US20100215981A1 - Hot rolled thin cast strip product and method for making the same - Google Patents

Hot rolled thin cast strip product and method for making the same Download PDF

Info

Publication number
US20100215981A1
US20100215981A1 US12/708,635 US70863510A US2010215981A1 US 20100215981 A1 US20100215981 A1 US 20100215981A1 US 70863510 A US70863510 A US 70863510A US 2010215981 A1 US2010215981 A1 US 2010215981A1
Authority
US
United States
Prior art keywords
steel strip
hot rolled
rolled steel
composition
casting rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/708,635
Inventor
Daniel Geoffrey Edelman
Christopher Ronald KILLMORE
Mary E. ALWIN-BECKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nucor Corp
Original Assignee
Nucor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nucor Corp filed Critical Nucor Corp
Priority to US12/708,635 priority Critical patent/US20100215981A1/en
Assigned to NUCOR CORPORATION reassignment NUCOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KILLMORE, CHRISTOPHER RONALD, ALWIN-BECKER, MARY E., EDELMAN, DANIEL GEOFFREY
Publication of US20100215981A1 publication Critical patent/US20100215981A1/en
Priority to US13/940,601 priority patent/US20130302644A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • molten metal is introduced between a pair of counter-rotated, internally cooled casting rolls so that metal shells solidify on the moving roll surfaces, and are brought together at the nip between them to produce a solidified strip product, delivered downwardly from the nip between the casting rolls.
  • the term “nip” is used herein to refer to the general region at which the casting rolls are closest together.
  • the molten metal is poured from a ladle through a metal delivery system comprising a tundish and a core nozzle located above the nip to form a casting pool of molten metal, supported on the casting surfaces of the rolls above the nip and extending along the length of the nip.
  • This casting pool is usually confined between refractory side plates or dams held in sliding engagement with the end surfaces of the rolls so as to dam the two ends of the casting pool against outflow.
  • the cast strip is typically directed to a hot rolling mill where the strip is hot reduced by 10% or more.
  • plain low carbon steels have been continuously cast on a twin roll caster, including plain carbon-manganese steel.
  • the physical properties of these plain carbon-manganese steels typically were effected by increasing hot rolling reduction. For example, yield strength and tensile strength decreased with increasing amount of hot rolling, while total elongation typically increased with increasing amount of hot rolling.
  • the steel compositions had to be tailored for the amount of hot rolling reduction that was applied to provide desired mechanical properties. This resulted in inefficiency and operational problems as melt shops had to provide different molten compositions for different hot rolled strip thickness to provide desired hot rolled steel properties.
  • the steel compositions may include copper from scrap products incorporated into the molten steel.
  • copper levels over about 0.2 weight % were generally avoided because of concerns over “hot shortness” during hot rolling reduction, which causes cracks or extremely roughened surfaces on the strip, sometimes referred to as “checking.”
  • copper levels were higher than 0.2% (such as in steels with improved atmospheric weathering resistance)
  • expensive additions such as nickel had to be added to reduce the risk of hot shortness.
  • Scrap with less than 0.15% copper is generally useful in electric arc furnaces for certain commercial methods of making steel, adding considerably to the cost of the steel sheet produced.
  • Scrap grades with copper content up to 0.5% have been useful in bar mills serviced by electric arc furnaces, or in other processes at considerable expense by mixing with scrap of lower copper content to reduce the overall copper content of the scrap to less than 0.15%.
  • the step of hot rolling may be such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
  • the mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation.
  • mechanical properties may be within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation.
  • the molten steel composition may have a free oxygen content between 30 and 60 ppm.
  • the total oxygen content of the molten metal for the hot rolled steel strip may be between 70 ppm and 150 ppm.
  • the molten steel having a composition such that the composition of the hot rolled steel strip may have in addition between 0.01% and 0.20% niobium by weight.
  • the composition of molten steel may have a composition such that the composition of the hot rolled steel strip further comprises at least one element selected from the group consisting of molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof by weight.
  • a hot rolled steel strip may additionally be provided with a coating of zinc or a zinc alloy or aluminum.
  • the hot rolled steel strip may also have a yield strength of at least 440 MPa after hot rolling reductions of at least 35%.
  • thermoforming a hot rolled steel strip and method of making the same comprising the steps of:
  • the step of hot rolling may be such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
  • the mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation.
  • mechanical properties may be within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation.
  • the molten steel may have a composition such that the composition of the hot rolled steel strip has a copper content between 0.2 and 0.5% or between 0.3 and 0.4% by weight.
  • the molten steel may in addition have a composition such that the composition of the hot rolled steel strip has additional a chromium content between 0.4 and 0.75% or between 0.4 and 0.5% by weight.
  • FIG. 1 illustrates a strip casting installation incorporating an in-line hot rolling mill and coiler
  • FIG. 2 illustrates details of the twin roll strip caster
  • FIG. 3 is a graph showing the effect of hot rolling reduction on the yield strength for elevated manganese steel
  • FIG. 4 is a graph showing the effect of hot rolling reduction on the yield strength and elongation for 0.19% carbon steel
  • FIG. 5 is a graph showing the effect of amount of carbon on the tensile strength, yield strength, and elongation for test samples between 0.88% and 1.1% manganese;
  • FIG. 6 is a graph showing the effect of hot rolling reduction on the tensile strength, yield strength, and elongation over reduction between about 15% and 45%.
  • FIG. 1 illustrates successive parts of strip caster for continuously casting steel strip.
  • FIGS. 1 and 2 illustrate a twin roll caster 11 that continuously produces a cast steel strip 12 , which passes in a transit path 10 across a guide table 13 to a pinch roll stand 14 having pinch rolls 14 A.
  • the strip passes into a hot rolling mill 16 having a pair of reduction rolls 16 A and backing rolls 16 B where the cast strip is hot rolled to reduce a desired thickness.
  • the hot rolled strip passes onto a run-out table 17 where the strip may be cooled by convection and contact with water supplied via water jets 18 (or other suitable means) and by radiation.
  • the rolled and cooled strip is then passes through a pinch roll stand 20 comprising a pair of pinch rolls 20 A and then to a coiler 19 . Final cooling of the cast strip takes place after coiling.
  • twin roll caster 11 comprises a main machine frame 21 , which supports a pair of laterally positioned casting rolls 22 having casting surfaces 22 A.
  • Molten metal is supplied during a casting operation from a ladle (not shown) to a tundish 23 , through a refractory shroud 24 to a distributor or moveable tundish 25 , and then from the distributor 25 through a metal delivery nozzle 26 between the casting rolls 22 above the nip 27 .
  • the molten metal delivered between the casting rolls 22 forms a casting pool 30 above the nip.
  • the casting pool 30 is restrained at the ends of the casting rolls by a pair of side closure dams or plates 28 , which are pushed against the ends of the casting rolls by a pair of thrusters (not shown) including hydraulic cylinder units (not shown) connected to the side plate holders.
  • the upper surface of casting pool 30 (generally referred to as the “meniscus” level) usually rises above the lower end of the delivery nozzle so that the lower end of the delivery nozzle is immersed within the casting pool 30 .
  • Casting rolls 22 are internally water cooled so that shells solidify on the moving roller surfaces as they pass through the casting pool, and are brought together at the nip 27 between them to produce the cast strip 12 , which is delivered downwardly from the nip between the casting rolls.
  • the twin roll caster may be of the kind that is illustrated and described in some detail in U.S. Pat. Nos. 5,184,668 and 5,277,243 or U.S. Pat. No. 5,488,988, or U.S. patent application Ser. No. 12/050,987. Reference may be made to those patents for appropriate construction details of a twin roll caster appropriate for use in an embodiment of the present invention.
  • the present composition By employing rapid solidification rates with control of certain parameters, the present composition generates liquid deoxidation products of MnO and SiO 2 in a fine and uniform distribution of globular inclusions.
  • the MnO.SiO 2 inclusions present are also not significantly elongated by the in-line hot rolling process, due to limited hot reduction.
  • the inclusion/particle populations are tailored to stimulate nucleation of acicular ferrite.
  • the MnO.SiO 2 inclusions may be about 10 ⁇ m down to very fine particles of less than 0.1 ⁇ m, and a majority being between about 0.5 ⁇ m and 5 ⁇ m.
  • the larger 0.5-10 ⁇ m size non-metallic inclusions are provided for nucleating acicular ferrite, and may include a mixture of inclusions, for example including MnS, and CuS.
  • the austenite grain size is significantly larger than the austenite grain size produced in conventional hot rolled strip steel.
  • the coarse austenite grain size in conjunction with the population of tailored inclusion/particles, assists with the nucleation of acicular ferrite and bainite.
  • the in-line hot rolling mill 16 is typically used for reductions of 10 to 50%.
  • the cooling may include water cooling section and air mist cooling to control cooling rates of austenite transformation to achieve desired microstructure and material properties at a temperature between 300 and 700° C.
  • the coiling temperature may be between about 450 and 550° C.
  • the resulting microstructure comprises a majority acicular ferrite and bainite.
  • the effect of hot reduction on yield strength, tensile strength, and total elongation in the present elevated copper and elevated manganese steels results in a steel properties where the tensile strength, yield strength and total elongation are relatively stable with different levels of hot reduction.
  • a coiling temperature below 550° C. may be used in conjunction with a high degree of hot rolling to mitigate the effect of hot reduction on the mechanical properties.
  • Hot reductions larger than about 15% can induce the recrystallization of austenite, which reduces the grain size and volume fraction of acicular ferrite and bainite.
  • alloying elements increasing the hardenability of the steel suppressed the recrystallization of the coarse as-cast austenite grain size during the hot rolling process, and resulted in the hardenability of the steel being retained after hot rolling, enabling thinner material to be produced with the desired microstructure and mechanical properties over a wide range of percent hot reduction.
  • the molten composition of Steels J and L had a free oxygen content between 41 and 54 ppm and the compositions of Steel J and L had a greater than 0.01% and less than or equal to 0.15% phosphorus.
  • a typical composition for plain carbon-manganese steel includes a manganese content of about 0.60%-0.90% by weight.
  • a steel composition having a substantially elevated manganese content (steel L in TABLE 1) to increase the hardenability of the steel.
  • the elevated manganese content provides desired strength levels due to microstructural hardening.
  • manganese in solid solution acted to suppress static recrystallization of the deformed austenite after hot rolling mitigating the effect of hot reduction on mechanical properties. This suppression is made possible by the short time scale and minimal hot reduction relative to slab based production.
  • the present elevated manganese steel composition is relatively stable with the degree of hot rolled reduction for hot reductions up to at least 35%.
  • the yield strength for 1.28% manganese steel is less influenced by hot rolling reduction than a plain 0.8% carbon-manganese grade. Additionally, the yield strength of the 1.28% manganese was significantly higher than that of the base 0.8% manganese steel, exceeding 440 MPa for hot rolling reductions greater than 35%.
  • the steel strip After hot rolling, the steel strip is cooled to a coiling temperature between about 300° C. and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite. Alternatively, the steel strip is cooled to a coiling temperature between about 450° C. and 550° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
  • the mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation of the hot rolled strip. Alternatively, mechanical properties may be within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation of the hot rolled strip.
  • the composition may include, by weight, less than 0.25% carbon, between 0.9% and 2.0% manganese, between 0.05 and 0.50% silicon, and less than 0.01% aluminum.
  • the manganese content may be between about 1.0% and 1.3% by weight.
  • the composition of the elevated manganese steel may include at least one element selected from the group consisting of niobium between about 0.01% and 0.2%, molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof.
  • the hot rolled steel strip also may be hot dip coated to provide a coating of zinc or a zinc alloy or aluminum.
  • the desired microstructural hardening to reduce the effect of the hot rolling reduction on the mechanical properties can be provided by addition of between 0.20 and 0.60% copper and the manganese levels kept the same or reduced to as low as 0.08%, with less than 0.03% tin and less than 0.20% nickel by weight.
  • This elevated copper steel enables use of steel scrap that is higher in copper, such as used in bar mills, to be used in the steel making without hot shortness.
  • a number of trial heats were cast having copper levels in the range of 0.2% to 0.4%, and one trial heat of about 0.6% copper was cast without incurring hot shortness while also avoiding special practices or alloy additions.
  • the composition with copper may include, by weight, less than 0.25% carbon, between 0.2 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum less than 0.03% tin, less than 0.10% nickel, and between 0.20 and 0.60% copper.
  • the copper content may be between about 0.2% and 0.5% by weight, and alternatively, may be between about 0.3% and 0.4%.
  • the molten steel cast has a free oxygen content between 20 and 75 ppm and the free oxygen content may be between 30 and 60 ppm. Again, the total oxygen levels were between 70 ppm and 150 ppm.
  • the hot rolled steel strip may have, in addition, a chromium content between about 0.4% and 0.75% by weight. Alternatively, the chromium content may be between about 0.4% and 0.5%.
  • the present steel with elevated copper may provide physical properties similar to plain carbon-manganese steel with low copper content.
  • the present steel composition having elevated copper levels can be made in electric arc furnaces with high copper scrap, as discussed above, at a considerable cost savings over low copper scrap.
  • the present elevated copper steel is hot dip coated with one or both of a zinc coating or a zinc alloy coating or an aluminum coating, such as a galvanized coating, Galvalume® and Zincalum® coating, aluminized coating or other coating.
  • a zinc coating or a zinc alloy coating or an aluminum coating such as a galvanized coating, Galvalume® and Zincalum® coating, aluminized coating or other coating.
  • the microstructure of the present hot dipped elevated copper steel was not significantly altered as the strip temperatures remained well below the A c1 temperature of the steel. Consequently, the mechanical properties of uncoated elevated copper steel in the hot rolled condition are similar to the mechanical properties after coating on a continuous hot dip galvanizing line.
  • the high copper composition may include at least one element selected from the group consisting of niobium between about 0.01% and 0.2%, molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof.
  • carbon levels of about 0.20% and greater may also be used for applications where microalloying is not desired. Additionally, higher carbon levels, in the range of 0.30-0.50%, may be used in certain applications for material in the thickness range of 1.0-1.5 mm. In the past, these elevated carbon steels required multiple annealing and cold rolling steps to achieve this thickness.
  • the composition of the 0.19% carbon steel is given in TABLE 1 (steel J) and the mechanical properties are presented in FIG. 4 as a function of the hot rolling reduction applied.
  • the strength levels of the present 0.19% carbon steel are higher than current plain low carbon steels.
  • the yield strength is over 380 MPa over the full range of hot reductions applied, while being processed with conventional coiling temperatures. This is in contrast to low carbon steels (0.02-0.05% C), where lower coiling temperatures and limited hot reductions are applied to provide yield strengths over 380 MPa.
  • FIGS. 5 and 6 Additional samples of the present steel were prepared with manganese between about 0.88% and 1.1% and carbon amount between about 0.02% and 0.04%, shown in FIGS. 5 and 6 . As shown in FIG. 5 , tensile strength, yield strength and total elongation are relatively stable over different levels of manganese amount between 0.88% and 1.1%
  • the effect of hot reduction on yield strength, tensile strength, and total elongation in the present steels results in a steel properties where the tensile strength, yield strength and total elongation are relatively stable with different levels of hot reduction, as shown in FIG. 6 .
  • the present steel is relatively stable with the degree of hot rolled reduction for reductions up to at least 45%.
  • the hot rolled cast strip to provide after cooling at a temperature between 300 and 700° C., alternatively between about 450 and 550° C., a microstructure comprising a majority bainite and acicular ferrite and having properties such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
  • mechanical properties are within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation.
  • mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
  • mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation.

Abstract

A hot rolled steel strip made by the steps including assembling a twin roll caster, forming a casting pool of molten steel having a free oxygen content between 20 and 75 ppm and having a composition such that the cast strip comprises by weight, less than 0.25% carbon, between 0.9 and 2.0% manganese, between 0.05 and 0.50% silicon, greater than 0.01% and less than or equal to 0.15% phosphorus, and less than 0.01% aluminum, counter rotating the casting rolls forming the steel strip, hot rolling the strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation, and coiling the strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite. Alternatively, the steel may have between 0.20 and 0.60% copper and manganese as low as 0.08%.

Description

  • This application claims priority to and the benefit of U.S. Patent Application 61/154,233, filed on Feb. 20, 2009, which is incorporated herein by reference.
  • BACKGROUND AND SUMMARY
  • In a twin roll caster, molten metal is introduced between a pair of counter-rotated, internally cooled casting rolls so that metal shells solidify on the moving roll surfaces, and are brought together at the nip between them to produce a solidified strip product, delivered downwardly from the nip between the casting rolls. The term “nip” is used herein to refer to the general region at which the casting rolls are closest together. The molten metal is poured from a ladle through a metal delivery system comprising a tundish and a core nozzle located above the nip to form a casting pool of molten metal, supported on the casting surfaces of the rolls above the nip and extending along the length of the nip. This casting pool is usually confined between refractory side plates or dams held in sliding engagement with the end surfaces of the rolls so as to dam the two ends of the casting pool against outflow. The cast strip is typically directed to a hot rolling mill where the strip is hot reduced by 10% or more.
  • In the past, plain low carbon steels have been continuously cast on a twin roll caster, including plain carbon-manganese steel. The physical properties of these plain carbon-manganese steels typically were effected by increasing hot rolling reduction. For example, yield strength and tensile strength decreased with increasing amount of hot rolling, while total elongation typically increased with increasing amount of hot rolling. As a result, in the past the steel compositions had to be tailored for the amount of hot rolling reduction that was applied to provide desired mechanical properties. This resulted in inefficiency and operational problems as melt shops had to provide different molten compositions for different hot rolled strip thickness to provide desired hot rolled steel properties.
  • Additionally, the steel compositions may include copper from scrap products incorporated into the molten steel. In the past, copper levels over about 0.2 weight % were generally avoided because of concerns over “hot shortness” during hot rolling reduction, which causes cracks or extremely roughened surfaces on the strip, sometimes referred to as “checking.” In cases where copper levels were higher than 0.2% (such as in steels with improved atmospheric weathering resistance), expensive additions such as nickel had to be added to reduce the risk of hot shortness.
  • The problem of hot shortness has increased the costs in making low alloy steel using electric arc furnaces to form the molten carbon steel. Approximately 75% of the cost of making steel by electric arc furnace is the cost of the scrap used as the starting material for charging the electric arc furnace. Steel scrap has been traditionally separated by copper content to less than 0.15% by weight copper, greater than or equal to 0.15% to up to 0.5% by weight copper, and above 0.5% by weight. Scrap with copper content above 0.5% copper could be mixed with scrap with low copper levels to make an acceptable scrap. In any event, the scrap which was low copper below 0.15% by weight is the highest cost scrap, with the other two grades of scrap being of less cost. Scrap with less than 0.15% copper is generally useful in electric arc furnaces for certain commercial methods of making steel, adding considerably to the cost of the steel sheet produced. Scrap grades with copper content up to 0.5% have been useful in bar mills serviced by electric arc furnaces, or in other processes at considerable expense by mixing with scrap of lower copper content to reduce the overall copper content of the scrap to less than 0.15%.
  • Presently disclosed is a hot rolled steel strip and method of making the same comprising the steps of:
  • (a) assembling internally a cooled roll caster having laterally positioned casting rolls forming a nip between them,
  • (b) forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and a composition such that hot rolled thin cast strip produced has a composition comprising, by weight, less than 0.25% carbon, greater than 0.01% and less than or equal to 0.15% phosphorus between 0.9% and 2.0% manganese, between 0.05 and 0.50% silicon, and less than 0.01% aluminum,
  • (c) counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool, and
  • (d) forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
  • (e) hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation, and
  • (f) coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
  • Alternatively, the step of hot rolling may be such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation. In another alternative, the mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation. Alternatively, mechanical properties may be within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation.
  • The molten steel composition may have a free oxygen content between 30 and 60 ppm. The total oxygen content of the molten metal for the hot rolled steel strip may be between 70 ppm and 150 ppm.
  • The molten steel may have a composition such that the manganese content of the composition of the hot rolled steel strip is between 0.9 and 1.3% by weight.
  • The molten steel having a composition such that the composition of the hot rolled steel strip may have in addition between 0.01% and 0.20% niobium by weight. Alternatively or in addition, the composition of molten steel may have a composition such that the composition of the hot rolled steel strip further comprises at least one element selected from the group consisting of molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof by weight.
  • A hot rolled steel strip may additionally be provided with a coating of zinc or a zinc alloy or aluminum. The hot rolled steel strip may also have a yield strength of at least 440 MPa after hot rolling reductions of at least 35%.
  • Also disclosed is a hot rolled steel strip and method of making the same comprising the steps of:
  • (a) assembling internally a cooled roll caster having laterally positioned casting rolls forming a nip between them,
  • (b) forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and a composition such that the hot rolled steel strip has a composition comprising, by weight, less than 0.25% carbon, between 0.2 and 2.0% manganese, between 0.05 and 0.50% silicon, greater than 0.01% and less than or equal to 0.15% phosphorus, less than 0.03% tin, less than 0.20% nickel, less than 0.01% aluminum and between 0.20 and 0.60% copper,
  • (c) counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool,
  • (d) forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
  • (e) hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation; and
  • (f) coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
  • Alternatively, the step of hot rolling may be such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation. In yet another alternative, the mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation. Alternatively, mechanical properties may be within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation.
  • The molten steel may have a free oxygen content between 30 and 60 ppm. The total oxygen content of the molten metal for the hot rolled steel strip may be between 70 and 150 ppm. The nickel content may be less than 0.1% by weight.
  • The molten steel may have a composition such that the composition of the hot rolled steel strip has a copper content between 0.2 and 0.5% or between 0.3 and 0.4% by weight. The molten steel may in addition have a composition such that the composition of the hot rolled steel strip has additional a chromium content between 0.4 and 0.75% or between 0.4 and 0.5% by weight.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a strip casting installation incorporating an in-line hot rolling mill and coiler;
  • FIG. 2 illustrates details of the twin roll strip caster;
  • FIG. 3 is a graph showing the effect of hot rolling reduction on the yield strength for elevated manganese steel;
  • FIG. 4 is a graph showing the effect of hot rolling reduction on the yield strength and elongation for 0.19% carbon steel,
  • FIG. 5 is a graph showing the effect of amount of carbon on the tensile strength, yield strength, and elongation for test samples between 0.88% and 1.1% manganese; and
  • FIG. 6 is a graph showing the effect of hot rolling reduction on the tensile strength, yield strength, and elongation over reduction between about 15% and 45%.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates successive parts of strip caster for continuously casting steel strip. FIGS. 1 and 2 illustrate a twin roll caster 11 that continuously produces a cast steel strip 12, which passes in a transit path 10 across a guide table 13 to a pinch roll stand 14 having pinch rolls 14A. Immediately after exiting the pinch roll stand 14, the strip passes into a hot rolling mill 16 having a pair of reduction rolls 16A and backing rolls 16B where the cast strip is hot rolled to reduce a desired thickness. The hot rolled strip passes onto a run-out table 17 where the strip may be cooled by convection and contact with water supplied via water jets 18 (or other suitable means) and by radiation. The rolled and cooled strip is then passes through a pinch roll stand 20 comprising a pair of pinch rolls 20A and then to a coiler 19. Final cooling of the cast strip takes place after coiling.
  • As shown in FIG. 2, twin roll caster 11 comprises a main machine frame 21, which supports a pair of laterally positioned casting rolls 22 having casting surfaces 22A. Molten metal is supplied during a casting operation from a ladle (not shown) to a tundish 23, through a refractory shroud 24 to a distributor or moveable tundish 25, and then from the distributor 25 through a metal delivery nozzle 26 between the casting rolls 22 above the nip 27. The molten metal delivered between the casting rolls 22 forms a casting pool 30 above the nip. The casting pool 30 is restrained at the ends of the casting rolls by a pair of side closure dams or plates 28, which are pushed against the ends of the casting rolls by a pair of thrusters (not shown) including hydraulic cylinder units (not shown) connected to the side plate holders. The upper surface of casting pool 30 (generally referred to as the “meniscus” level) usually rises above the lower end of the delivery nozzle so that the lower end of the delivery nozzle is immersed within the casting pool 30. Casting rolls 22 are internally water cooled so that shells solidify on the moving roller surfaces as they pass through the casting pool, and are brought together at the nip 27 between them to produce the cast strip 12, which is delivered downwardly from the nip between the casting rolls.
  • The twin roll caster may be of the kind that is illustrated and described in some detail in U.S. Pat. Nos. 5,184,668 and 5,277,243 or U.S. Pat. No. 5,488,988, or U.S. patent application Ser. No. 12/050,987. Reference may be made to those patents for appropriate construction details of a twin roll caster appropriate for use in an embodiment of the present invention.
  • By employing rapid solidification rates with control of certain parameters, the present composition generates liquid deoxidation products of MnO and SiO2 in a fine and uniform distribution of globular inclusions. The MnO.SiO2 inclusions present are also not significantly elongated by the in-line hot rolling process, due to limited hot reduction. The inclusion/particle populations are tailored to stimulate nucleation of acicular ferrite. The MnO.SiO2 inclusions may be about 10 μm down to very fine particles of less than 0.1 μm, and a majority being between about 0.5 μm and 5 μm. The larger 0.5-10 μm size non-metallic inclusions are provided for nucleating acicular ferrite, and may include a mixture of inclusions, for example including MnS, and CuS. The austenite grain size is significantly larger than the austenite grain size produced in conventional hot rolled strip steel. The coarse austenite grain size, in conjunction with the population of tailored inclusion/particles, assists with the nucleation of acicular ferrite and bainite.
  • The in-line hot rolling mill 16 is typically used for reductions of 10 to 50%. On the run-out-table 17 the cooling may include water cooling section and air mist cooling to control cooling rates of austenite transformation to achieve desired microstructure and material properties at a temperature between 300 and 700° C. Alternatively, the coiling temperature may be between about 450 and 550° C. The resulting microstructure comprises a majority acicular ferrite and bainite.
  • The effect of hot reduction on yield strength, tensile strength, and total elongation in the present elevated copper and elevated manganese steels results in a steel properties where the tensile strength, yield strength and total elongation are relatively stable with different levels of hot reduction. In previous such steel products, there is typically a decrease in yield and tensile strengths with increasing hot reduction. In contrast, the effect of hot reduction on yield strength, tensile strength, and total elongation is significantly reduced in the present steel products. A coiling temperature below 550° C. may be used in conjunction with a high degree of hot rolling to mitigate the effect of hot reduction on the mechanical properties.
  • Hot reductions larger than about 15% can induce the recrystallization of austenite, which reduces the grain size and volume fraction of acicular ferrite and bainite. We have found that the addition of alloying elements increasing the hardenability of the steel suppressed the recrystallization of the coarse as-cast austenite grain size during the hot rolling process, and resulted in the hardenability of the steel being retained after hot rolling, enabling thinner material to be produced with the desired microstructure and mechanical properties over a wide range of percent hot reduction.
  • TABLE 1
    Steel C Mn Si Nb V N (ppm)
    Base 0.02-0.05 0.7-0.9 0.15-0.30 <0.003 <0.003 35-90
    J 0.19 0.94 0.21 <0.003 <0.003 85
    L 0.033 1.28 0.21 <0.003 <0.003 <100
  • The molten composition of Steels J and L had a free oxygen content between 41 and 54 ppm and the compositions of Steel J and L had a greater than 0.01% and less than or equal to 0.15% phosphorus.
  • A typical composition for plain carbon-manganese steel includes a manganese content of about 0.60%-0.90% by weight. We have developed a steel composition having a substantially elevated manganese content (steel L in TABLE 1) to increase the hardenability of the steel. The elevated manganese content provides desired strength levels due to microstructural hardening. Additionally, manganese in solid solution acted to suppress static recrystallization of the deformed austenite after hot rolling mitigating the effect of hot reduction on mechanical properties. This suppression is made possible by the short time scale and minimal hot reduction relative to slab based production. The present elevated manganese steel composition is relatively stable with the degree of hot rolled reduction for hot reductions up to at least 35%. This allows the production of thinner gauges, such as steel L having a thickness of 0.9 mm, with desired mechanical properties. As shown in FIG. 3, the yield strength for 1.28% manganese steel is less influenced by hot rolling reduction than a plain 0.8% carbon-manganese grade. Additionally, the yield strength of the 1.28% manganese was significantly higher than that of the base 0.8% manganese steel, exceeding 440 MPa for hot rolling reductions greater than 35%.
  • After hot rolling, the steel strip is cooled to a coiling temperature between about 300° C. and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite. Alternatively, the steel strip is cooled to a coiling temperature between about 450° C. and 550° C. to provide a majority of the microstructure comprising bainite and acicular ferrite. The mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation of the hot rolled strip. Alternatively, mechanical properties may be within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation of the hot rolled strip.
  • The composition may include, by weight, less than 0.25% carbon, between 0.9% and 2.0% manganese, between 0.05 and 0.50% silicon, and less than 0.01% aluminum. Alternatively, the manganese content may be between about 1.0% and 1.3% by weight.
  • Alternatively or in addition, the composition of the elevated manganese steel may include at least one element selected from the group consisting of niobium between about 0.01% and 0.2%, molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof. The hot rolled steel strip also may be hot dip coated to provide a coating of zinc or a zinc alloy or aluminum.
  • We have also found the desired microstructural hardening to reduce the effect of the hot rolling reduction on the mechanical properties can be provided by addition of between 0.20 and 0.60% copper and the manganese levels kept the same or reduced to as low as 0.08%, with less than 0.03% tin and less than 0.20% nickel by weight. This elevated copper steel enables use of steel scrap that is higher in copper, such as used in bar mills, to be used in the steel making without hot shortness. A number of trial heats were cast having copper levels in the range of 0.2% to 0.4%, and one trial heat of about 0.6% copper was cast without incurring hot shortness while also avoiding special practices or alloy additions.
  • The composition with copper may include, by weight, less than 0.25% carbon, between 0.2 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum less than 0.03% tin, less than 0.10% nickel, and between 0.20 and 0.60% copper. Alternatively, the copper content may be between about 0.2% and 0.5% by weight, and alternatively, may be between about 0.3% and 0.4%. Again, the molten steel cast has a free oxygen content between 20 and 75 ppm and the free oxygen content may be between 30 and 60 ppm. Again, the total oxygen levels were between 70 ppm and 150 ppm.
  • The hot rolled steel strip may have, in addition, a chromium content between about 0.4% and 0.75% by weight. Alternatively, the chromium content may be between about 0.4% and 0.5%.
  • The modest increase in hardenability provided by copper was used, with less than 0.03% tin and less than 0.20% nickel, to produce a higher strength grade (Grade SS380) using high cooling rates and low coiling temperatures of between about 500° C. and 600° C. Alternatively, lower strength grades may be produced with elevated copper using low cooling rates and high coiling temperatures to offset the effect of the increased copper content. As shown in TABLE 2, tensile properties of grades with copper content between 0.20%-0.40% produced a range of galvanized structural grades, such as Grade SS275 to Grade SS380.
  • TABLE 2
    Yield Tensile Total
    Mn level Coiling Hot Strength Strength Elongation
    (wt %) temp. reduction (MPa) (MPa) (%)
    0.68-0.74 600-700° C. 23-28% 321 428 26.0
    0.68-0.74 500-600° C. 15-20% 378 480 22.7
    0.80-0.85 500-600° C. 20-26% 403 499 21.2
  • To produce lower strength grades with elevated copper, higher coiling temperatures between about 600 and 700° C. are used to offset the increased copper content. By coiling at increased temperatures, the present steel with elevated copper may provide physical properties similar to plain carbon-manganese steel with low copper content. The present steel composition having elevated copper levels can be made in electric arc furnaces with high copper scrap, as discussed above, at a considerable cost savings over low copper scrap.
  • In one alternative, the present elevated copper steel is hot dip coated with one or both of a zinc coating or a zinc alloy coating or an aluminum coating, such as a galvanized coating, Galvalume® and Zincalum® coating, aluminized coating or other coating. The microstructure of the present hot dipped elevated copper steel was not significantly altered as the strip temperatures remained well below the Ac1 temperature of the steel. Consequently, the mechanical properties of uncoated elevated copper steel in the hot rolled condition are similar to the mechanical properties after coating on a continuous hot dip galvanizing line.
  • Alternatively or in addition, the high copper composition may include at least one element selected from the group consisting of niobium between about 0.01% and 0.2%, molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof.
  • In any case, carbon levels of about 0.20% and greater may also be used for applications where microalloying is not desired. Additionally, higher carbon levels, in the range of 0.30-0.50%, may be used in certain applications for material in the thickness range of 1.0-1.5 mm. In the past, these elevated carbon steels required multiple annealing and cold rolling steps to achieve this thickness.
  • The composition of the 0.19% carbon steel is given in TABLE 1 (steel J) and the mechanical properties are presented in FIG. 4 as a function of the hot rolling reduction applied. The strength levels of the present 0.19% carbon steel are higher than current plain low carbon steels. As shown in FIG. 4, the yield strength is over 380 MPa over the full range of hot reductions applied, while being processed with conventional coiling temperatures. This is in contrast to low carbon steels (0.02-0.05% C), where lower coiling temperatures and limited hot reductions are applied to provide yield strengths over 380 MPa.
  • Additional samples of the present steel were prepared with manganese between about 0.88% and 1.1% and carbon amount between about 0.02% and 0.04%, shown in FIGS. 5 and 6. As shown in FIG. 5, tensile strength, yield strength and total elongation are relatively stable over different levels of manganese amount between 0.88% and 1.1%
  • The effect of hot reduction on yield strength, tensile strength, and total elongation in the present steels results in a steel properties where the tensile strength, yield strength and total elongation are relatively stable with different levels of hot reduction, as shown in FIG. 6. As discussed above, in previous such steel products, there is typically a decrease in yield and tensile strengths with increasing hot reduction. In contrast, the effect of different amounts of hot reduction on yield strength, tensile strength, and total elongation is significantly reduced in the present steel products. As shown in FIG. 6, the present steel is relatively stable with the degree of hot rolled reduction for reductions up to at least 45%. The hot rolled cast strip to provide after cooling at a temperature between 300 and 700° C., alternatively between about 450 and 550° C., a microstructure comprising a majority bainite and acicular ferrite and having properties such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation. Alternatively, mechanical properties are within 10% throughout the range from 10% to 35% reduction for yield strength, tensile strength and total elongation. In yet another alternative, mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation. Alternatively, mechanical properties are within 10% throughout the range from 15% to 35% reduction for yield strength, tensile strength and total elongation.
  • While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described, and that all changes and modifications that come within the spirit of the invention described by the following claims are desired to be protected. Additional features of the invention will become apparent to those skilled in the art upon consideration of the description. Modifications may be made without departing from the spirit and scope of the invention.

Claims (34)

1. A hot rolled steel strip made by the steps comprising:
assembling an internally cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and having a composition such that hot rolled thin cast strip produced has a composition comprising, by weight, less than 0.25% carbon, between 0.9 and 2.0% manganese, between 0.05 and 0.50% silicon, greater than 0.01% and less than or equal to 0.15% phosphorus, and less than 0.01% aluminum,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool,
forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation; and
coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
2. The hot rolled steel strip as claimed in claim 1, the hot rolled steel strip such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
3. The hot rolled steel strip as claimed in claim 1, the molten steel having a free oxygen content between 30 and 60 ppm.
4. The hot rolled steel strip as claimed in claim 1, the molten steel having a composition such that the manganese content of the composition of the hot rolled steel strip is between 0.9 and 1.3% by weight.
5. The hot rolled steel strip as claimed in claim 1, the molten steel having a composition such that the composition of the hot rolled steel strip has in addition between 0.01% and 0.20% niobium by weight.
6. The hot rolled steel strip as claimed in claim 1, the composition of molten steel having a composition such that the composition of the hot rolled steel strip further comprises at least one element selected from the group consisting of molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof by weight.
7. The hot rolled steel strip as claimed in claim 1 further comprising the step of:
hot dip coating the hot rolled steel strip to provide a coating of zinc or a zinc alloy or aluminum.
8. The hot rolled steel strip as claimed in claim 1 having a yield strength of at least 440 MPa after hot rolling reductions of at least 35%.
9. A hot rolled steel strip made by the steps comprising:
assembling an internally cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and having a composition such that the composition of the hot rolled steel strip comprises, by weight, less than 0.25% carbon, greater than 0.01% and less than or equal to 0.15% phosphorus, less than 0.03% tin, less than 0.20% nickel, between 0.2 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, and between 0.20 and 0.60% copper,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool, and
forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation; and
coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
10. The hot rolled steel strip as claimed in claim 9, the hot rolled steel strip such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
11. The hot rolled steel strip as claimed in claim 9, the molten steel having a free oxygen content of between 30 and 60 ppm.
12. The hot rolled steel strip as claimed in claim 9, the molten steel has a composition such that the composition of the hot rolled steel strip has a copper content between 0.2 and 0.5% by weight.
13. The hot rolled steel strip as claimed in claim 9, the molten steel has a composition such that the composition of the hot rolled steel strip has a copper content between 0.3 and 0.4% by weight.
14. The hot rolled steel strip as claimed in claim 9, the molten steel has a composition such that the composition of the hot rolled steel strip has a nickel content less than 0.1% by weight.
15. The hot rolled steel strip as claimed in claim 9, where the coiling temperature is between 600 and 700° C.
16. The hot rolled steel strip as claimed in claim 9, the molten steel has a composition such that the composition of the hot rolled steel strip has in addition a chromium content between 0.4 and 0.75% by weight.
17. The hot rolled steel strip as claimed in claim 9, the molten steel has a composition such that the composition of the hot rolled steel strip has in addition a chromium content between 0.4 and 0.5% by weight.
18. A method of making hot rolled steel strip, the steps comprising:
assembling an internally cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and a composition such that hot rolled thin cast strip produced has a composition comprising, by weight, less than 0.25% carbon, greater than 0.01% and less than or equal to 0.15% phosphorus, between 1.0 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool,
forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation; and
coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
19. The method of making hot rolled steel strip as claimed in claim 18, the step of hot rolling the steel strip such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
20. The method of making hot rolled steel strip as claimed in claim 18, the molten steel having a free oxygen content between 30 and 60 ppm.
21. The method of making hot rolled steel strip as claimed in claim 18, the molten steel having a composition such that the manganese content of the composition of the hot rolled steel strip is between 0.9 and 1.3% by weight.
22. The method of making hot rolled steel strip as claimed in claim 18, the molten steel having a composition such that the composition of the hot rolled steel strip has in addition between 0.01% and 0.20% niobium by weight.
23. The method of making hot rolled steel strip as claimed in claim 18, the molten steel having a composition such that the composition of the hot rolled steel strip further comprises at least one element selected from the group consisting of molybdenum between about 0.05% and about 0.50%, vanadium between about 0.01% and about 0.20%, and a mixture thereof by weight.
24. The method of making hot rolled steel strip as claimed in claim 18 further comprising the step of:
hot dip coating the hot rolled steel strip to provide a coating of zinc or a zinc alloy or aluminum.
25. The method of making hot rolled steel strip as claimed in claim 18 having a yield strength of at least 440 MPa after hot rolling reductions of at least 35%.
26. A method of making hot rolled steel strip, the steps comprising:
assembling an internally cooled roll caster having laterally positioned casting rolls forming a nip between them, and forming a casting pool of molten steel supported on the casting rolls above the nip and confined adjacent the ends of the casting rolls by side dams, the molten steel having a free oxygen content between 20 and 75 ppm and, a composition such that the composition of the hot rolled steel strip comprises, by weight, less than 0.25% carbon, greater than 0.01% and less than or equal to 0.15% phosphorus, less than 0.03% tin, less than 0.20% nickel, between 0.2 and 2.0% manganese, between 0.05 and 0.50% silicon, less than 0.01% aluminum, and between 0.20 and 0.60% copper,
counter rotating the casting rolls to solidify metal shells on the casting rolls as the casting rolls move through the casting pool, and
forming from the metal shells downwardly through the nip between the casting rolls a steel strip,
hot rolling the steel strip such that mechanical properties at 10% and 35% reduction are within 10% for yield strength, tensile strength and total elongation; and
coiling the hot rolled steel strip at a temperature between 300 and 700° C. to provide a majority of the microstructure comprising bainite and acicular ferrite.
27. The method of making hot rolled steel strip as claimed in claim 26, the step of hot rolling the steel strip such that mechanical properties at 15% and 35% reduction are within 10% for yield strength, tensile strength and total elongation.
28. The method of making hot rolled steel strip as claimed in claim 26, the molten steel having a free oxygen content of between 30 and 60 ppm.
29. The method of making hot rolled steel strip as claimed in claim 26, the molten steel having a composition such that the composition of the hot rolled steel strip has a copper content between 0.2 and 0.5% by weight.
30. The method of making hot rolled steel strip as claimed in claim 26, the molten steel having a composition such that the composition of the hot rolled steel strip has a copper content between 0.3 and 0.4% by weight.
31. The method of making hot rolled steel strip as claimed in claim 26, the molten steel having a composition such that the composition of the hot rolled steel strip has a nickel content less than 0.1% by weight.
32. The hot rolled steel strip as claimed in claim 29, where the coiling temperature is between 600 and 700° C.
33. The method of making hot rolled steel strip as claimed in claim 29, the molten steel having a composition such that the composition of the hot rolled steel strip has additional a chromium content between 0.4 and 0.75% by weight.
34. The method of making hot rolled steel strip as claimed in claim 29, the molten steel having a composition such that the composition of the hot rolled steel strip has additional a chromium content between 0.4 and 0.5% by weight.
US12/708,635 2009-02-20 2010-02-19 Hot rolled thin cast strip product and method for making the same Abandoned US20100215981A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/708,635 US20100215981A1 (en) 2009-02-20 2010-02-19 Hot rolled thin cast strip product and method for making the same
US13/940,601 US20130302644A1 (en) 2009-02-20 2013-07-12 Hot rolled thin cast strip product and method for making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15423309P 2009-02-20 2009-02-20
US12/708,635 US20100215981A1 (en) 2009-02-20 2010-02-19 Hot rolled thin cast strip product and method for making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/940,601 Continuation-In-Part US20130302644A1 (en) 2009-02-20 2013-07-12 Hot rolled thin cast strip product and method for making the same

Publications (1)

Publication Number Publication Date
US20100215981A1 true US20100215981A1 (en) 2010-08-26

Family

ID=42631240

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/708,635 Abandoned US20100215981A1 (en) 2009-02-20 2010-02-19 Hot rolled thin cast strip product and method for making the same

Country Status (10)

Country Link
US (1) US20100215981A1 (en)
EP (2) EP2398602B1 (en)
JP (1) JP5509222B2 (en)
KR (1) KR101715086B1 (en)
CN (2) CN102325608B (en)
AU (2) AU2010215077B2 (en)
MY (1) MY173389A (en)
PL (1) PL2398602T3 (en)
RU (1) RU2532794C2 (en)
WO (1) WO2010094076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120311859A1 (en) * 2010-03-05 2012-12-13 Theodor Stuth Method for producing a nickel strip
US20140261905A1 (en) * 2013-03-15 2014-09-18 Castrip, Llc Method of thin strip casting

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959561B (en) * 2015-07-09 2017-12-01 东北大学 A kind of method for improving double roller continuous casting low-carbon micro steel-alloy acicular ferrite content
CN112522588B (en) * 2019-09-19 2022-06-28 宝山钢铁股份有限公司 Method for producing high-strength thin-specification patterned steel plate/strip through thin strip continuous casting
CN112522629B (en) * 2019-09-19 2022-06-24 宝山钢铁股份有限公司 Nb microalloying high-strength high-hole-expansion steel and production method thereof
WO2023062643A1 (en) * 2021-10-13 2023-04-20 Stephen Fernandes Slip planes in metal and mechanical strength in materials
CN115478203A (en) * 2022-09-27 2022-12-16 张家港中美超薄带科技有限公司 Method for producing hot-rolled thin strip steel based on thin strip casting and rolling and ultrahigh-strength part

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534805A (en) * 1983-03-17 1985-08-13 Armco Inc. Low alloy steel plate and process for production thereof
US5567250A (en) * 1993-04-26 1996-10-22 Nippon Steel Corporation Thin steel sheet having excellent stretch-flange ability and process for producing the same
US5584337A (en) * 1994-03-25 1996-12-17 Nippon Steel Corporation Process for producing thin cast strip
US5651412A (en) * 1995-10-06 1997-07-29 Armco Inc. Strip casting with fluxing agent applied to casting roll
US5662748A (en) * 1993-02-26 1997-09-02 Nippon Steel Corporation Thin cast strip and thin steel sheet of common carbon steel containing large amounts of copper and tin and process for producing the same
US5720335A (en) * 1995-12-22 1998-02-24 Ishikawajima-Harima Heavy Industries Company Limited Twin roll continuous caster
US5901777A (en) * 1994-04-04 1999-05-11 Nippon Steel Corporation Twin-roll continuous casting method
US5985051A (en) * 1992-09-24 1999-11-16 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
US6062055A (en) * 1997-04-10 2000-05-16 Danieli & C. Officine Meccaniche Spa Rolling method for thin flat products and relative rolling line
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US20020029865A1 (en) * 2000-08-26 2002-03-14 Sms Demag Aktiengesellschaft Method of and apparatus for continuous casting of steel strip
US6502626B1 (en) * 1997-06-19 2003-01-07 Acciai Speciali Terni S.P.A. Continuous casting process for producing low carbon steel strips and strips so obtainable with good as cast mechanical properties
US6536504B2 (en) * 2000-08-08 2003-03-25 Castrip, Llc Continuous strip casting device and method of use thereof
US20040003875A1 (en) * 2000-10-02 2004-01-08 Lazar Strezov Method of producing steel strip
US6676774B2 (en) * 2000-04-07 2004-01-13 Jfe Steel Corporation Hot rolled steel plate and cold rolled steel plate being excellent in strain aging hardening characteristics
US20050205169A1 (en) * 2004-03-22 2005-09-22 Alwin Mary E High copper low alloy steel sheet
US20050205170A1 (en) * 2004-03-22 2005-09-22 Mary Alwin High copper low alloy steel sheet
US7048033B2 (en) * 2001-09-14 2006-05-23 Nucor Corporation Casting steel strip
US20080219879A1 (en) * 2005-10-20 2008-09-11 Nucor Corporation thin cast strip product with microalloy additions, and method for making the same
US7425240B2 (en) * 2002-01-14 2008-09-16 Usinor Method for the production of a siderurgical product made of carbon steel with a high copper content
US20080264525A1 (en) * 2004-03-22 2008-10-30 Nucor Corporation High copper low alloy steel sheet

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE874289A (en) * 1979-02-19 1979-06-18 Centre Rech Metallurgique PROCESS FOR OBTAINING A STEEL OF IMPROVED QUALITY
BE875003A (en) * 1979-03-21 1979-07-16 Centre Rech Metallurgique PROCESS FOR OBTAINING AN IMPROVED QUALITY STEEL
JPS579831A (en) * 1980-05-21 1982-01-19 British Steel Corp Steel production
JPH0621334B2 (en) * 1986-05-06 1994-03-23 川崎製鉄株式会社 High strength alloyed hot dip galvanized steel sheet with excellent deep drawability and method for producing the same
US5098708A (en) 1990-06-14 1992-03-24 Bristol-Myers Squibb Company Antiviral antibiotic BU-3889V
ES2103775T3 (en) 1990-04-04 1997-10-01 Ishikawajima Harima Heavy Ind CASTING OF BANDS.
JPH0826411B2 (en) * 1991-12-25 1996-03-13 株式会社神戸製鋼所 Method for manufacturing high strength cold rolled steel sheet with excellent deep drawability
IN181634B (en) 1993-05-27 1998-08-01 Bhp Steel Jla Pty Ltd Ishikawa
JP3262993B2 (en) * 1996-09-18 2002-03-04 株式会社神戸製鋼所 Hot rolled steel sheet excellent in perforation corrosion resistance and method for producing the same
TW558569B (en) * 2000-02-23 2003-10-21 Kawasaki Steel Co High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US7117925B2 (en) * 2000-09-29 2006-10-10 Nucor Corporation Production of thin steel strip
RU2275273C2 (en) * 2000-09-29 2006-04-27 Ньюкор Корпорейшн Thin steel strip making method
BRPI0212499B1 (en) * 2001-09-14 2015-12-08 Nucor Corp process for producing continuous casting steel strip and thin steel strip produced by the same
US7485196B2 (en) * 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
AT410767B (en) * 2001-10-24 2003-07-25 Voest Alpine Ind Anlagen METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A ROLLED METAL STRIP FROM A METAL MELT
DE10153234A1 (en) * 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Hot-rolled steel strip intended for the production of non-grain-oriented electrical sheet and method for its production
US20040144518A1 (en) * 2003-01-24 2004-07-29 Blejde Walter N. Casting steel strip with low surface roughness and low porosity
JP4320198B2 (en) * 2003-03-28 2009-08-26 日新製鋼株式会社 Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties
US20070199627A1 (en) * 2006-02-27 2007-08-30 Blejde Walter N Low surface roughness cast strip and method and apparatus for making the same
JP4653039B2 (en) * 2006-08-21 2011-03-16 株式会社神戸製鋼所 High tensile steel plate and method for manufacturing the same
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
MX2009012021A (en) * 2007-05-06 2009-12-14 Nucor Corp A thin cast strip product with microalloy additions, and method for making the same.
US7975754B2 (en) * 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534805A (en) * 1983-03-17 1985-08-13 Armco Inc. Low alloy steel plate and process for production thereof
US5985051A (en) * 1992-09-24 1999-11-16 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
US5662748A (en) * 1993-02-26 1997-09-02 Nippon Steel Corporation Thin cast strip and thin steel sheet of common carbon steel containing large amounts of copper and tin and process for producing the same
US5662748B1 (en) * 1993-02-26 1999-11-02 Nippon Steel Corp Thin cast strip and thin steel sheet of common carbon steel containing large amounts of copper and tin and process for producing the same
US5567250A (en) * 1993-04-26 1996-10-22 Nippon Steel Corporation Thin steel sheet having excellent stretch-flange ability and process for producing the same
US5584337A (en) * 1994-03-25 1996-12-17 Nippon Steel Corporation Process for producing thin cast strip
US5901777A (en) * 1994-04-04 1999-05-11 Nippon Steel Corporation Twin-roll continuous casting method
US5651412A (en) * 1995-10-06 1997-07-29 Armco Inc. Strip casting with fluxing agent applied to casting roll
US5720335A (en) * 1995-12-22 1998-02-24 Ishikawajima-Harima Heavy Industries Company Limited Twin roll continuous caster
US6062055A (en) * 1997-04-10 2000-05-16 Danieli & C. Officine Meccaniche Spa Rolling method for thin flat products and relative rolling line
US6502626B1 (en) * 1997-06-19 2003-01-07 Acciai Speciali Terni S.P.A. Continuous casting process for producing low carbon steel strips and strips so obtainable with good as cast mechanical properties
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US6676774B2 (en) * 2000-04-07 2004-01-13 Jfe Steel Corporation Hot rolled steel plate and cold rolled steel plate being excellent in strain aging hardening characteristics
US6536504B2 (en) * 2000-08-08 2003-03-25 Castrip, Llc Continuous strip casting device and method of use thereof
US20020029865A1 (en) * 2000-08-26 2002-03-14 Sms Demag Aktiengesellschaft Method of and apparatus for continuous casting of steel strip
US20040003875A1 (en) * 2000-10-02 2004-01-08 Lazar Strezov Method of producing steel strip
US7048033B2 (en) * 2001-09-14 2006-05-23 Nucor Corporation Casting steel strip
US7425240B2 (en) * 2002-01-14 2008-09-16 Usinor Method for the production of a siderurgical product made of carbon steel with a high copper content
US20050205169A1 (en) * 2004-03-22 2005-09-22 Alwin Mary E High copper low alloy steel sheet
US20050205170A1 (en) * 2004-03-22 2005-09-22 Mary Alwin High copper low alloy steel sheet
US20080264525A1 (en) * 2004-03-22 2008-10-30 Nucor Corporation High copper low alloy steel sheet
US20080219879A1 (en) * 2005-10-20 2008-09-11 Nucor Corporation thin cast strip product with microalloy additions, and method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.R. Davis, "Surface Engineering of Carbon and Alloys Steels: Hot-Dip Coating Processes," Surface Engineering, Vol. 5, ASM Handbook, ASM International, 1994, 18 pages total. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120311859A1 (en) * 2010-03-05 2012-12-13 Theodor Stuth Method for producing a nickel strip
US9003641B2 (en) * 2010-03-05 2015-04-14 Theodor Stuth Method for producing a nickel strip
US20140261905A1 (en) * 2013-03-15 2014-09-18 Castrip, Llc Method of thin strip casting

Also Published As

Publication number Publication date
EP2398602B1 (en) 2018-10-31
KR101715086B1 (en) 2017-03-10
AU2010215077B2 (en) 2017-05-25
AU2017202997A1 (en) 2017-06-01
EP2398602A4 (en) 2014-09-24
CN105215299A (en) 2016-01-06
RU2011138463A (en) 2013-03-27
JP2012518539A (en) 2012-08-16
EP3431201A2 (en) 2019-01-23
CN102325608B (en) 2015-11-25
AU2017202997B2 (en) 2019-01-17
CN102325608A (en) 2012-01-18
KR20110117142A (en) 2011-10-26
RU2532794C2 (en) 2014-11-10
JP5509222B2 (en) 2014-06-04
AU2010215077A1 (en) 2011-07-28
EP2398602A1 (en) 2011-12-28
PL2398602T3 (en) 2019-04-30
WO2010094076A1 (en) 2010-08-26
MY173389A (en) 2020-01-22
EP3431201A3 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
AU2017202997B2 (en) A Hot Rolled Thin Cast Strip Product And Method For Making The Same
US11225697B2 (en) Hot rolled light-gauge martensitic steel sheet and method for making the same
EP1157138B1 (en) Cold rolled steel
US20150176108A1 (en) High strength high ductility high copper low alloy thin cast strip product and method for making the same
US20130302644A1 (en) Hot rolled thin cast strip product and method for making the same
US9296040B2 (en) Hot rolled thin cast strip product and method for making the same
US20020043304A1 (en) Method of producing steel strip
US7591917B2 (en) Method of producing steel strip
AU757362B2 (en) Cold rolled steel
AU2001291502A1 (en) A method of producing steel strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: NUCOR CORPORATION, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDELMAN, DANIEL GEOFFREY;KILLMORE, CHRISTOPHER RONALD;ALWIN-BECKER, MARY E.;SIGNING DATES FROM 20100308 TO 20100324;REEL/FRAME:024198/0175

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION