US20110004204A1 - Surgical Instrument and Method for Use Thereof - Google Patents

Surgical Instrument and Method for Use Thereof Download PDF

Info

Publication number
US20110004204A1
US20110004204A1 US12/883,331 US88333110A US2011004204A1 US 20110004204 A1 US20110004204 A1 US 20110004204A1 US 88333110 A US88333110 A US 88333110A US 2011004204 A1 US2011004204 A1 US 2011004204A1
Authority
US
United States
Prior art keywords
tissue
cooling
surgical
surgical instrument
cooling members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/883,331
Inventor
Robert Dodde
Albert J. Shih
James Geiger
William Roberts
Kevin Pipe
Arnold Advincula
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Priority to US12/883,331 priority Critical patent/US20110004204A1/en
Publication of US20110004204A1 publication Critical patent/US20110004204A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00047Cooling or heating of the probe or tissue immediately surrounding the probe using Peltier effect

Definitions

  • This invention relates to a surgical instrument, such as an energy based surgical device.
  • EBSDs Energy-based surgical devices
  • energy sources electrical, radio frequency, and ultrasonic
  • EBSDs have been adopted widely for nearly all types of surgery due to their ability to effectively and rapidly control bleeding
  • EBSDs have been adopted widely for nearly all types of surgery including neurosurgery, orthopedics, gynecology, urology, general surgery, thoracic surgery, plastic surgery, and otolaryngology.
  • neurosurgery orthopedics
  • gynecology urology
  • thoracic surgery thoracic surgery
  • plastic surgery and otolaryngology
  • electrosurgery involves the use of alternating current in the radio frequency (RF) range to generate heat for cutting and coagulating tissue.
  • RF radio frequency
  • opposed grasping members are used to clamp tissue therebetween for coagulation, wherein the grasping members comprise electrodes of opposite polarity.
  • the tissue is desiccated and the loss of water produces an increased electrical resistance.
  • surrounding tissue becomes relatively less resistive to electrical current and the current's pathway will switch course, resulting in a spread of thermal energy to tissue outside of the grasping members. This makes predicting the route current will take very difficult and not intuitive, and may lead to unintentionally damaging nearby tissue.
  • FIG. 1 is a perspective view of a surgical instrument system according to an aspect of the present invention
  • FIG. 2 is a perspective view of a tissue engaging portion of a surgical instrument according to an aspect of the present invention
  • FIG. 3 is a perspective view of a smooth electrode configuration according to one aspect of the present invention.
  • FIG. 4 is a perspective view of a toothed electrode configuration according to another aspect of the present invention.
  • FIG. 5 is a perspective view of a hybrid electrode configuration having both smooth areas and toothed areas according to another aspect of the present invention.
  • FIG. 6 is a perspective view of a tissue engaging portion wherein cooling members serve as electrodes according to an aspect of the present invention
  • FIG. 7 is a perspective view of a tissue engaging portion which includes temperature sensors according to an aspect of the present invention.
  • FIG. 8 is a schematic diagram of an experimental set-up wherein a cooling tube was placed adjacent the jaw members and temperatures recorded at different distances from the edge of the jaw members;
  • FIG. 9 is a graph depicting the experimental results using a cooling tube with and without coolant.
  • FIG. 10 is an illustration of an example of the experimental control group in which a cooling tube was not used
  • FIG. 11 is an illustration of an example of the experimental group in which a cooling tube was placed but did not contain coolant
  • FIG. 12 is an illustration of an example of the experimental group in which a cooling tube was placed and contained coolant.
  • FIG. 13 is a schematic representation of a control system according to an aspect of the present invention.
  • the present invention includes a surgical instrument and method for use thereof for controlling, minimizing, and monitoring the spread of thermal energy during any type of surgery.
  • thermal and/or pressure gradients may be created in the treated tissue to alleviate thermal spread.
  • FIG. 1 A perspective view of a surgical instrument system according to the present invention is shown in FIG. 1 and designated generally by reference numeral 10 .
  • System 10 includes a surgical energy generator 12 such as, but not limited to, a monopolar electrosurgical generator, a bipolar electrosurgical generator, or an ultrasonic generator.
  • Electrosurgical generators are microprocessor-controlled electrical generators that deliver power in the form of the necessary waveforms.
  • Ultrasonic generators are microprocessor-controlled and supply high frequency pulses of alternating current to the handpiece, which in turn vibrates the transducer.
  • Monopolar devices include, for example, the Surgistat® and Force FX generators manufactured by Valleylab (Boulder, Colo.).
  • Bipolar devices include, for example, the LigaSureTM Vessel Sealing System from Valleylab and the PKTM System from Gyrus Medical (Maple Grove, Minn.).
  • Ultrasonic devices include, for example, Harmonic Scalpel® by Ethicon Endo-Surgery, Inc. (Cincinnati, Ohio), AutoSonix® by Tyco Healthcare (Norwalk, Conn.), and SonoSurg® by Olympus Corp. (Melville, N.Y.).
  • system 10 includes an energy based surgical instrument 14 comprising a tissue engaging portion 16 and a handpiece 18 arranged to removably receive portion 16 .
  • Handpiece 18 may have a pistol-grip style as depicted herein, but is not limited to this configuration.
  • Tissue engaging portion 16 is arranged to be connected to handpiece 18 both mechanically and electrically, and cable 20 may be provided to connect instrument 14 to generator 12 .
  • Activation of generator 12 may be performed from handpiece 18 or by means of a footswitch unit (not shown) as is known in the art.
  • Surgical energy such as electrosurgical or ultrasonic energy, may then be conducted to instrument 14 and the tissue treated to a desired degree.
  • Tissue engaging portion 16 may have a configuration as depicted in FIG. 2 , wherein portion 16 includes a first jaw member 22 and an opposed second jaw member 24 which are movable relative to one another. Jaw members 22 , 24 may be positioned in a spaced apart, open position as shown in FIG. 2 for receiving tissue therebetween, and jaw members 22 , 24 may be positioned in a closed position where jaw members 22 , 24 are moved relatively closer to one another in order to engage and treat the tissue therebetween. Jaw members 22 , 24 may have an arm-like configuration as depicted in FIGS. 1 and 2 . However, as shown in FIGS. 3-5 , numerous configurations of jaw members 22 , 24 are contemplated according to the present invention.
  • Jaw members 22 , 24 may have a U-shaped configuration and could have smooth surfaces ( FIG. 3 ), could have toothed surfaces ( FIG. 4 ), or could have a combination of smooth and toothed surfaces ( FIG. 5 ). It is understood that jaw members 22 , 24 are not limited to the shape, size, and other configuration depicted herein, and that any configuration of jaw members 22 , 24 suitable for the intended purpose is fully contemplated. Furthermore, instrument 14 may also include a cutting element if desired.
  • Jaw members 22 , 24 are arranged to receive surgical energy from surgical generator 12 .
  • first jaw member 22 comprises a first electrode
  • second jaw member 24 comprises a second electrode, wherein the first and second electrodes have opposite polarity to allow current to flow therebetween.
  • the electrodes may be constructed from a conductive material such as, but not limited to, aluminum, stainless steel, platinum, silver, or gold.
  • instrument 14 may sometimes be described herein as being a bipolar electrosurgical instrument, it is understood that embodying instrument 14 as a monopolar electrosurgical device, ultrasonic surgical device, or other energy based surgical device is fully contemplated according to the present invention.
  • Instrument 14 may be used to dissect, grasp or clamp, coagulate, and cut tissues during endoscopic, laparoscopic, and open surgical procedures. Instrument 14 may be designed for single patient use, or may be constructed to allow for sterilization and use on more than one surgical patient.
  • tissue engaging portion 16 may further include at least one cooling member 30 spaced from at least one of first jaw member 22 and second jaw member 24 .
  • one cooling member 30 is spaced from and generally surrounding jaw member 22
  • another cooling member 30 is spaced from and generally surrounding jaw member 24 .
  • Cooling members 30 may each comprise a tube which may be U-shaped as depicted in FIG. 2 . Of course, it is understood that other numbers and configurations of cooling member 30 are fully contemplated.
  • cooling member(s) 30 are movable relative to one another and may be positioned in an open position ( FIG. 2 ) and a closed position for engaging tissue. As heat is introduced into the tissue by surgical instrument 14 , cooling members 30 may constrain the thermal spread by increasing the pressure and/or temperature gradient in the heated region as described below.
  • Cooling members 30 may include a coolant such as water or any other suitable liquid, chilled or unchilled, where the coolant may be stationary or may be circulated within cooling members 30 (see, for example, arrows in FIG. 2 ) by a pump 32 (shown schematically in FIG. 1 ) housed in handpiece 16 or elsewhere, or by other means. In operation, as heat is generated at jaw members 22 , 24 , the coolant is also heated and that heat may be taken away from the adjacent tissue by fluid flow toward handpiece 18 . According to an aspect of the present invention, cooling member 30 adjacent jaw member 22 may have a different flow direction compared with cooling member 30 adjacent jaw member 24 . The coolant may be supplied and/or circulated within cooling members 30 before, during, and/or after the surgical procedure. Instead of a liquid such as water, cooling member 30 could contain a gas coolant, such as carbon dioxide. Still further, cooling member 30 could impart a Peltier effect by supplying current to pull heat away from the tissue.
  • a coolant such as water or any other suitable
  • cooling member 30 may comprise a heat pipe.
  • cooling member 30 may include a tube or other member containing a low boiling temperature liquid, such as acetone or alcohol.
  • a low boiling temperature liquid such as acetone or alcohol.
  • heat from jaw members 22 , 24 causes the liquid within a distal end of the tube (toward portion 16 ) to vaporize, and this vapor may subsequently condense at a proximal end of the tube (toward handpiece 18 ) due to its relatively cooler temperature with respect to the distal end. In this way, heat may transferred from the distal end of instrument 14 to the proximal end and away from the treated tissue.
  • Cooling members 30 may be constructed of aluminum, stainless steel, or any other suitable electrically conductive or non-conductive material. With reference to FIG. 6 , if constructed from an electrically conductive material, cooling members 30 themselves could actually function as electrodes without the need for jaw members 22 , 24 . Cooling members 30 may then be arranged to receive surgical energy from generator 12 for treating tissue, and may contain a coolant therein which may be activated before, during, and/or after the application of surgical energy. Again, the size, shape, and overall configuration of cooling members 30 is not limited to that depicted herein.
  • cooling member 30 may result in the ‘pigeon-holing’ of the electrical energy, focusing it on the tissue of interest. Meanwhile, the increased thermal resistance allows cooling member 30 to more effectively conduct the thermal energy from the tissue while the coolant may convect it away from the surgical area, thereby decreasing the temperature of the tissue. Instrument 14 according to the present invention may not only perform the surgical procedure more effectively, but due to the concentration of electrical energy, may perform it more efficiently as well. In the case of an ultrasonic device, where friction represents the main component of thermal energy production, cooling member 30 may again increase the local thermal resistance of the tissue, allowing cooling member 30 to more effectively conduct the thermal energy from the tissue while the coolant may convect it away from the surgical area.
  • handpiece 18 may include a first actuator 40 for closing and opening jaw members 22 , 24 to engage or release tissue therebetween.
  • Proximal portions of jaw members 22 , 24 are disposed within a sheath 42 which is operably connected to actuator 40 to allow for mechanical actuation of jaw members 22 , 24 via proximal and distal movement of sheath 42 as is known in the art.
  • First actuator 40 may also control the opening and closing of cooling members 30 via movement of sheath 44 using a similar mechanism, wherein the opening and closing of cooling members 30 and jaw members 22 , 24 may be synchronized.
  • handpiece 18 may include a second actuator 46 for mechanical actuation of cooling members 30 .
  • cooling members 30 may be actuated to engage and compress tissue before, after, or simultaneous with jaw members 22 , 24 , and may be actuated to release tissue before, after or simultaneous with jaw members 22 , 24 .
  • First actuator 40 and/or second actuator 46 may include a return spring or other means for providing a biasing force to the open position of jaw members 22 , 24 and/or cooling members 30 .
  • First actuator 40 and/or second actuator 46 could also include a releasable locking mechanism such that constant depression of either actuator 40 or 46 would not be required to maintain the closed position of jaw members 22 , 24 and/or cooling members 30 .
  • the operation of first actuator 40 and second actuator 46 could be dependent upon one another such that, for example, depression of second actuator 46 to move cooling members 30 to the closed position would need to occur before first actuator 40 could be depressed.
  • cooling members 30 may be arranged to apply a greater compressive pressure on the tissue in their closed position compared with the pressure applied by the clamping of jaw members 22 , 24 in their closed position. In this way, an increased pressure gradient may be induced on the tissue. Such a gradient may effectively increase both the thermal and electrical resistance of the tissue. Pressure applied by cooling members 30 alone, without use of a coolant therein, is fully contemplated according to the present invention. Therefore, application of cooling member 30 may provide at least one of a pressure gradient or a thermal gradient between cooling member 30 and jaw members 22 , 24 to control thermal spread during energy based surgical procedures, such as electrosurgery or ultrasonic surgery.
  • temperature sensors 50 such as thermistors, may be provided on cooling members 30 , jaw members 22 , 24 , or another area of tissue engaging portion 16 to provide real-time, internal in vivo tissue temperature measurement during surgical procedures.
  • the bite size for the surgical procedures was limited to 3 ⁇ 4 of the jaw length to avoid variations in tissue effect at the jaw hinge area. Lateral tension to the tissue was avoided to ensure effects were limited to the devices.
  • the tissue temperature was measured on both sides of the electrosurgical tool at a depth of 2.0 mm under the tissue surface using thermistors placed at 2.5, 3.0, and 3.5 mm from the tool edge. Polycarbonate fixtures were created for the device tested to ensure temperature measurements were recorded at precise distances from the tool edge (see FIG. 8 ). Upon tissue clamping, the fixture was placed around the device and held lightly in place while the trials proceeded.
  • the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel without coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 2.08, 1.31, and 1.54 with a standard deviation of 0.54, 0.52, and 0.51 respectively.
  • the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel with coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 3.13, 3.47, and 2.82 with a standard deviation of 1.22, 2.56, and 1.26 respectively.
  • the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel with coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 3.12, 2.64, and 2.84 with a standard deviation of 1.26, 0.89, and 0.79 respectively.
  • the results obtained from actively cooling local tissue during electrosurgical procedures demonstrate the ability to minimize and possibly eliminate the thermal spread associated with surgical tools that rely on the production of heat to coagulate and/or cut tissue.
  • the reduction in thermal spread seen simply with the application of the cooling member suggests that even the modest pressure placed on the tissue by the tube increases both the thermal and electrical resistance of the tissue.
  • the significantly increased thermal conductivity of the tube over the tissue may allow the cooling member to conduct most of the heat that would normally be retained by the tissue resulting in increasing tissue temperature.
  • the addition of coolant flowing through the tube allows the convective qualities of the coolant to convect the heat conducted by the cooling member and transmit it away from the surgical site. By maintaining the cooling member at as low a temperature as possible, a high thermal gradient may be created allowing for maximum heat conduction by the cooling member.
  • FIG. 13 depicts a control system 60 for controlling the temperature distribution within the treated tissue.
  • Control system 60 may use temperature sensors such as thermistors 62 placed locally in sensitive tissue to monitor the tissue temperature 63 in real-time during surgery. Algorithms may be used to convert 64 the temperature to a thermal dose so as to continuously monitor the thermal dose 66 the tissue has absorbed. This data may serve as an input in control system 60 where both the power 68 output by surgical generator 12 as well as the flow rate 70 of coolant within cooling member 30 may be controlled by that input.
  • a tissue model 72 may be utilized for predicting and controlling tissue heating, which may be helpful in areas hard to reach by temperature sensors, such as in brain or spinal electrosurgery.
  • Inputs of tissue model 72 may include tissue type, electrode type, presence of cooling member 30 , tissue resistance (determined, for example, via a pressure sensor or tissue thickness), and others, where model 72 may be used to predict the temperature gradient, resulting thermal dose, and surgical time for the treated tissue area.
  • cooling member 30 could be modeled as a circular pipe with constant wall heat flux. Assuming fully developed flow has been established the non-dimensionalized governing equation becomes:
  • T ( x,r ) T as ( r )+ T en ( x,r )
  • the temperature of the tissue at discrete distances from tissue engaging portion 16 may be determined. Also, in surgical practice, the temperature gradient of the coolant could be used as a control input if the distance from instrument 16 is known. If this is so, tissue temperature could be monitored indirectly through the coolant.

Abstract

A surgical instrument for treating a tissue includes a handpiece and a tissue engaging portion arranged to be received by the handpiece. The tissue engaging portion includes first and second opposed jaw members having an open position and a closed position for engaging the tissue therebetween, where the first and second jaw members are arranged to receive surgical energy from a surgical generator. The tissue engaging portion further includes at least one cooling member spaced from at least one of the first and second jaw members, where the cooling member has an open position and a closed position for engaging the tissue. Positioning the jaw members in their closed position and applying surgical energy to the tissue allows for treatment of the tissue, and positioning the cooling member in its closed position provides at least one of a pressure gradient or a thermal gradient between the jaw members and the cooling member.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 11/626,812 filed Jan. 24, 2007 which, in turn, claims the benefit of U.S. provisional Application Ser. No. 60/761,901 filed Jan. 25, 2006, the disclosure(s) of which are incorporated in their entirety by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a surgical instrument, such as an energy based surgical device.
  • 2. Background Art
  • Energy-based surgical devices (EBSDs),which use a variety of energy sources (electrical, radio frequency, and ultrasonic), have been adopted widely for nearly all types of surgery due to their ability to effectively and rapidly control bleeding EBSDs have been adopted widely for nearly all types of surgery including neurosurgery, orthopedics, gynecology, urology, general surgery, thoracic surgery, plastic surgery, and otolaryngology. Despite their advantages, the success of EBSDs has been tempered by the recognition that these devices can lead to collateral tissue damage due to thermal and/or electrical spread outward from the instrument.
  • For example, electrosurgery (monopolar and bipolar) involves the use of alternating current in the radio frequency (RF) range to generate heat for cutting and coagulating tissue. In bipolar electrosurgery, opposed grasping members are used to clamp tissue therebetween for coagulation, wherein the grasping members comprise electrodes of opposite polarity. As electrical energy passing through the tissue is transformed into heat, the tissue is desiccated and the loss of water produces an increased electrical resistance. As a result, surrounding tissue becomes relatively less resistive to electrical current and the current's pathway will switch course, resulting in a spread of thermal energy to tissue outside of the grasping members. This makes predicting the route current will take very difficult and not intuitive, and may lead to unintentionally damaging nearby tissue.
  • In addition, medical personnel may not always be able to visualize the thermal spreading because of obstructing tissue structures, especially during an endoscopic procedure. The limited field of view and narrow focus on a small area may allow thermal spread to occur unnoticed, potentially causing damage to vital structures. When performing electrosurgery or ultrasurgery in a laparoscopic environment, the presence of an insufflating gas having a low heat capacity may result in instruments not cooling as rapidly, which may further increase the potential for thermal damage.
  • Therefore, it is desirable to control the thermal spread from EBSDs in order to minimize unwanted thermal damage to surrounding tissues during surgical procedures as well as reduce patient recovery times and post-operative complications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a surgical instrument system according to an aspect of the present invention;
  • FIG. 2 is a perspective view of a tissue engaging portion of a surgical instrument according to an aspect of the present invention;
  • FIG. 3 is a perspective view of a smooth electrode configuration according to one aspect of the present invention;
  • FIG. 4 is a perspective view of a toothed electrode configuration according to another aspect of the present invention;
  • FIG. 5 is a perspective view of a hybrid electrode configuration having both smooth areas and toothed areas according to another aspect of the present invention;
  • FIG. 6 is a perspective view of a tissue engaging portion wherein cooling members serve as electrodes according to an aspect of the present invention;
  • FIG. 7 is a perspective view of a tissue engaging portion which includes temperature sensors according to an aspect of the present invention;
  • FIG. 8 is a schematic diagram of an experimental set-up wherein a cooling tube was placed adjacent the jaw members and temperatures recorded at different distances from the edge of the jaw members;
  • FIG. 9 is a graph depicting the experimental results using a cooling tube with and without coolant;
  • FIG. 10 is an illustration of an example of the experimental control group in which a cooling tube was not used;
  • FIG. 11 is an illustration of an example of the experimental group in which a cooling tube was placed but did not contain coolant;
  • FIG. 12 is an illustration of an example of the experimental group in which a cooling tube was placed and contained coolant; and
  • FIG. 13 is a schematic representation of a control system according to an aspect of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale, some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • The present invention includes a surgical instrument and method for use thereof for controlling, minimizing, and monitoring the spread of thermal energy during any type of surgery. In accordance with the present invention, thermal and/or pressure gradients may be created in the treated tissue to alleviate thermal spread.
  • A perspective view of a surgical instrument system according to the present invention is shown in FIG. 1 and designated generally by reference numeral 10. System 10 includes a surgical energy generator 12 such as, but not limited to, a monopolar electrosurgical generator, a bipolar electrosurgical generator, or an ultrasonic generator. Electrosurgical generators are microprocessor-controlled electrical generators that deliver power in the form of the necessary waveforms. Ultrasonic generators are microprocessor-controlled and supply high frequency pulses of alternating current to the handpiece, which in turn vibrates the transducer. Monopolar devices include, for example, the Surgistat® and Force FX generators manufactured by Valleylab (Boulder, Colo.). Bipolar devices include, for example, the LigaSure™ Vessel Sealing System from Valleylab and the PK™ System from Gyrus Medical (Maple Grove, Minn.). Ultrasonic devices include, for example, Harmonic Scalpel® by Ethicon Endo-Surgery, Inc. (Cincinnati, Ohio), AutoSonix® by Tyco Healthcare (Norwalk, Conn.), and SonoSurg® by Olympus Corp. (Melville, N.Y.).
  • With continued reference to FIG. 1, system 10 according to the present invention includes an energy based surgical instrument 14 comprising a tissue engaging portion 16 and a handpiece 18 arranged to removably receive portion 16. Handpiece 18 may have a pistol-grip style as depicted herein, but is not limited to this configuration. Tissue engaging portion 16 is arranged to be connected to handpiece 18 both mechanically and electrically, and cable 20 may be provided to connect instrument 14 to generator 12. Activation of generator 12 may be performed from handpiece 18 or by means of a footswitch unit (not shown) as is known in the art. Surgical energy, such as electrosurgical or ultrasonic energy, may then be conducted to instrument 14 and the tissue treated to a desired degree.
  • Tissue engaging portion 16 may have a configuration as depicted in FIG. 2, wherein portion 16 includes a first jaw member 22 and an opposed second jaw member 24 which are movable relative to one another. Jaw members 22, 24 may be positioned in a spaced apart, open position as shown in FIG. 2 for receiving tissue therebetween, and jaw members 22, 24 may be positioned in a closed position where jaw members 22, 24 are moved relatively closer to one another in order to engage and treat the tissue therebetween. Jaw members 22, 24 may have an arm-like configuration as depicted in FIGS. 1 and 2. However, as shown in FIGS. 3-5, numerous configurations of jaw members 22, 24 are contemplated according to the present invention. Jaw members 22, 24 may have a U-shaped configuration and could have smooth surfaces (FIG. 3), could have toothed surfaces (FIG. 4), or could have a combination of smooth and toothed surfaces (FIG. 5). It is understood that jaw members 22, 24 are not limited to the shape, size, and other configuration depicted herein, and that any configuration of jaw members 22, 24 suitable for the intended purpose is fully contemplated. Furthermore, instrument 14 may also include a cutting element if desired.
  • Jaw members 22, 24 are arranged to receive surgical energy from surgical generator 12. In the case of a bipolar electrosurgical instrument, first jaw member 22 comprises a first electrode and second jaw member 24 comprises a second electrode, wherein the first and second electrodes have opposite polarity to allow current to flow therebetween. The electrodes may be constructed from a conductive material such as, but not limited to, aluminum, stainless steel, platinum, silver, or gold. Although instrument 14 may sometimes be described herein as being a bipolar electrosurgical instrument, it is understood that embodying instrument 14 as a monopolar electrosurgical device, ultrasonic surgical device, or other energy based surgical device is fully contemplated according to the present invention.
  • Instrument 14 may be used to dissect, grasp or clamp, coagulate, and cut tissues during endoscopic, laparoscopic, and open surgical procedures. Instrument 14 may be designed for single patient use, or may be constructed to allow for sterilization and use on more than one surgical patient.
  • As described above, during electrosurgical or ultrasonic procedures, the thermal spread or dissipation of heat outside the tissue area engaged by tissue engaging portion 16 may occur. As best shown in FIG. 2, tissue engaging portion 16 may further include at least one cooling member 30 spaced from at least one of first jaw member 22 and second jaw member 24. In the configuration depicted herein, one cooling member 30 is spaced from and generally surrounding jaw member 22, and another cooling member 30 is spaced from and generally surrounding jaw member 24. Cooling members 30 may each comprise a tube which may be U-shaped as depicted in FIG. 2. Of course, it is understood that other numbers and configurations of cooling member 30 are fully contemplated. As with jaw members 22, 24, cooling member(s) 30 are movable relative to one another and may be positioned in an open position (FIG. 2) and a closed position for engaging tissue. As heat is introduced into the tissue by surgical instrument 14, cooling members 30 may constrain the thermal spread by increasing the pressure and/or temperature gradient in the heated region as described below.
  • Cooling members 30 may include a coolant such as water or any other suitable liquid, chilled or unchilled, where the coolant may be stationary or may be circulated within cooling members 30 (see, for example, arrows in FIG. 2) by a pump 32 (shown schematically in FIG. 1) housed in handpiece 16 or elsewhere, or by other means. In operation, as heat is generated at jaw members 22, 24, the coolant is also heated and that heat may be taken away from the adjacent tissue by fluid flow toward handpiece 18. According to an aspect of the present invention, cooling member 30 adjacent jaw member 22 may have a different flow direction compared with cooling member 30 adjacent jaw member 24. The coolant may be supplied and/or circulated within cooling members 30 before, during, and/or after the surgical procedure. Instead of a liquid such as water, cooling member 30 could contain a gas coolant, such as carbon dioxide. Still further, cooling member 30 could impart a Peltier effect by supplying current to pull heat away from the tissue.
  • According to another aspect of the present invention, cooling member 30 may comprise a heat pipe. In this case, cooling member 30 may include a tube or other member containing a low boiling temperature liquid, such as acetone or alcohol. In use, heat from jaw members 22, 24 causes the liquid within a distal end of the tube (toward portion 16) to vaporize, and this vapor may subsequently condense at a proximal end of the tube (toward handpiece 18) due to its relatively cooler temperature with respect to the distal end. In this way, heat may transferred from the distal end of instrument 14 to the proximal end and away from the treated tissue.
  • Cooling members 30 may be constructed of aluminum, stainless steel, or any other suitable electrically conductive or non-conductive material. With reference to FIG. 6, if constructed from an electrically conductive material, cooling members 30 themselves could actually function as electrodes without the need for jaw members 22, 24. Cooling members 30 may then be arranged to receive surgical energy from generator 12 for treating tissue, and may contain a coolant therein which may be activated before, during, and/or after the application of surgical energy. Again, the size, shape, and overall configuration of cooling members 30 is not limited to that depicted herein.
  • In the case of an electrosurgical device, application of cooling member 30 may result in the ‘pigeon-holing’ of the electrical energy, focusing it on the tissue of interest. Meanwhile, the increased thermal resistance allows cooling member 30 to more effectively conduct the thermal energy from the tissue while the coolant may convect it away from the surgical area, thereby decreasing the temperature of the tissue. Instrument 14 according to the present invention may not only perform the surgical procedure more effectively, but due to the concentration of electrical energy, may perform it more efficiently as well. In the case of an ultrasonic device, where friction represents the main component of thermal energy production, cooling member 30 may again increase the local thermal resistance of the tissue, allowing cooling member 30 to more effectively conduct the thermal energy from the tissue while the coolant may convect it away from the surgical area.
  • With reference again to FIGS. 1 and 2, handpiece 18 may include a first actuator 40 for closing and opening jaw members 22, 24 to engage or release tissue therebetween. Proximal portions of jaw members 22, 24 are disposed within a sheath 42 which is operably connected to actuator 40 to allow for mechanical actuation of jaw members 22, 24 via proximal and distal movement of sheath 42 as is known in the art. Of course, any other mechanism for opening and closing jaw members 22, 24 is also fully contemplated. First actuator 40 may also control the opening and closing of cooling members 30 via movement of sheath 44 using a similar mechanism, wherein the opening and closing of cooling members 30 and jaw members 22, 24 may be synchronized. Alternatively, handpiece 18 may include a second actuator 46 for mechanical actuation of cooling members 30. With second actuator 46, cooling members 30 may be actuated to engage and compress tissue before, after, or simultaneous with jaw members 22, 24, and may be actuated to release tissue before, after or simultaneous with jaw members 22, 24.
  • First actuator 40 and/or second actuator 46 may include a return spring or other means for providing a biasing force to the open position of jaw members 22, 24 and/or cooling members 30. First actuator 40 and/or second actuator 46 could also include a releasable locking mechanism such that constant depression of either actuator 40 or 46 would not be required to maintain the closed position of jaw members 22, 24 and/or cooling members 30. Furthermore, the operation of first actuator 40 and second actuator 46 could be dependent upon one another such that, for example, depression of second actuator 46 to move cooling members 30 to the closed position would need to occur before first actuator 40 could be depressed.
  • Whether controlled by first actuator 40 or second actuator 46, cooling members 30 may be arranged to apply a greater compressive pressure on the tissue in their closed position compared with the pressure applied by the clamping of jaw members 22, 24 in their closed position. In this way, an increased pressure gradient may be induced on the tissue. Such a gradient may effectively increase both the thermal and electrical resistance of the tissue. Pressure applied by cooling members 30 alone, without use of a coolant therein, is fully contemplated according to the present invention. Therefore, application of cooling member 30 may provide at least one of a pressure gradient or a thermal gradient between cooling member 30 and jaw members 22, 24 to control thermal spread during energy based surgical procedures, such as electrosurgery or ultrasonic surgery.
  • As shown in FIG. 7, temperature sensors 50, such as thermistors, may be provided on cooling members 30, jaw members 22, 24, or another area of tissue engaging portion 16 to provide real-time, internal in vivo tissue temperature measurement during surgical procedures.
  • In order to demonstrate the effectiveness of a cooling member 30 according to the present invention, several experiments were performed. With reference to FIG. 8, commercially available ex-vivo chicken tissue and bipolar electrosurgery was used to test the effects of a cooling channel placed alongside a surgical instrument during coagulative surgical procedures. An Instech P625 Peristaltic Pump with 0.093″ ID tubing was used to flow chilled water through the cooling channel at a flow rate of 3.3 mL/min. Both SS 304 and Al 3003 were used as cooling channels.
  • The bite size for the surgical procedures was limited to ¾ of the jaw length to avoid variations in tissue effect at the jaw hinge area. Lateral tension to the tissue was avoided to ensure effects were limited to the devices. The tissue temperature was measured on both sides of the electrosurgical tool at a depth of 2.0 mm under the tissue surface using thermistors placed at 2.5, 3.0, and 3.5 mm from the tool edge. Polycarbonate fixtures were created for the device tested to ensure temperature measurements were recorded at precise distances from the tool edge (see FIG. 8). Upon tissue clamping, the fixture was placed around the device and held lightly in place while the trials proceeded.
  • The following scenarios were tested: (1) no cooling channel in place (control), (2) SS cooling channel in place with no coolant, (3) Al cooling channel in place with coolant, and (4) SS cooling channel in place with coolant. In the control group, the average ratio of temperatures from the left side of the tool to the right side tool (FIG. 8) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 1.14, 0.99, and 1.05 with a standard deviation of 0.12, 0.12, and 0.12 respectively, where an exemplary illustration of the results of this trial is shown in FIG. 10.
  • With reference to FIGS. 9 and 11, for group (2) the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel without coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 2.08, 1.31, and 1.54 with a standard deviation of 0.54, 0.52, and 0.51 respectively. With reference to FIGS. 9 and 12, for group (3) the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel with coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 3.13, 3.47, and 2.82 with a standard deviation of 1.22, 2.56, and 1.26 respectively. For group (4), the average ratio of temperatures from the left side (no cooling channel) to the right side (cooling channel with coolant) at 2.5 mm, 3.0 mm, and 3.5 mm away from the tool edge was 3.12, 2.64, and 2.84 with a standard deviation of 1.26, 0.89, and 0.79 respectively.
  • Therefore, data collected indicates a much lower temperature realized for tissue being actively cooled compared to tissue left thermally untreated. Use of the cooling member showed adequate tissue temperature reduction in tissue as close as 2.5 mm from the tool edge to avoid permanent thermal damage at those distances. As shown in FIG. 11, the high thermal gradients created near the right side of the surgical device resulted in much less thermal spread for the case of a SS304 cooling tube without coolant being positioned next to the device, and was almost completely eliminated when coolant flowing at 3.3 mL/min was passed through either an Al3003 or SS304 cooling channel as demonstrated in FIG. 12.
  • The results obtained from actively cooling local tissue during electrosurgical procedures demonstrate the ability to minimize and possibly eliminate the thermal spread associated with surgical tools that rely on the production of heat to coagulate and/or cut tissue. The reduction in thermal spread seen simply with the application of the cooling member suggests that even the modest pressure placed on the tissue by the tube increases both the thermal and electrical resistance of the tissue. The significantly increased thermal conductivity of the tube over the tissue (˜0.5 W/mK) may allow the cooling member to conduct most of the heat that would normally be retained by the tissue resulting in increasing tissue temperature. The addition of coolant flowing through the tube allows the convective qualities of the coolant to convect the heat conducted by the cooling member and transmit it away from the surgical site. By maintaining the cooling member at as low a temperature as possible, a high thermal gradient may be created allowing for maximum heat conduction by the cooling member.
  • In further accordance with the present invention, FIG. 13 depicts a control system 60 for controlling the temperature distribution within the treated tissue. Control system 60 may use temperature sensors such as thermistors 62 placed locally in sensitive tissue to monitor the tissue temperature 63 in real-time during surgery. Algorithms may be used to convert 64 the temperature to a thermal dose so as to continuously monitor the thermal dose 66 the tissue has absorbed. This data may serve as an input in control system 60 where both the power 68 output by surgical generator 12 as well as the flow rate 70 of coolant within cooling member 30 may be controlled by that input. In addition, a tissue model 72 may be utilized for predicting and controlling tissue heating, which may be helpful in areas hard to reach by temperature sensors, such as in brain or spinal electrosurgery. Inputs of tissue model 72 may include tissue type, electrode type, presence of cooling member 30, tissue resistance (determined, for example, via a pressure sensor or tissue thickness), and others, where model 72 may be used to predict the temperature gradient, resulting thermal dose, and surgical time for the treated tissue area.
  • For example, cooling member 30 could be modeled as a circular pipe with constant wall heat flux. Assuming fully developed flow has been established the non-dimensionalized governing equation becomes:

  • T(x,r)=T as(r)+T en(x,r)
  • where

  • T as =C 0 +C 1 x+θ(r),
      • θ(r)=centerline temperature and
      • Ten is a Sturm-Louiville problem in r with BC of constant heat flux.
  • Using the power output from generator 12 as another input along with the material properties of the tissue, cooling member 30, and coolant, the temperature of the tissue at discrete distances from tissue engaging portion 16 may be determined. Also, in surgical practice, the temperature gradient of the coolant could be used as a control input if the distance from instrument 16 is known. If this is so, tissue temperature could be monitored indirectly through the coolant.
  • While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims (9)

1. A surgical instrument for treating a tissue, comprising:
a handpiece; and
first and second opposed, electrically conductive cooling members having an open position and a closed position for engaging the tissue therebetween, the first and second cooling members containing a coolant and arranged to receive surgical energy from a surgical generator,
wherein positioning the cooling members in their closed position and applying surgical energy to the tissue allows for treatment of the tissue, and activating the coolant decreases the temperature of the tissue.
2. The surgical instrument according to claim 1, wherein the cooling members have an arm-like configuration.
3. The surgical instrument according to claim 1, wherein the cooling members have a U-shaped configuration.
4. The surgical instrument according to claim 1, wherein the first cooling member comprises a first electrode and the second cooling member comprises a second electrode of opposite polarity from the first electrode.
5. The surgical instrument according to claim 1, further comprising a first actuator operably connected to the first and second cooling members for effecting movement thereof.
6. The surgical instrument according to claim 1, further comprising a pump in communication with the first and second cooling members for circulating the coolant therethrough.
7. The surgical instrument according to claim 1, wherein the first and second cooling members comprise a heat pipe.
8. The surgical instrument according to claim 1, wherein the first and second cooling members impart a Peltier effect.
9. The surgical instrument according to claim 1, further comprising at least one temperature sensor provided on the first and second cooling members.
US12/883,331 2006-01-25 2010-09-16 Surgical Instrument and Method for Use Thereof Abandoned US20110004204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/883,331 US20110004204A1 (en) 2006-01-25 2010-09-16 Surgical Instrument and Method for Use Thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76190106P 2006-01-25 2006-01-25
US11/626,812 US7815641B2 (en) 2006-01-25 2007-01-24 Surgical instrument and method for use thereof
US12/883,331 US20110004204A1 (en) 2006-01-25 2010-09-16 Surgical Instrument and Method for Use Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/626,812 Division US7815641B2 (en) 2006-01-25 2007-01-24 Surgical instrument and method for use thereof

Publications (1)

Publication Number Publication Date
US20110004204A1 true US20110004204A1 (en) 2011-01-06

Family

ID=38309948

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/626,812 Expired - Fee Related US7815641B2 (en) 2006-01-25 2007-01-24 Surgical instrument and method for use thereof
US12/883,331 Abandoned US20110004204A1 (en) 2006-01-25 2010-09-16 Surgical Instrument and Method for Use Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/626,812 Expired - Fee Related US7815641B2 (en) 2006-01-25 2007-01-24 Surgical instrument and method for use thereof

Country Status (2)

Country Link
US (2) US7815641B2 (en)
WO (1) WO2007087603A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100268206A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with multi-mode surgical tool
US20130023866A1 (en) * 2011-04-08 2013-01-24 Mark Stringham System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
CN102223849B (en) * 2008-11-20 2014-07-09 史蒂夫·利夫内 Scanning cannula
US9855092B2 (en) 2008-11-20 2018-01-02 Rf Kinetics Inc. Scanning cannula
US20100274160A1 (en) * 2009-04-22 2010-10-28 Chie Yachi Switching structure and surgical equipment
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
WO2010141083A1 (en) * 2009-06-02 2010-12-09 Bovie Medical Corporation Surgical jaws for sealing tissue
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US8906016B2 (en) 2009-10-09 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising steam control paths
US8939974B2 (en) 2009-10-09 2015-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8574231B2 (en) 2009-10-09 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
US8496682B2 (en) 2010-04-12 2013-07-30 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8709035B2 (en) 2010-04-12 2014-04-29 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8876740B2 (en) 2010-04-12 2014-11-04 University Of Washington Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound therapy
US8535311B2 (en) 2010-04-22 2013-09-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising closing and firing systems
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
US8790342B2 (en) 2010-06-09 2014-07-29 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing pressure-variation electrodes
US8926607B2 (en) 2010-06-09 2015-01-06 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US9005199B2 (en) * 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US8753338B2 (en) 2010-06-10 2014-06-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a thermal management system
US8764747B2 (en) 2010-06-10 2014-07-01 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising sequentially activated electrodes
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US8685021B2 (en) * 2010-11-17 2014-04-01 Covidien Lp Method and apparatus for vascular tissue sealing with active cooling of jaws at the end of the sealing cycle
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
US8613752B2 (en) 2011-04-21 2013-12-24 Cook Medical Technologies Llc Surgical instrument for removing body tissue or vessels
US20120316557A1 (en) * 2011-06-08 2012-12-13 Tyco Healthcare Group Lp Septoplasty Instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
DE102011082307A1 (en) 2011-09-07 2013-03-07 Celon Ag Medical Instruments Electrosurgical instrument, electrosurgical device and related methods
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9895160B2 (en) * 2014-04-16 2018-02-20 Gyrus Acmi Inc. Surgical operating apparatus with temperature control
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US10888320B2 (en) 2017-10-20 2021-01-12 Ethicon, Inc. Hypothermic circular surgical staplers and methods of use
US10993759B2 (en) 2017-10-20 2021-05-04 Ethicon, Inc. Hypothermic linear surgical staplers and methods of use
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11529186B2 (en) 2019-07-22 2022-12-20 Covidien Lp Electrosurgical forceps including thermal cutting element
US11365490B2 (en) 2019-12-21 2022-06-21 Covidien Lp Thermal cutting elements, electrosurgical instruments including thermal cutting elements, and methods of manufacturing
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5647871A (en) * 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5964758A (en) * 1997-09-18 1999-10-12 Dresden; Scott Laparoscopic electrosurgical instrument
US6033399A (en) * 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US6443970B1 (en) * 2001-01-24 2002-09-03 Ethicon, Inc. Surgical instrument with a dissecting tip
US6458128B1 (en) * 2001-01-24 2002-10-01 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6464702B2 (en) * 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US6547786B1 (en) * 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
US20030073987A1 (en) * 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Treating apparatus and treating device for treating living-body tissue
US6554829B2 (en) * 2001-01-24 2003-04-29 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US20030120268A1 (en) * 2001-12-04 2003-06-26 Estech, Inc. ( Endoscopic Technologies, Inc.) Cardiac ablation devices and methods
US20030125604A1 (en) * 1998-03-17 2003-07-03 Estech, Inc. (Endoscopic Technologies, Inc.) Tissue stabilization and ablation devices and methods
US6620161B2 (en) * 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
US20030178032A1 (en) * 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US20030215733A1 (en) * 2002-05-20 2003-11-20 Xerox Corporation Toner processes
US6652521B2 (en) * 2001-01-24 2003-11-25 Ethicon, Inc. Surgical instrument with a bi-directional cutting element
US6676660B2 (en) * 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US6780180B1 (en) * 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6849076B2 (en) * 2000-04-13 2005-02-01 University College London Surgical distraction device
US6971395B2 (en) * 1998-01-14 2005-12-06 Curon Medical, Inc. Sphincter treatment method
US20060052778A1 (en) * 2003-05-01 2006-03-09 Chapman Troy J Incorporating rapid cooling in tissue fusion heating processes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953461B2 (en) * 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
GB0130975D0 (en) 2001-12-27 2002-02-13 Gyrus Group Plc A surgical instrument

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647871A (en) * 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US6780180B1 (en) * 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6033399A (en) * 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US20030178032A1 (en) * 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5964758A (en) * 1997-09-18 1999-10-12 Dresden; Scott Laparoscopic electrosurgical instrument
US6971395B2 (en) * 1998-01-14 2005-12-06 Curon Medical, Inc. Sphincter treatment method
US20030125604A1 (en) * 1998-03-17 2003-07-03 Estech, Inc. (Endoscopic Technologies, Inc.) Tissue stabilization and ablation devices and methods
US6547786B1 (en) * 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
US6849076B2 (en) * 2000-04-13 2005-02-01 University College London Surgical distraction device
US6620161B2 (en) * 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
US6464702B2 (en) * 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US6554829B2 (en) * 2001-01-24 2003-04-29 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6623482B2 (en) * 2001-01-24 2003-09-23 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6443970B1 (en) * 2001-01-24 2002-09-03 Ethicon, Inc. Surgical instrument with a dissecting tip
US6458128B1 (en) * 2001-01-24 2002-10-01 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6652521B2 (en) * 2001-01-24 2003-11-25 Ethicon, Inc. Surgical instrument with a bi-directional cutting element
US6790217B2 (en) * 2001-01-24 2004-09-14 Ethicon, Inc. Surgical instrument with a dissecting tip
US6695840B2 (en) * 2001-01-24 2004-02-24 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6773435B2 (en) * 2001-01-24 2004-08-10 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US20030073987A1 (en) * 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Treating apparatus and treating device for treating living-body tissue
US20030120268A1 (en) * 2001-12-04 2003-06-26 Estech, Inc. ( Endoscopic Technologies, Inc.) Cardiac ablation devices and methods
US6676660B2 (en) * 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US20030215733A1 (en) * 2002-05-20 2003-11-20 Xerox Corporation Toner processes
US20060052778A1 (en) * 2003-05-01 2006-03-09 Chapman Troy J Incorporating rapid cooling in tissue fusion heating processes

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US20100268208A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Surgical scalpel with inductively heated regions
US20100268215A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Catheter with inductively heated regions
US20100268207A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Adjustable ferromagnetic coated conductor thermal surgical tool
US20100268210A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated surgical implement driver
US20100268216A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode ultrasonic surgical tool
US20100268209A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated snare
US20100268211A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively Heated Multi-Mode Bipolar Surgical Tool
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US8491578B2 (en) 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US20100268206A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with multi-mode surgical tool
US20100268212A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method for inductively heating a surgical implement
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US9149321B2 (en) * 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US20150088114A1 (en) * 2011-04-08 2015-03-26 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
EP2704656A4 (en) * 2011-04-08 2015-08-05 Domain Surgical Inc System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8932279B2 (en) * 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
WO2012139085A3 (en) * 2011-04-08 2013-02-28 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US20130023866A1 (en) * 2011-04-08 2013-01-24 Mark Stringham System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Also Published As

Publication number Publication date
WO2007087603A3 (en) 2008-01-03
US7815641B2 (en) 2010-10-19
US20070179489A1 (en) 2007-08-02
WO2007087603A2 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US7815641B2 (en) Surgical instrument and method for use thereof
US11266459B2 (en) Sealing and/or cutting instrument
US9005199B2 (en) Heat management configurations for controlling heat dissipation from electrosurgical instruments
KR101215983B1 (en) Ultrasonic device and method for tissue coagulation
US7708735B2 (en) Incorporating rapid cooling in tissue fusion heating processes
EP1747761A1 (en) An electrode assembly with electrode cooling element for an electrosurgical instrument
WO2006104835A1 (en) Tissue welding and cutting apparatus
US10206732B2 (en) Electrosurgical dissector with thermal management
JP2007319683A (en) Electrosurgical instrument for directing energy delivery and protecting adjacent tissue
US20220265309A1 (en) Therapeutic ultrasound apparatus and method
US20190142502A1 (en) Combination electrosurgical instrument
JP2007037932A (en) Electrosurgery apparatus which reduces thermal damage to adjoining tissue
Rau et al. Cytoreduction Preparation Devices
Palmer Fundamentals of Energy Sources
Prabhu et al. Energy sources in laparoscopy
Dodde SPARING OF NEUROVASCULAR TISSUE UTILIZING HIGH THERMAL GRADIENTS
Bittner et al. 9. Laparoscopic Hemostasis: Energy Sources

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION