US20100274247A1 - Bone Plate - Google Patents

Bone Plate Download PDF

Info

Publication number
US20100274247A1
US20100274247A1 US12/832,466 US83246610A US2010274247A1 US 20100274247 A1 US20100274247 A1 US 20100274247A1 US 83246610 A US83246610 A US 83246610A US 2010274247 A1 US2010274247 A1 US 2010274247A1
Authority
US
United States
Prior art keywords
hole
region
plate
bone plate
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/832,466
Inventor
Mark P. Grady, Jr.
Keith A. Nayo
Jeff W. Mast
Brett R. Bolhofner
Kenny Koay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Spine LLC
DePuy Synthes Products Inc
Original Assignee
Synthes USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/843,113 external-priority patent/US7951176B2/en
Application filed by Synthes USA LLC filed Critical Synthes USA LLC
Priority to US12/832,466 priority Critical patent/US20100274247A1/en
Assigned to SYNTHES USA, LLC reassignment SYNTHES USA, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SYNTHES (U.S.A.)
Publication of US20100274247A1 publication Critical patent/US20100274247A1/en
Assigned to DEPUY SPINE, LLC reassignment DEPUY SPINE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYNTHES USA, LLC
Assigned to HAND INNOVATIONS LLC reassignment HAND INNOVATIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEPUY SPINE, LLC
Assigned to DePuy Synthes Products, LLC reassignment DePuy Synthes Products, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HAND INNOVATIONS LLC
Assigned to HAND INNOVATIONS LLC reassignment HAND INNOVATIONS LLC CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/486,591 PREVIOUSLY RECORDED AT REEL: 030359 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: DEPUY SPINE, LLC
Assigned to DEPUY SPINE, LLC reassignment DEPUY SPINE, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NO. US 13/486,591 PREVIOUSLY RECORDED ON REEL 030358 FRAME 0945. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SYNTHES USA, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • A61B17/8014Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones the extension or compression force being caused by interaction of the plate hole and the screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8052Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded
    • A61B17/8057Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded the interlocking form comprising a thread
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • A61B17/8066Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones for pelvic reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/82Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin for bone cerclage

Definitions

  • the present invention relates generally to devices for bone fracture fixation and more specifically, to bone plates and systems for stabilization and/or compression of bone fractures.
  • bone plate and screw systems for treatment of bone fractures is widespread.
  • Conventional bone plate and screw systems promote healing of a fracture by compressing the fracture ends together and drawing the bone fragments into close apposition with each other. If the plate is not provided with the appropriate hole types adapted to receive the proper screw types, then the angular relationships between the plate and screws may change postoperatively. This can lead to malalignment and poor clinical results.
  • each hole primarily intended for use with a different type of bone screw.
  • the first type of hole is a non-threaded relatively smooth hole, through which a screw with a smooth (non-threaded) head is inserted. These screws do not lock with the bone plate and are thus referred to as “non-locking” screws. Because non-locking screws do not lock with the plate hole, non-locking screws are not limited to a fixed angle with respect to the plate, but rather can be inserted at numerous angles. Inserting non-locking screws through the non-threaded plate holes and threading them into the bone effectively provides the desired compression of fracture ends.
  • the second type of hole is an internally threaded hole, which is adapted to mate with a screw having an externally threaded head.
  • the threaded-head or “locking” screw is inserted at a fixed, predetermined angular relationship (determined by the central axis of the threaded hole) with respect to the bone plate.
  • Locking screws when mated with threaded bone-plate holes, possess high resistance to shear and torsional forces. Locking screws therefore resist loosening and thereby ensure stability between the screw and the bone plate.
  • Bone plates having both of the aforementioned types of holes are therefore desirable and are well known. Surgeons are limited, however, by the manufacturers' placement of the varying holes on a given bone plate. A surgeon can achieve optimal compression when using a screw (e.g., a non-locking screw) without locking it to the plate. A surgeon can achieve desired stability between the screw, plate, and bone when using a locking screw with an internally-threaded hole.
  • a screw e.g., a non-locking screw
  • a hole in a bone plate prefferably be adapted to receive, at the surgeon's election, either non-locking screws for obtaining optimal compression or locking-screws for obtaining optimal stability, while minimizing any compromise in the strength of the bone plate.
  • the bone plate of present invention is a bone plate used for bone fracture fixation.
  • Various embodiments of a bone plate having coaxial combination holes are described.
  • Non-locking screws are typically used with unthreaded holes and, unlike locking screws that mate with threaded holes, may be inserted at any one of a number of angles. Non-locking screws provide optimal compression of fractured ends.
  • a coaxial combination hole is, at once, adapted to receive (and utilize the benefits of) either a locking screw or non-locking screw.
  • a coaxial combination hole is a hole which is threaded only partially through its length.
  • the hole has a generally circular cross section with varying hole diameter.
  • the hole has three regions: an upper region, a middle region, and a lower region.
  • the upper region may be unthreaded and may have, in a direction from the plate's upper surface to its lower surface, a curved inward taper.
  • the middle region may be threaded and may have, in a direction from the plate's upper surface to its lower surface, a conical inward taper.
  • the lower region may be unthreaded and may have, in a direction from the plate's upper surface to its lower surface, an outward taper.
  • a screw with an unthreaded head may be inserted through a coaxial combination hole, without any mating of any threads, at any one of a number of angles.
  • the outward taper of the coaxial combination hole's lower region provides room for the screw's shaft to be inserted an angle (with respect to the center of the hole).
  • Coaxial combination holes may be placed in any type of bone plate. Coaxial combination holes provide multiple options for the surgeon. And because the holes do not require a larger cavity in the bone plate than would otherwise be necessary for an ordinary hole, the strength, size, and integrity of the bone plate are not compromised. Coaxial combination holes are therefore particularly useful in relatively small bone plates (e.g., pubic symphysis plates).
  • a coaxial combination hole has a central axis and a vertical axis.
  • the hole's vertical axis is perpendicular to the plane formed by the plate's upper surface (if the plate has a straight upper surface), or to the plane that is tangential to the pinnacle of the plate's upper surface (if the plate is convex).
  • a hole may have a central axis that is parallel to its vertical axis, or that is not parallel to its vertical axis (thereby biasing the shaft of the screw in one direction or another).
  • a plate may have holes with any combination of foregoing hole orientations.
  • bone plates have between 4 and 8 holes. In some embodiments, all plate holes are coaxial combination holes. In other embodiments, the bone plates may have some coaxial combination holes and at least one of another of a number of types of holes.
  • One example of another type of hole is a dynamic compression (“DC”) hole.
  • a dynamic compression hole may be an elongated hole having an oblique portion or ramp having an inclination such that when the ramp is engaged by the underside of the head of a screw, the bone plate is displaced in a direction to move the ramp away from the non-locking screw, causing the plate to apply a pressure to hold the fracture ends in contact or in tight engagement.
  • Another example of another type of hole is a non-coaxial combination hole.
  • a non-coaxial combination hole may be an elongated hole having a portion of its perimeter threaded and another portion of its perimeter unthreaded.
  • other types of holes may be formed in a bone plate having coaxial combination holes.
  • the plate has a longitudinal axis, and has a straight center portion and curved ends. In one embodiment, the plate has two holes in the straight portion and two holes in each of the curved end portions. In one embodiment of this plate, all six holes may be coaxial combination holes. In another embodiment of this plate, the two holes on the straight portion may be either DC holes or non-coaxial combination holes, and the four holes on the curved end portions may be coaxial combination holes. In one embodiment of this plate, the width of the bone plate is narrower where there are no holes than where there are holes.
  • the plate has a longitudinal axis and is straight.
  • the plate may have only coaxial combination holes, all of which may lie along the plate's longitudinal axis.
  • the entire plate may be curved.
  • the plate may have only coaxial combination holes, all of which may lie along the plate's longitudinal axis (which runs along the center of the plate's width).
  • the plate's upper and lower surfaces may be straight or curved.
  • the plate's upper surface may be convex, while the plate's lower surface may be concave.
  • FIG. 1A is a side cross-sectional view of a first embodiment of a bone plate having coaxial combination holes.
  • FIG. 1B is a plan view of the bone plate of FIG. 1A .
  • FIG. 1C is a cross-sectional view of the bone plate of FIG. 1A taken along the cross section B-B.
  • FIG. 2A is a side cross-sectional view of a second embodiment of a bone plate having coaxial combination holes and having dynamic compression holes.
  • FIG. 2B is a plan view of the bone plate of FIG. 2A .
  • FIG. 2C is a cross-sectional view of the bone plate of FIG. 2A taken along the cross section B-B.
  • FIG. 3A is a third embodiment of a bone plate having coaxial combination holes.
  • FIG. 3B is a plan view of the bone plate of FIG. 3A .
  • FIG. 4A is a cross-sectional view of one embodiment of a coaxial combination hole.
  • FIG. 4B is a magnified view of a portion of the thread of the coaxial combination hole of FIG. 4A .
  • FIG. 5 is a cross-sectional view of a screw, having a threaded head, inserted through a coaxial combination hole.
  • FIG. 6A is a cross-sectional view of a screw, having a non-threaded head, inserted through a coaxial combination hole at one angle.
  • FIG. 6B is a cross-sectional view of a unthreaded-head screw inserted through a coaxial combination hole at an angle different from that of the screw of FIG. 6A .
  • FIG. 7 is a plan view of a segment of a bone plate having non-coaxial combination holes.
  • FIG. 8 is a plan view of the bone plate of FIGS. 3A and 3B , in a curved condition.
  • FIG. 9 is a side view of one embodiment of a screw that has a conically-tapered threaded head.
  • FIG. 10 is a side view of one embodiment of a screw having an unthreaded head.
  • the bone plates may have at least one coaxial combination hole 90 , which has a length L that extends from the upper surface of the bone plate to the lower surface of the bone plate.
  • the coaxial combination hole 90 is threaded only partially through the hole's length L.
  • a surgeon may elect to: (1) thread a screw having a thread on at least a portion of its head into and through the hole; or (2) insert a screw having an unthreaded head through the hole and into the bone.
  • the hole 90 has length L of approximately 3.4 mm to 4.0 mm, which preferably corresponds to the thickness T of the bone plate.
  • FIGS. 1B , 2 B, and 3 B illustrate plan views of various embodiments of the bone plate having at least one coaxial combination hole 90 .
  • Each bone plate may have at least a central region with a longitudinal axis L-L.
  • Each bone plate hole 90 may have a vertical axis V-V, which is perpendicular to the plane on which the plate's upper surface lies (if the plate has a straight upper surface), or to the plane that is tangential to the pinnacle of the plate's upper surface (if the plate is convex). (See FIGS. 1A , 2 A, and 3 A.)
  • FIGS. 1C and 2C illustrate cross-sectional views of the bone plates along the respective cross sections B-B.
  • the upper surface of the plate may be convex and the lower surface of the plate may be concave, as shown in FIGS. 1C and 2C .
  • the radius of curvature for both surfaces may be from about 15 mm to about 35 mm, and preferably about 25 mm. In another embodiment, one or both of the plate surfaces may be flat.
  • hole 90 may extend from the upper surface 20 to the lower surface 22 of the bone plate 10 .
  • the diameters of the hole 90 at its uppermost surface and its lower most surface may be equal or close to equal.
  • the hole 90 may be widest at the uppermost surface 20 and lowermost surface 22 of the plate 10 .
  • Each hole 90 may have a central axis C-C. (See FIGS. 1A and 2A .)
  • the central axis C-C of hole 90 may be parallel to the vertical axis V-V, as shown in FIG. 3A (central axis C-C not shown).
  • the central axis C-C of hole 90 will intersect with the vertical axis V-V at an angle ⁇ , as shown in FIGS. 1A and 2A .
  • the angle ⁇ may vary from about 3° to about 17°, although other angles are contemplated.
  • the hole 90 may have three regions: an upper region 92 , a middle region 94 , and a lower region 96 .
  • the upper region 92 of the hole 90 may have an unthreaded inner surface 93 which, is preferably smooth, although texturing may be provided.
  • the upper region 92 may have a curved inward taper, preferably concave, more preferably spherical, from the top surface of the plate to where the upper region 92 of the hole 90 meets the middle region 94 .
  • the upper region 92 of the hole 90 is preferably narrowest where it meets the middle region 94 .
  • the upper region is approximately 1.0 mm to approximately 1.2 mm in length (along the axis C-C). In a preferred embodiment, the upper region may comprise about 25% to about 35% of the thickness T of the plate.
  • the diameter of the upper region 92 , at the region's broadest point may be about 6 mm and, at the region's narrowest point, may be about 4 mm. In another embodiment the diameter of the upper region 92 , at the region's broadest point, may be about 8 mm and, at the region's narrowest point, may be about 6 mm.
  • the middle region 94 of the hole 90 may have a threaded inner surface 95 .
  • the threads have a pitch P (as shown in FIG. 4B , which is a magnified partial view of the threaded surface 95 ) of approximately 0.3 mm to 0.5 mm.
  • the thread angle ⁇ may be approximately 50° to 70°, and preferably about 60°.
  • the threaded region has at least one thread revolution, and preferably about three thread revolutions.
  • the threaded inner surface 95 may, in a direction from the upper surface to the lower surface, have a conical inward taper.
  • the threaded inner surface 95 may taper at an angle ⁇ of approximately 5° to 15°, and preferably approximately 10°.
  • the middle region 94 may be the narrowest region (i.e., smallest-diameter region) of the hole 90 .
  • the middle region 94 may be approximately 1.5 mm to approximately 1.9 mm in length (along the axis C-C).
  • the middle region 94 may comprise about 40% to 50% of the thickness T of the plate.
  • the diameter of the middle region 94 may vary only slightly (due to the relatively shallow conical taper) and may be about 4 mm or, in another embodiment, about 6 mm. The diameter or taper of the middle region 94 may of course vary depending upon the size and/or taper of the screw.
  • the lower region 96 of the hole 90 may have an unthreaded inner surface 97 which is preferably smooth, although texturing may be provided.
  • the lower region 96 may, from where it meets the middle region 94 to the lower surface of the plate, have a conical outward taper.
  • the lower region 96 may taper outwardly at an angle ⁇ of approximately 35° to 55°, and preferably approximately 45°.
  • the lower region 96 may be approximately 0.8 mm to approximately 1.2 mm in length (along the axis C-C).
  • the lower region 96 may comprise about 20% to 35% of the thickness T of the plate.
  • the diameter of the lower region 96 , at the region's narrowest point may be about 4 mm and, at the region's broadest point, may be about 6 mm. In another embodiment, the diameter of the lower region 96 , at the region's narrowest point, may be about 6 mm and, at the region's broadest point, may be about 8 mm.
  • Screws may be used with the hole 90 .
  • One type of screw is a screw that has a conically-tapered threaded head (shown in FIG. 9 ). As shown in FIG. 5 , the external threads of the screw's head may mate with the internal threads 95 of the middle region 94 of the hole 90 . This threaded-head screw 15 may be inserted at only one angle (with respect to the plate), which may be fixed by the threads 95 in the plate 10 .
  • a second type of screw that may be used with the hole 90 is a screw with a threaded shaft, but with an unthreaded head (shown in FIG. 10 ).
  • An unthreaded-head screw may be inserted into hole 90 at any one of a number of angles.
  • FIG. 6A illustrates an unthreaded-head screw 17 inserted at an angle substantially perpendicular to the longitudinal axis of the plate 10 .
  • FIG. 6B illustrates an unthreaded-head screw 17 inserted at a non-perpendicular angle with respect to the plate 10 .
  • the conical outward taper (shown at surface 97 ) of the lower region 96 of the hole 90 provides room for screw shaft 18 to be inserted at an angle with respect to the center of the hole 90 .
  • the curved inward taper of the upper region 92 of the hole 90 provides a seat (at surface 93 ) for the screw head to rest in when an unthreaded-head screw 17 is inserted at an angle.
  • a threaded-head screw may be used with a coaxial combination hole 90 in the same manner as the aforementioned unthreaded-head screw 17 .
  • coaxial combination holes 90 are particularly useful for pubic symphysis plates and other relatively small bone plates.
  • the pubic symphysis is the connection between the two halves of the pubis and may be damaged as a result of an accident.
  • a surgeon may elect to use either a locking screw or a non-locking compression screw with a coaxial combination hole, a bone plate having a coaxial combination hole may be more versatile than plates having other types of holes.
  • the benefits may include: (1) a reduced need to manufacture many different plates having varying hole arrangement patterns; and (2) enhancement of clinical results.
  • a coaxial combination hole does not require a substantially larger cavity in the bone plate than would otherwise be necessary for a simple hole, a coaxial combination hole provides desired flexibility for the surgeon without unduly compromising the strength, size, or integrity of the bone plate. Plates having coaxial combination holes may thus find particular utilization in pubic symphysis plates and other relatively small bone plates.
  • the bone plate of the present invention may be a pubic symphysis plate as shown in FIG. 1B , and may have a plurality of holes, all of which may be coaxial combination holes 90 .
  • the plate may have a length PL of approximately 70 mm to 90 mm.
  • the plate may have curved ends, as shown in FIG. 1B , with a radius of curvature R.
  • two coaxial combination holes 90 are located on the straight center portion of the plate.
  • the plate ends may curve approximately at a 45 mm-55 mm radius R, spanning a 25°-35° angle ⁇ .
  • two coaxial combination holes 90 are placed along an arcs (on both sides of the plate's straight center portion) having a radius of curvature of about 50 mm.
  • the hole 90 on the curved portion adjacent to the hole 90 on the straight portion is located approximately 12°-18° on the arc away from the hole 90 on the straight portion.
  • the two holes 90 on either curved portion may be placed along an arc approximately 12°-18° apart from each other.
  • the plate may be symmetrical from one side to the other (i.e., a mirror hole arrangement on the other side of the plate is contemplated).
  • the two holes near the center of the plate may lie along the longitudinal axis L-L of the center region of the plate 10 . The remaining holes may be offset from the longitudinal axis L-L, as shown in FIG. 1B .
  • the central axes C-C of the holes 90 are not parallel to the respective vertical axes V-V of the holes 90 .
  • the two holes near the center of the plate have central axes C-C oriented to bias the tips of the screws in a direction away from the center of plate.
  • the angle ⁇ between each of these two central axes C-C and the vertical axes V-V is approximately 8° to 15°.
  • each of the holes 90 that are located near the ends of the plate, has a central axis C-C oriented to bias the tips of the screws in a direction towards the center of plate.
  • the angle ⁇ between each of these central axes C-C and the vertical axes V-V is approximately 4° to 10°.
  • the linear plate-surface distance d 1 between the edges of holes 90 may vary from hole to hole and may be approximately 10 mm to 12 mm.
  • there may be necking of the plate surface in between hole locations i.e., the webs between the holes may be narrowed. This necking serves to achieve a desired balance between plate strength and plate size: plate strength is maximized, while plate size is minimized.
  • the width of the plate between holes may be the same as the width of the plate where the holes are located.
  • the plate may have at least one hole 99 , preferably near the center of the plate. Holes 99 may aid in the placement of the plate onto the bone (e.g., for use with a guide wire) or may be provided as a suture hole.
  • a shorter bone plate having only a few (e.g., 4) holes may be used when the fracture is relatively small or when the patient's bone or joint (e.g., pubic symphysis) being operated on is relatively small.
  • FIG. 2B A plan view of a second embodiment of a pubic symphysis plate is shown in FIG. 2B .
  • the primary difference between this embodiment and the foregoing embodiment is that the two holes near the center of the plate 30 of this embodiment are dynamic compression (“DC”) holes 70 instead of coaxial combination holes 90 .
  • DC dynamic compression
  • This embodiment of a bone plate is particularly useful when, to bring parts closer together, “extra” compression is desired.
  • the DC holes are substantially similar to those disclosed in the specifications of United States publication No. 2002/0045901, in U.S. Pat. No. 6,669,701, and in reissued U.S. Pat. No. RE. 31,628, the contents of which are incorporated herein by reference. As shown in FIG.
  • DC hole 70 is elongated in a direction substantially aligned with the longitudinal axis L-L of the plate 30 .
  • DC hole 70 has an oblique portion or ramp 35 having an inclination such that when ramp 35 is engaged by the underside 13 of the head of a screw, preferably a screw having a head that is not threaded, and is preferably smooth and curved on the underside 13 which contacts the bone plate, the bone plate 30 is displaced in a direction to move ramp 35 away from the non-locking screw, causing the plate 30 to apply a pressure to hold the fracture ends in contact, preferably in engagement, along at least a portion of the fracture length.
  • each of the holes 30 has a length X (illustrated in FIG. 2A ) of approximately 6 mm to 7 mm.
  • the two holes near the center of the plate 30 may be non-coaxial combination holes 40 (instead of coaxial combination holes 90 or DC holes 70 ).
  • the non-coaxial combination holes are substantially similar to those disclosed in the specifications of U.S. Pat. No. 6,669,701 and of United States publication No. 2002/0045901, the contents of which are hereby incorporated by reference.
  • FIG. 7 illustrates a bone plate having a plurality of combination holes 40 , which extend from the plate's upper surface to its lower surface.
  • the holes 40 may be elongated (e.g., in a direction substantially aligned with a longitudinal axis of the plate) and may include a threaded portion 5 and a non-threaded portion 6 .
  • the threaded portion 5 may extend over a range of greater than about 180° with respect to a center point C 1 .
  • the threaded portion 5 of the hole 40 may be dimensioned and configured to engage a threaded head portion of a threaded-head bone screw, and fix the bone screw at a predetermined angle with respect to the bone plate.
  • the threaded portion 5 of the hole 40 extends through the full thickness of the bone plate (i.e., from the plate's upper surface to its lower surface) thus maximizing the stability of the bone screw to bone plate interface.
  • a threaded-head screw or a non-threaded head screw may (e.g., for compression) pass through the non-threaded portion 6 of a combination hole 40 .
  • the plate 50 may have a plurality of holes, all of which may be coaxial combination holes 90 .
  • Each of the holes 90 may lie along the longitudinal axis L-L of the plate 50 .
  • the central axis C-C of each of the holes 90 may be parallel to the corresponding vertical axis V-V of each of the holes 90 , as shown in FIG. 3A (central axis C-C not shown).
  • the linear plate-surface distance d 2 between the edges of holes 90 may be approximately 6 mm to 9 mm.
  • FIG. 8 is the bone plate of FIGS. 3A and 3B , in a “curved condition.”
  • the bone plate of FIGS. 3A and 3B may be formed of such material to allow a surgeon to preoperatively bend the plate into a desired shape, a bone plate manufactured to a bend condition may be desirable.
  • a ball-and-socket joint is formed by the two acetabula of the pelvis and the head of each femur.
  • the bone plate of FIG. 9 may be especially useful for use on the posterior outer surface of a fractured acetabulum.
  • the plate may have a radius of curvature R, which in a preferred embodiment, is about 100-115 mm.

Abstract

A bone plate has an upper surface, a lower surface, and at least one first hole extending through the upper and lower surfaces. The first hole has two or three vertically separate regions, each region communicating with or abutting the adjacent region. The first hole has a first upper region, which is unthreaded and which, from the plate's upper surface to the plate's lower surface, has a curved inward taper. The first hole has a second middle region, which is threaded and which, from the plate's upper surface to the plate's lower surface, has a conical inward taper. The first hole has a third lower region, which is unthreaded and which, from the plate's upper surface to the plate's lower surface, has a conical outward taper. The bone plate is straight, curved, or both straight and curved. The bone plate may have at least one second hole, different from the first hole. The second hole is an elongated hole, which has a compression ramp or which has a threaded portion through part of its perimeter and a non-threaded portion through the other part of its perimeter.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of the U.S. patent application filed on May 11, 2004, under attorney docket number 708716-999706 (serial number not yet received). The entire contents of this application is expressly incorporated herein by reference thereto.
  • FIELD OF THE INVENTION
  • The present invention relates generally to devices for bone fracture fixation and more specifically, to bone plates and systems for stabilization and/or compression of bone fractures.
  • BACKGROUND OF THE INVENTION
  • The use of bone plate and screw systems for treatment of bone fractures is widespread. Conventional bone plate and screw systems promote healing of a fracture by compressing the fracture ends together and drawing the bone fragments into close apposition with each other. If the plate is not provided with the appropriate hole types adapted to receive the proper screw types, then the angular relationships between the plate and screws may change postoperatively. This can lead to malalignment and poor clinical results.
  • Among the various different types of bone plate holes that are known in the art are the two different types of holes described below, each hole primarily intended for use with a different type of bone screw.
  • The first type of hole is a non-threaded relatively smooth hole, through which a screw with a smooth (non-threaded) head is inserted. These screws do not lock with the bone plate and are thus referred to as “non-locking” screws. Because non-locking screws do not lock with the plate hole, non-locking screws are not limited to a fixed angle with respect to the plate, but rather can be inserted at numerous angles. Inserting non-locking screws through the non-threaded plate holes and threading them into the bone effectively provides the desired compression of fracture ends.
  • The second type of hole is an internally threaded hole, which is adapted to mate with a screw having an externally threaded head. The threaded-head or “locking” screw is inserted at a fixed, predetermined angular relationship (determined by the central axis of the threaded hole) with respect to the bone plate. Locking screws, when mated with threaded bone-plate holes, possess high resistance to shear and torsional forces. Locking screws therefore resist loosening and thereby ensure stability between the screw and the bone plate.
  • Bone plates having both of the aforementioned types of holes are therefore desirable and are well known. Surgeons are limited, however, by the manufacturers' placement of the varying holes on a given bone plate. A surgeon can achieve optimal compression when using a screw (e.g., a non-locking screw) without locking it to the plate. A surgeon can achieve desired stability between the screw, plate, and bone when using a locking screw with an internally-threaded hole.
  • It would thus be advantageous for a hole in a bone plate to be adapted to receive, at the surgeon's election, either non-locking screws for obtaining optimal compression or locking-screws for obtaining optimal stability, while minimizing any compromise in the strength of the bone plate.
  • SUMMARY OF THE INVENTION
  • The bone plate of present invention is a bone plate used for bone fracture fixation. Various embodiments of a bone plate having coaxial combination holes are described.
  • Among the various different types of bone plate holes that are known in the art are threaded holes and non-threaded holes. “Locking” screws (screws with threaded heads) are typically used with threaded holes. Locking screws, when mated with threaded holes, possess high resistance to shear and torsional forces and therefore ensure stability between the screw and bone plate. “Non-locking” screws are typically used with unthreaded holes and, unlike locking screws that mate with threaded holes, may be inserted at any one of a number of angles. Non-locking screws provide optimal compression of fractured ends.
  • A coaxial combination hole is, at once, adapted to receive (and utilize the benefits of) either a locking screw or non-locking screw. A coaxial combination hole is a hole which is threaded only partially through its length. In one preferred embodiment, the hole has a generally circular cross section with varying hole diameter. In a preferred embodiment, the hole has three regions: an upper region, a middle region, and a lower region. The upper region may be unthreaded and may have, in a direction from the plate's upper surface to its lower surface, a curved inward taper. The middle region may be threaded and may have, in a direction from the plate's upper surface to its lower surface, a conical inward taper. The lower region may be unthreaded and may have, in a direction from the plate's upper surface to its lower surface, an outward taper.
  • It will be appreciated that either type of the aforementioned screws may be used (and produce its intended results) with a coaxial combination hole. The threaded head of a threaded-head screw may mate with threaded middle region of the hole. Alternatively, a screw with an unthreaded head (or even a screw with a threaded head) may be inserted through a coaxial combination hole, without any mating of any threads, at any one of a number of angles. The outward taper of the coaxial combination hole's lower region provides room for the screw's shaft to be inserted an angle (with respect to the center of the hole). Likewise the curved inward taper of the upper region of the hole provides a seat for the screw head to rest in, even when the screw is inserted ant an angle. It will be appreciated, then, that at any given coaxial combination hole, a surgeon may elect to use either a screw for screw-plate stability or a screw for compression of fracture ends.
  • Coaxial combination holes may be placed in any type of bone plate. Coaxial combination holes provide multiple options for the surgeon. And because the holes do not require a larger cavity in the bone plate than would otherwise be necessary for an ordinary hole, the strength, size, and integrity of the bone plate are not compromised. Coaxial combination holes are therefore particularly useful in relatively small bone plates (e.g., pubic symphysis plates).
  • A coaxial combination hole has a central axis and a vertical axis. The hole's vertical axis is perpendicular to the plane formed by the plate's upper surface (if the plate has a straight upper surface), or to the plane that is tangential to the pinnacle of the plate's upper surface (if the plate is convex). A hole may have a central axis that is parallel to its vertical axis, or that is not parallel to its vertical axis (thereby biasing the shaft of the screw in one direction or another). A plate may have holes with any combination of foregoing hole orientations.
  • In preferred embodiments, bone plates have between 4 and 8 holes. In some embodiments, all plate holes are coaxial combination holes. In other embodiments, the bone plates may have some coaxial combination holes and at least one of another of a number of types of holes. One example of another type of hole is a dynamic compression (“DC”) hole. A dynamic compression hole may be an elongated hole having an oblique portion or ramp having an inclination such that when the ramp is engaged by the underside of the head of a screw, the bone plate is displaced in a direction to move the ramp away from the non-locking screw, causing the plate to apply a pressure to hold the fracture ends in contact or in tight engagement. Another example of another type of hole is a non-coaxial combination hole. A non-coaxial combination hole may be an elongated hole having a portion of its perimeter threaded and another portion of its perimeter unthreaded. In addition to, or in lieu of, the foregoing two examples, other types of holes may be formed in a bone plate having coaxial combination holes.
  • In one embodiment of the bone plate, the plate has a longitudinal axis, and has a straight center portion and curved ends. In one embodiment, the plate has two holes in the straight portion and two holes in each of the curved end portions. In one embodiment of this plate, all six holes may be coaxial combination holes. In another embodiment of this plate, the two holes on the straight portion may be either DC holes or non-coaxial combination holes, and the four holes on the curved end portions may be coaxial combination holes. In one embodiment of this plate, the width of the bone plate is narrower where there are no holes than where there are holes.
  • In another embodiment of the bone plate, the plate has a longitudinal axis and is straight. In one embodiment, the plate may have only coaxial combination holes, all of which may lie along the plate's longitudinal axis.
  • In another embodiment of the bone plate, the entire plate may be curved. In one embodiment, the plate may have only coaxial combination holes, all of which may lie along the plate's longitudinal axis (which runs along the center of the plate's width).
  • In the various embodiments, the plate's upper and lower surfaces may be straight or curved. In a preferred embodiment, the plate's upper surface may be convex, while the plate's lower surface may be concave.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These figures represent preferred embodiments of the present invention. Those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be understood that these figures are not intended as limitations on the scope of the invention, which is defined only by the claims.
  • FIG. 1A is a side cross-sectional view of a first embodiment of a bone plate having coaxial combination holes.
  • FIG. 1B is a plan view of the bone plate of FIG. 1A.
  • FIG. 1C is a cross-sectional view of the bone plate of FIG. 1A taken along the cross section B-B.
  • FIG. 2A is a side cross-sectional view of a second embodiment of a bone plate having coaxial combination holes and having dynamic compression holes.
  • FIG. 2B is a plan view of the bone plate of FIG. 2A.
  • FIG. 2C is a cross-sectional view of the bone plate of FIG. 2A taken along the cross section B-B.
  • FIG. 3A is a third embodiment of a bone plate having coaxial combination holes.
  • FIG. 3B is a plan view of the bone plate of FIG. 3A.
  • FIG. 4A is a cross-sectional view of one embodiment of a coaxial combination hole.
  • FIG. 4B is a magnified view of a portion of the thread of the coaxial combination hole of FIG. 4A.
  • FIG. 5 is a cross-sectional view of a screw, having a threaded head, inserted through a coaxial combination hole.
  • FIG. 6A is a cross-sectional view of a screw, having a non-threaded head, inserted through a coaxial combination hole at one angle.
  • FIG. 6B is a cross-sectional view of a unthreaded-head screw inserted through a coaxial combination hole at an angle different from that of the screw of FIG. 6A.
  • FIG. 7 is a plan view of a segment of a bone plate having non-coaxial combination holes.
  • FIG. 8 is a plan view of the bone plate of FIGS. 3A and 3B, in a curved condition.
  • FIG. 9 is a side view of one embodiment of a screw that has a conically-tapered threaded head.
  • FIG. 10 is a side view of one embodiment of a screw having an unthreaded head.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is described below with reference to the preferred embodiments. Those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be understood that the embodiments of the invention described below are not intended as limitations on the scope of the invention, which is defined only by the claims.
  • Reference is now made to FIGS. 1A, 2A, and 3A, which illustrate side, cross-sectional views of various embodiments of a bone plate. The bone plates may have at least one coaxial combination hole 90, which has a length L that extends from the upper surface of the bone plate to the lower surface of the bone plate. The coaxial combination hole 90 is threaded only partially through the hole's length L. As such, with a given coaxial combination hole, a surgeon may elect to: (1) thread a screw having a thread on at least a portion of its head into and through the hole; or (2) insert a screw having an unthreaded head through the hole and into the bone. In a preferred embodiment, the hole 90 has length L of approximately 3.4 mm to 4.0 mm, which preferably corresponds to the thickness T of the bone plate.
  • Reference is now made to FIGS. 1B, 2B, and 3B, which illustrate plan views of various embodiments of the bone plate having at least one coaxial combination hole 90. Each bone plate may have at least a central region with a longitudinal axis L-L. Each bone plate hole 90 may have a vertical axis V-V, which is perpendicular to the plane on which the plate's upper surface lies (if the plate has a straight upper surface), or to the plane that is tangential to the pinnacle of the plate's upper surface (if the plate is convex). (See FIGS. 1A, 2A, and 3A.)
  • Reference is now made to FIGS. 1C and 2C, which illustrate cross-sectional views of the bone plates along the respective cross sections B-B. In a preferred embodiment, the upper surface of the plate may be convex and the lower surface of the plate may be concave, as shown in FIGS. 1C and 2C. In a preferred embodiment, the radius of curvature for both surfaces may be from about 15 mm to about 35 mm, and preferably about 25 mm. In another embodiment, one or both of the plate surfaces may be flat.
  • As shown in FIG. 1A, hole 90 may extend from the upper surface 20 to the lower surface 22 of the bone plate 10. In one embodiment, the diameters of the hole 90 at its uppermost surface and its lower most surface may be equal or close to equal. The hole 90 may be widest at the uppermost surface 20 and lowermost surface 22 of the plate 10. Each hole 90 may have a central axis C-C. (See FIGS. 1A and 2A.) In some embodiments of the hole 90, the central axis C-C of hole 90 may be parallel to the vertical axis V-V, as shown in FIG. 3A (central axis C-C not shown). In other embodiments, the central axis C-C of hole 90 will intersect with the vertical axis V-V at an angle θ, as shown in FIGS. 1A and 2A. In preferred embodiments, the angle θ may vary from about 3° to about 17°, although other angles are contemplated.
  • As shown in FIG. 4A, the hole 90 may have three regions: an upper region 92, a middle region 94, and a lower region 96. The upper region 92 of the hole 90 may have an unthreaded inner surface 93 which, is preferably smooth, although texturing may be provided. In a preferred embodiment, the upper region 92 may have a curved inward taper, preferably concave, more preferably spherical, from the top surface of the plate to where the upper region 92 of the hole 90 meets the middle region 94. The upper region 92 of the hole 90 is preferably narrowest where it meets the middle region 94. Preferably, the upper region is approximately 1.0 mm to approximately 1.2 mm in length (along the axis C-C). In a preferred embodiment, the upper region may comprise about 25% to about 35% of the thickness T of the plate. In one embodiment, the diameter of the upper region 92, at the region's broadest point, may be about 6 mm and, at the region's narrowest point, may be about 4 mm. In another embodiment the diameter of the upper region 92, at the region's broadest point, may be about 8 mm and, at the region's narrowest point, may be about 6 mm.
  • The middle region 94 of the hole 90 may have a threaded inner surface 95. In one embodiment, the threads have a pitch P (as shown in FIG. 4B, which is a magnified partial view of the threaded surface 95) of approximately 0.3 mm to 0.5 mm. In a preferred embodiment, the thread angle γ may be approximately 50° to 70°, and preferably about 60°. In a preferred embodiment, the threaded region has at least one thread revolution, and preferably about three thread revolutions. Referring again to FIG. 4A, the threaded inner surface 95 may, in a direction from the upper surface to the lower surface, have a conical inward taper. In a preferred embodiment, the threaded inner surface 95 may taper at an angle α of approximately 5° to 15°, and preferably approximately 10°. The middle region 94 may be the narrowest region (i.e., smallest-diameter region) of the hole 90. In a preferred embodiment, the middle region 94 may be approximately 1.5 mm to approximately 1.9 mm in length (along the axis C-C). In a preferred embodiment, the middle region 94 may comprise about 40% to 50% of the thickness T of the plate. In one embodiment, the diameter of the middle region 94 may vary only slightly (due to the relatively shallow conical taper) and may be about 4 mm or, in another embodiment, about 6 mm. The diameter or taper of the middle region 94 may of course vary depending upon the size and/or taper of the screw.
  • The lower region 96 of the hole 90 may have an unthreaded inner surface 97 which is preferably smooth, although texturing may be provided. In a preferred embodiment, the lower region 96 may, from where it meets the middle region 94 to the lower surface of the plate, have a conical outward taper. In a preferred embodiment, the lower region 96 may taper outwardly at an angle β of approximately 35° to 55°, and preferably approximately 45°. In a preferred embodiment, the lower region 96 may be approximately 0.8 mm to approximately 1.2 mm in length (along the axis C-C). In a preferred embodiment, the lower region 96 may comprise about 20% to 35% of the thickness T of the plate. In one embodiment, the diameter of the lower region 96, at the region's narrowest point, may be about 4 mm and, at the region's broadest point, may be about 6 mm. In another embodiment, the diameter of the lower region 96, at the region's narrowest point, may be about 6 mm and, at the region's broadest point, may be about 8 mm.
  • Different types of screws may be used with the hole 90. One type of screw is a screw that has a conically-tapered threaded head (shown in FIG. 9). As shown in FIG. 5, the external threads of the screw's head may mate with the internal threads 95 of the middle region 94 of the hole 90. This threaded-head screw 15 may be inserted at only one angle (with respect to the plate), which may be fixed by the threads 95 in the plate 10.
  • A second type of screw that may be used with the hole 90 is a screw with a threaded shaft, but with an unthreaded head (shown in FIG. 10). An unthreaded-head screw may be inserted into hole 90 at any one of a number of angles. FIG. 6A illustrates an unthreaded-head screw 17 inserted at an angle substantially perpendicular to the longitudinal axis of the plate 10. FIG. 6B illustrates an unthreaded-head screw 17 inserted at a non-perpendicular angle with respect to the plate 10. The conical outward taper (shown at surface 97) of the lower region 96 of the hole 90 provides room for screw shaft 18 to be inserted at an angle with respect to the center of the hole 90. Likewise, the curved inward taper of the upper region 92 of the hole 90 provides a seat (at surface 93) for the screw head to rest in when an unthreaded-head screw 17 is inserted at an angle. A threaded-head screw may be used with a coaxial combination hole 90 in the same manner as the aforementioned unthreaded-head screw 17.
  • Although virtually any type of bone plate may benefit from coaxial combination holes 90, coaxial combination holes are particularly useful for pubic symphysis plates and other relatively small bone plates. (The pubic symphysis is the connection between the two halves of the pubis and may be damaged as a result of an accident.) Because a surgeon may elect to use either a locking screw or a non-locking compression screw with a coaxial combination hole, a bone plate having a coaxial combination hole may be more versatile than plates having other types of holes. The benefits may include: (1) a reduced need to manufacture many different plates having varying hole arrangement patterns; and (2) enhancement of clinical results. Because a coaxial combination hole does not require a substantially larger cavity in the bone plate than would otherwise be necessary for a simple hole, a coaxial combination hole provides desired flexibility for the surgeon without unduly compromising the strength, size, or integrity of the bone plate. Plates having coaxial combination holes may thus find particular utilization in pubic symphysis plates and other relatively small bone plates.
  • In one embodiment, the bone plate of the present invention may be a pubic symphysis plate as shown in FIG. 1B, and may have a plurality of holes, all of which may be coaxial combination holes 90. In one embodiment, the plate may have a length PL of approximately 70 mm to 90 mm. In one embodiment, the plate may have curved ends, as shown in FIG. 1B, with a radius of curvature R. In a preferred embodiment, two coaxial combination holes 90 are located on the straight center portion of the plate. In a preferred embodiment, the plate ends may curve approximately at a 45 mm-55 mm radius R, spanning a 25°-35° angle δ. Preferably two coaxial combination holes 90 are placed along an arcs (on both sides of the plate's straight center portion) having a radius of curvature of about 50 mm. In a preferred embodiment, the hole 90 on the curved portion adjacent to the hole 90 on the straight portion is located approximately 12°-18° on the arc away from the hole 90 on the straight portion. Likewise, the two holes 90 on either curved portion may be placed along an arc approximately 12°-18° apart from each other. In a preferred embodiment, the plate may be symmetrical from one side to the other (i.e., a mirror hole arrangement on the other side of the plate is contemplated). In a preferred embodiment, the two holes near the center of the plate may lie along the longitudinal axis L-L of the center region of the plate 10. The remaining holes may be offset from the longitudinal axis L-L, as shown in FIG. 1B.
  • In a preferred embodiment, the central axes C-C of the holes 90 are not parallel to the respective vertical axes V-V of the holes 90. In a preferred embodiment, as shown in FIG. 1A, the two holes near the center of the plate have central axes C-C oriented to bias the tips of the screws in a direction away from the center of plate. In a preferred embodiment, the angle θ between each of these two central axes C-C and the vertical axes V-V is approximately 8° to 15°. In a preferred embodiment, as shown in FIG. 1A, each of the holes 90, that are located near the ends of the plate, has a central axis C-C oriented to bias the tips of the screws in a direction towards the center of plate. In a preferred embodiment the angle θ between each of these central axes C-C and the vertical axes V-V is approximately 4° to 10°.
  • In a preferred embodiment, the linear plate-surface distance d1 between the edges of holes 90 may vary from hole to hole and may be approximately 10 mm to 12 mm. In a preferred embodiment, as shown in FIG. 1B, there may be necking of the plate surface in between hole locations (i.e., the webs between the holes may be narrowed). This necking serves to achieve a desired balance between plate strength and plate size: plate strength is maximized, while plate size is minimized. In another embodiment the width of the plate between holes may be the same as the width of the plate where the holes are located.
  • In a preferred embodiment, the plate may have at least one hole 99, preferably near the center of the plate. Holes 99 may aid in the placement of the plate onto the bone (e.g., for use with a guide wire) or may be provided as a suture hole.
  • Generally, for all embodiments, a shorter bone plate having only a few (e.g., 4) holes may be used when the fracture is relatively small or when the patient's bone or joint (e.g., pubic symphysis) being operated on is relatively small.
  • A plan view of a second embodiment of a pubic symphysis plate is shown in FIG. 2B. The primary difference between this embodiment and the foregoing embodiment (which is illustrated in FIGS. 1A and 1B) is that the two holes near the center of the plate 30 of this embodiment are dynamic compression (“DC”) holes 70 instead of coaxial combination holes 90. This embodiment of a bone plate is particularly useful when, to bring parts closer together, “extra” compression is desired. The DC holes are substantially similar to those disclosed in the specifications of United States publication No. 2002/0045901, in U.S. Pat. No. 6,669,701, and in reissued U.S. Pat. No. RE. 31,628, the contents of which are incorporated herein by reference. As shown in FIG. 2B, DC hole 70 is elongated in a direction substantially aligned with the longitudinal axis L-L of the plate 30. As shown in FIG. 2B, DC hole 70 has an oblique portion or ramp 35 having an inclination such that when ramp 35 is engaged by the underside 13 of the head of a screw, preferably a screw having a head that is not threaded, and is preferably smooth and curved on the underside 13 which contacts the bone plate, the bone plate 30 is displaced in a direction to move ramp 35 away from the non-locking screw, causing the plate 30 to apply a pressure to hold the fracture ends in contact, preferably in engagement, along at least a portion of the fracture length. In a preferred embodiment, each of the holes 30 has a length X (illustrated in FIG. 2A) of approximately 6 mm to 7 mm.
  • Alternatively, the two holes near the center of the plate 30 may be non-coaxial combination holes 40 (instead of coaxial combination holes 90 or DC holes 70). The non-coaxial combination holes are substantially similar to those disclosed in the specifications of U.S. Pat. No. 6,669,701 and of United States publication No. 2002/0045901, the contents of which are hereby incorporated by reference. Reference is now made to FIG. 7. FIG. 7 illustrates a bone plate having a plurality of combination holes 40, which extend from the plate's upper surface to its lower surface. The holes 40 may be elongated (e.g., in a direction substantially aligned with a longitudinal axis of the plate) and may include a threaded portion 5 and a non-threaded portion 6. The threaded portion 5 may extend over a range of greater than about 180° with respect to a center point C1. The threaded portion 5 of the hole 40 may be dimensioned and configured to engage a threaded head portion of a threaded-head bone screw, and fix the bone screw at a predetermined angle with respect to the bone plate. Preferably, the threaded portion 5 of the hole 40 extends through the full thickness of the bone plate (i.e., from the plate's upper surface to its lower surface) thus maximizing the stability of the bone screw to bone plate interface. A threaded-head screw or a non-threaded head screw may (e.g., for compression) pass through the non-threaded portion 6 of a combination hole 40.
  • Another embodiment of a plate having coaxial combination holes is illustrated in FIGS. 3A and 3B. In one embodiment, the plate 50 may have a plurality of holes, all of which may be coaxial combination holes 90. Each of the holes 90 may lie along the longitudinal axis L-L of the plate 50. In one embodiment, the central axis C-C of each of the holes 90 may be parallel to the corresponding vertical axis V-V of each of the holes 90, as shown in FIG. 3A (central axis C-C not shown). In a preferred embodiment, the linear plate-surface distance d2 between the edges of holes 90 may be approximately 6 mm to 9 mm.
  • A variation on the aforementioned embodiment (illustrated in FIGS. 3A and 3B) is illustrated in FIG. 8. FIG. 8. is the bone plate of FIGS. 3A and 3B, in a “curved condition.” Though the bone plate of FIGS. 3A and 3B may be formed of such material to allow a surgeon to preoperatively bend the plate into a desired shape, a bone plate manufactured to a bend condition may be desirable. In the human body, a ball-and-socket joint is formed by the two acetabula of the pelvis and the head of each femur. The bone plate of FIG. 9 may be especially useful for use on the posterior outer surface of a fractured acetabulum. The plate may have a radius of curvature R, which in a preferred embodiment, is about 100-115 mm.
  • While the present invention has been described with reference to the preferred embodiments, those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be understood that the embodiments of the invention described above are not intended as limitations on the scope of the invention, which is defined only by the following claims.

Claims (21)

1-81. (canceled)
82. A bone plate, comprising:
a plate body having an upper surface and a lower surface, the plate body including a first hole extending therethrough from the upper surface to the lower surface, the hole including three regions separated from one another along a length of the first hole, the first and third regions of the first hole being non-threaded, and a second middle region of the hole between the first and third regions including threading, wherein the first region has, in a direction from the upper surface to the lower surface, an inward taper that is present around an axis of the hole.
83. The bone plate of claim 82, wherein the first region and the second region are in communication with one another.
84. The bone plate of claim 83, wherein a point of the first region nearest the lower surface abuts a point of the second region nearest the upper surface.
85. The bone plate of claim 82, wherein the first region is substantially smooth.
86. The bone plate of claim 82, wherein the inward taper is curved.
87. The bone plate of claim 86, wherein the curved inward taper is spherical.
88. The bone plate of claim 82, wherein the first hole has a substantially circular cross section with a diameter.
89. The bone plate of claim 88, wherein the diameter of the circular cross section varies along the first hole axis.
90. The bone plate of claim 82, wherein the second region conically tapers at a cone angle of between about 5° and 15°.
91. The bone plate of claim 82, wherein a maximum diameter of the first region is greater than a maximum diameter of the second region.
92. The bone plate of claim 82, wherein a minimum diameter of the first region is substantially equal to a maximum diameter of the second region.
93. The bone plate of claim 82, wherein the third region communicates with the second region.
94. The bone plate of claim 93, wherein a point of the second region nearest the lower surface abuts a point of the third region nearest the upper surface.
95. The bone plate of claim 82, wherein the third region is non-threaded.
96. The bone plate of claim 82, wherein the third region is substantially smooth.
97. The bone plate of claim 82, wherein the third region is, in a direction from the upper surface to the lower surface, tapered outward.
98. The bone plate of claim 97, wherein the outward taper of the third region is conical.
99. The bone plate of claim 98, wherein the third region conically tapers at a cone angle of between about 40° and 50°.
100. A bone plate system, comprising:
a plate body having an upper surface and a lower surface, the plate body including a first hole extending therethrough from the upper surface to the lower surface, the hole including three regions separated from one another along a length of the first hole, the first and third regions of the first hole being non-threaded, and a second middle region of the hole between the first and third regions including threading, wherein the first region has, in a direction from the upper surface to the lower surface, an inward taper that is present around an axis of the hole; and
a fastener to fasten the bone plate to a bone.
101. The bone plate of claim 100, wherein the first hole has a substantially circular cross section with a diameter.
US12/832,466 2003-05-30 2010-07-08 Bone Plate Abandoned US20100274247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/832,466 US20100274247A1 (en) 2003-05-30 2010-07-08 Bone Plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47427903P 2003-05-30 2003-05-30
US10/843,113 US7951176B2 (en) 2003-05-30 2004-05-11 Bone plate
US10/851,849 US7776076B2 (en) 2004-05-11 2004-05-21 Bone plate
US12/832,466 US20100274247A1 (en) 2003-05-30 2010-07-08 Bone Plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/851,849 Continuation US7776076B2 (en) 2003-05-30 2004-05-21 Bone plate

Publications (1)

Publication Number Publication Date
US20100274247A1 true US20100274247A1 (en) 2010-10-28

Family

ID=35376201

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/851,849 Active 2025-09-13 US7776076B2 (en) 2003-05-30 2004-05-21 Bone plate
US12/832,466 Abandoned US20100274247A1 (en) 2003-05-30 2010-07-08 Bone Plate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/851,849 Active 2025-09-13 US7776076B2 (en) 2003-05-30 2004-05-21 Bone plate

Country Status (15)

Country Link
US (2) US7776076B2 (en)
EP (1) EP1761179B1 (en)
JP (1) JP5057976B2 (en)
KR (1) KR101200822B1 (en)
CN (2) CN1988854B (en)
AT (1) ATE492228T1 (en)
AU (1) AU2005245007A1 (en)
BR (1) BRPI0511274B1 (en)
CA (1) CA2567321C (en)
DE (1) DE602005025480D1 (en)
ES (1) ES2356648T3 (en)
NZ (1) NZ551911A (en)
PL (1) PL1761179T3 (en)
WO (1) WO2005112802A1 (en)
ZA (1) ZA200610161B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130150902A1 (en) * 2011-12-13 2013-06-13 Neoortho Produtos Ortopedicos Blocked bone plate and screw provided with a threaded conic or parabolic head and arrangement comprising an implant and respective insertion method of said implant to a bone tissue
US9510880B2 (en) 2013-08-13 2016-12-06 Zimmer, Inc. Polyaxial locking mechanism
US10226287B2 (en) 2014-03-31 2019-03-12 Association For The Advancement Of Musculoskeletal Bone plate with versatile screw holes
US10368928B2 (en) 2017-03-13 2019-08-06 Globus Medical, Inc. Bone stabilization systems
US10383668B2 (en) 2016-08-17 2019-08-20 Globus Medical, Inc. Volar distal radius stabilization system
US10420596B2 (en) 2016-08-17 2019-09-24 Globus Medical, Inc. Volar distal radius stabilization system
US10575884B2 (en) 2016-08-17 2020-03-03 Globus Medical, Inc. Fracture plates, systems, and methods
US10631903B2 (en) 2017-03-10 2020-04-28 Globus Medical Inc. Clavicle fixation system
US10687874B2 (en) 2015-08-27 2020-06-23 Globus Medical, Inc Proximal humeral stabilization system
US10687873B2 (en) 2016-08-17 2020-06-23 Globus Medical Inc. Stabilization systems
US10751098B2 (en) 2016-08-17 2020-08-25 Globus Medical Inc. Stabilization systems
US10828075B2 (en) 2015-09-25 2020-11-10 Globus Medical Inc. Bone fixation devices having a locking feature
US10828074B2 (en) 2015-11-20 2020-11-10 Globus Medical, Inc. Expandalbe intramedullary systems and methods of using the same
US10856920B2 (en) 2017-09-13 2020-12-08 Globus Medical Inc. Bone stabilization systems
US10905480B2 (en) 2016-05-31 2021-02-02 Olympus Corporation Bone plate and bone plate system
US10905477B2 (en) 2017-03-13 2021-02-02 Globus Medical, Inc. Bone stabilization systems
US11071570B2 (en) 2018-03-02 2021-07-27 Globus Medical, Inc. Distal tibial plating system
US11076898B2 (en) 2015-08-27 2021-08-03 Globus Medical, Inc. Proximal humeral stabilization system
US11076899B2 (en) 2016-07-25 2021-08-03 Olympus Terumo Biomaterials Corp. Pressing tool for bone surgery
US11096730B2 (en) 2017-09-13 2021-08-24 Globus Medical Inc. Bone stabilization systems
US11129627B2 (en) 2019-10-30 2021-09-28 Globus Medical, Inc. Method and apparatus for inserting a bone plate
US11141204B2 (en) 2016-08-17 2021-10-12 Globus Medical Inc. Wrist stabilization systems
US11141172B2 (en) 2018-04-11 2021-10-12 Globus Medical, Inc. Method and apparatus for locking a drill guide in a polyaxial hole
US11197701B2 (en) 2016-08-17 2021-12-14 Globus Medical, Inc. Stabilization systems
US11197682B2 (en) 2015-08-27 2021-12-14 Globus Medical, Inc. Proximal humeral stabilization system
US11197704B2 (en) 2016-04-19 2021-12-14 Globus Medical, Inc. Implantable compression screws
US11202663B2 (en) 2019-02-13 2021-12-21 Globus Medical, Inc. Proximal humeral stabilization systems and methods thereof
US11213327B2 (en) 2016-08-17 2022-01-04 Globus Medical, Inc. Fracture plates, systems, and methods
US11224468B2 (en) 2018-03-02 2022-01-18 Globus Medical, Inc. Distal tibial plating system
US11284920B2 (en) 2016-03-02 2022-03-29 Globus Medical Inc. Fixators for bone stabilization and associated systems and methods
US11331128B2 (en) 2016-08-17 2022-05-17 Globus Medical Inc. Distal radius stabilization system
US11432857B2 (en) 2016-08-17 2022-09-06 Globus Medical, Inc. Stabilization systems
US11723647B2 (en) 2019-12-17 2023-08-15 Globus Medical, Inc. Syndesmosis fixation assembly

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951176B2 (en) * 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
DE20321245U1 (en) 2003-08-26 2006-06-14 Synthes Gmbh bone plate
US8105367B2 (en) 2003-09-29 2012-01-31 Smith & Nephew, Inc. Bone plate and bone plate assemblies including polyaxial fasteners
US8182485B1 (en) 2003-11-21 2012-05-22 Toby Orthopaedics, Llc Fracture fixation system
US8574268B2 (en) 2004-01-26 2013-11-05 DePuy Synthes Product, LLC Highly-versatile variable-angle bone plate system
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US7637928B2 (en) 2004-01-26 2009-12-29 Synthes Usa, Llc Variable angle locked bone fixation system
US7621914B2 (en) * 2004-10-28 2009-11-24 Biodynamics, Llc Adjustable bone plate
US8172886B2 (en) 2004-12-14 2012-05-08 Depuy Products, Inc. Bone plate with pre-assembled drill guide tips
DE102005004841B4 (en) * 2004-12-30 2009-10-29 Königsee Implantate und Instrumente zur Osteosynthese GmbH Osteosynthesis plate with a variety of holes for receiving bone screws
US8118848B2 (en) * 2005-01-28 2012-02-21 Orthohelix Surgical Designs, Inc. Orthopedic plate for use in fibula repair
US8118846B2 (en) 2005-01-28 2012-02-21 Orthohelix Surgical Designs, Inc. Orthopedic plates for use in clavicle repair and methods for their use
DE102005032026B3 (en) * 2005-07-08 2006-12-14 Stryker Leibinger Gmbh & Co. Kg Osteosynthesis plate for treatment of mandibular fractures, has passage openings with angle adjustments with respect to one of longitudinal axes within plane, where adjustments deviate from each other at preset value with respect to axis
AU2006272646C1 (en) 2005-07-25 2018-06-21 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US8382807B2 (en) 2005-07-25 2013-02-26 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US7905909B2 (en) 2005-09-19 2011-03-15 Depuy Products, Inc. Bone stabilization system including multi-directional threaded fixation element
ATE380512T1 (en) 2005-12-23 2007-12-15 Aap Implantate Ag BONE PLATE
US7935126B2 (en) 2006-03-20 2011-05-03 Depuy Products, Inc. Bone plate shaping system
US7951178B2 (en) * 2006-04-03 2011-05-31 Acumed Llc Bone plates with hybrid apertures
US20070270849A1 (en) 2006-04-21 2007-11-22 Orbay Jorge L Fixation Plate With Multifunctional Holes
CA2679639A1 (en) * 2006-05-17 2007-11-22 Gordon Slater Ankle fusion plate
DE102006031801A1 (en) * 2006-07-06 2008-01-10 Aap Implantate Ag Osteosynthesis fixation system
US20080234749A1 (en) * 2007-01-26 2008-09-25 Zimmer Technology, Inc. Bone plate providing threaded locking head screw capture
US20090216282A1 (en) * 2007-05-18 2009-08-27 Blake Doris M Systems and methods for retaining a plate to a substrate with an asynchronous thread form
SG183774A1 (en) * 2007-08-27 2012-09-27 Sushrut Surgicals Pvt Ltd Bone plates and bone plate assemblies
KR101360813B1 (en) * 2007-09-12 2014-02-11 상드르에+메토 에스아 Arrangement for forming a bar construction and a fixation screw therefor
US20100312286A1 (en) * 2007-10-30 2010-12-09 Dell Oca Alberto A Fernandez Variable Angle Locked Bone Plate
BRPI0818918A8 (en) * 2007-11-02 2015-09-08 Depuy Products Inc ELBOW FRACTURE FIXATION SYSTEM
US8366752B1 (en) * 2008-11-25 2013-02-05 Jones A Alexander M Cervical plate having graduated thickness
US8317842B2 (en) 2007-11-30 2012-11-27 Biomet C.V. Distal tibia plating system
EP2252224A4 (en) * 2008-03-10 2012-06-06 Gonzalez Hernandez Eduardo Bone fixation system
US20090228048A1 (en) * 2008-03-10 2009-09-10 Duncan Scott F M Joint Fixation System For the Hand
EP2282690A4 (en) 2008-04-17 2017-06-14 Toby Orthopaedics, Llc Soft tissue attachment system and clip
KR100999789B1 (en) * 2008-05-14 2010-12-08 (주)트라디메딕스 Metal plate for bonesetting
US8262707B2 (en) * 2008-07-31 2012-09-11 Biomet C.V. Periarticular bone plate with biplanar offset head member
US8257405B2 (en) * 2008-07-31 2012-09-04 Biomet C.V. Periarticular bone plate with biplanar offset head member
ES2533802T3 (en) * 2008-09-02 2015-04-14 Stryker Trauma Sa Locator device for a bone plate
US8784458B1 (en) 2008-10-10 2014-07-22 Greatbatch Medical S.A. Polyaxial insert for surgical screws
US8906076B2 (en) 2008-10-17 2014-12-09 Osteomed Llc Angulated locking plate and screw
US8597334B2 (en) * 2008-10-17 2013-12-03 Osteomed Llc Angulated locking plate/screw interface
DE102008043370A1 (en) * 2008-10-31 2010-05-06 Universität Rostock Fixation device for bones
US8366719B2 (en) 2009-03-18 2013-02-05 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US20100256687A1 (en) 2009-04-01 2010-10-07 Merete Medical Gmbh Fixation Device and Method of Use for a Ludloff Osteotomy Procedure
DE102009016394B4 (en) 2009-04-07 2016-02-11 Merete Medical Gmbh Device for stable-angle fixation and compression of a fracture site or osteotomy on a bone
US8986353B2 (en) 2009-07-09 2015-03-24 Orthohelix Surgical Designs, Inc. Osteotomy plate, plate driver and method for their use
BR112012005187A2 (en) * 2009-09-14 2017-09-12 Synthes Gmbh VARIABLE ANGLE COMPRESSION PLATE
US10390867B2 (en) 2009-09-18 2019-08-27 Biomet C.V. Bone plate system and method
RU2012115476A (en) * 2009-09-18 2013-10-27 Biomet C.V. DISPOSABLE SET AND COMPONENTS FOR SURGICAL ORTHOPEDICS
US8496692B2 (en) 2009-09-21 2013-07-30 Jmea Corporation Locking securing member
US8348980B2 (en) * 2009-10-15 2013-01-08 Biomet C.V. Method and plate for fusing the medial column bones of the foot
US8551107B2 (en) 2009-10-15 2013-10-08 Biomet, C.V. Bending tool and method for reshaping a bone plate
WO2011076205A1 (en) 2009-12-22 2011-06-30 Merete Medical Gmbh Bone plate system for osteosynthesis
US20110218580A1 (en) * 2010-03-08 2011-09-08 Stryker Trauma Sa Bone fixation system with curved profile threads
US20110224736A1 (en) * 2010-03-09 2011-09-15 Humphrey C Scott Proximal humerus fracture repair plate and system
US20120059424A1 (en) * 2010-03-10 2012-03-08 Advanced Orthopaedic Solutions, Inc. Clavicle Bone Plate
US20110245871A1 (en) * 2010-04-06 2011-10-06 Williams Lytton A Crosslink element and bender for spine surgery procedures
EP2389884B1 (en) * 2010-05-25 2013-07-31 Stryker Trauma SA Implant for bone fixation
US8696715B2 (en) 2010-06-17 2014-04-15 Chris Sidebotham Low profile medical locking plate and bone screw design for bone fractures
US8961573B2 (en) 2010-10-05 2015-02-24 Toby Orthopaedics, Inc. System and method for facilitating repair and reattachment of comminuted bone portions
US8870963B2 (en) 2010-10-27 2014-10-28 Toby Orthopaedics, Inc. System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US8852281B2 (en) 2011-01-18 2014-10-07 Globus Medical, Inc. Artificial spinal disk prosthesis
US8709092B2 (en) 2011-02-16 2014-04-29 Genesis Medical Devices, LLC Periprosthetic fracture management enhancements
WO2012119146A2 (en) 2011-03-03 2012-09-07 Toby Orthopaedics, Llc Anterior lesser tuberosity fixed angle fixation device and method of use associated therewith
US8672978B2 (en) 2011-03-04 2014-03-18 Zimmer Spine, Inc. Transverse connector
CN103491889B (en) 2011-04-01 2016-10-12 新特斯有限责任公司 Vertebra way of escape plate fixation system
JP2014519862A (en) * 2011-04-11 2014-08-21 シンセス・ゲーエムベーハー Acetabular roof reinforcement plate
WO2012174385A2 (en) 2011-06-15 2012-12-20 Smith & Nephew, Inc. Variable angle locking implant
DE202011051165U1 (en) 2011-08-31 2011-11-14 Merete Medical Gmbh Anatomically adapted, plantar bone plate and bone plate system
US9730797B2 (en) 2011-10-27 2017-08-15 Toby Orthopaedics, Inc. Bone joint replacement and repair assembly and method of repairing and replacing a bone joint
US9271772B2 (en) 2011-10-27 2016-03-01 Toby Orthopaedics, Inc. System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US9402667B2 (en) 2011-11-09 2016-08-02 Eduardo Gonzalez-Hernandez Apparatus and method for use of the apparatus for fracture fixation of the distal humerus
DE102012103894B4 (en) 2012-05-03 2016-10-27 Merete Medical Gmbh Bone plate system for osteosynthesis
US9265542B2 (en) 2012-06-27 2016-02-23 DePuy Synthes Products, Inc. Variable angle bone fixation device
US9387022B2 (en) 2012-06-27 2016-07-12 DePuy Synthes Products, Inc. Variable angle bone fixation device
IN2015DN01971A (en) 2012-08-23 2015-08-14 Synthes Gmbh
US9452005B2 (en) 2012-08-23 2016-09-27 DePuy Synthes Products, Inc. Bone fixation system
CN104736080B (en) * 2012-08-23 2017-08-04 新特斯有限责任公司 Bone fixation system
US10004603B2 (en) 2012-08-23 2018-06-26 DePuy Synthes Products, Inc. Bone implant
US9283008B2 (en) 2012-12-17 2016-03-15 Toby Orthopaedics, Inc. Bone plate for plate osteosynthesis and method for use thereof
US9107711B2 (en) 2013-02-20 2015-08-18 Stryker Trauma Sa Screw thread with flattened peaks
US9333014B2 (en) 2013-03-15 2016-05-10 Eduardo Gonzalez-Hernandez Bone fixation and reduction apparatus and method for fixation and reduction of a distal bone fracture and malunion
US9545276B2 (en) * 2013-03-15 2017-01-17 Aristotech Industries Gmbh Fixation device and method of use for a lapidus-type plantar hallux valgus procedure
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
USD745162S1 (en) 2014-01-27 2015-12-08 Merete Medical Gmbh Bone plate
US10226288B2 (en) * 2014-11-10 2019-03-12 Biomedtrix, Llc Osteotomy plate for long bones
EP3616636B1 (en) 2014-12-17 2022-11-16 Medartis Holding AG Bone plate and surgical sets
US10314626B2 (en) * 2015-01-16 2019-06-11 DePuy Synthes Procucts, Inc. Washer plate
US10058363B2 (en) * 2015-09-07 2018-08-28 Karl Leibinger Medizintechnik Gmbh & Co Kg Rib fixation system
WO2017048909A1 (en) 2015-09-18 2017-03-23 Smith & Nephew, Inc. Bone plate
US10478237B2 (en) * 2016-01-04 2019-11-19 OsteoCertus, LLC Orthopedic bone plate system
US10357293B2 (en) 2016-02-02 2019-07-23 Stryker European Holdings I, Llc Bone plate with alternating chamfers
US9962192B2 (en) * 2016-03-17 2018-05-08 Medos International Sarl Multipoint fixation implants
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
EP3348218B1 (en) * 2017-01-13 2022-11-16 Globus Medical, Inc. Stabilization systems
CN110678150B (en) * 2017-02-21 2021-11-05 拜欧米特制造有限责任公司 Implant for bridging a bone defect
US10709566B2 (en) * 2017-05-04 2020-07-14 Wright Medical Technology, Inc. Implant and method for ankle syndesmosis treatment
US11457964B2 (en) 2018-02-27 2022-10-04 41Medical Ag Variable angle bone plate system
EP4108194A1 (en) 2018-03-02 2022-12-28 Stryker European Holdings I, LLC Bone plates and associated screws
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US10898232B2 (en) 2018-03-20 2021-01-26 Medos International Sàrl Multipoint fixation implants and related methods
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11141285B2 (en) * 2018-08-06 2021-10-12 Baylor University Carpal bone fusion device and method
US11389302B2 (en) * 2018-12-06 2022-07-19 Life Spine, Inc. Spinal facet joint and laminoplasty implant
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
RU190172U1 (en) * 2019-03-28 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации PLATE FOR STONE OSTEOSYNTHESIS
US11179180B2 (en) 2019-06-11 2021-11-23 DePuy Synthes Products, Inc. Deformable threaded locking structures, and related systems and methods
US11944360B2 (en) 2019-06-11 2024-04-02 DePuy Synthes Products, Inc. Deformable threaded locking structures, and related systems and methods
US11389209B2 (en) 2019-07-19 2022-07-19 Medos International Sarl Surgical plating systems, devices, and related methods
US11426210B2 (en) 2019-09-25 2022-08-30 Medos International Sàrl Multipoint angled fixation implants for multiple screws and related methods
WO2021160518A1 (en) 2020-02-14 2021-08-19 Medos International Sarl Integrated multipoint fixation screw
KR102472323B1 (en) * 2020-08-21 2022-12-01 주식회사 코렌텍 Augment Implant
KR102568192B1 (en) * 2021-04-07 2023-08-22 주식회사 코렌텍 Augment Implant With Heterogeneous Porous Structure
DE102021118087A1 (en) * 2021-07-13 2023-01-19 Ot Medizintechnik Gmbh Symphysis Plate and Set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073218A1 (en) * 2002-10-15 2004-04-15 The University Of North Carolina At Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
US20040097937A1 (en) * 2002-11-19 2004-05-20 Sandi Pike Orthopedic bone plate
US20050165400A1 (en) * 2004-01-26 2005-07-28 Fernandez Alberto A. Variable angle locked bone fixation system
US20050228398A1 (en) * 2004-04-12 2005-10-13 Rathbun David S Free hand drill guide
US6974461B1 (en) * 1999-09-14 2005-12-13 Dietmar Wolter Fixation system for bones
US7179260B2 (en) * 2003-09-29 2007-02-20 Smith & Nephew, Inc. Bone plates and bone plate assemblies

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US524290A (en) * 1894-08-07 Island
USRE28841E (en) 1966-06-22 1976-06-08 Synthes A.G. Osteosynthetic pressure plate construction
USRE31628E (en) 1966-06-22 1984-07-10 Synthes Ag Osteosynthetic pressure plate construction
CH462375A (en) 1966-06-22 1968-09-15 Synthes Ag Osteosynthetic pressure plate
US3716050A (en) 1971-02-11 1973-02-13 F Johnston Olecranon plate
US3779240A (en) 1972-03-31 1973-12-18 S Kondo Compression plate for osteosynthesis
FR2233973A1 (en) 1973-06-25 1975-01-17 Chatin Robert Osteosynthesis plate for femoral fracture surgery - has anchoring holes in ablong flat portion and widened blade
CH611147A5 (en) 1977-01-07 1979-05-31 Mueller Kurt Osteosynthesis compression plate
CH613858A5 (en) 1977-04-22 1979-10-31 Straumann Inst Ag
FR2405062A1 (en) 1977-10-10 1979-05-04 Dayan Robert Surgical repair plate for lower fractures of femur - has concave cross section and enlarged end with staggered countersunk screw holes
FR2405705A1 (en) 1977-10-14 1979-05-11 Dayan Robert Surgical repair plate for tibia upper end fracture - has elongated length with enlarged head and countersunk for fixing screws
FR2405706A1 (en) 1977-10-14 1979-05-11 Dayan Robert Surgical repair plate for humerus lower end fracture - has end with unequal curved branches and countersunk holes for fixing screws
CH645013A5 (en) 1980-04-14 1984-09-14 Wenk Wilh Ag Osteosynthetic COMPRESSION PLATE.
CH651192A5 (en) 1980-11-20 1985-09-13 Synthes Ag OSTEOSYNTHETIC DEVICE AND CORRESPONDING DRILL GAUGE.
DE8034274U1 (en) 1980-12-23 1981-05-27 Schwan-Stabilo Schwanhäußer GmbH & Co, 8500 Nürnberg COSMETIC PEN
CH650915A5 (en) 1981-03-16 1985-08-30 Synthes Ag DEVICE FOR STABILIZING THE AREA OF A BONE BREAK OR OSTEOTOMY.
AT378324B (en) 1982-09-13 1985-07-25 Streli Elke TINNED PLATE FOR FIXING THE BONES IN THE BODIES IN BONE BREAKS
DE8431616U1 (en) 1984-10-27 1984-12-20 Howmedica International, Inc. Zweigniederlassung Kiel, 2314 Schönkirchen Plate for osteosynthesis
SU1279626A1 (en) 1985-06-06 1986-12-30 Центральный научно-исследовательский институт травматологии и ортопедии им.Н.Н.Приорова Compression device for osteosynthesis
DE8519854U1 (en) 1985-07-05 1986-04-30 Mecron Medizinische Produkte Gmbh, 1000 Berlin Self-tightening straight bone plate
CH668174A5 (en) 1985-08-30 1988-12-15 Synthes Ag OSTEOSYNTHETIC PRINT PLATE.
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4776330A (en) 1986-06-23 1988-10-11 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5151103A (en) 1987-11-03 1992-09-29 Synthes (U.S.A.) Point contact bone compression plate
CH673762A5 (en) 1987-12-02 1990-04-12 Synthes Ag
DE8808123U1 (en) 1988-06-24 1988-09-22 Herzberg, Wolfgang, Dr. Med., 2000 Wedel, De
US4927421A (en) 1989-05-15 1990-05-22 Marlowe Goble E Process of endosteal fixation of a ligament
US5006120A (en) 1989-10-10 1991-04-09 Carter Peter R Distal radial fracture set and method for repairing distal radial fractures
DE3942326A1 (en) * 1989-12-21 1991-06-27 Haerle Anton SCREW AS AN OSTEOSYNTHESIS TOOL
US5085660A (en) 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US5129901A (en) 1991-06-10 1992-07-14 Decoste Vern X Cannulated orthopedic screw
US5275601A (en) 1991-09-03 1994-01-04 Synthes (U.S.A) Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
CH686339A5 (en) 1991-12-10 1996-03-15 Synthes Ag Nut for the plate fixation.
US5304180A (en) 1992-01-17 1994-04-19 Slocum D Barclay Tibial osteotomy fixation plate
US5197966A (en) 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5365399A (en) * 1992-08-03 1994-11-15 Motorola, Inc. Heat sinking apparatus for surface mountable power devices
US5324290A (en) 1992-09-24 1994-06-28 Danek Medical, Inc. Anterior thoracolumbar plate
US5364399A (en) 1993-02-05 1994-11-15 Danek Medical, Inc. Anterior cervical plating system
DE4341980B4 (en) 1993-12-09 2005-02-17 Königsee Implantate und Instrumente zur Ostheosynthese GmbH Osteosynthetic bone plate
DE9321544U1 (en) 1993-12-09 1999-09-23 Koenigsee Implantate & Instr Osteosynthetic plate
DE4343117C2 (en) 1993-12-17 1999-11-04 Dietmar Wolter Bone fixation system
DE4438264C2 (en) 1994-09-08 1996-11-28 Schaefer Micomed Gmbh Osteosynthesis device
US5810823A (en) 1994-09-12 1998-09-22 Synthes (U.S.A.) Osteosynthetic bone plate and lock washer
US5601553A (en) 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US5709686A (en) * 1995-03-27 1998-01-20 Synthes (U.S.A.) Bone plate
US5520690A (en) 1995-04-13 1996-05-28 Errico; Joseph P. Anterior spinal polyaxial locking screw plate assembly
DE59509247D1 (en) 1995-09-06 2001-06-13 Synthes Ag BONE PLATE
US5702399A (en) 1996-05-16 1997-12-30 Pioneer Laboratories, Inc. Surgical cable screw connector
DE69838856T2 (en) 1997-02-11 2008-12-11 Warsaw Orthopedic, Inc., Warsaw Plate for the anterior cervical spine with fixation system for one screw
US5954722A (en) * 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
WO1999011188A1 (en) * 1997-09-04 1999-03-11 Synthes Ag Chur Symmetrical bone plate
US7052499B2 (en) * 1998-02-18 2006-05-30 Walter Lorenz Surgical, Inc. Method and apparatus for bone fracture fixation
US5938664A (en) 1998-03-31 1999-08-17 Zimmer, Inc. Orthopaedic bone plate
US6533786B1 (en) * 1999-10-13 2003-03-18 Sdgi Holdings, Inc. Anterior cervical plating system
US6302883B1 (en) * 1998-10-22 2001-10-16 Depuy Acromed, Inc. Bone plate-ratcheting compression apparatus
US6183475B1 (en) 1998-12-18 2001-02-06 Sulzer Orthopedics Inc. Distal femoral osteotomy system and method
DE19858889B4 (en) 1998-12-19 2008-08-07 Wolter, Dietmar, Prof. Dr.Med. Fixation system for bones
CA2367085C (en) 1999-03-09 2007-08-07 Synthes (U.S.A.) Bone plate with partly-threaded elongated hole
DE59909921D1 (en) 1999-03-09 2004-08-12 Synthes Ag BONE PLATE WITH CONICAL THREADS
US6342055B1 (en) * 1999-04-29 2002-01-29 Theken Surgical Llc Bone fixation system
EP1175181B1 (en) * 1999-05-03 2005-01-12 Medartis AG Blockable bone plate
EP1211992B1 (en) 1999-09-13 2004-01-14 Synthes AG Chur Bone plate system
ES2253202T3 (en) 2000-01-27 2006-06-01 Synthes Ag Chur PLATE FOR OSTEOSYNTHESIS.
US6767351B2 (en) * 2000-02-01 2004-07-27 Hand Innovations, Inc. Fixation system with multidirectional stabilization pegs
US6358250B1 (en) 2000-02-01 2002-03-19 Hand Innovations, Inc. Volar fixation system
US6440135B2 (en) 2000-02-01 2002-08-27 Hand Innovations, Inc. Volar fixation system with articulating stabilization pegs
DE20007908U1 (en) * 2000-05-03 2000-12-21 Medartis Ag Basel Contoured bone plate
WO2002000127A1 (en) * 2000-06-26 2002-01-03 Synthes Ag Chur Bone plate for osteosynthesis
DE10224005B4 (en) * 2002-05-29 2015-08-13 Stryker Leibinger Gmbh & Co. Kg Cutting / bending system for fitting a bone plate
USD479331S1 (en) * 2002-11-05 2003-09-02 Zimmer Orthopedic bone plate
ATE331475T1 (en) * 2003-03-20 2006-07-15 Stryker Trauma Sa BONE CONNECTION DEVICE
US7722653B2 (en) 2003-03-26 2010-05-25 Greatbatch Medical S.A. Locking bone plate
ATE476149T1 (en) * 2003-03-26 2010-08-15 Swiss Orthopedic Solutions Sa FIXING BONE PLATE
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US7491221B2 (en) * 2004-03-23 2009-02-17 Stryker Spine Modular polyaxial bone screw and plate
US20050277937A1 (en) * 2004-06-10 2005-12-15 Leung Takkwong R Bone plating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974461B1 (en) * 1999-09-14 2005-12-13 Dietmar Wolter Fixation system for bones
US20040073218A1 (en) * 2002-10-15 2004-04-15 The University Of North Carolina At Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
US20040097937A1 (en) * 2002-11-19 2004-05-20 Sandi Pike Orthopedic bone plate
US7179260B2 (en) * 2003-09-29 2007-02-20 Smith & Nephew, Inc. Bone plates and bone plate assemblies
US20050165400A1 (en) * 2004-01-26 2005-07-28 Fernandez Alberto A. Variable angle locked bone fixation system
US20050228398A1 (en) * 2004-04-12 2005-10-13 Rathbun David S Free hand drill guide

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130150902A1 (en) * 2011-12-13 2013-06-13 Neoortho Produtos Ortopedicos Blocked bone plate and screw provided with a threaded conic or parabolic head and arrangement comprising an implant and respective insertion method of said implant to a bone tissue
US9510880B2 (en) 2013-08-13 2016-12-06 Zimmer, Inc. Polyaxial locking mechanism
US9867643B2 (en) 2013-08-13 2018-01-16 Zimmer, Inc. Polyaxial locking mechanism
US10226287B2 (en) 2014-03-31 2019-03-12 Association For The Advancement Of Musculoskeletal Bone plate with versatile screw holes
US10687874B2 (en) 2015-08-27 2020-06-23 Globus Medical, Inc Proximal humeral stabilization system
US11617606B2 (en) 2015-08-27 2023-04-04 Globus Medical Inc. Proximal humeral stabilization system
US11197682B2 (en) 2015-08-27 2021-12-14 Globus Medical, Inc. Proximal humeral stabilization system
US11931083B2 (en) 2015-08-27 2024-03-19 Globus Medical Inc. Proximal humeral stabilization system
US11076898B2 (en) 2015-08-27 2021-08-03 Globus Medical, Inc. Proximal humeral stabilization system
US10828075B2 (en) 2015-09-25 2020-11-10 Globus Medical Inc. Bone fixation devices having a locking feature
US10828074B2 (en) 2015-11-20 2020-11-10 Globus Medical, Inc. Expandalbe intramedullary systems and methods of using the same
US11284920B2 (en) 2016-03-02 2022-03-29 Globus Medical Inc. Fixators for bone stabilization and associated systems and methods
US11197704B2 (en) 2016-04-19 2021-12-14 Globus Medical, Inc. Implantable compression screws
US10905480B2 (en) 2016-05-31 2021-02-02 Olympus Corporation Bone plate and bone plate system
US11076899B2 (en) 2016-07-25 2021-08-03 Olympus Terumo Biomaterials Corp. Pressing tool for bone surgery
US11160590B2 (en) 2016-08-17 2021-11-02 Globus Medical, Inc. Volar distal radius stabilization system
US11213327B2 (en) 2016-08-17 2022-01-04 Globus Medical, Inc. Fracture plates, systems, and methods
US11832857B2 (en) 2016-08-17 2023-12-05 Globus Medical, Inc. Fracture plates, systems, and methods
US11896271B2 (en) 2016-08-17 2024-02-13 Globus Medical, Inc. Stabilization systems
US10383668B2 (en) 2016-08-17 2019-08-20 Globus Medical, Inc. Volar distal radius stabilization system
US11612422B2 (en) 2016-08-17 2023-03-28 Globus Medical Inc. Stabilization systems
US10751098B2 (en) 2016-08-17 2020-08-25 Globus Medical Inc. Stabilization systems
US11432857B2 (en) 2016-08-17 2022-09-06 Globus Medical, Inc. Stabilization systems
US11957389B2 (en) 2016-08-17 2024-04-16 Globus Medical, Inc. Systems and methods for bone fixation anchor, plate, and spacer devices
US11141204B2 (en) 2016-08-17 2021-10-12 Globus Medical Inc. Wrist stabilization systems
US11331128B2 (en) 2016-08-17 2022-05-17 Globus Medical Inc. Distal radius stabilization system
US11147599B2 (en) 2016-08-17 2021-10-19 Globus Medical Inc. Systems and methods for bone fixation anchor, plate, and spacer devices
US10687873B2 (en) 2016-08-17 2020-06-23 Globus Medical Inc. Stabilization systems
US11197701B2 (en) 2016-08-17 2021-12-14 Globus Medical, Inc. Stabilization systems
US10420596B2 (en) 2016-08-17 2019-09-24 Globus Medical, Inc. Volar distal radius stabilization system
US10575884B2 (en) 2016-08-17 2020-03-03 Globus Medical, Inc. Fracture plates, systems, and methods
US11278332B2 (en) 2016-08-17 2022-03-22 Globus Medical, Inc. Distal radius stabilization system
US11857229B2 (en) 2017-03-10 2024-01-02 Globus Medical, Inc. Clavicle fixation system
US10881438B2 (en) 2017-03-10 2021-01-05 Globus Medical, Inc. Clavicle fixation system
US10631903B2 (en) 2017-03-10 2020-04-28 Globus Medical Inc. Clavicle fixation system
US11357554B2 (en) 2017-03-10 2022-06-14 Globus Medical Inc. Clavicle fixation system
US10905477B2 (en) 2017-03-13 2021-02-02 Globus Medical, Inc. Bone stabilization systems
US10368928B2 (en) 2017-03-13 2019-08-06 Globus Medical, Inc. Bone stabilization systems
US11058467B2 (en) 2017-03-13 2021-07-13 Globus Medical, Inc. Bone stabilization systems
US11607254B2 (en) 2017-09-13 2023-03-21 Globus Medical, Inc. Bone stabilization systems
US11096730B2 (en) 2017-09-13 2021-08-24 Globus Medical Inc. Bone stabilization systems
US10856920B2 (en) 2017-09-13 2020-12-08 Globus Medical Inc. Bone stabilization systems
US11871970B2 (en) 2017-09-13 2024-01-16 Globus Medical, Inc Bone stabilization systems
US11071570B2 (en) 2018-03-02 2021-07-27 Globus Medical, Inc. Distal tibial plating system
US11771480B2 (en) 2018-03-02 2023-10-03 Globus Medical, Inc. Distal tibial plating system
US11224468B2 (en) 2018-03-02 2022-01-18 Globus Medical, Inc. Distal tibial plating system
US11141172B2 (en) 2018-04-11 2021-10-12 Globus Medical, Inc. Method and apparatus for locking a drill guide in a polyaxial hole
US11779354B2 (en) 2018-04-11 2023-10-10 Globus Medical Inc. Method and apparatus for locking a drill guide in a polyaxial hole
US11259848B2 (en) 2019-02-13 2022-03-01 Globus Medical, Inc. Proximal humeral stabilization systems and methods thereof
US11202663B2 (en) 2019-02-13 2021-12-21 Globus Medical, Inc. Proximal humeral stabilization systems and methods thereof
US11826060B2 (en) 2019-10-30 2023-11-28 Globus Medical Inc. Method and apparatus for inserting a bone plate
US11129627B2 (en) 2019-10-30 2021-09-28 Globus Medical, Inc. Method and apparatus for inserting a bone plate
US11723647B2 (en) 2019-12-17 2023-08-15 Globus Medical, Inc. Syndesmosis fixation assembly

Also Published As

Publication number Publication date
CA2567321A1 (en) 2005-12-01
BRPI0511274B1 (en) 2022-09-27
US7776076B2 (en) 2010-08-17
ES2356648T3 (en) 2011-04-11
CA2567321C (en) 2013-09-17
BRPI0511274A (en) 2007-12-04
KR101200822B1 (en) 2012-11-13
AU2005245007A8 (en) 2009-05-14
EP1761179B1 (en) 2010-12-22
CN1988854B (en) 2013-06-19
JP2008500143A (en) 2008-01-10
CN1988854A (en) 2007-06-27
NZ551911A (en) 2010-09-30
PL1761179T3 (en) 2011-05-31
AU2005245007A1 (en) 2005-12-01
DE602005025480D1 (en) 2011-02-03
CN103356277A (en) 2013-10-23
WO2005112802A1 (en) 2005-12-01
ATE492228T1 (en) 2011-01-15
US20050261688A1 (en) 2005-11-24
EP1761179A4 (en) 2009-04-08
ZA200610161B (en) 2008-06-25
KR20070037714A (en) 2007-04-06
JP5057976B2 (en) 2012-10-24
CN103356277B (en) 2016-08-10
EP1761179A1 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US7776076B2 (en) Bone plate
USRE49771E1 (en) Bone plate
CA2367088C (en) Bone plate with conical screw threads
US8388666B2 (en) Locking screw system with relatively hard spiked polyaxial bushing
JP6466940B2 (en) Multi-axis locking mechanism
CA2367085C (en) Bone plate with partly-threaded elongated hole
US7354441B2 (en) Bone plate
EP3768181B1 (en) Bone plate with form-fitting variable-angle locking hole
US20210196329A1 (en) Floating Locking Insert
US20220226025A1 (en) Anchoring member for a polyaxial bone anchoring device and polyaxial bone anchoring device with such an anchoring member
JP7299063B2 (en) Bone fixation assembly with enlarged tilt angle for bone anchor on preferred side
AU2013202741C1 (en) Systems and methods for using polyaxial plates

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNTHES USA, LLC, PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:SYNTHES (U.S.A.);REEL/FRAME:024669/0480

Effective date: 20081231

AS Assignment

Owner name: DEPUY SPINE, LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNTHES USA, LLC;REEL/FRAME:030358/0945

Effective date: 20121230

Owner name: HAND INNOVATIONS LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:030359/0001

Effective date: 20121230

Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:030359/0036

Effective date: 20121231

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: HAND INNOVATIONS LLC, FLORIDA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/486,591 PREVIOUSLY RECORDED AT REEL: 030359 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:042621/0565

Effective date: 20121230

AS Assignment

Owner name: DEPUY SPINE, LLC, MASSACHUSETTS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPLICATION NO. US 13/486,591 PREVIOUSLY RECORDED ON REEL 030358 FRAME 0945. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SYNTHES USA, LLC;REEL/FRAME:042687/0849

Effective date: 20121230