US20100236786A1 - System and method for performing intervention operations with a subsea y-tool - Google Patents

System and method for performing intervention operations with a subsea y-tool Download PDF

Info

Publication number
US20100236786A1
US20100236786A1 US12/531,898 US53189808A US2010236786A1 US 20100236786 A1 US20100236786 A1 US 20100236786A1 US 53189808 A US53189808 A US 53189808A US 2010236786 A1 US2010236786 A1 US 2010236786A1
Authority
US
United States
Prior art keywords
tool
intervention
branch
recited
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/531,898
Inventor
Andrea Sbordone
Rene Schuurman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US12/531,898 priority Critical patent/US20100236786A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHUURMAN, RENE, SBORDONE, ANDREA
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHUURMAN, RENE, SBORDONE, ANDREA
Publication of US20100236786A1 publication Critical patent/US20100236786A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/076Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells specially adapted for underwater installations

Definitions

  • Intervention in subsea wells often is performed from a floating platform or ship, and access to the subsea well is achieved by a variety of techniques.
  • the intervention operation is performed with wireline, slickline or other cable-type conveyance methods.
  • tools can be conveyed from a surface vessel to a subsea installation through open water. With this technique, the tools are conveyed into a subsea lubricator with a dynamic seal at the top of the lubricator.
  • Such operations are sometimes called “open water” or “riserless” operations and require that the equipment be moved through the open sea water. Additionally, these types of open water operations cannot be performed with coiled tubing while maintaining a coiled tubing injector at the surface.
  • tools are conveyed through a tubular riser or guide system connecting a surface intervention vessel with the subsea installation.
  • the tubular system can provide technical constraints, such as a limited internal diameter.
  • the technical restraints are problematic in moving certain types of intervention tools to the subsea installation. For example, movement of large diameter tools through the tubular system to the subsea installation can be difficult or impossible.
  • the present invention provides a technique for subsea intervention operations which utilizes a Y-tool mounted at a subsurface facility.
  • the Y-tool comprises a guide branch and an open water branch to enable movement of intervention tools to the subsea installation along two different paths.
  • a tubular guide member can be coupled to the guide branch to enable movement of equipment down through the tubular guide member and into the Y-tool.
  • Other equipment can be moved down through the open water and into the Y-tool through the open water branch.
  • FIG. 1 is a schematic front elevation view of a subsea intervention system, according to an embodiment of the present invention
  • FIG. 2 is a schematic front elevation view similar to that of FIG. 1 but showing another example of an intervention operation, according to an embodiment of the present invention.
  • FIG. 3 is a schematic front elevation view similar to that of FIG. 1 but showing another example of an intervention operation, according to an embodiment of the present invention.
  • the present invention generally relates to a technique for performing intervention operations.
  • the technique utilizes a side entry tool or Y-tool deployed proximate a subsea installation to facilitate a wide range of intervention procedures.
  • the Y-tool comprises a base branch that is mounted to the subsea installation to direct intervention equipment into the subsea installation and the subsea well.
  • the Y-tool comprises a plurality of branches through which tools can be directed into the Y-tool and subsequently down into the subsea installation and subsea well.
  • the Y-tool comprises a pair of upper branches that can be referred to as a guide branch and an open water branch designed to receive and direct various types of intervention equipment.
  • the side entry tool is referred to as a Y-tool because of the divergent upper branches that can be used to direct equipment downwardly to the base branch and subsequently into the subsea installation and well.
  • the Y-tool can be constructed in a variety of configurations, shapes and sizes.
  • the various branches can be of different lengths and/or diameters, and two or more upper branches can serve as guides to the lower branch.
  • Use of the Y-tool at the subsea installation enables use of a greater variety of intervention procedures than otherwise afforded by conventional intervention equipment.
  • a tubular guide member is connected to the guide branch of the Y-tool, and the other, divergent, branch extends to the open water.
  • the Y-tool allows an operator to select whether equipment is deployed to the subsea well through the tubular guide member or through the open water. Often the intervention operations can be facilitated by deploying some equipment through a tubular guide member and other equipment through the open water.
  • the ability to utilize different access points to the well helps optimize deployment of tools into the subsea installation, particularly when intervention operations are conducted with different conveyances, e.g. wireline, slickline and coiled tubing.
  • the Y-tool also enables deployment of intervention tools, e.g. tool strings, that, are too large for movement through the tubular guide member.
  • the intervention tool can simply be deployed through the open water, moved into the Y-tool via the open water branch, and positioned within a lubricator that is either part of the Y-tool or positioned below the Y-tool.
  • a coiled tubing conveyance or other conveyance is routed down through the guide branch of the Y-tool and connected to the intervention tool within the enclosed, pressure protected Y-tool/lubricator.
  • the subsea Y-tool enables both the efficient removal of crown plugs from horizontal Christmas trees and the transfer of those plugs through open water.
  • intervention systems utilizing a Y-tool
  • many configurations and methodologies related to the intervention operations and use of the Y-tool are possible.
  • the subsea intervention operations can be performed in conjunction with a variety of subsea installations, including subsea wells, subsea flowlines and other subsea systems.
  • the subsea installation and subsea Y-tool are designed to prevent pressurized fluids from escaping the subsea installation during the intervention operation. Accordingly, the subsea installation and the Y-tool have appropriate sets of seals and valves that can be selectively actuated to maintain a pressure tight envelope that prevents the escape of pressurized borehole fluids. A wide variety of such pressure control valves, seals and other devices can be used to contain the pressurized environment within the subsea installation and Y-tool.
  • the system and methodology described herein enable the use of open water and tubular guide member deployment techniques according to a variety of flexible procedures.
  • a service company can switch from one technique to another without major hardware changes.
  • the techniques can be used individually or in combination during interventions performed on a subsea installation to optimize operational efficiency and to reduce the occurrences of hardware deployment and hardware retrieval between the surface facility, e,g. surface intervention vessel, and the seabed.
  • a Y-tool intervention system enables wireline, slickline and coiled tubing operations to be performed with the same deployed hardware.
  • the system also enables open water wireline and slickline operations without disconnection of the tubular guide member.
  • Coiled tubing conveyance systems also can be used with large tools that can not be moved through the guide member. The need for subsea wet connection of wireline and slickline big diameter took is eliminated, because such tools can be conveyed through the open water. Similarly, the need for an open water wireline or slickline kill line can be eliminated, because the tubular guide member can be used for this purpose.
  • Horizontal Christmas tree plugs can be removed to the open water with a wireline or slickline while allowing immediate access with coiled tubing, via the tubular guide member, without deploying any additional hardware. Similarly, no additional hardware need be deployed or retrieved to switch between wireline/slickline open water operations and coiled tubing operations.
  • the methodology also facilitates the flushing of the lubricator for open water wireline operations, because the coiled tubing/tubular guide member can be used rather than providing an additional service
  • a coiled tubing conveyance can be provided as a contingency for wireline or slickline operations without requiring additional deployment or retrieval of hardware. In each of these applications, the efficiency of the intervention operation is improved and the risk of exposure to hazards related to the subsea intervention is reduced due to the reduced number of activities required to perform the intervention procedures.
  • system 20 comprises a subsea Y-tool 22 proximate a subsea installation 24 .
  • subsea installation 24 may comprise a wellhead, a flowline, a Christmas tree, or another type of subsea installation that is subjected to intervention procedures.
  • the subsea Y-tool may be mounted above subsea installation 24 to direct intervention equipment into the subsea installation.
  • subsea Y-tool comprises a base branch 26 mounted to subsea installation 24 .
  • the Y-tool further comprises at least two upper branches, such as an open water branch 28 and a guide branch 30 .
  • a tubular guide member 32 is coupled between subsea installation 24 and a surface facility 34 , such as an intervention vessel.
  • the tubular guide member 32 may be in the form of a riser system comprising, for example, a rigid, flexible or compliant riser that connects the surface facility 34 to the subsea installation 24 via the Y-tool.
  • the tubular guide member 32 also may comprise a compliant guide such as a spoolable compliant guide having a hollow interior along which equipment may be guided into subsea installation 24 .
  • the lower end of tubular guide member 32 is connected to guide branch 30 of subsea Y-tool 22 .
  • Subsea installation 24 also may comprise a lubricator 36 which allows deployment of an intervention tool string into a pressurized installation that prevents escape of pressurized fluids.
  • the lubricator 36 may he formed as an integral part of subsea Y-tool 22 , or the lubricator 36 may be a separate component positioned beneath the Y-tool 22 .
  • the lubricator can be installed at a variety of positions in the Y-tool, below the Y-tool, or above the Y-tool.
  • the pressurized installation can be achieved by a variety of valves and seals positioned in various arrangements.
  • a plurality of subsea valves 42 can be positioned in the subsea installation 24 beneath the Y-tool 22 .
  • a subsea valve 44 and a dynamic seal 46 can be positioned in the open water branch 28 proximate the net to the open water branch.
  • a subsea valve 48 can be positioned in guide branch 30 of Y-tool 22 .
  • a dynamic seal 50 also is positioned to cooperate with guide branch 30 and can be located in a variety of positions in guide branch 30 or along tubular guide member 32 . In the illustrated embodiment, dynamic seal 50 is positioned generally at a lower end of the tubular guide member 32 proximate an emergency disconnect 52 .
  • Intervention operations can be performed in a variety of subsea installations 24 , and with a variety of configurations of additional equipment connected on top of the subsea installation.
  • the subsea installation 24 comprises a subsea wellhead 54 that may include a Christmas tree and other components positioned above a subsea well 56 .
  • the other components may include subsea valves 42 and related devices, such as a subsea lubricating seal and a blowout preventer having one or more cut-and-seal rams able to cut through the interior of the subsea installation and seal off the subsea installation during an emergency disconnect.
  • the subsea installation 24 also may comprise additional blowout preventers as well as a subsea stripper assembly positioned above the blowout preventers.
  • the number and type of devices mounted on a given subsea installation can vary from one subsea application to another.
  • FIG. 1 an example of one use of the Y-tool to facilitate an intervention operation is illustrated.
  • an intervention operation is performed through the open water branch 28 of Y-tool 22 .
  • An intervention tool 58 such as a tool string or other well equipment, is lowered through the open water by a conveyance, such as a cable-type conveyance 60 .
  • conveyance 60 may be a wireline, slickline or other cable-type conveyance deployed and retrieved via a crane 62 mounted on surface facility 34 .
  • the intervention tool 58 is connected to conveyance 60 , lowered through the open water and into open water branch 28 of Y-tool 22 .
  • the intervention tool 58 continues to travel down through the base branch 26 , through a tool holder 62 , and through subsea installation 24 until entering the borehole of subsea well 56 .
  • One or more dynamic seals provide a pressure barrier around the cable-type conveyance 60 as it moves up and down in subsea well 56 .
  • the dynamic sealing can be formed by dynamic seal 46 in open water branch 28 or by dynamic seals incorporated at subsea valves 42 .
  • guide branch 30 can be left open in some applications or sealed off to prevent movement of fluids from the subsea installation 24 into tubular guide member 32 .
  • guide branch 30 can be sealed by closing subsea valve 48 .
  • the open water branch 28 also can be used to provide a pathway for the removal of crown plugs from horizontal Christmas trees before an intervention operation and to reinstall the crown plugs at the end of the intervention operation.
  • intervention tool 58 is deployed along the interior of tubular guide member 32 by a conveyance 64 .
  • conveyance 64 may comprise wireline, slickline or coiled tubing depending on the particular type a intervention operation being performed.
  • wireline or slickline can be used to deploy intervention tool 58 , e.g. a tool string, through the tubular guide member, provided the intervention tool string has an outer diameter small enough to pass through the guide member.
  • intervention tool 58 e.g. a tool string
  • conveyance 64 comprises coiled tubing
  • the coiled tubing can be coupled to intervention tool 58 by an appropriate connector 66 .
  • the intervention tool 58 In many coiled tubing intervention operations, the intervention tool 58 , e.g. tool string, has a configuration that is difficult or impossible to move through tubular guide member 32 .
  • intervention tool 58 can be lowered through the open water and into open water branch 22 by the cable-type conveyance 60 .
  • the intervention tool 58 is continually lowered into the lubricator 36 and held by tool holder 62 , as illustrated in FIG. 3 .
  • the cable-type conveyance 60 is then disconnected from the intervention tool, e.g. tool string, and coiled tubing conveyance 64 is lowered toward the intervention tool 58 through tubular guide member 32 .
  • the coiled tubing conveyance 64 is engaged with intervention tool 58 via connector 66 which may be in the form of a subsea tool wet connector. Once connected, tool holder 62 is released to enable the lowering of intervention tool 58 through subsea installation 24 and into subsea well 56 via coiled tubing conveyance 64 .
  • the examples described above are just a few examples of the many ways in which Y-tool 22 can be utilized to facilitate a variety of intervention operations. Additionally, the Y-tool 22 is amenable to use with a wide variety of methodologies and cooperating devices.
  • the dynamic seals 46 , 50 that are used in cooperation with the open water branch 28 and guide branch 30 , respectively can be retrievable dynamic seals.
  • the dynamic seals can be non-retrievable seals which are temporarily opened to full bore for passage of intervention tools and then closed on the conveyance to establish a pressure tight barrier.
  • the open water branch 28 also can be sealed of by a variety of pressure barriers, including valves and plugs.
  • guide branch 30 can include or work in cooperation with emergency disconnect 52 which enables release of tubular guide member 32 from Y-tool 22 in the event of an operational emergency where the surface intervention vessel must disconnect from the subsea installation 24 .
  • Valves can he placed above, below, and/or above and below the emergency disconnect 52 to prevent the escape of fluids into the sea water. Numerous additional and alternate devices can be utilized in cooperation with the Y-tool to facilitate a great range of intervention operations.
  • the relative orientation of the guide branch and the open water branch as well as the relative size of the branches also can vary.
  • the open water branch may have a larger diameter than the guide branch for some applications.
  • the length of the Y-tool branches also can vary to accommodate many types of intervention tools.

Abstract

A technique utilizes a Y-tool (22) mounted at a subsurface installation (24) for subsea intervention operations. The Y-tool comprises a guide branch (30) and an open water branch (28) that each allows movement of intervention tools to the subsea installation. A tubular guide member can be coupled to the guide branch to enable movement of equipment down through the tubular guide member and into the Y-tool. Alternatively or in combination, other equipment can be moved down through the open water and into the Y-tool through the open water branch. The Y-tool further facilitates deployment of conveyances through the tubular guide and the guide branch to enable engagement of the conveyance with an intervention tool deployed through the open water and into the open water branch of the Y-tool.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present document is based on and claims priority to U.S. Provisional Application Ser. No. 60/908,101, tiled Mar. 26, 2007.
  • BACKGROUND
  • The retrieval of desired fluids, such as hydrocarbon based fluids, is pursued in subsea environments. Production and transfer of fluids from subsea wells relies on subsea installations, subsea flow lines and other equipment. Additionally, preparation and servicing of the subsea well relies on the ability to conduct subsea intervention work. Subsea intervention work involves numerous challenges not normally faced when working on land wells or fixed offshore platforms.
  • Intervention in subsea wells often is performed from a floating platform or ship, and access to the subsea well is achieved by a variety of techniques. In many applications, the intervention operation is performed with wireline, slickline or other cable-type conveyance methods. For example, tools can be conveyed from a surface vessel to a subsea installation through open water. With this technique, the tools are conveyed into a subsea lubricator with a dynamic seal at the top of the lubricator. Such operations are sometimes called “open water” or “riserless” operations and require that the equipment be moved through the open sea water. Additionally, these types of open water operations cannot be performed with coiled tubing while maintaining a coiled tubing injector at the surface.
  • In another technique, tools are conveyed through a tubular riser or guide system connecting a surface intervention vessel with the subsea installation. However, the tubular system can provide technical constraints, such as a limited internal diameter. The technical restraints are problematic in moving certain types of intervention tools to the subsea installation. For example, movement of large diameter tools through the tubular system to the subsea installation can be difficult or impossible.
  • SUMMARY
  • In general, the present invention, provides a technique for subsea intervention operations which utilizes a Y-tool mounted at a subsurface facility. The Y-tool comprises a guide branch and an open water branch to enable movement of intervention tools to the subsea installation along two different paths. For example, a tubular guide member can be coupled to the guide branch to enable movement of equipment down through the tubular guide member and into the Y-tool. Other equipment can be moved down through the open water and into the Y-tool through the open water branch. The availability of two different paths greatly enhances the ability to carry out a wide variety of intervention operations at a subsea well.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
  • FIG. 1 is a schematic front elevation view of a subsea intervention system, according to an embodiment of the present invention;
  • FIG. 2 is a schematic front elevation view similar to that of FIG. 1 but showing another example of an intervention operation, according to an embodiment of the present invention; and
  • FIG. 3 is a schematic front elevation view similar to that of FIG. 1 but showing another example of an intervention operation, according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
  • The present invention generally relates to a technique for performing intervention operations. The technique utilizes a side entry tool or Y-tool deployed proximate a subsea installation to facilitate a wide range of intervention procedures. The Y-tool comprises a base branch that is mounted to the subsea installation to direct intervention equipment into the subsea installation and the subsea well. At its upper end, the Y-tool comprises a plurality of branches through which tools can be directed into the Y-tool and subsequently down into the subsea installation and subsea well. In many applications, the Y-tool comprises a pair of upper branches that can be referred to as a guide branch and an open water branch designed to receive and direct various types of intervention equipment.
  • The side entry tool is referred to as a Y-tool because of the divergent upper branches that can be used to direct equipment downwardly to the base branch and subsequently into the subsea installation and well. However, the Y-tool can be constructed in a variety of configurations, shapes and sizes. The various branches can be of different lengths and/or diameters, and two or more upper branches can serve as guides to the lower branch. Use of the Y-tool at the subsea installation enables use of a greater variety of intervention procedures than otherwise afforded by conventional intervention equipment. In some applications, for example, a tubular guide member is connected to the guide branch of the Y-tool, and the other, divergent, branch extends to the open water.
  • The Y-tool allows an operator to select whether equipment is deployed to the subsea well through the tubular guide member or through the open water. Often the intervention operations can be facilitated by deploying some equipment through a tubular guide member and other equipment through the open water. The ability to utilize different access points to the well helps optimize deployment of tools into the subsea installation, particularly when intervention operations are conducted with different conveyances, e.g. wireline, slickline and coiled tubing. The Y-tool also enables deployment of intervention tools, e.g. tool strings, that, are too large for movement through the tubular guide member. In this latter example, the intervention tool can simply be deployed through the open water, moved into the Y-tool via the open water branch, and positioned within a lubricator that is either part of the Y-tool or positioned below the Y-tool. A coiled tubing conveyance or other conveyance is routed down through the guide branch of the Y-tool and connected to the intervention tool within the enclosed, pressure protected Y-tool/lubricator. In other applications, the subsea Y-tool enables both the efficient removal of crown plugs from horizontal Christmas trees and the transfer of those plugs through open water.
  • Although specific examples of intervention systems utilizing a Y-tool are described below, it should be noted that many configurations and methodologies related to the intervention operations and use of the Y-tool are possible. Furthermore, the subsea intervention operations can be performed in conjunction with a variety of subsea installations, including subsea wells, subsea flowlines and other subsea systems.
  • Additionally, the subsea installation and subsea Y-tool are designed to prevent pressurized fluids from escaping the subsea installation during the intervention operation. Accordingly, the subsea installation and the Y-tool have appropriate sets of seals and valves that can be selectively actuated to maintain a pressure tight envelope that prevents the escape of pressurized borehole fluids. A wide variety of such pressure control valves, seals and other devices can be used to contain the pressurized environment within the subsea installation and Y-tool.
  • The system and methodology described herein enable the use of open water and tubular guide member deployment techniques according to a variety of flexible procedures. Thus, a service company can switch from one technique to another without major hardware changes. Also, the techniques can be used individually or in combination during interventions performed on a subsea installation to optimize operational efficiency and to reduce the occurrences of hardware deployment and hardware retrieval between the surface facility, e,g. surface intervention vessel, and the seabed.
  • By way of example, the use of a Y-tool intervention system enables wireline, slickline and coiled tubing operations to be performed with the same deployed hardware. The system also enables open water wireline and slickline operations without disconnection of the tubular guide member. Coiled tubing conveyance systems also can be used with large tools that can not be moved through the guide member. The need for subsea wet connection of wireline and slickline big diameter took is eliminated, because such tools can be conveyed through the open water. Similarly, the need for an open water wireline or slickline kill line can be eliminated, because the tubular guide member can be used for this purpose. Horizontal Christmas tree plugs can be removed to the open water with a wireline or slickline while allowing immediate access with coiled tubing, via the tubular guide member, without deploying any additional hardware. Similarly, no additional hardware need be deployed or retrieved to switch between wireline/slickline open water operations and coiled tubing operations. The methodology also facilitates the flushing of the lubricator for open water wireline operations, because the coiled tubing/tubular guide member can be used rather than providing an additional service Also, a coiled tubing conveyance can be provided as a contingency for wireline or slickline operations without requiring additional deployment or retrieval of hardware. In each of these applications, the efficiency of the intervention operation is improved and the risk of exposure to hazards related to the subsea intervention is reduced due to the reduced number of activities required to perform the intervention procedures.
  • Referring generally to FIG. 1, one example of an intervention system 20 is illustrated according to an embodiment of the present invention. In this embodiment, system 20 comprises a subsea Y-tool 22 proximate a subsea installation 24. By way of example, subsea installation 24 may comprise a wellhead, a flowline, a Christmas tree, or another type of subsea installation that is subjected to intervention procedures. The subsea Y-tool may be mounted above subsea installation 24 to direct intervention equipment into the subsea installation. In the example illustrated, subsea Y-tool comprises a base branch 26 mounted to subsea installation 24. The Y-tool further comprises at least two upper branches, such as an open water branch 28 and a guide branch 30.
  • A tubular guide member 32 is coupled between subsea installation 24 and a surface facility 34, such as an intervention vessel. The tubular guide member 32 may be in the form of a riser system comprising, for example, a rigid, flexible or compliant riser that connects the surface facility 34 to the subsea installation 24 via the Y-tool. The tubular guide member 32 also may comprise a compliant guide such as a spoolable compliant guide having a hollow interior along which equipment may be guided into subsea installation 24. The lower end of tubular guide member 32 is connected to guide branch 30 of subsea Y-tool 22.
  • Subsea installation 24 also may comprise a lubricator 36 which allows deployment of an intervention tool string into a pressurized installation that prevents escape of pressurized fluids. The lubricator 36 may he formed as an integral part of subsea Y-tool 22, or the lubricator 36 may be a separate component positioned beneath the Y-tool 22. Depending on the specific application, the lubricator can be installed at a variety of positions in the Y-tool, below the Y-tool, or above the Y-tool. The pressurized installation can be achieved by a variety of valves and seals positioned in various arrangements. For example, a plurality of subsea valves 42 can be positioned in the subsea installation 24 beneath the Y-tool 22. Additionally, a subsea valve 44 and a dynamic seal 46 can be positioned in the open water branch 28 proximate the net to the open water branch. Similarly, a subsea valve 48 can be positioned in guide branch 30 of Y-tool 22. A dynamic seal 50 also is positioned to cooperate with guide branch 30 and can be located in a variety of positions in guide branch 30 or along tubular guide member 32. In the illustrated embodiment, dynamic seal 50 is positioned generally at a lower end of the tubular guide member 32 proximate an emergency disconnect 52.
  • Intervention operations can be performed in a variety of subsea installations 24, and with a variety of configurations of additional equipment connected on top of the subsea installation. In the embodiment illustrated in FIG. 1, the subsea installation 24 comprises a subsea wellhead 54 that may include a Christmas tree and other components positioned above a subsea well 56. The other components may include subsea valves 42 and related devices, such as a subsea lubricating seal and a blowout preventer having one or more cut-and-seal rams able to cut through the interior of the subsea installation and seal off the subsea installation during an emergency disconnect. The subsea installation 24 also may comprise additional blowout preventers as well as a subsea stripper assembly positioned above the blowout preventers. The number and type of devices mounted on a given subsea installation can vary from one subsea application to another.
  • In FIG. 1, an example of one use of the Y-tool to facilitate an intervention operation is illustrated. In this example, an intervention operation is performed through the open water branch 28 of Y-tool 22. An intervention tool 58, such as a tool string or other well equipment, is lowered through the open water by a conveyance, such as a cable-type conveyance 60. By way of example, conveyance 60 may be a wireline, slickline or other cable-type conveyance deployed and retrieved via a crane 62 mounted on surface facility 34.
  • The intervention tool 58 is connected to conveyance 60, lowered through the open water and into open water branch 28 of Y-tool 22. The intervention tool 58 continues to travel down through the base branch 26, through a tool holder 62, and through subsea installation 24 until entering the borehole of subsea well 56. One or more dynamic seals provide a pressure barrier around the cable-type conveyance 60 as it moves up and down in subsea well 56. The dynamic sealing can be formed by dynamic seal 46 in open water branch 28 or by dynamic seals incorporated at subsea valves 42. During this type of intervention operation, guide branch 30 can be left open in some applications or sealed off to prevent movement of fluids from the subsea installation 24 into tubular guide member 32. By way of example, guide branch 30 can be sealed by closing subsea valve 48. It should be noted, the open water branch 28 also can be used to provide a pathway for the removal of crown plugs from horizontal Christmas trees before an intervention operation and to reinstall the crown plugs at the end of the intervention operation.
  • Another intervention operation is illustrated in FIG. 2. In this example, intervention tool 58 is deployed along the interior of tubular guide member 32 by a conveyance 64. By way of example, conveyance 64 may comprise wireline, slickline or coiled tubing depending on the particular type a intervention operation being performed. In some applications wireline or slickline can be used to deploy intervention tool 58, e.g. a tool string, through the tubular guide member, provided the intervention tool string has an outer diameter small enough to pass through the guide member. If conveyance 64 comprises coiled tubing, the coiled tubing can be coupled to intervention tool 58 by an appropriate connector 66.
  • In many coiled tubing intervention operations, the intervention tool 58, e.g. tool string, has a configuration that is difficult or impossible to move through tubular guide member 32. In these applications, intervention tool 58 can be lowered through the open water and into open water branch 22 by the cable-type conveyance 60. The intervention tool 58 is continually lowered into the lubricator 36 and held by tool holder 62, as illustrated in FIG. 3. The cable-type conveyance 60 is then disconnected from the intervention tool, e.g. tool string, and coiled tubing conveyance 64 is lowered toward the intervention tool 58 through tubular guide member 32. The coiled tubing conveyance 64 is engaged with intervention tool 58 via connector 66 which may be in the form of a subsea tool wet connector. Once connected, tool holder 62 is released to enable the lowering of intervention tool 58 through subsea installation 24 and into subsea well 56 via coiled tubing conveyance 64.
  • The examples described above are just a few examples of the many ways in which Y-tool 22 can be utilized to facilitate a variety of intervention operations. Additionally, the Y-tool 22 is amenable to use with a wide variety of methodologies and cooperating devices. For example, the dynamic seals 46, 50 that are used in cooperation with the open water branch 28 and guide branch 30, respectively, can be retrievable dynamic seals. Alternatively, the dynamic seals can be non-retrievable seals which are temporarily opened to full bore for passage of intervention tools and then closed on the conveyance to establish a pressure tight barrier.
  • The open water branch 28 also can be sealed of by a variety of pressure barriers, including valves and plugs. Additionally, guide branch 30 can include or work in cooperation with emergency disconnect 52 which enables release of tubular guide member 32 from Y-tool 22 in the event of an operational emergency where the surface intervention vessel must disconnect from the subsea installation 24. Valves can he placed above, below, and/or above and below the emergency disconnect 52 to prevent the escape of fluids into the sea water. Numerous additional and alternate devices can be utilized in cooperation with the Y-tool to facilitate a great range of intervention operations. The relative orientation of the guide branch and the open water branch as well as the relative size of the branches also can vary. For example, the open water branch may have a larger diameter than the guide branch for some applications. The length of the Y-tool branches also can vary to accommodate many types of intervention tools.
  • Although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.

Claims (25)

1. A method of delivering tools to a subsea well, comprising:
forming a Y-tool with a base branch, a guide branch, and an open water branch;
mounting the base branch to a subsea installation;
coupling a tubular guide member between the guide branch and a surface facility;
connecting an intervention tool to a conveyance; and
deploying the intervention tool and the conveyance through the open water branch.
2. The method as recited in claim 1, further comprising moving a Christmas tree plug through the open water branch.
3. The method as recited in claim 1, wherein coupling comprises coupling a spoolable compliant guide between the guide branch and the surface facility.
4. The method as recited in claim 3, wherein coupling comprises coupling the spoolable compliant guide to an intervention vessel.
5. The method as recited in claim 1, wherein coupling comprises coupling a riser system between the guide branch and the surface facility.
6. The method as recited in claim 1, wherein deploying comprises deploying the intervention tool with a diameter too large to fit through the tubular guide member.
7. The method as recited in claim 1, further comprising positioning a lubricator to enable deployment of an intervention tool string into a pressurized installation.
8. The method as recited in claim 1, wherein forming comprises forming the open water branch with seal members positioned to selectively seal the intervention tool within the Y-tool.
9. The method as recited in claim 2, further comprising locating a dynamic seal to maintain a pressure tight seal against a wireline or slickline conveyance member during an intervention operation.
10. A method for performing an intervention operation, comprising:
mounting a V-tool, having a base branch, a guide branch, and an open water branch, to a subsea installation;
coupling a tubular guide member between the guide branch and a surface facility;
moving an intervention tool and a conveyance through an interior of the tubular guide member and into the Y-tool through the guide branch; and
delivering the intervention tool and the conveyance through the subsea installation and into a well for performance of the intervention operation.
11. The method as recited in claim 10, wherein delivering comprises delivering the intervention tool on a coiled tubing conveyance.
12. The method as recited in claim 10, wherein coupling comprises coupling a spoolable compliant guide between the guide branch and the surface facility.
13. The method as recited in claim 10, further comprising locating a dynamic seal to maintain a pressure tight seal against, the conveyance during the intervention operation.
14. The method as recited in claim 10, further comprising positioning a lubricator to enable deployment of the intervention tool into a pressurized installation.
15. A system for use in subsea intervention operations, comprising:
a subsea installation; and
a Y-tool having a base branch mounted to the subsea installation, the Y-tool further having a guide branch and an open water branch positioned to provide separate inlets for intervention related equipment.
16. The system as recited in claim 15, further comprising a tubular guide coupled to the guide branch and extending upwardly toward a surface location.
17. The system as recited in claim 15, further comprising a spool able compliant guide coupled to the guide branch.
18. The system as recited in claim 15, wherein the subsea installation comprises a lubricator positioned below the Y-tool.
19. The system as recited in claim 15, further comprising a dynamic seal positioned to form a seal with a conveyance that moves through the guide branch.
20. The system as recited in claim 15, further comprising a dynamic seal positioned to form a seal with a conveyance that moves through the open water branch.
21. A method for facilitating an intervention operation, comprising:
mounting a Y-tool over a subsea installation;
connecting a guide between the Y-tool and a surface facility; and
moving equipment through the Y-tool and into the subsea installation from both a guide branch and an open water branch of the Y-tool.
22. The method as recited in claim 21, wherein connecting comprises connecting a riser system between the Y-tool and the surface facility.
23. The method as recited in claim 21, wherein connecting comprises connecting a spoolable compliant guide between the Y-tool and a surface intervention vessel.
24. The method as recited in claim 21, wherein moving comprises moving a conveyance through the guide and moving an intervention tool through the open water for connection to the conveyance within the Y-tool.
25. The method as recited in claim 24, further comprising holding the intervention in a tool holder while the conveyance is connected to the intervention tool.
US12/531,898 2007-03-26 2008-03-18 System and method for performing intervention operations with a subsea y-tool Abandoned US20100236786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/531,898 US20100236786A1 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a subsea y-tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90810107P 2007-03-26 2007-03-26
PCT/IB2008/003332 WO2009044286A2 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a subsea y-tool
US12/531,898 US20100236786A1 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a subsea y-tool

Publications (1)

Publication Number Publication Date
US20100236786A1 true US20100236786A1 (en) 2010-09-23

Family

ID=39591312

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/531,898 Abandoned US20100236786A1 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a subsea y-tool
US12/532,420 Active US8973665B2 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a compliant guide

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/532,420 Active US8973665B2 (en) 2007-03-26 2008-03-18 System and method for performing intervention operations with a compliant guide

Country Status (4)

Country Link
US (2) US20100236786A1 (en)
GB (1) GB2460006A (en)
MX (1) MX2009010195A (en)
WO (2) WO2008118680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247828A1 (en) * 2010-04-08 2011-10-13 Schlumberger Technology Corporation Fluid displacement methods and apparatus for hydrocarbons in subsea production tubing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456772A (en) * 2008-01-22 2009-07-29 Schlumberger Holdings Deployment of a dynamic seal in an intervention procedure
US9074452B2 (en) * 2008-05-28 2015-07-07 Onesubsea, Llc Actively energized dynamic seal system
BRPI0917254A2 (en) 2008-08-13 2015-11-10 Prad Res & Dev Ltd Method to Remove a Buffer, System, and Appliance
GB2474211B (en) 2008-08-13 2012-05-02 Schlumberger Holdings Umbilical management system and method for subsea well intervention
US8316947B2 (en) 2008-08-14 2012-11-27 Schlumberger Technology Corporation System and method for deployment of a subsea well intervention system
GB2468586A (en) * 2009-03-11 2010-09-15 Schlumberger Holdings Method and system for subsea intervention using a dynamic seal.
GB201010526D0 (en) 2010-06-23 2010-08-04 Fugro Seacore Ltd Apparatus associated with sub-sea operations
EP2917459B1 (en) 2012-11-06 2020-04-29 FMC Technologies, Inc. Horizontal vertical deepwater tree
GB2556700B (en) * 2015-05-27 2021-03-24 Jan Wajnikonis Krzysztof Flexible hang-off for a rigid riser
US20180223603A1 (en) * 2015-08-04 2018-08-09 Shell Oil Company Flexible dynamic riser for subsea well intervention
AU2019231511B2 (en) * 2018-03-06 2022-04-21 Tios As Improvements relating to well operations using flexible elongate members
US20210348467A1 (en) * 2020-05-05 2021-11-11 Professional Rental Tools, LLC Method and Apparatus for Thru-BOP Intervention Operations Using Riser System Components or Other Modular Components in a Structurally Sound Open-Water Intervention Configuration

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139932A (en) * 1961-11-28 1964-07-07 Shell Oil Co Wellhead with tool diverter
US3482601A (en) * 1966-09-12 1969-12-09 Rockwell Mfg Co Diverter
US4506729A (en) * 1983-02-22 1985-03-26 Exxon Production Research Co. Drill string sub with self closing cable port valve
US4681162A (en) * 1986-02-19 1987-07-21 Boyd's Bit Service, Inc. Borehole drill pipe continuous side entry or exit apparatus and method
US4730677A (en) * 1986-12-22 1988-03-15 Otis Engineering Corporation Method and system for maintenance and servicing of subsea wells
USRE33150E (en) * 1986-02-19 1990-01-23 Boyd's Bit Service Inc. Borehole drill pipe continuous side entry or exit apparatus and method
US5284210A (en) * 1993-02-04 1994-02-08 Helms Charles M Top entry sub arrangement
US5435395A (en) * 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
US5803191A (en) * 1994-05-28 1998-09-08 Mackintosh; Kenneth Well entry tool
US6142236A (en) * 1998-02-18 2000-11-07 Vetco Gray Inc Abb Method for drilling and completing a subsea well using small diameter riser
US6269879B1 (en) * 2000-03-20 2001-08-07 Harper Boyd Sleeve liner for wireline entry sub assembly
US6352114B1 (en) * 1998-12-11 2002-03-05 Ocean Drilling Technology, L.L.C. Deep ocean riser positioning system and method of running casing
US6367553B1 (en) * 2000-05-16 2002-04-09 Anthony R. Boyd Method and apparatus for controlling well pressure while undergoing wireline operations on subsea blowout preventers
US6386290B1 (en) * 1999-01-19 2002-05-14 Colin Stuart Headworth System for accessing oil wells with compliant guide and coiled tubing
US20020100591A1 (en) * 2001-01-26 2002-08-01 Barnett Richard C. Riser connector for a wellhead assembly and method for conducting offshore well operations using the same
US6443240B1 (en) * 1999-10-06 2002-09-03 Transocean Sedco Forex, Inc. Dual riser assembly, deep water drilling method and apparatus
US6510900B2 (en) * 2001-02-08 2003-01-28 L. Murray Dallas Seal assembly for dual string coil tubing injection and method of use
US6843321B2 (en) * 2000-02-21 2005-01-18 Fmc Kongsberg Subsea As Intervention device for a subsea well, and method and cable for use with the device
US7100699B2 (en) * 2001-02-16 2006-09-05 Specialty Rental Tools & Supply, Lp High tensile loading top entry sub and method
US7131497B2 (en) * 2004-03-23 2006-11-07 Specialty Rental Tools & Supply, Lp Articulated drillstring entry apparatus and method
US7431092B2 (en) * 2002-06-28 2008-10-07 Vetco Gray Scandinavia As Assembly and method for intervention of a subsea well
US7503397B2 (en) * 2004-07-30 2009-03-17 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
US7533732B2 (en) * 2006-01-09 2009-05-19 Smith International, Inc. Dual entry apparatus for a subterranean borehole
US7537052B2 (en) * 2005-07-29 2009-05-26 Mako Rentals, Inc. Ball dropping tool method and apparatus
US7934560B2 (en) * 2005-09-01 2011-05-03 Petroleo Brasileiro S.A. - Petrobras Free standing riser system and method of installing same
US8091573B2 (en) * 2008-04-17 2012-01-10 Bp Corporation North America Inc. Pipeline intervention

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1540288A (en) * 1966-12-28 1968-09-27 Inst Francais Du Petrole Equipment for inserting tools or instruments into a submerged well from a floating installation
FR1602647A (en) * 1967-12-11 1971-01-04
US3556209A (en) * 1969-04-30 1971-01-19 Exxon Production Research Co Retrievable wireline lubricator and method of use
US4281716A (en) 1979-08-13 1981-08-04 Standard Oil Company (Indiana) Flexible workover riser system
GB8428633D0 (en) 1984-11-13 1984-12-19 British Petroleum Co Plc Subsea wireline lubricator
US4825953A (en) 1988-02-01 1989-05-02 Otis Engineering Corporation Well servicing system
GB2222842B (en) 1988-09-16 1992-07-15 Otis Eng Co Method and apparatus for running coiled tubing in subsea wells
US4905763A (en) * 1989-01-06 1990-03-06 Conoco Inc. Method for servicing offshore well
GB9500954D0 (en) * 1995-01-18 1995-03-08 Head Philip A method of accessing a sub sea oil well and apparatus therefor
GB9626021D0 (en) * 1996-12-14 1997-01-29 Head Philip F A riser system for a sub sea well and method of operation
GB2334048B (en) * 1998-02-06 1999-12-29 Philip Head Riser system for sub sea wells and method of operation
GB9802421D0 (en) * 1998-02-06 1998-04-01 Head Philip A riser system for sub sea wells and method of operation
US6182765B1 (en) 1998-06-03 2001-02-06 Halliburton Energy Services, Inc. System and method for deploying a plurality of tools into a subterranean well
US6415877B1 (en) * 1998-07-15 2002-07-09 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US6457529B2 (en) * 2000-02-17 2002-10-01 Abb Vetco Gray Inc. Apparatus and method for returning drilling fluid from a subsea wellbore
US6321846B1 (en) * 2000-02-24 2001-11-27 Schlumberger Technology Corp. Sealing device for use in subsea wells
US6488093B2 (en) 2000-08-11 2002-12-03 Exxonmobil Upstream Research Company Deep water intervention system
GB0203386D0 (en) * 2002-02-13 2002-03-27 Sps Afos Group Ltd Wellhead seal unit
GB2387187A (en) * 2002-04-02 2003-10-08 David Lindsay Edwards Deepwater drilling system
GB0301186D0 (en) 2003-01-18 2003-02-19 Expro North Sea Ltd Autonomous well intervention system
EP1519003B1 (en) * 2003-09-24 2007-08-15 Cooper Cameron Corporation Removable seal
WO2005070565A2 (en) 2004-01-22 2005-08-04 Varco I/P, Inc. A screening apparatus and method for mounting a screen assembly in a vibratory separator
GB0414765D0 (en) 2004-07-01 2004-08-04 Expro North Sea Ltd Improved well servicing tool storage system for subsea well intervention
GB0419781D0 (en) 2004-09-07 2004-10-06 Expro North Sea Ltd Winch assembly
NO323513B1 (en) 2005-03-11 2007-06-04 Well Technology As Device and method for subsea deployment and / or intervention through a wellhead of a petroleum well by means of an insertion device
US7845412B2 (en) * 2007-02-06 2010-12-07 Schlumberger Technology Corporation Pressure control with compliant guide
US20080185153A1 (en) 2007-02-07 2008-08-07 Schlumberger Technology Corporation Subsea intervention with compliant guide

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139932A (en) * 1961-11-28 1964-07-07 Shell Oil Co Wellhead with tool diverter
US3482601A (en) * 1966-09-12 1969-12-09 Rockwell Mfg Co Diverter
US4506729A (en) * 1983-02-22 1985-03-26 Exxon Production Research Co. Drill string sub with self closing cable port valve
US4681162A (en) * 1986-02-19 1987-07-21 Boyd's Bit Service, Inc. Borehole drill pipe continuous side entry or exit apparatus and method
USRE33150E (en) * 1986-02-19 1990-01-23 Boyd's Bit Service Inc. Borehole drill pipe continuous side entry or exit apparatus and method
US4730677A (en) * 1986-12-22 1988-03-15 Otis Engineering Corporation Method and system for maintenance and servicing of subsea wells
USRE39509E1 (en) * 1993-02-04 2007-03-13 Specialty Rental Tools & Supply, Lp Top entry sub arrangement
US5284210A (en) * 1993-02-04 1994-02-08 Helms Charles M Top entry sub arrangement
US5435395A (en) * 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
US5803191A (en) * 1994-05-28 1998-09-08 Mackintosh; Kenneth Well entry tool
US6142236A (en) * 1998-02-18 2000-11-07 Vetco Gray Inc Abb Method for drilling and completing a subsea well using small diameter riser
US6352114B1 (en) * 1998-12-11 2002-03-05 Ocean Drilling Technology, L.L.C. Deep ocean riser positioning system and method of running casing
US6834724B2 (en) * 1999-01-19 2004-12-28 Colin Stuart Headworth System for accessing oil wells with compliant guide and coiled tubing
US6745840B2 (en) * 1999-01-19 2004-06-08 Colin Stuart Headworth System for accessing oil wells with compliant guide and coiled tubing
US6386290B1 (en) * 1999-01-19 2002-05-14 Colin Stuart Headworth System for accessing oil wells with compliant guide and coiled tubing
US6691775B2 (en) * 1999-01-19 2004-02-17 Colin Stuart Headworth System for accessing oil wells with compliant guide and coiled tubing
US6443240B1 (en) * 1999-10-06 2002-09-03 Transocean Sedco Forex, Inc. Dual riser assembly, deep water drilling method and apparatus
US6843321B2 (en) * 2000-02-21 2005-01-18 Fmc Kongsberg Subsea As Intervention device for a subsea well, and method and cable for use with the device
US6732805B1 (en) * 2000-03-20 2004-05-11 Boyd's Bit Service, Inc. Sleeve liner for wireline entry sub assembly and method of use
US6269879B1 (en) * 2000-03-20 2001-08-07 Harper Boyd Sleeve liner for wireline entry sub assembly
US6367553B1 (en) * 2000-05-16 2002-04-09 Anthony R. Boyd Method and apparatus for controlling well pressure while undergoing wireline operations on subsea blowout preventers
US6520262B2 (en) * 2001-01-26 2003-02-18 Cooper Cameron Corporation Riser connector for a wellhead assembly and method for conducting offshore well operations using the same
US20020100591A1 (en) * 2001-01-26 2002-08-01 Barnett Richard C. Riser connector for a wellhead assembly and method for conducting offshore well operations using the same
US6510900B2 (en) * 2001-02-08 2003-01-28 L. Murray Dallas Seal assembly for dual string coil tubing injection and method of use
US7100699B2 (en) * 2001-02-16 2006-09-05 Specialty Rental Tools & Supply, Lp High tensile loading top entry sub and method
US7431092B2 (en) * 2002-06-28 2008-10-07 Vetco Gray Scandinavia As Assembly and method for intervention of a subsea well
US7131497B2 (en) * 2004-03-23 2006-11-07 Specialty Rental Tools & Supply, Lp Articulated drillstring entry apparatus and method
US7503397B2 (en) * 2004-07-30 2009-03-17 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
US7537052B2 (en) * 2005-07-29 2009-05-26 Mako Rentals, Inc. Ball dropping tool method and apparatus
US7934560B2 (en) * 2005-09-01 2011-05-03 Petroleo Brasileiro S.A. - Petrobras Free standing riser system and method of installing same
US7533732B2 (en) * 2006-01-09 2009-05-19 Smith International, Inc. Dual entry apparatus for a subterranean borehole
US8091573B2 (en) * 2008-04-17 2012-01-10 Bp Corporation North America Inc. Pipeline intervention

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247828A1 (en) * 2010-04-08 2011-10-13 Schlumberger Technology Corporation Fluid displacement methods and apparatus for hydrocarbons in subsea production tubing
US8689879B2 (en) * 2010-04-08 2014-04-08 Schlumberger Technology Corporation Fluid displacement methods and apparatus for hydrocarbons in subsea production tubing

Also Published As

Publication number Publication date
GB2460006A (en) 2009-11-18
WO2008118680A1 (en) 2008-10-02
MX2009010195A (en) 2010-03-22
WO2009044286A2 (en) 2009-04-09
US20100139926A1 (en) 2010-06-10
WO2009044286A8 (en) 2011-03-31
US8973665B2 (en) 2015-03-10
WO2009044286A3 (en) 2009-05-28
GB0916789D0 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US20100236786A1 (en) System and method for performing intervention operations with a subsea y-tool
US7845412B2 (en) Pressure control with compliant guide
US8387701B2 (en) Intervention system dynamic seal and compliant guide
CA2632812C (en) Apparatus and method for installation of subsea well completion systems
US7578349B2 (en) Lightweight and compact subsea intervention package and method
US9631460B2 (en) Modular subsea completion
US10006266B2 (en) Lightweight and compact subsea intervention package and method
US7735561B2 (en) Subsea adapter for connecting a riser to a subsea tree
US9534466B2 (en) Cap system for subsea equipment
US20080185153A1 (en) Subsea intervention with compliant guide
US9869147B2 (en) Subsea completion with crossover passage
US20170191339A1 (en) Dual stripper apparatus
US10774608B2 (en) Subsea system and methodology utilizing production receptacle structure
NO343228B1 (en) Method and device for enabling removal of a Christmas tree from a wellhead and method and device installation of a Christmas tree on a wellhead
EP3414421A1 (en) Device and method for enabling removal or installation of a horizontal christmas tree

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SBORDONE, ANDREA;SCHUURMAN, RENE;SIGNING DATES FROM 20091119 TO 20091125;REEL/FRAME:023837/0569

AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SBORDONE, ANDREA;SCHUURMAN, RENE;SIGNING DATES FROM 20091119 TO 20091125;REEL/FRAME:024131/0592

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION