US20100236794A1 - Downhole sealing devices having a shape-memory material and methods of manufacturing and using same - Google Patents

Downhole sealing devices having a shape-memory material and methods of manufacturing and using same Download PDF

Info

Publication number
US20100236794A1
US20100236794A1 US12/802,223 US80222310A US2010236794A1 US 20100236794 A1 US20100236794 A1 US 20100236794A1 US 80222310 A US80222310 A US 80222310A US 2010236794 A1 US2010236794 A1 US 2010236794A1
Authority
US
United States
Prior art keywords
shape
wellbore
fluid
memory material
polyurethane foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/802,223
Inventor
Ping Duan
Paul M. McElfresh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/802,223 priority Critical patent/US20100236794A1/en
Publication of US20100236794A1 publication Critical patent/US20100236794A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0033Foam properties having integral skins

Definitions

  • the invention is directed to sealing devices used in oil and gas wellbores to seal the wellbore and, in particular, to sealing devices having shape memory materials that remain in a compressed state until wellbore fluid, such as oil or water, contacts the shape memory material so that the shape memory material can expand and seal the wellbore.
  • Packers having swellable materials encased within an expandable sealing element such as a rubber casing or balloon are known in the art. These types of packers expand and, thus, seal to the inner wall surface of a wellbore by contacting hydraulic fluid or other fluid with the swellable materials encased within the rubber casing so that the swellable materials absorb the fluid and expand.
  • hydraulic fluid is pumped down a string of tubing having the packer secured thereto. The hydraulic fluid travels down the bore of the string of tubing and through a port that is in fluid communication with an inner cavity of the rubber casing. Swellable materials disposed within the rubber casing are contacted by the hydraulic fluid.
  • the swellable materials absorb the fluid and expand.
  • the rubber casing expands to seal the wellbore.
  • hydraulic fluid pressure is decreased and the rubber casing remains is held in the expanded position solely by the swellable materials having absorbed the fluid.
  • the swellable materials become softer and lack desirable prolonged strength after expansion because the fluid, which is considered a solvent, reduces intramolecular van der Waals interactions.
  • packers relying on swellable materials to create a seal with an inner wall surface of the wellbore can prematurely fail because the swellable materials become weaker.
  • the sealing devices include one or more shape-memory materials that are run-in to the wellbore in a compressed shape or position.
  • the shape-memory material is held in the compressed shape by an adhesion material.
  • the adhesion material is dissolvable by a fluid placed in contact with the adhesion material such that when the adhesion material comes into contact with the fluid, the adhesion material dissolves.
  • the adhesion material is dissolvable by water.
  • the adhesion material is dissolvable by a hydrocarbon such as oil.
  • the shape-memory material After the sealing device having the shape-memory material is located at the desired location within the well, the shape-memory material is contacted with the fluid that dissolves the adhesion material. After dissolution of the adhesion material, the shape-memory material is allowed to expand to its pre-compressed shaped, i.e., its original, expanded shape or set position.
  • the expanded shape or set position therefore, is the shape of the shape-memory material after it is manufactured and before it is compressed.
  • the shape-memory material possesses hibernated shape memory that provides a shape to which the shape-memory material naturally takes after its manufacturing.
  • the shape-memory material As a result of the shape-memory material being expanded to its set position, the shape-memory material seals the annulus of the wellbore.
  • the shape-memory material expands due to its contact with the dissolving fluid, it is to be understood that the shape-memory material returns to its original, expanded shape due to the shape-memory characteristics of the shape-memory material and not due to the shape-memory material absorbing any fluid. In other words, even though fluid may enter into pores, cells, or crevices of the shape-memory material, the fluid so disposed is not required to maintain the shape-memory material in the original, expanded shape.
  • the shape-memory materials is a polyurethane foam material that is extremely tough and resilient and that is capable of being compressed and returned to substantially its original expanded shape.
  • the polyurethane foam material is held in the compressed state by an adhesion material. Once the adhesion material is dissolved, the polyurethane foam material is no longer held in its compressed or run-in shape and, thus, the polyurethane foam material expands toward its original shape. In so doing, the polyurethane foam material engages the inner wall surface of the wellbore, either directly or indirectly such as by having a rubber outer shell covering the polyurethane foam material.
  • the inner wall surface of the wellbore is defined by the inner diameter of wellbore casing. In other embodiments, the inner wall surface of the wellbore is “open-hole,” i.e., defined by the hole drilled into the earth formation.
  • FIG. 1 is a cross-sectional view of one embodiment of a sealing device disclosed herein shown in the compressed or run-in position.
  • FIG. 2 is a cross-sectional view of the sealing device of FIG. 1 shown in the expanded or set position.
  • sealing device 30 is disposed on the outer wall surface 40 of a tubing string 42 .
  • sealing device 30 comprises shape-memory material 32 comprising a polyurethane foam material.
  • the polyurethane foam material is formed by combining two separate portions of chemical reactants. These two separate portions are referred to herein as the isocyanate portion and polyol portion.
  • the isocyanate portion may comprise a modified isocyanate (MI) or a modified diphenylmethane diisocyanate (MDI) based monomeric diisocyanate or polyisocyanate.
  • the polyol portion may comprise a polyether, polyester or polycarbonate-based di- or multifunctional hydroxyl ended prepolymer.
  • Water is included as part of the polyol portion and acts as a blowing agent to provide a foam structure because of carbon dioxide generated from the reaction between isocyanate and water when the isocyanate portion and the polyol portion are combined.
  • the isocyanate portion contains modified MDI Mondur PC and the polyol portion contains (1) polyester polyol, which consist of a trimethylolpropane branched diethylene glycol adipate sold under the commercial name as Fomrez 45 from Crompton Corporation; (2) chain extender aromatic diamine Dimethylthiotoluenediamine (“DMTDA”) sold by Albemarle under the commercial name Ethacure 300; (3) catalysts; (4) surfactant; and (5) water.
  • the chain extender is a liquid slower polyurethane curative that provides enhanced high temperature properties.
  • the catalyst and surfactant are added into the polyol portion to control final foam cell structure, either open or close, as well as the foam physical properties.
  • either amine or metal-based catalysts are included to achieve good properties of polyurethane foam materials.
  • Such catalysts are commercially available from companies such as Air Products.
  • Suitable catalysts that provide especially good properties of polyurethane foam materials include pentamethyldipropylenetriamine, an amine-based catalyst sold under the commercial name Polycat 77 by Air Products, dibutyltindilaurate, a metal-based catalyst sold under the commercial name DABCO T-12 by Air Products.
  • a small amount of surfactant e.g., 0.5% of total weight, such as the surfactant sold under the commercial name DABCO DC-198 by Air Products, can be added to control foam cell structure and distribution.
  • Colorant may be added in the polyol portion to provide desired color in the finished product.
  • Such colorants are commercially available from companies such as Milliken Chemical which sells a suitable colorant under the commercial name Reactint.
  • the isocyanate portion and the polyol portions are prepared, they are combined together at a desired temperature.
  • the temperature at which the two portions are combined determines the degree of cell size within the resultant polyurethane foam material. For example, higher temperatures of the mixture provide larger cell size while lower temperatures of the mixture provide smaller cell size.
  • the polyester polyol comprising of a trimethylolpropane branched diethylene glycol adipate sold under the commercial name as Fomrez 45 from Crompton Corporation, is pre-heated to 100° C. before combining with the isocyanate portion.
  • the isocyanate portion is the combined with the polyol portion and a foaming reaction is immediately initiated and the mixture's viscosity increases rapidly.
  • the polyol comprising of poly(1,6-hexanediol carbonate) polyol sold by Arch Chemicals under the commercial name Poly-CD220 is preheated to 100° C. before combing with the isocyanate portion.
  • the isocyanate portion is then combined with the polyol portion and a foaming reaction is immediately initiated and the mixture's viscosity increases rapidly.
  • the resulting foam made from polycarbonate polyols has a high resistance to hydrolysis and oil attacks.
  • the amount of isocyanate and polyol included in the mixture should be chemically balanced according to their equivalent weight. In one specific embodiment, 5% more isocyanate by equivalent weight is combined with the polyol portion.
  • the polyol portion is formed by 50 g of Fomrez 45 polyester polyol is combined with 1.6 g of water, 1.5 g of DMTDA chain extender, 0.1 g of Polycat 77 catalyst, 0.5 g of DABCO DC-198 surfactant, and 0.5 g of Reactint colorant to form the polyol portion.
  • the polyol portion is preheated to 100° C. and mixed in a KitchenAid type single blade mixer with 40.4 of MDI Mondur PC. As will be recognized by persons of ordinary skill in the art, these formulations can be scaled-up to form larger volumes of this shape-memory material.
  • the polyol portion is formed by 50 g of Poly-CD220 polycarbonate polyol is combined with 1.6 g of water, 1.5 g DMTDA chain extender, 0.1 g of Polycat 77 catalyst, 0.5 g DABCO DC-198 surfactant, and 0.5 g Reactint colorant to form the polyol portion.
  • the polyol portion is preheated to 100° C. and mixed in a KitchenAid type single blade mixer with 41.5 g of MDI Mondur PC.
  • these formulations can be scaled-up to form larger volumes of this shape-memory material.
  • the mixture containing the isocyanate portion and the polyol portion is mixed for about 20 seconds and then poured into a mold and immediately closed by placing a top metal plate on the mold. Due to the significant amount of pressure generated by the foam-forming process, a C-clamp can be used to hold the top metal plate and mold together to prevent leakage of the mixture from the mold. After approximately 2 hours, the polyurethane foam material is sufficiently cured such that the mold can be removed. Thereafter, in one specific embodiment, the polyurethane foam material is treated “post-cure” at a temperature of 100° C. for approximately 6 hours so that the polyurethane foam material reaches its full strength.
  • the polyurethane foam material at this stage will, almost always, include a layer of “skin” on the outside surface of the polyurethane foam.
  • the “skin” is a layer of solid polyurethane elastomer formed when the mixture contacts with the mold surface. It is found that the thickness of the skin depends on the concentration of water added to the mixture. Excess water content decreases the thickness of the skin and insufficient water content increases the thickness of the skin. The formation of the skin is believed to be due to the reaction between the isocyanate in the mixture and the moisture on the mold surface. Therefore, additional mechanic conversion processes are needed to remove the skin. Tools such as band saws, miter saws, or hack saws may be used to remove skin. After removing the skin from the polyurethane foam material, it will have a full open cell structure, excellent elasticity, and very good tear strength.
  • the polyurethane foam material is in its original, expanded, shape having an original, or expanded, thickness 36 ( FIG. 2 ).
  • the polyurethane foam material Prior to including the polyurethane foam material as part of sealing device 30 , the polyurethane foam material is saturated in an adhesion material.
  • Suitable adhesion materials include water and isopropyl alcohol dissolvable polymers such as poly(vinyl pyrrolidone) sold by International Specialty Products under the commercial name PVP K-30. This adhesion material is used for water-triggered shape-memory polyurethane foam materials. Any polymers that are dissolvable in oil and solvent can be used for as adhesion materials for oil-triggered shape-memory materials. Suitable polymers for these applications include polystyrene, poly)methyl methacrylate), etc.
  • the adhesion materials are usually supplied in the form of solid powders or pellets. Therefore, the adhesion material solution has to be prepared before use.
  • 30% PVP K-30 and 70% isopropyl alcohol (“IPA”) by weight are mixed together.
  • 30% polystyrene pellets and 70% Methyl Isobutyl Ketone (“MIBK”) by weight are mixed together.
  • a vacuum at approximately 762 mm Hg is applied to the polyurethane foam material so that the adhesion material solution can penetrate throughout the cells of the polyurethane foam material, air trapped inside the polyurethane foam material can be removed, and voids within the polyurethane foam material can be replaced with the adhesion material solution.
  • the polyurethane foam material impregnated with the adhesion material solution is then placed between two metal plates and mechanically compressed from its original, or expanded, thickness of about 20 mm to approximately 14 mm or less.
  • the polyurethane foam material impregnated with the adhesion material solution is compressed from an original thickness to about 50% of the original thickness.
  • the polyurethane foam material impregnated with the adhesion material is compressed from an original thickness to about 30% of the original thickness. Spacers and c-clamps can be used to control finished thickness.
  • the compressed polyurethane foam material is then placed inside a vacuum oven and heated to 80° C. for approximately 8 hours or more to remove all of the liquid used to suspend the adhesion material from the polyurethane foam material.
  • the finished polyurethane foam material is stable in its compressed position or shape at dry conditions and has compressed, or run-in, thickness 34 .
  • the polyurethane foam material can then be installed onto a base pipe with a permanent bonding material so that the polyurethane foam material forms sealing device 30 .
  • the polyurethane foam material may be included as part of sealing device 30 such as by including a rubber casing over the polyurethane foam material in place of the prior art swellable absorbent materials.
  • the impregnated polyurethane foam material remains in its compressed state, or run-in position, during run-in of the sealing device 30 into wellbore 50 .
  • the impregnated polyurethane foam material also remains in the run-in position until the correct fluid contacts the impregnated polyurethane foam material for a sufficient amount of time so that the adhesion material dissolves and the polyurethane foam material can expand to the set or expanded position.
  • the correct fluid may be water, oil, or some other type of fluid. The correct fluid is determined based upon the adhesion material utilized in forming the impregnated polyurethane foam material. If the adhesion material is dissolvable in water, then the correct fluid is water. If the adhesion material is dissolvable in oil, then the correct fluid is oil.
  • the water dissolves the adhesion material.
  • the forces holding the impregnated polyurethane foam weaken until the point that the energy stored in the polyurethane foam material are greater than the adhesion forces provided by the adhesion material.
  • the polyurethane foam material expands from its compressed position to its original shape as formed prior to impregnation and compression. In so doing, the polyurethane foam material contacts inner wall surface 54 of wellbore 50 to establish a seal that divides annulus 60 of the wellbore 50 .
  • expansion of the polyurethane foam material is not dependent upon absorption of any fluid.
  • the polyurethane foam material by itself, provides the expanded shape to establish the seal against inner wall surface 54 of wellbore 50 .
  • the tubing string having sealing device 30 comprising shape-memory material 32 is run-in wellbore 50 , which is defined by wellbore casing 52 , to the desired location.
  • shape-memory material 32 has a compressed, run-in, thickness 34 .
  • Fluid is then either pumped down annulus 60 between outer wall surface 42 and inner wall surface 54 of wellbore casing 52 .
  • fluid can be pumped down bore 44 of tubing string 42 and through ports (not shown) in the wall of tubing string 42 to contact sealing device 30 .
  • the fluid By contacting sealing device 30 and, thus, shape-memory material 32 , the fluid “activates” shape-memory material 32 by dissolving the adhesion material holding shape-memory material 32 in the run-in or compressed position. After a sufficient amount of adhesion material is dissolved, i.e., after the adhesion material is dissolved such that the stored energy in the compressed shape-memory material 32 is greater than the compressive forces provided by the adhesion material, shape-memory material 32 expands from the run-in or compressed position ( FIG. 1 ) to the expanded or set position ( FIG. 2 ) having an original, expanded, thickness 36 . In so doing, shape-memory material 32 engages with inner wall surface 54 of wellbore casing 50 to divide annulus 60 and, thus, isolate a portion of wellbore 50 below sealing device 30 .
  • sealing device 30 should have an outer diameter around tubing string 42 , i.e., original or expanded thickness 36 that is large enough such that expansion of sealing device 30 results in sealing device 30 exerting a force into inner wall surface 54 of wellbore casing 52 so that a sufficient seal can be formed between sealing device 30 and inner wall surface 54 of wellbore casing 52 . Therefore, the outer diameter of tubing sting 42 , as well as inner diameter of wellbore casing 52 should be taken into consideration when determining the thickness (or outer diameter) formed by sealing device 30 . Determining the size of shape-memory material 32 in a given sealing device 30 to provide the desired or necessary sealing between the sealing device and the inner wall surface of the wellbore is easily achieved by persons of ordinary skill in the art in light of the present disclosure.
  • the adhesion material is selected based upon its ability to maintain shape-memory material 32 in the compressed position ( FIG. 1 ) while being submerged in water, oil, or other fluid for an amount sufficient for tubing string 42 to be lowered and properly disposed within wellbore casing 52 prior to expansion.
  • sealing device 30 is capable of being run-in wellbores having fluids already present in within annulus 60 without concern that shape-memory material 32 will expand prematurely.
  • the adhesion material has a known dissolution rate so that the time for sealing device 30 to expand from the run-in position ( FIG. 1 ) to the set position ( FIG. 2 ) can be predicted with little or no error.
  • shape-memory material 32 and, thus, the adhesion material are protected from prematurely contacting the fluid that is used to dissolve the adhesion material such as by encasing shape-memory material 32 with an additional layer of polyurethane coating.
  • This additional polyurethane coating on the outside surface of the shape-memory material includes those that are easily degradable in a fluid such as conventional liquid moisture-cured TDI-polyether based polyurethane resin.
  • These conventional moisture-cured polyurethane resins can be obtained from companies such as Bayer as sold under the commercial name Baytec MP-080.
  • shape-memory materials provide prolonged resiliency and strength compared to swellable materials and other materials that rely on absorb fluids to maintain their expanded shapes. Moreover, the shape-memory materials provide their sealing characteristics in their naturally occurring expanded shapes, whereas the swellable materials and other materials that rely on absorbed fluids to maintain their expanded shapes are in their “unnaturally” occurring expanded shape. In other words, the shape-memory materials are energized in their compressed position, and unenergized in their expanded position, whereas the swellable materials are unenergized in their compressed positions and energized in their expanded positions.
  • the swellable materials have a tendency to release their energy when in their expanded position, thereby weakening the seal against the inner wall surface of the wellbore.
  • the shape-memory materials have no stored energy in their expanded position that, if released, would weaken the seal against the inner wall surface of the wellbore.
  • any stored energy in the shape-memory materials would only create a greater force into the inner wall surface of the wellbore to increase the strength of the seal against the inner wall surface of the wellbore.

Abstract

Sealing devices such as packers comprise a shape-memory material having a compressed run-in position or shape and an original expanded position or shape. The shape-memory material may comprise a polyurethane foam material held in the compressed run-in position by an adhesion material that is dissolvable by a fluid. The fluid may be a wellbore fluid already present in the wellbore or a fluid pumped down the wellbore after the sealing device is disposed within the wellbore. The fluid may also be a production fluid from the well. Upon being contacted by the fluid, the adhesion material dissolves and the shape-memory material expands to its original expanded position or shape, thereby sealing and dividing the annulus of the wellbore.

Description

    BACKGROUND
  • 1. Field of Invention
  • The invention is directed to sealing devices used in oil and gas wellbores to seal the wellbore and, in particular, to sealing devices having shape memory materials that remain in a compressed state until wellbore fluid, such as oil or water, contacts the shape memory material so that the shape memory material can expand and seal the wellbore.
  • 2. Description of Art
  • Packers having swellable materials encased within an expandable sealing element such as a rubber casing or balloon are known in the art. These types of packers expand and, thus, seal to the inner wall surface of a wellbore by contacting hydraulic fluid or other fluid with the swellable materials encased within the rubber casing so that the swellable materials absorb the fluid and expand. In one type of these packers, for example, hydraulic fluid is pumped down a string of tubing having the packer secured thereto. The hydraulic fluid travels down the bore of the string of tubing and through a port that is in fluid communication with an inner cavity of the rubber casing. Swellable materials disposed within the rubber casing are contacted by the hydraulic fluid. As a result, the swellable materials absorb the fluid and expand. As the swellable materials expand and hydraulic fluid is pumped into the rubber casing, the rubber casing expands to seal the wellbore. After expansion, hydraulic fluid pressure is decreased and the rubber casing remains is held in the expanded position solely by the swellable materials having absorbed the fluid. The swellable materials, however, become softer and lack desirable prolonged strength after expansion because the fluid, which is considered a solvent, reduces intramolecular van der Waals interactions. As a result, packers relying on swellable materials to create a seal with an inner wall surface of the wellbore can prematurely fail because the swellable materials become weaker.
  • SUMMARY OF INVENTION
  • Broadly, downhole tools and, in particular, sealing elements or devices such as packers, are disclosed. The sealing devices include one or more shape-memory materials that are run-in to the wellbore in a compressed shape or position. The shape-memory material is held in the compressed shape by an adhesion material. The adhesion material is dissolvable by a fluid placed in contact with the adhesion material such that when the adhesion material comes into contact with the fluid, the adhesion material dissolves. In certain embodiments, the adhesion material is dissolvable by water. In other embodiments, the adhesion material is dissolvable by a hydrocarbon such as oil.
  • After the sealing device having the shape-memory material is located at the desired location within the well, the shape-memory material is contacted with the fluid that dissolves the adhesion material. After dissolution of the adhesion material, the shape-memory material is allowed to expand to its pre-compressed shaped, i.e., its original, expanded shape or set position. The expanded shape or set position, therefore, is the shape of the shape-memory material after it is manufactured and before it is compressed. In other words, the shape-memory material possesses hibernated shape memory that provides a shape to which the shape-memory material naturally takes after its manufacturing.
  • As a result of the shape-memory material being expanded to its set position, the shape-memory material seals the annulus of the wellbore. Although the shape-memory material expands due to its contact with the dissolving fluid, it is to be understood that the shape-memory material returns to its original, expanded shape due to the shape-memory characteristics of the shape-memory material and not due to the shape-memory material absorbing any fluid. In other words, even though fluid may enter into pores, cells, or crevices of the shape-memory material, the fluid so disposed is not required to maintain the shape-memory material in the original, expanded shape.
  • In one specific embodiment, the shape-memory materials is a polyurethane foam material that is extremely tough and resilient and that is capable of being compressed and returned to substantially its original expanded shape. The polyurethane foam material is held in the compressed state by an adhesion material. Once the adhesion material is dissolved, the polyurethane foam material is no longer held in its compressed or run-in shape and, thus, the polyurethane foam material expands toward its original shape. In so doing, the polyurethane foam material engages the inner wall surface of the wellbore, either directly or indirectly such as by having a rubber outer shell covering the polyurethane foam material. In certain embodiments, the inner wall surface of the wellbore is defined by the inner diameter of wellbore casing. In other embodiments, the inner wall surface of the wellbore is “open-hole,” i.e., defined by the hole drilled into the earth formation.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a cross-sectional view of one embodiment of a sealing device disclosed herein shown in the compressed or run-in position.
  • FIG. 2 is a cross-sectional view of the sealing device of FIG. 1 shown in the expanded or set position.
  • While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF INVENTION
  • Referring now to FIGS. 1-2, sealing device 30 is disposed on the outer wall surface 40 of a tubing string 42. As shown in FIGS. 1-2, sealing device 30 comprises shape-memory material 32 comprising a polyurethane foam material. The polyurethane foam material is formed by combining two separate portions of chemical reactants. These two separate portions are referred to herein as the isocyanate portion and polyol portion. The isocyanate portion may comprise a modified isocyanate (MI) or a modified diphenylmethane diisocyanate (MDI) based monomeric diisocyanate or polyisocyanate. The polyol portion may comprise a polyether, polyester or polycarbonate-based di- or multifunctional hydroxyl ended prepolymer.
  • Water is included as part of the polyol portion and acts as a blowing agent to provide a foam structure because of carbon dioxide generated from the reaction between isocyanate and water when the isocyanate portion and the polyol portion are combined.
  • In one embodiment, the isocyanate portion contains modified MDI Mondur PC and the polyol portion contains (1) polyester polyol, which consist of a trimethylolpropane branched diethylene glycol adipate sold under the commercial name as Fomrez 45 from Crompton Corporation; (2) chain extender aromatic diamine Dimethylthiotoluenediamine (“DMTDA”) sold by Albemarle under the commercial name Ethacure 300; (3) catalysts; (4) surfactant; and (5) water. The chain extender is a liquid slower polyurethane curative that provides enhanced high temperature properties. The catalyst and surfactant are added into the polyol portion to control final foam cell structure, either open or close, as well as the foam physical properties. In certain embodiments, either amine or metal-based catalysts are included to achieve good properties of polyurethane foam materials. Such catalysts are commercially available from companies such as Air Products. Suitable catalysts that provide especially good properties of polyurethane foam materials include pentamethyldipropylenetriamine, an amine-based catalyst sold under the commercial name Polycat 77 by Air Products, dibutyltindilaurate, a metal-based catalyst sold under the commercial name DABCO T-12 by Air Products.
  • A small amount of surfactant, e.g., 0.5% of total weight, such as the surfactant sold under the commercial name DABCO DC-198 by Air Products, can be added to control foam cell structure and distribution. Colorant may be added in the polyol portion to provide desired color in the finished product. Such colorants are commercially available from companies such as Milliken Chemical which sells a suitable colorant under the commercial name Reactint.
  • After the isocyanate portion and the polyol portions are prepared, they are combined together at a desired temperature. The temperature at which the two portions are combined determines the degree of cell size within the resultant polyurethane foam material. For example, higher temperatures of the mixture provide larger cell size while lower temperatures of the mixture provide smaller cell size.
  • In one particular embodiment, the polyester polyol comprising of a trimethylolpropane branched diethylene glycol adipate sold under the commercial name as Fomrez 45 from Crompton Corporation, is pre-heated to 100° C. before combining with the isocyanate portion. The isocyanate portion is the combined with the polyol portion and a foaming reaction is immediately initiated and the mixture's viscosity increases rapidly.
  • In another particular embodiment, the polyol comprising of poly(1,6-hexanediol carbonate) polyol sold by Arch Chemicals under the commercial name Poly-CD220 is preheated to 100° C. before combing with the isocyanate portion. The isocyanate portion is then combined with the polyol portion and a foaming reaction is immediately initiated and the mixture's viscosity increases rapidly. The resulting foam made from polycarbonate polyols has a high resistance to hydrolysis and oil attacks.
  • Due to the high viscosity of the mixture and the reaction occurring quickly, a suitable mixer is recommended to form the polyurethane foam material. Although there are many commercially available fully automatic mixers specially designed for two-part polyurethane foam processing, it is found that mixers such as KitchenAid type mixers with single or double blades work particularly well. In large-scale mixing, eggbeater mixers and drill presses work particularly well.
  • In mixing the isocyanate and polyol portions, the amount of isocyanate and polyol included in the mixture should be chemically balanced according to their equivalent weight. In one specific embodiment, 5% more isocyanate by equivalent weight is combined with the polyol portion.
  • In one embodiment, the polyol portion is formed by 50 g of Fomrez 45 polyester polyol is combined with 1.6 g of water, 1.5 g of DMTDA chain extender, 0.1 g of Polycat 77 catalyst, 0.5 g of DABCO DC-198 surfactant, and 0.5 g of Reactint colorant to form the polyol portion. The polyol portion is preheated to 100° C. and mixed in a KitchenAid type single blade mixer with 40.4 of MDI Mondur PC. As will be recognized by persons of ordinary skill in the art, these formulations can be scaled-up to form larger volumes of this shape-memory material.
  • In another embodiment, the polyol portion is formed by 50 g of Poly-CD220 polycarbonate polyol is combined with 1.6 g of water, 1.5 g DMTDA chain extender, 0.1 g of Polycat 77 catalyst, 0.5 g DABCO DC-198 surfactant, and 0.5 g Reactint colorant to form the polyol portion. The polyol portion is preheated to 100° C. and mixed in a KitchenAid type single blade mixer with 41.5 g of MDI Mondur PC. As will be recognized by persons of ordinary skill in the art, these formulations can be scaled-up to form larger volumes of this shape-memory material.
  • The mixture containing the isocyanate portion and the polyol portion is mixed for about 20 seconds and then poured into a mold and immediately closed by placing a top metal plate on the mold. Due to the significant amount of pressure generated by the foam-forming process, a C-clamp can be used to hold the top metal plate and mold together to prevent leakage of the mixture from the mold. After approximately 2 hours, the polyurethane foam material is sufficiently cured such that the mold can be removed. Thereafter, in one specific embodiment, the polyurethane foam material is treated “post-cure” at a temperature of 100° C. for approximately 6 hours so that the polyurethane foam material reaches its full strength.
  • Additionally, the polyurethane foam material at this stage will, almost always, include a layer of “skin” on the outside surface of the polyurethane foam. The “skin” is a layer of solid polyurethane elastomer formed when the mixture contacts with the mold surface. It is found that the thickness of the skin depends on the concentration of water added to the mixture. Excess water content decreases the thickness of the skin and insufficient water content increases the thickness of the skin. The formation of the skin is believed to be due to the reaction between the isocyanate in the mixture and the moisture on the mold surface. Therefore, additional mechanic conversion processes are needed to remove the skin. Tools such as band saws, miter saws, or hack saws may be used to remove skin. After removing the skin from the polyurethane foam material, it will have a full open cell structure, excellent elasticity, and very good tear strength.
  • At this point, the polyurethane foam material is in its original, expanded, shape having an original, or expanded, thickness 36 (FIG. 2).
  • Prior to including the polyurethane foam material as part of sealing device 30, the polyurethane foam material is saturated in an adhesion material. Suitable adhesion materials include water and isopropyl alcohol dissolvable polymers such as poly(vinyl pyrrolidone) sold by International Specialty Products under the commercial name PVP K-30. This adhesion material is used for water-triggered shape-memory polyurethane foam materials. Any polymers that are dissolvable in oil and solvent can be used for as adhesion materials for oil-triggered shape-memory materials. Suitable polymers for these applications include polystyrene, poly)methyl methacrylate), etc.
  • The adhesion materials are usually supplied in the form of solid powders or pellets. Therefore, the adhesion material solution has to be prepared before use. For one specific example of water-triggered adhesion material solution, 30% PVP K-30 and 70% isopropyl alcohol (“IPA”) by weight are mixed together. For one specific example of an oil-triggered adhesion material solution, 30% polystyrene pellets and 70% Methyl Isobutyl Ketone (“MIBK”) by weight are mixed together.
  • After saturation of the polyurethane foam material in the adhesion material solution, a vacuum at approximately 762 mm Hg is applied to the polyurethane foam material so that the adhesion material solution can penetrate throughout the cells of the polyurethane foam material, air trapped inside the polyurethane foam material can be removed, and voids within the polyurethane foam material can be replaced with the adhesion material solution.
  • The polyurethane foam material impregnated with the adhesion material solution is then placed between two metal plates and mechanically compressed from its original, or expanded, thickness of about 20 mm to approximately 14 mm or less. In one specific embodiment, the polyurethane foam material impregnated with the adhesion material solution is compressed from an original thickness to about 50% of the original thickness. In another embodiment, the polyurethane foam material impregnated with the adhesion material is compressed from an original thickness to about 30% of the original thickness. Spacers and c-clamps can be used to control finished thickness. The compressed polyurethane foam material is then placed inside a vacuum oven and heated to 80° C. for approximately 8 hours or more to remove all of the liquid used to suspend the adhesion material from the polyurethane foam material.
  • After all of this suspending liquid is removed from the polyurethane foam material, the finished polyurethane foam material is stable in its compressed position or shape at dry conditions and has compressed, or run-in, thickness 34. The polyurethane foam material can then be installed onto a base pipe with a permanent bonding material so that the polyurethane foam material forms sealing device 30. Alternatively, the polyurethane foam material may be included as part of sealing device 30 such as by including a rubber casing over the polyurethane foam material in place of the prior art swellable absorbent materials.
  • The impregnated polyurethane foam material remains in its compressed state, or run-in position, during run-in of the sealing device 30 into wellbore 50. The impregnated polyurethane foam material also remains in the run-in position until the correct fluid contacts the impregnated polyurethane foam material for a sufficient amount of time so that the adhesion material dissolves and the polyurethane foam material can expand to the set or expanded position. The correct fluid may be water, oil, or some other type of fluid. The correct fluid is determined based upon the adhesion material utilized in forming the impregnated polyurethane foam material. If the adhesion material is dissolvable in water, then the correct fluid is water. If the adhesion material is dissolvable in oil, then the correct fluid is oil.
  • In the embodiment in which the correct fluid is water, the water dissolves the adhesion material. As a result, the forces holding the impregnated polyurethane foam weaken until the point that the energy stored in the polyurethane foam material are greater than the adhesion forces provided by the adhesion material. At that point, the polyurethane foam material expands from its compressed position to its original shape as formed prior to impregnation and compression. In so doing, the polyurethane foam material contacts inner wall surface 54 of wellbore 50 to establish a seal that divides annulus 60 of the wellbore 50. As will be recognized by persons of ordinary skill in the art, expansion of the polyurethane foam material is not dependent upon absorption of any fluid. Thus, the polyurethane foam material, by itself, provides the expanded shape to establish the seal against inner wall surface 54 of wellbore 50.
  • Still with reference to FIGS. 1-2, in operation, the tubing string having sealing device 30 comprising shape-memory material 32 is run-in wellbore 50, which is defined by wellbore casing 52, to the desired location. As shown in FIG. 1, shape-memory material 32 has a compressed, run-in, thickness 34. Fluid is then either pumped down annulus 60 between outer wall surface 42 and inner wall surface 54 of wellbore casing 52. Alternatively, fluid can be pumped down bore 44 of tubing string 42 and through ports (not shown) in the wall of tubing string 42 to contact sealing device 30. By contacting sealing device 30 and, thus, shape-memory material 32, the fluid “activates” shape-memory material 32 by dissolving the adhesion material holding shape-memory material 32 in the run-in or compressed position. After a sufficient amount of adhesion material is dissolved, i.e., after the adhesion material is dissolved such that the stored energy in the compressed shape-memory material 32 is greater than the compressive forces provided by the adhesion material, shape-memory material 32 expands from the run-in or compressed position (FIG. 1) to the expanded or set position (FIG. 2) having an original, expanded, thickness 36. In so doing, shape-memory material 32 engages with inner wall surface 54 of wellbore casing 50 to divide annulus 60 and, thus, isolate a portion of wellbore 50 below sealing device 30.
  • As will be recognized by persons of ordinary skill in the art, sealing device 30 should have an outer diameter around tubing string 42, i.e., original or expanded thickness 36 that is large enough such that expansion of sealing device 30 results in sealing device 30 exerting a force into inner wall surface 54 of wellbore casing 52 so that a sufficient seal can be formed between sealing device 30 and inner wall surface 54 of wellbore casing 52. Therefore, the outer diameter of tubing sting 42, as well as inner diameter of wellbore casing 52 should be taken into consideration when determining the thickness (or outer diameter) formed by sealing device 30. Determining the size of shape-memory material 32 in a given sealing device 30 to provide the desired or necessary sealing between the sealing device and the inner wall surface of the wellbore is easily achieved by persons of ordinary skill in the art in light of the present disclosure.
  • In one embodiment, the adhesion material is selected based upon its ability to maintain shape-memory material 32 in the compressed position (FIG. 1) while being submerged in water, oil, or other fluid for an amount sufficient for tubing string 42 to be lowered and properly disposed within wellbore casing 52 prior to expansion. Thus, sealing device 30 is capable of being run-in wellbores having fluids already present in within annulus 60 without concern that shape-memory material 32 will expand prematurely. In certain embodiments, the adhesion material has a known dissolution rate so that the time for sealing device 30 to expand from the run-in position (FIG. 1) to the set position (FIG. 2) can be predicted with little or no error. In other embodiments, shape-memory material 32 and, thus, the adhesion material, are protected from prematurely contacting the fluid that is used to dissolve the adhesion material such as by encasing shape-memory material 32 with an additional layer of polyurethane coating. This additional polyurethane coating on the outside surface of the shape-memory material includes those that are easily degradable in a fluid such as conventional liquid moisture-cured TDI-polyether based polyurethane resin. These conventional moisture-cured polyurethane resins can be obtained from companies such as Bayer as sold under the commercial name Baytec MP-080.
  • The use of shape-memory materials provide prolonged resiliency and strength compared to swellable materials and other materials that rely on absorb fluids to maintain their expanded shapes. Moreover, the shape-memory materials provide their sealing characteristics in their naturally occurring expanded shapes, whereas the swellable materials and other materials that rely on absorbed fluids to maintain their expanded shapes are in their “unnaturally” occurring expanded shape. In other words, the shape-memory materials are energized in their compressed position, and unenergized in their expanded position, whereas the swellable materials are unenergized in their compressed positions and energized in their expanded positions. As a result, the swellable materials have a tendency to release their energy when in their expanded position, thereby weakening the seal against the inner wall surface of the wellbore. On the other hand, the shape-memory materials have no stored energy in their expanded position that, if released, would weaken the seal against the inner wall surface of the wellbore. Thus, any stored energy in the shape-memory materials would only create a greater force into the inner wall surface of the wellbore to increase the strength of the seal against the inner wall surface of the wellbore.
  • It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.

Claims (7)

1. A sealing device for use in a wellbore to isolate an annulus of the wellbore, the sealing device comprising:
a shape-memory material, the shape-memory material having a compressed position and an expanded position and the shape-memory material being maintained in the compressed position by a dissolvable adhesion material,
wherein the dissolvable adhesion material is dissolvable by a wellbore fluid placed in contact with the adhesion material.
2. The sealing device of claim 1, wherein the shape-memory material comprises a polyurethane foam material.
3. The sealing device of claim 1, wherein the dissolvable adhesion material comprises a polymer.
4-19. (canceled)
20. A method of sealing wellbore to divide an annulus of the wellbore, the method comprising:
(a) securing a downhole tool to a string of tubing, the downhole tool comprising a sealing device comprising a shape-memory material, the shape-memory material having a compressed run-in position and an original expanded position, wherein the shape-memory material is maintained in the compressed run-in position by a dissolvable adhesion material;
(b) running the downhole tool in a wellbore;
(c) contacting the shape-memory material and dissolvable adhesion material with a fluid;
(d) dissolving the dissolvable adhesion material with the fluid;
(e) expanding the shape-memory material from the compressed run-in position to the original expanded position, thereby sealing and dividing the annulus of wellbore with the shape-memory material in the original expanded position.
21. The method of claim 20, wherein the fluid is water.
22. The method of claim 20, wherein the fluid is oil.
US12/802,223 2007-09-28 2010-06-02 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same Abandoned US20100236794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/802,223 US20100236794A1 (en) 2007-09-28 2010-06-02 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/904,934 US20090084539A1 (en) 2007-09-28 2007-09-28 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same
US12/802,223 US20100236794A1 (en) 2007-09-28 2010-06-02 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/904,934 Division US20090084539A1 (en) 2007-09-28 2007-09-28 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same

Publications (1)

Publication Number Publication Date
US20100236794A1 true US20100236794A1 (en) 2010-09-23

Family

ID=40130840

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/904,934 Abandoned US20090084539A1 (en) 2007-09-28 2007-09-28 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same
US12/802,223 Abandoned US20100236794A1 (en) 2007-09-28 2010-06-02 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/904,934 Abandoned US20090084539A1 (en) 2007-09-28 2007-09-28 Downhole sealing devices having a shape-memory material and methods of manufacturing and using same

Country Status (2)

Country Link
US (2) US20090084539A1 (en)
WO (1) WO2009045656A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110135530A1 (en) * 2009-12-08 2011-06-09 Zhiyue Xu Method of making a nanomatrix powder metal compact
US20110315226A1 (en) * 2010-06-23 2011-12-29 Baker Hughes Incorporated Telescoping Conduits With Shape Memory Foam as a Plug and Sand Control Feature
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US20130062061A1 (en) * 2011-03-02 2013-03-14 Composite Technology Development, Inc. Methods and systems for zonal isolation in wells
US8424610B2 (en) 2010-03-05 2013-04-23 Baker Hughes Incorporated Flow control arrangement and method
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US20130189123A1 (en) * 2012-01-25 2013-07-25 Charles O. Stokley Hydraulic Powered Downhole Pump
WO2013148014A1 (en) * 2012-03-27 2013-10-03 Baker Hughes Incorporated Shape memory seal assembly
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US20140138088A1 (en) * 2012-11-16 2014-05-22 Baker Hughes Incorporated Shape Memory Cup Seal and Method of Use
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
WO2014116457A1 (en) * 2013-01-25 2014-07-31 Baker Hughes Incorporated Variable tg shape memory materials for wellbore devices
WO2014205066A1 (en) * 2013-06-21 2014-12-24 Baker Hughes Incorporated Electronics frame with shape memory seal elements
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9068437B2 (en) 2010-03-26 2015-06-30 Baker Hughes Incorporated Variable Tg shape memory materials for wellbore devices
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9284812B2 (en) 2011-11-21 2016-03-15 Baker Hughes Incorporated System for increasing swelling efficiency
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9441458B2 (en) 2010-03-26 2016-09-13 Baker Hughes Incorporated Variable Tg shape memory polyurethane for wellbore devices
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US20180172020A1 (en) * 2016-12-15 2018-06-21 Saudi Arabian Oil Company Wellbore tools including smart materials
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10619445B2 (en) 2014-08-13 2020-04-14 Halliburton Energy Services, Inc. Degradable downhole tools comprising retention mechanisms
WO2020232308A1 (en) * 2019-05-16 2020-11-19 Saudi Arabian Oil Company Unfoldable device for controlling loss circulation
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11371326B2 (en) 2020-06-01 2022-06-28 Saudi Arabian Oil Company Downhole pump with switched reluctance motor
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090143257A1 (en) * 2007-12-03 2009-06-04 Ling Kong Teng Methods and Compositions for Controlling Water Production
CA2882455C (en) * 2009-05-01 2017-05-30 Weatherford Technology Holdings, Llc Wellbore isolation tool using sealing element having shape memory polymer
US8763687B2 (en) 2009-05-01 2014-07-01 Weatherford/Lamb, Inc. Wellbore isolation tool using sealing element having shape memory polymer
US8443888B2 (en) * 2009-08-13 2013-05-21 Baker Hughes Incorporated Apparatus and method for passive fluid control in a wellbore
CA2715700A1 (en) 2009-09-03 2011-03-03 Schlumberger Canada Limited Methods for servicing subterranean wells
US8464787B2 (en) 2010-01-14 2013-06-18 Baker Hughes Incorporated Resilient foam debris barrier
US8919433B2 (en) * 2010-01-14 2014-12-30 Baker Hughes Incorporated Resilient foam debris barrier
US8430173B2 (en) 2010-04-12 2013-04-30 Halliburton Energy Services, Inc. High strength dissolvable structures for use in a subterranean well
US8430174B2 (en) 2010-09-10 2013-04-30 Halliburton Energy Services, Inc. Anhydrous boron-based timed delay plugs
US8714241B2 (en) 2010-04-21 2014-05-06 Baker Hughes Incorporated Apparatus and method for sealing portions of a wellbore
US20110278019A1 (en) * 2010-05-13 2011-11-17 Davis Mark L Spillage control device and method of using same
US8443882B2 (en) * 2010-07-07 2013-05-21 Baker Hughes Incorporated Wellbore centralizer for tubulars
US8980799B2 (en) 2010-09-16 2015-03-17 Baker Hughes Incorporated Polymer foam cell morphology control and use in borehole filtration devices
US8833443B2 (en) 2010-11-22 2014-09-16 Halliburton Energy Services, Inc. Retrievable swellable packer
US8668019B2 (en) * 2010-12-29 2014-03-11 Baker Hughes Incorporated Dissolvable barrier for downhole use and method thereof
US8739408B2 (en) * 2011-01-06 2014-06-03 Baker Hughes Incorporated Shape memory material packer for subterranean use
US9120898B2 (en) 2011-07-08 2015-09-01 Baker Hughes Incorporated Method of curing thermoplastic polymer for shape memory material
US8939222B2 (en) 2011-09-12 2015-01-27 Baker Hughes Incorporated Shaped memory polyphenylene sulfide (PPS) for downhole packer applications
US8829119B2 (en) 2011-09-27 2014-09-09 Baker Hughes Incorporated Polyarylene compositions for downhole applications, methods of manufacture, and uses thereof
CN102425391A (en) * 2011-11-11 2012-04-25 中国石油集团长城钻探工程有限公司 Branch well window sealing method based on memory alloy
US8604157B2 (en) 2011-11-23 2013-12-10 Baker Hughes Incorporated Crosslinked blends of polyphenylene sulfide and polyphenylsulfone for downhole applications, methods of manufacture, and uses thereof
US9144925B2 (en) 2012-01-04 2015-09-29 Baker Hughes Incorporated Shape memory polyphenylene sulfide manufacturing, process, and composition
US9103188B2 (en) * 2012-04-18 2015-08-11 Baker Hughes Incorporated Packer, sealing system and method of sealing
CN104411340B (en) * 2012-05-29 2016-09-07 3M创新有限公司 Absorbent article including the foam of polymers and intermediate with superabsorbents
US9707642B2 (en) 2012-12-07 2017-07-18 Baker Hughes Incorporated Toughened solder for downhole applications, methods of manufacture thereof and articles comprising the same
US20140262267A1 (en) * 2013-03-14 2014-09-18 Vincent Eugene Fustos Well sealing technology
CN103206186A (en) * 2013-03-15 2013-07-17 中国石油天然气股份有限公司 Down-hole packer based on shape memory materials
WO2014210283A1 (en) * 2013-06-28 2014-12-31 Schlumberger Canada Limited Smart cellular structures for composite packer and mill-free bridgeplug seals having enhanced pressure rating
US9777548B2 (en) * 2013-12-23 2017-10-03 Baker Hughes Incorporated Conformable devices using shape memory alloys for downhole applications
WO2017209914A1 (en) * 2016-06-01 2017-12-07 Terves Inc. Dissolvable rubber
CN106832172B (en) * 2016-12-28 2020-07-10 深圳大学 Light/heat grading response shape memory polymer and preparation method and application thereof
WO2018119772A1 (en) * 2016-12-28 2018-07-05 深圳大学 Light/heat stage responsive shape-memory polymer, preparation method for same, and applications thereof
US10851617B2 (en) * 2017-04-12 2020-12-01 Saudi Arabian Oil Company Polyurethane foamed annular chemical packer
US10526863B2 (en) 2017-06-02 2020-01-07 The Secant Group, Llc Doped biodegradable elastomer for downhole applications
WO2020060532A1 (en) * 2018-09-17 2020-03-26 Halliburton Energy Services, Inc. Two part bonded seal for static downhole tool applications
GB2595146B (en) 2019-02-20 2023-07-12 Schlumberger Technology Bv Non-metallic compliant sand control screen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037745A1 (en) * 2001-01-16 2006-02-23 Schlumberger Technology Corporation Expandable device for use in a well bore
US20070039741A1 (en) * 2005-08-22 2007-02-22 Hailey Travis T Jr Sand control screen assembly enhanced with disappearing sleeve and burst disc
US20070207306A1 (en) * 2006-03-03 2007-09-06 New Pig Corporation Expanding tape barrier
US7322412B2 (en) * 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US20080105438A1 (en) * 2006-02-09 2008-05-08 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US7392852B2 (en) * 2003-09-26 2008-07-01 Baker Hughes Incorporated Zonal isolation using elastic memory foam
US7399311B2 (en) * 2002-08-05 2008-07-15 Boston Scientific Scimed, Inc. Medical devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782458A (en) * 1971-08-04 1974-01-01 Gray Tool Co Upright, swivelable buoyed conduit for offshore system
US3918523A (en) * 1974-07-11 1975-11-11 Ivan L Stuber Method and means for implanting casing
US4137970A (en) * 1977-04-20 1979-02-06 The Dow Chemical Company Packer with chemically activated sealing member and method of use thereof
US4191254A (en) * 1978-01-16 1980-03-04 Baughman Kenneth E Apparatus and method for plugging voids in a ground stratum
US4499149A (en) * 1980-12-15 1985-02-12 M&T Chemicals Inc. Siloxane-containing polymers
US4415269A (en) * 1981-04-28 1983-11-15 Fraser Ward M Device for providing a reinforced foam lining for well bore holes
DE3139395C2 (en) * 1981-10-03 1984-09-13 Bayer Ag, 5090 Leverkusen Process for consolidating geological rock, earth and coal formations
JPH0739506B2 (en) * 1988-09-30 1995-05-01 三菱重工業株式会社 Shape memory polymer foam
US5497829A (en) * 1993-11-17 1996-03-12 Foam Concepts, Inc. Expansion foam borehole plug and method
US5670601A (en) * 1995-06-15 1997-09-23 Arco Chemical Technology, L.P. Polyurethane elastomers having improved green strength and demold time and polyoxyalkylene polyols suitable for their preparation
US5874484A (en) * 1997-01-30 1999-02-23 Shell Oil Company Use of polyol mixtures in rigid and semi-rigid polyurethane foams
JP2002511114A (en) * 1997-07-09 2002-04-09 ハンツマン・アイシーアイ・ケミカルズ・エルエルシー Compressed hydrophilic polyurethane foam
US6593444B2 (en) * 2000-02-29 2003-07-15 Shell Oil Company Thermoplastic polyurethane elastomers (TPUs) prepared with polytrimethylene carbonate soft segment
US6446717B1 (en) * 2000-06-01 2002-09-10 Weatherford/Lamb, Inc. Core-containing sealing assembly
US6583194B2 (en) * 2000-11-20 2003-06-24 Vahid Sendijarevic Foams having shape memory
CA2435382C (en) * 2001-01-26 2007-06-19 E2Tech Limited Device and method to seal boreholes
CA2412072C (en) * 2001-11-19 2012-06-19 Packers Plus Energy Services Inc. Method and apparatus for wellbore fluid treatment
US6976537B1 (en) * 2002-01-30 2005-12-20 Turbo-Chem International, Inc. Method for decreasing lost circulation during well operation
US7644773B2 (en) * 2002-08-23 2010-01-12 Baker Hughes Incorporated Self-conforming screen
US6935432B2 (en) * 2002-09-20 2005-08-30 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
US6907937B2 (en) * 2002-12-23 2005-06-21 Weatherford/Lamb, Inc. Expandable sealing apparatus
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7527095B2 (en) * 2003-12-11 2009-05-05 Shell Oil Company Method of creating a zonal isolation in an underground wellbore
GB2428058B (en) * 2004-03-12 2008-07-30 Schlumberger Holdings Sealing system and method for use in a well
US20060141239A1 (en) * 2004-12-28 2006-06-29 Gilder Stephen D Method for making a bonded foam product suitable for use as an underlayment for floor coverings
US7422071B2 (en) * 2005-01-31 2008-09-09 Hills, Inc. Swelling packer with overlapping petals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037745A1 (en) * 2001-01-16 2006-02-23 Schlumberger Technology Corporation Expandable device for use in a well bore
US7399311B2 (en) * 2002-08-05 2008-07-15 Boston Scientific Scimed, Inc. Medical devices
US7392852B2 (en) * 2003-09-26 2008-07-01 Baker Hughes Incorporated Zonal isolation using elastic memory foam
US7322412B2 (en) * 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US20070039741A1 (en) * 2005-08-22 2007-02-22 Hailey Travis T Jr Sand control screen assembly enhanced with disappearing sleeve and burst disc
US20080105438A1 (en) * 2006-02-09 2008-05-08 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US20070207306A1 (en) * 2006-03-03 2007-09-06 New Pig Corporation Expanding tape barrier

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US8714268B2 (en) 2009-12-08 2014-05-06 Baker Hughes Incorporated Method of making and using multi-component disappearing tripping ball
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US20110135530A1 (en) * 2009-12-08 2011-06-09 Zhiyue Xu Method of making a nanomatrix powder metal compact
US8424610B2 (en) 2010-03-05 2013-04-23 Baker Hughes Incorporated Flow control arrangement and method
US9441458B2 (en) 2010-03-26 2016-09-13 Baker Hughes Incorporated Variable Tg shape memory polyurethane for wellbore devices
US9068437B2 (en) 2010-03-26 2015-06-30 Baker Hughes Incorporated Variable Tg shape memory materials for wellbore devices
US20110315226A1 (en) * 2010-06-23 2011-12-29 Baker Hughes Incorporated Telescoping Conduits With Shape Memory Foam as a Plug and Sand Control Feature
US8443889B2 (en) * 2010-06-23 2013-05-21 Baker Hughes Incorporated Telescoping conduits with shape memory foam as a plug and sand control feature
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US20130062061A1 (en) * 2011-03-02 2013-03-14 Composite Technology Development, Inc. Methods and systems for zonal isolation in wells
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US10737321B2 (en) 2011-08-30 2020-08-11 Baker Hughes, A Ge Company, Llc Magnesium alloy powder metal compact
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US11090719B2 (en) 2011-08-30 2021-08-17 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9284812B2 (en) 2011-11-21 2016-03-15 Baker Hughes Incorporated System for increasing swelling efficiency
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US20150233221A1 (en) * 2012-01-25 2015-08-20 Tech Flo Consulting, Llc Hydraulic Powered Downhole Pump
US20130189123A1 (en) * 2012-01-25 2013-07-25 Charles O. Stokley Hydraulic Powered Downhole Pump
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US8960314B2 (en) * 2012-03-27 2015-02-24 Baker Hughes Incorporated Shape memory seal assembly
US20130256991A1 (en) * 2012-03-27 2013-10-03 Baker Hughes Incorporated Shape memory seal assembly
WO2013148014A1 (en) * 2012-03-27 2013-10-03 Baker Hughes Incorporated Shape memory seal assembly
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US10612659B2 (en) 2012-05-08 2020-04-07 Baker Hughes Oilfield Operations, Llc Disintegrable and conformable metallic seal, and method of making the same
US9163474B2 (en) * 2012-11-16 2015-10-20 Baker Hughes Incorporated Shape memory cup seal and method of use
US20140138088A1 (en) * 2012-11-16 2014-05-22 Baker Hughes Incorporated Shape Memory Cup Seal and Method of Use
GB2526026B (en) * 2013-01-25 2017-03-01 Baker Hughes Inc Variable Tg shape memory materials for wellbore devices
GB2526026A (en) * 2013-01-25 2015-11-11 Baker Hughes Inc Variable Tg shape memory materials for wellbore devices
WO2014116457A1 (en) * 2013-01-25 2014-07-31 Baker Hughes Incorporated Variable tg shape memory materials for wellbore devices
US9000296B2 (en) 2013-06-21 2015-04-07 Baker Hughes Incorporated Electronics frame with shape memory seal elements
WO2014205066A1 (en) * 2013-06-21 2014-12-24 Baker Hughes Incorporated Electronics frame with shape memory seal elements
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US10619445B2 (en) 2014-08-13 2020-04-14 Halliburton Energy Services, Inc. Degradable downhole tools comprising retention mechanisms
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US20180172020A1 (en) * 2016-12-15 2018-06-21 Saudi Arabian Oil Company Wellbore tools including smart materials
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
WO2020232308A1 (en) * 2019-05-16 2020-11-19 Saudi Arabian Oil Company Unfoldable device for controlling loss circulation
US11492530B2 (en) * 2019-05-16 2022-11-08 Saudi Arabian Oil Company Unfoldable device for controlling loss circulation
US11674070B1 (en) * 2019-05-16 2023-06-13 Saudi Arabian Oil Company Unfoldable device for controlling loss circulation
US11371326B2 (en) 2020-06-01 2022-06-28 Saudi Arabian Oil Company Downhole pump with switched reluctance motor
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump

Also Published As

Publication number Publication date
US20090084539A1 (en) 2009-04-02
WO2009045656A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US20100236794A1 (en) Downhole sealing devices having a shape-memory material and methods of manufacturing and using same
US7926565B2 (en) Shape memory polyurethane foam for downhole sand control filtration devices
AU2011229833B2 (en) Variable Tg shape memory polyurethane for wellbore devices
CA2807361C (en) Polymer foam cell morphology control and use in borehole filtration devices
US9068437B2 (en) Variable Tg shape memory materials for wellbore devices
US20140332220A1 (en) Polyurethane activator-breaker fluid system
US20120168977A1 (en) Process for the preparation of conformable materials for downhole screens
US11927082B2 (en) Non-metallic compliant sand control screen
AU2014209715B2 (en) Variable Tg shape memory materials for wellbore devices
WO2015041819A1 (en) In situ plasticization of polymers for actuation or mechanical property change
AU2014265117B2 (en) Polymer foam cell morphology control and use in borehole filtration devices

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION