US20100238553A1 - Image display body and image formation method - Google Patents

Image display body and image formation method Download PDF

Info

Publication number
US20100238553A1
US20100238553A1 US12/792,170 US79217010A US2010238553A1 US 20100238553 A1 US20100238553 A1 US 20100238553A1 US 79217010 A US79217010 A US 79217010A US 2010238553 A1 US2010238553 A1 US 2010238553A1
Authority
US
United States
Prior art keywords
diffraction structure
optical diffraction
colored
image display
display body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/792,170
Inventor
Hiroshi Funada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005070993A external-priority patent/JP2006248157A/en
Priority claimed from JP2005070567A external-priority patent/JP4663356B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to US12/792,170 priority Critical patent/US20100238553A1/en
Publication of US20100238553A1 publication Critical patent/US20100238553A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1704Decalcomanias provided with a particular decorative layer, e.g. specially adapted to allow the formation of a metallic or dyestuff layer on a substrate unsuitable for direct deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/08Designs or pictures characterised by special or unusual light effects characterised by colour effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to an image display body in which an optical diffraction structure is formed in a halftone dot sate and an image information method for the image display body.
  • a transfer foil having an optical diffraction structure forming layer is utilized for the purposes of improving design performance and security performance.
  • the optical diffraction structure having a fine concavo-convex relief structure such as a hologram and a diffraction grating is formed in the optical diffraction structure forming layer.
  • there is a known colored layer transfer material having a fine relief structure and a reflecting layer made of a metal colored a unique color for example, see Patent Documents 1 and 2), as a colored layer transfer material to obtain an effect of looking like a colored optical diffraction structure (hereinafter sometimes referred to as “colored hologram”).
  • the inventor also discloses a layer configuration, in which the optical diffraction structure forming layer and the reflecting layer are laminated and a colored layer is added to an observation side to the reflecting layer in order to obtain the effect of looking like the colored hologram (For example, see Patent Documents 3 and 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 09-160475
  • Patent Document 2 Japanese Patent Laid-Open No. 08-328456
  • Patent Document 3 Japanese Patent Laid-Open No. 61-238079
  • Patent Document 4 Japanese Patent Laid-Open No. 62-17784
  • Patent Document 5 Japanese Patent Laid-Open No. 63-30288
  • Patent Document 6 Japanese Patent Laid-Open No. 63-230389
  • Patent Document 7 Japanese Patent Laid-Open No. 09-11638
  • Patent Document 8 Japanese Patent Laid-Open No. 08-123299
  • Patent Document 9 Japanese Patent Laid-Open N 11-227368
  • Patent Document 10 Japanese Patent Laid-Open No. 2004-101834
  • the colored layer transfer material has a single color, and it is impossible to color the optical diffraction structure plural desired colors. For example, it is difficult to color plural portions of the optical diffraction structure different colors such as gold, a sapphire tone, an emerald tone, and a ruby tone. Accordingly, there is no colored layer transfer material having a low cost, good productivity, good storage stability of a color tone, and the optical diffraction effect by the optical diffraction structure.
  • an object of the invention is to provide an image display body in which the optical diffraction structure appears to be colored a desired color and whereby the decoration effect is obtained more effectively, and an image formation method for the image display body.
  • Another object of the invention is to provide an image display body in which the decoration effect is provided more effectively in the image by the optical diffraction structure and an image formation method for the image display body.
  • a first image display body of the present invention solves the above problems as an image display body in which an optical diffraction structure portion constituted by optical diffraction structure in a halftone dot state is provided in a colored region on a base material, wherein a dot area percent of the halftone dots constituting the optical diffraction structure portion to the colored region ranges from 15% to 60%, an area of each halftone dot is smaller than 0.25 mm 2 , and the halftone dots are diffused to be provided by an error diffusion method.
  • the inventor has discovered that natural brightness based on diffracted light can be given evenly to the colored region by providing the halftone dots constituting the optical diffraction structure portion on the colored region in the state where the halftone dots are diffused by an error diffusion method under conditions of the above dot area and the above dot area percent.
  • the colored region where the optical diffraction structure portion of the present invention is formed can be used such as a colored optical diffraction structure.
  • the optical diffraction structure includes a diffraction grating having a constant concavo-convex pattern and a hologram where a fringe pattern generating a predetermined hologram image is formed. It doesn't matter which error diffusion method is employed to the present invention, such as a random dithering method, Floyd&Steinberg type, and Judice&Ninke type. Also, it doesn't matter which printing method is taken for the colored region of the present invention. Moreover, the colored region may be colored a single color. Thereby, the colored region where the optical diffraction structure is formed can be used as a single-colored optical diffraction structure colored the color of the colored region.
  • a first image formation method of the present invention solves the above problems as an image formation method in which an optical diffraction structure forming layer is transferred in a halftone dot state to a colored region on a transfer body to form an optical diffraction structure portion by using a transfer sheet where the optical diffraction structure forming layer in which an optical diffraction structure is formed is laminated on a base material sheet thereof, wherein the halftone dots constituting the optical diffraction structure portion are transferred to the colored region in a diffused state by an error diffusion method so that an area of the halftone dot is smaller than 0.25 mm 2 and a dot area percent to the colored region ranges from 15% to 60%.
  • the first image display body of the present invention can be obtained.
  • the conceptions of the optical diffraction structure and the error diffusion method are the same as the above mentioned conceptions.
  • the optical diffraction structure forming layer may be thermally transferred from the transfer sheet to the colored region by using a thermal head, and each of the halftone dots may be transferred based on printing energy applied to the thermal head so that the halftone dots are diffused in a state of the area and the dot area percent by the error diffusion method.
  • the printing energy of the thermal head can be optimized based on materials of the optical diffraction structure and the transfer body. As each halftone dot is transferred based on the optimized printing energy, the image display body having more natural brightness can be obtained.
  • the colored region of the transfer body may be colored a single color.
  • the colored region where the optical diffraction structure is formed can be used as a single-colored optical diffraction structure colored the color of the colored region.
  • a second image display body of the present invention solves the above problems as an image display body in which an optical diffraction structure portion constituted by optical diffraction structure in a halftone dot state is formed on an image on a base material, wherein, each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each of the halftone dots is enclosed in each of same size square regions a side of which is 400 ⁇ m or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 ⁇ m or less.
  • optical diffraction structure can be provided to an image as more naturally decorative effect as a lame when the halftone dots constituting the optical diffraction structure portion are formed such that the halftone dots are arranged regularly. Thereby, such the effect as a glittery lame can be easily given to the image printed with natural ink.
  • the optical diffraction structure includes a diffraction grating having a constant pattern and a hologram having a fringe pattern forming a predetermined image.
  • a dot area percent of the optical diffraction structure portion may be 40% or less. In a case of this halftone dot area percent, such the effect as a more natural glitter lame can be given to the image.
  • a length of one side of the square region ranges from 100 ⁇ m to 200 ⁇ m, and/or a distance between the adjacent square regions ranges from 50 ⁇ m to 150 ⁇ m, a furthermore decorative effect can be performed.
  • a second image formation method solves the above problems as an image formation method in which an optical diffraction structure portion constituted by optical diffraction structure is formed in a halftone dot state on a predetermined image by using a transfer sheet where the optical diffraction structure is laminated on a base material sheet thereof, wherein each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each the plurality of halftone dots is enclosed in each of same size square regions a side of which is 400 ⁇ m or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 ⁇ m or less.
  • the diffraction structure in a halftone dot sate is provided to the colored region under the conditions that the area of each halftone dot is smaller than 0.25 mm 2 , the dot area percent ranges from 15% to 60%, and the halftone dots are diffused by the error diffusion method.
  • the image display body and the like in which the optical diffraction structure appeared to be colored the desired color, and the decorative effect is obtained more effectively can be provided.
  • the mode where halftone dots are arranged on an image in a size and a distance the image display body and the like where more decorative effect by an optical diffraction structure is given to the image can be provided
  • FIG. 1 is a view showing an example of the first image display body of the present invention
  • FIG. 2 is a sectional view taken along a line V-V of FIG. 1 ;
  • FIG. 3 is an enlarged view of a colored hologram portion which is formed with dot area percent of 15%;
  • FIG. 4 is an enlarged view of a colored hologram portion which is formed with dot area percent of 35%;
  • FIG. 5 is an enlarged view of a colored hologram portion which is formed with dot area percent of 60%;
  • FIG. 6 is a view showing an image producing apparatus of the present mode
  • FIG. 7 is a sectional view of a hologram transfer sheet used in the image producing apparatus of FIG. 6 ;
  • FIG. 8 is a view showing a state in which a colored portion is provided in a base material
  • FIG. 9 is a flowchart showing a flow of processes for producing an image display body
  • FIG. 10 is a flowchart showing a flow of a hologram transfer process
  • FIG. 11 is a view showing a state in which halftone dot information is obtained from gray-scale information
  • FIG. 12 is a view showing an example of the second image display body in the present invention.
  • FIG. 13 is a partially enlarged view of an optical diffraction structure portion shown in FIG. 12 ;
  • FIG. 14 is a view showing a section of an example of a transfer sheet in the present invention.
  • FIG. 15A is a view showing a transfer body in which the image display body shown in FIG. 12 is formed.
  • FIG. 15B is a partially enlarged sectional view of the image display body shown in FIG. 12 , in which the optical diffraction structure portion is formed.
  • FIG. 1 is a view showing an example of the first image display body 1 of the present invention.
  • the image display body 1 includes plural colored portions 20 , 30 , and 40 on a base material 10 .
  • the colored portions 20 , 30 , and 40 are colored the different colors respectively.
  • an optical diffraction structure in a halftone dot state is provided as an optical diffraction structure portion 21 . Therefore, a visual effect by diffracted light is given to the colored portion 20 in addition to the coloring.
  • the colored portion 20 in the state in which the optical diffraction structure portion 21 is provided is referred to as colored hologram portion 22 .
  • the colored portions 20 , 30 , and 40 are colored by a dye sublimation printing in the present embodiment, any printing method may be employed to color the colored portions 20 , 30 , and 40 .
  • a diffraction grating is used as the optical diffraction structure constituting the optical diffraction structure portion 21 .
  • the optical diffraction structure includes the diffraction grating and a hologram, and the diffraction grating constituted by a constant concavo-convex pattern is strictly distinguished from the hologram constituted by a fringe pattern generating a predetermined hologram image.
  • the hologram is used in the same meaning of the optical diffraction structure. Materials respectively used for the base material 10 and colored portion 20 may be appropriately determined according to a use purpose of the image display body 1 .
  • hologram Any type of hologram may be used in the optical diffraction structure portion 21 as long as a hologram is a diffraction grating which can be formed as a hologram forming layer onto a later-mentioned hologram transfer sheet.
  • the colored portion 20 constituted with ink is laminated on the base material 10 in the colored hologram portion 22 of the image display body 1 , and plural halftone dots 21 a , . . . , 21 a constituting the optical diffraction structure portion 21 are provided all over the colored portion 20 .
  • An area of each halftone dot 21 a is smaller than 0.25 mm 2 , and a halftone dot area percent to the colored hologram portion 22 ranges from 15% to 60%.
  • the halftone dots 21 a are provided while diffused by an error diffusion method, namely, the halftone dots 21 a are provided not in a state where the halftone dots having a constant shape are regularly arranged at equal intervals, but in a sate where the uneven halftone dots are unevenly disposed.
  • the plural halftone dots 21 a , . . . , 21 a constituting the optical diffraction structure portion 21 are provided in the colored portion 20 under the above conditions, whereby natural brightness by the diffracted light is represented in all over the colored hologram portion 22 , and the colored hologram portion 22 looks like a hologram colored the color of the colored portion 20 .
  • the colored hologram portion 22 looks like the hologram colored red.
  • FIGS. 3 to 5 show the states in which the plural halftone dots 21 a are provided in the colored portion 20 with dot area percents of 15%, 35%, and 60% respectively. In each drawing, a whitish portion is a port ion where the halftone dot 21 a is provided.
  • the image display body 1 is produced with an image producing apparatus 50 shown in FIG. 6 .
  • the image producing apparatus 50 includes an input unit 51 , a display unit 52 , a hologram transfer unit 53 , a storage unit 54 , a body where to be transferred supply unit 55 , a discharge unit 56 , and a control unit 57 .
  • the input unit 51 accepts various kinds of setting operations of a user.
  • the display unit 52 displays an image corresponding to the setting by the user or various messages to the user.
  • the hologram transfer unit 53 transfers the hologram.
  • Various kinds of drawing patterns and various kinds of information to be provided on the base material 10 are stored in the storage unit 54 .
  • the transfer body supply unit 55 supplies a transfer body.
  • the discharge unit 56 discharges the produced image display body 1 .
  • the control unit 57 controls operations of the units 51 , . . . , 56 .
  • the hologram transfer unit 53 of the present embodiment prints the hologram by using a hologram transfer sheet 60 shown in FIG. 7 by a thermal transfer method.
  • a peel layer 62 a hologram forming layer 63 in which the hologram is formed, a reflecting layer 64 , and a bonding layer 65 are laminated on one side of a base material sheet 61 , while a heat-resistant layer 66 is provided on the other side of the base material sheet 61 .
  • the hologram transfer sheet 60 of the present embodiment is a transfer foil in which the diffraction grating is formed as the hologram of the hologram forming layer 63 .
  • the bonding layer 65 is bonded to the transfer body, and a thermal head is pressed against the hologram transfer sheet 60 from the side of the heat-resistant layer 66 , which peels off the side of the base material sheet 61 from the side of the hologram forming layer 63 to transfer the hologram forming layer 63 onto the transfer body.
  • Each of the layers 61 , . . . , 66 may be made of well-known materials.
  • An aspect in which the hologram forming layer 63 is transferred onto the transfer body includes an aspect in which the hologram transfer sheet 60 is peeled off between the base material sheet 61 and the peel layer 62 to transfer the layers 62 to 65 including the hologram forming layer 63 onto the transfer body, an aspect in which the hologram transfer sheet 60 is peeled off between the peel layer 62 and the hologram forming layer 63 to transfer the layers 63 to 65 including the hologram forming layer 63 onto the transfer body, and an aspect in which the hologram transfer sheet 60 is peeled off at the peel layer 62 into the side of the hologram forming layer 63 and the side of the base material sheet 61 to transfer the hologram forming layer 63 onto the transfer body.
  • the reflecting layer 64 is made of a metal having a high light reflectance.
  • the higher light reflectance of the metal constituting the reflecting layer 64 is, the brighter diffracted light is obtained.
  • the reflecting layer 64 may be formed by a single thin film made of a metal such as Cr, Ni, Ag, Au, and Al, an oxide, a sulfide, and a nitride thereof, and a combination thereof.
  • the metal thin film having the high light reflectance has a thickness ranging from around 10 to 2000 nm, preferably from 20 to 1000 nm so as to obtain a sufficient reflecting effect.
  • an image display body 1 ′ shown in FIG. 8 is used as the transfer body.
  • the plural colored portions 20 , 30 , and 40 are provided on the base material 10 .
  • the coloring of the colored portions 20 , 30 , and 40 is printed by the dye sublimation method, the colored portions 20 , 30 , and 40 may be colored by other printing methods.
  • the transfer body supply unit 55 plural variations colored different colors are prepared as the colored portions 20 , 30 , and 40 .
  • Step S 70 a drawing pattern select ion process is performed.
  • the process lets the user select his/her desiring colored drawing-pattern to be provided on the base material 10 .
  • the plural selectable colored drawing-patterns are displayed on the display unit 52 , and the input unit 51 accepts the user selection operation.
  • the image display body 1 ′ is displayed on the display unit 52 according to the user selection operation during the drawing pattern selection process. At this point, sizes and positions of the colored portions 20 , 30 , and 40 may be appropriately changed by the input operation of the user.
  • the process lets the user specify a region where the hologram is transferred in the image display body 1 ′ (Step S 72 ). In the present embodiment, the process lets the user select the drawing pattern onto which the hologram is transferred in the image display body 1 ′. The case in which the colored portion 20 of the image display body 1 ′ is selected will be described below.
  • a hologram transfer process is performed (Step S 74 ).
  • the optical diffraction structure portion 21 is formed in the colored portion 20 to produce the image display body 1 .
  • the specific process of the hologram transfer process is described later.
  • the produced image display body 1 is discharged from the discharge unit 56 (Step S 76 ), and the processes concerning producing of the image display body 1 finishes.
  • the hologram transfer process will be specifically described with reference to a flowchart shown in FIG. 10 .
  • gray-scale information is read from the storage unit 54 (Step S 80 ).
  • the gray-scale information means a proportion of an area which the hologram occupies to a predetermined region, e.g. one dot, when the hologram is transferred.
  • the gray-scale information is set as a value of printing energy given to the thermal head.
  • the optimum value of the gray-scale information is previously set according to the material constituting the hologram of the hologram forming layer 63 and the image display body 1 ′, and the use application of the image display body 1 .
  • the optimum value of the gray-scale information is stored in the storage unit 54 .
  • a diffusion process is performed based on the gray-scale information (Step S 82 ).
  • the information on the halftone dot 21 a determined in the diffusion process is referred to as halftone dot information.
  • the predetermined conditions mean the area of the halftone dot, the dot area percent to the colored portion 20 , and the process performed by the error diffusion method.
  • the halftone dot information on each halftone dot 21 a is computed such that the halftone dot 21 a has the area of 0.04 mm 2 , the dot area percent is 30%, and the halftone dots 21 a are arranged in a state of being diffused by a random dithering method which is one of the error diffusion methods.
  • the area of the halftone dot 21 a may be smaller than 0.25 mm 2 , and the dot area percent may range from 15% to 60%.
  • the error diffusion method is not limited to the random dithering method, but any method may be employed. Appropriate values of the area and dot area percent are previously set according to the use purpose of the image display body 1 .
  • the gray-scale information is the proportion of the area which the hologram can occupy to the predetermined region.
  • a white region 90 where to transfer the hologram occupies 35% of the whole of the colored portion 20 and a black region 91 where not to transfer the hologram occupies the other 65%.
  • a post-diffusion process state B of FIG. 11 shows a state where the diffusion is performed at the dot area percent of 35% in the colored portion 20 which is a rectangular shape.
  • the thermal head operation is controlled based on the halftone dot information, and the hologram forming layer 63 is thermally transferred from the hologram transfer sheet 60 onto the colored portion 20 in the halftone dot state in the above-described manner (Step S 84 ).
  • the optical diffraction structure portion 21 can be provided on the colored portion 20 .
  • FIG. 12 is a view showing an example of a second image display body 100 of the present invention.
  • an optical diffraction structure portion 103 constituted by optical diffraction structure is formed in a halftone dot state on an image 102 provided to a predetermined base material 101 .
  • each of plural halftone dots 110 , . . . , 110 constituting the optical diffraction structure portion 103 can be enclosed by each of square regions 111 , . . . , 111 whose sizes are equal to one another, and the plural square regions 111 , . . . , 111 are formed so as to be arranged at equal intervals in diagonal directions 112 , . . . , 112 .
  • a length of one side of the square region 111 may be 400 ⁇ m or less, and preferably the length ranges from 100 to 200 ⁇ m.
  • all distances d between a corner 11 a of one of the square region 11 and a corner 11 b of the other square region 11 are equal to one another and should be 220 ⁇ m or less.
  • the distance d ranges from 50 to 150 ⁇ m.
  • the dot area percent of the halftone dots 110 , . . . , 110 to the area of the image 102 is 40% or less.
  • the material for the base material 101 and the method of forming the image 102 may be appropriately determined according to the use application of the image display body 100 .
  • Examples of the image display body 100 include cards such as a credit card, an ID card, and a prepaid card and paper tickets such as an exchange coupon, a check, paper money, a stock certificate, an entrance ticket, and various certificates. Any card or paper ticket can be used as the image display body 100 as long as the card or paper ticket has the image 102 on the base material 101 .
  • the image 102 also includes a substance formed by various kinds of printing methods and a photograph.
  • a method of forming the optical diffraction structure portion 103 in the image 102 by using a transfer sheet 120 shown in FIG. 14 will be described.
  • a peel layer 122 , an optical diffraction structure layer 123 , a reflecting layer 124 , and a bonding layer 125 are laminated on a base material sheet 121 , and a heat-resistant protective layer 126 is formed on the backside of the base material sheet 121 .
  • the concavo-convex pattern of the diffraction grating is formed as the optical diffraction structure.
  • the relief diffraction effect can be enhanced by providing the reflecting layer 124 on the relief surface of the optical diffraction structure layer 123 .
  • the reflecting layer 124 is made of a metal having the high light reflectance. The higher light reflectance of the metal constituting the reflecting layer 124 is, the brighter diffracted light is obtained.
  • the reflecting layer 124 may be formed by a single thin film made of a metal such as Cr, Ni, Ag, Au, and Al, an oxide, a sulfide, or a nitride thereof, or a combination thereof.
  • the metal thin film having the high light reflectance has a thickness ranging from around 10 to 2000 nm, preferably from 20 to 1000 nm so as to obtain the sufficient reflecting effect.
  • the thermal transfer printer transfers the optical diffraction structure layer 123 of the transfer sheet 120 to a transfer body 130 in which the image 102 is provided to the base material 101 as shown in FIG. 15A .
  • the thermal transfer printer By controlling the thermal head operation of the thermal transfer printer, the halftone dots 110 , . . . , 110 can be formed on the image 102 in the above mentioned sate by the optical diffraction structure layer 123 .
  • FIG. 15B is a view showing the state in which the optical diffraction structure portion 103 is formed by transferring the optical diffraction structure layer 123 as the halftone dots 110 , . . . , 110 onto the image 102 provided to the base material 101 .
  • the optical diffraction structure portion 103 is formed on the image 102 , and a natural lame effect can be given to the image 102 by the diffracted light.
  • the present invention relating to the first image display body 1 is not limited to the above-described embodiment, and the present invention can be realized in various embodiments. At least one colored portion of the image display body 1 may be required, and the whole of the image display body 1 may be colored. The colors of the plural colored portions may be different from one another or identical to one another. The shape of the colored portion 20 of the image display body 1 is not limited to the star shape.
  • plural kinds of transferable holograms may be prepared and the user may be allowed to select the desired hologram.
  • the optimum gray-scale information may be previously set to each hologram and correlated with the hologram.
  • the region to which the hologram is transferred may be previously determined.
  • a printing unit which colors the base material 10 may be provided in the image producing apparatus 50 .
  • the peel layer 62 and the bonding layer 65 when the other layers have the sufficient peel properties or bonding properties.
  • Other layers such as a surface lubricant layer may be provided if needed.
  • the invention relating to the second image display body 100 is not also limited to the above-described embodiment, and the second image display body 100 of the invention can be realized in various embodiments.
  • the halftone dot 110 shown in FIG. 13 has the circular shape
  • the halftone dot 110 may have any shape such as an ellipse, a polygon, and an irregular shape.
  • the image 102 is not limited to the star shape shown in FIG. 12 and may have any shape.
  • the image 102 may be colored not a single color but plural colors.
  • the image 102 may be provided in not apart of the base material 101 but the whole of the base material 101 .
  • the peel layer 122 is not required depending on the function of the base material sheet 121 or the optical diffraction structure layer 123 .
  • a layer except for the peel layer 122 may be laminated depending on the use application of the image display body 100 .
  • a particular-color layer constituted by coloring ink such as gold is provided to the transfer sheet 120 to form the optical diffraction structure portion together with the optical diffraction structure layer 123 .
  • the transfer sheet 120 is designed such that the transfer sheet 120 is peeled off between the base material sheet 121 and the peel layer 122 to transfer the layers 122 to 125 including the optical diffraction structure layer 123 onto the transfer body 130 .
  • the transfer sheet 120 may be designed such that the transfer sheet 120 is peeled off between the peel layer 122 and the optical diffraction structure layer 123 to transfer the layers 123 to 125 except for the peel layer 122 onto the transfer body 130 .
  • the transfer sheet 120 may be designed such that the transfer sheet 120 is peeled off at the peel layer 122 into the side of the optical diffraction structure layer 123 and the side of the base material sheet 121 .

Abstract

An image display body in which a decorative effect is obtained more effectively by an optical diffraction structure. In an image display body, an optical diffraction structure portion constituted by the optical diffraction structure in a halftone dot state is provided in a colored region on a base material. In the image display body, a dot area percent of a halftone dot a constituting the optical diffraction structure portion to the colored region ranges from 15% to 60%, an area of each halftone dot is smaller than 0.25 mm2. The halftone dots are diffused by an error diffusion method.

Description

    TECHNICAL FIELD
  • The present invention relates to an image display body in which an optical diffraction structure is formed in a halftone dot sate and an image information method for the image display body.
  • BACKGROUND ART
  • A transfer foil having an optical diffraction structure forming layer is utilized for the purposes of improving design performance and security performance. The optical diffraction structure having a fine concavo-convex relief structure such as a hologram and a diffraction grating is formed in the optical diffraction structure forming layer. There is a known method of coloring the optical diffraction structure in order to improve the design performance and the security performance. For example, there is a known colored layer transfer material having a fine relief structure and a reflecting layer made of a metal colored a unique color (For example, see Patent Documents 1 and 2), as a colored layer transfer material to obtain an effect of looking like a colored optical diffraction structure (hereinafter sometimes referred to as “colored hologram”). The inventor also discloses a layer configuration, in which the optical diffraction structure forming layer and the reflecting layer are laminated and a colored layer is added to an observation side to the reflecting layer in order to obtain the effect of looking like the colored hologram (For example, see Patent Documents 3 and 4).
  • There is a known colored layer transfer material having the colored layer and the metal layer (the reflecting layer) and sensuously looking like, for example, gold (For example, see Patent Documents 5 to 7), as the colored layer transfer material which can be transferred onto a transfer body to obtain a colored-metal glossy color. However, in the above colored layer transfer materials, because the fine concavo-convex relief structure such as a hologram and a diffraction grating which exerts the optical diffraction effect is not provided, the particular design or the optical effect cannot be obtained.
  • On the other hand, there is also a known method of forming an optical diffraction structure portion having optical diffraction structure in a halftone dot sate to add a decorative effect by diffracted light to an image, by transferring the optical diffraction structure in a halftone dot state onto a base material having a predetermined image (For example, see Patent Documents 8 to 10).
  • Patent Document 1: Japanese Patent Laid-Open No. 09-160475
  • Patent Document 2: Japanese Patent Laid-Open No. 08-328456
  • Patent Document 3: Japanese Patent Laid-Open No. 61-238079
  • Patent Document 4: Japanese Patent Laid-Open No. 62-17784
  • Patent Document 5: Japanese Patent Laid-Open No. 63-30288
  • Patent Document 6: Japanese Patent Laid-Open No. 63-230389
  • Patent Document 7: Japanese Patent Laid-Open No. 09-11638
  • Patent Document 8: Japanese Patent Laid-Open No. 08-123299
  • Patent Document 9: Japanese Patent Laid-Open N 11-227368
  • Patent Document 10: Japanese Patent Laid-Open No. 2004-101834
  • DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • However, in the method of configuring the reflecting layer by using the metal colored the unique color, due to the use of an alloy having its unique color, it is very difficult that continuous deposition is performed while a desired compound ratio of the alloy is stably kept. It takes a lot of time to provide an exchange a predetermined alloy material during the deposition, that could cause a risk of contamination (pollution with the material used before and after) is generated, and thereby the method of forming the reflecting layer with the metal colored the intrinsic color has a cost disadvantage.
  • In the method of adding and providing the colored layer, basically the colored layer transfer material has a single color, and it is impossible to color the optical diffraction structure plural desired colors. For example, it is difficult to color plural portions of the optical diffraction structure different colors such as gold, a sapphire tone, an emerald tone, and a ruby tone. Accordingly, there is no colored layer transfer material having a low cost, good productivity, good storage stability of a color tone, and the optical diffraction effect by the optical diffraction structure.
  • Additionally, in the conventional method of transferring the optical diffraction structure in the halftone dot state, a visual synergic effect obtained by the diffracted light of the optical diffraction structure portion and the color of a region located below the optical diffraction structure portion is hardly considered. Accordingly, it sometimes happens that almost of the colored region is covered with the transferred optical diffraction structure.
  • Even if the case where the above synergic effect is considered, in the conventional transfer method, brightness by the diffracted light of the optical diffraction structure portion frequently becomes unnatural, and the synergic effect is not sufficiently exerted.
  • In view of the foregoing, an object of the invention is to provide an image display body in which the optical diffraction structure appears to be colored a desired color and whereby the decoration effect is obtained more effectively, and an image formation method for the image display body. Another object of the invention is to provide an image display body in which the decoration effect is provided more effectively in the image by the optical diffraction structure and an image formation method for the image display body.
  • Means for Solving the Problems
  • A first image display body of the present invention solves the above problems as an image display body in which an optical diffraction structure portion constituted by optical diffraction structure in a halftone dot state is provided in a colored region on a base material, wherein a dot area percent of the halftone dots constituting the optical diffraction structure portion to the colored region ranges from 15% to 60%, an area of each halftone dot is smaller than 0.25 mm2, and the halftone dots are diffused to be provided by an error diffusion method.
  • The inventor has discovered that natural brightness based on diffracted light can be given evenly to the colored region by providing the halftone dots constituting the optical diffraction structure portion on the colored region in the state where the halftone dots are diffused by an error diffusion method under conditions of the above dot area and the above dot area percent. By the present invention, as the brightness can be given evenly to the colored region, the colored region where the optical diffraction structure portion of the present invention is formed can be used such as a colored optical diffraction structure.
  • In the present invention, the optical diffraction structure includes a diffraction grating having a constant concavo-convex pattern and a hologram where a fringe pattern generating a predetermined hologram image is formed. It doesn't matter which error diffusion method is employed to the present invention, such as a random dithering method, Floyd&Steinberg type, and Judice&Ninke type. Also, it doesn't matter which printing method is taken for the colored region of the present invention. Moreover, the colored region may be colored a single color. Thereby, the colored region where the optical diffraction structure is formed can be used as a single-colored optical diffraction structure colored the color of the colored region.
  • A first image formation method of the present invention solves the above problems as an image formation method in which an optical diffraction structure forming layer is transferred in a halftone dot state to a colored region on a transfer body to form an optical diffraction structure portion by using a transfer sheet where the optical diffraction structure forming layer in which an optical diffraction structure is formed is laminated on a base material sheet thereof, wherein the halftone dots constituting the optical diffraction structure portion are transferred to the colored region in a diffused state by an error diffusion method so that an area of the halftone dot is smaller than 0.25 mm2 and a dot area percent to the colored region ranges from 15% to 60%.
  • By the above formation method, the first image display body of the present invention can be obtained. The conceptions of the optical diffraction structure and the error diffusion method are the same as the above mentioned conceptions.
  • The optical diffraction structure forming layer may be thermally transferred from the transfer sheet to the colored region by using a thermal head, and each of the halftone dots may be transferred based on printing energy applied to the thermal head so that the halftone dots are diffused in a state of the area and the dot area percent by the error diffusion method. Thereby, the printing energy of the thermal head can be optimized based on materials of the optical diffraction structure and the transfer body. As each halftone dot is transferred based on the optimized printing energy, the image display body having more natural brightness can be obtained.
  • the colored region of the transfer body may be colored a single color. Thereby, by the present invention, the colored region where the optical diffraction structure is formed can be used as a single-colored optical diffraction structure colored the color of the colored region.
  • A second image display body of the present invention solves the above problems as an image display body in which an optical diffraction structure portion constituted by optical diffraction structure in a halftone dot state is formed on an image on a base material, wherein, each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each of the halftone dots is enclosed in each of same size square regions a side of which is 400 μm or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 μm or less.
  • the inventor finds out the fact that optical diffraction structure can be provided to an image as more naturally decorative effect as a lame when the halftone dots constituting the optical diffraction structure portion are formed such that the halftone dots are arranged regularly. Thereby, such the effect as a glittery lame can be easily given to the image printed with natural ink.
  • It is not necessary that the shape of the halftone dot is a square as long as the halftone dot can be enclosed in the square region the side of which is 400 μm or less. For example, a circle shape, an ellipse shape, a polygon shape or an irregular shape can be employed as the halftone dot. The optical diffraction structure includes a diffraction grating having a constant pattern and a hologram having a fringe pattern forming a predetermined image.
  • Moreover, in the second image display body of the present invention, a dot area percent of the optical diffraction structure portion may be 40% or less. In a case of this halftone dot area percent, such the effect as a more natural glitter lame can be given to the image. When a length of one side of the square region ranges from 100 μm to 200 μm, and/or a distance between the adjacent square regions ranges from 50 μm to 150 μm, a furthermore decorative effect can be performed.
  • A second image formation method solves the above problems as an image formation method in which an optical diffraction structure portion constituted by optical diffraction structure is formed in a halftone dot state on a predetermined image by using a transfer sheet where the optical diffraction structure is laminated on a base material sheet thereof, wherein each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each the plurality of halftone dots is enclosed in each of same size square regions a side of which is 400 μm or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 μm or less.
  • EFFECTS OF THE INVENTION
  • As described above, according to the invention, the diffraction structure in a halftone dot sate is provided to the colored region under the conditions that the area of each halftone dot is smaller than 0.25 mm2, the dot area percent ranges from 15% to 60%, and the halftone dots are diffused by the error diffusion method. Thereby, the image display body and the like in which the optical diffraction structure appeared to be colored the desired color, and the decorative effect is obtained more effectively can be provided. Moreover, by specifying the mode where halftone dots are arranged on an image in a size and a distance, the image display body and the like where more decorative effect by an optical diffraction structure is given to the image can be provided
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view showing an example of the first image display body of the present invention;
  • FIG. 2 is a sectional view taken along a line V-V of FIG. 1;
  • FIG. 3 is an enlarged view of a colored hologram portion which is formed with dot area percent of 15%;
  • FIG. 4 is an enlarged view of a colored hologram portion which is formed with dot area percent of 35%;
  • FIG. 5 is an enlarged view of a colored hologram portion which is formed with dot area percent of 60%;
  • FIG. 6 is a view showing an image producing apparatus of the present mode;
  • FIG. 7 is a sectional view of a hologram transfer sheet used in the image producing apparatus of FIG. 6;
  • FIG. 8 is a view showing a state in which a colored portion is provided in a base material;
  • FIG. 9 is a flowchart showing a flow of processes for producing an image display body;
  • FIG. 10 is a flowchart showing a flow of a hologram transfer process;
  • FIG. 11 is a view showing a state in which halftone dot information is obtained from gray-scale information;
  • FIG. 12 is a view showing an example of the second image display body in the present invention;
  • FIG. 13 is a partially enlarged view of an optical diffraction structure portion shown in FIG. 12;
  • FIG. 14 is a view showing a section of an example of a transfer sheet in the present invention;
  • FIG. 15A is a view showing a transfer body in which the image display body shown in FIG. 12 is formed; and
  • FIG. 15B is a partially enlarged sectional view of the image display body shown in FIG. 12, in which the optical diffraction structure portion is formed.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a view showing an example of the first image display body 1 of the present invention. The image display body 1 includes plural colored portions 20, 30, and 40 on a base material 10. The colored portions 20, 30, and 40 are colored the different colors respectively. In the whole of the colored portion 20, an optical diffraction structure in a halftone dot state is provided as an optical diffraction structure portion 21. Therefore, a visual effect by diffracted light is given to the colored portion 20 in addition to the coloring. Hereinafter the colored portion 20 in the state in which the optical diffraction structure portion 21 is provided is referred to as colored hologram portion 22. Although the colored portions 20, 30, and 40 are colored by a dye sublimation printing in the present embodiment, any printing method may be employed to color the colored portions 20, 30, and 40.
  • In the present embodiment, a diffraction grating is used as the optical diffraction structure constituting the optical diffraction structure portion 21. The optical diffraction structure includes the diffraction grating and a hologram, and the diffraction grating constituted by a constant concavo-convex pattern is strictly distinguished from the hologram constituted by a fringe pattern generating a predetermined hologram image. However, hereinafter the hologram is used in the same meaning of the optical diffraction structure. Materials respectively used for the base material 10 and colored portion 20 may be appropriately determined according to a use purpose of the image display body 1. Any type of hologram may be used in the optical diffraction structure portion 21 as long as a hologram is a diffraction grating which can be formed as a hologram forming layer onto a later-mentioned hologram transfer sheet.
  • As shown in FIG. 2, the colored portion 20 constituted with ink is laminated on the base material 10 in the colored hologram portion 22 of the image display body 1, and plural halftone dots 21 a, . . . , 21 a constituting the optical diffraction structure portion 21 are provided all over the colored portion 20. An area of each halftone dot 21 a is smaller than 0.25 mm2, and a halftone dot area percent to the colored hologram portion 22 ranges from 15% to 60%. The halftone dots 21 a are provided while diffused by an error diffusion method, namely, the halftone dots 21 a are provided not in a state where the halftone dots having a constant shape are regularly arranged at equal intervals, but in a sate where the uneven halftone dots are unevenly disposed.
  • The plural halftone dots 21 a, . . . , 21 a constituting the optical diffraction structure portion 21 are provided in the colored portion 20 under the above conditions, whereby natural brightness by the diffracted light is represented in all over the colored hologram portion 22, and the colored hologram portion 22 looks like a hologram colored the color of the colored portion 20. For example, in the case where the colored portion 20 is colored red, the colored hologram portion 22 looks like the hologram colored red. FIGS. 3 to 5 show the states in which the plural halftone dots 21 a are provided in the colored portion 20 with dot area percents of 15%, 35%, and 60% respectively. In each drawing, a whitish portion is a port ion where the halftone dot 21 a is provided.
  • Then, a method of producing the image display body 1 will be described. In the present embodiment, the image display body 1 is produced with an image producing apparatus 50 shown in FIG. 6. The image producing apparatus 50 includes an input unit 51, a display unit 52, a hologram transfer unit 53, a storage unit 54, a body where to be transferred supply unit 55, a discharge unit 56, and a control unit 57. The input unit 51 accepts various kinds of setting operations of a user. The display unit 52 displays an image corresponding to the setting by the user or various messages to the user. The hologram transfer unit 53 transfers the hologram. Various kinds of drawing patterns and various kinds of information to be provided on the base material 10 are stored in the storage unit 54. The transfer body supply unit 55 supplies a transfer body. The discharge unit 56 discharges the produced image display body 1. The control unit 57 controls operations of the units 51, . . . , 56.
  • The hologram transfer unit 53 of the present embodiment prints the hologram by using a hologram transfer sheet 60 shown in FIG. 7 by a thermal transfer method. In the hologram transfer sheet 60, a peel layer 62, a hologram forming layer 63 in which the hologram is formed, a reflecting layer 64, and a bonding layer 65 are laminated on one side of a base material sheet 61, while a heat-resistant layer 66 is provided on the other side of the base material sheet 61. The hologram transfer sheet 60 of the present embodiment is a transfer foil in which the diffraction grating is formed as the hologram of the hologram forming layer 63.
  • The bonding layer 65 is bonded to the transfer body, and a thermal head is pressed against the hologram transfer sheet 60 from the side of the heat-resistant layer 66, which peels off the side of the base material sheet 61 from the side of the hologram forming layer 63 to transfer the hologram forming layer 63 onto the transfer body. Each of the layers 61, . . . , 66 may be made of well-known materials. An aspect in which the hologram forming layer 63 is transferred onto the transfer body includes an aspect in which the hologram transfer sheet 60 is peeled off between the base material sheet 61 and the peel layer 62 to transfer the layers 62 to 65 including the hologram forming layer 63 onto the transfer body, an aspect in which the hologram transfer sheet 60 is peeled off between the peel layer 62 and the hologram forming layer 63 to transfer the layers 63 to 65 including the hologram forming layer 63 onto the transfer body, and an aspect in which the hologram transfer sheet 60 is peeled off at the peel layer 62 into the side of the hologram forming layer 63 and the side of the base material sheet 61 to transfer the hologram forming layer 63 onto the transfer body.
  • A relief diffraction effect can be enhanced by providing the reflecting layer 64 to a relief surface of the hologram forming layer 63. Desirably, the reflecting layer 64 is made of a metal having a high light reflectance. The higher light reflectance of the metal constituting the reflecting layer 64 is, the brighter diffracted light is obtained. Specifically, the reflecting layer 64 may be formed by a single thin film made of a metal such as Cr, Ni, Ag, Au, and Al, an oxide, a sulfide, and a nitride thereof, and a combination thereof. The metal thin film having the high light reflectance has a thickness ranging from around 10 to 2000 nm, preferably from 20 to 1000 nm so as to obtain a sufficient reflecting effect.
  • In the present embodiment, an image display body 1′ shown in FIG. 8 is used as the transfer body. In the image display body 1′, the plural colored portions 20, 30, and 40 are provided on the base material 10. Although the coloring of the colored portions 20, 30, and 40 is printed by the dye sublimation method, the colored portions 20, 30, and 40 may be colored by other printing methods. In the transfer body supply unit 55, plural variations colored different colors are prepared as the colored portions 20, 30, and 40.
  • The flow of whole processes for producing the image display body 1 with the image producing apparatus 50 will be described with reference to a flowchart of FIG. 9. Each process in the flowchart of FIG. 9 is performed by the control unit 57 according to a predetermined program. First a drawing pattern select ion process is performed (Step S70). In the drawing pattern selection process, the process lets the user select his/her desiring colored drawing-pattern to be provided on the base material 10. For example, the plural selectable colored drawing-patterns are displayed on the display unit 52, and the input unit 51 accepts the user selection operation.
  • The image display body 1′ is displayed on the display unit 52 according to the user selection operation during the drawing pattern selection process. At this point, sizes and positions of the colored portions 20, 30, and 40 may be appropriately changed by the input operation of the user. When the drawing pattern selection process is finished, the process lets the user specify a region where the hologram is transferred in the image display body 1′ (Step S72). In the present embodiment, the process lets the user select the drawing pattern onto which the hologram is transferred in the image display body 1′. The case in which the colored portion 20 of the image display body 1′ is selected will be described below. When the colored portion 20 is specified as the region to which the hologram is transferred, a hologram transfer process is performed (Step S74). In the hologram transfer process, the optical diffraction structure portion 21 is formed in the colored portion 20 to produce the image display body 1. The specific process of the hologram transfer process is described later. Finally the produced image display body 1 is discharged from the discharge unit 56 (Step S76), and the processes concerning producing of the image display body 1 finishes.
  • The hologram transfer process will be specifically described with reference to a flowchart shown in FIG. 10. When the colored portion 20 is specified as the region where the hologram is transferred, gray-scale information is read from the storage unit 54 (Step S80). The gray-scale information means a proportion of an area which the hologram occupies to a predetermined region, e.g. one dot, when the hologram is transferred. The gray-scale information is set as a value of printing energy given to the thermal head. The optimum value of the gray-scale information is previously set according to the material constituting the hologram of the hologram forming layer 63 and the image display body 1′, and the use application of the image display body 1. The optimum value of the gray-scale information is stored in the storage unit 54.
  • Then, a diffusion process is performed based on the gray-scale information (Step S82). In the diffusion process, on the basis of the gray-scale information, the position and size of the halftone dot 21 a provided as the optical diffraction structure portion 21 on the colored portion 20 so that the predetermined conditions are satisfied. Hereinafter the information on the halftone dot 21 a determined in the diffusion process is referred to as halftone dot information. The predetermined conditions mean the area of the halftone dot, the dot area percent to the colored portion 20, and the process performed by the error diffusion method. In the present embodiment, the halftone dot information on each halftone dot 21 a is computed such that the halftone dot 21 a has the area of 0.04 mm2, the dot area percent is 30%, and the halftone dots 21 a are arranged in a state of being diffused by a random dithering method which is one of the error diffusion methods.
  • The area of the halftone dot 21 a may be smaller than 0.25 mm2, and the dot area percent may range from 15% to 60%. The error diffusion method is not limited to the random dithering method, but any method may be employed. Appropriate values of the area and dot area percent are previously set according to the use purpose of the image display body 1.
  • A method of obtaining the halftone dot information using the gray-scale information will be described with reference to FIG. 11. As described above, the gray-scale information is the proportion of the area which the hologram can occupy to the predetermined region. For example, when the case of the gray-scale information of 35% about the colored portion 20 is conceptually shown, as a pre-diffusion process state A, a white region 90 where to transfer the hologram occupies 35% of the whole of the colored portion 20, and a black region 91 where not to transfer the hologram occupies the other 65%. By diffusing the white region 90 where to transfer the hologram in the uneven halftone dot state by the error diffusion method while satisfying the above conditions, the halftone dot information on each halftone dot 21 a is computed. A post-diffusion process state B of FIG. 11 shows a state where the diffusion is performed at the dot area percent of 35% in the colored portion 20 which is a rectangular shape.
  • Returning to FIG. 10, when the halftone dot information is obtained through the diffusion process, the thermal head operation is controlled based on the halftone dot information, and the hologram forming layer 63 is thermally transferred from the hologram transfer sheet 60 onto the colored portion 20 in the halftone dot state in the above-described manner (Step S84). Thereby the optical diffraction structure portion 21 can be provided on the colored portion 20.
  • FIG. 12 is a view showing an example of a second image display body 100 of the present invention. In the image display body 100, an optical diffraction structure portion 103 constituted by optical diffraction structure is formed in a halftone dot state on an image 102 provided to a predetermined base material 101. As shown in FIG. 13, each of plural halftone dots 110, . . . , 110 constituting the optical diffraction structure portion 103 can be enclosed by each of square regions 111, . . . , 111 whose sizes are equal to one another, and the plural square regions 111, . . . , 111 are formed so as to be arranged at equal intervals in diagonal directions 112, . . . , 112.
  • A length of one side of the square region 111 may be 400 μm or less, and preferably the length ranges from 100 to 200 μm. In the adjacent square regions 11 and 11, all distances d between a corner 11 a of one of the square region 11 and a corner 11 b of the other square region 11 are equal to one another and should be 220 μm or less. Preferably the distance d ranges from 50 to 150 μm. Moreover, Preferably the dot area percent of the halftone dots 110, . . . , 110 to the area of the image 102 is 40% or less.
  • The material for the base material 101 and the method of forming the image 102 may be appropriately determined according to the use application of the image display body 100. Examples of the image display body 100 include cards such as a credit card, an ID card, and a prepaid card and paper tickets such as an exchange coupon, a check, paper money, a stock certificate, an entrance ticket, and various certificates. Any card or paper ticket can be used as the image display body 100 as long as the card or paper ticket has the image 102 on the base material 101. The image 102 also includes a substance formed by various kinds of printing methods and a photograph.
  • Then, a method of forming the optical diffraction structure portion 103 in the image 102 by using a transfer sheet 120 shown in FIG. 14 will be described. In the transfer sheet 120, a peel layer 122, an optical diffraction structure layer 123, a reflecting layer 124, and a bonding layer 125 are laminated on a base material sheet 121, and a heat-resistant protective layer 126 is formed on the backside of the base material sheet 121. In the optical diffraction structure layer 123, the concavo-convex pattern of the diffraction grating is formed as the optical diffraction structure. The relief diffraction effect can be enhanced by providing the reflecting layer 124 on the relief surface of the optical diffraction structure layer 123. Desirably the reflecting layer 124 is made of a metal having the high light reflectance. The higher light reflectance of the metal constituting the reflecting layer 124 is, the brighter diffracted light is obtained. Specifically, the reflecting layer 124 may be formed by a single thin film made of a metal such as Cr, Ni, Ag, Au, and Al, an oxide, a sulfide, or a nitride thereof, or a combination thereof. The metal thin film having the high light reflectance has a thickness ranging from around 10 to 2000 nm, preferably from 20 to 1000 nm so as to obtain the sufficient reflecting effect.
  • The thermal transfer printer transfers the optical diffraction structure layer 123 of the transfer sheet 120 to a transfer body 130 in which the image 102 is provided to the base material 101 as shown in FIG. 15A. By controlling the thermal head operation of the thermal transfer printer, the halftone dots 110, . . . , 110 can be formed on the image 102 in the above mentioned sate by the optical diffraction structure layer 123.
  • The conventional method in which the optical diffraction structure is transferred in a halftone dot state from the transfer sheet with the thermal transfer printer may be employed as the method of controlling the thermal head operation. FIG. 15B is a view showing the state in which the optical diffraction structure portion 103 is formed by transferring the optical diffraction structure layer 123 as the halftone dots 110, . . . , 110 onto the image 102 provided to the base material 101. Through the above forming method, the optical diffraction structure portion 103 is formed on the image 102, and a natural lame effect can be given to the image 102 by the diffracted light.
  • The present invention relating to the first image display body 1 is not limited to the above-described embodiment, and the present invention can be realized in various embodiments. At least one colored portion of the image display body 1 may be required, and the whole of the image display body 1 may be colored. The colors of the plural colored portions may be different from one another or identical to one another. The shape of the colored portion 20 of the image display body 1 is not limited to the star shape.
  • In the image producing apparatus 50, plural kinds of transferable holograms may be prepared and the user may be allowed to select the desired hologram. In this case, the optimum gray-scale information may be previously set to each hologram and correlated with the hologram. The region to which the hologram is transferred may be previously determined. A printing unit which colors the base material 10 may be provided in the image producing apparatus 50.
  • In the hologram transfer sheet 60, it is hot necessary to provide the peel layer 62 and the bonding layer 65 when the other layers have the sufficient peel properties or bonding properties. Other layers such as a surface lubricant layer may be provided if needed.
  • The invention relating to the second image display body 100 is not also limited to the above-described embodiment, and the second image display body 100 of the invention can be realized in various embodiments. For example, although the halftone dot 110 shown in FIG. 13 has the circular shape, the halftone dot 110 may have any shape such as an ellipse, a polygon, and an irregular shape. The image 102 is not limited to the star shape shown in FIG. 12 and may have any shape. The image 102 may be colored not a single color but plural colors. The image 102 may be provided in not apart of the base material 101 but the whole of the base material 101.
  • In the transfer sheet 120, the peel layer 122 is not required depending on the function of the base material sheet 121 or the optical diffraction structure layer 123. A layer except for the peel layer 122 may be laminated depending on the use application of the image display body 100. For example, a particular-color layer constituted by coloring ink such as gold is provided to the transfer sheet 120 to form the optical diffraction structure portion together with the optical diffraction structure layer 123.
  • Moreover, the transfer sheet 120 is designed such that the transfer sheet 120 is peeled off between the base material sheet 121 and the peel layer 122 to transfer the layers 122 to 125 including the optical diffraction structure layer 123 onto the transfer body 130. In some cases, the transfer sheet 120 may be designed such that the transfer sheet 120 is peeled off between the peel layer 122 and the optical diffraction structure layer 123 to transfer the layers 123 to 125 except for the peel layer 122 onto the transfer body 130. Additionally, the transfer sheet 120 may be designed such that the transfer sheet 120 is peeled off at the peel layer 122 into the side of the optical diffraction structure layer 123 and the side of the base material sheet 121.

Claims (5)

1. An image display body in which an optical diffraction structure portion constituted by optical diffraction structure in a halftone dot state is formed on an image on a base material,
wherein, each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each of the halftone dots is enclosed in each of same size square regions a side of which is 400 μm or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 μm or less.
2. The image display body according to claim 1, wherein a dot area percent of the optical diffraction structure portion is 40% or less.
3. The image display body according to claim 1, wherein a length of one side of the square region ranges from 100 μm to 200 μm.
4. The image display body according to claim 1, wherein a distance between the adjacent square regions ranges from 50 μm to 150 μm.
5. An image formation method in which an optical diffraction structure portion constituted by optical diffraction structure is formed in a halftone dot state on a predetermined image by using a transfer sheet where the optical diffraction structure is laminated on a base material sheet thereof,
wherein each of a plurality of halftone dots constituting the optical diffraction structure portion is formed such that each the plurality of halftone dots is enclosed in each of same size square regions a side of which is 400 μm or less, and when each of the halftone dots is enclosed in each of the square regions, the plurality of square regions are arranged at equal intervals in a diagonal direction, and in the diagonal direction a distance between a corner of one of adjacent square regions and a corner of another of the adjacent square regions is 220 μm or less.
US12/792,170 2005-03-14 2010-06-02 Image display body and image formation method Abandoned US20100238553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/792,170 US20100238553A1 (en) 2005-03-14 2010-06-02 Image display body and image formation method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005070993A JP2006248157A (en) 2005-03-14 2005-03-14 Image display medium and imaging method
JP2005070567A JP4663356B2 (en) 2005-03-14 2005-03-14 Image display body and image display body manufacturing method
JP2005-070993 2005-03-14
JP2005-070567 2005-03-14
PCT/JP2006/304882 WO2006098264A1 (en) 2005-03-14 2006-03-13 Image display body and image formation method
US90852007A 2007-09-13 2007-09-13
US12/792,170 US20100238553A1 (en) 2005-03-14 2010-06-02 Image display body and image formation method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/304882 Division WO2006098264A1 (en) 2005-03-14 2006-03-13 Image display body and image formation method
US90852007A Division 2005-03-14 2007-09-13

Publications (1)

Publication Number Publication Date
US20100238553A1 true US20100238553A1 (en) 2010-09-23

Family

ID=36991606

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/908,520 Expired - Fee Related US7884983B2 (en) 2005-03-14 2006-03-13 Image display body and image formation method
US12/792,170 Abandoned US20100238553A1 (en) 2005-03-14 2010-06-02 Image display body and image formation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/908,520 Expired - Fee Related US7884983B2 (en) 2005-03-14 2006-03-13 Image display body and image formation method

Country Status (5)

Country Link
US (2) US7884983B2 (en)
EP (2) EP1868014A4 (en)
KR (2) KR100992348B1 (en)
TW (2) TW200643477A (en)
WO (1) WO2006098264A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1868014A4 (en) * 2005-03-14 2011-03-30 Dainippon Printing Co Ltd Image display body and image formation method
GB201003136D0 (en) * 2010-02-24 2010-04-14 Rue De Int Ltd Optically variable security device comprising a coloured cast cured hologram
GB201400910D0 (en) * 2014-01-20 2014-03-05 Rue De Int Ltd Security elements and methods of their manufacture
GB2576218B (en) * 2018-08-10 2021-09-15 De La Rue Int Ltd Security devices and methods of authentication thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975786A (en) * 1987-12-28 1990-12-04 Canon Kabushiki Kaisha Image processing method and apparatus with error diffusion capability
US5340159A (en) * 1991-07-12 1994-08-23 The Standard Register Company Varying tone security document
US20040080606A1 (en) * 2002-09-09 2004-04-29 Tadahiro Ishida Transfer ribbon, image expressing medium and method for production of them
US6865001B2 (en) * 2001-08-07 2005-03-08 Pacific Holographics, Inc. System and method for encoding and decoding an image or document and document encoded thereby
US20090141353A1 (en) * 2005-03-14 2009-06-04 Hiroshi Funada Image display body and image formation method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238079A (en) 1985-04-15 1986-10-23 Dainippon Printing Co Ltd Colored hologram sheet
JPS6217784A (en) 1985-07-16 1987-01-26 Dainippon Printing Co Ltd Colored hologram transfer sheet
JPS6330288A (en) 1986-07-25 1988-02-08 Toppan Printing Co Ltd Metal gloss thermal transfer recording medium
JPH0780361B2 (en) 1987-03-18 1995-08-30 凸版印刷株式会社 Metal luster thermal transfer recording medium
US5854882A (en) * 1994-04-08 1998-12-29 The University Of Rochester Halftone correction systems
JPH08123299A (en) 1994-10-28 1996-05-17 Dainippon Printing Co Ltd Forming method of optical diffraction structure and optical diffraction structural body
JP3322093B2 (en) 1995-03-31 2002-09-09 凸版印刷株式会社 Holograms and hologram transfer foils
JPH0911638A (en) 1995-06-26 1997-01-14 Dainippon Printing Co Ltd Metal gloss color thermal transfer recording material, recording method and color recorded matter
JP3678823B2 (en) 1995-12-08 2005-08-03 三菱伸銅株式会社 Hologram transfer sheet and holographic display
JPH11227368A (en) 1998-02-19 1999-08-24 Toppan Printing Co Ltd Information display medium, and its manufacture
JP2002328213A (en) * 2001-05-02 2002-11-15 Toppan Printing Co Ltd Information display medium, method for manufacturing the same, and ovd transfer foil and ovd seal
JP2004101834A (en) 2002-09-09 2004-04-02 Dainippon Printing Co Ltd Image display medium and manufacturing method therefor
EP1406433A3 (en) * 2002-09-17 2007-05-23 Agfa Graphics N.V. Constraint correlation for computer to plate inkjet system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975786A (en) * 1987-12-28 1990-12-04 Canon Kabushiki Kaisha Image processing method and apparatus with error diffusion capability
US5340159A (en) * 1991-07-12 1994-08-23 The Standard Register Company Varying tone security document
US6865001B2 (en) * 2001-08-07 2005-03-08 Pacific Holographics, Inc. System and method for encoding and decoding an image or document and document encoded thereby
US20040080606A1 (en) * 2002-09-09 2004-04-29 Tadahiro Ishida Transfer ribbon, image expressing medium and method for production of them
US20090141353A1 (en) * 2005-03-14 2009-06-04 Hiroshi Funada Image display body and image formation method

Also Published As

Publication number Publication date
TWI481911B (en) 2015-04-21
KR20100020043A (en) 2010-02-19
KR20070112265A (en) 2007-11-22
KR100992348B1 (en) 2010-11-04
TW201305615A (en) 2013-02-01
US7884983B2 (en) 2011-02-08
KR100997307B1 (en) 2010-11-29
WO2006098264A1 (en) 2006-09-21
EP1868014A1 (en) 2007-12-19
EP2400322A1 (en) 2011-12-28
TW200643477A (en) 2006-12-16
US20090141353A1 (en) 2009-06-04
EP1868014A4 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP3938951B2 (en) Optically variable member and data carrier comprising the optically variable member
US8367277B2 (en) Method for producing a multi-layer body, and multi-layer body
RU2417897C2 (en) Protective element with structure having optically alternating properties
JPH0633018B2 (en) Certificate card manufacturing method
US20100238553A1 (en) Image display body and image formation method
JP5142154B2 (en) Latent image printed matter
JP2014517937A (en) Film and its manufacturing process
JP2007240787A (en) Hologram sheet and printing medium
US6428877B1 (en) Scanning image and thermotransfer foil for production thereof
JP4783943B2 (en) Hologram sheet and printing medium
JPH10505021A (en) Scanned image and thermal transfer foil for producing it
JP4783944B2 (en) Hologram sheet and printing medium
JP4848852B2 (en) Light diffraction structure
EP3750716B1 (en) Display body and article provided with display body
EP0975467B1 (en) Transitory image structure
CN101142503A (en) Image display medium and method for manufacturing image display medium
US20230024208A1 (en) Security document having a personalised image formed from a metal hologram and method for the production thereof
JP3619896B2 (en) Laminated body having light-reflective substrate
CA2198903C (en) Scanning image and thermotransfer foil for the production thereof
JPH11344930A (en) Forgery preventive thermosensitive recording medium
KR20030002348A (en) Letter-marking method used for scratch-hologram sticker
JP2017030257A (en) Convex printing plate and use thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION