US20100291252A1 - Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics - Google Patents

Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics Download PDF

Info

Publication number
US20100291252A1
US20100291252A1 US12/847,065 US84706510A US2010291252A1 US 20100291252 A1 US20100291252 A1 US 20100291252A1 US 84706510 A US84706510 A US 84706510A US 2010291252 A1 US2010291252 A1 US 2010291252A1
Authority
US
United States
Prior art keywords
nozzle
chitosan
solidifying agent
raw material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/847,065
Inventor
Chao-Chun Peng
Tzu-Hsiang Huang
Jian-Min Lin
Jen-Hsiung Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Textile Research Institute
Original Assignee
Taiwan Textile Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Research Institute filed Critical Taiwan Textile Research Institute
Priority to US12/847,065 priority Critical patent/US20100291252A1/en
Assigned to TAIWAN TEXTILE RESEARCH INSTITUTE reassignment TAIWAN TEXTILE RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, TZU-HSIANG, LEE, JEN-HSIUNG, LIN, JIAN-MIN, PENG, CHAO-CHUN
Publication of US20100291252A1 publication Critical patent/US20100291252A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a method of producing chitosan non-woven fabrics and an apparatus thereof. More particularly, the present invention relates to a method of producing ultra fine fibers of chitosan non-woven fabrics and an apparatus thereof.
  • chitosan is a natural material
  • chitosan non-woven fabrics have properties and advantages that are unique to the natural material.
  • chitosan non-woven fabrics are very comfortable to wear, easily decomposed and absorbed by organisms, and very hygroscopic.
  • absorbable sutures, artificial skin and wound dressings have been developed using the decomposition and absorption properties of the natural chitosan.
  • highly hygroscopic property of chitosan can be applied to sanitary products such as wipe papers.
  • chitosan non-woven fabrics Traditional methods of producing chitosan non-woven fabrics includes a paper method, a needle punching method, a water needle method and an electrospinning method.
  • the paper method chitosan fibers are dispersed in water and then through a net to form the shape of the chitosan non-woven fabrics.
  • the chitosan fibers are dried by baking.
  • the production speed of the paper method is very fast, and thus large quantities of chitosan non-woven fabrics can be manufactured.
  • the chitosan non-woven fabrics made by the paper method are not soft and therefore have a bad feeling.
  • the needle punching method improves on the disadvantages of the paper method.
  • the chitosan non-woven fabrics made by the needle punching method are soft, highly hygroscopic, ventilated and easy to store.
  • the cost of the needle punching method is high and the strength of the chitosan non-woven fabrics made by the needle punching method is weak.
  • both the paper method and the needle punching method need after-treatments to meet the demands of non-woven fabrics.
  • the water needle method doesn't need after-treatment.
  • the chitosan non-woven fabrics made by the water needle method have a good touch feeling.
  • the water needle method consumes a lot of energy. The production cost of the water needle method is thus very high.
  • the electrospinning method is a new technology, which is not mature enough and thus there are many technological bottlenecks need to be solved.
  • the fibers produced by this method can be ultra thin.
  • the fibers are so thin that they achieve micrometer scales.
  • the non-woven fabrics produced by this method have a good feeling and are highly hygroscopic, ventilated and easy to store.
  • Another aspect of the present invention is to provide a method of producing chitosan non-woven fabrics.
  • the method is simple.
  • the method doesn't need after-treatments.
  • the production cost of the method is cheap.
  • one embodiment of the present invention provides a method of producing chitosan non-woven fabrics.
  • chitosan is dissolved in an acidic solution to form a chitosan acidic solution.
  • the chitosan acidic solution is extruded to form a chitosan fibrous stream.
  • a solidifying agent is ejected to form a solidifying agent stream.
  • the chitosan fibrous stream and the solidifying agent stream are combined to form a pre-solidified chitosan fiber, wherein the chitosan fibrous stream and the solidifying agent flow form a non-zero first angle.
  • a high-pressure air is ejected on the pre-solidified chitosan fiber to stretch it, wherein the high-pressure air and the pre-solidified chitosan fiber form a non-zero second angle.
  • the chitosan fiber is collected to form chitosan non-woven fabrics.
  • one embodiment of the present invention provides an apparatus of producing chitosan non-woven fabrics.
  • the apparatus comprises a raw material provider, a spinning nozzle and a collecting apparatus.
  • the spinning nozzle comprises a raw material nozzle, a solidifying agent nozzle and a high-pressure nozzle.
  • the solidifying agent nozzle is positioned around the raw material nozzle.
  • the solidifying agent jet and the raw material nozzle form a non-zero first angle.
  • the high-pressure nozzle is positioned around the solidifying agent nozzle.
  • the high-pressure nozzle and the raw material nozzle form a non-zero second angle.
  • the raw material provider provides a chitosan acidic solution.
  • the raw material nozzle extrudes the chitosan acidic solution.
  • the solidifying agent nozzle ejects a solidifying agent jet to solidify the chitosan acidic solution to a fiber.
  • the high-pressure nozzle ejects a high-pressure air to stretch the fiber.
  • the collecting apparatus collects the fiber to form chitosan non-woven fabrics.
  • one embodiment of the present invention provides a spinning nozzle.
  • the spinning nozzle comprises a raw material nozzle, a solidifying agent nozzle and a high-pressure nozzle.
  • the solidifying agent nozzle is positioned around the raw material nozzle.
  • the solidifying agent nozzle and the raw material nozzle form a non-zero first angle.
  • the high-pressure nozzle is positioned around the solidifying agent nozzle.
  • the high-pressure nozzle and the raw material nozzle form a non-zero second angle.
  • the raw material nozzle extrudes a chitosan acidic solution.
  • the solidifying agent nozzle ejects a solidifying agent stream to solidify the chitosan acidic solution to a fiber.
  • the high-pressure nozzle ejects a high-pressure air to stretch the fiber.
  • the spinning nozzle of the invention can simultaneously extrude the chitosan acidic solution, the solidifying agent and the high-pressure air. Therefore, the spinning nozzle can form the pre-solidified chitosan fiber and stretch it at the same time.
  • the non-woven fabrics made by the apparatus have a good feeling, are highly hygroscopic, ventilated and easy to store.
  • the manufacturing processes of the raw material extrusion, fiber solidification and fiber stretching are integrated in one nozzle system. The manufacture processes become simpler and the production cost is cheaper.
  • FIG. 1 is an apparatus of producing chitosan non-woven fabrics in one preferred embodiment of the invention.
  • FIG. 1 is an apparatus of producing chitosan non-woven fabrics in one preferred embodiment of the invention.
  • the apparatus comprises a raw material provider 100 , a filter 200 , a pump 300 , a spinning nozzle head 400 and a collecting apparatus 500 .
  • the spinning nozzle head 400 comprises at least a spinning nozzle 410 .
  • Each spinning nozzle 410 comprises a raw material nozzle 411 , a solidifying agent nozzle 412 and a high-pressure nozzle 413 .
  • the solidifying agent nozzle 412 is positioned around the raw material nozzle 411 .
  • the solidifying agent nozzle 412 and the raw material nozzle 411 form a non-zero first angle 414 .
  • the first angle is less than 90°.
  • the first angle is 30°, 45° or 60°.
  • the high-pressure nozzle 413 concentrically is positioned around the solidifying agent nozzle 412 .
  • the high-pressure nozzle 413 and the raw material nozzle 411 form a non-zero second angle 415 .
  • the second angle is less than 90°. In a preferred embodiment, the second angle is 30°, 45° or 60°.
  • the raw material provider 100 provides a chitosan acidic solution 421 .
  • the filter 200 will filter the chitosan acidic solution 421 .
  • the pump 300 provides pressure for the chitosan acidic solution 421 to be extruded from the raw material provider 411 .
  • the raw material nozzle 411 extrudes the chitosan acidic solution 421 to form a chitosan fibrous stream.
  • the solidifying agent nozzle 412 ejects a solidifying agent stream.
  • the solidifying agent stream will combine with the chitosan fibrous stream at the first angle 414 to solidify the chitosan fibrous stream to form a fiber.
  • the high-pressure nozzle 413 ejects a high-pressure air 423 .
  • the high-pressure air 423 will combine with the fiber at the second angle 415 to stretch the fiber.
  • the collecting apparatus 500 collects the fiber to form non-woven fabrics.
  • the collecting apparatus 500 is a collecting roller, however, the collecting apparatus 500 is not limited to the collecting roller and can be other types of collecting apparatuses in the invention.
  • the chitosan acidic solution 412 is made by dissolving chitosan in an acidic solution.
  • the acidic solution is an acetic acidic solution.
  • the weight percentage concentration of the acetic acid is about 1.5% ⁇ 2.5%.
  • Chitosan with molecular weight ranging from 1*10 5 to 3*10 5 is dissolved in the acetic acid to form the chitosan acidic solution 421 .
  • the weight percentage concentration of the chitosan acidic solution 421 is preferably about 3% ⁇ 5%, more preferably about 4.5%.
  • the solidifying agent 422 is a base solution and it can solidify the chitosan acidic solution 421 , which is extruded by the raw material provider 411 , into fibers.
  • the solidifying agent is sodium hydroxide solution.
  • the concentration of the sodium hydroxide solution is 0.1% to 10%.
  • the length 417 of the solidifying agent nozzle 412 will influence the solidified degree and the solidified time of pre-solidified chitosan fibers.
  • the pre-solidified chitosan fibers are hardly to stretch to longer and thinner with long length 417 of the solidifying agent nozzle 412 .
  • the length 417 of the solidifying agent nozzle 417 is about 6 ⁇ 40 mm.
  • the first angle 414 which the solidifying agent stream and the chitosan fibrous stream combine at, is very important because the first angle 414 will influence the solidified degree of the pre-solidified chitosan fiber and further influence the following step of stretching the pre-solidified chitosan fiber.
  • the pressure range of the high pressure 423 ejected by the high-pressure nozzle 413 is about 5 ⁇ 25 psi.
  • the temperature range of the high pressure 423 is about 0 ⁇ 100° C.
  • the second angle 413 which the high pressure 423 and the pre-solidified chitosan fiber combine at, is also very important because the angle will influence the thinness of the final fiber.
  • the diameters of chitosan fibers produced by the apparatus of chitosan non-woven fabrics of the invention are smaller than 10 ⁇ m and are in micrometer scale.
  • the present invention has the following advantages.
  • the fibers produced by this method can be ultra thin.
  • the fibers are so thin that they can achieve micrometer scales.

Abstract

This invention provides a method of producing chitosan non-woven fabrics and an apparatus thereof. At first, a chitosan acidic solution is extruded to form a chitosan fibrous stream. Then, a solidifying agent is ejected to form a solidifying agent stream. The solidifying agent stream and the chitosan fibrous stream are combined to form a pre-solidified chitosan fiber. Then, high-pressure air is ejected on the pre-solidified chitosan fiber to stretch the pre-solidified chitosan fiber. Finally, the chitosan fibers are collected to form chitosan non-woven fabrics.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present invention is a division of U.S. application Ser. No. 11/540,887, filed Sep. 29, 2006, which claims priority to Taiwan Application Serial Number 94147074, filed Dec. 28, 2005, which are herein incorporated by reference.
  • BACKGROUND
  • 1. Field of Invention
  • The present invention relates to a method of producing chitosan non-woven fabrics and an apparatus thereof. More particularly, the present invention relates to a method of producing ultra fine fibers of chitosan non-woven fabrics and an apparatus thereof.
  • 2. Description of Related Art
  • Because chitosan is a natural material, chitosan non-woven fabrics have properties and advantages that are unique to the natural material. For example, chitosan non-woven fabrics are very comfortable to wear, easily decomposed and absorbed by organisms, and very hygroscopic. In the medical field, several products, such as absorbable sutures, artificial skin and wound dressings, have been developed using the decomposition and absorption properties of the natural chitosan. Moreover, the highly hygroscopic property of chitosan can be applied to sanitary products such as wipe papers.
  • Traditional methods of producing chitosan non-woven fabrics includes a paper method, a needle punching method, a water needle method and an electrospinning method. In the paper method, chitosan fibers are dispersed in water and then through a net to form the shape of the chitosan non-woven fabrics. To complete the manufacturing of the chitosan non-woven fabrics, the chitosan fibers are dried by baking. The production speed of the paper method is very fast, and thus large quantities of chitosan non-woven fabrics can be manufactured. However, the chitosan non-woven fabrics made by the paper method are not soft and therefore have a bad feeling. The needle punching method improves on the disadvantages of the paper method. The chitosan non-woven fabrics made by the needle punching method are soft, highly hygroscopic, ventilated and easy to store. However, the cost of the needle punching method is high and the strength of the chitosan non-woven fabrics made by the needle punching method is weak. Moreover, both the paper method and the needle punching method need after-treatments to meet the demands of non-woven fabrics. The water needle method doesn't need after-treatment. The chitosan non-woven fabrics made by the water needle method have a good touch feeling. However, the water needle method consumes a lot of energy. The production cost of the water needle method is thus very high. The electrospinning method is a new technology, which is not mature enough and thus there are many technological bottlenecks need to be solved.
  • SUMMARY
  • It is therefore an aspect of the present invention to provide a method of producing chitosan non-woven fabrics. The fibers produced by this method can be ultra thin. The fibers are so thin that they achieve micrometer scales. Moreover, the non-woven fabrics produced by this method have a good feeling and are highly hygroscopic, ventilated and easy to store.
  • Another aspect of the present invention is to provide a method of producing chitosan non-woven fabrics. The method is simple. The method doesn't need after-treatments. The production cost of the method is cheap.
  • In accordance with the foregoing aspects, one embodiment of the present invention provides a method of producing chitosan non-woven fabrics.
  • Firstly, chitosan is dissolved in an acidic solution to form a chitosan acidic solution. Secondly, the chitosan acidic solution is extruded to form a chitosan fibrous stream. Thirdly, a solidifying agent is ejected to form a solidifying agent stream. Fourthly, the chitosan fibrous stream and the solidifying agent stream are combined to form a pre-solidified chitosan fiber, wherein the chitosan fibrous stream and the solidifying agent flow form a non-zero first angle. Fifthly, a high-pressure air is ejected on the pre-solidified chitosan fiber to stretch it, wherein the high-pressure air and the pre-solidified chitosan fiber form a non-zero second angle. Finally, the chitosan fiber is collected to form chitosan non-woven fabrics.
  • In accordance with the foregoing aspects, one embodiment of the present invention provides an apparatus of producing chitosan non-woven fabrics. The apparatus comprises a raw material provider, a spinning nozzle and a collecting apparatus. The spinning nozzle comprises a raw material nozzle, a solidifying agent nozzle and a high-pressure nozzle. The solidifying agent nozzle is positioned around the raw material nozzle. The solidifying agent jet and the raw material nozzle form a non-zero first angle. The high-pressure nozzle is positioned around the solidifying agent nozzle. The high-pressure nozzle and the raw material nozzle form a non-zero second angle. The raw material provider provides a chitosan acidic solution. The raw material nozzle extrudes the chitosan acidic solution. The solidifying agent nozzle ejects a solidifying agent jet to solidify the chitosan acidic solution to a fiber. The high-pressure nozzle ejects a high-pressure air to stretch the fiber. The collecting apparatus collects the fiber to form chitosan non-woven fabrics.
  • In accordance with the foregoing aspects, one embodiment of the present invention provides a spinning nozzle. The spinning nozzle comprises a raw material nozzle, a solidifying agent nozzle and a high-pressure nozzle. The solidifying agent nozzle is positioned around the raw material nozzle. The solidifying agent nozzle and the raw material nozzle form a non-zero first angle. The high-pressure nozzle is positioned around the solidifying agent nozzle. The high-pressure nozzle and the raw material nozzle form a non-zero second angle. The raw material nozzle extrudes a chitosan acidic solution. The solidifying agent nozzle ejects a solidifying agent stream to solidify the chitosan acidic solution to a fiber. The high-pressure nozzle ejects a high-pressure air to stretch the fiber.
  • In conclusion, the spinning nozzle of the invention can simultaneously extrude the chitosan acidic solution, the solidifying agent and the high-pressure air. Therefore, the spinning nozzle can form the pre-solidified chitosan fiber and stretch it at the same time. The non-woven fabrics made by the apparatus have a good feeling, are highly hygroscopic, ventilated and easy to store. Moreover, the manufacturing processes of the raw material extrusion, fiber solidification and fiber stretching are integrated in one nozzle system. The manufacture processes become simpler and the production cost is cheaper.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings, FIG. 1 is an apparatus of producing chitosan non-woven fabrics in one preferred embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is an apparatus of producing chitosan non-woven fabrics in one preferred embodiment of the invention. In FIG. 1, the apparatus comprises a raw material provider 100, a filter 200, a pump 300, a spinning nozzle head 400 and a collecting apparatus 500. The spinning nozzle head 400 comprises at least a spinning nozzle 410. Each spinning nozzle 410 comprises a raw material nozzle 411, a solidifying agent nozzle 412 and a high-pressure nozzle 413. The solidifying agent nozzle 412 is positioned around the raw material nozzle 411. The solidifying agent nozzle 412 and the raw material nozzle 411 form a non-zero first angle 414. The first angle is less than 90°. In a preferred embodiment, the first angle is 30°, 45° or 60°. The high-pressure nozzle 413 concentrically is positioned around the solidifying agent nozzle 412. The high-pressure nozzle 413 and the raw material nozzle 411 form a non-zero second angle 415. The second angle is less than 90°. In a preferred embodiment, the second angle is 30°, 45° or 60°.
  • At first, the raw material provider 100 provides a chitosan acidic solution 421. The filter 200 will filter the chitosan acidic solution 421. The pump 300 provides pressure for the chitosan acidic solution 421 to be extruded from the raw material provider 411. The raw material nozzle 411 extrudes the chitosan acidic solution 421 to form a chitosan fibrous stream. The solidifying agent nozzle 412 ejects a solidifying agent stream. The solidifying agent stream will combine with the chitosan fibrous stream at the first angle 414 to solidify the chitosan fibrous stream to form a fiber. The high-pressure nozzle 413 ejects a high-pressure air 423. The high-pressure air 423 will combine with the fiber at the second angle 415 to stretch the fiber. The collecting apparatus 500 collects the fiber to form non-woven fabrics. In FIG. 1, the collecting apparatus 500 is a collecting roller, however, the collecting apparatus 500 is not limited to the collecting roller and can be other types of collecting apparatuses in the invention.
  • The chitosan acidic solution 412 is made by dissolving chitosan in an acidic solution. In a preferred embodiment, the acidic solution is an acetic acidic solution. The weight percentage concentration of the acetic acid is about 1.5%˜2.5%. Chitosan with molecular weight ranging from 1*105 to 3*105 is dissolved in the acetic acid to form the chitosan acidic solution 421. The weight percentage concentration of the chitosan acidic solution 421 is preferably about 3%˜5%, more preferably about 4.5%. The solidifying agent 422 is a base solution and it can solidify the chitosan acidic solution 421, which is extruded by the raw material provider 411, into fibers. In a preferred embodiment, the solidifying agent is sodium hydroxide solution. The concentration of the sodium hydroxide solution is 0.1% to 10%.
  • The length 417 of the solidifying agent nozzle 412 will influence the solidified degree and the solidified time of pre-solidified chitosan fibers. The longer the length 417 of the solidifying agent nozzle 412 is, the longer time the pre-solidified chitosan fibers need to be solidified. The pre-solidified chitosan fibers are hardly to stretch to longer and thinner with long length 417 of the solidifying agent nozzle 412. In a preferred embodiment, the length 417 of the solidifying agent nozzle 417 is about 6˜40 mm. Moreover, the first angle 414, which the solidifying agent stream and the chitosan fibrous stream combine at, is very important because the first angle 414 will influence the solidified degree of the pre-solidified chitosan fiber and further influence the following step of stretching the pre-solidified chitosan fiber. The pressure range of the high pressure 423 ejected by the high-pressure nozzle 413 is about 5˜25 psi. The temperature range of the high pressure 423 is about 0˜100° C. The second angle 413, which the high pressure 423 and the pre-solidified chitosan fiber combine at, is also very important because the angle will influence the thinness of the final fiber. The diameters of chitosan fibers produced by the apparatus of chitosan non-woven fabrics of the invention are smaller than 10 μm and are in micrometer scale.
  • Accordingly, the present invention has the following advantages.
  • (1) The manufacturing processes of the raw material extrusion, fiber solidification and fiber stretching are integrated into one nozzle system. The manufacture processes become simpler and the production cost is cheaper.
  • (2) The fibers produced by this method can be ultra thin. The fibers are so thin that they can achieve micrometer scales.
  • (3) The non-woven fabrics made by the apparatus feel good, are highly hygroscopic, ventilated and easy to store.
  • The preferred embodiments of the present invention described above should not be regarded as limitations to the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the scope or spirit of the invention. The scope of the present invention is defined in the appended claims.

Claims (9)

1. An apparatus of producing chitosan non-woven fabrics, comprising:
a raw material provider to provide a chitosan acidic solution;
at least a spinning nozzle, wherein each of the spinning nozzle comprises:
a raw material nozzle applied to extrude the chitosan acidic solution;
a solidifying agent nozzle positioned around the raw material provider, wherein the solidifying agent nozzle and the raw material nozzle form a non-zero first angle and the solidifying agent nozzle is applied to eject a solidifying agent stream to solidify the chitosan acidic solution to a fiber; and
a high-pressure nozzle positioned around the solidifying agent nozzle, wherein the high-pressure nozzle and the raw material nozzle form a non-zero second angle and the high-pressure nozzle is applied to eject high-pressure air to stretch the fiber; and
a collecting apparatus applied to collect the fiber.
2. The apparatus of claim 1, wherein the length of the solidifying agent nozzle is about 6˜40 mm.
3. The apparatus of claim 1, wherein the first angle is less than 90°.
4. The apparatus of claim 1, wherein the second angle is less than 90°.
5. The apparatus of claim 1, further comprising a filter positioned between the raw material provider and the spinning nozzle, wherein the filter is applied to filter the chitosan acidic solution.
6. A spinning nozzle, comprising:
a raw material nozzle applied to extrude a chitosan acidic solution;
a solidifying agent nozzle positioned around the raw material nozzle, wherein the solidifying agent nozzle and the raw material nozzle form a non-zero first angle and the solidifying agent nozzle is applied to eject a solidifying agent stream to solidify the chitosan acidic solution to a fiber; and
a high-pressure nozzle positioned around the solidifying agent nozzle, wherein the high-pressure nozzle and the raw material nozzle form a non-zero second angle and the high-pressure nozzle is applied to eject high-pressure air to stretch the fiber.
7. The spinning nozzle of claim 6, wherein the length of the solidifying agent nozzle is about 6˜40 mm.
7. The spinning nozzle of claim 6, wherein the first angle is less than 90°.
8. The spinning nozzle of claim 6, wherein the second angle is less than 90°
US12/847,065 2005-12-28 2010-07-30 Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics Abandoned US20100291252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/847,065 US20100291252A1 (en) 2005-12-28 2010-07-30 Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW94147074 2005-12-28
TW94147074 2005-12-28
US11/540,887 US7793357B2 (en) 2005-12-28 2006-09-29 Method of producing ultra thin chitosan fibers and non-woven fabrics
US12/847,065 US20100291252A1 (en) 2005-12-28 2010-07-30 Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/540,887 Division US7793357B2 (en) 2005-12-28 2006-09-29 Method of producing ultra thin chitosan fibers and non-woven fabrics

Publications (1)

Publication Number Publication Date
US20100291252A1 true US20100291252A1 (en) 2010-11-18

Family

ID=38192690

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/540,887 Active 2029-06-17 US7793357B2 (en) 2005-12-28 2006-09-29 Method of producing ultra thin chitosan fibers and non-woven fabrics
US12/847,065 Abandoned US20100291252A1 (en) 2005-12-28 2010-07-30 Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/540,887 Active 2029-06-17 US7793357B2 (en) 2005-12-28 2006-09-29 Method of producing ultra thin chitosan fibers and non-woven fabrics

Country Status (2)

Country Link
US (2) US7793357B2 (en)
TW (1) TWI330209B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425126B (en) * 2010-11-23 2014-02-01 Taiwan Textile Res Inst Chitosan fiber matrix and preparing method and use thereof
DE102013210432A1 (en) * 2013-06-05 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing a polyacrylic based nonwoven fabric and polyacrylic based nonwovens
CN106237998B (en) * 2016-07-28 2019-07-23 东华大学 A kind of al deposition chitosan non-woven fabrics adsorbent and its preparation and application
CN113789608A (en) * 2021-09-27 2021-12-14 威海联桥新材料科技股份有限公司 Preparation method and production equipment of calcium alginate non-woven fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436792A (en) * 1965-11-25 1969-04-08 Hans Heinrich Wilhelm Hench Apparatus for producing strands or granules from liquid material
US3920362A (en) * 1972-10-27 1975-11-18 Jeffers Albert L Filament forming apparatus with sweep fluid channel surrounding spinning needle
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4963298A (en) * 1989-02-01 1990-10-16 E. I. Du Pont De Nemours And Company Process for preparing fiber, rovings and mats from lyotropic liquid crystalline polymers
US5622666A (en) * 1992-09-30 1997-04-22 Novasso Oy Modified viscose fibres and method for their manufacture
US6001303A (en) * 1997-12-19 1999-12-14 Kimberly-Clark Worldwide, Inc. Process of making fibers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436792A (en) * 1965-11-25 1969-04-08 Hans Heinrich Wilhelm Hench Apparatus for producing strands or granules from liquid material
US3920362A (en) * 1972-10-27 1975-11-18 Jeffers Albert L Filament forming apparatus with sweep fluid channel surrounding spinning needle
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4963298A (en) * 1989-02-01 1990-10-16 E. I. Du Pont De Nemours And Company Process for preparing fiber, rovings and mats from lyotropic liquid crystalline polymers
US5622666A (en) * 1992-09-30 1997-04-22 Novasso Oy Modified viscose fibres and method for their manufacture
US6001303A (en) * 1997-12-19 1999-12-14 Kimberly-Clark Worldwide, Inc. Process of making fibers

Also Published As

Publication number Publication date
TWI330209B (en) 2010-09-11
US7793357B2 (en) 2010-09-07
US20070145627A1 (en) 2007-06-28
TW200724740A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
KR100563788B1 (en) Methods of manufacture of nonwoven fabric
CN1942619B (en) Fibers, nonwovens and articles containing nanofibers produced from high glass transition temperature polymers
TWI621743B (en) Method for preparing moisture-absorbing transfer non-woven fabric by using short fiber spinning method
EP1751193B1 (en) Polymeric structures and method for making same
CN100368610C (en) Blending nanometer fibre with silk protein and vinol and production thereof
CN103060946B (en) Blend fibers of alginate and sodium carboxymethyl cellulose and preparation method and application thereof
US20070039704A1 (en) Hydroxyl polymer fiber fibrous structures and processes for making same
CN101235580B (en) Method and device for the manufacture of a spunbonded fabric of cellulosic filaments
US20100291252A1 (en) Method of Producing Ultra Thin Chitosan Fibers and Non-Woven Fabrics
CN110359129A (en) A kind of preparation method of more micropore skin-core structure bicomponent composite fibres
TWI632259B (en) Method for preparing moisture-absorbing transfer non-woven fabric by using spunbonding method
CN105133082A (en) Low-melting-point sheath-core-type polylactic acid composite fiber and preparation method thereof
CN103025931A (en) Dope for spinning lyocell, method for preparing a lyocell filament fiber using same, and method for preparing a lyocell staple fiber using same
JPH11507994A (en) Bicomponent fiber comprising polyethylene terephthalate sheath / thermoplastic polymer core, method for producing the same and products produced therefrom
Hagewood Technologies for the manufacture of synthetic polymer fibers
ATE529545T1 (en) COMPOSITE FIBER MADE OF CELLULOSE-POLYVINYL ALCOHOL AND PRODUCTION PROCESS THEREOF
Wan et al. Fibrous poly (chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning
CN109385750A (en) A kind of preparation method of biodegradable polylactic acid non-woven fabrics
CN104790124A (en) Nanofiber non-woven fabric and preparation method thereof
JP2017520689A (en) Modified cross-section lyocell material for tobacco filter and method for producing the same
CN109112647A (en) A kind of processing technology of oil suction felt profiled filament processed
US20160138225A1 (en) Hydroxyl Polymer Fiber Fibrous Structures and Processes for Making Same
CN110607570A (en) Medical absorbable biomaterial filament
CN112888813A (en) Wet spinning fiber, wet film-forming film and manufacturing method thereof
CN108221184A (en) Nano-spun melts composite nonwoven material and its preparation method and application

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN TEXTILE RESEARCH INSTITUTE, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PENG, CHAO-CHUN;HUANG, TZU-HSIANG;LIN, JIAN-MIN;AND OTHERS;REEL/FRAME:024792/0309

Effective date: 20060927

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION