of 4 indicated no detectable odour, positive or negative.
  • Subjects were tested prior to treatment to establish a baseline, and at intervals of 2 minutes, and 8 hours post-treatment.
  • the mean results for the twenty subjects are presented in FIG. 2 .
  • the values demonstrate that the deodorant formulation of the invention was effective at neutralizing axillary odour, such that even at 8 hours post-treatment, the averaged odour rating of the subjects was close to neutral.
  • the differences between treated subjects and control subjects were found to be statistically significant.
  • the panel testing results summarized in FIG. 2 show 8 hour efficacy for the deodorant formulation of the invention. This level of efficacy is excellent, and has not been seen for a deodorant formulation containing substantially natural ingredients and that does not incorporate propylene glycol or triclosan. The level of efficacy is greater than would have been expected based on the combination of the deodorizing actives propanediol, ethylhexylglycerin, and grapefruit seed extract.
  • deodorant formulations of this invention also show excellent stability when used to manufacture deodorant stick product in accordance with the methods outlined herein.
  • FIG. 1 shows a sample formulation of the invention.
  • the first step involves water, sodium bicarbonate, and sodium chloride being added to a mixing tank and agitated until dissolved. Hydroxyethylcellulose is then added and the mixture is further agitated until it is homogenous. While agitating, cornstarch and distarch phosphate acetate are added. The mixture is then agitated for at least 30 minutes, while heating to 65-75° C. The specified quantities of propanediol and glycerin are then added and agitated until homogenous, while maintaining the temperature at 65-75° C.
  • Sodium stearate is then added with agitation until it is dissolved.
  • the next step is to add the cetearyl alcohol, cetearyl glucoside, and behenyl alcohol while agitating, and simultaneously increasing the temperature to 85-90° C.
  • the mixture is then agitated for 60 minutes at 85-90° C.
  • the mixture is then cooled to 76-80° C. while agitating.
  • the ethylhexylglycerin is added along with the grapefruit seed extract, and any desired additives, essential oils, or perfumes.
  • the mix is further agitated until it is homogenous, maintaining the temperature at 76-80° C., for 30-45 minutes.
  • the next step in the creation of the solid stick deodorant of the invention is the filling of the packaging. While agitating the bulk mixture and maintaining the temperature at 76-80° C., appropriate volumes of the mixture are poured into the top of appropriate empty plastic deodorant containers. A number of sources are available for such empty deodorant containers; containers purchased from Levlad Manufacturing were used.
  • a natural and stable deodorant stick product can be manufactured by the following method, with reference to the flowchart in FIG. 3 .
  • a deodorant container having an open top end and a closed bottom end is provided at step 102 .
  • the deodorant container has an interior for containing deodorant stick product.
  • the deodorant composition as manufactured according to the methods described above is provided.
  • the deodorant composition is then poured into the interior of the deodorant container through the deodorant container's open top end 106 .
  • the open top end of the deodorant container is for dispensing deodorant product.
  • the deodorant composition in the container is cooled until it is in a solid state 108 .
  • the open top end of the deodorant container is then covered with a lid 110 .
  • the filled deodorant containers are sent on a conveyor through two standard cooling boxes which have each been set at a temperature of 3-7° C.
  • the filled deodorant containers reside for 30-40 minutes in each box at the indicated temperatures.
  • the filled deodorant containers are subsequently conveyed in sequence to two more cooling boxes at temperatures of 8-12° C., again for periods of 30-40 minutes per box.
  • the product core temperature as it exits the fourth, final cooling box will be 25-35° C.
  • the deodorant products may then be capped and labelled.
  • a natural deodorant solid stick product is formed by a method of top-filling.
  • the product when made by the above-described manufacturing method and top-fill procedure, has further shown to be more stable as compared to other deodorant products employing similar ingredients, but manufactured in accordance with a bottom-fill method.
  • the stability of the product of the invention is revealed in the 12-week stability data presented in FIGS. 4-9 .
  • FIG. 4 is a summary of a 12-week stability test.
  • the formulation as set out in FIG. 1 was prepared in accordance with the manufacturing method described previously.
  • the containers were weighed at the beginning of the test in order to provide a baseline, and samples were subsequently incubated at three different temperatures (4° C., 25° C., 45° C.) for a total of 12 weeks each. Once per week, each container was weighed, and the weight and percentage weight loss was recorded.
  • FIG. 5 is a summary of the same 12-week stability test as in FIG. 4 using top-filled deodorant containers, the only difference being that the deodorant stick was given a domed top by the addition of a domed cap on the top of the cooling deodorant stick prior to solidification.
  • FIG. 6 is a summary of the same 12-week stability test as in FIGS. 4 and 5 , however a modification of the manufacturing process was employed. Instead of pouring the molten deodorant into the containers from the top, the containers were filled from the bottom. Standard deodorant containers designed to be filled from the bottom were purchased from Levlad Manufacturing. In all other respects, the manufacturing method employed was identical to that set out previously.
  • FIGS. 7 , 8 , and 9 are graphs showing the percentage weight loss as a function of time for each of the tested samples and for each of the temperatures 4° C., 25° C., and 45° C. respectively. It can be seen that there is a dramatic difference in weight loss, and therefore stability of the solid deodorant product, at each of the test temperatures. It is evident that the two top-filled products had a slight degree of weight loss over the 12 weeks, which is to be expected. However, the extent of weight loss was dramatically different for the bottom-filled product, with approximately a two-eight fold difference in weight loss shown, depending on the incubation temperature.

Abstract

The present invention provides a deodorant formulation having improved efficacy and stability. The deodorant formulation comprises propanediol, ethylhexylglycerin, and grapefruit seed extract as the principal deodorizing actives. The combination of these deodorizing active ingredients results in a formulation with strong efficacy. The deodorant formulation of the invention may further be formed into a stable solid stick product in accordance with the methods outlined herein.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a novel solid deodorant formulation, and a method for manufacturing a deodorant stick product having excellent stability and efficacy.
  • BACKGROUND OF THE INVENTION
  • Topical deodorant formulations for use in controlling odour in the underarm area have been available in the market for many years, in solid stick or liquid form. Deodorant compositions have contained deodorizing active ingredients of several types. For example, antimicrobial agents function to inhibit bacterial growth, thus reducing bacterial interactions with sweat gland secretions, which are responsible for producing undesirable odours. Malodour masking agents such as perfumes and fragrances function to mask the malodours produced by bacterial interactions. Malodour neutralizers are also available which serve to chemically fix malodours. Thus, deodorant actives known in the art have generally referred to topical materials which inhibit the formation of, mask, or neutralize malodours resulting from perspiration.
  • Solid deodorant formulations of the prior art have commonly contained propylene glycol as the principal ingredient, and triclosan as a deodorizing active. The general manufacturing process for solid deodorants and cosmetics is also known. Deodorant formulations are typically mixed in relatively large quantities under heat, then poured into individual product containers, which act as molds to permit the sticks to be cast directly in them. Such product containers may be filled from the bottom or the top, and the deodorant stick may be shaped with a domed top or flat top.
  • A problem with many of the deodorant formulations that form part of the prior art is that they have relied on ingredients that have been found to be detrimental to human health or irritating to the skin. For instance, as substantiated by independent studies, a common deodorizing active material, triclosan, appears to be harmful to human skin and potentially carcinogenic. Another common and effective ingredient in deodorant formulations, propylene glycol, has been found to be irritating to many consumers with sensitive skin. As consumers become more conscious of the ingredients contained in personal care products such as deodorants, there has been rising demand for alternative formulations which are composed of ingredients that are naturally sourced or are formulated with minimal environmental impact, are not detrimental to human health, and which are mild when applied to skin and can therefore be used by a greater number of consumers, even those with sensitive skin.
  • In addition to the above needs in regard to deodorant formulations, a significant manufacturing issue with deodorant formulations that rely on natural ingredients and do not contain triclosan or propylene glycol is reduced stability and shelf life. When solid stick formulations are created, a problem frequently encountered has been the shrinking of the deodorant stick after it has been poured into the container. Natural deodorant formulations in particular have been plagued by the problem of the stick shrinking at ambient temperatures, such that the deodorant stick separates from the container wall. This problem with solid cosmetic formulations is known in the industry as “sweating”, whereby moisture from the solid deodorant stick formulation condenses on the surface of the stick, and ultimately evaporates. As it evaporates, the product shrinks back from the container edges and loses the original surface texture. This results in an unattractive and unsalable product with poor surface characteristics. It has been a significant and costly problem with many natural deodorant stick products.
  • The problem is believed to reside in the use of water and volatile alcohols in the natural deodorant formulation, which has arisen in prior art formulations, including those formulated to lack propylene glycol. When such ingredients form a significant portion of the solid formulation, it is difficult to prevent these ingredients from condensing out of the solid stick and evaporating. However, in formulating natural and substantially natural deodorant formulations in accordance with prior art teachings, it has been inevitable that the high percentage of water and volatile alcohols causes such stability problems.
  • What is needed is a solid stick deodorant formulation, that preferably contains all natural or naturally sourced ingredients, and is stable once formed into a deodorant stick product in a container.
  • SUMMARY OF THE INVENTION
  • The present invention provides a natural deodorant formulation that exhibits excellent efficacy, at levels beyond those seen for other such formulations available in the prior art. Further, the formulation of the present invention exhibits improved stability once formed into a deodorant stick product in a container that is filled from the top opening compared with a bottom filled container. This product addresses the above-mentioned drawbacks of solid natural deodorant formulations and provides for a product with increased stability and therefore increased shelf life and commercial value.
  • In one embodiment the invention comprises a novel deodorant formulation having propanediol as the base, combined with the deodorizing active materials ethylhexylglycerin and grapefruit seed extract. It has been found that the combination of propanediol, grapefruit seed extract and ethylhexylglycerin, when applied topically to the skin, provides improved deodorant efficacy, that is greater than the additive deodorant benefits that would otherwise be expected from such a combination. When manufactured into solid stick deodorant product in a container in accordance with the process outlined herein, a deodorant stick product displaying excellent efficacy and stability is formed.
  • The present invention is further directed to a novel manufacturing method for making and forming deodorant products in accordance with the described formulations.
  • The present invention is also directed to a stable and efficaceous deodorant stick product manufactured in accordance with the specified method and in accordance with the claimed formulations.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The present invention will now be better understood with reference to the description and to the accompanying figures in which:
  • FIG. 1 is a table outlining a sample deodorant stick formulation in accordance with the invention;
  • FIG. 2 is a table summarizing the efficacy results obtained with the deodorant formulation described in FIG. 1, as compared to a control formulation;
  • FIG. 3 is a flowchart showing an exemplary embodiment of a method of manufacturing a deodorant stick product in accordance with one aspect of the present invention;
  • FIG. 4 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a top filled, domed deodorant product made in accordance with the formula in FIG. 1;
  • FIG. 5 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a top filled, flat-finish deodorant product made in accordance with the formula in FIG. 1;
  • FIG. 6 consists of comparative tables showing the results of a 12-week stability test at each of 4° C., Room Temperature (25° C.), and 45° C. for a bottom filled deodorant product made in accordance with the formula in FIG. 1;
  • FIG. 7 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 4° C.;
  • FIG. 8 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 25° C.; and
  • FIG. 9 is a graph showing stability results in terms of percentage weight loss for each of the types of packaging tested, at 45° C.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention relates to a deodorant composition or formulation that shows remarkable qualities of stability once formed into a solid stick product in accordance with the manufacturing method described herein. The solid stick product made in accordance with the formulation of the invention may be formulated to be clear, translucent, or substantially opaque in appearance. It is preferably clear or translucent.
  • The ingredients used in the deodorant composition of the invention are preferably natural, or substantially natural, ingredients. In the deodorant industry, the term “natural” indicates that the ingredient is derived from a plant or animal source. This is in contrast to synthetically derived chemicals which cannot typically be considered to be “natural” ingredients.
  • In a first embodiment, the deodorant composition comprises propanediol (chemical name: 1,3-propanediol), combined with further deodorizing active ingredients, namely ethylhexylglycerin and grapefruit seed extract. Each of these ingredients are known in the art and available from a number of sources. For example, the propanediol used is commercially available from DUPONT™ under the trade-mark ZEMEA™. ZEMEA™ is particularly beneficial to use in a natural deodorant formulation as it is a biodegradable product that is manufactured from corn with reduced environmental impact, using 40% less energy in the manufacturing process as compared with a petroleum-based propanediol.
  • Ethylhexylglycerin is a known deodorizing active ingredient, which is a representative of the 1-alkyl glycerin ethers, and which operates to inhibit the growth and multiplication of malodour-causing bacteria. Substances with a similar structure to ethylhexylglycerin occur in nature. Grapefruit seed extract is also a known deodorizing active ingredient, which is made by converting grapefruit seeds and pulp into acidic liquid. The resulting extract is effective as an antibacterial agent.
  • There are hundreds of options for deodorizing active ingredients for use in cosmetic formulations such as stick deodorants. While each of the above ingredients are known generally to have activity as deodorizing agents, they have not been known to stand out as particularly effective deodorizing agents as compared to other available agents. However, as detailed below, the combination of the above three ingredients in a deodorant composition gives unexpectedly high levels of deodorant activity, which is long-lasting. Such levels have not been seen in the prior art deodorant formulations lacking propylene glycol and triclosan.
  • In addition to the above three deodorizing active ingredients, additional ingredients may be incorporated in the deodorant formulation. For example, vegetable glycerin may be included as a solvent ingredient for water-soluble components of the formulation, and to contribute structure to the solidified product. In addition to propanediol, other polymeric or nonpolymeric alcohols may be included. Other ingredients that may be used, include but are not limited to, quantities of diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, tetraethylene glycol, dibutylene glycol, diethylene glycol, monoethylether, PEG-8, 1,3-butanediol, 1,4-butanediol, glycerol propoxylate, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, hexylene glycol, 1,2-hexanediol, 1,3-butylene glycol, 1,2,6-trihyroxyhexane, 1,2,3-trihydroxyhexane, hexylene glycol, and 1,2-henediol.
  • Another ingredient that may be included is a gelling agent. Gelling agents are also known as structurants. A particularly preferred and common gelling agent used in solid deodorant formulations is sodium stearate. Other optional gelling agents which may be used include, but are not limited to: glyceryl laurate, beeswax, colloids, cocoa butter, shea butter, mango butter, hydrogenated vegetable oils, sodium oleate, sodium palmitate, sodium laurate, sodium arachidate, sodium behenate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, 16-hydroxyhexadecanoyl acid, fatty acid amides, fatty acid alkanol amides, dibenzalsorbitol, alkyl amides of citric acids, tricarballylic acid, aconitic acid, nitrilotriacetic acid, succinic acid, 2-hydroxy-1,2,3-propane tributylamide, 1-propene-1,2,3-trioctylamide, N,N′,N″-tri(acetodecylamide)amine, 2-dodecyl-N,N′-dihexylsuccinamide, 2-dodecyl-N,N′-dibutylsuccinamide, dimethylamine stearate, triethylamine stearate, triethylemine oleate, diethylamine stearate, and trimethylamine oleate.
  • Emulsifiers may also be included in the formulation. For instance, non-volatile saturated fatty alcohols such as behenyl alcohol, also known as docosanol, may be included. Also useful as emulsifiers are cetearyl alcohol and cetearyl glucoside. Other emulsifiers available for use for this application include, but are not limited to: inulin lauryl carbamate, citric acid esters, polyglycerol esters of fatty acids, sorbitan esters of fatty acids, saponins, lecithins, and carageenan.
  • Thickening agents may also be included in the formulation, to increase viscosity. For instance, known thickening agents that may be used in this application include, but are not limited to, sodium chloride, hydroxyethylcellulose, carbomer, polyethylene glycol, vegetable gums, waxes, and petroleum jelly.
  • Starch may also be added to the formulation, principally to improve the texture and feel of the solid product. Types of starch that may be used in the formulations of the invention include, but are not limited to, corn (Zea Mays) starch and distarch phosphate acetate.
  • Additional deodorizing actives may be included with the three actives specified above. For example, sodium bicarbonate is a known ingredient with deodorizing properties. There are hundreds of other ingredients with such properties, including, but not limited to: alpha bisabolol, benzoic acid, rosemarinic acid, caffeic acid, carnosic acid, ferrulic acid, galic acid, perillic acid, glucose methyl rapesseedate ferment, C12-13 alkyl lactate, chitosan, hinokitiol, eucalyptol, linalool, limonene, geraniaol, citral, benzyl benzoate, citronellol, sodium citronellate, citronellyl methylcrotonate, coumarin, engenool, benzyl salicylate, alum, farnesol, glucose oxidase, lactoperoxidase, glycerin monolaurate, levulinic acid, nisin, phenoxyethanol, potassium sorbate, isostearic acid, sodium usnate, tea tree, cetyltrimethylammonium bromide, cetyl pyridinium chloride, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimeethyl benzyl ammonium chloride, sodium N-palmethyl sarcosine, N-myristoyl glycine, potassium N-lauryl sarcosine, trimethyl ammonium chloride, sodium aluminum chlorohydroxy lactate, triethyl citrate, triclocarban, diaminoalkyl amides such as L-lysine hexadecyl amide, heavy metal salts of citrate, salicylate, and piroctose, polyglyceryl-3-caprylate, zinc phenolsulfate, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride, N-alkylpyridinium chloride, N-cetyl pyridinium bromide, sodium N-lauroyl sarcosine, sodium N-palmetoyl sarcosine, lauroyl sarcosine, N-myristoyl glycine, potassium N-lauroyl sarcosine, stearyl trimethyl ammonium chloride, cetyltrimethyalammonium chloride, cetylpyridinium chloride, diisobutylethyoxyethyldimenethylbenzelammonium chloride, sodium N-laurylsarcosinate, sodium-N-palmethylsarcosinate, N-myristoylglycine, potassium N-laurylsarcosine, trimethylammonium chloride, sodium aluminum chlorohydroxylactate, triethyl citrate, tricetylmethylammonium chloride, triclosan, phenoxyethanol, 1,5-pentanediol, 1,6-hexandediol, diaminoalkylamide (eg. 1-lysine hexadecyl amide, citrate heavy metal sales, salicylates, piroctoses, zinc ricinoleate, zinc phenolsulfonate, dichloro-m-xylenol, 2,2′-methylenebis(3,4,6-trichlorophenol), 2,2′-thiobis(4,6-dichloropheol), p-chloro-m-zelenol, dichloro-m-xylenol, phenethyl alcohol, and any of the alkalirhodanides.
  • In addition, other malodor masking agents such as perfumes and fragrances may be incorporated. Again, there are many options known in the art that have been used in cosmetic formulations, and which include, but are not limited to: any essential oils or perfumes such as florals, herbs, fruits, trees, shrubs, fungi, corals, grasses such as rosewood, lavender, litsea cubeba, tea tree, lemon, lime, orange, petitgrain, geranium, lemongrass, palmarosa, mandarin, coriander, rose, patchouli, yarrow, cypress, cedar, citronella, bergamot, pine, myrtle, cypress, orange blossom, pine oil, citrus oil, jasmine oil, lily oil, rose oil, ylang ylang oil, sage oil, chamomile oil, oil of cloves, Melissa oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, iolibanum oil, galbanum oil, laudanum oil, resins such as benzoin siam resinoid and opoponax resinoid, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzeyl formate, ethyl methylphenylglycinate, allyl cyclohexylpropionate, styrallyl propionate, benzyl salicylate, benzyl ethyl ether, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial, bourgeonal, ionones, anethole, citronellol, eugenool, geraniol, linalool, phenylethyl alcohol, terpineol, isoamyl salicylate, benzyl salicylate, thyme oil red, B-methyl naphthyl ketone, p-t-butyl-A-methyl hydrocinnamic aldehyde, p-t-amyl cyclohexanone, coumarin, B-naphthyl methyl ether, diethyl phthalate, phenylethyl phenylacetate, dimurcetol, phenylethyl alcohol, undecyl aldehyde, undecylenic aldehyde, lauric aldeheyde, amyl cinnamic aldehyde, ethyl methyl phenyl glycidate, methyl nonyl aldehyde, octyl aldehyde, undecalactone, hexyl cinnamic aldehyde, benzaldehyde, vanillin, heliotropine, camphor, para-hydroxy phenolbutannone, 6-acetyl 1,1,3,4,4,6 hexamethyl tetrahydronaphtahalene, alpha-methyl ionone, gamma-methyl ionone, amyl-cyclohexanone, linalyl acetate, isopropyl mystirate, cedryl acetate, and myrcenyl acetate.
  • It is further noted that varying the amounts of certain ingredients can result in alterations to the appearance of the final solid product, but have not been found to impact the performance of the product or its stability. For instance, as shown in FIG. 1, ranges are provided for the respective amounts of starch and the cetearyl alcohol/cetearyl glucoside. The product of the invention may be given a transparent appearance by using cetearyl alcohol/cetearyl glucoside in an amount closer to the upper end of the range, in combination with an amount of starch provided closer to the lower end of the range. Similarly, if a translucent product is desired, cetearyl alcohol/cetearyl glucoside may be incorporated in an amount closer to the lower end of the range, in combination with an amount of starch provided closer to the upper end of the range. Clarity of the formulation may be further enhanced by including known clarifying agents such as sodium bicarbonate.
  • As will be understood from the description provided herein, in one embodiment the present invention provides a deodorant formulation comprising by weight, based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; and from about 0.5-2% grapefruit seed extract. It will be understood that the use of the term “about” in relation to a range applies to both ends of the range provided.
  • In another embodiment, the deodorant formulation further comprises at least one of a gelling agent, a thickening agent, an emulsifier, starch, a clarifying agent, further deodorizing active ingredients, and mixtures thereof.
  • In an alternative embodiment, the deodorant formulation comprises, by weight based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; from about 0.5-2% grapefruit seed extract; from about 2-10% gelling agent; from about 0.1-1% thickening agent; from about 0.1-1% of an emulsifier; from about 0.01-2% starch; from about 0.01-0.1% of a clarifying agent; and from about 0.001-5% of one or more further deodorizing active ingredients.
  • In a further embodiment, the deodorant formulation comprises, by weight based on the total weight of the composition: from about 40-70% propanediol; from about 0.1-1% ethylhexylglycerin; from about 0.5-2% grapefruit seed extract; from about 2-10% sodium stearate; from about 0.1-1% hydroxyethylcellulose; from about 0.1-1% sodium chloride; from about 0.1-1% behenyl alcohol; from about 0.1-1% cetearyl alcohol, from about 0.1-1% cetearyl glucoside, from about 0.01-2% distarch phosphate acetate; from about 0.01-2% corn starch, from about 0.01-0.1% of sodium bicarbonate; about 20-30% water; and from about 0.001-5% of one or more further deodorizing active ingredients.
  • In an alternative embodiment, the deodorant formulation comprises, by weight based on the total weight of the composition: about 45% propanediol; about 0.6% ethylhexylglycerin; about 0.9% grapefruit seed extract; from about 0.01-0.3% cetearyl alcohol, cetearyl glucoside or mixtures thereof; from about 0.01-0.9% distarch phosphate acetate; about 0.10% behenyl alcohol; about 0.05% hydroxyethylcellulose; about 20% glycerin; about 0.01% sodium bicarbonate; about 0.05% sodium chloride; about 4% sodium stearate; about 28% water; and additives, essential oils and/or perfume q.s.
  • A sample formulation of the invention, as shown in FIG. 2, displays excellent efficacy. In the industry, efficacy testing for deodorants is typically conducted by way of panel studies, in which the test substances and control substances are applied to the axilla of human subjects, and odour is then assessed at intervals by an objective panel of reviewers. This type of deodorant testing is referred to in the industry as a “sniff test”. Such a sniff test was conducted in this case, involving twenty subjects and three judges.
  • As seen in FIG. 2, the twenty subjects were tested using a 7-point subjective axillary odour scale, with a ranking of 1 indicating a pleasant odour, and a ranking of 7 indicating a strong unpleasant odour. A middle ranking of 4 indicated no detectable odour, positive or negative.
  • Subjects were tested prior to treatment to establish a baseline, and at intervals of 2 minutes, and 8 hours post-treatment. The mean results for the twenty subjects are presented in FIG. 2. The values demonstrate that the deodorant formulation of the invention was effective at neutralizing axillary odour, such that even at 8 hours post-treatment, the averaged odour rating of the subjects was close to neutral. The differences between treated subjects and control subjects were found to be statistically significant.
  • The panel testing results summarized in FIG. 2 show 8 hour efficacy for the deodorant formulation of the invention. This level of efficacy is excellent, and has not been seen for a deodorant formulation containing substantially natural ingredients and that does not incorporate propylene glycol or triclosan. The level of efficacy is greater than would have been expected based on the combination of the deodorizing actives propanediol, ethylhexylglycerin, and grapefruit seed extract.
  • The deodorant formulations of this invention, as will also be demonstrated below, also show excellent stability when used to manufacture deodorant stick product in accordance with the methods outlined herein.
  • FIG. 1 shows a sample formulation of the invention. A description of the manufacturing process for deodorant stick product follows. Taking the example of the particular ingredients listed in FIG. 1, the first step involves water, sodium bicarbonate, and sodium chloride being added to a mixing tank and agitated until dissolved. Hydroxyethylcellulose is then added and the mixture is further agitated until it is homogenous. While agitating, cornstarch and distarch phosphate acetate are added. The mixture is then agitated for at least 30 minutes, while heating to 65-75° C. The specified quantities of propanediol and glycerin are then added and agitated until homogenous, while maintaining the temperature at 65-75° C. Sodium stearate is then added with agitation until it is dissolved. The next step is to add the cetearyl alcohol, cetearyl glucoside, and behenyl alcohol while agitating, and simultaneously increasing the temperature to 85-90° C. The mixture is then agitated for 60 minutes at 85-90° C. Following this step, the mixture is then cooled to 76-80° C. while agitating. Finally, the ethylhexylglycerin is added along with the grapefruit seed extract, and any desired additives, essential oils, or perfumes. The mix is further agitated until it is homogenous, maintaining the temperature at 76-80° C., for 30-45 minutes.
  • The next step in the creation of the solid stick deodorant of the invention is the filling of the packaging. While agitating the bulk mixture and maintaining the temperature at 76-80° C., appropriate volumes of the mixture are poured into the top of appropriate empty plastic deodorant containers. A number of sources are available for such empty deodorant containers; containers purchased from Levlad Manufacturing were used. In an exemplary embodiment, a natural and stable deodorant stick product can be manufactured by the following method, with reference to the flowchart in FIG. 3. A deodorant container having an open top end and a closed bottom end is provided at step 102. The deodorant container has an interior for containing deodorant stick product. At step 104 the deodorant composition as manufactured according to the methods described above is provided. The deodorant composition is then poured into the interior of the deodorant container through the deodorant container's open top end 106. The open top end of the deodorant container is for dispensing deodorant product. The deodorant composition in the container is cooled until it is in a solid state 108. The open top end of the deodorant container is then covered with a lid 110.
  • Next, the filled deodorant containers are sent on a conveyor through two standard cooling boxes which have each been set at a temperature of 3-7° C. The filled deodorant containers reside for 30-40 minutes in each box at the indicated temperatures. The filled deodorant containers are subsequently conveyed in sequence to two more cooling boxes at temperatures of 8-12° C., again for periods of 30-40 minutes per box. At the end of this process, the product core temperature as it exits the fourth, final cooling box will be 25-35° C. The deodorant products may then be capped and labelled.
  • The foregoing steps constitute the preferred method by which the stick deodorant product of the present invention is made. However, it will be apparent to those of skill in the art that some variations may be applied to the steps in the method without departing from the scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the claims.
  • Following the above procedure, a natural deodorant solid stick product is formed by a method of top-filling. The product, when made by the above-described manufacturing method and top-fill procedure, has further shown to be more stable as compared to other deodorant products employing similar ingredients, but manufactured in accordance with a bottom-fill method. The stability of the product of the invention is revealed in the 12-week stability data presented in FIGS. 4-9.
  • FIG. 4 is a summary of a 12-week stability test. The formulation as set out in FIG. 1 was prepared in accordance with the manufacturing method described previously. The containers were weighed at the beginning of the test in order to provide a baseline, and samples were subsequently incubated at three different temperatures (4° C., 25° C., 45° C.) for a total of 12 weeks each. Once per week, each container was weighed, and the weight and percentage weight loss was recorded.
  • Similarly, FIG. 5 is a summary of the same 12-week stability test as in FIG. 4 using top-filled deodorant containers, the only difference being that the deodorant stick was given a domed top by the addition of a domed cap on the top of the cooling deodorant stick prior to solidification.
  • FIG. 6 is a summary of the same 12-week stability test as in FIGS. 4 and 5, however a modification of the manufacturing process was employed. Instead of pouring the molten deodorant into the containers from the top, the containers were filled from the bottom. Standard deodorant containers designed to be filled from the bottom were purchased from Levlad Manufacturing. In all other respects, the manufacturing method employed was identical to that set out previously.
  • The differences in weight loss for the 12 week stability studies summarized in FIGS. 4, 5, and 6 are readily apparent when the data is graphed. FIGS. 7, 8, and 9 are graphs showing the percentage weight loss as a function of time for each of the tested samples and for each of the temperatures 4° C., 25° C., and 45° C. respectively. It can be seen that there is a dramatic difference in weight loss, and therefore stability of the solid deodorant product, at each of the test temperatures. It is evident that the two top-filled products had a slight degree of weight loss over the 12 weeks, which is to be expected. However, the extent of weight loss was dramatically different for the bottom-filled product, with approximately a two-eight fold difference in weight loss shown, depending on the incubation temperature.
  • This difference in weight loss translates to a significant difference in stability of the solid deodorant product. The differences have been confirmed by further testing, and reveals that for natural deodorant products such as of the formulation described herein, the particular manufacturing method, and in particular the method of forming the deodorant stick, makes a commercially significant difference in the ultimate product stability and shelf-life. The impact of the manufacturing method on product stability in this manner was surprising and has not been seen previously in the art.
  • As set out previously, a person of skill in the art may make adjustments to the steps used in the manufacturing process. In addition, further variations of the formulations are possible based on the variety of ingredients available in the prior art, as described above.
  • It should further be noted that when an amount, concentration or other parameter is given as a range or a list of upper and lower preferable values, it is to be understood as disclosing all ranges formed from any pair of any upper and lower limit. Where a range of numerical values is recited, unless otherwise stated, the range includes the endpoints thereof.
  • While the invention has been described with reference to specific embodiments thereof, it will be appreciated that numerous variations, modifications, and embodiments are possible. All such variations, modifications and embodiments are to be regarded as being within the spirit and scope of the invention.

Claims (30)

1. A deodorant composition, comprising by weight, based on the total weight of the composition:
from about 40-70% of propanediol;
from about 0.1-1% of ethylhexylglycerin; and
from about 0.5-2% of grapefruit seed extract.
2. The deodorant composition according to claim 1, further comprising a gelling agent selected from the group consisting of sodium stearate, potassium stearate, and mixtures thereof.
3. The deodorant composition according to claim 2, wherein the gelling agent is sodium stearate.
4. The deodorant composition according to claim 3, wherein the sodium stearate is provided in an amount of about 2-10% by weight of the total composition.
5. The deodorant composition according to claim 4, wherein the sodium stearate is provided in an amount of about 4% by weight of the total composition.
6. The deodorant composition according to claim 1, further comprising about 5-30% glycerin by weight of the total composition.
7. The deodorant composition according to claim 6, wherein the glycerin is provided in an amount of about 20% by weight of the total composition.
8. The deodorant composition according to claim 1, further comprising a starch selected from the group consisting of corn starch and distarch phosphate acetate.
9. The deodorant composition according to claim 8, wherein the starch is provided in an amount of about 0.01-2% by weight of the total composition.
10. The deodorant composition according to claim 9, wherein the starch is distarch phosphate acetate.
11. The deodorant composition according to claim 9, wherein the starch is corn starch.
12. The deodorant composition according to claim 1, further comprising an emulsifier.
13. The deodorant composition according to claim 12, wherein the emulsifier is selected from the group consisting of cetearyl alcohol, cetearyl glucoside, behenyl alcohol, and mixtures thereof.
14. The deodorant composition according to claim 13, wherein the emulsifier is provided in an amount of about 0.001-1.0% by weight of the total composition.
15. The deodorant composition according to claim 14, further comprising from about 0.005-0.3% by weight of the total composition of cetearyl alcohol, cetearyl glucoside or mixtures thereof.
16. The deodorant composition according to claim 14, further comprising about 0.1% behenyl alcohol by weight of the total composition.
17. The deodorant composition according to claim 1, further comprising a thickening agent selected from the group consisting of hydroxyethylcellulose and sodium chloride.
18. The deodorant composition according to claim 17, wherein the thickening agent is provided in an amount of about 0.1-1.0% by weight of the total composition.
19. The deodorant composition according to claim 18, wherein the thickening agent is hydroxyethylcellulose.
20. The deodorant composition according to claim 19, wherein the hydroxyethylcellulose is provided in an amount of about 0.05% by weight of the total composition.
21. The deodorant composition according to claim 17, wherein the thickening agent is sodium chloride.
22. The deodorant composition according to claim 21, wherein the sodium chloride is provided in an amount of about 0.05% by weight of the total composition.
23. The deodorant composition according to claim 1, further comprising a clarifying agent.
24. The deodorant composition according to claim 23, wherein the clarifying agent is provided in an amount of about 0.01-0.1% by weight of the total composition.
25. The deodorant composition according to claim 24, wherein the clarifying agent is sodium bicarbonate.
26. The deodorant composition according to claim 25, wherein the sodium bicarbonate is provided in an amount of about 0.01% by weight of the total composition.
27. The deodorant composition according to claim 1, comprising at least one further deodorizing active ingredient.
28. The deodorant composition according to claim 27, wherein the at least one further deodorizing active ingredient is present in an amount of about 0.1-5% by weight of the total composition.
29. A method of forming a deodorant stick product, comprising:
providing a deodorant container, the deodorant container having an interior for containing deodorant product, the deodorant container having an open top end and a closed bottom end, the open top end for dispensing deodorant product;
providing the deodorant composition defined in claim 1;
pouring the deodorant composition into the interior of the deodorant container through the open top end;
cooling the deodorant composition until it is in a solid state; and
covering the open top end of the deodorant container with a lid.
30. A deodorant stick product manufactured in accordance with the method of claim 29.
US12/538,379 2009-08-10 2009-09-11 Stable solid deodorant product and method for manufacturing same Abandoned US20110033405A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/272,736 US8425886B2 (en) 2009-08-10 2011-10-13 Stable solid deodorant product and method for manufacturing same
US13/800,321 US9247800B2 (en) 2009-08-10 2013-03-13 Stable solid deodorant product and method of manufacturing same
US14/817,787 US9307821B2 (en) 2009-08-10 2015-08-04 Stable solid deodorant product and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2675184A CA2675184C (en) 2009-08-10 2009-08-10 Stable solid deodorant product and method for manufacturing same
CA2675184 2009-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/272,736 Continuation US8425886B2 (en) 2009-08-10 2011-10-13 Stable solid deodorant product and method for manufacturing same

Publications (1)

Publication Number Publication Date
US20110033405A1 true US20110033405A1 (en) 2011-02-10

Family

ID=43534984

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/538,379 Abandoned US20110033405A1 (en) 2009-08-10 2009-09-11 Stable solid deodorant product and method for manufacturing same
US13/272,736 Active 2029-10-01 US8425886B2 (en) 2009-08-10 2011-10-13 Stable solid deodorant product and method for manufacturing same
US13/800,321 Expired - Fee Related US9247800B2 (en) 2009-08-10 2013-03-13 Stable solid deodorant product and method of manufacturing same
US14/817,787 Active US9307821B2 (en) 2009-08-10 2015-08-04 Stable solid deodorant product and method of manufacturing same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/272,736 Active 2029-10-01 US8425886B2 (en) 2009-08-10 2011-10-13 Stable solid deodorant product and method for manufacturing same
US13/800,321 Expired - Fee Related US9247800B2 (en) 2009-08-10 2013-03-13 Stable solid deodorant product and method of manufacturing same
US14/817,787 Active US9307821B2 (en) 2009-08-10 2015-08-04 Stable solid deodorant product and method of manufacturing same

Country Status (2)

Country Link
US (4) US20110033405A1 (en)
CA (1) CA2675184C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662433A1 (en) * 2012-05-07 2013-11-13 Symrise AG Perfume composition
US20140255077A1 (en) * 2013-03-07 2014-09-11 Knowlton Development Corp. Inc. Deodorant with improved endurance and stability
WO2015099911A1 (en) * 2013-12-24 2015-07-02 The Dial Corporation Antiperspirant composition with non-ionic polymers
FR3023476A1 (en) * 2014-07-11 2016-01-15 Oreal AQUEOUS SOLID COMPOSITION CONTAINING A FATTY ACID SALT, A POLYOL AND A HYDROPHILIC GELIFIER
WO2019231434A1 (en) * 2018-05-29 2019-12-05 Kdc Us Holdings Inc. Personal care product formulations with adjustable product deposition
RU2772282C1 (en) * 2018-05-29 2022-05-18 Кдс Юс Холдингс Инк. Compositions of personal hygiene products with adjustable product application
CN117264704A (en) * 2023-11-17 2023-12-22 广东专宠生物科技有限公司 Disinfecting laundry gel bead and preparation process thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2675184C (en) * 2009-08-10 2015-12-22 Knowlton Development Corporation Inc. Stable solid deodorant product and method for manufacturing same
US9273272B2 (en) * 2011-05-04 2016-03-01 Lincoln Manufacturing Inc. Natural antimicrobial compositions
FR3022782B1 (en) * 2014-06-30 2017-10-20 Oreal COMPOSITIONS COMPRISING A SOAP BASE AND 1,3-PROPANEDIOL

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980246A (en) * 1952-07-09 1961-04-18 Calumet Mfg Co Inc Container-dispenser for cosmetics in solid stick form
US4252789A (en) * 1979-08-01 1981-02-24 The Gillette Company Deodorant stick
US4298036A (en) * 1979-12-13 1981-11-03 Plastic Research Products, Inc. Dispenser for stick solids
US4322400A (en) * 1978-12-19 1982-03-30 Dragoco Inc. Cosmetic stick composition
US4521127A (en) * 1982-11-30 1985-06-04 Gibson Associates, Inc. Sealed propulsion mechanism for a stick-deodorant or the like container
US4617185A (en) * 1984-07-13 1986-10-14 The Procter & Gamble Company Improved deodorant stick
US4621935A (en) * 1980-10-16 1986-11-11 Shore Plastics Inc. Method of filling a cosmetic container with push-up actuator
US4664547A (en) * 1985-07-01 1987-05-12 W. Braun Company Product storage container and dispenser
US4743444A (en) * 1986-02-20 1988-05-10 The Procter & Gamble Company Antiperspirant and deodorant sticks
US4822602A (en) * 1987-04-29 1989-04-18 The Procter & Gamble Company Cosmetic sticks
US4915528A (en) * 1989-05-04 1990-04-10 Risdon Corporation Solid stick dispenser suitable for top or bottom filling
US4950094A (en) * 1989-07-26 1990-08-21 The Gillette Company Cosmetic dispenser and method
US5114717A (en) * 1991-02-08 1992-05-19 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Clear cosmetic sticks with compatible fragrance components
US5284649A (en) * 1992-09-29 1994-02-08 The Procter & Gamble Company Deodorant gel sticks containing 1-hydroxy pyridinethione active
US5326185A (en) * 1992-08-31 1994-07-05 The Procter & Gamble Company Low cost fill/invert sample size package for a cosmetic stick form product
US5376363A (en) * 1991-05-03 1994-12-27 Bristol-Myers Squibb Company Clear gelled antiperspirant stick composition
US5401112A (en) * 1991-09-16 1995-03-28 The Procter & Gamble Company Fill/invert package with specialized sealing, non-flow-through elevator system
US5407668A (en) * 1993-08-05 1995-04-18 Revlon Consumer Products Corporation Clear deodorant stick compositions
US5424070A (en) * 1993-04-30 1995-06-13 The Mennen Company Transparent clear stick composition
US5516510A (en) * 1992-11-26 1996-05-14 Reckitt & Colman Inc. Deodorizing active ingredients
US5635164A (en) * 1991-07-03 1997-06-03 The Mennen Company Stick composition with sodium chloride and stearyl alcohol
US5650143A (en) * 1996-05-30 1997-07-22 Church & Dwight Co., Inc. Deodorant cosmetic stick composition
US5650141A (en) * 1995-09-13 1997-07-22 Church & Dwight Co., Inc. Bicarbonate salt-containing deodorant cosmetic stick product
US5650140A (en) * 1995-07-19 1997-07-22 Church & Dwight Co., Inc. Deodorant cosmetic stick product
US5650142A (en) * 1995-09-27 1997-07-22 Church & Dwight Co., Inc. Bicarbonate-containing deodorant cosmetic stick compositions
US5716604A (en) * 1995-10-17 1998-02-10 The Gillette Company Clear cosmetic stick composition with 2-methyl-1,3-propanediol
US5736574A (en) * 1995-05-17 1998-04-07 La Roche Posay Laboratoire Pharmaceutique Pharmacceutical/cosmetic compositions comprising synergistic antimicrobial admixture
US5863524A (en) * 1997-03-26 1999-01-26 Church & Dwight Co., Inc. Transparent bicarbonate salt containing deodorant cosmetic stick product
US5897263A (en) * 1997-04-23 1999-04-27 Colgate-Palmolive Company Cosmetic dispensing package
US6013248A (en) * 1998-05-01 2000-01-11 The Procter & Gamble Company Deodorant compositions containing 1,2-hexanediol
US6071028A (en) * 1999-03-27 2000-06-06 Carter-Wallace, Inc. High product retention elevator cup
US6096298A (en) * 1999-08-24 2000-08-01 The Procter & Gamble Company Deodorant compositions containing isopropyl glycerol ether
US6123932A (en) * 1999-06-14 2000-09-26 The Procter & Gamble Company Deodorant compositions containing cyclodextrin odor controlling agents
US6165480A (en) * 1994-06-22 2000-12-26 Colgate Palmolive Company Cosmetic soap-gelled stick composition having stability at higher temperatures
US6174521B1 (en) * 1998-05-01 2001-01-16 The Procter & Gamble Company Gel deodorant compositions having reduced skin irritation
US6435748B1 (en) * 2000-02-01 2002-08-20 Plastic Packaging And Components Limited Dispensing device
US6613338B1 (en) * 1996-10-19 2003-09-02 Beiersdorf Ag Cosmetic and skin care sticks with high water contents
US20050089488A1 (en) * 2003-10-27 2005-04-28 Kim Joo W. Deodorant composition with monocyclic, unsaturated sequiterpene alcohols and glyceryl monoalkyl ethers as synergistic active deodorant agents
US20050271609A1 (en) * 2004-06-08 2005-12-08 Colgate-Palmolive Company Water-based gelling agent spray-gel and its application in personal care formulation
US7186405B2 (en) * 2000-12-01 2007-03-06 Clariant Produkte (Deutschland) Gmbh Deodorants and anti-perspirants
US20070202062A1 (en) * 2006-02-10 2007-08-30 Workman Tanya L Natural deodorant compositions comprising renewably-based, biodegradable 1,3-propanediol
US20070269392A1 (en) * 2006-05-17 2007-11-22 Sunkara Hari B Personal care compositions
US20080095809A1 (en) * 2002-05-01 2008-04-24 Coty Inc. Composition for a clear cosmetic stick
US20080292571A1 (en) * 2007-05-24 2008-11-27 Kim Joo W Deodorant composition with monocyclic, unsaturated sequiterpene alcohols and glyceryl monoalkyl ethers as synergistic active deodorant agents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863721A (en) * 1987-05-22 1989-09-05 The Procter & Gamble Company Reduced stinging antiperspirant compositions
AU2003276171A1 (en) * 2002-11-01 2004-05-25 Unilever Plc Improved solid stick composition for topical application comprising a coating
CA2675184C (en) * 2009-08-10 2015-12-22 Knowlton Development Corporation Inc. Stable solid deodorant product and method for manufacturing same

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980246A (en) * 1952-07-09 1961-04-18 Calumet Mfg Co Inc Container-dispenser for cosmetics in solid stick form
US4322400A (en) * 1978-12-19 1982-03-30 Dragoco Inc. Cosmetic stick composition
US4252789A (en) * 1979-08-01 1981-02-24 The Gillette Company Deodorant stick
US4298036A (en) * 1979-12-13 1981-11-03 Plastic Research Products, Inc. Dispenser for stick solids
US4621935A (en) * 1980-10-16 1986-11-11 Shore Plastics Inc. Method of filling a cosmetic container with push-up actuator
US4521127A (en) * 1982-11-30 1985-06-04 Gibson Associates, Inc. Sealed propulsion mechanism for a stick-deodorant or the like container
US4617185A (en) * 1984-07-13 1986-10-14 The Procter & Gamble Company Improved deodorant stick
US4664547A (en) * 1985-07-01 1987-05-12 W. Braun Company Product storage container and dispenser
US4743444A (en) * 1986-02-20 1988-05-10 The Procter & Gamble Company Antiperspirant and deodorant sticks
US4822602A (en) * 1987-04-29 1989-04-18 The Procter & Gamble Company Cosmetic sticks
US4915528A (en) * 1989-05-04 1990-04-10 Risdon Corporation Solid stick dispenser suitable for top or bottom filling
US4950094A (en) * 1989-07-26 1990-08-21 The Gillette Company Cosmetic dispenser and method
US5114717A (en) * 1991-02-08 1992-05-19 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Clear cosmetic sticks with compatible fragrance components
US5376363A (en) * 1991-05-03 1994-12-27 Bristol-Myers Squibb Company Clear gelled antiperspirant stick composition
US5635164A (en) * 1991-07-03 1997-06-03 The Mennen Company Stick composition with sodium chloride and stearyl alcohol
US5401112A (en) * 1991-09-16 1995-03-28 The Procter & Gamble Company Fill/invert package with specialized sealing, non-flow-through elevator system
US5326185A (en) * 1992-08-31 1994-07-05 The Procter & Gamble Company Low cost fill/invert sample size package for a cosmetic stick form product
US5284649A (en) * 1992-09-29 1994-02-08 The Procter & Gamble Company Deodorant gel sticks containing 1-hydroxy pyridinethione active
US5516510A (en) * 1992-11-26 1996-05-14 Reckitt & Colman Inc. Deodorizing active ingredients
US5424070A (en) * 1993-04-30 1995-06-13 The Mennen Company Transparent clear stick composition
US5407668A (en) * 1993-08-05 1995-04-18 Revlon Consumer Products Corporation Clear deodorant stick compositions
US5407668B1 (en) * 1993-08-05 1996-11-12 Revlon Consumer Prod Corp Clear deodorant stick compositions
US6165480A (en) * 1994-06-22 2000-12-26 Colgate Palmolive Company Cosmetic soap-gelled stick composition having stability at higher temperatures
US5736574A (en) * 1995-05-17 1998-04-07 La Roche Posay Laboratoire Pharmaceutique Pharmacceutical/cosmetic compositions comprising synergistic antimicrobial admixture
US5650140A (en) * 1995-07-19 1997-07-22 Church & Dwight Co., Inc. Deodorant cosmetic stick product
US5650141A (en) * 1995-09-13 1997-07-22 Church & Dwight Co., Inc. Bicarbonate salt-containing deodorant cosmetic stick product
US5650142A (en) * 1995-09-27 1997-07-22 Church & Dwight Co., Inc. Bicarbonate-containing deodorant cosmetic stick compositions
US5716604A (en) * 1995-10-17 1998-02-10 The Gillette Company Clear cosmetic stick composition with 2-methyl-1,3-propanediol
US5650143A (en) * 1996-05-30 1997-07-22 Church & Dwight Co., Inc. Deodorant cosmetic stick composition
US6613338B1 (en) * 1996-10-19 2003-09-02 Beiersdorf Ag Cosmetic and skin care sticks with high water contents
US5863524A (en) * 1997-03-26 1999-01-26 Church & Dwight Co., Inc. Transparent bicarbonate salt containing deodorant cosmetic stick product
US5897263A (en) * 1997-04-23 1999-04-27 Colgate-Palmolive Company Cosmetic dispensing package
US6174521B1 (en) * 1998-05-01 2001-01-16 The Procter & Gamble Company Gel deodorant compositions having reduced skin irritation
US6013248A (en) * 1998-05-01 2000-01-11 The Procter & Gamble Company Deodorant compositions containing 1,2-hexanediol
US6071028A (en) * 1999-03-27 2000-06-06 Carter-Wallace, Inc. High product retention elevator cup
US6123932A (en) * 1999-06-14 2000-09-26 The Procter & Gamble Company Deodorant compositions containing cyclodextrin odor controlling agents
US6096298A (en) * 1999-08-24 2000-08-01 The Procter & Gamble Company Deodorant compositions containing isopropyl glycerol ether
US6435748B1 (en) * 2000-02-01 2002-08-20 Plastic Packaging And Components Limited Dispensing device
US7186405B2 (en) * 2000-12-01 2007-03-06 Clariant Produkte (Deutschland) Gmbh Deodorants and anti-perspirants
US20080095809A1 (en) * 2002-05-01 2008-04-24 Coty Inc. Composition for a clear cosmetic stick
US20050089488A1 (en) * 2003-10-27 2005-04-28 Kim Joo W. Deodorant composition with monocyclic, unsaturated sequiterpene alcohols and glyceryl monoalkyl ethers as synergistic active deodorant agents
US20050271609A1 (en) * 2004-06-08 2005-12-08 Colgate-Palmolive Company Water-based gelling agent spray-gel and its application in personal care formulation
US20070202126A1 (en) * 2006-02-10 2007-08-30 Melissa Joerger Bio-derived 1,3-propanediol and its conjugate esters as natural and non irritating solvents for biomass-derived extracts, fragrance concentrates, and oils
US20070207113A1 (en) * 2006-02-10 2007-09-06 Melissa Joerger Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol
US20070241306A1 (en) * 2006-02-10 2007-10-18 Ann Wehner Biodegradable compositions comprising renewably-based, biodegradable 1,3-propanediol
US20070202062A1 (en) * 2006-02-10 2007-08-30 Workman Tanya L Natural deodorant compositions comprising renewably-based, biodegradable 1,3-propanediol
US20070269392A1 (en) * 2006-05-17 2007-11-22 Sunkara Hari B Personal care compositions
US20080292571A1 (en) * 2007-05-24 2008-11-27 Kim Joo W Deodorant composition with monocyclic, unsaturated sequiterpene alcohols and glyceryl monoalkyl ethers as synergistic active deodorant agents

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662433A1 (en) * 2012-05-07 2013-11-13 Symrise AG Perfume composition
US9550959B2 (en) 2012-05-07 2017-01-24 Symrise Ag Perfume composition
US20140255077A1 (en) * 2013-03-07 2014-09-11 Knowlton Development Corp. Inc. Deodorant with improved endurance and stability
US9302127B2 (en) * 2013-03-07 2016-04-05 Knowlton Development Corporation Inc. Deodorant with improved endurance and stability
WO2015099911A1 (en) * 2013-12-24 2015-07-02 The Dial Corporation Antiperspirant composition with non-ionic polymers
FR3023476A1 (en) * 2014-07-11 2016-01-15 Oreal AQUEOUS SOLID COMPOSITION CONTAINING A FATTY ACID SALT, A POLYOL AND A HYDROPHILIC GELIFIER
WO2019231434A1 (en) * 2018-05-29 2019-12-05 Kdc Us Holdings Inc. Personal care product formulations with adjustable product deposition
RU2772282C1 (en) * 2018-05-29 2022-05-18 Кдс Юс Холдингс Инк. Compositions of personal hygiene products with adjustable product application
CN117264704A (en) * 2023-11-17 2023-12-22 广东专宠生物科技有限公司 Disinfecting laundry gel bead and preparation process thereof

Also Published As

Publication number Publication date
US9247800B2 (en) 2016-02-02
CA2675184C (en) 2015-12-22
US20120034179A1 (en) 2012-02-09
US20150335570A1 (en) 2015-11-26
US20130287470A1 (en) 2013-10-31
US8425886B2 (en) 2013-04-23
CA2675184A1 (en) 2011-02-10
US9307821B2 (en) 2016-04-12

Similar Documents

Publication Publication Date Title
US9307821B2 (en) Stable solid deodorant product and method of manufacturing same
US9302127B2 (en) Deodorant with improved endurance and stability
CN104027829B (en) A kind of solid freshener containing lemon tea tree derived essential oil and preparation method thereof
RU2491912C1 (en) Antiperspirant/deodorant composition
JP3654654B2 (en) Anhydrous gel-like deodorizing composition
US20070224142A1 (en) Hydrogenated castor oil based compositions as a replacement for petrolatum
WO2006014962A2 (en) Liquid stick antiperspirant
CN109963547A (en) Deodorant comprising salts of carboxylic acids and aluminium chlorohydrate
US6174521B1 (en) Gel deodorant compositions having reduced skin irritation
AU8065498A (en) Gel deodorant compositions having reduced skin irritation
CA2808807C (en) Deodorant with improved endurance and stability
WO2002013776A2 (en) Method of providing improved deodorant application to the underarm
AU7833198A (en) Anhydrous gel deodorant compositions containing volatile nonpolar solvents
WO2017182358A1 (en) Deodorant composition
WO2013119989A1 (en) Skin conditioning and lubricating creme, and method of making and using same
JP6613123B2 (en) Antiperspirant deodorant composition
KR20210000634A (en) The preservative composition with freezing point depression for cosmetics and the process for preparing the same
US20080050326A1 (en) Deodorant composition comprising linalool and dihydromyrcenol
JP2007145728A (en) Deodorant composition for cosmetic
JP2002193763A (en) Hair-dressing cosmetic
KR19980052892A (en) Hair care composition for hair protection
CN110114052A (en) Have effects that improved extrusion Antipers pirant compositions
MXPA00000073A (en) Anhydrous gel deodorant compositions containing volatile nonpolar solvents
MXPA99011743A (en) Gel deodorant compositions having reduced skin irritation

Legal Events

Date Code Title Description
AS Assignment

Owner name: KNOWLTON DEVELOPMENT CORPORATION INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOBARAK, HANY ABO-EL-MAGD;REEL/FRAME:023072/0400

Effective date: 20090807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION