US20100310422A1 - Optical biosensor - Google Patents

Optical biosensor Download PDF

Info

Publication number
US20100310422A1
US20100310422A1 US11/962,858 US96285807A US2010310422A1 US 20100310422 A1 US20100310422 A1 US 20100310422A1 US 96285807 A US96285807 A US 96285807A US 2010310422 A1 US2010310422 A1 US 2010310422A1
Authority
US
United States
Prior art keywords
biomediator
matrix
metal layer
porous
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/962,858
Inventor
Valentina Grasso
Federica Valerio
Vito Guido Lambertini
Marco Pizzi
Piero Perlo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centro Ricerche Fiat SCpA
Original Assignee
Centro Ricerche Fiat SCpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Ricerche Fiat SCpA filed Critical Centro Ricerche Fiat SCpA
Priority to US11/962,858 priority Critical patent/US20100310422A1/en
Publication of US20100310422A1 publication Critical patent/US20100310422A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to a porous-matrix optical biosensor.
  • the present invention relates to an optical biosensor with porous matrix constituted by anodized porous alumina connected to a detector, preferably a photodiode, for detection of the signal.
  • the present invention moreover relates to a biosensor having an optical detector integrated with a porous matrix other than porous alumina, such as for example porous silicon.
  • a biosensor is a device capable of detecting a chemical or biochemical variable (analyte) by means of a biological component (biomediator), which, being immobilized on a matrix/substrate, functions as interface with a transducer.
  • the transducer which is constituted by the sensitized matrix and by a detector, is capable of transforming the chemico-physical signal deriving from the interaction between the biomediator and the analyte into a measurable physical (i.e., electrical) signal, which depends upon the variable analysed.
  • the detector is able to measure the physical signal both in purely qualitative terms and in quantitative terms.
  • An optical biosensor is a device capable of measuring the luminescence—whether chemiluminescence or bioluminescence—emitted during the interaction between the biomediator and its corresponding biological variable. Said interaction entails, in fact, occurrence of a chemical reaction which brings about the passage of one of the species involved in the reaction into an electronically excited state. Decay of said species from the excited state to the fundamental state brings about emission of photons (hv), the measurement of which supplies an indication not only of the presence but also of the amount of the analyte being measured.
  • biosensors are the sensitivity and the selectivity that the biological component is able to provide, in conjunction with the simplicity of use and the versatility that derives from the method of transduction chosen, which is usually compatible with specifications of low-cost miniaturizability.
  • the biomediators or biological systems used may be enzymes (e.g., luciferase), antibodies, biological membranes, bacteria of a wild strain or genetically modified bacteria (e.g., natural or recombinant bioluminescent bacteria), cells, animal or vegetable tissues; these interact directly or indirectly with the analyte to be determined and are responsible for the specificity of the sensor.
  • the biomediator interacting with the analyte brings about a variation in one or more chemico-physical parameters of the species involved, giving, for example, rise to a chemiluminescent or bioluminescent reaction with corresponding emission of photons (hv).
  • the substrates used for immobilization of the biomediator can be constituted by various materials.
  • silica gel silica gel, agarose, polymeric compounds such as, for example, polystyrene or polyacrylates, natural fibres such as silk, or else glass (micro)spheres.
  • biosensors are very wide and range from the medico-diagnostic sector to the environmental and foodstuff sectors.
  • biosensors can be used for determining chemical substances that may function as indicators, for example, of the microbial pollution present in a foodstuff or of the deterioration of the latter, for example caused by processes of oxidation. It is moreover possible to detect traces of contaminating chemical compounds, toxins, or else additives, preservatives, etc.
  • the purpose of the present invention is to provide an optical biosensor having a structure such as to facilitate the contacts between the sensitized porous matrix and the detector—i.e., to facilitate the functionality of the transducer—with consequent advantages in the detection of the signal generated by the transducer as a function of the interaction between the biomediator and the analyte.
  • the invention relates to an optical biosensor having as matrix (substrate), a material with porous structure, preferably anodized porous alumina, on which the biomediator is immobilized.
  • FIG. 1 represents an optical biosensor according to the invention
  • FIG. 2 reproduces two photographs obtained with the scanning electronic microscope of a cross section and a front section of a matrix of anodized porous alumina
  • FIG. 3 illustrates the structure of an optical biosensor according to the invention
  • FIG. 4 represents an optical biosensor according to the invention coupled to a photodiode
  • FIG. 5 illustrates an optical biosensor having a porous matrix consisting of porous silicon
  • FIG. 6 reproduces a further embodiment of the invention.
  • the biosensor 1 comprises a matrix or supporting structure 2 made of anodized porous alumina, inside the pores 2 a of which there is immobilized the biomediator 3 , which is able to react with the analyte 5 contained in the solution to be analysed 6 .
  • the porous matrix 2 is connected to, and preferably integrated with, an optical detector 4 , capable of measuring the signal—emission of photons hv—generated by the reaction between the biomediator 3 and the analyte 5 .
  • the photons emitted during the reaction between the biomediator and the analyte are correlated, when the biomediator is not in conditions of saturation, to the amount of analyte present in the solution 6 .
  • the innovative aspect of the present patent is represented by the use of a porous matrix 2 consisting of porous alumina obtained via a process of anodization of a film of high-purity aluminium or of a film of aluminium adhering to substrates such as glass, quartz, silicon, tungsten, etc.
  • anodized porous alumina The peculiar characteristics of anodized porous alumina are outlined in what follows.
  • the regularity of the pores bestows upon the material particular optical properties; in fact, the structural periodicity of the aforesaid material enables alternation of means with different dielectric constants, producing a photonic band gap that does not enable propagation of light radiation in a specific band of wavelengths and in certain directions, with consequent narrowing of the emission lobe of the outcoming light.
  • the porous surface brings about a considerable increase in the area of possible contact. The latter aspect favours substantially the process of immobilization of the biomediator, which can reach higher concentrations per unit area as compared to the use of a compact smooth structure.
  • the dimensions and number of pores can be controlled by varying the conditions of anodization of metallic aluminium.
  • the choice of metallic aluminium as a starting material presents a major advantage: it can be deposited on any surface using evaporation techniques and be subsequently anodized. In this way, it is possible to deposit a layer of aluminium—subsequently subjected to anodization—directly on an optical detector (for example, a photodiode), so guaranteeing a further miniaturization of the biosensor.
  • an optical detector for example, a photodiode
  • porous alumina as a matrix further enables the use of photolithographic techniques followed by chemical etching, which enable the generation of any three-dimensional or two-dimensional structure of the matrix.
  • the subsequent opening of the pores of the alumina matrix enables treatment of the matrix as a true membrane and facilitates formation of the electrical contacts in the transducer.
  • FIG. 2 illustrates, purely by way of example, a portion of a film of porous alumina obtained via anodic oxidation of an aluminium film.
  • the layer of alumina is formed by a series of adjacent cells of a substantially hexagonal shape, each having a straight central hole which constitutes a hole substantially perpendicular to the surface of the underlayer ( FIG. 2 a ).
  • the film of porous alumina can be developed with controlled morphology by appropriately choosing the electrolyte and the physical, chemical and electrochemical parameters of the process.
  • the first step for integration of a photodiode to the biosensor is the deposition of an aluminium layer on an underlayer, the latter being, for example, made of silicon on which there have previously been inserted nanoclusters made of gold.
  • the preferred techniques for deposition of the layer of aluminium are thermal evaporation via e-beam, and cathodic sputtering.
  • the step of deposition of the aluminium layer is followed by a step of anodization of the layer itself.
  • the process of anodization of the layer can be carried out using different electrolytic solutions according to the size and distance of the pores that are to be obtained.
  • it becomes necessary to carry out subsequent anodization processes and, in particular, at least:
  • the etching step referred to in point ii) is important for defining on the residual part of alumina preferential areas of growth of the alumina itself in the second anodization step.
  • etching ii) and anodization iii) are carried out a number of times, the structure improves until it becomes very uniform, as highlighted schematically in FIG. 2 , where the film of alumina is regular.
  • the regular structure of porous alumina can be developed with controlled morphology by appropriately choosing the electrolyte and the physical, chemical and electrochemical parameters of the process: in acidic electrolytes (such as phosphoric acid, oxalic acid and sulphuric acid with concentrations of 0.2-1.2M) and in adequate process conditions (voltage of 40-200 V, current density of 5-10 mA/cm 2 , stirring, and temperature of 0-4° C.), it is possible to obtain porous films presenting a high level of regularity.
  • the diameter of the pores and the depth of the film may be varied; typically, the diameter is 50-500 nm and the depth 1-200 ⁇ m.
  • any system sensitive to light such as a photodiode, may be used, where by the term “photodiode” is meant a photodiode formed by two or more sections.
  • any light-sensitive means integrated with the porous matrix it is possible to use any light-sensitive means integrated with the porous matrix.
  • the techniques that enable this integration between the optical detector, and the porous matrix the following may be mentioned:
  • the biosensor which is designated, as a whole, by the reference number 1 , consists of a matrix of anodized porous alumina 2 , inside the pores 2 a of which the biomediators 3 specific for the analyte 5 contained in the solution to be analysed 6 , are immobilized.
  • the detector 14 of the light signal emitted by the interaction between the biomediator 3 and the analyte 5 is constituted by a photodiode 14 a and a metal layer 14 b adhering on the bottom surface 2 b of the porous matrix for the purpose of improving the transmission of photons hv between the matrix and the photodiode.
  • FIG. 3 represents another embodiment of the present invention.
  • the detector 24 constituted by a series of metal nanoclusters 24 b , preferably gold nanoclusters, deposited on a silicon substrate 24 a so that the photons hv emitted during the biomediator-analyte interaction will be absorbed by the detector formed by the metal-silicon junction and will be detected by measuring the electrical potential at the junction.
  • optical detectors that can advantageously be used for the embodiment of the present invention may be represented by polymeric photodiodes, such as, for example, LEP (Light-Emitting Polymer) optical sensors or OLED (Organic Light-Emitting Diode) optical sensors.
  • LEP Light-Emitting Polymer
  • OLED Organic Light-Emitting Diode
  • the use of these polymeric photodiodes presents the major advantage of employing flexible structures with high biocompatibility.
  • An advantageous example of a possible application of this particular embodiment of the present invention is provided by the integration of this biosensor in a diagnostic instrument such as an endoscope; the endoscope presents the biosensor throughout its length for instantaneous monitoring of the analyte in question along an extensive stretch of the organ being examined.
  • An alternative embodiment of the present invention envisages the possibility of integrating the optical detector with biosensors formed by a porous matrix other than porous alumina; by way of example, reference will be made to porous silicon.
  • the porosity of the silicon matrix can be varied according to the biological species (biomediators) and hence to the analytes that are to be detected.
  • the porous silicon 2 is coated by electrochemical deposition with a continuous metal layer 54 a (for example, gold) so as to function itself as a photodiode 54 , there being created a Schottky junction.
  • the internal walls of the pores 2 a of porous silicon, coated with metal 54 a also function as substrate for the biomediator 3 , which is immobilized thereon. In order to immobilize the mediator the techniques described hereinafter are used.
  • the main advantage of the above embodiment of the present invention is provided by the complete integration of the porous matrix sensitized with the biomediator and of the optical sensor, with evident advantages in terms of design, reduction of the technological process steps and of the costs of the devices themselves.
  • an optical biosensor according to the present invention having the porous matrix divided into two or more sections, so that each section will be sensitized with a different biomediator capable of detecting one specific analyte and the biosensor as a whole shall be capable of detecting simultaneously two or more analytes of interest, thus obtaining a so-called “lab-on-chip”.
  • the individual sections are separate from one another, and, through exploitation of a system of injectors and reservoirs, the efficiency of the biomediators is guaranteed.
  • the porous matrix 2 of the biosensor 1 is divided into four sections 22 a , 22 b , 22 c and 22 d sensitized with four different biomediators which are specific for different analytes. This division is obtained by means of barriers 7 a and 7 b , which enable the four environments 6 a , 6 b , 6 c , 6 d for the biomediator-analyte reaction to be kept separate.
  • the detector is divided according to the partitions of the porous matrix so that the signals of the biomediator-analyte interactions of the four reaction environments may be processed separately, but simultaneously, by the detectors 64 a , 64 b , 64 c and 64 d , and a multiparametric analysis can be conducted.
  • the immobilization of the biomediator (whether this be an enzyme or a complex biological organism) on the porous matrix can be achieved by a wide range of techniques.
  • the following may be mentioned:
  • the surface of the porous alumina is preferably impregnated with any compound capable of increasing adhesion of the biomediator to the surface itself.
  • any compound capable of increasing adhesion of the biomediator to the surface itself is given by a polylysine peptide, which, by being adsorbed on the hydrophilic surface of the alumina, is then capable of “co-ordinating” with the biomediator exploiting the presence of —NH 2 groups on its side chain and hence giving rise to hydrogen bonds and/or of Van der Waals bonds with the hydrophilic groups of the biomediator.
  • a second example of a compound capable of increasing adhesion of the biomediator to the alumina matrix is polyprenyl phosphate; the phosphate group functions as an anchor capable of being adsorbed on the alumina, and the prenylenic tail—by rendering the alumina surface more hydrophobic—will favour the formation of non-covalent bonds between the matrix thus functionalized and the biomediator.

Abstract

The present invention relates to an optical biosensor comprising a porous matrix. In the specific case, reference is made to anodized porous alumina, on the surface of which the biological component specific for the analyte in question is immobilized, and to an optical-signal detector connected to said matrix. The present patent further relates to a biosensor having the porous matrix and the optical detector integrated in a single structure, in particular to biosensors with porous matrix other than porous alumina, for example porous silicon.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a Divisional Application of U.S. application Ser. No. 10/858,370 filed Jun. 2, 2004; the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a porous-matrix optical biosensor. In particular, the present invention relates to an optical biosensor with porous matrix constituted by anodized porous alumina connected to a detector, preferably a photodiode, for detection of the signal. The present invention moreover relates to a biosensor having an optical detector integrated with a porous matrix other than porous alumina, such as for example porous silicon.
  • A biosensor is a device capable of detecting a chemical or biochemical variable (analyte) by means of a biological component (biomediator), which, being immobilized on a matrix/substrate, functions as interface with a transducer. The transducer, which is constituted by the sensitized matrix and by a detector, is capable of transforming the chemico-physical signal deriving from the interaction between the biomediator and the analyte into a measurable physical (i.e., electrical) signal, which depends upon the variable analysed. The detector is able to measure the physical signal both in purely qualitative terms and in quantitative terms.
  • An optical biosensor is a device capable of measuring the luminescence—whether chemiluminescence or bioluminescence—emitted during the interaction between the biomediator and its corresponding biological variable. Said interaction entails, in fact, occurrence of a chemical reaction which brings about the passage of one of the species involved in the reaction into an electronically excited state. Decay of said species from the excited state to the fundamental state brings about emission of photons (hv), the measurement of which supplies an indication not only of the presence but also of the amount of the analyte being measured.
  • The essential characteristics of biosensors are the sensitivity and the selectivity that the biological component is able to provide, in conjunction with the simplicity of use and the versatility that derives from the method of transduction chosen, which is usually compatible with specifications of low-cost miniaturizability.
  • The biomediators or biological systems used may be enzymes (e.g., luciferase), antibodies, biological membranes, bacteria of a wild strain or genetically modified bacteria (e.g., natural or recombinant bioluminescent bacteria), cells, animal or vegetable tissues; these interact directly or indirectly with the analyte to be determined and are responsible for the specificity of the sensor. The biomediator interacting with the analyte brings about a variation in one or more chemico-physical parameters of the species involved, giving, for example, rise to a chemiluminescent or bioluminescent reaction with corresponding emission of photons (hv).
  • The substrates used for immobilization of the biomediator can be constituted by various materials. Amongst the currently used ones there can mentioned silica gel, agarose, polymeric compounds such as, for example, polystyrene or polyacrylates, natural fibres such as silk, or else glass (micro)spheres.
  • The areas of application of biosensors are very wide and range from the medico-diagnostic sector to the environmental and foodstuff sectors.
  • In the foodstuff sector, biosensors can be used for determining chemical substances that may function as indicators, for example, of the microbial pollution present in a foodstuff or of the deterioration of the latter, for example caused by processes of oxidation. It is moreover possible to detect traces of contaminating chemical compounds, toxins, or else additives, preservatives, etc.
  • Also the applications in the environmental sector are extremely numerous for determining the presence of pesticides, hydrocarbons, and toxic gases. In many cases, on account of the need to detect levels of concentration that fall below the range of detection of the biosensor, the latter has been coupled, in the case of electrical transduction, to electronic amplifiers.
  • SUMMARY OF THE INVENTION
  • The purpose of the present invention is to provide an optical biosensor having a structure such as to facilitate the contacts between the sensitized porous matrix and the detector—i.e., to facilitate the functionality of the transducer—with consequent advantages in the detection of the signal generated by the transducer as a function of the interaction between the biomediator and the analyte.
  • According to the invention, the above purpose is achieved thanks to the solution recalled specifically in the ensuing claims, which are understood as forming an integral part of the present description.
  • In the currently preferred embodiment, the invention relates to an optical biosensor having as matrix (substrate), a material with porous structure, preferably anodized porous alumina, on which the biomediator is immobilized.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further characteristics and advantages of the biosensor according to the present invention will emerge clearly from the ensuing detailed description, provided purely by way of non-limiting example, with reference to the annexed drawings, in which:
  • FIG. 1 represents an optical biosensor according to the invention;
  • FIG. 2 reproduces two photographs obtained with the scanning electronic microscope of a cross section and a front section of a matrix of anodized porous alumina;
  • FIG. 3 illustrates the structure of an optical biosensor according to the invention;
  • FIG. 4 represents an optical biosensor according to the invention coupled to a photodiode;
  • FIG. 5 illustrates an optical biosensor having a porous matrix consisting of porous silicon; and
  • FIG. 6 reproduces a further embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1, number 1 designates, as a whole, the optical biosensor. The biosensor 1 comprises a matrix or supporting structure 2 made of anodized porous alumina, inside the pores 2 a of which there is immobilized the biomediator 3, which is able to react with the analyte 5 contained in the solution to be analysed 6. The porous matrix 2 is connected to, and preferably integrated with, an optical detector 4, capable of measuring the signal—emission of photons hv—generated by the reaction between the biomediator 3 and the analyte 5. The photons emitted during the reaction between the biomediator and the analyte are correlated, when the biomediator is not in conditions of saturation, to the amount of analyte present in the solution 6.
  • The innovative aspect of the present patent is represented by the use of a porous matrix 2 consisting of porous alumina obtained via a process of anodization of a film of high-purity aluminium or of a film of aluminium adhering to substrates such as glass, quartz, silicon, tungsten, etc.
  • The peculiar characteristics of anodized porous alumina are outlined in what follows. In the first place, the regularity of the pores bestows upon the material particular optical properties; in fact, the structural periodicity of the aforesaid material enables alternation of means with different dielectric constants, producing a photonic band gap that does not enable propagation of light radiation in a specific band of wavelengths and in certain directions, with consequent narrowing of the emission lobe of the outcoming light. In addition, the porous surface brings about a considerable increase in the area of possible contact. The latter aspect favours substantially the process of immobilization of the biomediator, which can reach higher concentrations per unit area as compared to the use of a compact smooth structure.
  • The dimensions and number of pores can be controlled by varying the conditions of anodization of metallic aluminium.
  • The choice of metallic aluminium as a starting material presents a major advantage: it can be deposited on any surface using evaporation techniques and be subsequently anodized. In this way, it is possible to deposit a layer of aluminium—subsequently subjected to anodization—directly on an optical detector (for example, a photodiode), so guaranteeing a further miniaturization of the biosensor.
  • The choice of porous alumina as a matrix further enables the use of photolithographic techniques followed by chemical etching, which enable the generation of any three-dimensional or two-dimensional structure of the matrix.
  • The subsequent opening of the pores of the alumina matrix enables treatment of the matrix as a true membrane and facilitates formation of the electrical contacts in the transducer.
  • FIG. 2 illustrates, purely by way of example, a portion of a film of porous alumina obtained via anodic oxidation of an aluminium film. As may be noted, the layer of alumina is formed by a series of adjacent cells of a substantially hexagonal shape, each having a straight central hole which constitutes a hole substantially perpendicular to the surface of the underlayer (FIG. 2 a).
  • As per the known art, the film of porous alumina can be developed with controlled morphology by appropriately choosing the electrolyte and the physical, chemical and electrochemical parameters of the process.
  • Briefly, the first step for integration of a photodiode to the biosensor is the deposition of an aluminium layer on an underlayer, the latter being, for example, made of silicon on which there have previously been inserted nanoclusters made of gold. The preferred techniques for deposition of the layer of aluminium are thermal evaporation via e-beam, and cathodic sputtering. The step of deposition of the aluminium layer is followed by a step of anodization of the layer itself. The process of anodization of the layer can be carried out using different electrolytic solutions according to the size and distance of the pores that are to be obtained. In order to obtain a highly regular structure, of the same type as the one represented in FIG. 2, it becomes necessary to carry out subsequent anodization processes, and, in particular, at least:
  • i) a first anodization;
  • ii) a step of reduction, via chemical etching, of the irregular film of alumina by means of acidic solutions; and
  • iii) a second anodization of the part of the film of alumina not eliminated during the step of chemical etching.
  • The etching step referred to in point ii) is important for defining on the residual part of alumina preferential areas of growth of the alumina itself in the second anodization step.
  • If the operations of etching ii) and anodization iii) are carried out a number of times, the structure improves until it becomes very uniform, as highlighted schematically in FIG. 2, where the film of alumina is regular.
  • The regular structure of porous alumina can be developed with controlled morphology by appropriately choosing the electrolyte and the physical, chemical and electrochemical parameters of the process: in acidic electrolytes (such as phosphoric acid, oxalic acid and sulphuric acid with concentrations of 0.2-1.2M) and in adequate process conditions (voltage of 40-200 V, current density of 5-10 mA/cm2, stirring, and temperature of 0-4° C.), it is possible to obtain porous films presenting a high level of regularity. The diameter of the pores and the depth of the film may be varied; typically, the diameter is 50-500 nm and the depth 1-200 μm.
  • In the present invention, as a signal detector, and hence in the case in point as optical-signal detector, any system sensitive to light, such as a photodiode, may be used, where by the term “photodiode” is meant a photodiode formed by two or more sections.
  • Alternatively, as detectors it is possible to use any light-sensitive means integrated with the porous matrix. By way of example, amongst the techniques that enable this integration between the optical detector, and the porous matrix the following may be mentioned:
      • the nanopatterning technique, which envisages a process of deposition of a metal on the bottom portion of the porous matrix for a better adhesion of the photodiode to the matrix, as illustrated schematically in FIG. 4; and
      • the integration technique, which envisages deposition on a silicon substrate of gold nanoclusters and then of the porous matrix (FIG. 3).
  • In the embodiment illustrated in FIG. 4, the biosensor, which is designated, as a whole, by the reference number 1, consists of a matrix of anodized porous alumina 2, inside the pores 2 a of which the biomediators 3 specific for the analyte 5 contained in the solution to be analysed 6, are immobilized. The detector 14 of the light signal emitted by the interaction between the biomediator 3 and the analyte 5 is constituted by a photodiode 14 a and a metal layer 14 b adhering on the bottom surface 2 b of the porous matrix for the purpose of improving the transmission of photons hv between the matrix and the photodiode.
  • FIG. 3 represents another embodiment of the present invention. The matrix 2 of anodized porous alumina—inside the pores 2 a of which the biomediator 3 is immobilized—is in contact with the detector 24 constituted by a series of metal nanoclusters 24 b, preferably gold nanoclusters, deposited on a silicon substrate 24 a so that the photons hv emitted during the biomediator-analyte interaction will be absorbed by the detector formed by the metal-silicon junction and will be detected by measuring the electrical potential at the junction.
  • Other optical detectors that can advantageously be used for the embodiment of the present invention may be represented by polymeric photodiodes, such as, for example, LEP (Light-Emitting Polymer) optical sensors or OLED (Organic Light-Emitting Diode) optical sensors. The use of these polymeric photodiodes presents the major advantage of employing flexible structures with high biocompatibility. An advantageous example of a possible application of this particular embodiment of the present invention is provided by the integration of this biosensor in a diagnostic instrument such as an endoscope; the endoscope presents the biosensor throughout its length for instantaneous monitoring of the analyte in question along an extensive stretch of the organ being examined.
  • An alternative embodiment of the present invention envisages the possibility of integrating the optical detector with biosensors formed by a porous matrix other than porous alumina; by way of example, reference will be made to porous silicon.
  • The porosity of the silicon matrix can be varied according to the biological species (biomediators) and hence to the analytes that are to be detected. With reference to FIG. 5, the porous silicon 2 is coated by electrochemical deposition with a continuous metal layer 54 a (for example, gold) so as to function itself as a photodiode 54, there being created a Schottky junction. The internal walls of the pores 2 a of porous silicon, coated with metal 54 a, also function as substrate for the biomediator 3, which is immobilized thereon. In order to immobilize the mediator the techniques described hereinafter are used.
  • When the reaction between the biomediator and the analyte brings about emission of photons, these are immediately absorbed by the photodiode 54 constituted by the metal-silicon junction and are detected by measuring the electrical potential that is set up between the silicon and the metal.
  • The main advantage of the above embodiment of the present invention is provided by the complete integration of the porous matrix sensitized with the biomediator and of the optical sensor, with evident advantages in terms of design, reduction of the technological process steps and of the costs of the devices themselves.
  • In a particular embodiment represented schematically in FIG. 6, it is possible to provide an optical biosensor according to the present invention having the porous matrix divided into two or more sections, so that each section will be sensitized with a different biomediator capable of detecting one specific analyte and the biosensor as a whole shall be capable of detecting simultaneously two or more analytes of interest, thus obtaining a so-called “lab-on-chip”. The individual sections are separate from one another, and, through exploitation of a system of injectors and reservoirs, the efficiency of the biomediators is guaranteed.
  • With reference to FIG. 6, the porous matrix 2 of the biosensor 1 is divided into four sections 22 a, 22 b, 22 c and 22 d sensitized with four different biomediators which are specific for different analytes. This division is obtained by means of barriers 7 a and 7 b, which enable the four environments 6 a, 6 b, 6 c, 6 d for the biomediator-analyte reaction to be kept separate. Also the detector is divided according to the partitions of the porous matrix so that the signals of the biomediator-analyte interactions of the four reaction environments may be processed separately, but simultaneously, by the detectors 64 a, 64 b, 64 c and 64 d, and a multiparametric analysis can be conducted.
  • The immobilization of the biomediator (whether this be an enzyme or a complex biological organism) on the porous matrix can be achieved by a wide range of techniques. By way of non-limiting example, the following may be mentioned:
      • formation of non-covalent bonds (e.g., hydrogen bonds, Van der Waals bonds) between the biomediator and the porous matrix possibly functionalized in an appropriate manner;
      • micro-encapsulation through the use of membranes of porous alumina capable of entrapping the biomediator;
      • formation of covalent bonds between the biomediator and the porous matrix, optionally appropriately functionalized; and
      • cross-bonding with a bifunctional chemical compound capable of setting up a chemical bond between the matrix on the one hand and the biomediator on the other (this method can be used in concomitance with other immobilization techniques, such as absorption and micro-encapsulation).
  • The techniques that envisage the use of non-covalent bonds for immobilization of the biomediator to the matrix are preferable, in so far as they do not require any chemical modification of the biomediator. In this case, the surface of the porous alumina is preferably impregnated with any compound capable of increasing adhesion of the biomediator to the surface itself. An example of one of these compounds is given by a polylysine peptide, which, by being adsorbed on the hydrophilic surface of the alumina, is then capable of “co-ordinating” with the biomediator exploiting the presence of —NH2 groups on its side chain and hence giving rise to hydrogen bonds and/or of Van der Waals bonds with the hydrophilic groups of the biomediator. A second example of a compound capable of increasing adhesion of the biomediator to the alumina matrix is polyprenyl phosphate; the phosphate group functions as an anchor capable of being adsorbed on the alumina, and the prenylenic tail—by rendering the alumina surface more hydrophobic—will favour the formation of non-covalent bonds between the matrix thus functionalized and the biomediator.
  • Of course, without prejudice to the principle of the invention, the details of construction and the embodiments may vary respect to what is described and illustrated herein, without thereby departing from the scope of the invention.

Claims (6)

1. A biosensor comprising a porous matrix made of porous silicon, a biomediator immobilized on said matrix; and an optical-signal detector connected to said matrix;
wherein said porous matrix and said detector are integrated in a structure comprising:
a metal layer deposited on said porous matrix, and
said biomediator is immobilized on said metal layer,
wherein the optical-signal detector is constituted by the combination of said metal layer and said porous silicon matrix.
2. The biosensor according to claim 1, wherein the metal layer is a continuous metal layer.
3. The biosensor according to claim 1, wherein the metal layer is a gold metal layer.
4. The biosensor according to claim 1, wherein the metal layer is an electrochemically deposited metal layer.
5. The biosensor according to claim 1, wherein said biomediator is immobilized on said metal layer by non-covalent bonds between said biomediator and said metal layer; micro-encapsulation of the biomediator on said metal layer; covalent bonds between said biomediator and said metal layer; and/or cross-bonding with a bifunctional chemical compound capable of forming a bond between said metal layer and said biomediator.
6. The biosensor according to claim 5, wherein said biomediator is immobilized on said metal layer by the bifunctional chemical compound.
US11/962,858 2003-06-03 2007-12-21 Optical biosensor Abandoned US20100310422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/962,858 US20100310422A1 (en) 2003-06-03 2007-12-21 Optical biosensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IT000409A ITTO20030409A1 (en) 2003-06-03 2003-06-03 OPTICAL BIOSENSOR.
ITTO2003A000409 2003-06-03
US10/858,370 US7335514B2 (en) 2003-06-03 2004-06-02 Optical biosensor
US11/962,858 US20100310422A1 (en) 2003-06-03 2007-12-21 Optical biosensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/858,370 Division US7335514B2 (en) 2003-06-03 2004-06-02 Optical biosensor

Publications (1)

Publication Number Publication Date
US20100310422A1 true US20100310422A1 (en) 2010-12-09

Family

ID=33156371

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/858,370 Expired - Fee Related US7335514B2 (en) 2003-06-03 2004-06-02 Optical biosensor
US11/962,816 Expired - Fee Related US7858398B2 (en) 2003-06-03 2007-12-21 Optical biosensor
US11/962,858 Abandoned US20100310422A1 (en) 2003-06-03 2007-12-21 Optical biosensor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/858,370 Expired - Fee Related US7335514B2 (en) 2003-06-03 2004-06-02 Optical biosensor
US11/962,816 Expired - Fee Related US7858398B2 (en) 2003-06-03 2007-12-21 Optical biosensor

Country Status (6)

Country Link
US (3) US7335514B2 (en)
EP (2) EP1484599B1 (en)
AT (2) ATE324583T1 (en)
DE (2) DE602004000733T2 (en)
ES (1) ES2260710T3 (en)
IT (1) ITTO20030409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200952A1 (en) 2017-01-20 2018-07-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor device and method for manufacturing a semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006044957A2 (en) * 2004-10-19 2006-04-27 The Regents Of The University Of California Porous photonic crystal with light scattering domains and methods of synthesis and use thereof
WO2007016467A2 (en) * 2005-08-02 2007-02-08 Michigan State University Nanoporous silicon-based electrochemical dna biosensor
WO2007032236A1 (en) * 2005-09-16 2007-03-22 Yamatake Corporation Substrate for biochip, biochip, method for manufacturing substrate for biochip, and method for manufacturing biochip
DE602005006304T2 (en) * 2005-12-30 2008-08-14 CRF Società Consortile per Azioni, Orbassano Chemical-biological device for display and light emission
WO2007082075A2 (en) * 2006-01-11 2007-07-19 The Regents Of The University Of California Optical sensor for detecting chemical reaction activity
KR100891098B1 (en) * 2007-08-27 2009-03-31 삼성전자주식회사 Biochip and method of fabricating the same
ES2328889B1 (en) * 2008-02-22 2010-10-18 Ox-Cta S.L. ENZYMATIC OPTICAL BIOSENSOR.
JP2010186097A (en) * 2009-02-13 2010-08-26 Oki Electric Ind Co Ltd Optical resonator and optical sensor for fluid using the same
WO2013049606A2 (en) * 2011-09-28 2013-04-04 University Of Connecticut Metal oxide nanorod arrays on monolithic substrates
US9594008B2 (en) * 2012-01-17 2017-03-14 The Scripps Research Institute Preparation of specimen arrays on an EM grid
WO2018223054A1 (en) 2017-06-01 2018-12-06 University Of Connecticut Manganese-cobalt spinel oxide nanowire arrays
US11691123B2 (en) 2017-06-02 2023-07-04 University Of Connecticut Low-temperature diesel oxidation catalysts using TiO2 nanowire arrays integrated on a monolithic substrate
US11465129B2 (en) 2017-06-06 2022-10-11 University Of Connecticut Microwave assisted and low-temperature fabrication of nanowire arrays on scalable 2D and 3D substrates
US11371071B2 (en) * 2017-08-08 2022-06-28 International Business Machines Corporation Cell culturing structure including growth medium and non-growth medium
CN115322626B (en) * 2022-10-08 2023-08-18 中远关西涂料(上海)有限公司 Preparation method of water-based paint composition

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389524A (en) * 1989-07-28 1995-02-14 Kemisk Vaerk Koge A/S Method and a system for quantitatively monitoring a chemical component dissolved in a liquid medium
US6207369B1 (en) * 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US6229158B1 (en) * 1999-05-25 2001-05-08 Intel Corporation Stacked die integrated circuit device
US6248542B1 (en) * 1997-12-09 2001-06-19 Massachusetts Institute Of Technology Optoelectronic sensor
US20020034646A1 (en) * 1995-08-03 2002-03-21 Qinetiq Limited. Biomaterial
US20020061534A1 (en) * 2000-08-02 2002-05-23 Fuji Photo Films Co., Ltd. Biochemical analysis unit and biochemical analyzing method using the same
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US6455344B1 (en) * 1998-05-19 2002-09-24 National Science Council Method of fabricating a planar porous silicon metal-semicoductor-metal photodetector
US6464853B1 (en) * 1999-01-06 2002-10-15 Canon Kabushiki Kaisha Method of producing structure having narrow pores by anodizing
US6471136B1 (en) * 1999-06-29 2002-10-29 Carrier Corporation Biosensors for monitoring air conditioning and refrigeration processes
US20030187237A1 (en) * 2002-03-26 2003-10-02 Selena Chan Methods and device for DNA sequencing using surface enhanced raman scattering (SERS)
US20040040868A1 (en) * 2002-06-19 2004-03-04 Denuzzio John D. Microfabricated sensor arrays for multi-component analysis in minute volumes
US20040115707A1 (en) * 2002-09-17 2004-06-17 Fuji Photo Film Co., Ltd. Biochemical analysis units
US20040175710A1 (en) * 2001-05-22 2004-09-09 Haushalter Robert C. Method for in situ, on-chip chemical synthesis
US6803581B2 (en) * 2002-07-30 2004-10-12 International Radiation Detectors, Inc. Semiconductor photodiode with integrated microporous filter
US20040249227A1 (en) * 2001-07-18 2004-12-09 Holger Klapproth Biosensor and method for detecting analytes by means of time-resolved luminescene

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8609250D0 (en) * 1986-04-16 1986-05-21 Alcan Int Ltd Anodic oxide membranes
US5285078A (en) * 1992-01-24 1994-02-08 Nippon Steel Corporation Light emitting element with employment of porous silicon and optical device utilizing light emitting element
WO1998010289A1 (en) * 1996-09-04 1998-03-12 The Penn State Research Foundation Self-assembled metal colloid monolayers
CA2281205A1 (en) * 1997-02-12 1998-08-13 Eugene Y. Chan Methods and products for analyzing polymers
IL120514A (en) * 1997-03-25 2000-08-31 P C B Ltd Electronic interconnect structure and method for manufacturing it
US5922183A (en) * 1997-06-23 1999-07-13 Eic Laboratories, Inc. Metal oxide matrix biosensors
US6288390B1 (en) * 1999-03-09 2001-09-11 Scripps Research Institute Desorption/ionization of analytes from porous light-absorbing semiconductor
GB9924334D0 (en) * 1999-10-15 1999-12-15 Secr Defence Pharmaceutical products and methods of fabrication therefor
US6726818B2 (en) * 2000-07-21 2004-04-27 I-Sens, Inc. Biosensors with porous chromatographic membranes
JP3675326B2 (en) * 2000-10-06 2005-07-27 キヤノン株式会社 Multi-channel plate manufacturing method
EP1368624A2 (en) * 2001-03-01 2003-12-10 New Mexico State University Technology Transfer Corporation Optical devices and methods employing nanoparticles, microcavities, and semicontinuous metal films

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389524A (en) * 1989-07-28 1995-02-14 Kemisk Vaerk Koge A/S Method and a system for quantitatively monitoring a chemical component dissolved in a liquid medium
US6207369B1 (en) * 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US20020034646A1 (en) * 1995-08-03 2002-03-21 Qinetiq Limited. Biomaterial
US6248542B1 (en) * 1997-12-09 2001-06-19 Massachusetts Institute Of Technology Optoelectronic sensor
US6455344B1 (en) * 1998-05-19 2002-09-24 National Science Council Method of fabricating a planar porous silicon metal-semicoductor-metal photodetector
US6464853B1 (en) * 1999-01-06 2002-10-15 Canon Kabushiki Kaisha Method of producing structure having narrow pores by anodizing
US6229158B1 (en) * 1999-05-25 2001-05-08 Intel Corporation Stacked die integrated circuit device
US6471136B1 (en) * 1999-06-29 2002-10-29 Carrier Corporation Biosensors for monitoring air conditioning and refrigeration processes
US20020061534A1 (en) * 2000-08-02 2002-05-23 Fuji Photo Films Co., Ltd. Biochemical analysis unit and biochemical analyzing method using the same
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US20040175710A1 (en) * 2001-05-22 2004-09-09 Haushalter Robert C. Method for in situ, on-chip chemical synthesis
US20040249227A1 (en) * 2001-07-18 2004-12-09 Holger Klapproth Biosensor and method for detecting analytes by means of time-resolved luminescene
US20030187237A1 (en) * 2002-03-26 2003-10-02 Selena Chan Methods and device for DNA sequencing using surface enhanced raman scattering (SERS)
US20040040868A1 (en) * 2002-06-19 2004-03-04 Denuzzio John D. Microfabricated sensor arrays for multi-component analysis in minute volumes
US6803581B2 (en) * 2002-07-30 2004-10-12 International Radiation Detectors, Inc. Semiconductor photodiode with integrated microporous filter
US20040115707A1 (en) * 2002-09-17 2004-06-17 Fuji Photo Film Co., Ltd. Biochemical analysis units

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200952A1 (en) 2017-01-20 2018-07-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor device and method for manufacturing a semiconductor device
US10519034B2 (en) 2017-01-20 2019-12-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Semiconductor device and method of producing a semiconductor device
US11167981B2 (en) 2017-01-20 2021-11-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Semiconductor device and method of producing a semiconductor device
DE102017200952B4 (en) 2017-01-20 2023-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor device and method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
DE602004000733D1 (en) 2006-06-01
US7858398B2 (en) 2010-12-28
ES2260710T3 (en) 2006-11-01
US20050019799A1 (en) 2005-01-27
DE602004007653T2 (en) 2008-06-05
ATE367577T1 (en) 2007-08-15
US7335514B2 (en) 2008-02-26
EP1484599B1 (en) 2006-04-26
EP1484599A1 (en) 2004-12-08
ATE324583T1 (en) 2006-05-15
DE602004000733T2 (en) 2006-09-14
ITTO20030409A1 (en) 2004-12-04
DE602004007653D1 (en) 2007-08-30
EP1630548A3 (en) 2006-04-19
EP1630548A2 (en) 2006-03-01
EP1630548B1 (en) 2007-07-18
US20080118973A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US7858398B2 (en) Optical biosensor
Huang et al. Nano biosensors: properties, applications and electrochemical techniques
Feng et al. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker
US6897965B2 (en) Porous semiconductor-based optical interferometric sensor
Irrera et al. New generation of ultrasensitive label-free optical Si nanowire-based biosensors
US5866433A (en) Optochemical fluorescence sensor and method for measuring the concentration of at least one analyte in a sample
Hsiao et al. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing
KR101879794B1 (en) SPR sensor device with nanostructure
Leonardi et al. Biosensing platforms based on silicon nanostructures: A critical review
US20030119208A1 (en) Electrochemical immunosensor and kit and method for detecting biochemical anylyte using the sensor
Leonardi et al. Silicon nanowire luminescent sensor for cardiovascular risk in saliva
Jin et al. Glucose sensing based on interdigitated array microelectrode
US20120141327A1 (en) Label-free biosensor
JP5831230B2 (en) Surface plasmon enhanced fluorescence measurement device
US7427491B2 (en) Nanoparticles for optical sensors
CN101981448A (en) A method for sensing a chemical
De la Mora et al. Porous Silicon Biosensors
JP3923436B2 (en) SENSOR CHIP, SENSOR USING SAME, AND METHOD FOR PRODUCING SENSOR CHIP
Yuk et al. Demonstration of surface plasmon-coupled emission using solid-state electrochemiluminescence
JPH0627023A (en) Optical biosensor
KR102146877B1 (en) Integral Label-Free Biosensor and Method for Analysis Using the Same
US8780351B2 (en) Method for demonstrating the presence of molecules by means of optical gratings
Evtugyn et al. Biosensor Signal Transducers
Starodub et al. Nanostructured materials as biosensor transducers: achievements and future developments
Starodub Some Features of Design, Functional Activity, and Practical Application

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION