US20100327406A1 - Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate - Google Patents

Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate Download PDF

Info

Publication number
US20100327406A1
US20100327406A1 US12/493,049 US49304909A US2010327406A1 US 20100327406 A1 US20100327406 A1 US 20100327406A1 US 49304909 A US49304909 A US 49304909A US 2010327406 A1 US2010327406 A1 US 2010327406A1
Authority
US
United States
Prior art keywords
substrate
trench
insulating layer
over
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/493,049
Inventor
Meenakshi Padmanathan
Seung Uk Yoon
YongTaek Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stats Chippac Pte Ltd
Original Assignee
Stats Chippac Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stats Chippac Pte Ltd filed Critical Stats Chippac Pte Ltd
Priority to US12/493,049 priority Critical patent/US20100327406A1/en
Assigned to STATS CHIPPAC, LTD. reassignment STATS CHIPPAC, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, YONGTAEK, PADMANATHAN, MEENAKSHI, YOON, SEUNG UK
Priority to SG2012080271A priority patent/SG185341A1/en
Priority to TW099115261A priority patent/TWI498996B/en
Publication of US20100327406A1 publication Critical patent/US20100327406A1/en
Priority to US14/332,631 priority patent/US9640603B2/en
Assigned to CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT reassignment CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LTD., STATS CHIPPAC, INC.
Assigned to STATS CHIPPAC PTE. LTE. reassignment STATS CHIPPAC PTE. LTE. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STATS CHIPPAC LD.
Assigned to STATS ChipPAC Pte. Ltd. reassignment STATS ChipPAC Pte. Ltd. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME PREVIOUSLY RECORDED AT REEL: 039514 FRAME: 0451. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: STATS CHIPPAC LTD.
Priority to US15/460,690 priority patent/US10903304B2/en
Assigned to STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., STATS CHIPPAC, INC. reassignment STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/19015Structure including thin film passive components

Definitions

  • the present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming an inductor over an insulating material filled trench in a substrate.
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • LED light emitting diode
  • MOSFET power metal oxide semiconductor field effect transistor
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays.
  • Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials.
  • the atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • a semiconductor device contains active and passive electrical structures.
  • Active structures including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current.
  • Passive structures including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions.
  • the passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components.
  • Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products.
  • a smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • IPDs integrated passive devices
  • RF radio frequency
  • the inductors are typically formed as a coiled conductive layer over a surface of the substrate.
  • the inductor must have a high Q factor for optimal RF performance. However, the Q factor can be reduced by inductive coupling losses between the inductor and substrate.
  • a high resistivity substrate in the range of 1000-3000 ohm-cm, is commonly used. Unfortunately, the high resistivity substrate adds excessive costs to the manufacturing process.
  • the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, conformally applying a first insulating layer over the substrate and into the trench, depositing an insulating material over the first insulating layer in the trench, forming a first conductive layer over the insulating material, forming a second insulating layer over the first insulating layer and first conductive layer, removing a portion of the second insulating layer to expose the first conductive layer, and forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer.
  • the insulating material in the trench isolates the first and second conductive layers from the substrate.
  • the method further includes the step of forming a third insulating layer over the second insulating layer and second conductive layer.
  • the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, forming a first insulating layer into the trench, depositing an insulating material over the first insulating layer, forming a first conductive layer over the insulating material, forming a second insulating layer over the first insulating layer and first conductive layer, forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer, and forming a third insulating layer over the second insulating layer and second conductive layer.
  • the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, depositing an insulating material in the trench forming a first conductive layer over the insulating material, and forming a first insulating layer over the substrate, insulating material, and first conductive layer.
  • the present invention is a semiconductor device comprising a substrate having a trench formed in a surface of the substrate. An insulating material is deposited in the trench. A first conductive layer is formed over the insulating material. A first insulating layer is formed over the substrate and first conductive layer. A second conductive layer is formed over the first insulating layer and electrically contacting the first conductive layer. The first and second conductive layers are isolated from the substrate by the insulating material in the trench. A second insulating layer is formed over the first insulating layer and second conductive layer.
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface
  • FIGS. 2 a - 2 c illustrate further detail of the semiconductor packages mounted to the PCB
  • FIGS. 3 a - 3 g illustrate a process of forming an inductor over an insulating material filled trench in a substrate
  • FIGS. 4 a - 4 b illustrate the inductor formed over the insulating material filled trench in the substrate.
  • Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer.
  • Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits.
  • Active electrical components such as transistors and diodes, have the ability to control the flow of electrical current.
  • Passive electrical components such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization.
  • Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion.
  • the doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current.
  • Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties.
  • the layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • electrolytic plating electroless plating processes.
  • Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • the layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned.
  • a pattern is transferred from a photomask to the photoresist using light.
  • the portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned.
  • the remainder of the photoresist is removed, leaving behind a patterned layer.
  • some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation.
  • the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes.
  • the wafer is singulated using a laser cutting tool or saw blade.
  • the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components.
  • Contact pads formed over the semiconductor die are then connected to contact pads within the package.
  • the electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds.
  • An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation.
  • the finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface.
  • Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer.
  • the semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB.
  • Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • a semiconductor device has two packaging levels.
  • First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier.
  • Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB.
  • a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • first level packaging including wire bond package 56 and flip chip 58
  • second level packaging including ball grid array (BGA) 60 , bump chip carrier (BCC) 62 , dual in-line package (DIP) 64 , land grid array (LGA) 66 , multi-chip module (MCM) 68 , quad flat non-leaded package (QFN) 70 , and quad flat package 72 .
  • BGA ball grid array
  • BCC bump chip carrier
  • DIP dual in-line package
  • LGA land grid array
  • MCM multi-chip module
  • QFN quad flat non-leaded package
  • quad flat package 72 quad flat package
  • electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages.
  • manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a - 2 c show exemplary semiconductor packages.
  • FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52 .
  • Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74 .
  • Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74 .
  • semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy.
  • the package body includes an insulative packaging material such as polymer or ceramic.
  • Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52 .
  • Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82 .
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52 .
  • Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92 .
  • Wire bonds 94 provide first level packing interconnect between contact pads 96 and 98 .
  • Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device.
  • Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition such electrolytic plating or electroless plating to prevent oxidation.
  • Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52 .
  • Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52 .
  • semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging.
  • Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die.
  • the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108 .
  • Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110 .
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112 .
  • Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110 , signal lines 114 , and bumps 112 .
  • a molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device.
  • the flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance.
  • the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106 .
  • FIG. 3 a shows a substrate or wafer 120 made with a semiconductor base material such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide.
  • the semiconductor base material has a low resistivity, in the range of 10-30 ohm-cm.
  • the low resistivity substrate 120 is considered a low-cost component in the manufacturing process.
  • the thickness of substrate 120 is about 635 micrometers ( ⁇ m), prior to wafer back grinding or other thinning process.
  • a plurality of semiconductor die can be formed over or mounted to substrate 120 using semiconductor manufacturing processes as described above.
  • Each semiconductor die has active and passive devices, conductive layers, and dielectric layers formed in active surface 122 according to the electrical design of the die.
  • the semiconductor die contains baseband analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
  • DSP digital signal processor
  • the semiconductor die may also contain IPD, such as inductors, capacitors, and resistors, for RF signal processing.
  • IPDs provide the electrical characteristics needed for high frequency applications, such as resonators, high-pass filters, low-pass filters, band-pass filters, symmetric Hi-Q resonant transformers, matching networks, and tuning capacitors.
  • the IPDs can be used as front-end wireless RF components, which can be positioned between the antenna and transceiver.
  • the IPD inductor can be a hi-Q balun, transformer, or coil, operating up to 100 Gigahertz. In some applications, multiple baluns are formed over a same substrate, allowing multi-band operation.
  • baluns are used in a quad-band for mobile phones or other GSM communications, each balun dedicated for a frequency band of operation of the quad-band device.
  • a typical RF system requires multiple IPDs and other high frequency circuits in one or more semiconductor packages to perform the necessary electrical functions.
  • trench 124 has tapered sidewalls and depth of 10-120 ⁇ m.
  • a dielectric or insulating layer 126 is conformally applied over substrate 100 and into trench 124 , as shown in FIG. 3 b .
  • the insulating layer 126 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), zircon (ZrO2), aluminum oxide (Al2O3), polyimide, benzocyclobutene (BCB), polybenzoxazoles (PBO), or other material having suitable electrical insulating properties.
  • the insulating layer 126 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation to a thickness of 0.01 ⁇ m.
  • an insulating material 128 is formed over insulating layer 126 and into trench 124 .
  • the insulating material 128 can be one or more layers of polyimide, BCB, PBO, or other polymer material applied using low temperature deposition, e.g., in the range of 250-360° C.
  • insulating material 128 has a low coefficient of thermal expansion (CTE) of 25-60, low loss tangent of 0.01, and low dielectric constant (k) value of 2.9.
  • an electrically conductive layer 130 is formed over insulating material 128 using patterning with PVD, CVD, sputtering, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 130 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • a passivation or insulating layer 132 is conformally applied over insulating layer 126 , insulating material 128 , and conductive layer 130 .
  • the insulating layer 132 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having suitable insulating and structural properties.
  • the insulating layer 132 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation. A portion of insulating layer 132 is removed by an etching process to expose conductive layer 130 .
  • an electrically conductive layer 134 is formed over insulating layer 132 using patterning with PVD, CVD, sputtering, electrolytic plating, electroless plating process, or other suitable metal deposition process.
  • Conductive layer 134 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • a passivation or insulating layer 136 is conformally applied over insulating layer 132 and conductive layer 134 .
  • the insulating layer 136 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having suitable insulating and structural properties.
  • the insulating layer 136 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation.
  • FIGS. 3 a - 3 g The structure described in FIGS. 3 a - 3 g , including conductive layers 130 and 134 formed over insulating material 128 , which is disposed in trench 124 , are wound or coiled in plan view to produce or exhibit inductive properties.
  • FIG. 4 a shows the plan view of conductive layer 134 coiled to constitute inductor 138 with 1.5 to 4 turns, 30 ⁇ m line width and 150 ⁇ m inner radius.
  • FIG. 4 b shows a cross-sectional view of inductor 138 with conductive layers 130 and 134 formed over insulating material 128 , which is disposed in trench 124 .
  • Inductor 138 has a given Q factor, which is a measure of efficiency as the ratio of inductive reactance to resistance at a given frequency.
  • the inductor 138 has a high Q factor, in the range of 40-45 at 2.45 GHz with 80-120 ⁇ m deep trench 124 .
  • the insulating material 128 formed in trench 124 acts as a buffer to isolate conductive layer 130 and 134 from substrate 120 and reduce dissipation losses through the substrate.
  • the depth of trench 124 filled with insulating material 128 , increases the distance between conductive layers 130 and 134 and substrate 120 .
  • the insulating material separation decreases inductive coupling between the conductive layers and lossy substrate, which increases the Q of inductor 138 .
  • the parasitic capacitance is also reduced with increasing thickness of insulating material 128 and increasing inductor series resonant frequency (SRF).
  • SRF inductor series resonant frequency

Abstract

A semiconductor device has a trench formed in a substrate. The trench has tapered sidewalls and depth of 10-120 micrometers. A first insulating layer is conformally applied over the substrate and into the trench. An insulating material, such as polymer, is deposited over the first insulating layer in the trench. A first conductive layer is formed over the insulating material. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and electrically contacts the first conductive layer. The first and second conductive layers are isolated from the substrate by the insulating material in the trench. A third insulating layer is formed over the second insulating layer and second conductive layer. The first and second conductive layers are coiled over the substrate to exhibit inductive properties.

Description

    FIELD OF THE INVENTION
  • The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming an inductor over an insulating material filled trench in a substrate.
  • BACKGROUND OF THE INVENTION
  • Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
  • Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
  • Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
  • A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
  • One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
  • Another goal of semiconductor manufacturing is to produce higher performance semiconductor devices. An increase in device performance can be accomplished by forming active components that are capable of operating at higher speeds. In high frequency applications, such as radio frequency (RF) wireless communications, integrated passive devices (IPDs) are often contained within the semiconductor device. Examples of IPDs include resistors, capacitors, and inductors. A typical RF system requires multiple IPDs in one or more semiconductor packages to perform the necessary electrical functions.
  • The inductors are typically formed as a coiled conductive layer over a surface of the substrate. The inductor must have a high Q factor for optimal RF performance. However, the Q factor can be reduced by inductive coupling losses between the inductor and substrate. To maintain a high Q inductor, a high resistivity substrate, in the range of 1000-3000 ohm-cm, is commonly used. Unfortunately, the high resistivity substrate adds excessive costs to the manufacturing process.
  • SUMMARY OF THE INVENTION
  • A need exists for a high Q inductor on a low cost substrate. Accordingly, in one embodiment, the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, conformally applying a first insulating layer over the substrate and into the trench, depositing an insulating material over the first insulating layer in the trench, forming a first conductive layer over the insulating material, forming a second insulating layer over the first insulating layer and first conductive layer, removing a portion of the second insulating layer to expose the first conductive layer, and forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer. The insulating material in the trench isolates the first and second conductive layers from the substrate. The method further includes the step of forming a third insulating layer over the second insulating layer and second conductive layer.
  • In another embodiment, the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, forming a first insulating layer into the trench, depositing an insulating material over the first insulating layer, forming a first conductive layer over the insulating material, forming a second insulating layer over the first insulating layer and first conductive layer, forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer, and forming a third insulating layer over the second insulating layer and second conductive layer.
  • In another embodiment, the present invention is a method of manufacturing a semiconductor device comprising the steps of providing a substrate, forming a trench in the substrate, depositing an insulating material in the trench forming a first conductive layer over the insulating material, and forming a first insulating layer over the substrate, insulating material, and first conductive layer.
  • In another embodiment, the present invention is a semiconductor device comprising a substrate having a trench formed in a surface of the substrate. An insulating material is deposited in the trench. A first conductive layer is formed over the insulating material. A first insulating layer is formed over the substrate and first conductive layer. A second conductive layer is formed over the first insulating layer and electrically contacting the first conductive layer. The first and second conductive layers are isolated from the substrate by the insulating material in the trench. A second insulating layer is formed over the first insulating layer and second conductive layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a PCB with different types of packages mounted to its surface;
  • FIGS. 2 a-2 c illustrate further detail of the semiconductor packages mounted to the PCB;
  • FIGS. 3 a-3 g illustrate a process of forming an inductor over an insulating material filled trench in a substrate; and
  • FIGS. 4 a-4 b illustrate the inductor formed over the insulating material filled trench in the substrate.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
  • Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
  • Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
  • Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
  • The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
  • Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
  • Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
  • FIG. 1 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface. Electronic device 50 may have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 1 for purposes of illustration.
  • Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a subcomponent of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
  • In FIG. 1, PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.
  • In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
  • For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flip chip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
  • FIGS. 2 a-2 c show exemplary semiconductor packages. FIG. 2 a illustrates further detail of DIP 64 mounted on PCB 52. Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74. Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74. During assembly of DIP 64, semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy. The package body includes an insulative packaging material such as polymer or ceramic. Conductor leads 80 and wire bonds 82 provide electrical interconnect between semiconductor die 74 and PCB 52. Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or wire bonds 82.
  • FIG. 2 b illustrates further detail of BCC 62 mounted on PCB 52. Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92. Wire bonds 94 provide first level packing interconnect between contact pads 96 and 98. Molding compound or encapsulant 100 is deposited over semiconductor die 88 and wire bonds 94 to provide physical support and electrical isolation for the device. Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition such electrolytic plating or electroless plating to prevent oxidation. Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.
  • In FIG. 2 c, semiconductor die 58 is mounted face down to intermediate carrier 106 with a flip chip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit may include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.
  • BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106.
  • FIG. 3 a shows a substrate or wafer 120 made with a semiconductor base material such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide. The semiconductor base material has a low resistivity, in the range of 10-30 ohm-cm. The low resistivity substrate 120 is considered a low-cost component in the manufacturing process. The thickness of substrate 120 is about 635 micrometers (μm), prior to wafer back grinding or other thinning process. A plurality of semiconductor die can be formed over or mounted to substrate 120 using semiconductor manufacturing processes as described above. Each semiconductor die has active and passive devices, conductive layers, and dielectric layers formed in active surface 122 according to the electrical design of the die. In one embodiment, the semiconductor die contains baseband analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit.
  • The semiconductor die may also contain IPD, such as inductors, capacitors, and resistors, for RF signal processing. The IPDs provide the electrical characteristics needed for high frequency applications, such as resonators, high-pass filters, low-pass filters, band-pass filters, symmetric Hi-Q resonant transformers, matching networks, and tuning capacitors. The IPDs can be used as front-end wireless RF components, which can be positioned between the antenna and transceiver. The IPD inductor can be a hi-Q balun, transformer, or coil, operating up to 100 Gigahertz. In some applications, multiple baluns are formed over a same substrate, allowing multi-band operation. For example, two or more baluns are used in a quad-band for mobile phones or other GSM communications, each balun dedicated for a frequency band of operation of the quad-band device. A typical RF system requires multiple IPDs and other high frequency circuits in one or more semiconductor packages to perform the necessary electrical functions.
  • A portion of substrate 120 is removed by an etching process to form trench 124. In one embodiment, trench 124 has tapered sidewalls and depth of 10-120 μm.
  • A dielectric or insulating layer 126 is conformally applied over substrate 100 and into trench 124, as shown in FIG. 3 b. The insulating layer 126 can be one or more layers of silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), zircon (ZrO2), aluminum oxide (Al2O3), polyimide, benzocyclobutene (BCB), polybenzoxazoles (PBO), or other material having suitable electrical insulating properties. The insulating layer 126 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation to a thickness of 0.01 μm.
  • In FIG. 3 c, an insulating material 128 is formed over insulating layer 126 and into trench 124. The insulating material 128 can be one or more layers of polyimide, BCB, PBO, or other polymer material applied using low temperature deposition, e.g., in the range of 250-360° C. In one embodiment, insulating material 128 has a low coefficient of thermal expansion (CTE) of 25-60, low loss tangent of 0.01, and low dielectric constant (k) value of 2.9.
  • In FIG. 3 d, an electrically conductive layer 130 is formed over insulating material 128 using patterning with PVD, CVD, sputtering, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 130 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • In FIG. 3 e, a passivation or insulating layer 132 is conformally applied over insulating layer 126, insulating material 128, and conductive layer 130. The insulating layer 132 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having suitable insulating and structural properties. The insulating layer 132 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation. A portion of insulating layer 132 is removed by an etching process to expose conductive layer 130.
  • In FIG. 3 f, an electrically conductive layer 134 is formed over insulating layer 132 using patterning with PVD, CVD, sputtering, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 134 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material.
  • In FIG. 3 g, a passivation or insulating layer 136 is conformally applied over insulating layer 132 and conductive layer 134. The insulating layer 136 can be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other material having suitable insulating and structural properties. The insulating layer 136 is patterned or blanket deposited using PVD, CVD, printing, spin coating, sintering with curing, or thermal oxidation.
  • The structure described in FIGS. 3 a-3 g, including conductive layers 130 and 134 formed over insulating material 128, which is disposed in trench 124, are wound or coiled in plan view to produce or exhibit inductive properties. FIG. 4 a shows the plan view of conductive layer 134 coiled to constitute inductor 138 with 1.5 to 4 turns, 30 μm line width and 150 μm inner radius. FIG. 4 b shows a cross-sectional view of inductor 138 with conductive layers 130 and 134 formed over insulating material 128, which is disposed in trench 124.
  • Inductor 138 has a given Q factor, which is a measure of efficiency as the ratio of inductive reactance to resistance at a given frequency. The inductor 138 has a high Q factor, in the range of 40-45 at 2.45 GHz with 80-120 μm deep trench 124. The insulating material 128 formed in trench 124 acts as a buffer to isolate conductive layer 130 and 134 from substrate 120 and reduce dissipation losses through the substrate. The depth of trench 124, filled with insulating material 128, increases the distance between conductive layers 130 and 134 and substrate 120. The insulating material separation decreases inductive coupling between the conductive layers and lossy substrate, which increases the Q of inductor 138. The parasitic capacitance is also reduced with increasing thickness of insulating material 128 and increasing inductor series resonant frequency (SRF). Thus, instead of using an expensive high resistance substrate for the IPD, a simple inductor IPD for use in RF applications can be integrated using a low resistance substrate with a polymer fill trench. The electrical performance or Q is equivalent to that of an inductor Q value in high resistance substrate, providing significant cost savings with equivalent performance.
  • While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.

Claims (25)

1. A method of manufacturing a semiconductor device, comprising:
providing a substrate;
forming a trench in the substrate;
conformally applying a first insulating layer over the substrate and into the trench;
depositing an insulating material over the first insulating layer in the trench;
forming a first conductive layer over the insulating material;
forming a second insulating layer over the first insulating layer and first conductive layer;
removing a portion of the second insulating layer to expose the first conductive layer;
forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer, the insulating material in the trench isolating the first and second conductive layers from the substrate; and
forming a third insulating layer over the second insulating layer and second conductive layer.
2. The method of claim 1, wherein the first and second conductive layers are coiled over a surface of the substrate to exhibit inductive properties.
3. The method of claim 1, wherein the depth of the trench is 10-120 micrometers.
4. The method of claim 1, wherein the insulating material includes a polymer material.
5. The method of claim 1, wherein the trench has tapered sidewalls.
6. A method of manufacturing a semiconductor device, comprising:
providing a substrate;
forming a trench in the substrate;
forming a first insulating layer into the trench;
depositing an insulating material over the first insulating layer;
forming a first conductive layer over the insulating material;
forming a second insulating layer over the first insulating layer and first conductive layer;
forming a second conductive layer over the second insulating layer and electrically contacting the first conductive layer; and
forming a third insulating layer over the second insulating layer and second conductive layer.
7. The method of claim 6, further including conformally applying the first insulating layer over the substrate and into the trench.
8. The method of claim 6, wherein the insulating material in the trench isolates the first and second conductive layers from the substrate.
9. The method of claim 6, wherein the trench has a depth of 10-120 micrometers.
10. The method of claim 6, wherein the first and second conductive layers are coiled over a surface of the substrate to exhibit inductive properties.
11. The method of claim 6, wherein the insulating material includes a polymer material.
12. The method of claim 6, wherein the trench has tapered sidewalls.
13. The method of claim 6, wherein the substrate is made with low resistivity material of about 10-30 ohm-centimeter.
14. A method of manufacturing a semiconductor device, comprising:
providing a substrate;
forming a trench in the substrate;
depositing an insulating material in the trench;
forming a first conductive layer over the insulating material; and
forming a first insulating layer over the substrate, insulating material, and first conductive layer.
15. The method of claim 14, further including:
forming a second conductive layer over the first insulating layer and electrically contacting the first conductive layer; and
forming a second insulating layer over the first insulating layer and second conductive layer.
16. The method of claim 15, wherein the insulating material in the trench isolates the first and second conductive layers from the substrate.
17. The method of claim 15, wherein the first and second conductive layers are coiled over a surface of the substrate to exhibit inductive properties.
18. The method of claim 14, further including conformally applying a second insulating layer over the substrate and into the trench.
19. The method of claim 14, wherein the insulating material includes a polymer material.
20. The method of claim 14, wherein the trench has a depth of 10-120 micrometers.
21. A semiconductor device, comprising:
a substrate having a trench formed in a surface of the substrate;
an insulating material deposited in the trench;
a first conductive layer formed over the insulating material;
a first insulating layer formed over the substrate and first conductive layer;
a second conductive layer formed over the first insulating layer and electrically contacting the first conductive layer, the first and second conductive layers being isolated from the substrate by the insulating material in the trench; and
a second insulating layer formed over the first insulating layer and second conductive layer.
22. The semiconductor device of claim 21, wherein the first and second conductive layers are coiled over a surface of the substrate to exhibit inductive properties.
23. The semiconductor device of claim 21, wherein the trench has a depth of 10-120 micrometers.
24. The semiconductor device of claim 21, wherein the insulating material includes a polymer material.
25. The semiconductor device of claim 21, wherein the trench has tapered sidewalls.
US12/493,049 2009-06-26 2009-06-26 Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate Abandoned US20100327406A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/493,049 US20100327406A1 (en) 2009-06-26 2009-06-26 Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate
SG2012080271A SG185341A1 (en) 2009-06-26 2010-04-27 Semiconductor device and method of forming inductor over insulating material filled trench in substrate
TW099115261A TWI498996B (en) 2009-06-26 2010-05-13 Semiconductor device and method of forming inductor over insulating material filled trench in substrate
US14/332,631 US9640603B2 (en) 2009-06-26 2014-07-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate
US15/460,690 US10903304B2 (en) 2009-06-26 2017-03-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/493,049 US20100327406A1 (en) 2009-06-26 2009-06-26 Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/332,631 Continuation US9640603B2 (en) 2009-06-26 2014-07-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate

Publications (1)

Publication Number Publication Date
US20100327406A1 true US20100327406A1 (en) 2010-12-30

Family

ID=43379766

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/493,049 Abandoned US20100327406A1 (en) 2009-06-26 2009-06-26 Semiconductor Device and Method of Forming Inductor Over Insulating Material Filled Trench In Substrate
US14/332,631 Active 2029-09-09 US9640603B2 (en) 2009-06-26 2014-07-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate
US15/460,690 Active 2030-05-10 US10903304B2 (en) 2009-06-26 2017-03-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/332,631 Active 2029-09-09 US9640603B2 (en) 2009-06-26 2014-07-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate
US15/460,690 Active 2030-05-10 US10903304B2 (en) 2009-06-26 2017-03-16 Semiconductor device and method of forming inductor over insulating material filled trench in substrate

Country Status (3)

Country Link
US (3) US20100327406A1 (en)
SG (1) SG185341A1 (en)
TW (1) TWI498996B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089639A1 (en) * 2011-12-22 2013-06-27 Siemens Aktiengesellschaft Circuit carrier with a separate RF circuit and method for assembling such a circuit carrier
US11069633B2 (en) * 2018-01-10 2021-07-20 Siliconware Precision Industries Co., Ltd. Electronic package

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734331B2 (en) 2017-08-16 2020-08-04 Texas Instruments Incorporated Integrated circuit with an embedded inductor or transformer
KR101973449B1 (en) * 2017-12-11 2019-04-29 삼성전기주식회사 Inductor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884990A (en) * 1996-08-23 1999-03-23 International Business Machines Corporation Integrated circuit inductor
US6002161A (en) * 1995-12-27 1999-12-14 Nec Corporation Semiconductor device having inductor element made of first conductive layer of spiral configuration electrically connected to second conductive layer of insular configuration
US6249039B1 (en) * 1998-09-10 2001-06-19 Bourns, Inc. Integrated inductive components and method of fabricating such components
US6287931B1 (en) * 1998-12-04 2001-09-11 Winbond Electronics Corp. Method of fabricating on-chip inductor
US20020008301A1 (en) * 1998-07-13 2002-01-24 Ping Liou Monolithic high-q inductance device and process for fabricating the same
US6492708B2 (en) * 2001-03-14 2002-12-10 International Business Machines Corporation Integrated coil inductors for IC devices
US20060192267A1 (en) * 2004-12-03 2006-08-31 Samsung Electronics Co., Ltd. Inductor fabricated with dry film resist and cavity and method of fabricating the inductor
US20070210403A1 (en) * 2006-03-07 2007-09-13 Micron Technology, Inc. Isolation regions and their formation
US20070262418A1 (en) * 2004-04-29 2007-11-15 Yinon Degani Integrated passive devices
US20090236671A1 (en) * 2008-03-21 2009-09-24 Tomohiro Yakuwa High voltage-resistant semiconductor device and method of manufacturing high voltage-resistant semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336921A (en) * 1992-01-27 1994-08-09 Motorola, Inc. Vertical trench inductor
JPH0677407A (en) * 1992-04-06 1994-03-18 Nippon Precision Circuits Kk Semiconductor device
JP3792635B2 (en) * 2001-12-14 2006-07-05 富士通株式会社 Electronic equipment
TW200302685A (en) 2002-01-23 2003-08-01 Matsushita Electric Ind Co Ltd Circuit component built-in module and method of manufacturing the same
KR100506192B1 (en) * 2003-05-12 2005-08-03 매그나칩 반도체 유한회사 Method of forming a high resistive region in a semiconductor device
CN1282246C (en) * 2003-09-01 2006-10-25 上海宏力半导体制造有限公司 High-power RF integrated circuit capable of blocking parasitic loss current and its mfg. method
DE102004022139B4 (en) * 2004-05-05 2007-10-18 Atmel Germany Gmbh A method for producing a spiral inductance on a substrate and a device produced by such a method
US7355282B2 (en) * 2004-09-09 2008-04-08 Megica Corporation Post passivation interconnection process and structures
US7354800B2 (en) 2005-04-29 2008-04-08 Stats Chippac Ltd. Method of fabricating a stacked integrated circuit package system
US20070108583A1 (en) 2005-08-08 2007-05-17 Stats Chippac Ltd. Integrated circuit package-on-package stacking system
DE602005014250D1 (en) * 2005-11-17 2009-06-10 Seiko Epson Corp Multi-layer circuit with variable inductor and method for its production
US8169059B2 (en) * 2008-09-30 2012-05-01 Infineon Technologies Ag On-chip RF shields with through substrate conductors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002161A (en) * 1995-12-27 1999-12-14 Nec Corporation Semiconductor device having inductor element made of first conductive layer of spiral configuration electrically connected to second conductive layer of insular configuration
US5884990A (en) * 1996-08-23 1999-03-23 International Business Machines Corporation Integrated circuit inductor
US20020008301A1 (en) * 1998-07-13 2002-01-24 Ping Liou Monolithic high-q inductance device and process for fabricating the same
US6249039B1 (en) * 1998-09-10 2001-06-19 Bourns, Inc. Integrated inductive components and method of fabricating such components
US6287931B1 (en) * 1998-12-04 2001-09-11 Winbond Electronics Corp. Method of fabricating on-chip inductor
US6492708B2 (en) * 2001-03-14 2002-12-10 International Business Machines Corporation Integrated coil inductors for IC devices
US20070262418A1 (en) * 2004-04-29 2007-11-15 Yinon Degani Integrated passive devices
US20060192267A1 (en) * 2004-12-03 2006-08-31 Samsung Electronics Co., Ltd. Inductor fabricated with dry film resist and cavity and method of fabricating the inductor
US20070210403A1 (en) * 2006-03-07 2007-09-13 Micron Technology, Inc. Isolation regions and their formation
US20090236671A1 (en) * 2008-03-21 2009-09-24 Tomohiro Yakuwa High voltage-resistant semiconductor device and method of manufacturing high voltage-resistant semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089639A1 (en) * 2011-12-22 2013-06-27 Siemens Aktiengesellschaft Circuit carrier with a separate RF circuit and method for assembling such a circuit carrier
US11069633B2 (en) * 2018-01-10 2021-07-20 Siliconware Precision Industries Co., Ltd. Electronic package

Also Published As

Publication number Publication date
US20170186690A1 (en) 2017-06-29
US9640603B2 (en) 2017-05-02
US20140327107A1 (en) 2014-11-06
TW201104793A (en) 2011-02-01
US10903304B2 (en) 2021-01-26
TWI498996B (en) 2015-09-01
SG185341A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US10211183B2 (en) Semiconductor device and method of forming shielding layer over integrated passive device using conductive channels
US8164158B2 (en) Semiconductor device and method of forming integrated passive device
US9263361B2 (en) Semiconductor device having a vertical interconnect structure using stud bumps
US9343396B2 (en) Semiconductor device and method of forming IPD in fan-out wafer level chip scale package
US8263437B2 (en) Semiconductor device and method of forming an IPD over a high-resistivity encapsulant separated from other IPDS and baseband circuit
US8133762B2 (en) Semiconductor device and method of providing z-interconnect conductive pillars with inner polymer core
US7935570B2 (en) Semiconductor device and method of embedding integrated passive devices into the package electrically interconnected using conductive pillars
US8049328B2 (en) Semiconductor device and method of forming an interconnect structure for 3-D devices using encapsulant for structural support
US8067308B2 (en) Semiconductor device and method of forming an interconnect structure with TSV using encapsulant for structural support
US7951663B2 (en) Semiconductor device and method of forming IPD structure using smooth conductive layer and bottom-side conductive layer
US9685495B2 (en) Semiconductor device and method of forming IPD on molded substrate
US10903304B2 (en) Semiconductor device and method of forming inductor over insulating material filled trench in substrate
SG185340A1 (en) Semiconductor device and method of formingvertical interconnect structure using stud bumps

Legal Events

Date Code Title Description
AS Assignment

Owner name: STATS CHIPPAC, LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PADMANATHAN, MEENAKSHI;YOON, SEUNG UK;LEE, YONGTAEK;REEL/FRAME:022884/0135

Effective date: 20090625

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT, HONG KONG

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY

Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748

Effective date: 20150806

AS Assignment

Owner name: STATS CHIPPAC PTE. LTE., SINGAPORE

Free format text: CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LD.;REEL/FRAME:038378/0442

Effective date: 20160329

AS Assignment

Owner name: STATS CHIPPAC PTE. LTD., SINGAPORE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME PREVIOUSLY RECORDED AT REEL: 039514 FRAME: 0451. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:039980/0838

Effective date: 20160329

AS Assignment

Owner name: STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., SINGAPORE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053476/0094

Effective date: 20190503

Owner name: STATS CHIPPAC, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053476/0094

Effective date: 20190503