US20100213483A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
US20100213483A1
US20100213483A1 US12/646,914 US64691409A US2010213483A1 US 20100213483 A1 US20100213483 A1 US 20100213483A1 US 64691409 A US64691409 A US 64691409A US 2010213483 A1 US2010213483 A1 US 2010213483A1
Authority
US
United States
Prior art keywords
peaks
light emitting
valleys
emitting surface
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/646,914
Inventor
Andrew Locke
Original Assignee
GREEN MILLENNIUM TECHNOLOGY LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN MILLENNIUM TECHNOLOGY LLC filed Critical GREEN MILLENNIUM TECHNOLOGY LLC
Priority to US12/646,914 priority Critical patent/US20100213483A1/en
Assigned to GREEN MILLENNIUM TECHNOLOGY LLC reassignment GREEN MILLENNIUM TECHNOLOGY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOCKE, ANDREW
Priority to PCT/US2010/020156 priority patent/WO2010098893A1/en
Priority to PCT/US2010/020224 priority patent/WO2010098895A2/en
Priority to PCT/US2010/020230 priority patent/WO2010098896A2/en
Priority to TW099103633A priority patent/TW201032363A/en
Priority to CN2010101123462A priority patent/CN101924172A/en
Publication of US20100213483A1 publication Critical patent/US20100213483A1/en
Assigned to LOCKE, ANDREW reassignment LOCKE, ANDREW ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREEN MILLENNIUM TECHNOLOGY, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • LEDs light emitting diodes
  • Conventional illumination systems or light sources have been used for many years in general lighting and in lighting for decoration, advertising, warning, guidance and entertainment applications.
  • Such light sources utilize a variety of lights, including but not limited to incandescent, Halogen and Fluorescent types, which are subject to many drawbacks.
  • halogen and incandescent lights produce undesirable heat and are limited to producing only white or yellow light.
  • these conventional light sources may also have limited longevity with lifetimes significantly less than a few thousand hours.
  • Such light sources are also susceptible to breakage in high shock and vibration prone environments.
  • LED Light Emitting Diode
  • LED light sources have recently undergone significant advances, which enables them to be a cost effective replacement for conventional light sources.
  • LED light sources offer significant benefits over conventional light sources as they consume less electrical energy for a given light intensity while exhibiting much longer lifetimes.
  • Other desirable properties of LEDs include high resistance to shock or vibration, low heat dissipation, very fast switching response times and a wide choice of illuminating colors.
  • LEDs are illuminated solely by the movement of electrons in a semiconductor material.
  • the LED consists of a chip of semiconducting material impregnated, or doped, with impurities to create a p-n junction.
  • current flows easily from the p-side, or anode, to the n-side, or cathode.
  • each LED must be treated individually or one chip at a time.
  • a LED flashlight utilizes clusters of LEDs and each LED in the cluster of LEDs is treated individually. If the LEDs are not treated individually, the LED chip produces undesirable heat as a result of the refractive indices as described above.
  • an illumination device having a plurality of light emitting diodes.
  • Each of the light emitting diodes may include a plurality of semiconductor layers at least one of which has a light emitting surface.
  • the light emitting surface may include a rough surface pattern having a randomized pattern or a pre-determined pattern. When using a pre-determined pattern, the light emitting surface may be divided into one or more impurity regions, where each impurity region may have approximately the same surface area.
  • Each impurity region may include one or more peaks and valleys for guiding current across the light emitting surface and maximizing the emission of light (i.e. light intensity) of the illumination device by minimizing light reflected into the surface (which turns into additional heat).
  • the impurity regions may include a first group having a first set of peaks and valleys and a second group having a second set of peaks and valleys, where the second set of peaks and valleys may be perpendicular to the first set of peaks and valleys.
  • the second set of peaks and valleys may have a greater number of peaks and valleys than the first set of peaks and valleys. Additionally, the height of the peaks in the second set of peaks and valleys may be smaller than the height of the peaks in the first set of peaks and valleys, such as half the height of the peaks in the first set.
  • the plurality of impurity regions may be arranged in a checkered pattern by alternating the first group and the second group between a first end and a second end of the light emitting surface. Applying a voltage across the light emitting surface of the diode may cause a current to flow from the first end to the second end through the plurality of impurity regions. As the current flows through the impurity regions, free electrons moving across the light emitting surface may fall into empty holes in the P-type layer of the diode resulting in the electrons releasing energy in the form of photons, i.e. light.
  • the first group having the first set of peaks and valleys i.e.
  • the group with the fewer number of peaks and valleys may allow the current to flow from the first end to the second end of the light emitting surface while the second group having the greater number of peaks and valleys may cause the emitted light to be reflected away from the light emitting surface while reducing reflection of light into the light emitting surface and heat dissipation from the light emitting surface.
  • the peaks in the first set of peaks and valleys may be separated by an angle of 45° while the peaks in the second set of peaks and valleys may be separated by an angle less than 45°.
  • FIG. 1 illustrates internal circuitry of an illumination device according to one aspect.
  • FIG. 2 illustrates internal circuitry of an illumination device according to one aspect.
  • FIG. 3 illustrates a top plan view of a rough surface pattern on a light emitting surface of a diode according to one aspect
  • FIG. 4 illustrates a cross-sectional view of a rough surface pattern of the light emitting surface of the diode taken along line 4 - 4 of FIG. 3
  • FIG. 5 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 3 .
  • FIG. 6 illustrates a top plan view of a recess etched into a light emitting surface of a diode, according to one aspect.
  • FIG. 7 illustrates a cross-sectional view of the recess taken along line 7 - 7 of FIG. 6 .
  • FIG. 8 illustrates a top perspective view of the recess of FIG. 6 .
  • FIG. 9 illustrates a top plan view of a rough surface pattern of a light emitting surface of a diode according to one aspect.
  • FIG. 10A illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 10 A- 10 A of FIG. 9 .
  • FIG. 10B illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 10 B- 10 B of FIG. 9 .
  • FIG. 11 illustrates a top perspective view of the rough surface pattern of a light emitting surface of the diode of FIG. 9
  • FIG. 12 illustrates a top view of the rough surface pattern of a light emitting surface of a diode according to one aspect.
  • FIG. 13 illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 13 - 13 of FIG. 12 .
  • FIG. 14 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 12 .
  • the term “illuminate” should be understood to refer to the production of a frequency of radiation by an illumination source.
  • the term “color” should be understood to refer to any frequency of radiation within a spectrum; that is, a “color,” as used herein, should be understood to encompass frequencies not only of the visible spectrum, but also frequencies in the infrared and ultraviolet areas of the spectrum, and in other areas of the electromagnetic spectrum.
  • Excess heat in a chip having light emitted diodes may be the result of excess power dissipation.
  • the current supplied to the LED may be at a high rate while causing the voltage to be low as current is dependent exponentially on the voltage—see Shockley diode equation (below) which relates the diode current I of a p-n junction diode to the diode voltage V D
  • I s is the saturation current or scale current of the diode (the magnitude of the current that flows for negative V d in excess of a few V T , typically 10 ⁇ 12 A).
  • the scale current is proportional to the diode area.
  • V T is the thermal voltage n is known as the diode ideality factor (for silicon diodes n is approximately 1 to 2).
  • a small change in voltage can lead to a large change in current so if the maximum voltage rating is exceeded by a small amount, the current rating may be exceeded by a large amount, potentially damaging or destroying the LED. Consequently, packaging multiple existing LEDs in a chip may result in the chip overheating and reaching temperatures of up to 400° F. or more, depending on how many individual diodes are being utilized.
  • the power may be regulated to the LED in the form of a driver which provides pulse modulation to the LED causing the excitation of the LED, i.e. the emission of light.
  • Pulse modulation schemes may transfer a narrowband analog signal over an analog low pass channel as a two-level quantized signal, by modulating a pulse train.
  • a driver is not required as the current may be regulated to prevent the overheating of the LED due to excess current.
  • the LED chip of the present application may be provided with constant power and not in bursts of energy.
  • the power may be continuous, whereas with standard, existing LEDs, pulse modulation is used.
  • the temperature of the LED chip may be controlled.
  • a current regulator may be used to control the current and voltage applied to the LEDs.
  • a high voltage may be combined with the lower current.
  • heat dissipating from the LED may be controlled by introducing a voltage of 14.29 V with a current of 350 mA to achieve the 5 Watts.
  • power i.e. heat
  • the chip includes a plurality of LEDs, such as nine (9), packaged together, the heat may be dispersed among all nine (9) LEDs.
  • a light intensity of 190 lumens per watt or more may be achieved. Consequently, running the package at 65-70% of power, a production of about 158 lumens per watt may be achieved with an emitted heat junction temperature of 50° C.
  • FIG. 1 illustrates internal circuitry 100 of an illumination device having four (4) individual LEDs.
  • an alternate current (AC) voltage may be applied to an alternate current (AC) to direct current (DC) converter 102 for converting a voltage, such as 90V-340V AC, to a DC voltage.
  • the DC voltage may then be input into, or pass through, a current regulator 104 .
  • the regulated current may then be input into a diode module 106 having a plurality of LEDs, causing the LEDs to illuminate.
  • the plurality of LEDs in the diode module 106 may be connected or arranged in series, i.e. a negative terminal of a first LED is connected to a positive terminal of a second LED, the negative terminal of the second LED is connected to a positive terminal of a fourth LED, etc.
  • the diode module 106 may be in the form of a chip or packaging having a plurality of semiconductor layers at least one of which has a light emitting surface.
  • the light emitting surface may be made of silicon carbide.
  • the plurality of LEDs on the light emitting surface of the diode module 106 may be connected to each other by any method known in the art, including but not limited to, etching through a silicon foundation and wire bonded to each other with a trace going in series from a first LED to a second LED to a third LED, etc.
  • the diode module 106 may include four (4) individual LEDs in series. The individual LEDs may be linked together in series in any format including, but not limited to, square, rectangular, circular and triangular.
  • FIG. 2 illustrates internal circuitry 200 of an illumination device having nine (9) individual LEDs.
  • an AC voltage may be input into an AC to DC converter 202 for converting a voltage, such as 90V-340V AC, to a DC voltage.
  • the DC voltage may then be input into a current regulator 204 causing regulated current to be input into a diode module 206 having the nine (9) individual LEDs connected in series.
  • FIGS. 1 and 2 The number of individual LEDs illustrated in FIGS. 1 and 2 is by way of example only and more or less LEDs may be utilized.
  • the light emitting diodes may be located on a ceramic and copper substrate which may act as a heat sink, however, this is by way of example and the substrate may be formed of any material known in the art, including, but not limited to, aluminum nitrate, aluminum oxide and silicon.
  • a LED may be comprised of a chip having a plurality of semiconducting materials at least one of which is a light emitting surface.
  • the light emitting surface may be impregnated, or doped, with impurities to create a p-n junction.
  • Current may flow from the p-side, or anode, to the n-side, or cathode of the LED.
  • the materials used for LED production have very high refractive indices which cause much of the light emitted from the diode to be reflected back into the material at the material's surface/diodes. It is this reflection of the light back into the material's surface/diodes produces undesirable heat.
  • the present application overcomes the undesirable heat by reducing the internal reflections from the light emitting surface which traps emitted light inside.
  • the light emitting surface may include a rough surface pattern to reduce its reflective state.
  • the rough surface pattern may be produced using Nano-Lithography or any other method known in the art.
  • FIG. 3 illustrates a top plan view of a rough surface pattern on a light emitting surface of a diode according to one aspect.
  • the rough surface pattern on the light emitting surface 300 of the diode may be created randomly or may be a pre-determined pattern.
  • the LED may be a p-n diode such that when voltage is applied to the light emitting surface, current (I) may flow through the impurity regions causing free electrons moving across the surface of the diode to fall into empty holes from the P-type layer resulting in the electrons releasing energy in the form of photons, i.e. light.
  • the light emitting surface 300 may include a plurality of impurity regions 302 a - 302 h where each impurity region may include one or more peaks 304 and valleys 306 which may direct the flow of current and/or cause emitted light to reflect outwards and not into the surface of the diode 300 resulting in unwanted heat.
  • the plurality of impurity regions 302 a - 302 h may be arranged such that a checkered pattern or configuration is formed by alternating the direction of the peaks and valleys in each region.
  • the peaks and valleys in a first impurity region 302 a may extend in a direction perpendicular to peaks and valleys in any directly adjacent impurity region.
  • the peaks and valleys located within a first impurity region 302 a may extend perpendicularly to the peaks and valleys located within a second impurity region 302 b and the peaks and valleys located in a third impurity region 302 c.
  • the direction of the peaks and valleys may alternate in adjacent regions.
  • the plurality of impurity regions may be approximately the same size.
  • the plurality of impurity regions 302 a - 302 h may be divided into two groups, a first group having a first set of peaks and valleys and a second group having a second set of peaks and valleys.
  • the number of peaks and valleys in the second set may be greater than the number of peaks and valleys in the first.
  • the height of the peaks in the second set may be smaller than the height of the peaks in the first set.
  • the height of the peaks in the second set may be half (1 ⁇ 2) the height of the peaks in the first set, however, this is by way of example only.
  • alternating impurity regions may include a greater number of peaks and valleys then adjacent impurity regions.
  • the second set of peaks and valleys in the second group i.e. impurity regions 302 b, 302 c, 302 f, and 302 g, may include a greater number of peaks and valleys then in the first set of peaks and valleys in the first group, i.e. impurity regions 302 a, 302 d, 302 e and 302 h.
  • the height of the peaks in the first group may be greater than the height of the peaks in the second group.
  • the angle, ⁇ 1 , between the peaks and valleys in the first group may be 45°, however, this is by way of example only and ⁇ 1 may be any angle which allows the current to flow through the impurity regions.
  • the angle, ⁇ 2 , between the peaks and valleys in the second group may be less than 45°, however this is by way of example only and ⁇ 2 may be any angle which allows the light emitted outwards to be maximized while minimizing light reflected into the light emitting surface and as a result, minimizing the heat produced.
  • Applying a voltage to the light emitting surface 300 of the diode may cause current (I) to flow from a first end 301 to a second end 303 .
  • the current may flow through the light emitting surface 300 via the first set of peaks and valleys in the first group (i.e. impurity regions 302 a, 302 d, 302 e, 302 h ) while the light may be emitted from the second set of peaks and valleys in the second group (i.e. impurity regions 302 b, 302 c, 302 f, and 302 g ).
  • the greater number of peaks and valleys in the second set, as well has the smaller height of the peaks, may increase the emitted light reflecting outwards from the surface while decreasing (or minimize) the light reflecting inwards, or bouncing back, into the light emitting surface. As less light is reflecting inwards, less heat may be produced by the illumination device.
  • FIG. 4 illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 300 of the diode taken along line 4 - 4 of FIG. 3
  • FIG. 5 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 3 .
  • the pre-determined surface structure may also be in the form of, including, but not limited to, an egg carton shape or a sound stage absorbing pattern.
  • the impurity regions may include a plurality of recesses etched into the light emitting surface of the diode.
  • FIG. 6 illustrates a top plan view of a recess 600 etched into a light emitting surface of a diode.
  • the recess may include eight (8) sides or facets on a lower internal portion of the recess while the upper internal portion of the recess may include sixteen (16) smaller sides or facets.
  • the facets may be similar to the ideal proportional cut of a round brilliance diamond.
  • the 16 facets of the upper internal surface may slope inwardly at an angle ranging between 90° and 98.5° providing an optimal angle of refraction causing light reflected outwards to increase while light reflecting or bouncing back into the surface of the diode may be minimized.
  • the range of 90° and 98.5° is by example only and other angles which may allow the light to be directed outwards while minimizing light reflected into the surface of the diode may be used.
  • the recess 600 may include a plurality of outer side edges 602 integrally connected to a plurality of inwardly projecting side edges 604 forming an outer surface perimeter.
  • the junction or intersection of the plurality of inwardly projecting side edges 604 may form upper contact points 605 for assisting or guiding the current across the light emitting surface of the diode.
  • the plurality of outer side edges 602 may be integrally connected to a first plurality of downwardly sloping side walls (or facets) 606 projecting inwardly.
  • the first plurality of downwardly sloping side walls 606 may extend partially downwards into the recess at an angle of 45°, to center contact points 610 , forming a triangular surface area. ( FIG. 8 )
  • the plurality of inwardly projecting side edges 604 may be integrally connected to a plurality of vertical side walls 608 extending downwards into the recess at an angle of 90° and converging to the center contact points 610 , approximately half way between a top edge of the vertical side walls and a bottom contact point 616 , such that each vertical side wall may form an equilateral triangle.
  • the convergence of the second plurality of downwardly sloping side walls 612 may create an angle ⁇ .
  • a may be 98.5° ; however this is by example only and a may be any other angle that provides for the maximization of light to be reflected outwards away from the light emitting surface, thus increasing the light intensity of the LED and reducing heat output.
  • the upper 605 , center 610 and bottom 616 contact points may be used to guide the flow of current through a light emitting surface of a diode.
  • FIG. 7 illustrates a cross-sectional view of the rough surface pattern the light emitting surface of the recess taken along line 7 - 7 of FIG. 6 .
  • FIG. 8 illustrates a top perspective view of the recess of FIG. 6 .
  • FIG. 9 illustrates a top plan view of a rough surface pattern of a light emitting surface 900 of a diode according to one aspect.
  • the diode 900 may include a plurality of impurity regions 902 a - 902 l where each impurity region may include a recess.
  • the plurality or impurities, and corresponding recesses may be organized into an array of rows and columns between a first end 901 and a second end 903 of the light emitting surface 900 .
  • the rows and columns of the array may be aligned such that each row may include the same number of recesses and each column may include the same number of recesses.
  • a row may contain three impurity regions, each impurity region having a complete recess (i.e. not partial), and a column may contain four impurity regions, each impurity region having a complete (i.e. not partial) recess.
  • the number of recesses in rows and columns, as described above, is by way of example only and more or less recesses may be used.
  • center and bottom contact points in each recess may be separated from center and lower contact points in adjacent recesses by gaps.
  • center contact points 906 a and bottom contact point 904 a in the first recess 902 a may be separated from center contact points 906 d and bottom contact point 904 d in the fourth recess 902 d by gaps, where a center gap is the distance between the center contact points in adjacent recesses and a bottom gap is the distance between bottom contact points in adjacent recesses (either adjacent in the row or in the column).
  • Applying a voltage (V) across the light emitting surface 900 of the diode may cause a current to flow from the first end 901 of the diode to the second end 903 of the diode through the impurity regions.
  • the current flowing through the impurity regions may cause free electrons moving across the light emitting surface of the diode to fall into empty holes in the P-type layer of the diode resulting in the electrons releasing energy in the form of photons, i.e. light.
  • the center 906 and bottom 904 contact points may function as serially connected electrodes such that the gaps created between the contact points in adjacent recesses may act as spark gaps allowing for the current to flow from the first end 901 of the diode to the second end 903 .
  • the distance between a first bottom contact point 904 a in a first recess 902 a and a second bottom contact point 904 b in the second recess 902 b as well as the distance to a fourth bottom contact point 904 d in the fourth recess 902 d may form spark gaps so that current flowing through the first recess 902 a may jump to the second recess 902 b and/or fourth recess 902 d via the bottom contact points 904 a, 904 b, 904 d.
  • the current may flow through the plurality of recesses in the light emitting surface 900 of the diode via center contact points 906 .
  • the distance between one or more center contact points 906 a in the first recess 902 a and one or more center contact points 906 d in the fourth recess 902 d and/or one or more center contact points 906 b in the second recess 902 b may also form spark gaps so that current flowing through the first recess 902 a may jump to the second recess 902 b and/or fourth recess 902 d via the center contact points 906 .
  • all recesses may include center contact points 906 .
  • FIG. 10A illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 900 of the diode taken along line 10 A- 10 A of FIG. 9 .
  • FIG. 10B illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 900 of the diode taken along line 10 B- 10 B of FIG. 9 .
  • FIG. 11 illustrates a top perspective view of the rough surface pattern of the light emitting surface 900 of the diode of FIG. 9
  • FIG. 12 illustrates a top plan view of a rough surface pattern of a light emitting surface of a diode 1200 according to one aspect.
  • the light emitting surface 1200 of the diode may include a plurality of impurity regions 1202 a - 1202 n where each impurity region may include a recess.
  • the plurality of impurity regions may be organized into an array of rows where alternating rows of the array may be off-set.
  • the off-set may be a distance of half a plurality region or recess, however this is by way of example and alternating rows may be off-set by different distances, such as 3 ⁇ 4 of an impurity region or recess.
  • a second row of impurity regions (comprising impurity regions 1202 d, 1202 e, 1202 f, 1202 g, where 1202 d and 1202 g may each be half an impurity region containing half a recess) and a fourth row of impurity regions (comprising impurity regions 1202 k, 1202 l , 1202 m, 1202 n, where 1202 k and 1202 n may each be half an impurity region containing half a recess) may be off-set from a first row of impurity regions (comprising impurity regions 1202 a, 1202 b, 1202 c ) and a third row of impurity regions (comprising impurity regions 1202 h, 1202 i, 1202 j ) by a specified distance, such as the length of half an impurity region or the length of 3 ⁇ 4 of an impurity regions)
  • spark gaps created between center 1206 and bottom contact points ( 1204 a - 1204 n ), as described above, may be closer together, i.e. a smaller gap, which in turn may increase the efficiency of the light emitting surface as less energy is lost as the current may continuously flows from a first end 1201 to a second end 1203 of the light emitting surface 1200 and not merely jumping between impurity regions.
  • all recesses may include center contact points 1206 .
  • the spark gap distance between center 1206 and bottom 1204 contact points may be decreased which in turn may allow the current to continuously flow through the light emitting surface.
  • the current may be able to flow through a greater surface area of the light emitting surface allowing for the generation and emission of more light.
  • the current may be guided through the light emitting surface from a first end 1201 to a second end 1203 . As more of the light is emitted outward, less light may be reflected inward, which in turn reduces the heat dissipated.
  • FIG. 13 illustrates a cross-sectional view of the light emitting surface of the diode taken along line 13 - 13 of FIG. 12 .
  • FIG. 14 illustrates a top perspective view of the light emitting surface of the diode of FIG. 12 .
  • One or more of the components and functions illustrated in the figures may be rearranged and/or combined into a single component or embodied in several components without departing from the present application. Additional elements or components may also be added without departing from the present application.
  • the apparatus, devices, and/or components illustrated in the figures may be configured to perform the methods, features, or steps illustrated in FIG. 1-14 .

Abstract

An illumination device having a plurality of light emitting diodes is provided. The light emitting diode may include a plurality of semiconductor layers at least one of which has a light emitting surface which may include a rough surface pattern having a pre-determined pattern. The pre-determined pattern may include one or more impurity regions with each region having a plurality of peaks and valleys for directing the flow of current and causing an increase in the emission of light to reflect outwards from the light emitting surface while decreasing light reflected into the light emitting surface and as a result reducing the dissipation of heat. The plurality of impurity regions may be arranged such that a checkered pattern or configuration is formed by alternating the direction of the peaks and valleys in each region.

Description

    CLAIM OF PRIORITY UNDER 35 U.S.C. §119
  • The present Utility Application for Patent claims priority to U.S. Provisional Application No. 61/164,028 entitled “Illumination Device” filed Mar. 27, 2009, and U.S. Provisional Application No. 61/155,074 entitled “Illumination Device” filed Feb. 24, 2009, both of which are hereby expressly incorporated by reference herein.
  • FIELD
  • Various embodiments described herein pertain to an illumination device, and more particularly to an illumination device utilizing light emitting diodes (LEDs).
  • BACKGROUND
  • Conventional illumination systems or light sources have been used for many years in general lighting and in lighting for decoration, advertising, warning, guidance and entertainment applications. Such light sources utilize a variety of lights, including but not limited to incandescent, Halogen and Fluorescent types, which are subject to many drawbacks. For example, halogen and incandescent lights produce undesirable heat and are limited to producing only white or yellow light. Additionally, these conventional light sources may also have limited longevity with lifetimes significantly less than a few thousand hours. Such light sources are also susceptible to breakage in high shock and vibration prone environments.
  • Light Emitting Diode (LED) sources have recently undergone significant advances, which enables them to be a cost effective replacement for conventional light sources. LED light sources offer significant benefits over conventional light sources as they consume less electrical energy for a given light intensity while exhibiting much longer lifetimes. Other desirable properties of LEDs include high resistance to shock or vibration, low heat dissipation, very fast switching response times and a wide choice of illuminating colors.
  • LEDs are illuminated solely by the movement of electrons in a semiconductor material. The LED consists of a chip of semiconducting material impregnated, or doped, with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon, i.e. light.
  • Most materials used for LED production have very high refractive indices which causes much of the light emitted from the diode to be reflected back in to the material at the material's surface containing the diodes. The light that is reflected back is then absorbed and turned into additional heat. As of result, this inefficiency causes an increase of heat and lower light output as the light is being reflected onto the material/diode. As a consequence of the increased heat, with existing LED technology, each LED must be treated individually or one chip at a time. For example, a LED flashlight utilizes clusters of LEDs and each LED in the cluster of LEDs is treated individually. If the LEDs are not treated individually, the LED chip produces undesirable heat as a result of the refractive indices as described above.
  • Accordingly, a need exists for illumination methods and systems that overcome the drawbacks of conventional illumination systems and that take advantage of the possibilities offered by overcoming such drawbacks.
  • SUMMARY
  • The following presents a simplified summary of one or more embodiments in order to provide a basic understanding of some embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later.
  • According to one feature, an illumination device having a plurality of light emitting diodes is provided. Each of the light emitting diodes may include a plurality of semiconductor layers at least one of which has a light emitting surface. The light emitting surface may include a rough surface pattern having a randomized pattern or a pre-determined pattern. When using a pre-determined pattern, the light emitting surface may be divided into one or more impurity regions, where each impurity region may have approximately the same surface area.
  • Each impurity region may include one or more peaks and valleys for guiding current across the light emitting surface and maximizing the emission of light (i.e. light intensity) of the illumination device by minimizing light reflected into the surface (which turns into additional heat). The impurity regions may include a first group having a first set of peaks and valleys and a second group having a second set of peaks and valleys, where the second set of peaks and valleys may be perpendicular to the first set of peaks and valleys.
  • In one aspect, the second set of peaks and valleys may have a greater number of peaks and valleys than the first set of peaks and valleys. Additionally, the height of the peaks in the second set of peaks and valleys may be smaller than the height of the peaks in the first set of peaks and valleys, such as half the height of the peaks in the first set.
  • The plurality of impurity regions may be arranged in a checkered pattern by alternating the first group and the second group between a first end and a second end of the light emitting surface. Applying a voltage across the light emitting surface of the diode may cause a current to flow from the first end to the second end through the plurality of impurity regions. As the current flows through the impurity regions, free electrons moving across the light emitting surface may fall into empty holes in the P-type layer of the diode resulting in the electrons releasing energy in the form of photons, i.e. light. The first group having the first set of peaks and valleys (i.e. the group with the fewer number of peaks and valleys) may allow the current to flow from the first end to the second end of the light emitting surface while the second group having the greater number of peaks and valleys may cause the emitted light to be reflected away from the light emitting surface while reducing reflection of light into the light emitting surface and heat dissipation from the light emitting surface.
  • In one aspect, the peaks in the first set of peaks and valleys may be separated by an angle of 45° while the peaks in the second set of peaks and valleys may be separated by an angle less than 45°.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates internal circuitry of an illumination device according to one aspect.
  • FIG. 2 illustrates internal circuitry of an illumination device according to one aspect.
  • FIG. 3 illustrates a top plan view of a rough surface pattern on a light emitting surface of a diode according to one aspect
  • FIG. 4 illustrates a cross-sectional view of a rough surface pattern of the light emitting surface of the diode taken along line 4-4 of FIG. 3
  • FIG. 5 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 3.
  • FIG. 6 illustrates a top plan view of a recess etched into a light emitting surface of a diode, according to one aspect.
  • FIG. 7 illustrates a cross-sectional view of the recess taken along line 7-7 of FIG. 6.
  • FIG. 8 illustrates a top perspective view of the recess of FIG. 6.
  • FIG. 9 illustrates a top plan view of a rough surface pattern of a light emitting surface of a diode according to one aspect.
  • FIG. 10A illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 10A-10A of FIG. 9.
  • FIG. 10B illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 10B-10B of FIG. 9.
  • FIG. 11 illustrates a top perspective view of the rough surface pattern of a light emitting surface of the diode of FIG. 9
  • FIG. 12 illustrates a top view of the rough surface pattern of a light emitting surface of a diode according to one aspect.
  • FIG. 13 illustrates a cross-sectional view of the rough surface pattern of the light emitting surface of the diode taken along line 13-13 of FIG. 12.
  • FIG. 14 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 12.
  • DETAILED DESCRIPTION
  • In the following description numerous specific details are set forth in order to provide a thorough understanding of the illumination device. However, one skilled in the art would recognize that the illumination device might be practiced without these specific details. In other instances, well known methods, procedures, and/or components have not been described in detail so as not to unnecessarily obscure aspects of the illumination device.
  • The term “illuminate” should be understood to refer to the production of a frequency of radiation by an illumination source. The term “color” should be understood to refer to any frequency of radiation within a spectrum; that is, a “color,” as used herein, should be understood to encompass frequencies not only of the visible spectrum, but also frequencies in the infrared and ultraviolet areas of the spectrum, and in other areas of the electromagnetic spectrum.
  • Heat Dissipation
  • Excess heat in a chip having light emitted diodes (LED) may be the result of excess power dissipation. As is well known, power (P) dissipated is equal to the current (I) multiplied by the voltage (V), i.e., P=IV. In a traditional LED, to achieve the proper wattage, the current supplied to the LED may be at a high rate while causing the voltage to be low as current is dependent exponentially on the voltage—see Shockley diode equation (below) which relates the diode current I of a p-n junction diode to the diode voltage VD

  • I=I S(e V D /(nV T )−1)
  • where Is is the saturation current or scale current of the diode (the magnitude of the current that flows for negative Vd in excess of a few VT, typically 10−12 A). The scale current is proportional to the diode area. VT is the thermal voltage n is known as the diode ideality factor (for silicon diodes n is approximately 1 to 2).
  • In other words, in a LED, a small change in voltage can lead to a large change in current so if the maximum voltage rating is exceeded by a small amount, the current rating may be exceeded by a large amount, potentially damaging or destroying the LED. Consequently, packaging multiple existing LEDs in a chip may result in the chip overheating and reaching temperatures of up to 400° F. or more, depending on how many individual diodes are being utilized.
  • In typical prior art approaches, the power may be regulated to the LED in the form of a driver which provides pulse modulation to the LED causing the excitation of the LED, i.e. the emission of light. Pulse modulation schemes may transfer a narrowband analog signal over an analog low pass channel as a two-level quantized signal, by modulating a pulse train. However, as described below, in the present application, a driver is not required as the current may be regulated to prevent the overheating of the LED due to excess current.
  • Unlike the typical or conventional approaches, the LED chip of the present application may be provided with constant power and not in bursts of energy. In other words, the power may be continuous, whereas with standard, existing LEDs, pulse modulation is used. By constantly regulating the current and voltage as in the present application, the temperature of the LED chip may be controlled.
  • To control the current and voltage applied to the LEDs, a current regulator, described below in greater detail, may be used. To achieve the desired wattage of the lighting or illumination device, a high voltage may be combined with the lower current. For example, with a five (5) Watt LED, heat dissipating from the LED may be controlled by introducing a voltage of 14.29 V with a current of 350 mA to achieve the 5 Watts. As a result, power, i.e. heat, may be dispersed among all the individual LEDs in the chip. If the chip includes a plurality of LEDs, such as nine (9), packaged together, the heat may be dispersed among all nine (9) LEDs. Additionally, by being able to utilize 9 LEDs, a light intensity of 190 lumens per watt or more may be achieved. Consequently, running the package at 65-70% of power, a production of about 158 lumens per watt may be achieved with an emitted heat junction temperature of 50° C.
  • Internal Circuitry
  • As discussed above, to overcome the problems of overheating in the prior art, the current and voltage supplied to the LEDs may be used to control, i.e. reduce, the heat emitting from the LEDs. FIG. 1 illustrates internal circuitry 100 of an illumination device having four (4) individual LEDs. In operation, an alternate current (AC) voltage may be applied to an alternate current (AC) to direct current (DC) converter 102 for converting a voltage, such as 90V-340V AC, to a DC voltage. The DC voltage may then be input into, or pass through, a current regulator 104. The regulated current may then be input into a diode module 106 having a plurality of LEDs, causing the LEDs to illuminate.
  • In one aspect, the plurality of LEDs in the diode module 106 may be connected or arranged in series, i.e. a negative terminal of a first LED is connected to a positive terminal of a second LED, the negative terminal of the second LED is connected to a positive terminal of a fourth LED, etc.
  • The diode module 106, as described above, may be in the form of a chip or packaging having a plurality of semiconductor layers at least one of which has a light emitting surface. In one aspect, the light emitting surface may be made of silicon carbide. The plurality of LEDs on the light emitting surface of the diode module 106 may be connected to each other by any method known in the art, including but not limited to, etching through a silicon foundation and wire bonded to each other with a trace going in series from a first LED to a second LED to a third LED, etc. As shown in FIG. 1, the diode module 106 may include four (4) individual LEDs in series. The individual LEDs may be linked together in series in any format including, but not limited to, square, rectangular, circular and triangular.
  • FIG. 2 illustrates internal circuitry 200 of an illumination device having nine (9) individual LEDs. As discussed above, in operation, an AC voltage may be input into an AC to DC converter 202 for converting a voltage, such as 90V-340V AC, to a DC voltage. The DC voltage may then be input into a current regulator 204 causing regulated current to be input into a diode module 206 having the nine (9) individual LEDs connected in series.
  • The number of individual LEDs illustrated in FIGS. 1 and 2 is by way of example only and more or less LEDs may be utilized.
  • In one aspect, the light emitting diodes (LED) may be located on a ceramic and copper substrate which may act as a heat sink, however, this is by way of example and the substrate may be formed of any material known in the art, including, but not limited to, aluminum nitrate, aluminum oxide and silicon.
  • Rough Surface Pattern—Peaks and Valleys
  • As discussed previously, a LED may be comprised of a chip having a plurality of semiconducting materials at least one of which is a light emitting surface. The light emitting surface may be impregnated, or doped, with impurities to create a p-n junction. Current may flow from the p-side, or anode, to the n-side, or cathode of the LED. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it may fall into a lower energy level, and release energy in the form of a photon, i.e. light. However, the materials used for LED production have very high refractive indices which cause much of the light emitted from the diode to be reflected back into the material at the material's surface/diodes. It is this reflection of the light back into the material's surface/diodes produces undesirable heat.
  • The present application overcomes the undesirable heat by reducing the internal reflections from the light emitting surface which traps emitted light inside. To reduce the internal reflections, the light emitting surface may include a rough surface pattern to reduce its reflective state. The rough surface pattern may be produced using Nano-Lithography or any other method known in the art.
  • FIG. 3 illustrates a top plan view of a rough surface pattern on a light emitting surface of a diode according to one aspect. The rough surface pattern on the light emitting surface 300 of the diode may be created randomly or may be a pre-determined pattern.
  • The LED may be a p-n diode such that when voltage is applied to the light emitting surface, current (I) may flow through the impurity regions causing free electrons moving across the surface of the diode to fall into empty holes from the P-type layer resulting in the electrons releasing energy in the form of photons, i.e. light.
  • In one embodiment, the light emitting surface 300 may include a plurality of impurity regions 302 a-302 h where each impurity region may include one or more peaks 304 and valleys 306 which may direct the flow of current and/or cause emitted light to reflect outwards and not into the surface of the diode 300 resulting in unwanted heat. (See FIGS. 4 and 5) The plurality of impurity regions 302 a-302 h may be arranged such that a checkered pattern or configuration is formed by alternating the direction of the peaks and valleys in each region. As a result, the peaks and valleys in a first impurity region 302 a may extend in a direction perpendicular to peaks and valleys in any directly adjacent impurity region. For example, the peaks and valleys located within a first impurity region 302 a may extend perpendicularly to the peaks and valleys located within a second impurity region 302 b and the peaks and valleys located in a third impurity region 302 c. In other words, the direction of the peaks and valleys may alternate in adjacent regions. (See FIG. 5) In one aspect, the plurality of impurity regions may be approximately the same size.
  • The plurality of impurity regions 302 a-302 h may be divided into two groups, a first group having a first set of peaks and valleys and a second group having a second set of peaks and valleys. In one aspect, the number of peaks and valleys in the second set may be greater than the number of peaks and valleys in the first. Furthermore, the height of the peaks in the second set may be smaller than the height of the peaks in the first set. For example, the height of the peaks in the second set may be half (½) the height of the peaks in the first set, however, this is by way of example only.
  • As discussed above, alternating impurity regions may include a greater number of peaks and valleys then adjacent impurity regions. For example the second set of peaks and valleys in the second group, i.e. impurity regions 302 b, 302 c, 302 f, and 302 g, may include a greater number of peaks and valleys then in the first set of peaks and valleys in the first group, i.e. impurity regions 302 a, 302 d, 302 e and 302 h. Additionally, the height of the peaks in the first group may be greater than the height of the peaks in the second group. In one aspect, the angle, Φ1, between the peaks and valleys in the first group may be 45°, however, this is by way of example only and Φ1 may be any angle which allows the current to flow through the impurity regions. (FIG. 5) The angle, Φ2, between the peaks and valleys in the second group may be less than 45°, however this is by way of example only and Φ2 may be any angle which allows the light emitted outwards to be maximized while minimizing light reflected into the light emitting surface and as a result, minimizing the heat produced.
  • Applying a voltage to the light emitting surface 300 of the diode may cause current (I) to flow from a first end 301 to a second end 303. The current may flow through the light emitting surface 300 via the first set of peaks and valleys in the first group (i.e. impurity regions 302 a, 302 d, 302 e, 302 h) while the light may be emitted from the second set of peaks and valleys in the second group (i.e. impurity regions 302 b, 302 c, 302 f, and 302 g). The greater number of peaks and valleys in the second set, as well has the smaller height of the peaks, may increase the emitted light reflecting outwards from the surface while decreasing (or minimize) the light reflecting inwards, or bouncing back, into the light emitting surface. As less light is reflecting inwards, less heat may be produced by the illumination device.
  • FIG. 4 illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 300 of the diode taken along line 4-4 of FIG. 3 FIG. 5 illustrates a top perspective view of the rough surface pattern of the light emitting surface of the diode of FIG. 3.
  • The pre-determined surface structure may also be in the form of, including, but not limited to, an egg carton shape or a sound stage absorbing pattern.
  • Polygonal Surface Pattern
  • According to another aspect, the impurity regions may include a plurality of recesses etched into the light emitting surface of the diode. FIG. 6 illustrates a top plan view of a recess 600 etched into a light emitting surface of a diode. The recess may include eight (8) sides or facets on a lower internal portion of the recess while the upper internal portion of the recess may include sixteen (16) smaller sides or facets. (FIGS. 6 and 8) In one aspect, the facets may be similar to the ideal proportional cut of a round brilliance diamond.
  • The 16 facets of the upper internal surface may slope inwardly at an angle ranging between 90° and 98.5° providing an optimal angle of refraction causing light reflected outwards to increase while light reflecting or bouncing back into the surface of the diode may be minimized. However, the range of 90° and 98.5° is by example only and other angles which may allow the light to be directed outwards while minimizing light reflected into the surface of the diode may be used.
  • The recess 600 may include a plurality of outer side edges 602 integrally connected to a plurality of inwardly projecting side edges 604 forming an outer surface perimeter. The junction or intersection of the plurality of inwardly projecting side edges 604 may form upper contact points 605 for assisting or guiding the current across the light emitting surface of the diode. The plurality of outer side edges 602 may be integrally connected to a first plurality of downwardly sloping side walls (or facets) 606 projecting inwardly. In one aspect, the first plurality of downwardly sloping side walls 606 may extend partially downwards into the recess at an angle of 45°, to center contact points 610, forming a triangular surface area. (FIG. 8)
  • The plurality of inwardly projecting side edges 604 may be integrally connected to a plurality of vertical side walls 608 extending downwards into the recess at an angle of 90° and converging to the center contact points 610, approximately half way between a top edge of the vertical side walls and a bottom contact point 616, such that each vertical side wall may form an equilateral triangle.
  • A second plurality of downwardly sloping side walls 612 having a first end 614, formed at a junction of the outer side edges 602 and inwardly projecting side edges 604, may extend downwards into the recess at an angle of 45° and converge at the bottom contact point 616 (FIGS. 6 and 7) of the recess 600. The convergence of the second plurality of downwardly sloping side walls 612 may create an angle α. In one aspect, a may be 98.5° ; however this is by example only and a may be any other angle that provides for the maximization of light to be reflected outwards away from the light emitting surface, thus increasing the light intensity of the LED and reducing heat output. As described below in more detail, the upper 605, center 610 and bottom 616 contact points may be used to guide the flow of current through a light emitting surface of a diode.
  • FIG. 7 illustrates a cross-sectional view of the rough surface pattern the light emitting surface of the recess taken along line 7-7 of FIG. 6. FIG. 8 illustrates a top perspective view of the recess of FIG. 6.
  • FIG. 9 illustrates a top plan view of a rough surface pattern of a light emitting surface 900 of a diode according to one aspect. The diode 900 may include a plurality of impurity regions 902 a-902 l where each impurity region may include a recess. As shown, the plurality or impurities, and corresponding recesses, may be organized into an array of rows and columns between a first end 901 and a second end 903 of the light emitting surface 900. The rows and columns of the array may be aligned such that each row may include the same number of recesses and each column may include the same number of recesses. For example, a row may contain three impurity regions, each impurity region having a complete recess (i.e. not partial), and a column may contain four impurity regions, each impurity region having a complete (i.e. not partial) recess. The number of recesses in rows and columns, as described above, is by way of example only and more or less recesses may be used.
  • The center and bottom contact points in each recess may be separated from center and lower contact points in adjacent recesses by gaps. For example, center contact points 906 a and bottom contact point 904 a in the first recess 902 a may be separated from center contact points 906 d and bottom contact point 904 d in the fourth recess 902 d by gaps, where a center gap is the distance between the center contact points in adjacent recesses and a bottom gap is the distance between bottom contact points in adjacent recesses (either adjacent in the row or in the column).
  • Applying a voltage (V) across the light emitting surface 900 of the diode may cause a current to flow from the first end 901 of the diode to the second end 903 of the diode through the impurity regions. The current flowing through the impurity regions may cause free electrons moving across the light emitting surface of the diode to fall into empty holes in the P-type layer of the diode resulting in the electrons releasing energy in the form of photons, i.e. light. As discussed above, the center 906 and bottom 904 contact points may function as serially connected electrodes such that the gaps created between the contact points in adjacent recesses may act as spark gaps allowing for the current to flow from the first end 901 of the diode to the second end 903. For example, the distance between a first bottom contact point 904 a in a first recess 902 a and a second bottom contact point 904 b in the second recess 902 b as well as the distance to a fourth bottom contact point 904 d in the fourth recess 902 d may form spark gaps so that current flowing through the first recess 902 a may jump to the second recess 902 b and/or fourth recess 902 d via the bottom contact points 904 a, 904 b, 904 d.
  • Additionally, the current may flow through the plurality of recesses in the light emitting surface 900 of the diode via center contact points 906. For example, the distance between one or more center contact points 906 a in the first recess 902 a and one or more center contact points 906 d in the fourth recess 902 d and/or one or more center contact points 906 b in the second recess 902 b may also form spark gaps so that current flowing through the first recess 902 a may jump to the second recess 902 b and/or fourth recess 902 d via the center contact points 906. Although not specifically labeled, all recesses may include center contact points 906.
  • FIG. 10A illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 900 of the diode taken along line 10A-10A of FIG. 9. FIG. 10B illustrates a cross-sectional view of the rough surface pattern of the light emitting surface 900 of the diode taken along line 10B-10B of FIG. 9. FIG. 11 illustrates a top perspective view of the rough surface pattern of the light emitting surface 900 of the diode of FIG. 9
  • FIG. 12 illustrates a top plan view of a rough surface pattern of a light emitting surface of a diode 1200 according to one aspect. The light emitting surface 1200 of the diode may include a plurality of impurity regions 1202 a-1202 n where each impurity region may include a recess.
  • In one aspect, the plurality of impurity regions may be organized into an array of rows where alternating rows of the array may be off-set. The off-set may be a distance of half a plurality region or recess, however this is by way of example and alternating rows may be off-set by different distances, such as ¾ of an impurity region or recess.
  • As shown in FIG. 12, a second row of impurity regions (comprising impurity regions 1202 d, 1202 e, 1202 f, 1202 g, where 1202 d and 1202 g may each be half an impurity region containing half a recess) and a fourth row of impurity regions (comprising impurity regions 1202 k, 1202 l, 1202 m, 1202 n, where 1202 k and 1202 n may each be half an impurity region containing half a recess) may be off-set from a first row of impurity regions (comprising impurity regions 1202 a, 1202 b, 1202 c) and a third row of impurity regions (comprising impurity regions 1202 h, 1202 i, 1202 j) by a specified distance, such as the length of half an impurity region or the length of ¾ of an impurity regions)
  • By off-setting alternating rows of impurity regions in an array, spark gaps created between center 1206 and bottom contact points (1204 a-1204 n), as described above, may be closer together, i.e. a smaller gap, which in turn may increase the efficiency of the light emitting surface as less energy is lost as the current may continuously flows from a first end 1201 to a second end 1203 of the light emitting surface 1200 and not merely jumping between impurity regions. Although not specifically labeled, all recesses may include center contact points 1206.
  • In other words, by off-setting the rows, the spark gap distance between center 1206 and bottom 1204 contact points may be decreased which in turn may allow the current to continuously flow through the light emitting surface. As a result of the continuous flow of current through the light emitting surface, the current may be able to flow through a greater surface area of the light emitting surface allowing for the generation and emission of more light. In other words, the current may be guided through the light emitting surface from a first end 1201 to a second end 1203. As more of the light is emitted outward, less light may be reflected inward, which in turn reduces the heat dissipated.
  • FIG. 13 illustrates a cross-sectional view of the light emitting surface of the diode taken along line 13-13 of FIG. 12. FIG. 14 illustrates a top perspective view of the light emitting surface of the diode of FIG. 12.
  • One or more of the components and functions illustrated in the figures may be rearranged and/or combined into a single component or embodied in several components without departing from the present application. Additional elements or components may also be added without departing from the present application. The apparatus, devices, and/or components illustrated in the figures may be configured to perform the methods, features, or steps illustrated in FIG. 1-14.
  • While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad application, and that this application not be limited to the specific constructions and arrangements shown and described, since various other modifications are possible. Those skilled, in the art will appreciate that various adaptations and modifications of the just described preferred embodiment can be configured without departing from the scope and spirit of the present application. Therefore, it is to be understood that, within the scope of the appended claims, the present application may be practiced other than as specifically described herein.

Claims (20)

1. A light emitting diode, comprising:
a plurality of semiconductor layers at least one of which has a light emitting surface, the light emitting surface, comprising:
a plurality of impurity regions, comprising:
a first group having a first set of peaks and valleys; and
a second group having a second set of peaks and valleys, the second set of peaks and valleys perpendicular to the first set of peaks and valleys.
2. The light emitting diode of claim 1, where the second set of peaks and valleys has a greater number of peaks and valleys then the first set of peaks and valleys.
3. The light emitting diode of claim 2, wherein a second height of peaks in the second set of peaks and valleys is smaller than a first height of peaks in the first set of peaks and valleys.
4. The light emitting diode of claim 2, wherein a second height of peaks in the second set of peaks and valleys is half of a first height of peaks in the first set of peaks and valleys.
5. The light emitting diode of claim 1, wherein the plurality of impurity regions are arranged in a checkered pattern by alternating the first group and the second group between a first end and a second end of the light emitting surface.
6. The light emitting diode of claim 1, wherein the peaks in the first set of peaks and valleys are separated by an angle of 45°.
7. The light emitting diode of claim 1, wherein the peaks in the second set of peaks and valleys are separated by an angle less than 45°.
8. The light emitting diode of claim 1, wherein the first and second set of peaks and valleys are etched into the light emitting surface.
9. The light emitting diode of claim 2, wherein a voltage is applied to the light emitting surface causing current to flow from a first end of the light emitting surface to a second end of the light emitting surface through the plurality of impurity regions causing free electrons moving across the light emitting surface to fall into empty holes in a p-type layer of the light emitting surface releasing energy in a form of light.
10. The light emitting diode of claim 9, wherein the first group having the first set of peaks and valleys allow the current to flow from the first end to the second end of the light emitting surface.
11. The light emitting diode of claim 10, wherein the greater number of peaks and valleys in the second set of peaks and valleys cause the emitted light to be reflected away from the light emitting surface while reducing reflection of light into the light emitting surface and heat dissipation from the light emitting surface.
12. The light emitting diode of claim 1, wherein the light emitting surface is comprised of silicon carbide.
13. An illumination device, comprising:
a diode module having a plurality of light emitting diodes, each of the light emitting diodes comprising:
a plurality of semiconductor layers at least one of which has a light emitting surface, the light emitting surface, comprising:
a plurality of impurity regions, comprising:
a first group having a first set of peaks and valleys; and
a second group having a second set of peaks and valleys, the second set of peaks and valleys perpendicular to the first set of peaks and valleys, the second set of peaks and valleys has a greater number of peaks and valleys then the first set of peaks and valleys.
a power source for supplying power to the plurality of light emitting diodes in the diode module.
14. The illumination device of claim 13, wherein a second height of peaks in the second set of peaks and valleys is smaller than a first height of peaks in the first set of peaks and valleys.
15. The illumination device of claim 14, wherein a second height of peaks in the second set of peaks and valleys is half of a first height of peaks in the first set of peaks and valleys.
16. The illumination device of claim 13, wherein the plurality of impurity regions are arranged in a checkered pattern by alternating the first group and the second group between a first end and a second end of the light emitting surface.
17. The illumination device of claim 13, wherein the peaks in the second set of peaks and valleys are separated by an angle less than 45°.
18. The light emitting diode of claim 13, wherein the first group having the first set of peaks and valleys allow current to flow from a first end to a second end of the light emitting surface.
19. The light emitting diode of claim 18, wherein the greater number of peaks and valleys in the second set of peaks and valleys cause the emitted light to be reflected away from the light emitting surface while reducing reflection of light into the light emitting surface and heat dissipation from the light emitting surface.
20. The illumination device of claim 13, wherein the light emitting surface is comprised of silicon carbide.
US12/646,914 2009-02-24 2009-12-23 Illumination device Abandoned US20100213483A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/646,914 US20100213483A1 (en) 2009-02-24 2009-12-23 Illumination device
PCT/US2010/020156 WO2010098893A1 (en) 2009-02-24 2010-01-05 Illumination device
PCT/US2010/020224 WO2010098895A2 (en) 2009-02-24 2010-01-06 Illumination device
PCT/US2010/020230 WO2010098896A2 (en) 2009-02-24 2010-01-06 Illumination device
TW099103633A TW201032363A (en) 2009-02-24 2010-02-06 Illumination device
CN2010101123462A CN101924172A (en) 2009-02-24 2010-02-08 Lighting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15507409P 2009-02-24 2009-02-24
US16402809P 2009-03-27 2009-03-27
US12/646,914 US20100213483A1 (en) 2009-02-24 2009-12-23 Illumination device

Publications (1)

Publication Number Publication Date
US20100213483A1 true US20100213483A1 (en) 2010-08-26

Family

ID=42630180

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/646,914 Abandoned US20100213483A1 (en) 2009-02-24 2009-12-23 Illumination device
US12/646,909 Abandoned US20100213869A1 (en) 2009-02-24 2009-12-23 Illumination device
US12/646,918 Expired - Fee Related US8304784B2 (en) 2009-02-24 2009-12-23 Illumination device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/646,909 Abandoned US20100213869A1 (en) 2009-02-24 2009-12-23 Illumination device
US12/646,918 Expired - Fee Related US8304784B2 (en) 2009-02-24 2009-12-23 Illumination device

Country Status (4)

Country Link
US (3) US20100213483A1 (en)
CN (3) CN101924171A (en)
TW (3) TW201032363A (en)
WO (3) WO2010098893A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114880A1 (en) * 2010-10-15 2012-04-19 Ceramtec Gmbh LED driver circuit
DE102011114882A1 (en) * 2010-10-15 2012-04-19 Ceramtec Gmbh LED light with integrated driver
WO2014142816A1 (en) * 2013-03-13 2014-09-18 Ofs Fitel, Llc Light-emitting diode input for hybrid solar lighting systems
WO2015016561A1 (en) 2013-07-29 2015-02-05 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and led module having the same
US9847457B2 (en) 2013-07-29 2017-12-19 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and LED module having the same
CN104913226A (en) * 2015-05-13 2015-09-16 张一熙 Curtain type illuminating structure providing light for growth of greenhouse plants
CN108954225A (en) * 2018-08-31 2018-12-07 区凤桂 A kind of lamp decoration

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227679B1 (en) * 1999-09-16 2001-05-08 Mule Lighting Inc Led light bulb
US20010050530A1 (en) * 2000-01-18 2001-12-13 Tetsuroh Murakami Light emitting diode
US6499860B2 (en) * 1998-09-17 2002-12-31 Koninklijke Philips Electronics N.V. Solid state display light
US20030006419A1 (en) * 2000-09-21 2003-01-09 Yale University High modulation frequency light emitting device exhibiting spatial relocation of minority carriers to a non-radiative recombination region
US6598996B1 (en) * 2001-04-27 2003-07-29 Pervaiz Lodhie LED light bulb
US20040245540A1 (en) * 2003-02-07 2004-12-09 Masayuki Hata Semiconductor device and method of fabricating the same
US6948829B2 (en) * 2004-01-28 2005-09-27 Dialight Corporation Light emitting diode (LED) light bulbs
US20060214603A1 (en) * 2005-03-22 2006-09-28 In-Hwan Oh Single-stage digital power converter for driving LEDs
US20060258027A1 (en) * 2005-05-16 2006-11-16 Akira Ohmae Light-emitting diode, method for making light-emitting diode, integrated light-emitting diode and method for making integrated light-emitting diode, method for growing a nitride-based iii-v group compound semiconductor, light source cell unit, light-emitting diode backlight, and light-emitting diode display and electronic device
US20070012240A1 (en) * 2005-07-13 2007-01-18 Sia Chin H Light emitting diode with at least two light emitting zones and method for manufacture
US20070018186A1 (en) * 2005-07-19 2007-01-25 Lg Chem, Ltd. Light emitting diode device having advanced light extraction efficiency and preparation method thereof
US20070262323A1 (en) * 2006-05-10 2007-11-15 Rohm Co., Ltd. Semiconductor light emitting element array illuminator using the same
US20080073657A1 (en) * 2006-08-28 2008-03-27 Stanley Electric Co., Ltd. Nitride semiconductor crystal with surface texture
US7354174B1 (en) * 2005-12-05 2008-04-08 Technical Consumer Products, Inc. Energy efficient festive lamp
US20080121910A1 (en) * 2006-11-28 2008-05-29 Michael John Bergmann Semiconductor Devices Having Low Threading Dislocations and Improved Light Extraction and Methods of Making the Same
US20080303018A1 (en) * 2005-12-09 2008-12-11 Electronics And Telecommunications Research Instit Silicon-Based Light Emitting Diode for Enhancing Light Extraction Efficiency and Method of Fabricating the Same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795195B2 (en) 1994-09-28 1998-09-10 信越半導体株式会社 Light emitting element
JP3258221B2 (en) 1995-12-26 2002-02-18 沖電気工業株式会社 Recognition mark for alignment and method of forming the same, mask for forming recognition mark and light emitting portion, alignment method using recognition mark for alignment
US6566824B2 (en) * 2001-10-16 2003-05-20 Teledyne Lighting And Display Products, Inc. Flexible lighting segment
US7348600B2 (en) * 2003-10-20 2008-03-25 Nichia Corporation Nitride semiconductor device, and its fabrication process
CN101375430A (en) 2006-01-31 2009-02-25 陶氏康宁公司 Soft lithographic molding of surface relief output couplers for organic light emitting diodes
KR100825137B1 (en) 2006-07-11 2008-04-24 전북대학교산학협력단 Semiconductor, Method of manufacturing the same and Semiconductor Light-emitting diode
KR100920594B1 (en) 2007-07-12 2009-10-08 삼성전기주식회사 Apparatus for driving interleaved fly-back type of led

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499860B2 (en) * 1998-09-17 2002-12-31 Koninklijke Philips Electronics N.V. Solid state display light
US6227679B1 (en) * 1999-09-16 2001-05-08 Mule Lighting Inc Led light bulb
US20010050530A1 (en) * 2000-01-18 2001-12-13 Tetsuroh Murakami Light emitting diode
US20030006419A1 (en) * 2000-09-21 2003-01-09 Yale University High modulation frequency light emitting device exhibiting spatial relocation of minority carriers to a non-radiative recombination region
US6598996B1 (en) * 2001-04-27 2003-07-29 Pervaiz Lodhie LED light bulb
US20040245540A1 (en) * 2003-02-07 2004-12-09 Masayuki Hata Semiconductor device and method of fabricating the same
US6948829B2 (en) * 2004-01-28 2005-09-27 Dialight Corporation Light emitting diode (LED) light bulbs
US20060214603A1 (en) * 2005-03-22 2006-09-28 In-Hwan Oh Single-stage digital power converter for driving LEDs
US20060258027A1 (en) * 2005-05-16 2006-11-16 Akira Ohmae Light-emitting diode, method for making light-emitting diode, integrated light-emitting diode and method for making integrated light-emitting diode, method for growing a nitride-based iii-v group compound semiconductor, light source cell unit, light-emitting diode backlight, and light-emitting diode display and electronic device
US20070012240A1 (en) * 2005-07-13 2007-01-18 Sia Chin H Light emitting diode with at least two light emitting zones and method for manufacture
US20070018186A1 (en) * 2005-07-19 2007-01-25 Lg Chem, Ltd. Light emitting diode device having advanced light extraction efficiency and preparation method thereof
US7354174B1 (en) * 2005-12-05 2008-04-08 Technical Consumer Products, Inc. Energy efficient festive lamp
US20080303018A1 (en) * 2005-12-09 2008-12-11 Electronics And Telecommunications Research Instit Silicon-Based Light Emitting Diode for Enhancing Light Extraction Efficiency and Method of Fabricating the Same
US20070262323A1 (en) * 2006-05-10 2007-11-15 Rohm Co., Ltd. Semiconductor light emitting element array illuminator using the same
US20080073657A1 (en) * 2006-08-28 2008-03-27 Stanley Electric Co., Ltd. Nitride semiconductor crystal with surface texture
US20080121910A1 (en) * 2006-11-28 2008-05-29 Michael John Bergmann Semiconductor Devices Having Low Threading Dislocations and Improved Light Extraction and Methods of Making the Same

Also Published As

Publication number Publication date
CN101922623A (en) 2010-12-22
WO2010098895A3 (en) 2010-10-21
US20100213469A1 (en) 2010-08-26
US8304784B2 (en) 2012-11-06
TW201032364A (en) 2010-09-01
TW201032362A (en) 2010-09-01
WO2010098893A1 (en) 2010-09-02
WO2010098895A2 (en) 2010-09-02
CN101924171A (en) 2010-12-22
TW201032363A (en) 2010-09-01
US20100213869A1 (en) 2010-08-26
CN101924172A (en) 2010-12-22
WO2010098896A2 (en) 2010-09-02
WO2010098896A3 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US8304784B2 (en) Illumination device
CN105529343B (en) Light emitting diode
US8450748B2 (en) Solid state light emitting device
US9048113B2 (en) Cost-effective LED lighting instrument with good light output uniformity
US8946747B2 (en) Lighting device including multiple encapsulant material layers
US20080025047A1 (en) Light source comprising edge emitting elements
US20150155435A1 (en) Light emitting device and illumination system having the same
KR20150131641A (en) Light emitting device and light emitting device package including the device
JP2001111114A (en) White led
US9874318B2 (en) LED assembly and LED bulb using the same
CN107863431A (en) Light-emitting component
US9142719B2 (en) Patterned substrate and light-emitting diode having the same
US20130201669A1 (en) Led illumination apparatus with improved output uniformity
KR102140279B1 (en) Light emitting device and light emitting device package including the device
US20070096120A1 (en) Lateral current GaN flip chip LED with shaped transparent substrate
KR102608149B1 (en) Optical lens and semiconductor device package
KR101205526B1 (en) Light emitting diode package
US20130148343A1 (en) Compact led lamp
US11876155B2 (en) Broad electromagnetic spectrum light-emitting diode packages
KR102639844B1 (en) Light emitting device
KR102631075B1 (en) Smeiconductor device
KR101259998B1 (en) Light emitting diode
KR100694889B1 (en) Power led package
KR20210016779A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: GREEN MILLENNIUM TECHNOLOGY LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCKE, ANDREW;REEL/FRAME:023709/0328

Effective date: 20091228

AS Assignment

Owner name: LOCKE, ANDREW, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREEN MILLENNIUM TECHNOLOGY, LLC;REEL/FRAME:025669/0976

Effective date: 20110120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION