US20100239558A1 - Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases - Google Patents

Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases Download PDF

Info

Publication number
US20100239558A1
US20100239558A1 US12/683,265 US68326510A US2010239558A1 US 20100239558 A1 US20100239558 A1 US 20100239558A1 US 68326510 A US68326510 A US 68326510A US 2010239558 A1 US2010239558 A1 US 2010239558A1
Authority
US
United States
Prior art keywords
cells
acid lipase
lysosomal acid
lal
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/683,265
Inventor
Gregory A. Grabowski
Hong Du
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cincinnati Childrens Hospital Medical Center
Childrens Hospital Research Foundation
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26876237&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100239558(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US12/683,265 priority Critical patent/US20100239558A1/en
Assigned to CHILDREN'S HOSPITAL MEDICAL CENTER reassignment CHILDREN'S HOSPITAL MEDICAL CENTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRABOWSKI, GREGORY A., DU, HONG
Publication of US20100239558A1 publication Critical patent/US20100239558A1/en
Assigned to CHILDREN'S HOSPITAL RESEARCH FOUNDATION reassignment CHILDREN'S HOSPITAL RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DU, HONG, DR., GRABOWSKI, GREGORY, DR.
Assigned to CHILDREN'S HOSPITAL MEDICAL CENTER reassignment CHILDREN'S HOSPITAL MEDICAL CENTER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DU, HONG, GRABOWSKI, GREGORY A.
Priority to US15/430,815 priority patent/US10864255B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01013Sterol esterase (3.1.1.13)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/04Uses of viruses as vector in vivo

Definitions

  • the present invention relates to the use of lipid dissolving substances for the treatment and prevention of coronary artery disease. More specifically, this invention relates to the use of lipid hydrolyzing proteins and/or polypeptides, such as lysosomal acid lipase (LAL), for the treatment and prevention of atherosclerosis in mammals.
  • LAL lysosomal acid lipase
  • the increasing number of patients suffering from atherosclerosis continues to drive research into cholesterol and triglyceride metabolism.
  • the central system for the control of cholesterol metabolism requires two sets of separable pathways: 1) the endogenous pathway and 2) the exogenous cholesterol-entry pathways. Both of sets of pathways are modulated by the protein lysosomal acid lipase (LAL) [1].
  • LAL protein lysosomal acid lipase
  • the cell senses the need for endogenous cholesterol synthesis via the release of transcription factors, Sterol Regulatory Element Binding Proteins (SREBP1 and 2), whose precursors are bound to the nuclear membrane and endoplasmic reticulum.
  • SREBP1 and 2 Sterol Regulatory Element Binding Proteins
  • SREBPs up-regulate HMG-CoA reductase and other enzymes in the endogenous synthesis pathways [2-5]. This upregulation is derived from the cell's biochemical feedback mechanism sensing a low level of free cholesterol in the surrounding media and/or plasma that is derived from the receptor mediated endocytosis pathway; i.e., the exogenous pathway [6].
  • Low density lipoprotein receptors (LDLR) and other plasma membrane receptors participate in this uptake process. These LDLR-delivered and other lipoprotein associated lipids are presented to the lysosome for degradation by LAL.
  • SREBP 1 and 2 stimulate the transcription of a cascade of enzymes leading to the production of free intracellular cholesterol and fatty acids [7-10].
  • the cell then senses the adequacy of free cholesterol levels and, once exceeded, ACAT (acyl CoA: cholesterol acyltransferase) is directly activated by free cholesterol and ACAT synthesis is up regulated.
  • ACAT acyl CoA: cholesterol acyltransferase
  • the net effect is to remove free cholesterol by esterification to a cytoplasmic storage pool of cholesteryl esters that is not contained within membranes, i.e., non-lysosomal, and to remove free cholesterol and cholesteryl esters from the cells.
  • SREBP 1 and 2 are transcription factors that bind to Sterol Regulatory Elements (SREs) in the promoter regions of key genes in cholesterol and fatty acid synthesis.
  • SREBPs Sterol Regulatory Elements
  • the SREBPs are activated by a two step proteolytic process that is mediated by proteases that are activated by free cholesterol sensing elements in the plasma membrane and, potentially, other components of the cell [12, 13]. These proteases cleave the endoplasmic recticulum (ER) resident SREBPs and release their active components which are then transported to the nucleus.
  • SREBP 2 has a single transcript whereas the SREBP-1 gene produces two transcripts and proteins, SREBP-1a and SREBP-1c.
  • SREBP 1 arise from the use of transcription start sites resident in alternative first exons that are then spliced into a common second exon.
  • the mRNAs for SREBP-1a/-1c also display alternative splicing at the 3′ end that leads to proteins that differ by 113 amino acids at the C-terminus [14, 15]. All three SREBP members share the same structural domains indicating their common function [16].
  • These domains include: 1) the NH 2 -terminal segment of 480 amino acids is a basic helix-loop-helix-leucine zipper-“like” transcription activator, 2) the middle segment of 80 amino acids comprises two membrane spanning sequences, and 3) the carboxy-terminal half of 590 amino acids that functions as a regulatory domain [17].
  • SR-B1 cholesteryl esters into the cell via transfer of cholesteryl esters through SR-B 1 without uptake of HDL [25, 26].
  • LDL-CE cholesterol ester
  • -TG triglyceride
  • the complexes are taken up into cells following receptor-mediated recognition.
  • the endosomal pathway delivers these lipids to the lysosomes after uncoupling the LDL-lipid complexes from the receptor in the late endosomal acidified compartment.
  • the lipids are liberated, possible after degradation of the LDL particle, via proteolysis or by simultaneous attack through proteolysis and by LAL [27].
  • This derived free cholesterol is then transported out of the lysosome into the cytosol by one or more proteins resident in, or at, the lysosomal membrane.
  • LAL occupies a central position in the control of endogenous cholesterol synthesis since, without its activity, neither free cholesterol nor free fatty acids (FFA) derived from the LDL pathway can be liberated from the lysosome to control these critical pathways.
  • cholesteryl ester storage disease is a much more heterogeneous disease with onset from early childhood to late adolescence, and even adulthood with isolated hepatomegaly and/or progressive cirrhosis and primarily storage of cholesteryl esters.
  • the present invention comprises a method to diminish and/or eliminate atherosclerotic plaques in mammals, through direct and indirect treatment of these plaques, in situ, using proteins and/or polypeptides.
  • proteins and/or polypeptides are capable of lipid removal, primarily through hydrolysis, either by a catalytic or stoichiometric process, wherein the lipid hydrolyzing protein or polypeptide targets receptors in and/or on the cell leading to uptake into the lysosome.
  • Receptor sites are selected from the group consisting of oligosaccharide recognition receptors and peptide sequence recognition receptors.
  • compositions used for practicing this invention include lipid hydrolyzing proteins or polypeptides, and in particular, the protein lysosomal acid lipase (LAL).
  • LAL protein lysosomal acid lipase
  • other lipid hydrolyzing proteins or polypeptides may also be used, such as proteins which show at least 85% sequence homology to lysosomal acid lipase or proteins having a Ser 153 residue.
  • Other proteins include polymorphic variants of lysosomal acid lipase with substitution of amino acid Pro( ⁇ 6) to Thr and Gly2 to Arg and also polypeptides showing similar biological activity as lysosomal acid lipase.
  • Exogenously produced lipid hydrolyzing proteins or polypeptides contained in a pharmaceutically acceptable carrier, may be administered either orally, parenterally, by injection, intravenous infusion, inhalation, controlled dosage release or by intraperitoneal administration in order to diminish and/or eliminate atherosclerotic plaques.
  • the preferred method of administration is by intravenous infusion.
  • Endogenously produced lipid hydrolyzing proteins and/or polypeptides may also be used to diminish and/or eliminate atherosclerotic plaques.
  • a biologically active human lipid hydrolyzing protein or polypeptide such as human lysosomal acid lipase
  • cells of an individual having a deficiency in biologically active human lipid hydrolyzing protein(s) or polypeptide(s) This is accomplished by in vivo administration into cells competent for the production of biologically active human lipid hydrolyzing protein or polypeptide, a vector comprising and expressing a DNA sequence encoding biologically active human lipid hydrolyzing protein or polypeptide.
  • the vector used may be a viral vector, including but not limited to a lentivirus, adenovirus, adeno-associated virus and virus-like vectors, a plasmid, or a lipid vesicle.
  • the vector is taken up by the cells competent for the production of biologically active human lipid hydrolyzing protein or polypeptide.
  • the DNA sequence is expressed and the biologically active human lipid hydrolyzing protein or polypeptide is produced. Additionally, the cells harboring this vector will secrete this biologically active lipid hydrolyzing protein or polypeptide which is then subsequently taken up by other cells deficient in the lipid hydrolyzing protein or polypeptide.
  • FIG. 1 Schematic of a mammalian cell to illustrate the pathways for cholesterol and fatty acid incorporation into cellular metabolism. Two pathways are illustrated: 1) the endogenous synthesis of cholesterol and fatty acids controlled by the SREBP 1 and 2 systems that sense the level of extralysosomal cellular cholesterol as modulated by LAL cleavage of cholesteryl esters and triglycerides in the lysosomes; 2) the exogenous pathway whereby cholesteryl esters and triglycerides enter the cell via receptor mediated endocytosis (shown as LDL-CE as an example) for delivery to the lysosomes inside of the cells. The LDL receptor and several other scavenger receptors participate in this pathway.
  • LDL-CE receptor mediated endocytosis
  • LAL controls the egress of cholesterol and fatty acids from the lysosomes that enter the cell via this pathway.
  • the liberation of free cholesterol and/or fatty acids by LAL or other such therapeutic compounds leads to a direct effect to reduce cholesterol and FFA synthesis in the cell via the SREBP sensing systems.
  • Reductions in cellular cholesterol and/or FFA can be achieved by this direct effect and/or by removal of the free cholesterol and/or FFA from the cell by transport of cholesterol across the plasma membrane and out of the cell.
  • FIG. 2 Typical gross pathology of LAL untreated (LC2) and treated (LA2 and LA4) lal ⁇ / ⁇ mice: [Top] Ventral views showing the yellow fat-infiltrated lover in a typical (LC2) untreated lal ⁇ / ⁇ mouse. In treated (LA2 and LA4) lal ⁇ / ⁇ mice, the livers had essentially normal color. [Middle] Gross appearance of liver (top), spleen (middle) and kidney (bottom) from LC2, LA4 and LA2 mice. The untreated mouse spleen is lighter than that from the treated mice spleens. [Bottom] Gross appearance of the small intestine from untreated LC2 and treated LA4 and LA2 mice. The small intestine of untreated mouse (LC2) gives a lighter appearance, indicating build-up of cholesterol and triglycerides. This is in contrast to the darker intestines shown for the treated mice (LA4 and LA2).
  • FIG. 3 Light microscopy of the liver, spleen and small intestine from LAL untreated (LC2) and treated (LA2) lal ⁇ / ⁇ mice.
  • H & E stained sections from liver 3 A and 3 B), spleen ( 3 F and 3 F).
  • Stained frozen sections from liver 3 C and 3 D).
  • A, C, E, (left) are from untreated lal ⁇ / ⁇ mice.
  • B, D, and F (right) are from LAL treated mice.
  • Treated mice had substantially diminished macrophage storage cell numbers compared to those in untreated mice. The staining indicates large accumulations of neutral fat in livers from untreated mice and their large decrease to near absence in liver.
  • FIG. 4 Representative sections from the aortic valve of ldlr ⁇ / ⁇ mice with or without LAL treatment stained with H & E.
  • a nd B Typical foamy cell-rich fatty streaks in 3.5 month old ldlr ⁇ / ⁇ mice on HFCD for 2 months. The asterisk indicates a necrotic zone next to disrupted medial layer. The arrows point to cholesterol clefts/crystals. The arrow on the right (cholesterol clefts/crystals) show a coronary artery near the ostium.
  • C Reduced foamy cells in the fatty streaks of the aortic valve of the LAL treated mice. This was from the most involved LAL treated mouse.
  • D A typical example (3/5) of the normal aortic, valves from LAL treated mice.
  • amino acid or “amino acid sequence,” as used herein, refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • exogenous lipid hydrolyzing proteins or polypeptides refers to those produced or manufactured outside of the body and administered to the body; the term “endogenous lipid hydrolyzing proteins or polypeptides” refers to those produced or manufactured inside the body by some type of device (biologic or other) for delivery to within or to other organs in the body.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • derivative refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence.
  • Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological function of the natural molecule.
  • a derivative polypeptide is one modified, for instance by glycosylation, or any other process which retains at least one biological function of the polypeptide from which it was derived.
  • the words “insertion” or “addition,” as used herein, refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.
  • nucleic acid refers to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, or to any DNA-like or RNA-like material.
  • fragment refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., lipase activity, or structural domain characteristic, of the full-length polypeptide.
  • the phrases “percent identity” or “percent homology” refers to the percentage of sequence similarity found in homologues of a particular amino acid or nucleic acid sequence when comparing two or more of the amino acid or nucleic acid sequences.
  • the term “atherosclerosis” refers to the pathologic processes that leads to abnormal accumulation of cholesterol and cholesteryl esters and related lipids in macrophages, smooth muscle cell and other types of cells leading to narrowing and/or occlusion of one or several arteries and arterioles of the body and bodily organs, including but not limited to, the coronary arteries, aorta, renal arteries, corotid arteries, and arteries supplying blood to the limbs and central nervous system. The associated inflammatory reactions and mediators of this pathologic process also are included in this definition.
  • the term “atherosclerotic plaque” refers to the build up of cholesterol and triglycerides due to atherosclerosis.
  • cholesteryl esters are known to be a major component contributing to the build-up of atherosclerotic plaques in coronary arteries as well as the carotid arteries, the aorta and other peripheral vessels throughout the body. These cholesteryl esters are derived from the circulation where they are carried on lipoproteins. The cholesteryl esters enter cells via low-density lipoprotein receptors (LDL-R) and other scavenger receptors for oxidized low-density lipoprotein (LDL) particles. Once internalized, these particles and their attached cholesteryl esters are delivered to the lysosome for cleavage to cholesterol by lysosomal acid lipase (LAL).
  • LDL-R low-density lipoprotein receptors
  • LDL oxidized low-density lipoprotein
  • the first method of treatment is coronary by-pass surgery. This method is used to treat patients with established, unstable angina and/or progressive angina.
  • the second method of treatment is chemical inhibition of hepatic cholesterol synthesis using the class of drugs termed “statins.” This approach inhibits the synthesis of cholesterol by inhibiting the action of the rate-limiting enzyme, HMGCoA reductase, in the cholesterol synthetic pathway.
  • Coronary artery by-pass surgery is effective in diminishing angina attacks of selected patients and the statins have been shown to successfully lower plasma cholesterol and diminish the propensity to develop atherosclerotic plaques.
  • neither approach offers the potential for direct dissolution of existing atherosclerotic plaques.
  • LAL represents the major biochemical pathway of cholesteryl ester entry into the body, and is subsequently used to modulate cellular cholesterol biosynthesis. Once LAL liberates cholesterol from cholesteryl esters, the free cholesterol exits the lysosome and leads to the sterol regulatory element binding protein (SREBP) mediated down regulation of cholesterol synthesis.
  • SREBP sterol regulatory element binding protein
  • the accumulation of cholesteryl esters within the macrophages of atherosclerotic plaques occurs in the presence of normal amounts of LAL This fact indicates that the delivery of cholesteryl esters to these cells exceeds the capacity of normal amounts of LAL to catabolite the delivered cholesteryl esters that initiate the development of atherosclerotic plaques.
  • This process disrupts normal cellular metabolism for the regulation of endogenous cellular cholesterol synthesis and leads to excess amounts of cholesterol and cellular cholesteryl ester synthesis via the lack of down regulation of the SREBP-mediated system of cholesterol synthesis and the acyl CoA: cholesterol acyltransferase (ACAT) pathway for intracellular cholesteryl ester synthesis [30].
  • ACAT cholesterol acyltransferase
  • LAL functions by preventing the progression or promoting the regression of atherosclerotic plaque legions via two mechanisms: 1) by directly entering the lesional foam cells and enzymatically dissolving the stored cholesteryl esters as well as tri-, di-, and mono-acylglycerides; and 2) by indirectly promoting lysosomal egress of free cholesterol and free fatty acids that could modulate cellular (hepatic, macrophage and other) lipid synthesis mediated by the SREBP or other pathways.
  • SREBP hepatic, macrophage and other
  • LAL a member of the lipase family
  • LAL is a 372 amino acid glycoprotein that is trafficked to the lysosome via the mannose receptor system [3]-33].
  • the cDNA sequence which encodes LAL has been previously reported [34].
  • This glycoprotein has six glycosylation consensus sequences (Asn-X-Ser-/Thr) and three at Asn 15 , Asn 80 and Asn 252 are conserved among members of the lipase gene family. All members of the lipase gene family have conserved GXSXG pentapeptide sequences that contain the active site serine nucleophiles [35-37].
  • LAL has two such sequences at residues 97-101 and 151-155 with potential serine nucleophiles at residues 99 and 153, where a key nucleophile resides at the Ser 153 residue.
  • LAL cleaves cholesteryl esters and triglycerides in vitro using phospholipid/detergent systems.
  • Ser 153 has been defined as a part of the Asp-Ser-His catalytic triad common to many lipases.
  • Suitable lipid hydrolyzing substances for use in this invention include, but are not limited to, glycoproteins such as LAL, homologues of LAL, wherein the homologues possess at least 85% sequence homology, due to degeneracy of the genetic code which encodes for LAL, polypeptides possessing similar biological activity to LAL and non-peptide derived substances. Also included are lipid hydrolyzing proteins and polypeptides which contain the catalytic lipase triad Asp-Ser-His, where the Ser is a Ser 153 residue. Additional substances include polymorphic variants of LAL in which two of the amino acids are replaced with different amino acids.
  • polymorphic variants are prepared by cloning LAL from normal human liver cDNA library and changing two nucleotides (C86 to A and G107 to A) which results in substitution of amino acid Pro( ⁇ 6) to Thr and Gly2 to Arg in LAL, yielding four different polymorphic variants of LAL. Additional amino acid sequences include those capable of lipid hydrolysis, either catalytic or stoichiometric, wherein the residue 153 of the amino acid chain is a serine residue.
  • LAL-derived proteins include those proteins having the native LAL sequence, but which have more than six N-linked acetylglycosylation residues or fewer than six N-linked acetylglycosylation residues.
  • Each glycosylation site has two N-linked acetylglucosamine residues, which are oligosaccharide-terminated, where the oligosaccharide-terminating residue is preferably an ⁇ -mannose residue and where there are at least three oligosaccharide-terminating residues at each glycosylation site.
  • the lipid hydrolyzing substance targets receptors which lead to uptake into the lysosome.
  • receptors include but are not limited to the categories of oligosaccharide recognition receptors, which includes the mannose receptor, the mannose-6-phosphate receptor and the category of peptide sequence recognition receptors, which includes CD 36 and LDL receptors.
  • LAL could be used in conjunction with statins to reduce the level of artherosclerotic plaques. Additionally, LAL could also be used in conjunction with by-pass surgery for some patients who develop restenosis and/or to prevent redevelopment of plaques following surgery. In addition, treatment with therapeutic agents, such as LAL, can effect beneficial improvements in arteries and/or arterioles that cannot be accessed by surgical or other such invasive approaches. Additional advantages of LAL treatment may include the elimination of the need for surgery in some patients and supplying a natural product to patients without the attendant or potential side effects of synthetic chemicals, as is the case for the statin therapy approach.
  • LAL therapy can also be used for the treatment of two rare human diseases, Wolman Disease and Cholesteryl Ester Storage Disease. Both of these diseases are due to mutations at the LAL locus. The former leads to death in the first year of life and the latter is a prolonged disease with development of cirrhosis of the liver in later life. Neither disease currently has therapy regimes available.
  • LAL treatment includes its use in the treatment of fatty liver of pregnancy, unspecified fatty infiltration of the liver, peripheral atherosclerotic disease due to secondary diseases such as diabetes mellitus, carotid stenosis due to atherosclerosis, and similar disease states.
  • the lipid hydrolyzing protein or polypeptide can be used therapeutically either as an exogenous material or as an endogenous material.
  • Exogenous lipid hydrolyzing proteins or polypeptides are those produced or manufactured outside of the body and administered to the body.
  • Endogenous lipid hydrolyzing proteins or polypeptides are those produced or manufactured inside the body by some means (biologic or other) for delivery to within or to other organs in the body.
  • LAL is present in body tissue. Patients who suffer from atherosclerosis have a tendency to have decreased levels of LAL in the atheromatous plaques.
  • the lipid hydrolyzing protein or polypeptide targets specific organs via specific receptors.
  • LAL can target the mannose receptor systems, or other oligosaccharide specific receptors and enters macrophages, smooth muscle cells, endothelial cells and hepatocytes.
  • An indirect treatment of plaques involves supplying LAL, to the major organs of cholesterol biosynthesis, primarily the liver. This leads to a greater net lysosomal throughput of cholesteryl esters and delivery of free cholesterol to the cytoplasm, where overall cholesterol synthesis would be diminished. It also results in a reduction of the endogenous supply of cholesterol from the liver to peripheral organs, i.e. macrophages in developed or developing plaques.
  • the principles of gene therapy for the production of therapeutic products within the body include the use of delivery vehicles (termed vectors) that can be non-pathogenic viral variants, lipid vesicles (liposomes), carbohydrate and/or other chemical conjugates of nucleotide sequences encoding the therapeutic protein or substance.
  • delivery vehicles include lipid vesicles (liposomes), carbohydrate and/or other chemical conjugates of nucleotide sequences encoding the therapeutic protein or substance.
  • These vectors are introduced into the body's cells by physical (direct injection), chemical or cellular receptor mediated uptake.
  • the nucleotide sequences can be made to produce the therapeutic substance within the cellular (episomal) or nuclear (nucleus) environments.
  • Episomes usually produce the desired product for limited periods whereas nuclear incorporated nucleotide sequences can produce the therapeutic product for extended periods including permanently.
  • Such gene therapy approaches are used to produce therapeutic products for local (i.e., within the cell or organ) or distant beneficial effects. Both may provide decreases in pathologic effects and may combine to produce additive and/or synergistic therapy.
  • the natural (termed normal) or altered (mutated) nucleotide sequences may be needed to enhance beneficial effects. The latter may be needed for targeted delivery to the specific cellular type involved in the pathology of the disease.
  • atherosclerosis distant delivery would be needed to macrophages (foam cells), smooth muscle cells and other various cell types within the pathologic lesions, known as atheromata.
  • Subcellular delivery to the lysosomes may also be necessary and variants made available or produced for such an approach.
  • lipid removal substances particularly lipid hydrolyzing proteins and polypeptides for the treatment of atherosclerosis and removal of atherosclerotic plaques
  • Such approaches provide a source of a biologically active human lipid hydrolyzing protein or polypeptide for delivery into the body by biologic or other production systems.
  • This method of introduction can be achieved by internal or production sources (biologic or other, gene therapy vectors, liposomes, gene activation etc.) which lead to the production of biologically active human lipid hydrolyzing proteins and polypeptides by certain cells of the body.
  • the source may provide for the local or distant supply by, for example, direct effects within the cell or by secretion out of the cells for delivery to other cells of the body, like those in atheromatous plaques.
  • nucleotide sequences encompassing the functional components of biologic and therapeutic interest and residing in the body's cells could be made to produce, express or otherwise make the requisite compound in therapeutic amounts.
  • the therapeutic lipid hydrolyzing protein or polypeptide, thus produced in the body, would lead to a reduction or elimination of the atheromatous plaques or other lesions of atherosclerotic plaques.
  • Variants and homologous nucleotide or encoded sequences of human lysosomal acid lipase incorporated for synthesis and/or production of the active protein/peptide are transiently or permanently integrated into cells for therapeutic production.
  • the normal, polymorphic variants, specifically mutated or modified lysosomal acid lipase sequences may be expressed from the context of the vectors incorporated into cells for normal and/or specifically modified function to enhance or otherwise promote therapeutic effects.
  • Such sequences can lead to the in vivo synthesis of the desired biologically active human lysosomal acid lipase or other therapeutic proteins within cells after incorporation into cells by various routes as described above.
  • the synthesized biologically active human lysosomal acid lipase or another therapeutic protein hydrolyzes cholesteryl esters and/or triglycerides within the lysosomes following their targeted delivery.
  • the resulting release of free cholesterol from the lysosomes leads to down regulation of the endogenous cholesterol synthetic pathway via the SREBP controlled systems.
  • human lysosomal acid lipase or other therapeutic human proteins or polypeptides produced from incorporated nucleotide sequences are secreted from cells, enter the circulatory system and are taken up by distant cells via receptor mediated endocytosis or other such lysosomal delivery systems to the lysosomes of pathologically involved cells of the atheromatous plaques.
  • Such plaques include but are not limited to macrophages and smooth muscle cells.
  • Lysosomal liberation of free cholesterol within such cells has at least two beneficial effects on atheromatous plaque reduction and/or elimination: 1) free cholesterol exits from the lysosome and participates in the SREBP mediated down regulation of endogenous macrophage or other cell type cholesterol synthesis, and 2) free cholesterol exits from the lysosome and exits the cell by reverse cholesterol transport. Both effects are beneficial in reducing the amount of accumulated cholesteryl esters within lysosomes of foam cell macrophages and/or other cells of the atheromatous lesions.
  • the gene vectors containing the requisite nucleotide sequences or other components necessary for therapeutic expression are introduced into the body's cells by several routes as described above and also their direct introduction into atheromatous plaque cells using delivery by angiographic device.
  • Endogenous therapy also contemplates the production of a protein or polypeptide where the cell has been transformed with a genetic sequence that turns on the naturally occurring gene encoding the protein, i.e., endogenous gene-activation techniques.
  • a method for the direct treatment of atherosclerotic plaques involves supplying LAL to the plaques and the macrophages, and smooth muscles cells therein, so that the cholesteryl esters and/or triglycerides, which are stored or accumulated within lysosomes of these cells, are degraded and eliminated. This subsequently results in the liberation of cholesterol from the lysosomes and a decrease in endogenous cholesterol synthesis within the foam cells (macrophages and smooth muscles cells). The net effect is to reduce the amount of cholesterol accumulating directly in the target site of pathology and to diminish the size of the plaques and other such legions in situ.
  • lipid hydrolyzing proteins or polypeptides useful in the present invention for exogenous therapy may be administered by any suitable means.
  • suitable methods of administering the compound to a host in the context of the present invention, in particular a mammal are available, and, although more than one route may be used to administer a particular protein or polypeptide, a particular route of administration may provide a more immediate and more effective reaction than another route.
  • Formulations suitable for administration by inhalation include aerosol formulations placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
  • the active agent may be aerosolized with suitable excipients.
  • the composition can be dissolved or dispersed in liquid form, such as in water or saline, preferably at a concentration at which the composition is fully solubilized and at which a suitable dose can be administered within an inhalable volume.
  • Formulations suitable for oral administration include (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water or saline, (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules, (c) suspensions in an appropriate liquid, and (d) suitable emulsions.
  • Tablet forms may include one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers.
  • Formulations suitable for intravenous infusion and intraperitoneal administration include aqueous and nonaqueous, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and nonaqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
  • the formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carriers for example, water, for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions can be prepared for sterile powders, granules, and tablets of the kind previously described.
  • Parenteral administration could also be by injection.
  • Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
  • a more recently revised approach for parenteral administration involves use of a slow release or sustained release system, such that a constant level of dosage is maintained. See, e.g., U.S. Pat. No. 3,710,795, Higuchi, issued 1973, which is incorporated by reference herein.
  • the appropriate dosage administered in any given case will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular protein or polypeptide and its mode and route of administration; the age, general health, metabolism, weight of the recipient and other factors which influence response to the compound; the nature and extent of the atherosclerosis; the kind of concurrent treatment; the frequency of treatment; and the effect desired.
  • a preferred method of treating mammals possessing atherosclerotic plaque involves introduction of suitable lipid hydrolyzing protein or polypeptide by intravenous infusion of a safe and effective amount of a lipid hydrolyzing protein or polypeptide, so as to cause the diminution and elimination of the plaque.
  • a safe and effective amount of the lipid hydrolyzing protein or polypeptide is defined as an amount, which would cause a decrease in the level of atherosclerotic plaques in a patient while minimizing undesired side effects.
  • An experienced practioner, skilled in this invention would have knowledge of the appropriate dosing ratios.
  • the activity level of the lipid hydrolyzing protein or polypeptide must also be considered in determining the number of units to administer to achieve the desired effect. Thus, the activity level of the lipid hydrolyzing protein or polypeptide should be sufficient to cause a reduction in atherosclerotic plaques within a reasonable dosage administered.
  • This study was designed for age-matched cohorts of lysosomal acid lipase deficient, lal ⁇ / ⁇ or low density lipoprotein receptor deficient, ldlr ⁇ / ⁇ , mice as an open-label, controlled trial of treated and untreated mice.
  • a single dose of LAL was used in all mice. All mice were sacrificed after 30 days of LAL administration. LAL was given as an i.v. bolus via tail vein every third day for 30 days.
  • the cohorts were divided into equal groups for injections on alternate days. Injections were begun at 2.0 or 2.5 months of age for the lal ⁇ / ⁇ or ldlr ⁇ / ⁇ mice, respectively.
  • the overall study design is presented in Table 1. The lal ⁇ / ⁇ mice received a regular chow diet throughout the entire study period.
  • LAL dosing was begun at 2 months of age.
  • the ldlr ⁇ / ⁇ mice were maintained on a regular chow diet for 1.5 months and then placed on a high cholesterol diet (7.5% fat; 1.25% cholesterol).
  • the LAL dosing was started after the ldlr/1 ⁇ mice had been on the high fat/high cholesterol diet for 30 days; i.e., at 2.5 months of age.
  • Doses of LAL in the treated groups were 1.48 U (21 ⁇ g; 70 ⁇ l) LAL in 1 ⁇ PBS with 2% human serum albumin and 10 mM of dithiothreitol (DTT).
  • the control groups received 1 ⁇ PBS with 2% HSA and 10 mM of OTT.
  • the final cohort was the lal ⁇ / ⁇ ; ldlr ⁇ / ⁇ combined deficiency.
  • mice avidly consumed the high fat/high cholesterol diet and tolerated the injections well. All injections (325) were successful with i.v. administration obtained for all. One ldlr ⁇ / ⁇ mouse died just prior to initiating the injections. The high mortality in the lal ⁇ / ⁇ ; ldlr-1 ⁇ mice was due to massive small bowel infarction possibly secondary to vessel blockage from massive macrophage infiltration of the submucosa and lamina intestinal. The data from these latter double homozygotes: are not included here.
  • mice Animals. The mice were provided care in accordance with institutional guidelines and all procedures received prior approval by the IACUC at the Children's Hospital Research Foundation, Cincinnati, Ohio.
  • the lal-A mice originated from mixed genetic backgrounds of 129Sv and CF-1.
  • the ldlr ⁇ / ⁇ mice were purchased from Jackson Laboratory and were cohorts of C57BL6/J. Mice were housed in micro-isolation, under 12 h/12 h, dark/light cycles. Water and food, regular chow diets or HFCD, were available ad libitum. The mice were genotyped by PCR-based screening of tail DNA. Plasma lipid analyses.
  • Total lipids were extracted from liver, spleen and small intestine by the Folch method (Folch, J., Lees. M., and Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226, 497-505). Triglyceride concentrations were measured using chemical analysis developed by Biggs. Briefly, both standards and samples in chloroform were evaporated under vacuum.
  • the lipids were resuspended into the following reagents in order: 0.5 ml of isopropanol, 4.5 ml of H 2 0:isopropanol:40 mM H 2 SO 4 (0.5:3.0:1.0) and 2.0 ml of Heptane, and mixed by vigorous agitation at each step.
  • the tubes were left to biphase ( ⁇ 5 minutes).
  • 80 mg of florisil was added and 1.0 ml of the upper phase from each sample was transferred into tubes that contained florisil and mixed by agitation.
  • 0.2 ml of this upper phase was transferred to a new set of tubes and 28 mM sodium alkoxide (2.0 ml) was added and mixed carefully.
  • the tubes were incubated at 60° C. for 5 min.
  • Sodium metaperiodate (3 mM, 1 ml) was added to each tube and mixed well.
  • the tubes were left to oxidize for 45 minutes.
  • 1.0 ml of 73 mM acetyl acetone was added to each tube and incubated at 60° C. for 20 min.
  • the tubes were cooled at room temperature ( ⁇ 25 min), read at 410 nm on a Beckman DU640 spectrophotometer.
  • Total tissue cholesterol concentrations were measured using the O-phthalaldehyde. Briefly, cholesterol standards and Folch extracted samples were evaporated under N 2 . O-phthalaldehyde (3 ml, Sigma) was added to each cholesterol standard and tissue sample and mixed. Concentrated sulfuric acid (1.5 ml) was added slowly and, then, mixed and cooled for 5-10 min, and read at 550 nm in a Beckman DU640 spectrophotometer.
  • the primary antibody (1:200) was incubated at 40° C. for overnight. The sections were then washed with 1 ⁇ PBS three times (5 min per wash), incubated with alkaline phosphatase-conjugated IgG as secondary antibody for 30 min at room temperature, and washed with 1 ⁇ PBS for 5 min. The signal was detected using VECTASTAIN ABC-AP kit (Vector) and counter stained with Nuclear Fast Red.
  • J774E and J774A.1 cells were maintained in DMEM medium with 60 ⁇ M of 6-Thioguanine or in DMEM medium, respectively, supplemented with 10% fetal calf serum, penicillin and streptomycin (37° C.; 5% CO 2 ).
  • DMEM medium 60 ⁇ M of 6-Thioguanine or in DMEM medium, respectively, supplemented with 10% fetal calf serum, penicillin and streptomycin (37° C.; 5% CO 2 ).
  • cells were seeded at 2 ⁇ 10 5 per well one day before adding LAL or Ceredase. At designated post-incubation times, cells were washed with 1 ⁇ PBS twice, collected with a rubber policeman, and centrifuged (12,000 rpm, 1 min.) at room temperature.
  • the intracellular proteins were extracted by cell lysis with 1% taurocholate/1% Triton X-100, frozen/thawed five times (dry ice and 37° C. water bath), and centrifuged (12,000 rpm, 10 min.) at 4° C.
  • the protein extracts were analyzed by Western blot.
  • H & E or Oil-Red-O staining of liver, spleen and small intestine from untreated and treated mice showed clear differences. In liver, the LAL treated lal ⁇ / ⁇ mice had reductions in the size and number of lipid filled Kupffer cells (see FIGS.
  • the HFCD produced hypercholesterolemia in ldlr ⁇ / ⁇ mice.
  • the plasma free cholesterol concentration increased 22-fold and plasma cholesteryl ester concentration increased 13.8-fold compared to wild-type mice.
  • the free cholesterol and cholesterol ester levels were unchanged in treated lal ⁇ / ⁇ mice.
  • mice were sequentially sectioned and analyzed. Four ldlr ⁇ / ⁇ mice were untreated. One of these was found dead just before the LAL administration began (at age of 2.5 months). Eight mice received LAL and all survived for the entire study period. The results are summarized in Table 2. All untreated ldlr ⁇ / ⁇ mice had severe plaque lesions in aortic valve and ostia of the coronary arteries (see FIGS. 4A and B). Of the aortic valves examined in the treated group, two had mild to moderate (++), one had very mild (+), and two had no accumulation of foam cells (see FIG. 4C ). The aortic valves from three treated mice were not examined histologically since they had been removed for the whole mount aortic arch studies.
  • the coronary lesions in the untreated group were extensive and multifocal. All had heavy infiltration of the coronary ostia by macrophages with plaques extending a considerable distance in the coronary arteries. Also, individual isolated and scattered plaques were found throughout the first third of the coronary arteries. In one case, the main branch of the left coronary was completely obliterated with an advanced lesion containing cholesterol crystals and apparent inflammatory. In comparison, 7 ⁇ 8 of the treated ldlr ⁇ / ⁇ mice had normal coronary vessels (see Table 2). One LAL treated ldlr ⁇ / ⁇ mouse had foamy cells in one small intramuscular coronary vessel. The other coronary arteries in this mouse were normal. This particular mouse (RA1) also had mild-moderate lesions of the aortic valve.
  • Serum was obtained at sacrifice from each mouse of each genotype and used in Western analyses. Prep #3 (2.65 ng/well) was used as antigen. Serum was used at 1:100 dilutions. All mice exposed to 10 injections of LAL gave positive western signals. The positive bands co-migrated with the LAL detected with rabbit anti-LAL. With one mouse serum positive signals were achieved with 1:100 to 1:6400 dilutions using Prep #3. Additional studies were conducted to determine the reactivity of these mouse sera to LAL or unglycosylated LAL produced in E. coli . Using 2.65 ng of antigen, the unglycosylated LAL gave very low to absent signals with all but one mouse serum. These results indicate that the antibody's specificity is directed more toward the oligosaccharides than the LAL protein in these conformations.

Abstract

The present invention comprises a method to diminish and/or eliminate atherosclerotic plaques, in mammals, through direct and indirect treatment of these plaques, in situ, using suitable substances which are capable of lipid removal, primarily through hydrolysis, either by a catalytic or stoichiometric process, wherein the substance targets receptors in and/or on the cell which lead to uptake into the lysosome. Such substances used to diminish and/or eliminate atherosclerotic plaques are generally comprised of lipid hydrolyzing proteins and/or polypeptides.

Description

  • This continuation application is based on and claims priority from U.S. Non-Provisional patent application Ser. No. 10/776,797, filed Feb. 11, 2004; which is a divisional of U.S. Non-Provisional patent application Ser. No. 09/775,517, filed Feb. 2, 2001, now patented as U.S. Pat. No. 6,849,257; and U.S. Provisional Patent application Ser. No. 60/180,362, Gregory A. Grabowski and Hong Du, filed Feb. 4, 2000.
  • FIELD OF INVENTION
  • The present invention relates to the use of lipid dissolving substances for the treatment and prevention of coronary artery disease. More specifically, this invention relates to the use of lipid hydrolyzing proteins and/or polypeptides, such as lysosomal acid lipase (LAL), for the treatment and prevention of atherosclerosis in mammals.
  • BACKGROUND
  • The increasing number of patients suffering from atherosclerosis continues to drive research into cholesterol and triglyceride metabolism. Through a large number of investigations, the essentials of the control of cholesterol metabolism have been elucidated in the past two decades (see FIG. 1). The central system for the control of cholesterol metabolism requires two sets of separable pathways: 1) the endogenous pathway and 2) the exogenous cholesterol-entry pathways. Both of sets of pathways are modulated by the protein lysosomal acid lipase (LAL) [1]. In the former, the cell senses the need for endogenous cholesterol synthesis via the release of transcription factors, Sterol Regulatory Element Binding Proteins (SREBP1 and 2), whose precursors are bound to the nuclear membrane and endoplasmic reticulum. SREBPs up-regulate HMG-CoA reductase and other enzymes in the endogenous synthesis pathways [2-5]. This upregulation is derived from the cell's biochemical feedback mechanism sensing a low level of free cholesterol in the surrounding media and/or plasma that is derived from the receptor mediated endocytosis pathway; i.e., the exogenous pathway [6]. Low density lipoprotein receptors (LDLR) and other plasma membrane receptors participate in this uptake process. These LDLR-delivered and other lipoprotein associated lipids are presented to the lysosome for degradation by LAL. Once a deficient exogenous cholesterol supply is sensed, SREBP 1 and 2 stimulate the transcription of a cascade of enzymes leading to the production of free intracellular cholesterol and fatty acids [7-10]. The cell then senses the adequacy of free cholesterol levels and, once exceeded, ACAT (acyl CoA: cholesterol acyltransferase) is directly activated by free cholesterol and ACAT synthesis is up regulated. The net effect is to remove free cholesterol by esterification to a cytoplasmic storage pool of cholesteryl esters that is not contained within membranes, i.e., non-lysosomal, and to remove free cholesterol and cholesteryl esters from the cells. Once the cell senses that sufficient free cholesterol is available, a steady state pool of free cholesterol is maintained [11].
  • Both SREBP 1 and 2 are transcription factors that bind to Sterol Regulatory Elements (SREs) in the promoter regions of key genes in cholesterol and fatty acid synthesis. The SREBPs are activated by a two step proteolytic process that is mediated by proteases that are activated by free cholesterol sensing elements in the plasma membrane and, potentially, other components of the cell [12, 13]. These proteases cleave the endoplasmic recticulum (ER) resident SREBPs and release their active components which are then transported to the nucleus. SREBP 2 has a single transcript whereas the SREBP-1 gene produces two transcripts and proteins, SREBP-1a and SREBP-1c. These alternative forms of SREBP 1 arise from the use of transcription start sites resident in alternative first exons that are then spliced into a common second exon. In humans, the mRNAs for SREBP-1a/-1c also display alternative splicing at the 3′ end that leads to proteins that differ by 113 amino acids at the C-terminus [14, 15]. All three SREBP members share the same structural domains indicating their common function [16]. These domains include: 1) the NH2-terminal segment of 480 amino acids is a basic helix-loop-helix-leucine zipper-“like” transcription activator, 2) the middle segment of 80 amino acids comprises two membrane spanning sequences, and 3) the carboxy-terminal half of 590 amino acids that functions as a regulatory domain [17].
  • There are at least two pathways for the entrance of external cholesterol into monocyte/macrophage derived cells [18]: 1) the ldlr and ldlr-related protein systems [19]; and 2) the scavenger receptor system (e.g., SRA, SR-B and CD36) for lipoprotein bound cholesteryl esters (CE's) [20-24]. The SR-B1 pathway delivers cholesteryl esters into the cell via transfer of cholesteryl esters through SR-B 1 without uptake of HDL [25, 26].
  • In the LDL-CE (cholesteryl ester) or -TG (triglyceride) pathway, the complexes are taken up into cells following receptor-mediated recognition. The endosomal pathway delivers these lipids to the lysosomes after uncoupling the LDL-lipid complexes from the receptor in the late endosomal acidified compartment. Once the LDL-lipid particle is delivered to the lysosome, the lipids are liberated, possible after degradation of the LDL particle, via proteolysis or by simultaneous attack through proteolysis and by LAL [27]. This derived free cholesterol is then transported out of the lysosome into the cytosol by one or more proteins resident in, or at, the lysosomal membrane. Once it exits the lysosome, free cholesterol moves to the inner surface of the plasma membrane and directly to the endoplasmic reticulum. Free cholesterol from the inner surface of the plasma membrane is then transported to the endoplasmic reticulum and participates in the feedback control of the endogenous synthetic pathway. Thus, from this simplified overview of cholesterol and triglyceride metabolism in cells, it is clear that LAL occupies a central position in the control of endogenous cholesterol synthesis since, without its activity, neither free cholesterol nor free fatty acids (FFA) derived from the LDL pathway can be liberated from the lysosome to control these critical pathways.
  • The importance of LAL in cholesterol and triglyceride metabolism is underscored by the human phenotypes resulting from inherited deficiencies of LAL. These two rare diseases, Wolman Disease and Cholesteryl Ester Storage Disease, are early and late onset diseases, respectively [28]. Wolman disease results in the massive accumulation of cholesteryl esters and triglycerides in lysosomes of a variety of tissues and cells including those of the liver (hepatocytes and Kupffer cells), spleen, adrenal gland and epithelium of the small intestine. This leads to a severe phenotype characterized by hepatosplenomegaly, adrenal calcification, and a thickened and dilated small intestine. In comparison, cholesteryl ester storage disease is a much more heterogeneous disease with onset from early childhood to late adolescence, and even adulthood with isolated hepatomegaly and/or progressive cirrhosis and primarily storage of cholesteryl esters.
  • The inventor has discovered that additional circumstantial evidence has implicated lower LAL activities in monocytes and/or plaques from patients with atherosclerosis or carotid artery atheromata. This evidence indicates that polymorphic variants could lead to differential activity of LAL in various tissues and may predispose to, or be an additional risk factor in, the development of atherosclerotic disease in humans [29]. In accordance with this invention, this suggests that supplementation of LAL activity in cells of pathologic involvement in athero-/arterio-sclerosis may provide a means to diminish the accumulated, pathologic cholesteryl esters and triglycerides that are causally related to these diseases.
  • SUMMARY OF THE INVENTION
  • As described herein, the present invention comprises a method to diminish and/or eliminate atherosclerotic plaques in mammals, through direct and indirect treatment of these plaques, in situ, using proteins and/or polypeptides. These proteins and/or polypeptides are capable of lipid removal, primarily through hydrolysis, either by a catalytic or stoichiometric process, wherein the lipid hydrolyzing protein or polypeptide targets receptors in and/or on the cell leading to uptake into the lysosome. Receptor sites are selected from the group consisting of oligosaccharide recognition receptors and peptide sequence recognition receptors.
  • Generally, compositions used for practicing this invention include lipid hydrolyzing proteins or polypeptides, and in particular, the protein lysosomal acid lipase (LAL). However, other lipid hydrolyzing proteins or polypeptides may also be used, such as proteins which show at least 85% sequence homology to lysosomal acid lipase or proteins having a Ser153 residue. Other proteins include polymorphic variants of lysosomal acid lipase with substitution of amino acid Pro(−6) to Thr and Gly2 to Arg and also polypeptides showing similar biological activity as lysosomal acid lipase.
  • Exogenously produced lipid hydrolyzing proteins or polypeptides, contained in a pharmaceutically acceptable carrier, may be administered either orally, parenterally, by injection, intravenous infusion, inhalation, controlled dosage release or by intraperitoneal administration in order to diminish and/or eliminate atherosclerotic plaques. The preferred method of administration is by intravenous infusion.
  • Endogenously produced lipid hydrolyzing proteins and/or polypeptides may also be used to diminish and/or eliminate atherosclerotic plaques. Generally, such a method involves providing a biologically active human lipid hydrolyzing protein or polypeptide, such as human lysosomal acid lipase, to cells of an individual having a deficiency in biologically active human lipid hydrolyzing protein(s) or polypeptide(s). This is accomplished by in vivo administration into cells competent for the production of biologically active human lipid hydrolyzing protein or polypeptide, a vector comprising and expressing a DNA sequence encoding biologically active human lipid hydrolyzing protein or polypeptide. The vector used may be a viral vector, including but not limited to a lentivirus, adenovirus, adeno-associated virus and virus-like vectors, a plasmid, or a lipid vesicle. The vector is taken up by the cells competent for the production of biologically active human lipid hydrolyzing protein or polypeptide. The DNA sequence is expressed and the biologically active human lipid hydrolyzing protein or polypeptide is produced. Additionally, the cells harboring this vector will secrete this biologically active lipid hydrolyzing protein or polypeptide which is then subsequently taken up by other cells deficient in the lipid hydrolyzing protein or polypeptide.
  • Other proteins and/or polypeptides which may be used for endogenous treatment of atherosclerotic plaques includes biologically active proteins having at least 85% sequence homology to lysosomal acid lipase, polymorphic variant proteins of lysosomal acid lipase with substitution of amino acid Pro(−6) to Thr and Gly2 to Arg and polypeptides showing similar biological activity to lysosomal acid lipase.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1: Schematic of a mammalian cell to illustrate the pathways for cholesterol and fatty acid incorporation into cellular metabolism. Two pathways are illustrated: 1) the endogenous synthesis of cholesterol and fatty acids controlled by the SREBP 1 and 2 systems that sense the level of extralysosomal cellular cholesterol as modulated by LAL cleavage of cholesteryl esters and triglycerides in the lysosomes; 2) the exogenous pathway whereby cholesteryl esters and triglycerides enter the cell via receptor mediated endocytosis (shown as LDL-CE as an example) for delivery to the lysosomes inside of the cells. The LDL receptor and several other scavenger receptors participate in this pathway. LAL controls the egress of cholesterol and fatty acids from the lysosomes that enter the cell via this pathway. The liberation of free cholesterol and/or fatty acids by LAL or other such therapeutic compounds leads to a direct effect to reduce cholesterol and FFA synthesis in the cell via the SREBP sensing systems. Reductions in cellular cholesterol and/or FFA can be achieved by this direct effect and/or by removal of the free cholesterol and/or FFA from the cell by transport of cholesterol across the plasma membrane and out of the cell.
  • The abbreviations for cellular components are as follows: PM=Plasma membrane, ER=endoplasmic reticulum, TGN=trans-Golgi network, MVB=multivesicular body, EN=endosome, FC=free cholesterol, FFA=free fatty acid, CYTO CE=re-esterified or esterified non-lysosomal cholesteryl ester (CE), NPCl=site of the Niemann-Pick Cl defect, LAL=lysosomal acid lipase.
  • FIG. 2: Typical gross pathology of LAL untreated (LC2) and treated (LA2 and LA4) lal−/− mice: [Top] Ventral views showing the yellow fat-infiltrated lover in a typical (LC2) untreated lal−/− mouse. In treated (LA2 and LA4) lal−/− mice, the livers had essentially normal color. [Middle] Gross appearance of liver (top), spleen (middle) and kidney (bottom) from LC2, LA4 and LA2 mice. The untreated mouse spleen is lighter than that from the treated mice spleens. [Bottom] Gross appearance of the small intestine from untreated LC2 and treated LA4 and LA2 mice. The small intestine of untreated mouse (LC2) gives a lighter appearance, indicating build-up of cholesterol and triglycerides. This is in contrast to the darker intestines shown for the treated mice (LA4 and LA2).
  • FIG. 3: Light microscopy of the liver, spleen and small intestine from LAL untreated (LC2) and treated (LA2) lal−/− mice. H & E stained sections from liver (3A and 3B), spleen (3F and 3F). Stained frozen sections from liver (3C and 3D). A, C, E, (left) are from untreated lal−/− mice. B, D, and F (right) are from LAL treated mice. Treated mice had substantially diminished macrophage storage cell numbers compared to those in untreated mice. The staining indicates large accumulations of neutral fat in livers from untreated mice and their large decrease to near absence in liver.
  • FIG. 4: Representative sections from the aortic valve of ldlr−/− mice with or without LAL treatment stained with H & E. (A nd B) Typical foamy cell-rich fatty streaks in 3.5 month old ldlr−/− mice on HFCD for 2 months. The asterisk indicates a necrotic zone next to disrupted medial layer. The arrows point to cholesterol clefts/crystals. The arrow on the right (cholesterol clefts/crystals) show a coronary artery near the ostium. (C) Reduced foamy cells in the fatty streaks of the aortic valve of the LAL treated mice. This was from the most involved LAL treated mouse. (D) A typical example (3/5) of the normal aortic, valves from LAL treated mice.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • The terms “amino acid” or “amino acid sequence,” as used herein, refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
    As used herein, the term “exogenous lipid hydrolyzing proteins or polypeptides” refers to those produced or manufactured outside of the body and administered to the body; the term “endogenous lipid hydrolyzing proteins or polypeptides” refers to those produced or manufactured inside the body by some type of device (biologic or other) for delivery to within or to other organs in the body.
    As used herein, the term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
    The term “derivative,” as used herein, refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological function of the natural molecule. A derivative polypeptide is one modified, for instance by glycosylation, or any other process which retains at least one biological function of the polypeptide from which it was derived.
    The words “insertion” or “addition,” as used herein, refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.
    The phrases “nucleic acid” or “nucleic acid sequence,” as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, or to any DNA-like or RNA-like material. In this context, “fragments” refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., lipase activity, or structural domain characteristic, of the full-length polypeptide.
    The phrases “percent identity” or “percent homology” refers to the percentage of sequence similarity found in homologues of a particular amino acid or nucleic acid sequence when comparing two or more of the amino acid or nucleic acid sequences.
    The term “atherosclerosis” refers to the pathologic processes that leads to abnormal accumulation of cholesterol and cholesteryl esters and related lipids in macrophages, smooth muscle cell and other types of cells leading to narrowing and/or occlusion of one or several arteries and arterioles of the body and bodily organs, including but not limited to, the coronary arteries, aorta, renal arteries, corotid arteries, and arteries supplying blood to the limbs and central nervous system. The associated inflammatory reactions and mediators of this pathologic process also are included in this definition.
    The term “atherosclerotic plaque” refers to the build up of cholesterol and triglycerides due to atherosclerosis.
  • DISCUSSION
  • The consequences of atherosclerosis are a leading cause of mortality and morbidity. Macrophages that accumulate cholesteryl esters are known to be a major component contributing to the build-up of atherosclerotic plaques in coronary arteries as well as the carotid arteries, the aorta and other peripheral vessels throughout the body. These cholesteryl esters are derived from the circulation where they are carried on lipoproteins. The cholesteryl esters enter cells via low-density lipoprotein receptors (LDL-R) and other scavenger receptors for oxidized low-density lipoprotein (LDL) particles. Once internalized, these particles and their attached cholesteryl esters are delivered to the lysosome for cleavage to cholesterol by lysosomal acid lipase (LAL).
  • Current therapeutic approaches for treating atherosclerosis include dietary manipulation (low cholesterol diets) and exercise, cholesterol synthesis inhibitors and surgical coronary artery by-pass. However, dissatisfaction with the success of these interventions provides the impetus for continued development of new/alternative/adjunctive therapies for this major disease group.
  • There are two primary methods employed for the treatment of atherosclerosis and the dissolution of atherosclerotic plaque. The first method of treatment is coronary by-pass surgery. This method is used to treat patients with established, unstable angina and/or progressive angina. The second method of treatment is chemical inhibition of hepatic cholesterol synthesis using the class of drugs termed “statins.” This approach inhibits the synthesis of cholesterol by inhibiting the action of the rate-limiting enzyme, HMGCoA reductase, in the cholesterol synthetic pathway. Coronary artery by-pass surgery is effective in diminishing angina attacks of selected patients and the statins have been shown to successfully lower plasma cholesterol and diminish the propensity to develop atherosclerotic plaques. However, neither approach offers the potential for direct dissolution of existing atherosclerotic plaques.
  • LAL represents the major biochemical pathway of cholesteryl ester entry into the body, and is subsequently used to modulate cellular cholesterol biosynthesis. Once LAL liberates cholesterol from cholesteryl esters, the free cholesterol exits the lysosome and leads to the sterol regulatory element binding protein (SREBP) mediated down regulation of cholesterol synthesis. The accumulation of cholesteryl esters within the macrophages of atherosclerotic plaques occurs in the presence of normal amounts of LAL This fact indicates that the delivery of cholesteryl esters to these cells exceeds the capacity of normal amounts of LAL to catabolite the delivered cholesteryl esters that initiate the development of atherosclerotic plaques. This process disrupts normal cellular metabolism for the regulation of endogenous cellular cholesterol synthesis and leads to excess amounts of cholesterol and cellular cholesteryl ester synthesis via the lack of down regulation of the SREBP-mediated system of cholesterol synthesis and the acyl CoA: cholesterol acyltransferase (ACAT) pathway for intracellular cholesteryl ester synthesis [30].
  • Similar events occur in the liver, which is the major organ in the body responsible for cholesterol biosynthesis and for maintenance of cholesterol homeostasis. Delivery of LAL to hepatocytes in excess of normal amounts enhances the egress of free cholesterol from the lysosome (i.e., increases the flux of cholesteryl esters through the lysosomal system) that is a major pathway for the metabolism of such lipids delivered to hepatocytes from the portal circulation and the diet. The result is an increase in cholesterol liberated from lysosomes, which subsequently down modulates hepatic cholesterol synthesis and its supply to the body. This diminishes the load of cholesterol and cholesteryl esters to peripheral sites thereby lowering the atherogenic potential.
  • The use of a suitable protein or polypeptide, such as LAL, or a homologue of LAL possessing similar biological activity, offers an alternative means of therapy for atherosclerosis as well as peripheral vascular disease. LAL functions by preventing the progression or promoting the regression of atherosclerotic plaque legions via two mechanisms: 1) by directly entering the lesional foam cells and enzymatically dissolving the stored cholesteryl esters as well as tri-, di-, and mono-acylglycerides; and 2) by indirectly promoting lysosomal egress of free cholesterol and free fatty acids that could modulate cellular (hepatic, macrophage and other) lipid synthesis mediated by the SREBP or other pathways. Patients who suffer from atherosclerosis have a tendency to have decreased levels of LAL in the atheromatous plaques.
  • LAL, a member of the lipase family, is a 372 amino acid glycoprotein that is trafficked to the lysosome via the mannose receptor system [3]-33]. The cDNA sequence which encodes LAL has been previously reported [34]. This glycoprotein has six glycosylation consensus sequences (Asn-X-Ser-/Thr) and three at Asn15, Asn80 and Asn252 are conserved among members of the lipase gene family. All members of the lipase gene family have conserved GXSXG pentapeptide sequences that contain the active site serine nucleophiles [35-37]. LAL has two such sequences at residues 97-101 and 151-155 with potential serine nucleophiles at residues 99 and 153, where a key nucleophile resides at the Ser 153 residue. LAL cleaves cholesteryl esters and triglycerides in vitro using phospholipid/detergent systems. Ser153 has been defined as a part of the Asp-Ser-His catalytic triad common to many lipases.
  • Suitable lipid hydrolyzing substances for use in this invention include, but are not limited to, glycoproteins such as LAL, homologues of LAL, wherein the homologues possess at least 85% sequence homology, due to degeneracy of the genetic code which encodes for LAL, polypeptides possessing similar biological activity to LAL and non-peptide derived substances. Also included are lipid hydrolyzing proteins and polypeptides which contain the catalytic lipase triad Asp-Ser-His, where the Ser is a Ser153 residue. Additional substances include polymorphic variants of LAL in which two of the amino acids are replaced with different amino acids. An example of such polymorphic variants are prepared by cloning LAL from normal human liver cDNA library and changing two nucleotides (C86 to A and G107 to A) which results in substitution of amino acid Pro(−6) to Thr and Gly2 to Arg in LAL, yielding four different polymorphic variants of LAL. Additional amino acid sequences include those capable of lipid hydrolysis, either catalytic or stoichiometric, wherein the residue 153 of the amino acid chain is a serine residue.
  • Further LAL-derived proteins include those proteins having the native LAL sequence, but which have more than six N-linked acetylglycosylation residues or fewer than six N-linked acetylglycosylation residues. Each glycosylation site has two N-linked acetylglucosamine residues, which are oligosaccharide-terminated, where the oligosaccharide-terminating residue is preferably an α-mannose residue and where there are at least three oligosaccharide-terminating residues at each glycosylation site.
  • For the treatment of atherosclerosis, the lipid hydrolyzing substance targets receptors which lead to uptake into the lysosome. These receptors include but are not limited to the categories of oligosaccharide recognition receptors, which includes the mannose receptor, the mannose-6-phosphate receptor and the category of peptide sequence recognition receptors, which includes CD 36 and LDL receptors.
  • Methods of Treatment of Atherosclerosis using Lipid Hydrolyzing Amino Acid Sequences
  • LAL could be used in conjunction with statins to reduce the level of artherosclerotic plaques. Additionally, LAL could also be used in conjunction with by-pass surgery for some patients who develop restenosis and/or to prevent redevelopment of plaques following surgery. In addition, treatment with therapeutic agents, such as LAL, can effect beneficial improvements in arteries and/or arterioles that cannot be accessed by surgical or other such invasive approaches. Additional advantages of LAL treatment may include the elimination of the need for surgery in some patients and supplying a natural product to patients without the attendant or potential side effects of synthetic chemicals, as is the case for the statin therapy approach.
  • LAL therapy can also be used for the treatment of two rare human diseases, Wolman Disease and Cholesteryl Ester Storage Disease. Both of these diseases are due to mutations at the LAL locus. The former leads to death in the first year of life and the latter is a prolonged disease with development of cirrhosis of the liver in later life. Neither disease currently has therapy regimes available.
  • Additional potential therapeutic roles for LAL treatment include its use in the treatment of fatty liver of pregnancy, unspecified fatty infiltration of the liver, peripheral atherosclerotic disease due to secondary diseases such as diabetes mellitus, carotid stenosis due to atherosclerosis, and similar disease states.
  • The lipid hydrolyzing protein or polypeptide can be used therapeutically either as an exogenous material or as an endogenous material. Exogenous lipid hydrolyzing proteins or polypeptides are those produced or manufactured outside of the body and administered to the body. Endogenous lipid hydrolyzing proteins or polypeptides are those produced or manufactured inside the body by some means (biologic or other) for delivery to within or to other organs in the body. LAL is present in body tissue. Patients who suffer from atherosclerosis have a tendency to have decreased levels of LAL in the atheromatous plaques. In order to achieve such desired results for both direct and indirect treatment of the plaques, the lipid hydrolyzing protein or polypeptide targets specific organs via specific receptors. For example, LAL can target the mannose receptor systems, or other oligosaccharide specific receptors and enters macrophages, smooth muscle cells, endothelial cells and hepatocytes.
  • Endogenous Therapy:
  • An indirect treatment of plaques involves supplying LAL, to the major organs of cholesterol biosynthesis, primarily the liver. This leads to a greater net lysosomal throughput of cholesteryl esters and delivery of free cholesterol to the cytoplasm, where overall cholesterol synthesis would be diminished. It also results in a reduction of the endogenous supply of cholesterol from the liver to peripheral organs, i.e. macrophages in developed or developing plaques.
  • The principles of gene therapy for the production of therapeutic products within the body include the use of delivery vehicles (termed vectors) that can be non-pathogenic viral variants, lipid vesicles (liposomes), carbohydrate and/or other chemical conjugates of nucleotide sequences encoding the therapeutic protein or substance. These vectors are introduced into the body's cells by physical (direct injection), chemical or cellular receptor mediated uptake. Once within the cells, the nucleotide sequences can be made to produce the therapeutic substance within the cellular (episomal) or nuclear (nucleus) environments. Episomes usually produce the desired product for limited periods whereas nuclear incorporated nucleotide sequences can produce the therapeutic product for extended periods including permanently.
  • Such gene therapy approaches are used to produce therapeutic products for local (i.e., within the cell or organ) or distant beneficial effects. Both may provide decreases in pathologic effects and may combine to produce additive and/or synergistic therapy. For either effect, local or distant, the natural (termed normal) or altered (mutated) nucleotide sequences may be needed to enhance beneficial effects. The latter may be needed for targeted delivery to the specific cellular type involved in the pathology of the disease. For atherosclerosis distant delivery would be needed to macrophages (foam cells), smooth muscle cells and other various cell types within the pathologic lesions, known as atheromata. Subcellular delivery to the lysosomes may also be necessary and variants made available or produced for such an approach.
  • An approach for the use of lipid removal substances, particularly lipid hydrolyzing proteins and polypeptides for the treatment of atherosclerosis and removal of atherosclerotic plaques, can be achieved by the gene therapy approaches discussed above. Such approaches provide a source of a biologically active human lipid hydrolyzing protein or polypeptide for delivery into the body by biologic or other production systems. This method of introduction can be achieved by internal or production sources (biologic or other, gene therapy vectors, liposomes, gene activation etc.) which lead to the production of biologically active human lipid hydrolyzing proteins and polypeptides by certain cells of the body. The source may provide for the local or distant supply by, for example, direct effects within the cell or by secretion out of the cells for delivery to other cells of the body, like those in atheromatous plaques. This includes, but is not limited to, somatic gene therapy approaches that would allow for the synthesis and/or otherwise production of the therapeutic substance in the body. In particular, nucleotide sequences encoding the functional, lipid hydrolyzing, sequences of the lysosomal acid lipase incorporated into conjugates, liposomes, viral (i.e., lentivirus, adenovirus, adeno-associated virus or other viruses or such virus-like vectors) vectors for expression of the active sequences for therapeutic effect. In addition, nucleotide sequences encompassing the functional components of biologic and therapeutic interest and residing in the body's cells could be made to produce, express or otherwise make the requisite compound in therapeutic amounts. The therapeutic lipid hydrolyzing protein or polypeptide, thus produced in the body, would lead to a reduction or elimination of the atheromatous plaques or other lesions of atherosclerotic plaques.
  • Variants and homologous nucleotide or encoded sequences of human lysosomal acid lipase incorporated for synthesis and/or production of the active protein/peptide are transiently or permanently integrated into cells for therapeutic production. The normal, polymorphic variants, specifically mutated or modified lysosomal acid lipase sequences may be expressed from the context of the vectors incorporated into cells for normal and/or specifically modified function to enhance or otherwise promote therapeutic effects.
  • Such sequences can lead to the in vivo synthesis of the desired biologically active human lysosomal acid lipase or other therapeutic proteins within cells after incorporation into cells by various routes as described above. Once within cells, the synthesized biologically active human lysosomal acid lipase or another therapeutic protein hydrolyzes cholesteryl esters and/or triglycerides within the lysosomes following their targeted delivery. The resulting release of free cholesterol from the lysosomes leads to down regulation of the endogenous cholesterol synthetic pathway via the SREBP controlled systems. Additionally, human lysosomal acid lipase or other therapeutic human proteins or polypeptides produced from incorporated nucleotide sequences are secreted from cells, enter the circulatory system and are taken up by distant cells via receptor mediated endocytosis or other such lysosomal delivery systems to the lysosomes of pathologically involved cells of the atheromatous plaques. Such plaques include but are not limited to macrophages and smooth muscle cells. Lysosomal liberation of free cholesterol within such cells has at least two beneficial effects on atheromatous plaque reduction and/or elimination: 1) free cholesterol exits from the lysosome and participates in the SREBP mediated down regulation of endogenous macrophage or other cell type cholesterol synthesis, and 2) free cholesterol exits from the lysosome and exits the cell by reverse cholesterol transport. Both effects are beneficial in reducing the amount of accumulated cholesteryl esters within lysosomes of foam cell macrophages and/or other cells of the atheromatous lesions.
  • The gene vectors containing the requisite nucleotide sequences or other components necessary for therapeutic expression are introduced into the body's cells by several routes as described above and also their direct introduction into atheromatous plaque cells using delivery by angiographic device.
  • Endogenous therapy also contemplates the production of a protein or polypeptide where the cell has been transformed with a genetic sequence that turns on the naturally occurring gene encoding the protein, i.e., endogenous gene-activation techniques.
  • Exogenous Therapy:
  • A method for the direct treatment of atherosclerotic plaques involves supplying LAL to the plaques and the macrophages, and smooth muscles cells therein, so that the cholesteryl esters and/or triglycerides, which are stored or accumulated within lysosomes of these cells, are degraded and eliminated. This subsequently results in the liberation of cholesterol from the lysosomes and a decrease in endogenous cholesterol synthesis within the foam cells (macrophages and smooth muscles cells). The net effect is to reduce the amount of cholesterol accumulating directly in the target site of pathology and to diminish the size of the plaques and other such legions in situ.
  • It should be noted that the direct and indirect targeting of the plaques are not mutually exclusive and may be synergistic with both local and global effects on cholesterol homeostasis and the diminution of atherogenic potential.
  • The lipid hydrolyzing proteins or polypeptides useful in the present invention for exogenous therapy may be administered by any suitable means. One skilled in the art will appreciate that many suitable methods of administering the compound to a host in the context of the present invention, in particular a mammal, are available, and, although more than one route may be used to administer a particular protein or polypeptide, a particular route of administration may provide a more immediate and more effective reaction than another route.
  • Formulations suitable for administration by inhalation include aerosol formulations placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. The active agent may be aerosolized with suitable excipients. For inhalation administration, the composition can be dissolved or dispersed in liquid form, such as in water or saline, preferably at a concentration at which the composition is fully solubilized and at which a suitable dose can be administered within an inhalable volume.
  • Formulations suitable for oral administration include (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water or saline, (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules, (c) suspensions in an appropriate liquid, and (d) suitable emulsions. Tablet forms may include one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers.
  • Formulations suitable for intravenous infusion and intraperitoneal administration, for example, include aqueous and nonaqueous, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and nonaqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carriers for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared for sterile powders, granules, and tablets of the kind previously described.
  • Parenteral administration, if used, could also be by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration involves use of a slow release or sustained release system, such that a constant level of dosage is maintained. See, e.g., U.S. Pat. No. 3,710,795, Higuchi, issued 1973, which is incorporated by reference herein.
  • The appropriate dosage administered in any given case will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular protein or polypeptide and its mode and route of administration; the age, general health, metabolism, weight of the recipient and other factors which influence response to the compound; the nature and extent of the atherosclerosis; the kind of concurrent treatment; the frequency of treatment; and the effect desired.
  • A preferred method of treating mammals possessing atherosclerotic plaque involves introduction of suitable lipid hydrolyzing protein or polypeptide by intravenous infusion of a safe and effective amount of a lipid hydrolyzing protein or polypeptide, so as to cause the diminution and elimination of the plaque. A safe and effective amount of the lipid hydrolyzing protein or polypeptide is defined as an amount, which would cause a decrease in the level of atherosclerotic plaques in a patient while minimizing undesired side effects. An experienced practioner, skilled in this invention would have knowledge of the appropriate dosing ratios. The activity level of the lipid hydrolyzing protein or polypeptide must also be considered in determining the number of units to administer to achieve the desired effect. Thus, the activity level of the lipid hydrolyzing protein or polypeptide should be sufficient to cause a reduction in atherosclerotic plaques within a reasonable dosage administered.
  • Experimental Examples Study Design
  • This study was designed for age-matched cohorts of lysosomal acid lipase deficient, lal−/− or low density lipoprotein receptor deficient, ldlr−/−, mice as an open-label, controlled trial of treated and untreated mice. A single dose of LAL was used in all mice. All mice were sacrificed after 30 days of LAL administration. LAL was given as an i.v. bolus via tail vein every third day for 30 days. The cohorts were divided into equal groups for injections on alternate days. Injections were begun at 2.0 or 2.5 months of age for the lal−/− or ldlr−/− mice, respectively. The overall study design is presented in Table 1. The lal−/− mice received a regular chow diet throughout the entire study period. LAL dosing was begun at 2 months of age. The ldlr−/− mice were maintained on a regular chow diet for 1.5 months and then placed on a high cholesterol diet (7.5% fat; 1.25% cholesterol). The LAL dosing was started after the ldlr/1− mice had been on the high fat/high cholesterol diet for 30 days; i.e., at 2.5 months of age. Doses of LAL in the treated groups were 1.48 U (21 μg; 70 μl) LAL in 1×PBS with 2% human serum albumin and 10 mM of dithiothreitol (DTT). The control groups received 1×PBS with 2% HSA and 10 mM of OTT. The final cohort was the lal−/−; ldlr−/− combined deficiency.
  • The mice avidly consumed the high fat/high cholesterol diet and tolerated the injections well. All injections (325) were successful with i.v. administration obtained for all. One ldlr−/− mouse died just prior to initiating the injections. The high mortality in the lal−/−; ldlr-1− mice was due to massive small bowel infarction possibly secondary to vessel blockage from massive macrophage infiltration of the submucosa and lamina propria. The data from these latter double homozygotes: are not included here.
  • Samples for plasma lipid determinations and antibody analyses were obtained at 32 days after the first injection. All mice were sacrificed 48 h after the final LAL injection.
  • TABLE 1
    Study Design
    # of Age* Dosage*** Total
    Name Genotype Diet mice (mos.) Injection (U) Injections
    LC lal-/- chow 5 2 PBS** 0 10
    LA, LB lal-/- chow 8 2 LAL 1.48 10
    RC ldlr-/- HF/HCh 4 2.5 PBS 0 10
    RA, RB ldlr-/- HF/HCh 8 2.5 LAL 1.48 10
    LRC lal-/-/ldlr-/- HF/HCh 4 2.5 PBS 0 10
    LRA, LRB lal-/-/ldlr-/- HF/HCh 8 2.5 LAL 1.48 10
    *The age refers to that at beginning of injections.
    **The control injection was 1 X PBS, with 2% HSA and 10 mM DTT.
    ***Doses were given every third day to each mouse. 1.48 U = 21 μg.
  • Stability of LAL Activity
  • The stability of LAL activity at 4° C. was monitored every 3-4 days for 34 days. The LAL activities remained relatively stable over this period of time, although rigorous standardization of the assay remains to be accomplished.
  • General Methods
  • Animals. The mice were provided care in accordance with institutional guidelines and all procedures received prior approval by the IACUC at the Children's Hospital Research Foundation, Cincinnati, Ohio. The lal-A mice originated from mixed genetic backgrounds of 129Sv and CF-1. The ldlr−/− mice were purchased from Jackson Laboratory and were cohorts of C57BL6/J. Mice were housed in micro-isolation, under 12 h/12 h, dark/light cycles. Water and food, regular chow diets or HFCD, were available ad libitum. The mice were genotyped by PCR-based screening of tail DNA.
    Plasma lipid analyses. Blood was collected from the inferior vena cava (IVC) of mice after they had been anesthetized with 200 μl triple sedative (Ketamine, Acepromazine, and Xylazine). Plasma was collected after centrifugation (5,000×g; 10 min; 4° C.) of blood and stored at −20° C. Total plasma free cholesterol was determined colorimetrically with a COD-PAP kit (Wako Chemicals). Total plasma, triglycerides were determined in plasma samples with a Triglycerides/GB kit (Boehringer Mannheim). Total plasma cholesterol was determined using a Cholesterol/HP kit (Boehringer Mannheim).
    Tissue Lipid analyses. Total lipids were extracted from liver, spleen and small intestine by the Folch method (Folch, J., Lees. M., and Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226, 497-505). Triglyceride concentrations were measured using chemical analysis developed by Biggs. Briefly, both standards and samples in chloroform were evaporated under vacuum. The lipids were resuspended into the following reagents in order: 0.5 ml of isopropanol, 4.5 ml of H20:isopropanol:40 mM H2SO4 (0.5:3.0:1.0) and 2.0 ml of Heptane, and mixed by vigorous agitation at each step. The tubes were left to biphase (˜5 minutes). In a set of new tubes, 80 mg of florisil was added and 1.0 ml of the upper phase from each sample was transferred into tubes that contained florisil and mixed by agitation. Then, 0.2 ml of this upper phase was transferred to a new set of tubes and 28 mM sodium alkoxide (2.0 ml) was added and mixed carefully. The tubes were incubated at 60° C. for 5 min. Sodium metaperiodate (3 mM, 1 ml) was added to each tube and mixed well. The tubes were left to oxidize for 45 minutes. Finally, 1.0 ml of 73 mM acetyl acetone was added to each tube and incubated at 60° C. for 20 min. The tubes were cooled at room temperature (˜25 min), read at 410 nm on a Beckman DU640 spectrophotometer.
  • Total tissue cholesterol concentrations were measured using the O-phthalaldehyde. Briefly, cholesterol standards and Folch extracted samples were evaporated under N2. O-phthalaldehyde (3 ml, Sigma) was added to each cholesterol standard and tissue sample and mixed. Concentrated sulfuric acid (1.5 ml) was added slowly and, then, mixed and cooled for 5-10 min, and read at 550 nm in a Beckman DU640 spectrophotometer.
  • Western blot analysis and LAL activity assay: Immunoblots were conducted with anti-LAL antiserum as described. LAL activities were estimated with the fluorogenic substrate, 4-MU-oleate (4-MUO). All assays were conducted in duplicate. Assays were linear within the time frame used and less than 10% of substrates were cleaved.
    Histological Analyses. Light microscopic examinations of the livers, spleen, intestine, adrenal glands, kidneys, heart, lung, thymus, pancreas, and brain were performed. The sections were stained with hematoxylin/eosin (paraffin embedded) or Oil red-0 (ORO) (frozen sections) for light microscopic analysis.
    Immunohistochemical staining. Immunohistochemical analyses were with paraffin-embedded liver sections and were performed with rabbit anti-LAL antibody. The endogenous peroxidase activity was saturated by incubation in methanol containing 0.5% H202 for 10 min.
  • The primary antibody (1:200) was incubated at 40° C. for overnight. The sections were then washed with 1×PBS three times (5 min per wash), incubated with alkaline phosphatase-conjugated IgG as secondary antibody for 30 min at room temperature, and washed with 1×PBS for 5 min. The signal was detected using VECTASTAIN ABC-AP kit (Vector) and counter stained with Nuclear Fast Red.
  • LAL uptake studies in J774E and J7774A. I macrophage cultures: J774E and J774A.1 cells were maintained in DMEM medium with 60 μM of 6-Thioguanine or in DMEM medium, respectively, supplemented with 10% fetal calf serum, penicillin and streptomycin (37° C.; 5% CO2). For the uptake studies, cells were seeded at 2×105 per well one day before adding LAL or Ceredase. At designated post-incubation times, cells were washed with 1×PBS twice, collected with a rubber policeman, and centrifuged (12,000 rpm, 1 min.) at room temperature. The intracellular proteins were extracted by cell lysis with 1% taurocholate/1% Triton X-100, frozen/thawed five times (dry ice and 37° C. water bath), and centrifuged (12,000 rpm, 10 min.) at 4° C. The protein extracts were analyzed by Western blot.
  • For immunofluorescence staining, cells (1.5×105) were seeded on chamber slide, incubated with LAL for 5, 18 or 24 hrs, washed with PBS twice, and fixed with 2% Paraformaldehyde for 1 hr. Immunofluoresence staining was performed.
  • Results
  • 1) Reduction of lipid storage in liver, spleen, and small intestine of lal−/− mice following LAL treatment.
    a. Phenotypic and Gross Pathologic Changes (FIG. 2): In lal−/− mice, treatment with LAL resulted in significant correction of lipid storage phenotypes in various organs. At 3 months of age, untreated lal−/− mice developed a yellow/white creamy color to the liver and significant hepatosplenomegaly was present. In comparison, the LAL treated mice had livers and spleens with much more normal colors. The normal livers in age matched controls were about 5% of body weight whereas the livers were 14% in the untreated lal−/− mice. LAL administration decreased this by about 30% (p=0.0029). The splenic weights were similar in the untreated and treated lal−/− mice (p=0.5044). However, the color of the spleen reverted to near normal in the treated group. The small intestine in untreated lal−/− mice was yellow in the duodenum and creamy white in the jejunum. In the treated group, the small intestine partially reverted to a normal color.
    b. Histologic Evaluation: H & E or Oil-Red-O staining of liver, spleen and small intestine from untreated and treated mice showed clear differences. In liver, the LAL treated lal−/− mice had reductions in the size and number of lipid filled Kupffer cells (see FIGS. 3A and B). Hepatocytes have less lipid storage than Kupffer cells in untreated lal−/− mice and this hepatocyte storage appeared unchanged in the treated group. Using Oil-Red-O staining for neutral lipids, a significant difference between the livers of the treated and untreated mice was apparent (see FIGS. 3C and D). In the spleen, the treated group showed a reduction in lipid storage cells compared to those present in untreated mice. In the small intestine, the Oil-Red-O staining of LAL treated and untreated mice showed substantial differences. The sections of intestine from untreated mice were full of Oil-Red-O staining cells (macrophages) in lamina propria while comparable sections from treated mice were almost completely negative for Oil-Red-0 staining. The aortic arches, aortic base and valves, and coronary arteries of lal−/− mice, treated or untreated, were essentially normal throughout the study.
    c. Immunohistochemistry: Immunohistologic analyses of liver with anti-LAL (E. coli produced recombinant hLAL) showed predominantly dark staining (positive) of the sinusoidal lining cells. Some antigen could be detected in the storage cells, but this signal was at a low level due to the very large dilution space presented by these cells. The samples of liver were obtained 30 min. after injection. The uninjected lal−/− mice had undetectable lal.
    d. Biochemical Findings: Tissue cholesterol (both free and esterified) and triglycerides from liver, spleen and small intestine were determined by chemical analyses. Compared to age matched wild-type mice, the lal−/− mice have elevated cholesteryl esters and triglycerides in several tissues. The average total cholesteryl ester per organ at 3.5 months of age was increased 31-fold in liver and 19-fold in spleen compared to wild-type. LAL administration to such mice was associated with reductions of total cholesterol by 47% in total liver (267.22±8.22 mg vs. 144.23±7.99 mg; p=0.0003, n=3) and by 69% in total spleen (8.73±0.43 mg vs. 2.63±0.50 mg, p=0.0008, n=3). Similar decreases of triglycerides also were observed: 58% in total liver (26.52±17.93 mg vs. 39.79±6.38 mg, p=0.047, n=4) and 45% in total spleen (8.23±0.68 mg vs. 4.55±1.26 mg, p=0.042, n=4). Although no change in the concentration of cholesterol in small intestine was observed (p=0.67), the triglyceride concentration of the treated group was 65% reduced (49.52±2.40 μg/mg vs. 17.09±4.8 μg/mg, p=0.042, n=4).
    e. Summary
  • Limited treatment of lal−/− mice with LAL (10 injections in 30 days, 1.48 U/dose) led to gross, histologic and biochemical corrections of cholesterol and triglyceride levels in treated mice.
  • 2. Plasma Chemistries and Lipid Levels in lal−/− and ldlr−/− Mice.
  • No differences in plasma glucose levels were observed in treated or untreated lal−/− or ldlr−/− mice although ldlr−/− mice have higher plasma glucose levels than wild type or lal−/− mice. The lal−/− and ldlr−/− mice had increased plasma non-esterified fatty acids (NEFA) levels compared to the wild-type controls (162% and 227%, respectively). LAL administration was associated with increases of the NEFA by 32.6% in lal−/− mice and 24.5% in ldlr−/− mice. Plasma triglycerides levels decreased in treated lal−/− mice, but were unchanged in ldlr−/− mice. The HFCD produced hypercholesterolemia in ldlr−/− mice. The plasma free cholesterol concentration increased 22-fold and plasma cholesteryl ester concentration increased 13.8-fold compared to wild-type mice. The LAL treated ldlr−/− mice had decreases in plasma free cholesterol of 18.2% (p=0.0894) and in cholesteryl esters of 26.7% (P=0.0025). The free cholesterol and cholesterol ester levels were unchanged in treated lal−/− mice.
  • 3. Histologic and Biochemical Effects of LAL Administration in ldlr−/− Mice.
  • a. Gross Anatomic and Histologic Studies
  • The visceral organs of these mice appeared normal. Whole mounts of the aortic arches were prepared from ldlr−/− mice and examined by transillumination. At 3.5 months, all (3/3) untreated ldlr−/− mice had extensive lesions of the arch and take-offs of the major vessels, i.e., brachiocephalic arteries. Although not quantitatively determined, LAL administration appeared to have little effect on these lesions in treated ldlr−/− mice.
  • To evaluate the coronary artery lesions, the hearts of treated and untreated ldlr−/− mice were sequentially sectioned and analyzed. Four ldlr−/− mice were untreated. One of these was found dead just before the LAL administration began (at age of 2.5 months). Eight mice received LAL and all survived for the entire study period. The results are summarized in Table 2. All untreated ldlr−/− mice had severe plaque lesions in aortic valve and ostia of the coronary arteries (see FIGS. 4A and B). Of the aortic valves examined in the treated group, two had mild to moderate (++), one had very mild (+), and two had no accumulation of foam cells (see FIG. 4C). The aortic valves from three treated mice were not examined histologically since they had been removed for the whole mount aortic arch studies.
  • The coronary lesions in the untreated group were extensive and multifocal. All had heavy infiltration of the coronary ostia by macrophages with plaques extending a considerable distance in the coronary arteries. Also, individual isolated and scattered plaques were found throughout the first third of the coronary arteries. In one case, the main branch of the left coronary was completely obliterated with an advanced lesion containing cholesterol crystals and apparent inflammatory. In comparison, ⅞ of the treated ldlr−/− mice had normal coronary vessels (see Table 2). One LAL treated ldlr−/− mouse had foamy cells in one small intramuscular coronary vessel. The other coronary arteries in this mouse were normal. This particular mouse (RA1) also had mild-moderate lesions of the aortic valve.
  • To obtain a more quantitative assessment of the coronary artery lesions in ldlr−/− mice, sequential H&E sections (total=210; 10 μm) of the heart were examined in an untreated mouse (RC2) and in one treated mouse (RB2). RC2 had multiple plaques in coronary arteries whereas RB2 had completely normal coronary arteries.
  • TABLE 2
    Effect of LAL on the Aortic Valves and
    Coronary Arteries of ldlr−/− Mice
    Aortic Coronary
    Valve Artery
    Designation Lesion Lesions
    LAL Untreated Mice
    RC2 ++++ ++++
    RC3 ++++ +++
    RC4 ++++ ++++
    LAL Treated Mice
    RA1 ++ +
    RA2 +
    RA3 +
    RA4 ++
    RB1
    RB2
    RB3 ND
    RB4 ND
    ++++ = severe lesions;
    +++ = moderate,
    ++ = mild-moderate;
    + = mild;
    − = no lesions;
    ND = Not done due to aortic arch removal for whole mounts.
  • These results show a major selective effect of a single fixed dose level of LAL on the presence of aortic valvular and coronary artery foam cell and progressive atherogenic lesions.
  • b. Biochemical Studies;
  • Plasma lipid results are reported above for the ldlr−/− treated and untreated groups. Liver and splenic cholesterol and triglyceride levels were increased over wild-type mice in the untreated ldlr−/− group. No significant effects were observed on the total cholesterol in liver (p=0.8816) and spleen (p=0.1061), or cholesterol concentration (0.0927) in the small intestine. The triglycerides were reduced 65.1% in total liver (91.54±1.98 mg vs. 59.60±6.86 mg; p=0.002), and 53.3% in total spleen (3.24±0.39 mg vs. 1.73±0.33 mg; p=0.0183). The concentration of triglycerides in small intestine also was reduced 43% (41.74±3.69 μg/mg vs. 23.79±2.08 μg/mg p=0.001).
  • c. Antibody Studies:
  • Serum was obtained at sacrifice from each mouse of each genotype and used in Western analyses. Prep #3 (2.65 ng/well) was used as antigen. Serum was used at 1:100 dilutions. All mice exposed to 10 injections of LAL gave positive western signals. The positive bands co-migrated with the LAL detected with rabbit anti-LAL. With one mouse serum positive signals were achieved with 1:100 to 1:6400 dilutions using Prep #3. Additional studies were conducted to determine the reactivity of these mouse sera to LAL or unglycosylated LAL produced in E. coli. Using 2.65 ng of antigen, the unglycosylated LAL gave very low to absent signals with all but one mouse serum. These results indicate that the antibody's specificity is directed more toward the oligosaccharides than the LAL protein in these conformations.
  • Summary of Data
  • The data from the ldlr−/− data show clear and dramatic effects of LAL administration on the presence of aortic valvular and coronary artery plaques and foam cells. All of the lesions were greatly diminished or absent in the treated mice compared to very severe lesions in the untreated cohort. The changes in hepatic, splenic and intestinal triglycerides indicate a direct effect of the LAL in these organs.
  • REFERENCES
    • 1) Du, H.; Witte, D. F.; Grabowski, G. A. 1996, Journal of Lipid Research, vol. 37, pp. 937-949.
    • 2) Hun, X., Yokoyama, C., Wu, J., Briggs, M. R., Brown, M. S., Goldstein, J. L., and Wang, X. 1993, Proc. Natl. Acad. Sci., vol. 90, pp. 11603-11607.
    • 3) Brown, M. S. and Goldstein, J. L. 1997, Cell, vol. 89, pp. 331-340.
    • 4) Goldstein, J. L. and Brown, M. S. 1990, Nature, vol. 343, pp. 425-430.
    • 5) Wang, X., Sato, R., Brown, M. S., Hua, X., and Goldstein, J. L. 1994, Cell, vol. 77, pp. 53-62.
    • 6) Goldstein, J. L., Basu, S., and Brown, M. S. 1983, Met. in. Enzymology, vol. 8, pp. 241-260.
    • 7) Goldstein, J. L., Dana, S. E., Faust, J. R., Beaudet, A. L., and Brown, M. S. 1975, J. Biol. Chem., vol. 250, pp. 8487-8495.
    • 8) Kim, J. B. and Spiegelman, B. M. 1996, Genes. Dev. vol. 10, pp. 1096-1107.
    • 9) Ericsson, J., Jackson, S. M., Lee, B. C., and Edwards, P. A. 1996, Proc. Natl. Acad Sci. USA vol. 93, pp. 945-950.
    • 10) Du, H., Witte, D. P., and Grabowski, G. A. 1996, J. Lipid Res. vol. 37, pp. 937-949.
    • 11) Osborne, T. F. and Rosenfeld, J. M. 1998, Curr. Opin. Lipidol. vol. 9, pp. 137-140.
    • 12) Sakai, J., Duncan, B. A., Rawson, R. B., Hua, X., Brown, M. S., and Goldstein, J. L. 1996, Cell, vol. 85, pp. 1037-1046.
    • 13) Sakai, J., Nohturfft, A., Cheng, D., Ho, Y. K., Brown, M. S., and Goldstein, J. L. 1997, J. Bio. Chem., vol. 272, pp. 20213-20221.
    • 14) Yokoyama, C., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., Goldstein, J. L., and Brown, M. S. 1993, Cell, vol. 75, pp. 187-197.
    • 15) Hua, X., Wu, J., Goldstein, U., Brown, M. S., and Hobbs, H. H. 1995, Genomics, vol. 25, pp. 667-673.
    • 16) Sato, R., Yang, J., Wang, X., Evans, M. J., Ho, Y. K., Goldstein, J. L., and Brown, M. S. 1994, J. Biol. Chem., vol. 269, pp. 17267-17273.
    • 17) Sakai, J., Nohturfft, A., Cheng, D., Ho, Y. K., Brown, M. S., and Goldstein, J. L. 1997, J. Bio. Chem. vol. 272, pp. 20213-20221.
    • 18) Fielding, C. J. and Fielding, P. E. 1997, J. Lipid. Res. vol. 38, pp. 1503-1521.
    • 19) Dietschy, J. M. 1990, Hospital Practice, pp. 67-78.
    • 20) Rigotti, A., Trigatti, B. L., Penman, M., Rayburn, H., Herz, J., and Krieger, M. 1997, Proc. Natl. Acad. Sci. USA, vol. 94, pp. 12610-12615.
    • 21) Temel, R. E., Trigatti, B., DeMattos, R. B., Azhar, S., Krieger, M., and Williams, D. L. 1997, Proc. Natl. Acad. Sci. USA, vol. 94, pp. 13600-13605.
    • 22) Jian, B., Llera-Moyer, M., Ji, Y., Wang, N., Phillips, M. C., Swaney, J. B., Tall, A. R., and Rothblat, G. H. 1998, J. Bio. Chem., vol. 273, pp. 5599-5606.
    • 23) Johnson, M. S. C., Svensson, P. A., Helou, K., Billig, Levan, G., Carlsson, L. M. S., and Carlsson, B. 1998, Endocrinology, vol. 139, pp. 72-80.
    • 24) Fluiter, K., Westhuijzen, D. R., and Berkel, T. J. C. 1998, J. Bio. Chem., vol. 273, pp. 8434-8438.
    • 25) Id. at 21.
    • 26) Id. at 22.
    • 27) Somerharju, P. and Lusa, S. 1998, Biochem. Biophy. Acta., vol. 1389, pp. 112-122.
    • 28) Assman, G. and Seedorf, U. 1995, The Metabolic and Molecular Bases of Inherited Disease, pp. 2563-2587.
    • 29) Sheriff, S, and Du, H. 1995, Am. J. Hum. Genet., vol. 57, page 1017A.
    • 30) Sheriff, S., Du, H., Grabowski, G. A. 1995, J. Biol. Chem., vol. 270, pp. 27766-27772.
    • 31) Amies, D., Merkel, M., Eckerskorn, C., Greten, H. 1994, Eur. J. Biochem., vol. 219, pp. 905-914.
    • 32) Neufeld, E. F., Sando, G. N., Garvin, A. J., Rowl, W. 1977, J. Supramol. Struct., vol. 6, pp. 95-101.
    • 33) Sando, G. N., Henke, V. L. 1982, J. Lipid Res., vol. 23, pp. 114-123.
    • 34) Anderson, R. A., and Sando, G. N. 1991, J. Biol. Chem., vol. 266, pp. 22479-22484.
    • 35) Komaromy, M. C., Schotz, M. C. 1987, Proc. Natl. Acad. Sci. USA, vol. 84, pp. 1526-1530.
    • 36) Lowe, M. E., Rosenblum, J. L. 1989, J. Biol. Chem., vol. 264, pp. 20042-20048.
    • 37) Shimida, Y., Sugihara, A., Tominaga, Y., Tsunaawu, S. 1989, J. Biochem. (Tokyo), vol. 106, pp. 383-388.

Claims (29)

1. A composition comprising a safe and effective amount of a lipid hydrolyzing protein or polypeptide and a pharmaceutically acceptable carrier.
2. The composition of claim 1 wherein the lipid hydrolyzing protein or polypeptide is the protein lysosomal acid lipase.
3. The composition of claim 1 wherein the lipid hydrolyzing protein or polypeptide is a protein showing at least 85% sequence homology to lysosomal acid lipase.
4. The composition of claim 1 wherein said lipid hydrolyzing protein or polypeptide is a polypeptide possessing similar biological activity as lysosomal acid lipase.
5. The composition of claim 1 wherein said lipid hydrolyzing protein or polypeptide is a protein having a Ser153 residue.
6. The composition of claim 1 wherein said lipid hydrolyzing protein or polypeptide is a polymorphic variant protein of lysosomal acid lipase with substitution of amino acid Pro(-6) to Thr and Gly2 to Arg.
7. The composition of claim 2 wherein the lysosomal acid lipase has fewer than six N-linked acetylglycosylation residues.
8. The composition of claim 2 wherein the lysosomal acid lipase has more than six N-linked acetylglycosylation residues.
9. The composition of claim 8 wherein the N-acetylglycosylation residue is oligosaccharide-terminated.
10. The composition of claim 9 wherein the oligosaccharide terminating residue is a mannose residue.
11. The composition of claim 10 wherein the N-acetylglycosylation residue is oligosaccharide-terminated.
12. The composition of claim 11 wherein the oligosaccharide terminating residue is a mannose residue.
13. A composition comprising a safe and effective amount of lysosomal acid lipase in a pharmaceutically acceptable carrier.
14. A composition comprising a safe and effective amount of a lipid hydrolyzing protein showing at least 85% sequence homology to lysosomal acid lipase in a pharmaceutically acceptable carrier.
15. A method for providing biologically active lysosomal acid lipase to mammalian cells, said method comprising administration into cells a vector comprising and expressing a DNA sequence encoding biologically active lysosomal acid lipase, and expressing the DNA sequence in said cells to produce biologically active lysosomal acid lipase capable of hydrolyzing lipids; wherein the expression level is in an amount sufficient to produce secretion of the biologically active lysosomal acid lipase from the cells in a therapeutic amount.
16. The method of claim 15 wherein the cells harboring the vector secrete the biologically active lysosomal acid lipase in an amount and form capable of being taken up by other cells deficient in lysosomal acid lipase.
17. The method of claim 15 wherein the cells are atheromatous plaque cells or cells of the liver.
18. The method of claim 17 wherein the vector is introduced to the cells ex vivo.
19. The method of claim 17 wherein the vector is introduced to the cells in vivo.
20. The method of claim 17, further comprising the administration of exogenously produced lysosomal acid lipase, contained in a pharmaceutically acceptable carrier.
21. The method of claim 15 wherein the cells harboring the vector secrete biologically active lysosomal acid lipase in an amount capable of reducing atherosclerotic plaque.
22. The method of claim 15 wherein the vector is a viral vector.
23. The method of claim 17 wherein the viral vector is selected from the group consisting of a lentivirus, adenovirus, adeno-associated virus and virus-like vectors.
24. The method of claim 15 wherein the vector is a plasmid.
25. The method of claim 17 wherein the biologically active lysosomal acid lipase is a polymorphic variant of lysosomal acid lipase with substitution of amino acid Pro(-6) to Thr and Gly2 to Arg.
26. A method for providing biologically active lysosomal acid lipase to cells of a mammal with atherosclerosis, comprising administration into the cells of said mammal an amount of a vector comprising and expressing a DNA sequence encoding lysosomal acid lipase and which is effective to transfect and sustain expression of biologically active lysosomal acid lipase in cells deficient therein.
27. The method of claim 26 wherein the expressed lysosomal acid lipase is secreted from the infected cells and is taken up by other cells deficient therein.
28. A method for treatment of Wolman's Disease in a mammal comprising administering to said mammal a safe and effective amount of lysosomal acid lipase sufficient to treat said condition.
29. A method for treatment of Cholesteryl Ester Storage Disease in a mammal comprising administering to said mammal a safe and effective amount of lysosomal acid lipase sufficient to treat said condition.
US12/683,265 2000-02-04 2010-01-06 Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases Abandoned US20100239558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/683,265 US20100239558A1 (en) 2000-02-04 2010-01-06 Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases
US15/430,815 US10864255B2 (en) 2000-02-04 2017-02-13 Lipid hydrolysis therapy for atherosclerosis and related diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18036200P 2000-02-04 2000-02-04
US09/775,517 US6849257B2 (en) 2000-02-04 2001-02-02 Lipid hydrolysis therapy for atherosclerosis and related diseases
US10/776,797 US20040223960A1 (en) 2000-02-04 2004-02-11 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases
US12/683,265 US20100239558A1 (en) 2000-02-04 2010-01-06 Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/776,797 Continuation US20040223960A1 (en) 2000-02-04 2004-02-11 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/430,815 Continuation US10864255B2 (en) 2000-02-04 2017-02-13 Lipid hydrolysis therapy for atherosclerosis and related diseases

Publications (1)

Publication Number Publication Date
US20100239558A1 true US20100239558A1 (en) 2010-09-23

Family

ID=26876237

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/775,517 Expired - Lifetime US6849257B2 (en) 2000-02-04 2001-02-02 Lipid hydrolysis therapy for atherosclerosis and related diseases
US10/776,797 Abandoned US20040223960A1 (en) 2000-02-04 2004-02-11 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases
US11/653,147 Abandoned US20070264249A1 (en) 2000-02-04 2007-01-12 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases
US12/683,265 Abandoned US20100239558A1 (en) 2000-02-04 2010-01-06 Lipid Hydrolysis Therapy for Atherosclerosis and Related Diseases
US15/430,815 Expired - Lifetime US10864255B2 (en) 2000-02-04 2017-02-13 Lipid hydrolysis therapy for atherosclerosis and related diseases
US15/492,650 Abandoned US20170296631A1 (en) 2000-02-04 2017-04-20 Lipid hydrolysis therapy for atherosclerosis and related diseases

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/775,517 Expired - Lifetime US6849257B2 (en) 2000-02-04 2001-02-02 Lipid hydrolysis therapy for atherosclerosis and related diseases
US10/776,797 Abandoned US20040223960A1 (en) 2000-02-04 2004-02-11 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases
US11/653,147 Abandoned US20070264249A1 (en) 2000-02-04 2007-01-12 Gene-based lipid hydrolysis therapy for atherosclerosis and related diseases

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/430,815 Expired - Lifetime US10864255B2 (en) 2000-02-04 2017-02-13 Lipid hydrolysis therapy for atherosclerosis and related diseases
US15/492,650 Abandoned US20170296631A1 (en) 2000-02-04 2017-04-20 Lipid hydrolysis therapy for atherosclerosis and related diseases

Country Status (10)

Country Link
US (6) US6849257B2 (en)
EP (1) EP1267914B2 (en)
JP (1) JP2003523330A (en)
AT (1) ATE429927T1 (en)
BR (1) BR0108077A (en)
CA (1) CA2398995C (en)
DE (1) DE60138535D1 (en)
ES (1) ES2328446T5 (en)
FR (1) FR15C0091I2 (en)
WO (1) WO2001056596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864255B2 (en) 2000-02-04 2020-12-15 Children's Hospital Medical Center Lipid hydrolysis therapy for atherosclerosis and related diseases

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579974B1 (en) * 1998-06-23 2003-06-17 The Regents Of The University Of California Acyl CoA:cholesterol acyltransferase (ACAT-2)
WO2002036754A2 (en) * 2000-10-31 2002-05-10 Bayer Aktiengesellschaft Nucleotide and polypeptide sequence of human lysosomal acid lipase
US20090297496A1 (en) * 2005-09-08 2009-12-03 Childrens Hospital Medical Center Lysosomal Acid Lipase Therapy for NAFLD and Related Diseases
US20070116755A1 (en) * 2005-11-22 2007-05-24 Zadini Filiberto P Dissolution of arterial cholesterol plaques by pharmacological preparation
US8304383B2 (en) * 2005-11-22 2012-11-06 Atheronova Operations, Inc. Dissolution of arterial plaque
US20090035348A1 (en) * 2005-11-22 2009-02-05 Z & Z Medical Holdings, Inc. Dissolution of arterial plaque
US20080287429A1 (en) * 2007-05-15 2008-11-20 Z & Z Medical Holdings, Inc. Dissolution of Arterial Cholesterol Plaques by Pharmacologically Induced Elevation of Endogenous Bile Salts
DK2561069T3 (en) * 2010-04-23 2017-05-01 Alexion Pharma Inc Enzyme for lysosomal storage disease
AU2015249135A1 (en) * 2010-04-23 2015-11-19 Synageva Biopharma Corp. Lysosomal storage disease enzyme
AU2015218427B2 (en) * 2010-09-09 2017-09-21 Alexion Pharmaceuticals, Inc. Use of lysosomal acid lipase for treating lysosomal acid lipase deficiency in patients
PL2977057T3 (en) 2010-09-09 2020-06-01 Alexion Pharmaceuticals, Inc. Isolated recombinant human n-glycosylated lysosomal acid lipase
WO2012112681A1 (en) 2011-02-15 2012-08-23 Shire Human Genetic Therapies, Inc. Methods for treating lysosomal acid lipase deficiency
US20130046283A1 (en) * 2011-05-05 2013-02-21 Medtronic Vascular, Inc. Methods and intravascular treatment devices for treatment of atherosclerosis
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
GB201421343D0 (en) * 2014-12-02 2015-01-14 VIB VZW and Universiteit Gent Improved production of lipase in yeast
US11396499B2 (en) 2018-12-12 2022-07-26 University Of Washington Lysosomal acid lipase assay

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710795A (en) * 1970-09-29 1973-01-16 Alza Corp Drug-delivery device with stretched, rate-controlling membrane
US4105776A (en) * 1976-06-21 1978-08-08 E. R. Squibb & Sons, Inc. Proline derivatives and related compounds
US4316906A (en) * 1978-08-11 1982-02-23 E. R. Squibb & Sons, Inc. Mercaptoacyl derivatives of substituted prolines
US4337201A (en) * 1980-12-04 1982-06-29 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl substituted prolines
US4344949A (en) * 1980-10-03 1982-08-17 Warner-Lambert Company Substituted acyl derivatives of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids
US4346227A (en) * 1980-06-06 1982-08-24 Sankyo Company, Limited ML-236B Derivatives and their preparation
US4374829A (en) * 1978-12-11 1983-02-22 Merck & Co., Inc. Aminoacid derivatives as antihypertensives
US4444784A (en) * 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US4508729A (en) * 1979-12-07 1985-04-02 Adir Substituted iminodiacids, their preparation and pharmaceutical compositions containing them
US4512912A (en) * 1983-08-11 1985-04-23 Kabushiki Kaisha Toshiba White luminescent phosphor for use in cathode ray tube
US4587258A (en) * 1980-10-23 1986-05-06 Schering Corporation Angiotensin-converting enzyme inhibitors
US4739073A (en) * 1983-11-04 1988-04-19 Sandoz Pharmaceuticals Corp. Intermediates in the synthesis of indole analogs of mevalonolactone and derivatives thereof
US4772684A (en) * 1987-01-20 1988-09-20 Triton Biosciences, Inc. Peptides affecting blood pressure regulation
US4816463A (en) * 1986-04-01 1989-03-28 Warner-Lambert Company Substituted diimidazo [1,5-a: 4',5'-d]pyridines having antihypertensive activity
US4897402A (en) * 1988-06-29 1990-01-30 Merck & Co., Inc. 5-oxa, 5-thia, 5-aza HmG-CoA reductase inhibitors
US4906657A (en) * 1988-12-21 1990-03-06 Warner-Lambert Company Bicyclo heptane and bicyclo octane substituted inhibitors of cholesterol synthesis
US4906624A (en) * 1987-09-08 1990-03-06 Warner-Lambert Company 6-(((Substituted)pyridin-3-yl)alkyl)-and alkenyl)-tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US4920109A (en) * 1988-04-18 1990-04-24 Merck & Co., Inc. Antifungal compositions and method of controlling mycotic infections
US4923861A (en) * 1989-02-07 1990-05-08 Warner-Lambert Company 6-(2-(2-(Substituted amino)-3-quinolinyl) ethenyl and ethyl) tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US4929620A (en) * 1987-12-10 1990-05-29 Warner-Lambert Company 5-pyrimidinyl-3,5-dihydroxy-6-heptenoic acid compounds useful as inhibitors of cholesterol biosynthesis
US4939143A (en) * 1987-12-21 1990-07-03 Rorer Pharmaceutical Corporation Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US4940800A (en) * 1988-07-29 1990-07-10 Zambon Group S.P.A. Beazimidazole compounds active as inhibitors of the cholesterol biosynthesis
US4940727A (en) * 1986-06-23 1990-07-10 Merck & Co., Inc. Novel HMG-CoA reductase inhibitors
US4946864A (en) * 1988-02-01 1990-08-07 Merck & Co., Inc. Novel HMG-CoA reductase inhibitors
US4946860A (en) * 1989-11-03 1990-08-07 Rorer Pharmaceutical Corporation Benzothiopyranyl derivatives as HMG-CoA reductase inhibitors
US4950675A (en) * 1988-12-21 1990-08-21 Warner-Lambert Company Pyridine di-mevalono-lactones as inhibitors of cholesterol biosynthesis
US4992429A (en) * 1989-08-24 1991-02-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Novel HMG-COA reductase inhibitors
US4994494A (en) * 1987-12-21 1991-02-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-COA reductase inhibitors
US4996234A (en) * 1987-12-21 1991-02-26 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-CoA reductase inhibitors
US4997837A (en) * 1987-09-08 1991-03-05 Warner-Lambert Company 6-(((substituted)pyridin-3-yl)alkyl)-and alkenyl)-tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US5001144A (en) * 1987-12-21 1991-03-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US5001128A (en) * 1987-12-21 1991-03-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-COA reductase inhibitors
US5017716A (en) * 1987-05-22 1991-05-21 E.R. Squibb & Sons, Inc. Phosphorous-containing HMG-CoA reductase inhibitors, new intermediates and method
US5021453A (en) * 1988-03-02 1991-06-04 Merck & Co., Inc. 3-keto HMG-CoA reductase inhibitors
US5025000A (en) * 1990-03-02 1991-06-18 E. R. Squibb & Sons, Inc. Phosphorus-containing HMG-CoA reductase inhibitor compounds
US5081127A (en) * 1988-01-07 1992-01-14 E. I. Du Pont De Nemours And Company Substituted 1,2,3-triazole angiotensin II antagonists
US5081136A (en) * 1989-12-21 1992-01-14 Zambon Group S.P.A. 1,2,3-triazole compounds active as inhibitors of the enzyme hmg-coa reductase and pharmaceutical compositions containing them
US5087634A (en) * 1990-10-31 1992-02-11 G. D. Searle & Co. N-substituted imidazol-2-one compounds for treatment of circulatory disorders
US5091378A (en) * 1987-05-22 1992-02-25 E. R. Squibb & Sons, Inc. Phosphorus-containing HMG-CoA reductase inhibitors, new intermediates and method
US5091386A (en) * 1988-09-24 1992-02-25 Hoechst Aktiengesellschaft 7-substituted derivatives of 3,5-dihydroxyhept-6-ynoic acids and corresponding lactones and their use as hypercholeserolemics
US5098931A (en) * 1989-08-31 1992-03-24 Merck & Co., Inc. 7-substituted HMG-CoA reductase inhibitors
US5102911A (en) * 1989-06-09 1992-04-07 Merck & Co, Inc. 4-Substituted HMG-CoA reductase inhibitors
US5112857A (en) * 1990-09-04 1992-05-12 Merck & Co., Inc. Hmg-coa reductase inhibitor metabolites
US5116870A (en) * 1986-06-23 1992-05-26 Merck & Co., Inc. HMG-CoA reductase inhibitors
US5130306A (en) * 1989-03-13 1992-07-14 Merck & Co., Inc. 5-Oxygenated HMG-COA reductase inhibitors
US5132312A (en) * 1989-03-27 1992-07-21 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US5135935A (en) * 1991-05-17 1992-08-04 Merck & Co., Inc. Squalene synthetase inhibitors
US5182298A (en) * 1991-03-18 1993-01-26 Merck & Co., Inc. Cholesterol lowering agents
US5196440A (en) * 1988-07-29 1993-03-23 Zambon Group S.P.A. Compounds active as inhibitors of the cholesterol biosynthesis
US5202327A (en) * 1991-07-10 1993-04-13 E. R. Squibb & Sons, Inc. Phosphorus-containing hmg-coa reductase inhibitors
US5279940A (en) * 1992-08-03 1994-01-18 Eastman Kodak Company Chemiluminescent composition containing cationic surfactants or polymers and 4'-hydroxyacetanilide, test kits and their use in analytical methods
US5283256A (en) * 1992-07-22 1994-02-01 Merck & Co., Inc. Cholesterol-lowering agents
US5286895A (en) * 1992-02-19 1994-02-15 Merck & Co., Inc. Cholesterol lowering compounds
US5302604A (en) * 1992-03-09 1994-04-12 Merck & Co., Inc. Cholesterol lowering compounds produced by directed biosynthesis
US5317031A (en) * 1992-10-19 1994-05-31 Merck & Co., Inc. Cholesterol lowering compounds
US5440020A (en) * 1985-06-14 1995-08-08 The Research Foundation Of State University Of New York Platelet function inhibiting monoclonal antibody fragment
US5543297A (en) * 1992-12-22 1996-08-06 Merck Frosst Canada, Inc. Human cyclooxygenase-2 cDNA and assays for evaluating cyclooxygenase-2 activity
US5622985A (en) * 1990-06-11 1997-04-22 Bristol-Myers Squibb Company Method for preventing a second heart attack employing an HMG CoA reductase inhibitor
US5873523A (en) * 1996-02-29 1999-02-23 Yale University Electrospray employing corona-assisted cone-jet mode
US5900360A (en) * 1996-04-10 1999-05-04 Welch; William J. Correction of genetic defects using chemical chaperones
US5904646A (en) * 1997-09-08 1999-05-18 Jarvik; Robert Infection resistant power cable system for medically implanted electric motors
US5915377A (en) * 1994-05-27 1999-06-29 Electrosols, Ltd. Dispensing device producing multiple comminutions of opposing polarities
US5929304A (en) * 1995-09-14 1999-07-27 Croptech Development Corporation Production of lysosomal enzymes in plant-based expression systems
US6103271A (en) * 1994-12-02 2000-08-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microencapsulation and electrostatic processing method
US6105877A (en) * 1992-12-01 2000-08-22 Electrosols Ltd. Dispensing device
US6105571A (en) * 1992-12-22 2000-08-22 Electrosols, Ltd. Dispensing device
US6270594B1 (en) * 1997-06-25 2001-08-07 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
US20020012914A1 (en) * 1997-06-30 2002-01-31 Michel Bureau Method for transferring nucleic acid into multicelled eukaryotic organism cells and combination therefor
US6503481B1 (en) * 1999-05-03 2003-01-07 Battellepharma, Inc. Compositions for aerosolization and inhalation
US6534300B1 (en) * 1999-09-14 2003-03-18 Genzyme Glycobiology Research Institute, Inc. Methods for producing highly phosphorylated lysosomal hydrolases
US6541195B2 (en) * 1996-04-10 2003-04-01 The Regents Of The University Of California Correction of genetic defects using chemical chaperones
US20030064467A1 (en) * 2000-03-21 2003-04-03 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6583158B1 (en) * 1998-06-01 2003-06-24 Mount Sinai School Of Medicine Of New York University Method for enhancing mutant enzyme activities in lysosomal storage disorders
US20040038365A1 (en) * 2000-10-31 2004-02-26 Yonghong Xiao Regulation of human lysosomal acid lipase
US6849257B2 (en) * 2000-02-04 2005-02-01 Children's Hospital Research Foundation Lipid hydrolysis therapy for atherosclerosis and related diseases
US6861053B1 (en) * 1999-08-11 2005-03-01 Cedars-Sinai Medical Center Methods of diagnosing or treating irritable bowel syndrome and other disorders caused by small intestinal bacterial overgrowth
US6913761B1 (en) * 1998-07-20 2005-07-05 Peptech Limited Bioimplant formulation
US20050181474A1 (en) * 2002-01-30 2005-08-18 Frank J. Giordano Transport peptides and uses therefor
US7008934B2 (en) * 2001-06-28 2006-03-07 Baxter International Inc. Composition and method for reducing adverse interactions between phenothiazine derivatives and plasma using cyclodextrins
US20080025958A1 (en) * 2002-09-27 2008-01-31 Hannon Gregory J Cell-based RNA interference and related methods and compositions
US7335512B2 (en) * 2002-04-16 2008-02-26 Vlaams Interubiversitair Instituut Voor Biotechnologie Vzw Marker for measuring liver cirrhosis
US7655226B2 (en) * 1995-08-02 2010-02-02 Genzyme Therapeutic Products Limited Partnership Treatment of Pompe's disease
US20100160253A1 (en) * 2007-05-31 2010-06-24 Glycan Biosciences Sulphated xylans for treatment or prophylaxis of respiratory diseases
US20100184947A1 (en) * 2007-07-12 2010-07-22 Prosensa Technologies B.V. Molecules for targeting compounds to various selected organs, tissues or tumor cells
US20100196393A1 (en) * 2007-04-23 2010-08-05 St. Louis University Modulation of blood brain barrier protein expression
US7910545B2 (en) * 2000-06-19 2011-03-22 Genzyme Corporation Combination enzyme replacement and small molecule therapy for treatment of lysosomal storage diseases
US7927587B2 (en) * 1999-08-05 2011-04-19 Regents Of The University Of Minnesota MAPC administration for the treatment of lysosomal storage disorders
US20110091442A1 (en) * 2009-10-19 2011-04-21 Amicus Therapeutics, Inc. Novel compositions for preventing and/or treating lysosomal storage disorders
US20120064055A1 (en) * 2010-09-09 2012-03-15 Synageva Biopharma Corp. Methods for Treating Lysosomal Acid Lipase Deficiency in Patients
US8142265B2 (en) * 2008-04-10 2012-03-27 Greg Carter Motorized air vent
US8178609B2 (en) * 2005-09-21 2012-05-15 Instytut Farmaceutyczny Isoflavones for treating mucopolysaccharidoses
US8183003B2 (en) * 2009-01-02 2012-05-22 Zacharon Pharmaceuticals, Inc. Polymer end group detection
US8232073B2 (en) * 2009-01-02 2012-07-31 Zacharon Pharmaceuticals, Inc. Quantification of non-reducing end glycan residual compounds

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222A (en) * 1854-07-04 Machine
US23046A (en) * 1859-02-22 Joseph saxton
US120522A (en) * 1871-10-31 Improvement in hoisting-buckets
US2081136A (en) * 1936-08-10 1937-05-25 Iuglio Frank Di Shirt collar
US4302386A (en) 1978-08-25 1981-11-24 The Ohio State University Antigenic modification of polypeptides
FR2303890A1 (en) * 1975-03-14 1976-10-08 Ciba Geigy Ag CONTINUOUS PROCESS DYING IN VAPORS OF ORGANIC SOLVENTS AND SYNTHETIC FIBROUS MATERIALS DYED BY THIS PROCESS
AU531759B2 (en) 1978-04-17 1983-09-08 Ici Ltd. Electrostatic spraying
US4231938A (en) 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US4410520A (en) 1981-11-09 1983-10-18 Ciba-Geigy Corporation 3-Amino-[1]-benzazepin-2-one-1-alkanoic acids
CA1334092C (en) 1986-07-11 1995-01-24 David John Carini Angiotensin ii receptor blocking imidazoles
US4799156A (en) * 1986-10-01 1989-01-17 Strategic Processing Corporation Interactive market management system
US5008853A (en) * 1987-12-02 1991-04-16 Xerox Corporation Representation of collaborative multi-user activities relative to shared structured data objects in a networked workstation environment
WO1989007603A1 (en) 1988-02-09 1989-08-24 Memorial Blood Center Of Minneapolis Nucleic acid isolation
EP0331250B1 (en) 1988-03-02 1994-04-13 Merck & Co. Inc. Antihypercholesterolemic agents
US5166171A (en) 1988-05-13 1992-11-24 Hoechst Aktiengesellschaft 6-phenoxymethyl-4-hydroxytetrahydropyran-2-ones and 6-thiphenoxymethyl-4-hydroxytetrahydropyran-2-ones and the corresponding dihydroxycarboxylic acid derivatives, salts and esters, and in treating hypercholesterolemia
US4963538A (en) 1988-06-29 1990-10-16 Merck & Co., Inc. 5-oxygenated HMG-CoA reductase inhibitors
JPH0547647Y2 (en) * 1988-10-03 1993-12-15
US4957940A (en) * 1988-12-21 1990-09-18 Warner-Lambert Company Bicyclo heptane and bicyclo octane substituted inhibitors of cholesterol synthesis
US5064825A (en) 1989-06-01 1991-11-12 Merck & Co., Inc. Angiotensin ii antagonists
US4970231A (en) 1989-06-09 1990-11-13 Merck & Co., Inc. 4-substituted HMG-CoA reductase inhibitors
FI94339C (en) 1989-07-21 1995-08-25 Warner Lambert Co Process for the preparation of pharmaceutically acceptable [R- (R *, R *)] - 2- (4-fluorophenyl) -, - dihydroxy-5- (1-methylethyl) -3-phenyl-4 - [(phenylamino) carbonyl] -1H- for the preparation of pyrrole-1-heptanoic acid and its pharmaceutically acceptable salts
US5073566A (en) 1989-11-30 1991-12-17 Eli Lilly And Company Angiotensin ii antagonist 1,3-imidazoles and use thereas
US5085992A (en) * 1990-07-19 1992-02-04 Merck & Co., Inc. Microbial transformation process for antihypertensive products
WO1992016212A1 (en) 1991-03-13 1992-10-01 The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce Increasing the therapeutic efficiency of macrophage-targeted therapeutic agents by up-regulating the mannose lectin on macrophages
US5256689A (en) 1991-05-10 1993-10-26 Merck & Co., Inc. Cholesterol lowering compounds
US5250435A (en) 1991-06-04 1993-10-05 Merck & Co., Inc. Mutant strains of Aspergillus terreus for producing 7-[1,2,6,7,8,8a(R)-hexa-hydro-2(S),6(R)-dimethyl-8(S)-hydroxy-1(S)-naphthyl]-3(R),5(R)-dihydroxyheptanoic acid (triol acid),I)
HU9203780D0 (en) 1991-12-12 1993-03-29 Sandoz Ag Stabilized pharmaceutical products of hmg-coa reductase inhibitor and method for producing them
FR2686899B1 (en) * 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US5260332A (en) 1992-02-07 1993-11-09 Merci & Co., Inc. Cholesterol lowering compounds
US5262435A (en) 1992-02-10 1993-11-16 Merck & Co., Inc. Cholesterol lowering compounds
FR2690022B1 (en) * 1992-03-24 1997-07-11 Bull Sa VARIABLE DELAY CIRCUIT.
US5369125A (en) 1992-07-17 1994-11-29 Merck & Co., Inc. Cholesterol-lowering agents
US5661125A (en) * 1992-08-06 1997-08-26 Amgen, Inc. Stable and preserved erythropoietin compositions
US5276995A (en) * 1993-02-08 1994-01-11 Johnson Steven L Net trap
US5474995A (en) 1993-06-24 1995-12-12 Merck Frosst Canada, Inc. Phenyl heterocycles as cox-2 inhibitors
AU1269495A (en) 1994-01-10 1995-08-01 Merck Frosst Canada Inc. Phenyl heterocycles as cox-2 inhibitors
GB9406255D0 (en) * 1994-03-29 1994-05-18 Electrosols Ltd Dispensing device
AU3275595A (en) 1994-08-05 1996-03-04 Molecular/Structural Biotechnologies, Inc. Site-specific biomolecular complexes
US5732400A (en) * 1995-01-04 1998-03-24 Citibank N.A. System and method for a risk-based purchase of goods
EP0833664A1 (en) 1995-06-12 1998-04-08 G.D. SEARLE & CO. Combination of a cyclooxygenase-2 inhibitor and a leukotriene b 4? receptor antagonist for the treatment of inflammations
US6118045A (en) 1995-08-02 2000-09-12 Pharming B.V. Lysosomal proteins produced in the milk of transgenic animals
ATE286120T1 (en) 1996-09-13 2005-01-15 Transkaryotic Therapies Inc THERAPY FOR ALPHA GALACTOSIDASE A INSUFFICIENCY
AU741439B2 (en) 1996-12-30 2001-11-29 Battelle Memorial Institute Formulation and method for treating neoplasms by inhalation
AU8097698A (en) 1997-06-23 1999-01-04 University Of Saskatchewan Bovine adenovirus type 3 genome
US6233600B1 (en) * 1997-07-15 2001-05-15 Eroom Technology, Inc. Method and system for providing a networked collaborative work environment
US6223177B1 (en) * 1997-10-22 2001-04-24 Involv International Corporation Network based groupware system
CA2306646A1 (en) 1997-10-22 1999-04-29 Merck & Co., Inc. Combination therapy for reducing the risks associated with cardio- and cerebrovascular disease
US6066626A (en) 1997-10-29 2000-05-23 Genzyme Corporation Compositions and method for treating lysosomal storage disease
US6136804A (en) 1998-03-13 2000-10-24 Merck & Co., Inc. Combination therapy for treating, preventing, or reducing the risks associated with acute coronary ischemic syndrome and related conditions
US6442528B1 (en) * 1998-06-05 2002-08-27 I2 Technologies Us, Inc. Exemplar workflow used in the design and deployment of a workflow for multi-enterprise collaboration
US6141653A (en) * 1998-11-16 2000-10-31 Tradeaccess Inc System for interative, multivariate negotiations over a network
US6336105B1 (en) * 1998-11-16 2002-01-01 Trade Access Inc. System and method for representing data and providing electronic non-repudiation in a negotiations system
US6564246B1 (en) * 1999-02-02 2003-05-13 International Business Machines Corporation Shared and independent views of shared workspace for real-time collaboration
US6567784B2 (en) * 1999-06-03 2003-05-20 Ework Exchange, Inc. Method and apparatus for matching projects and workers
US7033780B1 (en) 1999-06-14 2006-04-25 Millennium Pharmaceuticals, Inc. Nucleic acids corresponding to TANGO 294 a gene encoding a lipase—like protein
US6374292B1 (en) * 1999-07-20 2002-04-16 Sun Microsystems, Inc. Access control system for an ISP hosted shared email server
US6415270B1 (en) * 1999-09-03 2002-07-02 Omnihub, Inc. Multiple auction coordination method and system
WO2001062250A1 (en) 2000-02-23 2001-08-30 Alteon, Inc. Thiazolium compounds and treatments of disorders associated with protein aging
US20030064437A1 (en) * 2000-11-15 2003-04-03 Nick Wan Expression system for recombinant proteins
US20020193303A1 (en) * 2001-01-25 2002-12-19 Millennium Pharmaceuticals, Inc. 58860, a human cholesteryl ester hydrolase and uses therefor
US7122201B2 (en) 2001-06-28 2006-10-17 Baxter International Inc. Composition and method for reducing adverse interactions between phenothiazine derivatives and plasma using surfactants and amino acids
US6800472B2 (en) 2001-12-21 2004-10-05 Genzyme Glycobiology Research Institute, Inc. Expression of lysosomal hydrolase in cells expressing pro-N-acetylglucosamine-1-phosphodiester α-N-acetyl glucosimanidase
JP2008503569A (en) 2004-06-21 2008-02-07 アカデミシュ ジーケンハウス ビイ デ ユニヴェアズィテート ファン アムステルダム Treatment of nonalcoholic steatohepatitis (NASH)
KR101241551B1 (en) 2004-08-19 2013-03-11 바이오겐 아이덱 엠에이 인코포레이티드 Refolding transforming growth factor beta family proteins
US20070270367A1 (en) 2005-05-18 2007-11-22 University Of Kentucky Research Foundation Rybozyme-catalyzed insertion of targeted sequences into RNA
US20090297496A1 (en) 2005-09-08 2009-12-03 Childrens Hospital Medical Center Lysosomal Acid Lipase Therapy for NAFLD and Related Diseases
US8748567B2 (en) 2006-05-22 2014-06-10 Children's Medical Center Corporation Method for delivery across the blood brain barrier
WO2007137303A2 (en) 2006-05-24 2007-11-29 Myelin Repair Foundation, Inc. Permeability of blood-brain barrier
US8143265B2 (en) * 2007-04-16 2012-03-27 Meharry Medical College Method of treating atherosclerosis
US8956825B2 (en) 2007-05-24 2015-02-17 The United States Of America As Represented By The Department Of Veterans Affairs Intranuclear protein transduction through a nucleoside salvage pathway
US20100291060A1 (en) 2007-08-29 2010-11-18 Shire Human Genetic Therapies, Inc Subcutaneous administration of alpha-galactosidase a
FR2937322B1 (en) 2008-10-22 2013-02-22 Vect Horus PEPTIDE DERIVATIVES AND THEIR USE AS VECTORS OF MOLECULES IN THE FORM OF CONJUGATES
KR101077618B1 (en) 2009-11-13 2011-10-27 경북대학교 산학협력단 Peptide that cross blood-brain barrier and target apoptosis in neurodegenerative diseases and uses thereof
US9095541B2 (en) 2009-11-24 2015-08-04 Arch Cancer Therapeutics, Inc. Brain tumor targeting peptides and methods
DK2561069T3 (en) 2010-04-23 2017-05-01 Alexion Pharma Inc Enzyme for lysosomal storage disease
WO2012112677A2 (en) 2011-02-15 2012-08-23 Children's Hospital Medical Center Methods for treating lysosomal acid lipase deficiency
US8865881B2 (en) 2011-02-22 2014-10-21 California Institute Of Technology Delivery of proteins using adeno-associated virus (AAV) vectors
US10227387B2 (en) 2011-05-18 2019-03-12 Children's Hospital Medical Center Targeted delivery of proteins across the blood-brain barrier
US9155784B2 (en) 2011-06-20 2015-10-13 Icahn School Of Medicine At Mount Sinai Anti-TNF-α therapy for the mucopolysaccharidoses and other lysosomal disorders
WO2012177639A2 (en) 2011-06-22 2012-12-27 Alnylam Pharmaceuticals, Inc. Bioprocessing and bioproduction using avian cell lines
BR112014002546A2 (en) 2011-08-03 2017-03-14 Lotus Tissue Repair Inc "collagen 7, or its functional fragment, its production and purification methods, its purified or isolated preparation, vector, vector collection, isolated cell preparation, cell culture, and method for producing a cell suitable for expression of collagen 7 "

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710795A (en) * 1970-09-29 1973-01-16 Alza Corp Drug-delivery device with stretched, rate-controlling membrane
US4105776A (en) * 1976-06-21 1978-08-08 E. R. Squibb & Sons, Inc. Proline derivatives and related compounds
US4316906A (en) * 1978-08-11 1982-02-23 E. R. Squibb & Sons, Inc. Mercaptoacyl derivatives of substituted prolines
US4374829A (en) * 1978-12-11 1983-02-22 Merck & Co., Inc. Aminoacid derivatives as antihypertensives
US4508729A (en) * 1979-12-07 1985-04-02 Adir Substituted iminodiacids, their preparation and pharmaceutical compositions containing them
US4346227A (en) * 1980-06-06 1982-08-24 Sankyo Company, Limited ML-236B Derivatives and their preparation
US4444784A (en) * 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US4344949A (en) * 1980-10-03 1982-08-17 Warner-Lambert Company Substituted acyl derivatives of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids
US4587258A (en) * 1980-10-23 1986-05-06 Schering Corporation Angiotensin-converting enzyme inhibitors
US4337201A (en) * 1980-12-04 1982-06-29 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl substituted prolines
US4512912A (en) * 1983-08-11 1985-04-23 Kabushiki Kaisha Toshiba White luminescent phosphor for use in cathode ray tube
US4739073A (en) * 1983-11-04 1988-04-19 Sandoz Pharmaceuticals Corp. Intermediates in the synthesis of indole analogs of mevalonolactone and derivatives thereof
US5440020A (en) * 1985-06-14 1995-08-08 The Research Foundation Of State University Of New York Platelet function inhibiting monoclonal antibody fragment
US4816463A (en) * 1986-04-01 1989-03-28 Warner-Lambert Company Substituted diimidazo [1,5-a: 4',5'-d]pyridines having antihypertensive activity
US5116870A (en) * 1986-06-23 1992-05-26 Merck & Co., Inc. HMG-CoA reductase inhibitors
US4940727A (en) * 1986-06-23 1990-07-10 Merck & Co., Inc. Novel HMG-CoA reductase inhibitors
US4772684A (en) * 1987-01-20 1988-09-20 Triton Biosciences, Inc. Peptides affecting blood pressure regulation
US5017716A (en) * 1987-05-22 1991-05-21 E.R. Squibb & Sons, Inc. Phosphorous-containing HMG-CoA reductase inhibitors, new intermediates and method
US5276021A (en) * 1987-05-22 1994-01-04 E. R. Squibb & Sons, Inc. Phosphorus-containing HMG-COA reductase inhibitors, new intermediates and method
US5091378A (en) * 1987-05-22 1992-02-25 E. R. Squibb & Sons, Inc. Phosphorus-containing HMG-CoA reductase inhibitors, new intermediates and method
US4906624A (en) * 1987-09-08 1990-03-06 Warner-Lambert Company 6-(((Substituted)pyridin-3-yl)alkyl)-and alkenyl)-tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US4997837A (en) * 1987-09-08 1991-03-05 Warner-Lambert Company 6-(((substituted)pyridin-3-yl)alkyl)-and alkenyl)-tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US4929620A (en) * 1987-12-10 1990-05-29 Warner-Lambert Company 5-pyrimidinyl-3,5-dihydroxy-6-heptenoic acid compounds useful as inhibitors of cholesterol biosynthesis
US4996234A (en) * 1987-12-21 1991-02-26 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-CoA reductase inhibitors
US4994494A (en) * 1987-12-21 1991-02-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-COA reductase inhibitors
US4939143A (en) * 1987-12-21 1990-07-03 Rorer Pharmaceutical Corporation Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US5001144A (en) * 1987-12-21 1991-03-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US5001128A (en) * 1987-12-21 1991-03-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. HMG-COA reductase inhibitors
US5081127A (en) * 1988-01-07 1992-01-14 E. I. Du Pont De Nemours And Company Substituted 1,2,3-triazole angiotensin II antagonists
US4946864A (en) * 1988-02-01 1990-08-07 Merck & Co., Inc. Novel HMG-CoA reductase inhibitors
US5021453A (en) * 1988-03-02 1991-06-04 Merck & Co., Inc. 3-keto HMG-CoA reductase inhibitors
US4920109A (en) * 1988-04-18 1990-04-24 Merck & Co., Inc. Antifungal compositions and method of controlling mycotic infections
US4897402A (en) * 1988-06-29 1990-01-30 Merck & Co., Inc. 5-oxa, 5-thia, 5-aza HmG-CoA reductase inhibitors
US5196440A (en) * 1988-07-29 1993-03-23 Zambon Group S.P.A. Compounds active as inhibitors of the cholesterol biosynthesis
US4940800A (en) * 1988-07-29 1990-07-10 Zambon Group S.P.A. Beazimidazole compounds active as inhibitors of the cholesterol biosynthesis
US5091386A (en) * 1988-09-24 1992-02-25 Hoechst Aktiengesellschaft 7-substituted derivatives of 3,5-dihydroxyhept-6-ynoic acids and corresponding lactones and their use as hypercholeserolemics
US4950675A (en) * 1988-12-21 1990-08-21 Warner-Lambert Company Pyridine di-mevalono-lactones as inhibitors of cholesterol biosynthesis
US4906657A (en) * 1988-12-21 1990-03-06 Warner-Lambert Company Bicyclo heptane and bicyclo octane substituted inhibitors of cholesterol synthesis
US4923861A (en) * 1989-02-07 1990-05-08 Warner-Lambert Company 6-(2-(2-(Substituted amino)-3-quinolinyl) ethenyl and ethyl) tetrahydro-4-hydroxypyran-2-one inhibitors of cholesterol biosynthesis
US5130306A (en) * 1989-03-13 1992-07-14 Merck & Co., Inc. 5-Oxygenated HMG-COA reductase inhibitors
US5132312A (en) * 1989-03-27 1992-07-21 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted cyclohexene derivatives as HMG-CoA reductase inhibitors
US5102911A (en) * 1989-06-09 1992-04-07 Merck & Co, Inc. 4-Substituted HMG-CoA reductase inhibitors
US4992429A (en) * 1989-08-24 1991-02-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Novel HMG-COA reductase inhibitors
US5098931A (en) * 1989-08-31 1992-03-24 Merck & Co., Inc. 7-substituted HMG-CoA reductase inhibitors
US4946860A (en) * 1989-11-03 1990-08-07 Rorer Pharmaceutical Corporation Benzothiopyranyl derivatives as HMG-CoA reductase inhibitors
US5081136A (en) * 1989-12-21 1992-01-14 Zambon Group S.P.A. 1,2,3-triazole compounds active as inhibitors of the enzyme hmg-coa reductase and pharmaceutical compositions containing them
US5025000A (en) * 1990-03-02 1991-06-18 E. R. Squibb & Sons, Inc. Phosphorus-containing HMG-CoA reductase inhibitor compounds
US5622985A (en) * 1990-06-11 1997-04-22 Bristol-Myers Squibb Company Method for preventing a second heart attack employing an HMG CoA reductase inhibitor
US5112857A (en) * 1990-09-04 1992-05-12 Merck & Co., Inc. Hmg-coa reductase inhibitor metabolites
US5385932A (en) * 1990-09-04 1995-01-31 Merck & Co., Inc. HMG-COA reductase inhibitor metabolites
US5087634A (en) * 1990-10-31 1992-02-11 G. D. Searle & Co. N-substituted imidazol-2-one compounds for treatment of circulatory disorders
US5182298A (en) * 1991-03-18 1993-01-26 Merck & Co., Inc. Cholesterol lowering agents
US5135935A (en) * 1991-05-17 1992-08-04 Merck & Co., Inc. Squalene synthetase inhibitors
US5202327A (en) * 1991-07-10 1993-04-13 E. R. Squibb & Sons, Inc. Phosphorus-containing hmg-coa reductase inhibitors
US5286895A (en) * 1992-02-19 1994-02-15 Merck & Co., Inc. Cholesterol lowering compounds
US5302604A (en) * 1992-03-09 1994-04-12 Merck & Co., Inc. Cholesterol lowering compounds produced by directed biosynthesis
US5283256A (en) * 1992-07-22 1994-02-01 Merck & Co., Inc. Cholesterol-lowering agents
US5279940A (en) * 1992-08-03 1994-01-18 Eastman Kodak Company Chemiluminescent composition containing cationic surfactants or polymers and 4'-hydroxyacetanilide, test kits and their use in analytical methods
US5317031A (en) * 1992-10-19 1994-05-31 Merck & Co., Inc. Cholesterol lowering compounds
US6105877A (en) * 1992-12-01 2000-08-22 Electrosols Ltd. Dispensing device
US5543297A (en) * 1992-12-22 1996-08-06 Merck Frosst Canada, Inc. Human cyclooxygenase-2 cDNA and assays for evaluating cyclooxygenase-2 activity
US6105571A (en) * 1992-12-22 2000-08-22 Electrosols, Ltd. Dispensing device
US5915377A (en) * 1994-05-27 1999-06-29 Electrosols, Ltd. Dispensing device producing multiple comminutions of opposing polarities
US6103271A (en) * 1994-12-02 2000-08-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microencapsulation and electrostatic processing method
US7655226B2 (en) * 1995-08-02 2010-02-02 Genzyme Therapeutic Products Limited Partnership Treatment of Pompe's disease
US5929304A (en) * 1995-09-14 1999-07-27 Croptech Development Corporation Production of lysosomal enzymes in plant-based expression systems
US5873523A (en) * 1996-02-29 1999-02-23 Yale University Electrospray employing corona-assisted cone-jet mode
US5900360A (en) * 1996-04-10 1999-05-04 Welch; William J. Correction of genetic defects using chemical chaperones
US6541195B2 (en) * 1996-04-10 2003-04-01 The Regents Of The University Of California Correction of genetic defects using chemical chaperones
US6270594B1 (en) * 1997-06-25 2001-08-07 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
US20020012914A1 (en) * 1997-06-30 2002-01-31 Michel Bureau Method for transferring nucleic acid into multicelled eukaryotic organism cells and combination therefor
US5904646A (en) * 1997-09-08 1999-05-18 Jarvik; Robert Infection resistant power cable system for medically implanted electric motors
US6583158B1 (en) * 1998-06-01 2003-06-24 Mount Sinai School Of Medicine Of New York University Method for enhancing mutant enzyme activities in lysosomal storage disorders
US6589964B2 (en) * 1998-06-01 2003-07-08 Mount Sinai School Of Medicine Of New York University Method for enhancing mutant enzyme activities in lysosomal storage disorders
US6599919B2 (en) * 1998-06-01 2003-07-29 Mount Sinai School Of Medicine Of New York University Method for enhancing mutant enzyme activities in lysosomal storage disorders
US6913761B1 (en) * 1998-07-20 2005-07-05 Peptech Limited Bioimplant formulation
US6503481B1 (en) * 1999-05-03 2003-01-07 Battellepharma, Inc. Compositions for aerosolization and inhalation
US7927587B2 (en) * 1999-08-05 2011-04-19 Regents Of The University Of Minnesota MAPC administration for the treatment of lysosomal storage disorders
US6861053B1 (en) * 1999-08-11 2005-03-01 Cedars-Sinai Medical Center Methods of diagnosing or treating irritable bowel syndrome and other disorders caused by small intestinal bacterial overgrowth
US6534300B1 (en) * 1999-09-14 2003-03-18 Genzyme Glycobiology Research Institute, Inc. Methods for producing highly phosphorylated lysosomal hydrolases
US6849257B2 (en) * 2000-02-04 2005-02-01 Children's Hospital Research Foundation Lipid hydrolysis therapy for atherosclerosis and related diseases
US20030064467A1 (en) * 2000-03-21 2003-04-03 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7910545B2 (en) * 2000-06-19 2011-03-22 Genzyme Corporation Combination enzyme replacement and small molecule therapy for treatment of lysosomal storage diseases
US20040038365A1 (en) * 2000-10-31 2004-02-26 Yonghong Xiao Regulation of human lysosomal acid lipase
US7008934B2 (en) * 2001-06-28 2006-03-07 Baxter International Inc. Composition and method for reducing adverse interactions between phenothiazine derivatives and plasma using cyclodextrins
US20050181474A1 (en) * 2002-01-30 2005-08-18 Frank J. Giordano Transport peptides and uses therefor
US7335512B2 (en) * 2002-04-16 2008-02-26 Vlaams Interubiversitair Instituut Voor Biotechnologie Vzw Marker for measuring liver cirrhosis
US20080025958A1 (en) * 2002-09-27 2008-01-31 Hannon Gregory J Cell-based RNA interference and related methods and compositions
US20120190642A1 (en) * 2005-09-21 2012-07-26 Instytut Farmaceutyczny Isoflavones for treating mucopolysaccharidoses
US8178609B2 (en) * 2005-09-21 2012-05-15 Instytut Farmaceutyczny Isoflavones for treating mucopolysaccharidoses
US20100196393A1 (en) * 2007-04-23 2010-08-05 St. Louis University Modulation of blood brain barrier protein expression
US8466118B2 (en) * 2007-04-23 2013-06-18 Saint Louis University Modulation of blood brain barrier protein expression
US20100160253A1 (en) * 2007-05-31 2010-06-24 Glycan Biosciences Sulphated xylans for treatment or prophylaxis of respiratory diseases
US20100184947A1 (en) * 2007-07-12 2010-07-22 Prosensa Technologies B.V. Molecules for targeting compounds to various selected organs, tissues or tumor cells
US8142265B2 (en) * 2008-04-10 2012-03-27 Greg Carter Motorized air vent
US8183003B2 (en) * 2009-01-02 2012-05-22 Zacharon Pharmaceuticals, Inc. Polymer end group detection
US8232073B2 (en) * 2009-01-02 2012-07-31 Zacharon Pharmaceuticals, Inc. Quantification of non-reducing end glycan residual compounds
US20110091442A1 (en) * 2009-10-19 2011-04-21 Amicus Therapeutics, Inc. Novel compositions for preventing and/or treating lysosomal storage disorders
US20120064055A1 (en) * 2010-09-09 2012-03-15 Synageva Biopharma Corp. Methods for Treating Lysosomal Acid Lipase Deficiency in Patients

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864255B2 (en) 2000-02-04 2020-12-15 Children's Hospital Medical Center Lipid hydrolysis therapy for atherosclerosis and related diseases

Also Published As

Publication number Publication date
WO2001056596A8 (en) 2001-10-25
CA2398995C (en) 2014-09-23
US20170296631A1 (en) 2017-10-19
DE60138535D1 (en) 2009-06-10
EP1267914A1 (en) 2003-01-02
EP1267914B1 (en) 2009-04-29
CA2398995A1 (en) 2001-08-09
US10864255B2 (en) 2020-12-15
ATE429927T1 (en) 2009-05-15
JP2003523330A (en) 2003-08-05
US20070264249A1 (en) 2007-11-15
US6849257B2 (en) 2005-02-01
ES2328446T3 (en) 2009-11-13
US20040223960A1 (en) 2004-11-11
FR15C0091I1 (en) 2016-01-22
US20030059420A1 (en) 2003-03-27
BR0108077A (en) 2002-10-22
EP1267914B2 (en) 2013-11-06
FR15C0091I2 (en) 2018-08-31
US20170151313A1 (en) 2017-06-01
ES2328446T5 (en) 2014-02-27
WO2001056596A1 (en) 2001-08-09

Similar Documents

Publication Publication Date Title
US10864255B2 (en) Lipid hydrolysis therapy for atherosclerosis and related diseases
Yu et al. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis
Duan et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics
Karasawa et al. Plasma platelet activating factor-acetylhydrolase (PAF-AH)
Menschikowski et al. Secretory phospholipase A2 of group IIA: is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases?
Buckley et al. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis
Leon et al. Potential role of acyl-coenzyme A: cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs
Badimon et al. Cell biology and lipoproteins in atherosclerosis
JP2003533978A (en) Methods and compositions using stearoyl-CoA desaturases to identify triglyceride-reducing therapeutics
JP2003503355A (en) Lipoprotein lipase (LPL) mutant therapeutic agent
Sbarra et al. In vitro polyphenol effects on activity, expression and secretion of pancreatic bile salt-dependent lipase
Chang et al. The structure of acyl coenzyme A-cholesterol acyltransferase and its potential relevance to atherosclerosis
Svetlov et al. Hepatic regulation of platelet-activating factor acetylhydrolase and lecithin: cholesterol acyltransferase biliary and plasma output in rats exposed to bacterial lipopolysaccharide
US20100324075A1 (en) Therapeutic use of carboxyl ester lipase inhibitors
Kuhel et al. Adenovirus-mediated human pancreatic lipase gene transfer to rat bile: gene therapy of fat malabsorption
Acuña‐Aravena et al. Lipoprotein Metabolism and Cholesterol Balance
Rodriguez-Oquendo et al. Dyslipidemias
Cruanes A study of PCSK9 in glucose and insulin homeostasis
EP0763116B2 (en) Recombinant viruses, preparation and use thereof in gene therapy
Gorbach Good and laudable pus
Wei-hua et al. Simvastatin inhibits sPLA2 IIa expression in aorta and myocardium
JP2009511466A (en) Factors for inhibiting lipases and / or phospholipases in body fluids, cells and tissues and compositions containing them
Hernandez All rights reserved.
AU2003258356B2 (en) A method of modulating endothelial cell activity
Yamazaki et al. Enhanced osteoblastic differentiation of parietal bone in a novel murine model of mucopolysaccharidosis type II

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHILDREN'S HOSPITAL MEDICAL CENTER, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRABOWSKI, GREGORY A.;DU, HONG;SIGNING DATES FROM 20100607 TO 20100618;REEL/FRAME:024774/0470

AS Assignment

Owner name: CHILDREN'S HOSPITAL RESEARCH FOUNDATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRABOWSKI, GREGORY, DR.;DU, HONG, DR.;REEL/FRAME:030093/0704

Effective date: 20000214

AS Assignment

Owner name: CHILDREN'S HOSPITAL MEDICAL CENTER, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRABOWSKI, GREGORY A.;DU, HONG;REEL/FRAME:030143/0611

Effective date: 20130403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION