US20100226873A1 - Hemostatic Composition with Magnetite - Google Patents

Hemostatic Composition with Magnetite Download PDF

Info

Publication number
US20100226873A1
US20100226873A1 US12/719,434 US71943410A US2010226873A1 US 20100226873 A1 US20100226873 A1 US 20100226873A1 US 71943410 A US71943410 A US 71943410A US 2010226873 A1 US2010226873 A1 US 2010226873A1
Authority
US
United States
Prior art keywords
wound
magnetite
effective amount
blood
powderous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/719,434
Inventor
John Hen
Talmadge Kelly Keene
Mark Travi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biolife LLC
Original Assignee
Biolife LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biolife LLC filed Critical Biolife LLC
Priority to US12/719,434 priority Critical patent/US20100226873A1/en
Assigned to BIOLIFE, L.L.C. reassignment BIOLIFE, L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEN, JOHN, KEENE, TALMADGE KELLY, TRAVI, MARK
Publication of US20100226873A1 publication Critical patent/US20100226873A1/en
Priority to US13/760,319 priority patent/US8979726B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • This disclosure relates to improved delivery and control of hemostasis powder in vascular access procedures and in other hemostasis control procedures and more particularly to such compositions with Magnetite for enhanced control of the powdery composition.
  • Thompson (U.S. Pat. No. 4,545,974 and U.S. Pat. No. 4,551,326) also teaches that Magnetite, Fe 3 O4, or iron oxide, Fe 2 O 3 (common rust) are suitable substrates for making ferrate, FeO 4 ⁇ .
  • the iron compounds have to be heated above the Curie point, that temperature at which a ferromagnetic material loses its ferromagnetic ability.
  • the Curie point is 768° C.
  • Thompson teaches that potassium ferrate is not magnetic even if the starting raw material was magnetic.
  • FIG. 1 depicts the relationship between percentage of Magnetite and the weight of powder picked up by selected magnets.
  • FIG. 2 depicts the amount of powder picked up by the magnet versus distance of the magnet from the powder.
  • FIG. 3 is a simplified side elevation view of a magnetic picking up a quantity of hemostatic powder containing Magnetite.
  • FIGS. 4 to 6 depict the sequence of deploying the Magnetite/hemostatic powder onto an open bleeding wound after being attached to the magnet shown in FIG. 3 .
  • FIG. 7 is an alternate view of FIG. 4 wherein the Magnetite/hemostatic powder is attached to one surface of a bandage, the magnet being positioned against the opposite surface of the bandage.
  • FIG. 8 is a simplified schematic view of an in vitro hemostasis testing system.
  • This invention is directed to a composition and method of arresting the flow of blood from a bleeding wound.
  • the composition preferably includes an anhydrous salt ferrate compound preferably combined with an effective amount of an insoluble cation exchange material (sometimes referred to as the “powder” or “powderous mixture”) and an effective amount of anhydrous Magnetite mixed uniformly together.
  • a quantity of the composition is magnetically attached to a surface of a magnet, after which the composition is applied to the wound by pressing the surface covered with the composition against the wound for a time sufficient to clot the blood to arrest substantial further blood flow from the wound.
  • Magnetite addition to a potassium ferrate/strong acid cation exchange resin powderous mixture provides greatly improved delivery and control of the application of the hemostasis powder onto the wound site. Adding Magnetite to a potassium ferrate/strong acid cation exchange resin mixture at room temperature did not decrease the strength of a blood seal. Correspondingly, adding Hematite reduced the strength of the blood seal.
  • Magnetite is also a well-known colorant, for example often used in mascara. When Magnetite is added to the 1:7 powder, the mixture is gray-black, not brown color. The color difference distinguishes Magnetite powders from non Magnetite powder.
  • Ferrate/resin mixtures at the preferred 1:7 (w/w) ratio are able to exchange H+ for dissolved cations, thus reducing pH.
  • a typical cation exposure might be in a microbe attempting to penetrate a wound surrounding a catheter line.
  • the microbe cell wall has mono- and divalent-cations for strength and life support plus ⁇ 85% moisture.
  • the dry ferrate/resin mixture absorbs the cation-rich water and exchanges the cations for protons.
  • the surface pH drops to ⁇ 2, creating a hostile environment for microbes.
  • the 1:7 ferrate/resin mixture produced a >5 log kill on MRSA (Methicillin Resistant Staphylococcus Aureus, MRSE (Methicillin Resistant Staphylococcus Epidermidis), and VRE (Vancomycin Resistant Entorococci), a >4 log kill on Candida albicans, and no kill on Aspergillus niger .
  • MRSA Metal Resistant Staphylococcus Aureus
  • MRSE Metal Resistant Staphylococcus Epidermidis
  • VRE Vancomycin Resistant Entorococci
  • the preferred apparatus for testing each test sample includes the use of air pressure to dislodge an aluminum disk adhered to a test block. Blood and powder are used to create the adhesive. The test measures the cohesive strength of the seal around the edges of the aluminum disk. A needle valve and an air regulator are used to control the pressure and rate of pressure increase into the test block. As the air pressure is increased, the disk will become dislodged and the air pressure will quickly drop. The maximum pressure is recorded. A traceable Fisher Scientific Manometer (8215 model number) is used to calibrate the data acquisition equipment (Omega OMB-DAQ-54).
  • the preferred procedure for testing each test sample for blood pressure to failure i.e., when the test sample fails to maintain blood pressure under pressure within the test block, includes the following steps:
  • Magnetite did not decrease the strength of the cohesive nature of the seal, while Hematite did. Magnetite and Hematite are both iron oxides, so it was a surprise to get better results with Magnetite than with Hematite.
  • the level of Magnetite added to QR (a 1:7 mixture of ferrate/hydrogen resin) was varied from 0% to 100% and the weight in grams of mixture lifted by a standard magnet measured. As demonstrated, more Magnetite results in more total mass being held by the magnet. The strength of the magnet affects the amount of powder that can be held. There is a minimum amount of Magnetite needed for each device depending on the type of magnet used and the amount of powder needed to be applied.
  • QR powder was mixed with varying amounts of Magnetite and different types of magnets were used to determine the mass of powder that could be held.
  • All Magnets are round discs diam thickness Frig. Magnets 24 1 Normal flexible refrigerator type magnetic Bk Cer 22 5 Black ceramic magnet CL-F-Su 24 1 Clean flexible neodymium magnetic (Edyne's SF-60) F-Su 24 0.5 Flexible neodymium magnetic (Edyne's SF-35) Sm-Neo 13 1.5 Silver hard neodymium magnet Lg Neo 24 1.5 Silver hard neodymium magnet Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
  • QR is sourced from Biolife, L.L.C., BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
  • the distance from a small round neodymium magnetic to a 3% Magnetite/97% QR mixture was varied to give the results shown in FIG. 2 .
  • the Magnetite can be employed with many different types of applicators. The distance needed from the magnet to the power is determined by the amount of Magnetite in the product and the strength of the magnet, and the amount of powder desired.
  • a blood seal adhesion test was performed with mixtures of QR Powder with varying amount of Magnetite.
  • a tenth (0.1) of a milliliter of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray.
  • 300 mg of test powder was poured onto the template to cover the circular area.
  • the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula.
  • the amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping and is summarized in Table 3 below.
  • Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
  • QR is sourced from BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
  • the optimum range for hemostatic properties of mixtures of Magnetite and QR is from the 50% mix of Magnetite and QR to 100% QR.
  • the optimum range was selected to provide a minimum of 30% coverage and 14 mg of seal remaining.
  • a blood seal adhesion test was performed with hydrogen resin with varying amounts of Magnetite.
  • a tenth of a milliliter (0.1 ml) of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray.
  • 300 mg of test powder was poured onto the template to cover the circular area.
  • the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula.
  • the amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping. The measures are recorded as a mean average of 3 to 6 runs.
  • Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
  • H + Resin is a dried hydrogen form of 2% crosslinked sulfonated polystyrene ion exchange resin.
  • QR is from lot #390907 (exp 4/2012) and is a 1:7 mix of fusion ferrate and H + Resin.
  • the composition based on 100% Magnetite gave extremely poor blood seal properties. Blood seal properties picked up with the inclusion of 30-50% H + Resin but blood absorption was poor to fair only and % coverage was below 30%. At higher H + Resin levels of >70%, and in particular 80%, 90% and 97%, properties were equal to the QR control, a very effective commercial hemostatic powder. Without Magnetite, 100% H + Resin gave less mg seal remaining and less coverage compared to the QR control. As will be shown herebelow, this composition does not have magnetic properties compared to a composition with Magnetite.
  • the ratio of ferrate-to-resin was changed to 1:12 and then 10% Magnetite added.
  • Thompson discloses that the 1:7 ratio can sting an open wound such as a skin tear. Increasing the resin to 1:12 reduces the sting, but also reduces the strength of the seal. Adding the Magnetite to 1:12 strengthens the seal to about the same as 1:7 powder, thus reducing sting with no change in seal strength.
  • Magnetite also allows the material to be moved or held in place by the use of a magnet.
  • the magnet, Magnetite, and dry ferrate/resin mixture may be employed in combination with a pad, stick or other applicator with openings large enough to trap the powder, resulting in more “holding” power than either alone.
  • a magnet behind a very open cell foam, a gauze bandage, or a flocked surface would hold powder more strongly than would either the magnet or foam, bandage or flocked surface alone. This was tested using a flocked substrate and a flat magnet.
  • a magnet device 10 having a round disc-shaped magnetic member 12 is used to lift a quantity of the Magnetite/hemostatic powder 14 .
  • the magnet device 10 is lifted away and, as seen in FIGS. 4 to 6 , is used to manually position the quantity of Magnetite/powder 16 over a bleeding wound in the direction of arrow A.
  • Slight downward pressure in the direction of arrow B is applied to the magnet device 10 as seen in FIG. 5 and held in that position for a time sufficient for the ferrate hemostat to arrest blood flow.
  • a scab at 16 b in FIG. 6 is formed over the wound after which the magnetic device 10 is removed in the direction of arrow C.
  • the remaining portion 16 a of the Magnetite/powder remains attracted to the magnetic member 12 as it is lifted from the wound.
  • FIG. 7 the additional benefit of attracting Magnetite/hemostatic powder 20 against an absorbent pad of a bandage is there shown.
  • the magnetic member 12 is positioned against the exposed surface of the bandage, after which the arrangement is positioned over the pile of Magnetite/hemostatic powder as shown in FIG. 3 .
  • a quantity of the powder 20 will be attracted and held against the absorbent pad of the bandage after which it may be applied under slight pressure against the wound as above described.
  • Magnetite to influence delivery of medical devices including powders has been demonstrated for mixtures with ferrate and resin as well as with resin alone. It is within the scope of this invention to include the use of Magnetite in improving the delivery and control of application of all medical powders to the wound site. It is also well within the scope of this invention to include all other magnetic powders or materials aside from Magnetite to improve the delivery and control of application of all medical powders to the wound site.

Abstract

A composition and method of arresting the flow of blood from a bleeding wound. The composition preferably includes an anhydrous salt ferrate compound preferably combined with an effective amount of an insoluble cation exchange material and an effective amount of anhydrous Magnetite mixed uniformly together. Povidone iodine may be added for enhanced antimicrobial properties. In the method, a quantity of the composition is magnetically attached to a surface of a magnet, after which the powderous mixture is applied to the wound by pressing the surface covered with the powderous compound against the wound for a time sufficient to clot the blood to arrest substantial further blood flow from the wound.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not applicable
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • Not applicable
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This disclosure relates to improved delivery and control of hemostasis powder in vascular access procedures and in other hemostasis control procedures and more particularly to such compositions with Magnetite for enhanced control of the powdery composition.
  • 2. Description of Related Art
  • Hemostasis powders are well known. Thompson et al, U.S. Pat. Nos., 4,545,974 & 4,551,326, disclose processes for the manufacture of potassium ferrate and similar high oxidation state oxyiron compounds. Patterson et al U.S. Pat. No., 6,187,347 and Patterson et al U.S. Pat. No., 6,521,265, disclose the mixing of potassium ferrate and anhydrous strongly acidic cation exchange resins for the cessation of bleeding. These patents are incorporated by reference herein in their entirety. Kuo et al. (J. Vasc Interv. Radiol. 19:1 72-79 2008) disclose the benefit of ferrate/resin mixtures in reducing the time to hemostasis (TTH) from 6 minutes to 4 minutes versus D-stat, the market leader in hemostasis pads. Michelson (The American Journal of Cosmetic Surgery 25-3 2008) shows that the ferrate/resin mixtures are excellent for wound care. Michelson demonstrated complete closure of a patient with twin brachial dehisced wounds following cosmetic surgery. After 16 weeks, the patient healed without scarring.
  • Thompson (U.S. Pat. No. 4,545,974 and U.S. Pat. No. 4,551,326) also teaches that Magnetite, Fe3O4, or iron oxide, Fe2O3 (common rust) are suitable substrates for making ferrate, FeO4 . But critically, the iron compounds have to be heated above the Curie point, that temperature at which a ferromagnetic material loses its ferromagnetic ability. For iron, the Curie point is 768° C. Thus Thompson teaches that potassium ferrate is not magnetic even if the starting raw material was magnetic.
  • The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those skilled in the art upon a reading of the specification and a study of the drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 depicts the relationship between percentage of Magnetite and the weight of powder picked up by selected magnets.
  • FIG. 2 depicts the amount of powder picked up by the magnet versus distance of the magnet from the powder.
  • FIG. 3 is a simplified side elevation view of a magnetic picking up a quantity of hemostatic powder containing Magnetite.
  • FIGS. 4 to 6 depict the sequence of deploying the Magnetite/hemostatic powder onto an open bleeding wound after being attached to the magnet shown in FIG. 3.
  • FIG. 7 is an alternate view of FIG. 4 wherein the Magnetite/hemostatic powder is attached to one surface of a bandage, the magnet being positioned against the opposite surface of the bandage.
  • FIG. 8 is a simplified schematic view of an in vitro hemostasis testing system.
  • Exemplary embodiments are illustrated in reference figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered to be illustrative rather than limiting.
  • BRIEF SUMMARY OF THE INVENTION
  • This invention is directed to a composition and method of arresting the flow of blood from a bleeding wound. The composition preferably includes an anhydrous salt ferrate compound preferably combined with an effective amount of an insoluble cation exchange material (sometimes referred to as the “powder” or “powderous mixture”) and an effective amount of anhydrous Magnetite mixed uniformly together. In the method, a quantity of the composition is magnetically attached to a surface of a magnet, after which the composition is applied to the wound by pressing the surface covered with the composition against the wound for a time sufficient to clot the blood to arrest substantial further blood flow from the wound.
  • Magnetite addition to a potassium ferrate/strong acid cation exchange resin powderous mixture provides greatly improved delivery and control of the application of the hemostasis powder onto the wound site. Adding Magnetite to a potassium ferrate/strong acid cation exchange resin mixture at room temperature did not decrease the strength of a blood seal. Correspondingly, adding Hematite reduced the strength of the blood seal.
  • Mechanism of Action
      • 1. The preferred 1:7 ferrate: hydrogen resin mixed powder, as an adjunct to pressure, creates a nothing-in/nothing-out seal in well-known ways with blood.
        • a. The external semi- or non-occlusive vertical pressure is critical to achieving hemostasis. Without pressure, hemostasis is not consistently achieved.
      • 2. The powder is ground as part of the manufacturing process.
      • 3. The Magnetite is preferably very fine, ˜10 microns, but other sizes can be used.
      • 4. The Magnetite is distributed throughout the powder, allowing a much greater mass of powder to be held than the amount of Magnetite in the mixture.
  • Magnetite is also a well-known colorant, for example often used in mascara. When Magnetite is added to the 1:7 powder, the mixture is gray-black, not brown color. The color difference distinguishes Magnetite powders from non Magnetite powder.
  • When powder mixtures are used for hemostasis, the bleeding surface is often not flat. Bone-dry powders tend to fall off the site at which they are aimed. Previously disclosed powder containment devices (PCD) are used to reduce the spillage. They are not, however, completely reliable, particularly for stopping bleeding around catheter lines on vertical or near vertical surfaces as the powder pile can spill over the edge of the PCD. Mixing Magnetite with the powder will allow it to be applied, transported, or held in place with a magnet. The incorporation of Magnetite to the hemostatic powder allows dramatic improvements in the delivery and control during application on a wound site.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Ferrate/resin mixtures at the preferred 1:7 (w/w) ratio are able to exchange H+ for dissolved cations, thus reducing pH. A typical cation exposure might be in a microbe attempting to penetrate a wound surrounding a catheter line. The microbe cell wall has mono- and divalent-cations for strength and life support plus ˜85% moisture. The dry ferrate/resin mixture absorbs the cation-rich water and exchanges the cations for protons. The surface pH drops to ˜2, creating a hostile environment for microbes.
  • In experiments, the 1:7 ferrate/resin mixture produced a >5 log kill on MRSA (Methicillin Resistant Staphylococcus Aureus, MRSE (Methicillin Resistant Staphylococcus Epidermidis), and VRE (Vancomycin Resistant Entorococci), a >4 log kill on Candida albicans, and no kill on Aspergillus niger. The experiments included a 7-day test with daily rechallenge.
  • Povidone Iodine
  • There are two active antimicrobial compounds approved as active OTC antimicrobials, i.e., >62% alcohol, and 5-10% povidone iodine (PI). Alcohol decomposes ferrate, so povidone iodine (PI), a bone-dry powder, was chosen to be mixed with the 1:7 ferrate/resin powder. At 5 to 10% PI and 95% to 90% 1:7 powder, there was no change in TTH or strength of seal versus 100% 1:7 powder. Results showed that, with addition of as little as 2% PI, >log 4 kill of Aspergillus niger was achieved. The addition of PI to mixtures of ferrate/resin mixtures enable the hemostatic powder to have broad spectrum antimicrobial activity.
  • Example 1
  • A level study of Povidone Iodine (PI) in 1:7 powder was tested with Aspergillus niger in a 7-day, daily re-challenge standardized test. A >4 log kill was achieved when the PI≧2%. Adding small amounts of PI to 1:7 powder had no effect on hemostasis but did provide the kill necessary to claim that the device created a 7-day antimicrobial barrier. This is a commercial breakthrough in that hospitals want and are now provided, an all-in-one product wherein hemostasis is achieved, exudate is absorbed, 24-48 hour dressing changes are eliminated and there is a reduction in hospital-acquired infections.
  • Dynamic Pneumatic Hemostasis Test Apparatus
  • Referring to FIG. 8, the preferred apparatus for testing each test sample includes the use of air pressure to dislodge an aluminum disk adhered to a test block. Blood and powder are used to create the adhesive. The test measures the cohesive strength of the seal around the edges of the aluminum disk. A needle valve and an air regulator are used to control the pressure and rate of pressure increase into the test block. As the air pressure is increased, the disk will become dislodged and the air pressure will quickly drop. The maximum pressure is recorded. A traceable Fisher Scientific Manometer (8215 model number) is used to calibrate the data acquisition equipment (Omega OMB-DAQ-54).
  • Testing Procedure
  • The preferred procedure for testing each test sample for blood pressure to failure, i.e., when the test sample fails to maintain blood pressure under pressure within the test block, includes the following steps:
      • 1) Connect the test block to the air pressuring system via the ¼″ hole. Test block—An acrylic (or the like) test block. The block has a ¼″ inlet hole for air pressure, and a ⅛″ opening for testing.
      • 2) Over the ⅛″ opening a ¼″ aluminum foil disk is placed to prevent power from filling the hole.
      • 3) Over the foil disk place approximately 0.5 ml of blood.
      • 4) Over the blood pour 1 g of test powder.
      • 5) Over the test powder place a 200 g weight. And wait for 60 secs.
      • 6) Now remove or leave the 200 gram weight as desired for the test.
      • 7) Pressurize the system
      • 8) Record the maximum pressure
    Example 2
  • Mixtures of Magnetite (Mag), a ferrate powder commercially available as QR Powder (QR) from assignee herein, Povidone Powder (PI), dry Hydrogen Resin and Hematite were tested in the above-described dynamic pneumatic hemostasis apparatus to compare the cohesive nature of each of the mixtures. Air pressure through a ⅛″ hole was used to lift a small thin aluminum disk from a testing block. Over the aluminum disk was ˜0.5 ml of whole EDTA treated bovine blood, and ˜1 g of one of the powder mixtures. In one set of tests, a 200 gm weight was left in place over the powder, and in the other test set, the weight was removed before the system was pressurized. The system was capable of creating +500 mm Hg of pressure thru the ⅛″ hole. The measurement of cohesion for each mixture was taken at the point when the air pressure caused the disk to lift and release the pressure held beneath. The results are summarized in Table 1.
  • TABLE 1
    Cohesive Strengths (mm Hg) of Mixtures of Materials
    Average
    mm Hg Std dev
    Tape Over Hole (Blank)
    553.4
    200 g Mass Over Material
    +44 micron Mag 36.1 29.4
    10 micron Mag 40.1 18.3
    QR 142.8 26.0
    50/50 Mag-QR 176.4 37.2
    50/50 PI-QR 193.0 43.7
    No Mass Over Material
    Hematite 28.8 7.9
    10 micro Mag 36.6 3.3
    44 micron Mag plus 37.1 6.5
    resin 23.1 0.0
    500μ ground resin 31.6 2.6
    10/90 Hematite-QR 37.0 1.7
    10/90 Mag-QR 94.7 11.9
    50/50 Mag-QR 83.9 4.1
    QR 60.7 17.4
    5/5/90 PI-Mag-QR 87.0 16.4
    5/5/90 PI-Mag-Resin 47.2 24.4
    10/90 Mag-Resin 51.4 21.1
    10/90 PI-Res 52.6 14.1
    50/50 PI-QR 58.6 25.1
    25/25/50 PI-Mag-QR 59.0 3.8
    10/90 PI-QR 59.2 2.3
  • Magnetite did not decrease the strength of the cohesive nature of the seal, while Hematite did. Magnetite and Hematite are both iron oxides, so it was a surprise to get better results with Magnetite than with Hematite.
  • Example 3
  • In another series of experiments, the level of Magnetite added to QR, (a 1:7 mixture of ferrate/hydrogen resin) was varied from 0% to 100% and the weight in grams of mixture lifted by a standard magnet measured. As demonstrated, more Magnetite results in more total mass being held by the magnet. The strength of the magnet affects the amount of powder that can be held. There is a minimum amount of Magnetite needed for each device depending on the type of magnet used and the amount of powder needed to be applied.
  • QR powder was mixed with varying amounts of Magnetite and different types of magnets were used to determine the mass of powder that could be held.
  • TABLE 2
    Mass Pick Up (gms) by Addition of Magnetite
    % %
    QR Mag Frig-Mag Bk Cer Cl-F-Su F-Su Sm Neo Lg Neo
    100 0 0.0073 0.0021 0.0023 0.0017 0.0031
    98.5 1.5 0.3718 0.2699 0.3038 0.3398
    97 3 0.4995 0.398 0.5128 0.7616
    90 10 0.1758 1.3976 0.0649 0.7071 1.459 2.4209
    70 30 2.7205 2.0418 3.3509
    30 70 0.4358 3.5408 0.3683 1.4665 2.5924 5.0837
    0 100 10.1903

    Three of the sets of data from Table 2 produced the graph shown in FIG. 1. The 30% Magnetite data with the F-Su magnet was estimated to produce the graph.
  • All Magnets are round discs
    diam thickness
    Frig. Magnets 24 1 Normal flexible refrigerator type
    magnetic
    Bk Cer 22 5 Black ceramic magnet
    CL-F-Su 24 1 Clean flexible neodymium magnetic
    (Edyne's SF-60)
    F-Su 24 0.5 Flexible neodymium magnetic
    (Edyne's SF-35)
    Sm-Neo 13 1.5 Silver hard neodymium magnet
    Lg Neo 24 1.5 Silver hard neodymium magnet

    Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking. QR is sourced from Biolife, L.L.C., BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
  • Example 4
  • In another experiment, the distance from a small round neodymium magnetic to a 3% Magnetite/97% QR mixture was varied to give the results shown in FIG. 2. Because the magnet does not need to touch the powder, the Magnetite can be employed with many different types of applicators. The distance needed from the magnet to the power is determined by the amount of Magnetite in the product and the strength of the magnet, and the amount of powder desired.
  • Example 5
  • A blood seal adhesion test was performed with mixtures of QR Powder with varying amount of Magnetite. A tenth (0.1) of a milliliter of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray. 300 mg of test powder was poured onto the template to cover the circular area. After three minutes of standing, the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula. The amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping and is summarized in Table 3 below.
  • TABLE 3
    Blood Seal Properties of QR with Magnetite
    (1) (2) (3) (4)
    % Magnetite 100 70 50 30
    % QR  0 30 50 70
    mg remaining 0, 0, 0 16.4, 14.2, 13.6, 15.0, 16.2, 22.0,
    seal 14.0 16.2 21.6
    % cover 0, 0, 0 25, 20, 20 30, 35, 25 30, 40, 40
    adhesion none very good very good very good
    absorption poor good good good
    (5) (6) (7) (8)
    % Magnetite 10  3  1.5  0
    % QR 90 97 98.5 100
    mg remaining 19.0, 22.8, 23.0, 21.5, 17.5, 20.3, 19.7, 22.6,
    seal 25.3 22.8 20.5 20.1
    % cover 35, 45, 50 50, 55, 50 40, 50, 50 40, 50, 55
    adhesion very good very good very good very good
    absorption good good good good
  • Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
  • QR is sourced from BP03-lot #927 and is a 1:7 mix of fusion ferrate and the hydrogen form of a 2% crosslinked sulfonated polystyrene ion exchange resin.
  • The optimum range for hemostatic properties of mixtures of Magnetite and QR is from the 50% mix of Magnetite and QR to 100% QR. The optimum range was selected to provide a minimum of 30% coverage and 14 mg of seal remaining.
  • Example 6
  • A blood seal adhesion test was performed with hydrogen resin with varying amounts of Magnetite. A tenth of a milliliter (0.1 ml) of stabilized bovine blood was spread out evenly on a one inch diameter circular template in a plastic tray. 300 mg of test powder was poured onto the template to cover the circular area. After three minutes of standing, the integrity of the seal (barrier) formed by the blood and test powder was evaluated by scraping with a small spatula. The amount of seal remaining after scraping was measured in an analytical balance. Qualitative readings of the following parameters were made: blood absorption, adhesion of the remaining seal, and % coverage of the seal after scrapping. The measures are recorded as a mean average of 3 to 6 runs.
  • TABLE 4
    Blood Seal Properties of Mixtures
    of Hydrogen Resin and Magnetite
    (1) (2) (3) (4)
    % Magnetite 100  70 50 30
    % H+Resin 0 30 50 70
    mg remaining 0 (wet paste)   26.5   20.5   22.2
    seal
    % cover
    0 22 28 37
    adhesion none very good very good very good
    absorption poor poor to fair fair good
    (5) (6) (7) (8)
    % Magnetite 20 10    3  0
    % H+Resin 80 90   97 100 
    mg remaining 32 29.4   28.6   16.4
    seal
    % cover 58 53.3 55 31
    adhesion very good very good very good very good
    to exc to exc to exc
    absorption good good good good

    QR Control without Magnetite:
  • 26.3 mg seal remaining; 50% coverage; very good to excellent adhesion; good blood absorption.
  • Magnetite is a 10 micron RV 99 grade sourced from Reiss Viking.
  • H+Resin is a dried hydrogen form of 2% crosslinked sulfonated polystyrene ion exchange resin.
  • QR is from lot #390907 (exp 4/2012) and is a 1:7 mix of fusion ferrate and H+Resin. The composition based on 100% Magnetite gave extremely poor blood seal properties. Blood seal properties picked up with the inclusion of 30-50% H+Resin but blood absorption was poor to fair only and % coverage was below 30%. At higher H+Resin levels of >70%, and in particular 80%, 90% and 97%, properties were equal to the QR control, a very effective commercial hemostatic powder. Without Magnetite, 100% H+Resin gave less mg seal remaining and less coverage compared to the QR control. As will be shown herebelow, this composition does not have magnetic properties compared to a composition with Magnetite.
  • Example 7
  • In another experiment, the ratio of ferrate-to-resin was changed to 1:12 and then 10% Magnetite added. Thompson discloses that the 1:7 ratio can sting an open wound such as a skin tear. Increasing the resin to 1:12 reduces the sting, but also reduces the strength of the seal. Adding the Magnetite to 1:12 strengthens the seal to about the same as 1:7 powder, thus reducing sting with no change in seal strength.
  • Example 8
  • The addition of Magnetite also allows the material to be moved or held in place by the use of a magnet. The magnet, Magnetite, and dry ferrate/resin mixture (QR Powder) may be employed in combination with a pad, stick or other applicator with openings large enough to trap the powder, resulting in more “holding” power than either alone. For example a magnet behind a very open cell foam, a gauze bandage, or a flocked surface would hold powder more strongly than would either the magnet or foam, bandage or flocked surface alone. This was tested using a flocked substrate and a flat magnet.
  • Preferred Use Procedure
  • Referring now to FIGS. 3 to 6, a magnet device 10 having a round disc-shaped magnetic member 12 is used to lift a quantity of the Magnetite/hemostatic powder 14. After the magnet 10 has been positioned atop the Magnetite/powder pile 14 and a portion 16 thereof is attracted to the exposed surface of the magnet member 12, the magnet device 10 is lifted away and, as seen in FIGS. 4 to 6, is used to manually position the quantity of Magnetite/powder 16 over a bleeding wound in the direction of arrow A. Slight downward pressure in the direction of arrow B is applied to the magnet device 10 as seen in FIG. 5 and held in that position for a time sufficient for the ferrate hemostat to arrest blood flow. A scab at 16 b in FIG. 6 is formed over the wound after which the magnetic device 10 is removed in the direction of arrow C. The remaining portion 16 a of the Magnetite/powder remains attracted to the magnetic member 12 as it is lifted from the wound.
  • In FIG. 7, the additional benefit of attracting Magnetite/hemostatic powder 20 against an absorbent pad of a bandage is there shown. The magnetic member 12 is positioned against the exposed surface of the bandage, after which the arrangement is positioned over the pile of Magnetite/hemostatic powder as shown in FIG. 3. A quantity of the powder 20 will be attracted and held against the absorbent pad of the bandage after which it may be applied under slight pressure against the wound as above described.
  • The application of Magnetite to influence delivery of medical devices including powders has been demonstrated for mixtures with ferrate and resin as well as with resin alone. It is within the scope of this invention to include the use of Magnetite in improving the delivery and control of application of all medical powders to the wound site. It is also well within the scope of this invention to include all other magnetic powders or materials aside from Magnetite to improve the delivery and control of application of all medical powders to the wound site.
  • While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permeations and additions and subcombinations thereof. It is therefore intended that the following appended claims and claims hereinafter introduced are interpreted to include all such modifications, permeations, additions and subcombinations that are within their true spirit and scope.

Claims (10)

1. A method of arresting the flow of blood from a bleeding wound comprising the steps of:
A. providing a powderous mixture of a substantially anhydrous compound of a salt ferrate which will hydrate in the presence of blood thereby promoting clotting of the blood and an anhydrous compound of Magnetite wherein said powderous mixture is magnetic;
B. magnetically attaching a quantity of said powderous mixture directly or indirectly to a surface of a magnet;
C. applying said powderous mixture to the wound by pressing the surface covered with said powderous compound against the wound for a time sufficient to clot the blood to arrest substantial further blood flow from the wound.
2. The method of claim 1, wherein:
said powderous mixture also includes an insoluble cation exchange material.
3. The method of claim 2, wherein:
said powderous mixture includes a quantity of povidone iodine as an antimicrobial.
4. A composition useful in promoting healing of a bleeding wound comprising:
a substantially anhydrous salt ferrate compound combined with an effective amount of an insoluble cation exchange material;
an effective amount of anhydrous compound of particulate or powderous Magnetite mixed uniformly with said salt ferrate compound and said cation exchange material.
5. A composition as set forth in claim 4, wherein:
said cation exchange material is a resin which is crosslinked in the range of 0.25% to 15%.
6. A composition as set forth in claim 4, wherein:
said cation exchange material is present in a ratio of 1:7 with respect to said salt ferrate compound.
7. A composition as set forth in claim 4, further comprising:
an effective amount of povidone iodine as an antimicrobial.
8. A hemostatic agent adapted to be applied directly onto a bleeding wound comprising:
an effective amount of a salt ferrate combined with an effective amount of an insoluble cation exchange material and an effective amount of particulate or powderous Magnetite, said salt ferrate promoting blood clotting at the wound, said cation exchange material forming a protective cover over the wound.
9. A hemostatic agent as set forth in claim 8, further comprising:
an effective amount of povidone iodine as an antimicrobial.
10. A hemostatic agent adapted to be applied directly onto a bleeding wound comprising:
an effective amount of a hemostatic compound or hemostatic mixtures and an effective amount of a magnetic powder or material.
US12/719,434 2009-03-06 2010-03-08 Hemostatic Composition with Magnetite Abandoned US20100226873A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/719,434 US20100226873A1 (en) 2009-03-06 2010-03-08 Hemostatic Composition with Magnetite
US13/760,319 US8979726B2 (en) 2009-03-06 2013-02-06 Hemostasis composition with magnetite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20935909P 2009-03-06 2009-03-06
US12/719,434 US20100226873A1 (en) 2009-03-06 2010-03-08 Hemostatic Composition with Magnetite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/760,319 Continuation US8979726B2 (en) 2009-03-06 2013-02-06 Hemostasis composition with magnetite

Publications (1)

Publication Number Publication Date
US20100226873A1 true US20100226873A1 (en) 2010-09-09

Family

ID=42678436

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/719,434 Abandoned US20100226873A1 (en) 2009-03-06 2010-03-08 Hemostatic Composition with Magnetite
US13/760,319 Active US8979726B2 (en) 2009-03-06 2013-02-06 Hemostasis composition with magnetite

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/760,319 Active US8979726B2 (en) 2009-03-06 2013-02-06 Hemostasis composition with magnetite

Country Status (1)

Country Link
US (2) US20100226873A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821848B1 (en) * 2010-08-10 2014-09-02 Biolife, L.L.C. Ferrate and povidone iodine (PI) composition
WO2014153566A3 (en) * 2013-03-19 2014-11-13 Biolife, L.L.C. Hemostatic device and method
US20160206298A1 (en) * 2015-01-21 2016-07-21 Biolife, L.L.C. Combination Hemostatic Tablet or Powder and Radial Arterial Compression Band with Syringe Assembly
US20180193011A1 (en) * 2013-09-17 2018-07-12 Biolife, L.L.C. Adaptive Devices and Methods for Endoscopic Wound Closures

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545974A (en) * 1984-03-16 1985-10-08 Thompson John A Process for producing alkali metal ferrates utilizing hematite and magnetite
US4551326A (en) * 1981-02-26 1985-11-05 Thompson John A Process for preparing alkali metal ferrates
US6187347B1 (en) * 2000-02-09 2001-02-13 Ecosafe, Llc. Composition for arresting the flow of blood and method
US20020197302A1 (en) * 1998-11-12 2002-12-26 Cochrum Kent C. Hemostatic polymer useful for rapid blood coagulation and hemostasis
US6521265B1 (en) * 2000-02-09 2003-02-18 Biolife, L.L.C. Method for applying a blood clotting agent
US6790429B2 (en) * 2000-07-14 2004-09-14 Ab Initio Lc Methods of synthesizing an oxidant and applications thereof
US6946078B2 (en) * 2002-02-27 2005-09-20 Lynntech, Inc. Electrochemical method and apparatus for producing and separating ferrate (VI) compounds
US20070269499A1 (en) * 2006-04-28 2007-11-22 John Hen Materials and methods for wound treatment
US7303759B2 (en) * 2001-06-22 2007-12-04 The United States Of America As Represented By The Secretary Of The Army Compositions and methods for reducing blood and fluid loss from open wounds
US7476324B2 (en) * 2000-07-14 2009-01-13 Ferrate Treatment Technologies, Llc Methods of synthesizing a ferrate oxidant and its use in ballast water
US7595429B2 (en) * 2003-09-12 2009-09-29 Z-Medica Corporation Calcium zeolite hemostatic agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT335617B (en) 1974-04-23 1977-03-25 Rene Laguerre METHOD, PRODUCT AND APPARATUS FOR CLEANING UP THE EPIDERMIS
RU2125453C1 (en) * 1993-07-23 1999-01-27 Борис Алексеевич Парамонов Method of local medicinal hemostasis
CA2369921A1 (en) 2001-12-04 2003-06-04 Charles Boekhoudt Magnetic therapy device
WO2008151041A2 (en) 2007-05-31 2008-12-11 Biolife, Llc Materials and methods for preparation of alkaline earth ferrates from alkaline earth oxides, peroxides, and nitrates

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551326A (en) * 1981-02-26 1985-11-05 Thompson John A Process for preparing alkali metal ferrates
US4545974A (en) * 1984-03-16 1985-10-08 Thompson John A Process for producing alkali metal ferrates utilizing hematite and magnetite
US20020197302A1 (en) * 1998-11-12 2002-12-26 Cochrum Kent C. Hemostatic polymer useful for rapid blood coagulation and hemostasis
US6187347B1 (en) * 2000-02-09 2001-02-13 Ecosafe, Llc. Composition for arresting the flow of blood and method
US6521265B1 (en) * 2000-02-09 2003-02-18 Biolife, L.L.C. Method for applying a blood clotting agent
US6790429B2 (en) * 2000-07-14 2004-09-14 Ab Initio Lc Methods of synthesizing an oxidant and applications thereof
US6974562B2 (en) * 2000-07-14 2005-12-13 Ferrate Treatment Technologies, Llc Methods of synthesizing an oxidant and applications thereof
US7476324B2 (en) * 2000-07-14 2009-01-13 Ferrate Treatment Technologies, Llc Methods of synthesizing a ferrate oxidant and its use in ballast water
US7303759B2 (en) * 2001-06-22 2007-12-04 The United States Of America As Represented By The Secretary Of The Army Compositions and methods for reducing blood and fluid loss from open wounds
US6946078B2 (en) * 2002-02-27 2005-09-20 Lynntech, Inc. Electrochemical method and apparatus for producing and separating ferrate (VI) compounds
US7595429B2 (en) * 2003-09-12 2009-09-29 Z-Medica Corporation Calcium zeolite hemostatic agent
US20070269499A1 (en) * 2006-04-28 2007-11-22 John Hen Materials and methods for wound treatment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821848B1 (en) * 2010-08-10 2014-09-02 Biolife, L.L.C. Ferrate and povidone iodine (PI) composition
WO2014153566A3 (en) * 2013-03-19 2014-11-13 Biolife, L.L.C. Hemostatic device and method
US8961479B2 (en) * 2013-03-19 2015-02-24 Biolife, L.L.C. Hemostatic device and method
GB2527261A (en) * 2013-03-19 2015-12-16 Biolife Llc Hemostatic device and method
CN105246493A (en) * 2013-03-19 2016-01-13 生物生命有限责任公司 Hemostatic device and method
US9877728B2 (en) 2013-03-19 2018-01-30 Biolife, L.L.C. Hemostatic device and method
US20180193011A1 (en) * 2013-09-17 2018-07-12 Biolife, L.L.C. Adaptive Devices and Methods for Endoscopic Wound Closures
US20160206298A1 (en) * 2015-01-21 2016-07-21 Biolife, L.L.C. Combination Hemostatic Tablet or Powder and Radial Arterial Compression Band with Syringe Assembly
WO2016118695A1 (en) * 2015-01-21 2016-07-28 Biolife, L.L.C. Combination hemostatic tablet or powder and radial arterial compression band with syringe assembly

Also Published As

Publication number Publication date
US8979726B2 (en) 2015-03-17
US20130150652A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
US8979726B2 (en) Hemostasis composition with magnetite
US9877728B2 (en) Hemostatic device and method
US6568398B2 (en) Method for hemostasis
US8361504B2 (en) Materials and methods for wound treatment
EP3274002B1 (en) Fibrin composition, method and wound articles
JP6112638B2 (en) Water-absorbing polymer composition
US8007833B2 (en) Method of reducing infections and/or air embolisms associated with vascular access procedures
US8722081B2 (en) Hemostatic textile material
US8609129B2 (en) Hemostatic agent composition, delivery system and method
CA2975464A1 (en) Hemostatic composition and hemostatic device (variants)
CN106310350A (en) Hydrogel woundplast containing traditional Chinese medicine extracts and preparation method thereof
Chen et al. Magnetically controlled release of recombinant tissue plasminogen activator from chitosan nanocomposites for targeted thrombolysis
JP2013518809A (en) Copper salt of ion exchange material for use in the treatment and prevention of infectious diseases
WO2007127231A3 (en) Magnetic resonance-detectable, ultrasound-detectable and/or radiopaque microcapsules and uses thereof
WO2011123112A1 (en) Hemostasis composition with magnetite
JPH03205058A (en) Medical device used for inhibiting animal microbism
JP6527266B2 (en) Hemostatic device and method
US11701447B2 (en) Composition having excellent permeability to water vapour
WO2021132663A1 (en) Method for producing material for local hemostasis, and material for local hemostasis
CN115317514A (en) PAA-CaO 2 NPs nano-spray and preparation method and application thereof
JP2017176293A (en) Wound covering material
JPS61276569A (en) Magnetic treatment device
UA101868U (en) HEMOSTATIC COMPOSITION
SI24839A (en) Device for in-vitro controlled release of active ingredient

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOLIFE, L.L.C., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEN, JOHN;KEENE, TALMADGE KELLY;TRAVI, MARK;REEL/FRAME:024044/0430

Effective date: 20100305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION