US20100203105A1 - Method for administering insulin to the buccal region - Google Patents

Method for administering insulin to the buccal region Download PDF

Info

Publication number
US20100203105A1
US20100203105A1 US12/699,585 US69958510A US2010203105A1 US 20100203105 A1 US20100203105 A1 US 20100203105A1 US 69958510 A US69958510 A US 69958510A US 2010203105 A1 US2010203105 A1 US 2010203105A1
Authority
US
United States
Prior art keywords
composition
insulin
acid
formulation
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/699,585
Inventor
Pankaj Modi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Generex Pharmaceuticals Inc
Original Assignee
Generex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/021,114 external-priority patent/US6017545A/en
Application filed by Generex Pharmaceuticals Inc filed Critical Generex Pharmaceuticals Inc
Priority to US12/699,585 priority Critical patent/US20100203105A1/en
Publication of US20100203105A1 publication Critical patent/US20100203105A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to an improved delivery system for the administration of large-molecule pharmaceuticals, e.g. peptidic drugs, vaccines and hormones.
  • large-molecule pharmaceuticals e.g. peptidic drugs, vaccines and hormones.
  • pharmaceuticals which may be administered through the oral and nasal membranes.
  • the oral routes have received far more attention than have the other routes.
  • the sublingual mucosa includes the membrane of ventral surface of the tongue and the floor of the mouth whereas the buccal mucosa constitutes the lining of the cheek.
  • the sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible. This route has been investigated clinically for the delivery of a substantial number of drugs.
  • the ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1.000 daltons, appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble, molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
  • Enhancers may be characterized as chelators, bile salts, fatty acids, synthetic hydrophilic and hydrophobic compounds, and biodegradable polymeric compounds.
  • enhancers have been tested so far and some have been found to be effective in facilitating mucosal administration of large molecule drugs. However, hardly any penetration enhancing products have reached the market place. Reasons for this include lack of a satisfactory safety profile respecting irritation, lowering of the barrier function, and impairment of the mucociliary clearance protective mechanism.
  • the main factor to be considered in the use of enhancers, especially those related to bile salts, and some protein solubilizing agents, is extremely bitter and unpleasant taste. This makes their use almost impossible for human consumption on a daily basis.
  • Several approaches were utilized to improve the taste of the bile salts based delivery systems, but none one of them are commercially acceptable for human consumption to date. Approaches utilized include patches for buccal mucosa, bilayer tablets, controlled release tablets, use of protease inhibitors, buccally administered film patch devices, and various polymer matrices.
  • the mixed micelles encapsulate molecules with high degree of efficiency (>90% encapsulation). These mixed micelles are extremely small in size (1 nm to 10 nm), and are smaller than the pores of the membranes in the oral cavity or the GI tract. It is therefore believed that the extremely small size of mixed micelles helps encapsulated molecules penetrate efficiently through the mucosal membranes of the oral cavity.
  • the amount of physiologically active peptide or protein in the compositions of this invention is typically a quantity that provides an effective amount of the drug to produce the physiological activity (therapeutic plasma level) for which the peptide or protein is being administered.
  • a slightly larger amount than the desired dosage is preferred.
  • the dosage form is a spray (aerosol) or the like which is repeatedly dispensed from the same container, it is recommendably so arranged that the unit dose will be slightly greater than the desired dose. It should be understood that dosage should vary with species of warm blooded animals such as man, domestic animals, and their body weights.
  • composition of this invention is prepared as microfine droplets (1 to 10 nm or less) by virtue of the preparation methods used and suitable combinations of enhancer compound characteristics.
  • atomizer or aerosol spray devices may be useful to further reduce the particle size for effective inhalation from the nasal or oral cavity so that the drug may be successfully be absorbed or reach to the specific site.
  • the therapeutic composition of the present invention can be stored at room temperature or at cold temperatures. Storage of proteinic drugs is preferable at cold temperatures to prevent the degradation of the drugs and to extend their shelf life. While the mixed micellar therapeutic composition of the invention is applied to the mucosal membranes, the sites of administration may be the same as those used for usual mucosal therapeutic preparations. Generally, oral, transdermal and nasal are the favorite sites of administration but the composition can be applied to the rectal and vaginal mucosa. According to the physiologically active peptide or protein used, the dosage form and the site of administration, a specific administration method can be selected.
  • edetate refers to pharmaceutically acceptable salts of ethylenediaminetetraacetic acid.
  • the propellants give enhancement in the penetration through pores, and facilitate absorption of the drugs to reach therapeutic levels in the plasma.
  • the present formulation may be absorbed buccally, by ensuring that the person does not inhale the formulation as it is sprayed.
  • One of the other benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained.
  • the present invention provides a mixed micellar pharmaceutical formulation, having a pH of between 6.0 and 7.0 comprising a pharmaceutical agent in micellar form, water, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt. % of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.
  • each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • the alkali metal lauryl sulphate, the edetate and the alkali metal salicylate are each in a concentration of from 2 to 5 wt./wt. % of the total formulation.
  • the edetate is an alkali metal edetate.
  • the alkali metal edetate be selected from the group consisting of disodium edetate, dipotassium edetate, and combinations thereof.
  • the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • the alkali metal salicylate is sodium salicylate.
  • the lecithin is selected from the group consisting of saturated phospholipid, e.g. Phospholipon-H (trade mark) saturated phospholipid, unsaturated phospholipid, e.g. Phospholipon-G (trade mark) unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, and lysolecithin.
  • saturated phospholipid e.g. Phospholipon-H (trade mark) saturated phospholipid
  • unsaturated phospholipid e.g. Phospholipon-G (trade mark) unsaturated phospholipid
  • phosphatidylcholine phosphatidyl serine
  • sphingomyelin phosphatidylethanolamine
  • cephalin cephalin
  • lysolecithin lysolecithin
  • one of the absorption enhancing compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration of such micelle forming compound being from about 1 to about 5 wt./wt. %.
  • the mixed micellar pharmaceutical formulation is suitably diluted to avoid irritation of the nasal passages.
  • Another aspect of the present invention provides a mixed micellar pharmaceutical formulation, comprising a pharmaceutical agent in micellar form, water, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt. % of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.
  • each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • the mixed micellar aerosol pharmaceutical formulation additionally comprises a phenolic compound selected from the group consisting of phenol and methyl phenol in a concentration of from 1 to 10 wt./wt. % of the total formulation, and a propellant known for use with aerosol pharmaceutical formulations such as propellants selected from the group consisting of C1-C2 dialkyl ether, butanes, fluorocarbon propellant, hydrogen-containing fluorocarbon propellant, chlorofluorocarbon propellant, hydrogen-containing chlorofluorocarbon propellant, and mixtures thereof.
  • a propellant known for use with aerosol pharmaceutical formulations such as propellants selected from the group consisting of C1-C2 dialkyl ether, butanes, fluorocarbon propellant, hydrogen-containing fluorocarbon propellant, chlorofluorocarbon propellant, hydrogen-containing chlorofluorocarbon propellant, and mixtures thereof.
  • the alkali metal C8 to C22 alkyl sulphate is in a concentration of from 2 to 5 wt./wt. % of the total formulation.
  • the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate.
  • the lecithin is saturated or unsaturated, preferably selected from the group consisting of phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, and lysolecithin.
  • one of the micelle forming compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, polidocanol alkyl ethers, trihydroxy oxo cholanyl glycine, polyoxyethylene ethers and mixtures thereof, the concentration of such absorption enhancing compound being from about 1 to about 5 wt./wt. %.
  • the ratio of pharmaceutical agent, e.g. insulin, to propellant is in a ratio practiced in the art, such as from 5:95 to 25:75.
  • propellants selected from the group consisting of tetrafluoroethane, tetrafluoropropane, dimethylfluoropropane, heptafluoropropane, dimethyl ether, n-butane and 25 isobutane.
  • the mixed micellar pharmaceutical formulation is contained in an aerosol dispenser, known in the pharmaceutical arts for aerosol administration of drugs.
  • the composition may also contain at least one inorganic salt which opens channels in the gastrointestinal tract and may provide additional stimulation to release insulin.
  • inorganic salts are sodium, potassium, calcium and zinc salts, especially sodium chloride, potassium chloride, calcium chloride, zinc chloride and sodium bicarbonate.
  • the antioxidant is selected from the group consisting of tocopherol, deteroxime mesylate, methyl paraben, ethyl paraben and ascorbic acid and mixtures thereof.
  • a preferred antioxidant is tocopherol.
  • At least one protease inhibitor is added to the formulation to inhibit degradation of the pharmaceutical agent by the action of proteolytic enzymes.
  • protease inhibitors most are effective at concentrations of from 1 to 3 wt./wt. % of the formulation.
  • Non-limiting examples of effective protease inhibitors are bacitracin, soyabean trypsin, aprotinin and bacitracin derivatives, e.g. bacitracin methylene disalicylate.
  • Bacitracin is the most effective of those named when used in concentrations of from 1.5 to 2 wt./wt. %. Soyabean trypsin and aprotinin may be used in concentrations of about 1 to 2 wt./wt. % of the formulation.
  • the formulation suitable for delivery through oral mucosal membranes may be in chewable form, in which case it will be necessary to add ingredients suitable for such form.
  • ingredients suitable for such form include guar gum, powdered acacia, carrageenan, beeswax and xanthan gum.
  • the pharmaceutical agent may be selected from a wide variety of macromolecular agents, depending on the disorder being treated, generally with molecular weights greater than about 1000 and especially between about 1000 and 2 000 000.
  • Preferred pharmaceutical agents are selected from the group consisting of insulin, heparin, low molecular weight heparin, hirulog, hirugen, huridin, interferons, interleukins, cytokines, mono and polyclonal antibodies, immunoglobins, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF), glucagon like peptides (GLP-1), large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics and antisense oligonucleotides, and small molecule drugs, e.g. opioids, narcotics, analgesics, NSAIDS, steroids, hypnotics, pain killers,
  • the present invention also provides a process for making a pharmaceutical composition suitable for delivery through transdermal membranes comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition and a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.
  • micellar pharmaceutical agent composition b) slowly adding the micellar pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting 10 of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, 15 trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures, thereof, while mixing vigorously, to form a mixed micellar composition; wherein each absorption enhancing compound is each present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of alkali metal salicylate, alkali metal lauryl sulphate, edetate and ab
  • the process provides an additional step of adding, while continuing vigorous mixing, at least one absorption enhancing compound different from that added in step b), selected-from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof.
  • at least one absorption enhancing compound different from that added in step b) selected-from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, ole
  • the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • the alkali metal salicylate is sodium salicylate.
  • the alkali metal edetate may be selected from the group consisting of disodium edetate and dipotassium edetate.
  • the formulation has a combination selected from the group consisting of i) sodium hyaluronate and unsaturated phospholipid, ii) Phospholipon-H and glycolic acid, and iii) sodium hyaluronate and lecithin.
  • the present invention also provides a process for making a pharmaceutical composition suitable for delivery by means of an aerosol comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.
  • micellar pharmaceutical agent composition % of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, while mixing vigorously, to form a mixed micellar composition; and optionally c) an additional step of adding, while continuing vigorous mixing, at least one micelle forming compound different from that added in step
  • the total concentration of alkali metal salicylate, alkali metal C8 to C22 alkyl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • the vigorous mixing may be accomplished using high speed stirrers, e.g. magnetic stirrers or propellor stirrers, or by sonication.
  • high speed stirrers e.g. magnetic stirrers or propellor stirrers, or by sonication.
  • the mixed micellar formulation is formed by sonication of the aqueous micellar pharmaceutical agent composition in the presence of lecithin.
  • the present invention provides an improved method for delivery of macromolecular (high molecular weight) pharmaceutical agents, particularly through the membranes in the nose, mouth, vagina or rectum.
  • the preferred delivery is through oral and nasal cavities.
  • the pharmaceutical agents cover a wide spectrum of agents, including proteins, peptides, hormones, vaccines and drugs.
  • the molecular weights of the macromolecular pharmaceutical agents are preferably above 1000, especially between 1000 and 2 000 000.
  • hormones which may be administered with the present invention include thyroids, androgens, estrogens, prostaglandins, somatotropins, gonadotropins, erythropoetin, interferons, interleukins, steroids and cytokines.
  • Vaccines which may be administered with the present invention include bacterial and viral vaccines such as vaccines for hepatitis, influenza, tuberculosis, canary pox, chicken pox, measles, mumps, rubella, pneumonia, BCG, HIV and AIDS.
  • Bacterial toxoids which may be administered using the present invention include diphtheria, tetanus, pseudomonas and mycobacterium tuberculosis . Examples of specific cardiovascular or thrombolytic agents include heparin, hirugen, hirulos and hirudin.
  • Large molecules usefully administered with the present invention include monoclonal antibodies, polyclonal antibodies and immunoglobins.
  • the concentration of the pharmaceutical agent is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in an animal or human.
  • concentration or amount of pharmaceutical agent administered will depend on the parameters determined for the agent and the method of administration, e.g. oral, nasal.
  • nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
  • the mixed micellar formulation is prepared by first preparing a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate.
  • a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate.
  • the first micellar composition is then added to at least one of the absorption enhancing compounds to form a mixed micellar composition.
  • At least one other absorption enhancing compound may also be added subsequently.
  • the first absorption enhancing compound is lecithin.
  • the phenol and/or m-cresol and/or isotonic agent are then added.
  • the formulation is then put into an aerosol dispenser and the dispenser charged with the propellant in a manner known in the art.
  • the preferred propellants in the art are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is hydrofluoroalkane (HFA) 134a (1,1,1,2 tetrafluoroethane).
  • HFA hydrofluoroalkane
  • compositions of the present invention require that the pharmaceutical formulation be in mixed micellar form.
  • the first micellar solution may be made by adding a buffer solution to powdered insulin, and then stirring until the powder is dissolved and a clear solution is obtained.
  • a typical buffer solution is an aqueous solution of sodium salicylate and sodium lauryl sulphate and disodium edetate. Typical concentrations of sodium salicylate and sodium lauryl sulphate in the aqueous solution are about 3 to 20 wt./wt. % of each compound in the solution.
  • insulin is present in the micellar solution in an amount which will give a concentration of about 2 to 4 wt./wt. % of the final formulation. Typically the concentration may be about 10 wt./wt. % of the first micellar composition.
  • micellar solution is then added slowly to the first absorption enhancing compound, e.g. lecithin while mixing vigorously, e.g. sonicating, to form a mixed micellar solution.
  • the mixing may be done with a high speed mixer or sonicator to ensure uniform micelle particle size distribution within the formulation.
  • Each of the absorption enhancing compounds when present, is in a concentration of from 1 to 10 wt./wt. % of the total formulation.
  • Preferred salts of hyaluronic acid are alkali metal hyaluronates, alkaline earth hyaluronates and aluminium hyaluronate.
  • the preferred salt is sodium hyaluronate.
  • the preferred concentration of hyaluronic acid or pharmaceutically acceptable salts of hyaluronic acid is from 1 to 5 wt./wt. % of the total formulation. An even more preferred range is from 1.5 to 3.5 wt./wt. % of the total formulation.
  • flavouring agents may be added to the mixed micellar solution.
  • antioxidants may be added.
  • salts may be added.
  • protease inhibitors may be added.
  • the size of the micelle particles in the solution is about 1 to 10 nm, and preferably from 1 to 5 nm. Such a size distribution ensures effective absorption of the formulation, and therefore the pharmaceutical agent, through the membranes, for example the membranes in the oral and nasal cavities.
  • the specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the nasal and oral cavities, it is often desirable to increase, e.g. double or triple, the dosage which is normally required through injection or administration through the gastrointestinal tract.
  • the amount of each component of the formulation will vary depending on the pharmaceutical agent and the site of application.
  • Preferred formulations for oral or nasal application have the following combinations: i) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and sodium hyaluronate; ii) sodium lauryl sulphate, sodium salicylate, disodium edetate, lecithin and sodium hyaluronate; iii) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate and evening primrose oil; iv) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and bacitracin; v) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H, sodium hyaluronate and bacitracin; and vi) sodium sodium la
  • aerosol formulations For aerosol formulations, the addition of a mixture of phenol and m-cresol is preferred. Such an aerosol formulation may then be charged to an aerosol dispenser and then charged with a propellant in a manner known in the art, preferably a non-CFC propellant.
  • the therapeutic compositions of the present invention may be stored at room temperature or at cold temperature. Storage of proteinic drugs is preferable at a cold temperature to prevent degradation of the 10 drugs and to extend their shelf life.
  • oral and nasal are the favourite routes of administration but the composition can be applied to the rectal and vaginal mucosa.
  • a specific administration method can be selected.
  • composition of this invention is generally prepared as microfine mixed micellar particles (1 to 10 20 nm or less) by virtue of the preparation methods used and suitable combinations of absorption enhancer characteristics.
  • sprays are preferable, but drops, chewable tablets, chewable gum and other suitable forms may be used.
  • Utilization of atomizer or aerosol spray devices can be used to further reduce the particle size for effective inhalation from the nasal or oral cavity so the drug may successfully reach to the specific site and be absorbed. It is also possible to utilize a drug delivery system such that an enteric coating is applied to the gelatin capsule to cause the micelles to be released only in the duodenum or in the proximity of the large intestine and not in the stomach.
  • a solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. To this solution 40 mg (1000 units) of insulin was added and dissolved completely while stirring, to give about 100 units/mL insulin solution.
  • the volunteers received 10 units of insulin by injection (regular fast acting insulin, available from Eli Lilly).
  • the volunteers received 100 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (10 times the injection dose).
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • Oral insulin (100 units) was formulated in (Phospholipon-H, 10 mg) without any sodium lauryl sulphate, sodium salicylate, edetate or absorption enhancers, to evaluate its efficacy of blood glucose lowering in a fasted state, for healthy volunteers.
  • Oral insulin (100 units) was formulated with sodium salicylate and alkali metal edetate (both 5% by wt.) to evaluate its efficacy of blood glucose lowering in fasted state in healthy volunteers.
  • Oral insulin (100 units) was formulated using sodium salicylate and alkali metal edetate (both 5% by wt.) with Phospholipon-H (10 mg) and tested on healthy subjects. Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the results are shown in Table V.
  • Oral insulin (50 units) was formulated using only alkali metal lauryl sulphate (5% by wt). Blood glucose levels were monitored every 15 minutes using Bayer's glucometer. Elite for 3 hours and the average results for four volunteers are shown in Table VI.
  • micellar oral insulin 50 units was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt,) and alkali metal edetate (2.2% by wt) with Phospholipon-H (10 mg) and tested on healthy volunteers.
  • the method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • micellar insulin was then prepared in a glass beaker, in which was placed the Phospholipon H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution.
  • the formulation was for oral administration.
  • Oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt.) and alkali metal edetate (2.2% by wt.) with Phospholipon-H (10 mg) and sodium hyaluronate (1.1% by wtj. This formulation was tested on healthy subjects under fasting condition.
  • the method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • micellar insulin was then prepared In a glass beaker, in which was placed the Phospholipon-H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution. The hyaluronate and small amounts of menthol and sorbitol were then added, with continuous stirring.
  • the formulation was for oral administration.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to insulin and mixed, to form micellar insulin.
  • micellar insulin solution dissolved in 3 mL of the buffer solution to (give 30 units/mL insulin solution) was added slowly with vigorous mixing, to form a mixed micellar solution.
  • 0.6 mL of sodium hyaluronate and 0.2 ml of 2% menthol solution containing 3% sorbitol was added to this solution.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly).
  • the volunteers received 30 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (3 times the injection dose).
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • This example illustrates a method for making a mixed micellar formulation according to the present invention.
  • micellar insulin solution was then prepared in a 50 mL capacity glass beaker, into which was placed 11.54 mg insulin powder. To this powder was added 10 mL of the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • a 2% menthol solution was then prepared from 100 mg menthol crystals, dissolved in 5 mL ethanol. To this solution was added 5 mg FD & C blue dye. The solution was stirred for 10 minutes and stored in a glass bottle at room temperature.
  • phosphatidylcholine powder does not dissolve completely, then heating up to about 45° C. may be required, e.g. using a water bath.
  • micellar insulin composition is not added slowly, then the mixed micellar formulation will not be formed and the formulation will be gelatinous and sticky.
  • Example 9 The formulation of Example 9 was tested in a manner similar to that indicated in Example 8 except that the formulation of the present invention was administered nasally.
  • the ten volunteers each received 10 units insulin injection (regular fast acting, Eli Lilly).
  • the volunteers received 20 units of the “oral” insulin of Example 9 (2 times the injection dose).
  • the “oral” insulin was administered as drops (0.4 mL volume per drop, approximately 4 large drops in total, i.e. two drops in each nostril).
  • results show that the nasal insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin.
  • Example 9 The formula of Example 9 was taken and tests performed to determine the insulin action on meal glucose on healthy volunteers.
  • Example 9 The mixed micellar formulation of Example 9 was tested in healthy volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • Example 9 The mixed micellar formulation of Example 9 was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly).
  • the volunteers received 30 units of the above-prepared oral insulin (3 times the injection dose).
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • a chewable gum insulin formulation was prepared by vigorously stirring the insulin mixed micellar solution of Example 9 while adding guar gum, beeswax, powdered acacia, oleic acid, gamma-linoleic acid and sorbitol.
  • the mixture contained 100 mg guar gum, 50 mg beeswax, 50 mg powdered acacia, 100 mg oleic acid, 100 mg gamma-linoleic acid and 1 mL 3% sorbitol in ethanol solution.
  • the mixture was then poured into a flat tray coated with polytetrafluoroethylene until the mixture was about 10 mm deep.
  • the mixture then solidified and after solidification was cut into sticks about 1 cm by 3 cm. Each stick contained about 30 units insulin.
  • the mixed micellar formulation in chewable stick form was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly).
  • the volunteers received 30 units of the above-prepared chewable gum oral insulin (3 times the injection dose), in both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • micellar solution were added 0.2 g bacitracin and 0.5 g evening primrose oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL).
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly).
  • the volunteers received 20 units of the above-prepared oral insulin (twice the injection dose).
  • blood glucose levels were monitored at intervals by Bayer's Glucometer Elite.
  • a further experiment was performed to show another method of making the mixed micellar formulation of the 15 present invention.
  • 100 mg of saturated lecithin powder (Phospholipon-90H) purchased from the American Lecithin Co.
  • To this powder was added 5 mL of absolute ethanol (USP grade).
  • the flask was then attached to a rotary evaporator equipped with the vacuum pump and nitrogen inlet for inert atmosphere condition to minimize oxidation of the lecithin.
  • the flask was rotated at 100-150 rpm under vacuum.
  • the solution in the flask was heated to 60° C. by means of water bath to dissolve the powder completely.
  • micellar insulin solution which had been prepared from an aqueous solution of insulin, sodium lauryl sulphate, sodium salicylate and disodium edetate.
  • the flask was shaken with the help of shaker plate. Shaking was continued for at least 30 minutes and then the solution was sonicated with a high frequency sonicating probe for another 60 minutes in order to form small uniform mixed micelles.
  • the mixed micelles so obtained were analyzed by Malvern Zeta (trade mark) particle size distribution measurement equipment equipped with the laser light scattering device.
  • the mixed micelles particle size distribution obtained by this method was between 2 and 9 nm.
  • To this solution was added 1 mL of 2% menthol solution and 50 mg sodium hyaluronate.
  • the semi-clear, translucent, light blue colour solution (final volume 10 mL) was stored in a clean glass bottle and refrigerated.
  • the solution had a pH of 6.5.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • micellar solution were added 0.5 g borage oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL).

Abstract

A mixed micellar pharmaceutical formulation includes a micellar pharmaceutical agent, an alkali metal C8 to C22 alkyl sulfate, alkali metal salicylate, a pharmaceutically acceptable edetate and at least one absorption enhancing compound. The absorption enhancing compounds are selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, trihydroxy oxo cholanyiglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof. Each absorption enhancing compound is present in a concentration of from 1 to 10 wt:/wt. % of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt. % of the formulation. Methods for administering insulin and heparin to the buccal region are also disclosed.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/378,371, filed Mar. 3, 2003, which is a continuation of U.S. application Ser. No. 09/538,829, filed Mar. 30, 2000, now U.S. Pat. No. 7,070,799, issued Jul. 4, 2006, which is a continuation-in-part of U.S. application Ser. No. 09/216,733, filed Dec. 21, 1998, now U.S. Pat. No. 6,231,882, issued May 15, 2001, which is a continuation-in-part of U.S. application Ser. No. 09/021,114, filed Feb. 10, 1998, now U.S. Pat. No. 6,017,545, issued Jan. 25, 2000. The entire teachings of the above applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to an improved delivery system for the administration of large-molecule pharmaceuticals, e.g. peptidic drugs, vaccines and hormones. In particular it relates to pharmaceuticals which may be administered through the oral and nasal membranes.
  • BACKGROUND OF THE INVENTION
  • In spite of significant efforts in academic and commercial laboratories, major breakthroughs in oral peptide and protein formulation have not been achieved. Relatively little progress has been made in reaching the target of safe and effective oral formulations for peptides and proteins. The major barriers to developing oral formulations for proteins and peptides include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical stability in the gastrointestinal (GI) tract. Pharmaceutical approaches to address these barriers, which have been successful with traditional small, organic drug molecules, have not readily translated into effective peptide and protein formulations. Although the challenges are significant, the potential therapeutic benefits remain high especially in the field of diabetes treatment using insulin.
  • Scientists have explored various administration routes other than injection for proteins and peptides. These routes include oral, intranasal, rectal, and vaginal cavities for the effective delivery of large molecules. Out of the above four mentioned routes, oral and nasal cavities have been of greatest interest to scientists. Both the oral and nasal membranes offer advantages over other routes of administration. For example, drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to the hostile GI environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily. Further, there is a good potential for prolonged delivery of large molecules through these membranes.
  • The oral routes have received far more attention than have the other routes. The sublingual mucosa includes the membrane of ventral surface of the tongue and the floor of the mouth whereas the buccal mucosa constitutes the lining of the cheek. The sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible. This route has been investigated clinically for the delivery of a substantial number of drugs.
  • The ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1.000 daltons, appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble, molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
  • Most proteinic drug molecules are extremely large molecules with molecular weights exceeding 6000 daltons. These large molecules have very poor lipid solubility and are practically impermeable. Substances that facilitate the absorption or transport of large molecules (>2000 daltons) across biological membranes are known as enhancers, (Lee et al., Critical Reviews in Therapeutic drug Carrier Systems, 8, 91, 1991; Lee et al., Critical Reviews in Therapeutic drug Carrier Systems, 8, 115, 1991, 1992). Enhancers may be characterized as chelators, bile salts, fatty acids, synthetic hydrophilic and hydrophobic compounds, and biodegradable polymeric compounds.
  • Various mechanisms of action of enhancers have been proposed. These mechanisms of action, at least for protein and peptidic drugs include (1) reducing viscosity and/or elasticity of mucous layer, (2) facilitating transcellular transport by increasing the fluidity of the lipid bilayer of membranes, and (3) increasing the thermodynamic activity of drugs (Critical Rev, 117-125, 1991, 1992).
  • Many enhancers have been tested so far and some have been found to be effective in facilitating mucosal administration of large molecule drugs. However, hardly any penetration enhancing products have reached the market place. Reasons for this include lack of a satisfactory safety profile respecting irritation, lowering of the barrier function, and impairment of the mucociliary clearance protective mechanism. The main factor to be considered in the use of enhancers, especially those related to bile salts, and some protein solubilizing agents, is extremely bitter and unpleasant taste. This makes their use almost impossible for human consumption on a daily basis. Several approaches were utilized to improve the taste of the bile salts based delivery systems, but none one of them are commercially acceptable for human consumption to date. Approaches utilized include patches for buccal mucosa, bilayer tablets, controlled release tablets, use of protease inhibitors, buccally administered film patch devices, and various polymer matrices.
  • The basic problem associated with the above technologies is the use of large quantities of bile acids and their salts to promote the transport of the large molecules through membranes in the form of localized delivery systems using patches or tablets. In spite of using protease inhibitors and polymer coatings the technologies failed to deliver proteinic drugs in the required therapeutic concentrations. Further, the problem is compounded because of the localized site effect of the patch which resulted in severe tissue damage in the mouth. Most attempts were made to deliver large molecules via the oral, nasal, rectal, and vaginal routes using single bile acids or enhancing agents in combination with protease inhibitors and biodegradable polymeric materials. However, it is extremely difficult to achieve therapeutic levels of proteinic drugs using these formulations, as single enhancing agents fail to loosen tight cellular junctions in the oral, nasal, rectal and vaginal cavities for a required period of time to allow passage of large molecules through the mucosal membranes without further degradation. This problem makes it impractical to use the above mentioned systems for a commercial purpose.
  • In order to overcome the above mentioned problem of the bitter taste, irritation and the penetration of large molecules through the sublingual, buccal and GI tract mucosal lining, a system has now been designed where a proteinic drug was encapsulated in mixed micelles made up of a combination of enhancers, e.g. yolk proteins (lecithins). This system allows the opening of the paracellular junctions (tight junctions) in the oral cavity as well as in the GI tract by GI motility movement with a high degree of protease activity preserved and for protecting molecules from premature degradation in the hostile acidic and proteolytic GI environment.
  • It is believed that the mixed micelles encapsulate molecules with high degree of efficiency (>90% encapsulation). These mixed micelles are extremely small in size (1 nm to 10 nm), and are smaller than the pores of the membranes in the oral cavity or the GI tract. It is therefore believed that the extremely small size of mixed micelles helps encapsulated molecules penetrate efficiently through the mucosal membranes of the oral cavity.
  • The absorption of proteins and peptides is believed to be enhanced by the diffusion of large molecules entrapped in the mixed micellar form through the aqueous pores and the cell structure perturbation of the tight paracellular junctions.
  • The amount of physiologically active peptide or protein in the compositions of this invention is typically a quantity that provides an effective amount of the drug to produce the physiological activity (therapeutic plasma level) for which the peptide or protein is being administered. In consideration of the fact that the bioavailability of any active substance can never be 100%, that is to say the administered dose of the active drug is not completely absorbed, it is preferable to incorporate a slightly larger amount than the desired dosage. Where the dosage form is a spray (aerosol) or the like which is repeatedly dispensed from the same container, it is recommendably so arranged that the unit dose will be slightly greater than the desired dose. It should be understood that dosage should vary with species of warm blooded animals such as man, domestic animals, and their body weights. The composition of this invention is prepared as microfine droplets (1 to 10 nm or less) by virtue of the preparation methods used and suitable combinations of enhancer compound characteristics. The utilization of atomizer or aerosol spray devices (metered dose inhalers or nebulizers) may be useful to further reduce the particle size for effective inhalation from the nasal or oral cavity so that the drug may be successfully be absorbed or reach to the specific site.
  • The therapeutic composition of the present invention can be stored at room temperature or at cold temperatures. Storage of proteinic drugs is preferable at cold temperatures to prevent the degradation of the drugs and to extend their shelf life. While the mixed micellar therapeutic composition of the invention is applied to the mucosal membranes, the sites of administration may be the same as those used for usual mucosal therapeutic preparations. Generally, oral, transdermal and nasal are the favorite sites of administration but the composition can be applied to the rectal and vaginal mucosa. According to the physiologically active peptide or protein used, the dosage form and the site of administration, a specific administration method can be selected.
  • As used herein, the term “edetate” refers to pharmaceutically acceptable salts of ethylenediaminetetraacetic acid.
  • It is known that improvements in penetration and absorption of mixed micellar formulations can be achieved by mixing the mixed micellar formulation with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants, Preferably they are delivered through metered dose spray devices. Metered dose inhalers are known and are a popular pulmonary drug delivery form for some drugs. The present formulation, including the propellant, is intended to improve the quality of absorption, stability and performance of many formulations. The propellants, as will be appreciated by those skilled in the art, give enhancement in the penetration through pores, and facilitate absorption of the drugs to reach therapeutic levels in the plasma. The present formulation may be absorbed buccally, by ensuring that the person does not inhale the formulation as it is sprayed. One of the other benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained.
  • SUMMARY OF THE INVENTION
  • Accordingly the present invention provides a mixed micellar pharmaceutical formulation, having a pH of between 6.0 and 7.0 comprising a pharmaceutical agent in micellar form, water, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt. % of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, trihydroxy oxo cholanyiglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof, wherein each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • In an embodiment, the alkali metal lauryl sulphate, the edetate and the alkali metal salicylate are each in a concentration of from 2 to 5 wt./wt. % of the total formulation.
  • In one embodiment, the edetate is an alkali metal edetate. Preferably the alkali metal edetate be selected from the group consisting of disodium edetate, dipotassium edetate, and combinations thereof.
  • In another embodiment, the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • In a further embodiment, the alkali metal salicylate is sodium salicylate.
  • In another embodiment, the lecithin is selected from the group consisting of saturated phospholipid, e.g. Phospholipon-H (trade mark) saturated phospholipid, unsaturated phospholipid, e.g. Phospholipon-G (trade mark) unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, and lysolecithin.
  • In one embodiment, one of the absorption enhancing compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration of such micelle forming compound being from about 1 to about 5 wt./wt. %.
  • In another embodiment, suitable for delivery through nasal passages, the mixed micellar pharmaceutical formulation is suitably diluted to avoid irritation of the nasal passages.
  • Another aspect of the present invention provides a mixed micellar pharmaceutical formulation, comprising a pharmaceutical agent in micellar form, water, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt. % of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, wherein each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • Yet another aspect of the present invention provides that the mixed micellar aerosol pharmaceutical formulation additionally comprises a phenolic compound selected from the group consisting of phenol and methyl phenol in a concentration of from 1 to 10 wt./wt. % of the total formulation, and a propellant known for use with aerosol pharmaceutical formulations such as propellants selected from the group consisting of C1-C2 dialkyl ether, butanes, fluorocarbon propellant, hydrogen-containing fluorocarbon propellant, chlorofluorocarbon propellant, hydrogen-containing chlorofluorocarbon propellant, and mixtures thereof.
  • In one embodiment, the alkali metal C8 to C22 alkyl sulphate is in a concentration of from 2 to 5 wt./wt. % of the total formulation.
  • In another embodiment, the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate.
  • In another embodiment, the lecithin is saturated or unsaturated, preferably selected from the group consisting of phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, and lysolecithin.
  • In yet another embodiment, one of the micelle forming compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, polidocanol alkyl ethers, trihydroxy oxo cholanyl glycine, polyoxyethylene ethers and mixtures thereof, the concentration of such absorption enhancing compound being from about 1 to about 5 wt./wt. %.
  • Preferably, the ratio of pharmaceutical agent, e.g. insulin, to propellant is in a ratio practiced in the art, such as from 5:95 to 25:75.
  • In another embodiment, the propellant known for use with aerosol pharmaceutical formulations, such as propellants selected from the group consisting of tetrafluoroethane, tetrafluoropropane, dimethylfluoropropane, heptafluoropropane, dimethyl ether, n-butane and 25 isobutane.
  • In yet another embodiment, the mixed micellar pharmaceutical formulation is contained in an aerosol dispenser, known in the pharmaceutical arts for aerosol administration of drugs.
  • For insulin-containing and some other compositions, the composition may also contain at least one inorganic salt which opens channels in the gastrointestinal tract and may provide additional stimulation to release insulin. Non-limiting examples of inorganic salts are sodium, potassium, calcium and zinc salts, especially sodium chloride, potassium chloride, calcium chloride, zinc chloride and sodium bicarbonate.
  • It will be recognized by those skilled in the art that for many pharmaceutical compositions it is usual to add at least one antioxidant to prevent degradation and oxidation of the pharmaceutically active ingredients. It will also be understood by those skilled in the art that colorants, flavoring agents and non-therapeutic amounts of other compounds may be included in the formulation. Typical flavoring agents are menthol and sorbitol.
  • In one embodiment the antioxidant is selected from the group consisting of tocopherol, deteroxime mesylate, methyl paraben, ethyl paraben and ascorbic acid and mixtures thereof. A preferred antioxidant is tocopherol.
  • In a preferred embodiment at least one protease inhibitor is added to the formulation to inhibit degradation of the pharmaceutical agent by the action of proteolytic enzymes. Of the known protease inhibitors, most are effective at concentrations of from 1 to 3 wt./wt. % of the formulation.
  • Non-limiting examples of effective protease inhibitors are bacitracin, soyabean trypsin, aprotinin and bacitracin derivatives, e.g. bacitracin methylene disalicylate. Bacitracin is the most effective of those named when used in concentrations of from 1.5 to 2 wt./wt. %. Soyabean trypsin and aprotinin may be used in concentrations of about 1 to 2 wt./wt. % of the formulation.
  • The formulation suitable for delivery through oral mucosal membranes may be in chewable form, in which case it will be necessary to add ingredients suitable for such form. Such ingredients include guar gum, powdered acacia, carrageenan, beeswax and xanthan gum.
  • The pharmaceutical agent may be selected from a wide variety of macromolecular agents, depending on the disorder being treated, generally with molecular weights greater than about 1000 and especially between about 1000 and 2 000 000. Preferred pharmaceutical agents are selected from the group consisting of insulin, heparin, low molecular weight heparin, hirulog, hirugen, huridin, interferons, interleukins, cytokines, mono and polyclonal antibodies, immunoglobins, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF), glucagon like peptides (GLP-1), large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics and antisense oligonucleotides, and small molecule drugs, e.g. opioids, narcotics, analgesics, NSAIDS, steroids, hypnotics, pain killers, morphine and the like.
  • The present invention also provides a process for making a pharmaceutical composition suitable for delivery through transdermal membranes comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition and a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting 10 of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, 15 trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures, thereof, while mixing vigorously, to form a mixed micellar composition; wherein each absorption enhancing compound is each present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of alkali metal salicylate, alkali metal lauryl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • In one embodiment, the process provides an additional step of adding, while continuing vigorous mixing, at least one absorption enhancing compound different from that added in step b), selected-from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof.
  • In one embodiment the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • In another embodiment the alkali metal salicylate is sodium salicylate.
  • In a further embodiment the alkali metal edetate may be selected from the group consisting of disodium edetate and dipotassium edetate.
  • In yet another embodiment, the formulation has a combination selected from the group consisting of i) sodium hyaluronate and unsaturated phospholipid, ii) Phospholipon-H and glycolic acid, and iii) sodium hyaluronate and lecithin.
  • The present invention also provides a process for making a pharmaceutical composition suitable for delivery by means of an aerosol comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, while mixing vigorously, to form a mixed micellar composition; and optionally c) an additional step of adding, while continuing vigorous mixing, at least one micelle forming compound different from that added in step b), selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, borage oil, evening primrose oil, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, and mixtures thereof; d) mixing the mixed micellar composition resulting from steps a) to e) with a phenolic compound selected from the group consisting of phenol, m-cresol and mixtures thereof; and subsequently e) placing the formulation into an aerosol dispenser known in the pharmaceutical arts for aerosol administration of drugs and charging the dispenser with a propellant known for use with such aerosol dispensers; wherein each of the absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of alkali metal salicylate, alkali metal C8 to C22 alkyl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt. % of the formulation.
  • The vigorous mixing may be accomplished using high speed stirrers, e.g. magnetic stirrers or propellor stirrers, or by sonication.
  • In one embodiment, the mixed micellar formulation is formed by sonication of the aqueous micellar pharmaceutical agent composition in the presence of lecithin.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention provides an improved method for delivery of macromolecular (high molecular weight) pharmaceutical agents, particularly through the membranes in the nose, mouth, vagina or rectum. The preferred delivery is through oral and nasal cavities. The pharmaceutical agents cover a wide spectrum of agents, including proteins, peptides, hormones, vaccines and drugs. The molecular weights of the macromolecular pharmaceutical agents are preferably above 1000, especially between 1000 and 2 000 000.
  • For example, hormones which may be administered with the present invention include thyroids, androgens, estrogens, prostaglandins, somatotropins, gonadotropins, erythropoetin, interferons, interleukins, steroids and cytokines. Vaccines which may be administered with the present invention include bacterial and viral vaccines such as vaccines for hepatitis, influenza, tuberculosis, canary pox, chicken pox, measles, mumps, rubella, pneumonia, BCG, HIV and AIDS. Bacterial toxoids which may be administered using the present invention include diphtheria, tetanus, pseudomonas and mycobacterium tuberculosis. Examples of specific cardiovascular or thrombolytic agents include heparin, hirugen, hirulos and hirudin. Large molecules usefully administered with the present invention include monoclonal antibodies, polyclonal antibodies and immunoglobins.
  • As will be understood, the concentration of the pharmaceutical agent is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in an animal or human. The concentration or amount of pharmaceutical agent administered will depend on the parameters determined for the agent and the method of administration, e.g. oral, nasal. For example, nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
  • The mixed micellar formulation is prepared by first preparing a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate. For those compositions intended for administration through the nasal, oral, vaginal or rectal cavities, the first micellar composition is then added to at least one of the absorption enhancing compounds to form a mixed micellar composition. At least one other absorption enhancing compound may also be added subsequently. Preferably the first absorption enhancing compound is lecithin.
  • When making the aerosol formulation, the phenol and/or m-cresol and/or isotonic agent are then added. The formulation is then put into an aerosol dispenser and the dispenser charged with the propellant in a manner known in the art.
  • The preferred propellants in the art are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is hydrofluoroalkane (HFA) 134a (1,1,1,2 tetrafluoroethane).
  • Although the present invention has such wide applicability, the invention is described hereinafter with particular reference to insulin and its analogues, which are used for the treatment of diabetes.
  • As indicated hereinbefore, the compositions of the present invention require that the pharmaceutical formulation be in mixed micellar form.
  • In the case of insulin, which is intended for administration through nasal or oral cavities, the first micellar solution may be made by adding a buffer solution to powdered insulin, and then stirring until the powder is dissolved and a clear solution is obtained. A typical buffer solution is an aqueous solution of sodium salicylate and sodium lauryl sulphate and disodium edetate. Typical concentrations of sodium salicylate and sodium lauryl sulphate in the aqueous solution are about 3 to 20 wt./wt. % of each compound in the solution. Typically, insulin is present in the micellar solution in an amount which will give a concentration of about 2 to 4 wt./wt. % of the final formulation. Typically the concentration may be about 10 wt./wt. % of the first micellar composition.
  • The micellar solution is then added slowly to the first absorption enhancing compound, e.g. lecithin while mixing vigorously, e.g. sonicating, to form a mixed micellar solution. At least one other absorption enhancing compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein is then added. The mixing may be done with a high speed mixer or sonicator to ensure uniform micelle particle size distribution within the formulation.
  • Each of the absorption enhancing compounds, when present, is in a concentration of from 1 to 10 wt./wt. % of the total formulation.
  • Preferred salts of hyaluronic acid are alkali metal hyaluronates, alkaline earth hyaluronates and aluminium hyaluronate. The preferred salt is sodium hyaluronate. The preferred concentration of hyaluronic acid or pharmaceutically acceptable salts of hyaluronic acid is from 1 to 5 wt./wt. % of the total formulation. An even more preferred range is from 1.5 to 3.5 wt./wt. % of the total formulation.
  • Other ingredients may be added to the mixed micellar solution. For example, flavouring agents, antioxidants, salts, protease inhibitors or other pharmaceutically acceptable compounds may be added.
  • In general the size of the micelle particles in the solution is about 1 to 10 nm, and preferably from 1 to 5 nm. Such a size distribution ensures effective absorption of the formulation, and therefore the pharmaceutical agent, through the membranes, for example the membranes in the oral and nasal cavities.
  • The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the nasal and oral cavities, it is often desirable to increase, e.g. double or triple, the dosage which is normally required through injection or administration through the gastrointestinal tract.
  • As will be understood, the amount of each component of the formulation will vary depending on the pharmaceutical agent and the site of application. Preferred formulations for oral or nasal application have the following combinations: i) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and sodium hyaluronate; ii) sodium lauryl sulphate, sodium salicylate, disodium edetate, lecithin and sodium hyaluronate; iii) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate and evening primrose oil; iv) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and bacitracin; v) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H, sodium hyaluronate and bacitracin; and vi) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate, oleic acid and gamma linoleic acid.
  • For aerosol formulations, the addition of a mixture of phenol and m-cresol is preferred. Such an aerosol formulation may then be charged to an aerosol dispenser and then charged with a propellant in a manner known in the art, preferably a non-CFC propellant.
  • The therapeutic compositions of the present invention may be stored at room temperature or at cold temperature. Storage of proteinic drugs is preferable at a cold temperature to prevent degradation of the 10 drugs and to extend their shelf life.
  • As indicated hereinbefore, generally, oral and nasal are the favourite routes of administration but the composition can be applied to the rectal and vaginal mucosa. According to the physiologically active peptide or protein used, the dosage form and the site of administration, a specific administration method can be selected.
  • The composition of this invention is generally prepared as microfine mixed micellar particles (1 to 10 20 nm or less) by virtue of the preparation methods used and suitable combinations of absorption enhancer characteristics.
  • For oral and nasal application, sprays are preferable, but drops, chewable tablets, chewable gum and other suitable forms may be used. Utilization of atomizer or aerosol spray devices (metered dose inhalers or nebulizers) can be used to further reduce the particle size for effective inhalation from the nasal or oral cavity so the drug may successfully reach to the specific site and be absorbed. It is also possible to utilize a drug delivery system such that an enteric coating is applied to the gelatin capsule to cause the micelles to be released only in the duodenum or in the proximity of the large intestine and not in the stomach.
  • The invention is illustrated by reference to the following examples.
  • Example 1
  • A first experiment was conducted to provide data for comparative purposes. This example does not fall within the scope of the present invention.
  • A solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. To this solution 40 mg (1000 units) of insulin was added and dissolved completely while stirring, to give about 100 units/mL insulin solution.
  • In one set of tests, five healthy non-diabetic human volunteers were tested with insulin, by injection. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the test, with no food being taken during the 4 hour study.
  • On the first day, the volunteers received 10 units of insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 100 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (10 times the injection dose). In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • The average results for the five volunteers, of the first day's trial (sub-cutaneous injection with 10 units) were as follows:
  • TABLE I
    Time*
    0 15 30 60 75 90 120 150 180 210 240
    Avg: 5.8 5.8 5.4 5.0 4.6 4.3 3.8 3.6 3.4 4.2 4.5
    *time in minutes
  • The results for each of the five volunteers, of the second day's trial (oral drops with 100 units) were as follows:
  • TABLE II
    Subject Time*:
    Nos: 0 15 30 60 75 90 120 150 180 210 240
    1 6.2 5.8 5.2 5.0 4.9 5.0 5.0 4.8 4.7 5.5 6.0
    2 5.8 5.4 5.0 4.7 4.9 4.3 5.0 5.5 5.2 5.8 6.1
    3 4.8 4.6 4.3 4.3 4.4 4.6 4.8 4.7 5.2 5.5 5.1
    4 6.6 6.1 5.8 5.5 5.1 4.9 5.0 5.0 5.9 6.2 6.8
    5 6.0 5.8 5.7 5.5 5.1 4.8 4.7 4.9 5.0 5.9 6.7
    *time in minutes
  • These tests indicate that compared to the injection method, oral insulin gives a faster onset of action and lowers blood glucose levels without creating a hypoglycaemic condition. Due to the hepatic glucose production, there was a rebound effect. This is believed to be due to the incomplete absorption of insulin.
  • Example 2
  • Another experiment, not within the scope of the present invention, was performed for comparative purposes.
  • Oral insulin (100 units) was formulated in (Phospholipon-H, 10 mg) without any sodium lauryl sulphate, sodium salicylate, edetate or absorption enhancers, to evaluate its efficacy of blood glucose lowering in a fasted state, for healthy volunteers.
  • Volunteers were asked to fast overnight and not have any breakfast prior to dosing. Volunteers were asked to take this oral insulin formulation in their mouth and swallow it. Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours, and the average results for 5 volunteers are shown in Table III.
  • TABLE III
    Time*:
    0 15 30 45 60 75 90 120 150 180
    Avg: 5.6 5.8 5.8 5.7 5.7 5.8 5.7 5.7 5.8 5.7
    *time in minutes
  • This indicates that orally administered insulin with lecithin alone has no effect on blood glucose lowering.
  • Example 3
  • A further experiment, not within the scope of the present invention, was performed for comparative purposes.
  • Oral insulin (100 units) was formulated with sodium salicylate and alkali metal edetate (both 5% by wt.) to evaluate its efficacy of blood glucose lowering in fasted state in healthy volunteers.
  • Volunteers were asked to fast overnight and not have any breakfast prior to dosing. Volunteers were asked to take this oral insulin formulation in their mouth and swallow it. Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite—for 3 hours and the average results for 10 volunteers are shown in Table IV.
  • TABLE IV
    Time*:
    0 15 30 45 60 75 90 120 150 180
    Avg: 5.8 5.8 5.8 5.9 5.8 5.9 5.7 5.9 6.2 6.0
    *time in minutes
  • This indicates that orally administered insulin with sodium salicylate and alkali metal edetate alone has no effect on blood glucose lowering. In addition, this formulation caused irritation and burning sensation, which lasted for several hours.
  • Example 4
  • A further experiment, not within the scope of the present invention, was performed for comparative purposes.
  • Oral insulin (100 units) was formulated using sodium salicylate and alkali metal edetate (both 5% by wt.) with Phospholipon-H (10 mg) and tested on healthy subjects. Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the results are shown in Table V.
  • TABLE V
    Time*:
    0 15 30 45 60 90 120 180
    Avg: 5.3 5.3 5.3 5.4 5.6 5.7 5.7 5.8
    *time in minutes
  • This indicates that orally administered insulin with sodium salicylate, alkali metal edetate and Phospholipon-H has no effect on blood glucose lowering.
  • Example 5
  • Another experiment, not within the scope of the present invention, was performed for comparative purposes.
  • Oral insulin (50 units) was formulated using only alkali metal lauryl sulphate (5% by wt). Blood glucose levels were monitored every 15 minutes using Bayer's glucometer. Elite for 3 hours and the average results for four volunteers are shown in Table VI.
  • TABLE VI
    Time*:
    0 15 30 60 90 20 180
    Avg: 5.8 5.6 5.4 5.3 5.4 5.4 5.6
    *time in minutes
  • This data shows that orally administered insulin with only alkali metal lauryl sulphate has little metabolic effect on the blood glucose lowering in healthy subjects. This formulation caused substantial burning sensation and irritation in the subjects and lasted for two days.
  • Example 6
  • Yet another experiment, within the scope of the present invention, was performed.
  • Mixed micellar oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt,) and alkali metal edetate (2.2% by wt) with Phospholipon-H (10 mg) and tested on healthy volunteers.
  • The method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • Mixed micellar insulin was then prepared in a glass beaker, in which was placed the Phospholipon H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution.
  • Samples of the mixed micellar solution were taken 25 orally by the volunteers.
  • Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the average results for 5 volunteers are shown in Table VII.
  • TABLE VII
    Time:
    0 15 30 45 60 90 120 150 180
    Avg: 6.5 6.1 5.5 5.3 5.3 5.4 5.5 5.5 5.5
    * time in minutes
  • This data shows that orally administered insulin with alkali metal lauryl sulphate combined with the sodium salicylate and alkali metal edetate with Phospholipon-H has a small metabolic effect on blood glucose levels in healthy volunteers.
  • Example 7
  • An experiment, within the scope of the present invention, was performed. In this example, the formulation was for oral administration.
  • Oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt.) and alkali metal edetate (2.2% by wt.) with Phospholipon-H (10 mg) and sodium hyaluronate (1.1% by wtj. This formulation was tested on healthy subjects under fasting condition.
  • The method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • Mixed micellar insulin was then prepared In a glass beaker, in which was placed the Phospholipon-H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution. The hyaluronate and small amounts of menthol and sorbitol were then added, with continuous stirring.
  • Samples of the mixed micellar solution were taken orally by the volunteers.
  • Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the average results for 5 volunteers are shown in Table VIII.
  • TABLE VIII
    Time:*
    0 15 30 45 60 90 120 150 180
    Avg: 6.5 5.9 5.6 5.4 4.9 5.0 4.9 5.2 5.4
    *time in minutes
  • This data shows that orally administered insulin with alkali metal lauryl sulphate, sodium salicylate, alkali metal edetate, Phospholipon-H and sodium hyaluronate has resulted in lowering of blood glucose levels in healthy subjects better than the above mentioned formulations.
  • Example 8
  • A further experiment, within the scope of the present invention, was performed. In this example, the formulation was for oral administration.
  • A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to insulin and mixed, to form micellar insulin.
  • Separately, 100 mg of powdered Phosphatidylcholine-H was added to a glass beaker and to this powder was added 10 mL 50% ethanol. The powder was dissolved completely. To this solution 16 mg (400 units) of micellar insulin solution dissolved in 3 mL of the buffer solution to (give 30 units/mL insulin solution) was added slowly with vigorous mixing, to form a mixed micellar solution. To this was added 0.6 mL of sodium hyaluronate and 0.2 ml of 2% menthol solution containing 3% sorbitol.
  • In one set of tests, ten Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with insulin, faken orally. The volunteers fasted from midnight prior to the test, with no food being taken during the 4 hour study.
  • On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 30 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (3 times the injection dose). In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • The results, showing the average for the ten volunteers, were as shown on the following page:
  • TABLE IX
    Blood glucose levels (mmol/L)
    Time (minutes) Oral Dose (30 units) Injection (10 units)
    0 6.4 6.8
    15 5.8 6.9
    30 5.4 6.1
    45 5.3 5.8
    60 5.3 5.8
    75 5.2 5.8
    90 5.2 5.4
    105 5.2 5.4
    120 5.1 5.2
    135 5.1 5.1
    150 5.2 4.9
    165 5.3 4.9
    180 5.3 4.8
    195 5.4 4.8
    210 5.4 5.2
    225 5.6 5.2
    240 5.6 5.4
  • The results show that the oral insulin formulation of the present invention, at a dosage of three times higher than the injected level, is comparable to the injected insulin.
  • Example 9
  • This example illustrates a method for making a mixed micellar formulation according to the present invention.
  • In a 250 mL capacity glass beaker was added 5 g sodium lauryl sulphate, 5 g sodium salicylate and 2.5 g edetate. The beaker was placed on the hot plate with a magnetic stirrer. To this dry powder mixture was added 100 mL distilled water and the mixture was stirred, using the magnetic stir bar, at a medium speed until all the powder was dissolved. The buffer solution was stored in a clean glass bottle at room temperature (pH 6.5).
  • A micellar insulin solution was then prepared in a 50 mL capacity glass beaker, into which was placed 11.54 mg insulin powder. To this powder was added 10 mL of the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
  • A 2% menthol solution was then prepared from 100 mg menthol crystals, dissolved in 5 mL ethanol. To this solution was added 5 mg FD & C blue dye. The solution was stirred for 10 minutes and stored in a glass bottle at room temperature.
  • Mixed micellar insulin was then prepared in a 50 mL glass beaker, in which was placed 100 mg of phosphatidylcholine (Sigma, type I=EH, hydrogenated). To this powder was added 10 mL of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about minutes to ensure complete dissolution of the phosphatidylcholine. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution. To this solution was added 1 mL of the 26 menthol solution and 50 mg sodium hyaluronate. The semi-clear, translucent, light blue colour, insulin mixed micellar solution (final volume 15 mL) was stored in a clean glass bottle and refrigerated. The solution had a pH of 6.5.
  • If the phosphatidylcholine powder does not dissolve completely, then heating up to about 45° C. may be required, e.g. using a water bath.
  • It has been found that if the micellar insulin composition is not added slowly, then the mixed micellar formulation will not be formed and the formulation will be gelatinous and sticky.
  • Example 10
  • The formulation of Example 9 was tested in a manner similar to that indicated in Example 8 except that the formulation of the present invention was administered nasally.
  • On the first day, the ten volunteers each received 10 units insulin injection (regular fast acting, Eli Lilly). On the second day, the volunteers received 20 units of the “oral” insulin of Example 9 (2 times the injection dose). The “oral” insulin was administered as drops (0.4 mL volume per drop, approximately 4 large drops in total, i.e. two drops in each nostril).
  • The results, showing the average for the, ten volunteers, were as follows:
  • TABLE X
    Blood glucose levels (mmol/L)
    Time (minutes) Nasal Dose (20 units) Injection (10 units)
    0 7.4 6.8
    15 6.7 7.0
    30 5.9 6.8
    45 5.3 6.3
    60 5.0 6.3
    75 5.2 5.8
    90 5.1 5.2
    105 5.0 5.0
    120 4.6 5.2
    135 4.5 4.2
    150 4.3 4.6
    165 4.3 4.0
    180 4.8 4.1
    195 5.3 4.3
    210 5.4 4.5
    225 5.7 4.7
    240 5.6 5.0
  • The results show that the nasal insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin.
  • Example 11
  • The formula of Example 9 was taken and tests performed to determine the insulin action on meal glucose on healthy volunteers.
  • Usually, diabetic patients take an insulin injection minutes prior to a meal, because injected insulin takes a long time to take effect. Injected insulin is slowly absorbed into bloodstream within 60 minutes and has metabolic effect on meal glucose levels.
  • The mixed micellar formulation of Example 9 was tested in healthy volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • In one set of tests, ten healthy non-diabetic human volunteers were tested with insulin, by injection. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
  • On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 30 units of the above-prepared oral insulin (3 times the injection dose). In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite. The results are shown on the following page:
  • TABLE XI
    Blood glucose levels (mmol/L)
    Time (minutes) Oral Dose (30 units) Injection (10 units)
    0 5.7 5.5
    15 5.2 5.6
    30 5.0 5.4
    45 5.3 5.4
    60 5.4 5.6
    75 6.3 6.6
    90 6.9 7.0
    105 6.0 5.9
    120 5.8 5.6
    135 5.5 5.1
    150 5.1 4.8
    165 4.9 4.6
    180 4.8 4.3
  • The results indicate that the oral insulin helps to control meal glucose levels in healthy volunteers when compared to injected insulin.
  • Example 12
  • The mixed micellar formulation of Example 9 was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • In one set of tests, ten Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
  • On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 30 units of the above-prepared oral insulin (3 times the injection dose). In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • The average results for the 10 volunteers were as follows:
  • TABLE XII
    Blood glucose levels (mmol/L)
    Time (minutes) Oral Dose (30 units) Injection (10 units)
    0 8.8 8.7
    15 8.1 8.8
    30 8.0 8.9
    45 8.4 10.1
    60 10.2 11.8
    75 11.8 11.8
    90 12.3 12.2
    105 10.8 11.2
    120 9.6 10.4
    135 8.1 8.4
    150 6.9 7.3
    165 6.2 6.5
    180 4.8 4.3
  • The results indicate that oral insulin helps to control meal glucose levels in diabetic patients when compared to injected insulin.
  • Example 13
  • A chewable gum insulin formulation was prepared by vigorously stirring the insulin mixed micellar solution of Example 9 while adding guar gum, beeswax, powdered acacia, oleic acid, gamma-linoleic acid and sorbitol. For each 30 units of insulin, the mixture contained 100 mg guar gum, 50 mg beeswax, 50 mg powdered acacia, 100 mg oleic acid, 100 mg gamma-linoleic acid and 1 mL 3% sorbitol in ethanol solution. The mixture was then poured into a flat tray coated with polytetrafluoroethylene until the mixture was about 10 mm deep. The mixture then solidified and after solidification was cut into sticks about 1 cm by 3 cm. Each stick contained about 30 units insulin.
  • The mixed micellar formulation in chewable stick form was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • In one set of tests, five Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with the chewable gum insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
  • On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 30 units of the above-prepared chewable gum oral insulin (3 times the injection dose), in both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • The average results for the five volunteers were as follows:
  • TABLE XIII
    Blood glucose levels (mmol/L)
    Time (minutes) Oral Dose (30 units) Injection (10 units)
    0 9.1 8.8
    15 9.3 8.2
    30 9.3 8.0
    45 10.2 8.4
    60 11.2 9.2
    75 12.1 10.3
    90 12.9 11.8
    105 13.2 11.6
    120 12.8 11.0
    135 12.2 10.2
    150 11.6 9.6
    165 11.0 9.5
    180 10.6 9.1
    195 10.0 8.7
    210 9.5 8.2
    225 8.8 8.0
    240 8.2 7.5
  • Example 14
  • Another experiment, within the scope of the present invention, was performed, in this example, the formulation was for oral administration.
  • A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • To this micellar solution were added 0.2 g bacitracin and 0.5 g evening primrose oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL).
  • Six human volunteers were studied. The volunteers fasted from midnight prior to the test, with no food being taken during the 4 hour study.
  • On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly). On the second day, the volunteers received 20 units of the above-prepared oral insulin (twice the injection dose). In both tests, blood glucose levels were monitored at intervals by Bayer's Glucometer Elite.
  • The results, showing the average for the six volunteers, were as follows:
  • TABLE XIV
    Blood glucose levels (mmol/L)
    Time (minutes) Oral Dose (20 units) Injection (10 units)
    0 8.8 7.9
    15 8.4 7.9
    30 8.1 8.2
    45 7.4 8.3
    60 6.3 7.6
    90 5.1 6.2
    120 5.0 5.2
    150 4.8 4.6
    180 5.1 3.9
    210 5.3 4.4
    240 5.6 5.2
  • The results show that the oral insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin.
  • Example 15
  • A further experiment was performed to show another method of making the mixed micellar formulation of the 15 present invention. In a 250 mL round bottom flask was added 100 mg of saturated lecithin powder (Phospholipon-90H) purchased from the American Lecithin Co. To this powder was added 5 mL of absolute ethanol (USP grade). The flask was then attached to a rotary evaporator equipped with the vacuum pump and nitrogen inlet for inert atmosphere condition to minimize oxidation of the lecithin. The flask was rotated at 100-150 rpm under vacuum. The solution in the flask was heated to 60° C. by means of water bath to dissolve the powder completely. After complete dissolution of the powder, heating was stopped and the rotation speed was increased to 300 rpm, under vacuum in nitrogen atmosphere until the alcohol evaporated completely, leaving a uniform film on the side of the flask. The rotation was continued for at least 30 minutes to ensure uniform coating of film on the wall and complete solvent removal. After 30 minutes the rotation was stopped and the vacuum was released.
  • To this flask was added micellar insulin solution which had been prepared from an aqueous solution of insulin, sodium lauryl sulphate, sodium salicylate and disodium edetate. The flask was shaken with the help of shaker plate. Shaking was continued for at least 30 minutes and then the solution was sonicated with a high frequency sonicating probe for another 60 minutes in order to form small uniform mixed micelles. The mixed micelles so obtained were analyzed by Malvern Zeta (trade mark) particle size distribution measurement equipment equipped with the laser light scattering device. The mixed micelles particle size distribution obtained by this method was between 2 and 9 nm. To this solution was added 1 mL of 2% menthol solution and 50 mg sodium hyaluronate. The semi-clear, translucent, light blue colour solution (final volume 10 mL) was stored in a clean glass bottle and refrigerated. The solution had a pH of 6.5.
  • Example 16
  • Another experiment, within the scope of the present invention, was performed.
  • A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • To this micellar solution were added 0.5 g borage oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL).

Claims (16)

1-25. (canceled)
26. An oral transmucosal pharmaceutical chewing gum composition, the composition comprising:
a pharmaceutical agent,
water,
an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt. % of the total formulation,
a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt. % of the total formulation,
at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt. % of the total formulation,
and at least one absorption enhancing compound, said absorption enhancing compound being selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts of trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues of polidocanol alkyl ethers, triolein and mixtures thereof, wherein the amount of each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt. % of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt. % of the formulation, and
an effective amount of a chewing gum base.
27. The composition of claim 26, wherein the pharmaceutical agent is selected from the group consisting of insulin, heparin, low molecular weight heparin, hirulog, hirugen, huridine, interferons, interleukins, cytokines, mono and polyclonal antibodies, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF), glucagon like peptides (GLP-1), large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics antisense oligonucleotides, steroids, hypnotics and pain killers.
28. The composition of claim 27, wherein the pharmaceutical agent is insulin.
29. The composition of claim 26, wherein the chewing gum base comprises at least one ingredient chosen from guar gum, powdered acacia, carrageenan, beeswax and xanthan gum.
30. The composition of claim 26, in which one of the absorption enhancing compounds is lecithin.
31. The composition of claim 30, wherein the lecithin is selected from the group consisting of sphingomyelin, cephalin, lysolecithin and mixtures thereof.
32. The composition of claim 26, wherein the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate.
33. The composition of claim 26, wherein the alkali metal salicylate is sodium salicylate.
34. The composition of claim 26, comprising an absorption enhancing compound selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration such absorption enhancing compound being from about 1 to about 5 wt./wt. %.
35. The composition of claim 34, comprising sodium hyaluronate.
36. The composition of claim 26, comprising oleic acid.
37. The composition of claim 26, comprising gamma-linoleic acid.
38. The composition of claim 26, comprising menthol.
39. The composition of claim 26, comprising phosphatidylcholine.
40. The composition of claim 26, comprising insulin, sodium lauryl sulphate, sodium salicylate, a pharmaceutically acceptable edetate, sodium hyaluronate, oleic acid, gamma-linoleic acid, menthol and phosphatidylcholine.
US12/699,585 1998-02-10 2010-02-03 Method for administering insulin to the buccal region Abandoned US20100203105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/699,585 US20100203105A1 (en) 1998-02-10 2010-02-03 Method for administering insulin to the buccal region

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/021,114 US6017545A (en) 1998-02-10 1998-02-10 Mixed micellar delivery system and method of preparation
US09/216,733 US6231882B1 (en) 1998-02-10 1998-12-21 Mixed micellar delivery system and method of preparation
US09/538,829 US7070799B1 (en) 1998-02-10 2000-03-30 Method for administering insulin to the buccal region
US10/378,371 US7687453B2 (en) 1998-02-10 2003-03-03 Method for administering insulin to the buccal region
US12/699,585 US20100203105A1 (en) 1998-02-10 2010-02-03 Method for administering insulin to the buccal region

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/378,371 Continuation US7687453B2 (en) 1998-02-10 2003-03-03 Method for administering insulin to the buccal region

Publications (1)

Publication Number Publication Date
US20100203105A1 true US20100203105A1 (en) 2010-08-12

Family

ID=29554038

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/538,829 Expired - Fee Related US7070799B1 (en) 1998-02-10 2000-03-30 Method for administering insulin to the buccal region
US10/378,371 Expired - Fee Related US7687453B2 (en) 1998-02-10 2003-03-03 Method for administering insulin to the buccal region
US12/699,585 Abandoned US20100203105A1 (en) 1998-02-10 2010-02-03 Method for administering insulin to the buccal region

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/538,829 Expired - Fee Related US7070799B1 (en) 1998-02-10 2000-03-30 Method for administering insulin to the buccal region
US10/378,371 Expired - Fee Related US7687453B2 (en) 1998-02-10 2003-03-03 Method for administering insulin to the buccal region

Country Status (1)

Country Link
US (3) US7070799B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070799B1 (en) * 1998-02-10 2006-07-04 Generex Pharmaceuticals, Inc. Method for administering insulin to the buccal region
US20020141970A1 (en) * 2001-03-05 2002-10-03 Pettit Dean K. Stable aqueous solutions of granulocyte macrophage colony-stimulating factor
US20060024346A1 (en) * 2004-07-29 2006-02-02 Brody Richard S Stabilization of biologically active proteins with mixtures of polysaccharides and amino acid based compounds
AU2003270330B2 (en) * 2002-09-06 2009-07-30 Alexion Pharmaceuticals, Inc. Method of treatment of asthma using antibodies to complement component C5
US20050271660A1 (en) 2002-09-06 2005-12-08 Alexion Pharmaceuticals, Inc. Nebulization of monoclonal antibodies for treating pulmonary diseases
US9415102B2 (en) 2002-09-06 2016-08-16 Alexion Pharmaceuticals, Inc. High concentration formulations of anti-C5 antibodies
CN101005828B (en) 2004-06-17 2012-01-11 维尔恩公司 Compositions comprising a mucoadhesive protein and an active principle for mucosal delivery of said agents
WO2008118387A2 (en) * 2007-03-23 2008-10-02 Wayne State University Erythrocyte atp-release modulators
CN102770152B (en) 2009-11-25 2016-07-06 阿瑞斯根股份有限公司 The mucosal delivery of peptides
US20120201857A1 (en) * 2010-03-17 2012-08-09 Pankaj Modi Transdermal delivery system for therapeutics
EP2526971A1 (en) 2011-05-25 2012-11-28 ArisGen SA Mucosal delivery of drugs

Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32393A (en) * 1861-05-21 Harrison Williams Stop-motion for drawing-frames
US548706A (en) * 1895-10-29 Fitting for washstands
US2055083A (en) * 1932-07-13 1936-09-22 Winthrop Chem Co Inc Pharmaceutical preparation
US4156719A (en) * 1977-02-28 1979-05-29 Yamanouchi Pharmaceutical Co., Ltd. Compositions for rectal use
US4434159A (en) * 1980-03-31 1984-02-28 Teijin Limited Pharmaceutical composition for intrarectal administration, and suppository prepared therefrom
US4464363A (en) * 1979-12-20 1984-08-07 Merck & Co., Inc. Ajuvants for rectal delivery of drug substances
US4579730A (en) * 1983-05-23 1986-04-01 Hadassah Medical Organization Pharmaceutical compositions containing insulin
US4582820A (en) * 1982-12-23 1986-04-15 Research Corporation Orally administered biologically active peptides and proteins
US4614730A (en) * 1981-10-30 1986-09-30 Novo Industri A/S Stabilized insulin preparations and a process for preparation thereof
US4690952A (en) * 1984-11-26 1987-09-01 Yamanouchi Pharmaceutical Co., Inc. Pharmaceutical compositions for nasal administration comprising calcitonin and an absorption-promoting substance
US4729989A (en) * 1985-06-28 1988-03-08 Merck & Co., Inc. Enhancement of absorption of drugs from gastrointestinal tract using choline ester salts
US4822773A (en) * 1985-06-28 1989-04-18 Merck & Co., Inc. Enhancement of absorption of drugs from gastrointestinal tract using choline ester salts
US4835138A (en) * 1985-08-16 1989-05-30 Merck & Co., Inc. Choline esters as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal cavities
US4849405A (en) * 1984-05-09 1989-07-18 Synthetic Blood Corporation Oral insulin and a method of making the same
US4849227A (en) * 1986-03-21 1989-07-18 Eurasiam Laboratories, Inc. Pharmaceutical compositions
US4900730A (en) * 1981-01-14 1990-02-13 Toyo Jozo Co., Ltd. Preparation which promotes the absorption of peptides
US4948588A (en) * 1984-04-23 1990-08-14 Kao Corporation Percutaneous absorption accelerator and preparation containing same
US4963526A (en) * 1984-05-09 1990-10-16 Synthetic Blood Corporation Oral insulin and a method of making the same
US4963367A (en) * 1984-04-27 1990-10-16 Medaphore, Inc. Drug delivery compositions and methods
US4963556A (en) * 1985-08-16 1990-10-16 Merck & Co., Inc. Choline esters as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal cavities
US4973579A (en) * 1985-06-28 1990-11-27 Merck & Co., Inc. Enhancment of absorption of drugs from gastrointestinal tract using choline ester salts
US5023252A (en) * 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US5049389A (en) * 1988-12-14 1991-09-17 Liposome Technology, Inc. Novel liposome composition for the treatment of interstitial lung diseases
US5053389A (en) * 1986-04-18 1991-10-01 Per Balschmidt Insulin preparation for non-parenteral administration
US5179079A (en) * 1986-12-16 1993-01-12 Novo Nordisk A/S Nasal formulation and intranasal administration therewith
US5200393A (en) * 1989-02-17 1993-04-06 The Liposome Company, Inc. Lipid excipient for nasal delivery and topical application
US5230884A (en) * 1990-09-11 1993-07-27 University Of Wales College Of Cardiff Aerosol formulations including proteins and peptides solubilized in reverse micelles and process for making the aerosol formulations
US5273965A (en) * 1992-07-02 1993-12-28 Cambridge Biotech Corporation Methods for enhancing drug delivery with modified saponins
US5288497A (en) * 1985-05-01 1994-02-22 The University Of Utah Compositions of oral dissolvable medicaments
US5292499A (en) * 1990-09-11 1994-03-08 University Of Wales College Of Cardiff Method of preparing medical aerosol formulations including drug dissolved in reverse micelles
US5362491A (en) * 1989-07-06 1994-11-08 Yutaka Mizushima Modified biologically active protein composition
US5376646A (en) * 1990-01-24 1994-12-27 Hoffmann-La Roche Inc. Topical preparations containing the salt of a cholanic acid and a lipid
US5424289A (en) * 1993-07-30 1995-06-13 Alza Corporation Solid formulations of therapeutic proteins for gastrointestinal delivery
US5447729A (en) * 1994-04-07 1995-09-05 Pharmavene, Inc. Multilamellar drug delivery systems
US5451569A (en) * 1994-04-19 1995-09-19 Hong Kong University Of Science And Technology R & D Corporation Limited Pulmonary drug delivery system
US5506203A (en) * 1993-06-24 1996-04-09 Ab Astra Systemic administration of a therapeutic preparation
US5514670A (en) * 1993-08-13 1996-05-07 Pharmos Corporation Submicron emulsions for delivery of peptides
US5536444A (en) * 1993-07-08 1996-07-16 Asta Medica Aktiengesellschaft Compressed-gas packages using polyoxyethylene glyceryl fatty-acid esters as suspension stabilizers and valve lubricants
US5574017A (en) * 1994-07-05 1996-11-12 Gutheil; William G. Antibacterial agents
US5591713A (en) * 1991-03-12 1997-01-07 Takeda Chemical Industries, Ltd. Water-soluble composition for sustained-release
US5629011A (en) * 1992-02-05 1997-05-13 Danbiosyst Uk Limited Composition for nasal administration
US5633226A (en) * 1991-04-19 1997-05-27 Lds Technologies, Inc. Convertible microemulsion formulations
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals
US5656277A (en) * 1992-06-30 1997-08-12 Monteresearch S.R.L. Nor- and homo- bile acids derivatives as absorption enhancers for medicaments
US5656289A (en) * 1988-09-29 1997-08-12 Patralan Limited Pharmaceutical formulations that have a biologically active hydrophilic phase and a chylomicra-containing hydrophobic phase
US5658878A (en) * 1993-06-24 1997-08-19 Ab Astra Therapeutic preparation for inhalation
US5662932A (en) * 1993-05-18 1997-09-02 Pharmos Corporation Solid fat nanoemulsions
US5663198A (en) * 1993-07-15 1997-09-02 Hoechst Aktiengesellschaft Drug formulations comprising coated, very sparingly water-soluble drugs for inhalational pharmaceutical forms, and process for their preparation
US5665700A (en) * 1990-03-29 1997-09-09 Skua Investments Limited Pharmaceutical formulations
US5672581A (en) * 1993-01-29 1997-09-30 Aradigm Corporation Method of administration of insulin
US5676931A (en) * 1993-12-02 1997-10-14 Abbott Laboratories Aerosol drug formulations for use with non CFC propellants
US5690954A (en) * 1987-05-22 1997-11-25 Danbiosyst Uk Limited Enhanced uptake drug delivery system having microspheres containing an active drug and a bioavailability improving material
US5707641A (en) * 1994-10-13 1998-01-13 Pharmaderm Research & Development Ltd. Formulations comprising therapeutically-active proteins or polypeptides
US5716639A (en) * 1994-02-04 1998-02-10 Scotia Lipidteknik Ab Lipophilic carrier preparations
US5747066A (en) * 1995-03-07 1998-05-05 Hoffmann-La Roche Inc. Mixed micelles
US5747445A (en) * 1993-06-24 1998-05-05 Astra Aktiebolag Therapeutic preparation for inhalation
US5770559A (en) * 1992-10-14 1998-06-23 The Regents Of The University Of Colorado Solubilization of pharmaceutical substances in an organic solvent and preparation of pharmaceutical powders using the same
US5853748A (en) * 1994-08-31 1998-12-29 Cortecs (Uk) Limited Pharmaceutical compositions
US5858398A (en) * 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
US5876721A (en) * 1993-10-06 1999-03-02 Proteus Molecular Design Limited Vaccines
US5898028A (en) * 1997-03-20 1999-04-27 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
US5952008A (en) * 1993-06-24 1999-09-14 Ab Astra Processes for preparing compositions for inhalation
US5985309A (en) * 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US6004575A (en) * 1996-08-01 1999-12-21 Basf Aktiengesellschaft Use of (meth) acrylic acid/maleic acid copolymers for improving mucosal permeability
US6017545A (en) * 1998-02-10 2000-01-25 Modi; Pankaj Mixed micellar delivery system and method of preparation
US6191105B1 (en) * 1993-05-10 2001-02-20 Protein Delivery, Inc. Hydrophilic and lipophilic balanced microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents such as insulin
US6221378B1 (en) * 1998-02-10 2001-04-24 Generex Pharmaceuticals Incorporated Mixed micellar delivery system and method of preparation
US6350458B1 (en) * 1998-02-10 2002-02-26 Generex Pharmaceuticals Incorporated Mixed micellar drug deliver system and method of preparation
US6432383B1 (en) * 2000-03-30 2002-08-13 Generex Pharmaceuticals Incorporated Method for administering insulin
US7070799B1 (en) * 1998-02-10 2006-07-04 Generex Pharmaceuticals, Inc. Method for administering insulin to the buccal region

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1274774A (en) 1985-04-15 1990-10-02 Kenneth S. Su Method for administering insulin
EP0414080B1 (en) * 1989-08-21 1994-02-16 F. Hoffmann-La Roche Ag Non-parenteral pharmaceutical compositions for insulin
CA1340994C (en) 1989-09-21 2000-05-16 Rudolf Edgar Dr. Falk Treatment of conditions and disease
GB9012663D0 (en) 1990-06-07 1990-08-01 Erba Carlo Spa Galenic formulations containing cyclodextrins
IL109350A (en) 1993-05-12 2001-01-28 Genentech Inc Stable liquid compositions of gamma interferon
US6524557B1 (en) 1994-12-22 2003-02-25 Astrazeneca Ab Aerosol formulations of peptides and proteins
CA2306024C (en) 1997-10-01 2011-04-26 Flemington Pharmaceutical Corporation Buccal, polar and non-polar spray or capsule
WO2000047203A1 (en) 1999-02-12 2000-08-17 Mqs, Inc. Formulation and system for intra-oral delivery of pharmaceutical agents

Patent Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US548706A (en) * 1895-10-29 Fitting for washstands
US32393A (en) * 1861-05-21 Harrison Williams Stop-motion for drawing-frames
US2055083A (en) * 1932-07-13 1936-09-22 Winthrop Chem Co Inc Pharmaceutical preparation
US4156719A (en) * 1977-02-28 1979-05-29 Yamanouchi Pharmaceutical Co., Ltd. Compositions for rectal use
US4464363A (en) * 1979-12-20 1984-08-07 Merck & Co., Inc. Ajuvants for rectal delivery of drug substances
US4434159A (en) * 1980-03-31 1984-02-28 Teijin Limited Pharmaceutical composition for intrarectal administration, and suppository prepared therefrom
US4900730A (en) * 1981-01-14 1990-02-13 Toyo Jozo Co., Ltd. Preparation which promotes the absorption of peptides
US4614730A (en) * 1981-10-30 1986-09-30 Novo Industri A/S Stabilized insulin preparations and a process for preparation thereof
US4582820A (en) * 1982-12-23 1986-04-15 Research Corporation Orally administered biologically active peptides and proteins
US4579730A (en) * 1983-05-23 1986-04-01 Hadassah Medical Organization Pharmaceutical compositions containing insulin
US4948588A (en) * 1984-04-23 1990-08-14 Kao Corporation Percutaneous absorption accelerator and preparation containing same
US4963367A (en) * 1984-04-27 1990-10-16 Medaphore, Inc. Drug delivery compositions and methods
US4849405A (en) * 1984-05-09 1989-07-18 Synthetic Blood Corporation Oral insulin and a method of making the same
US4963526A (en) * 1984-05-09 1990-10-16 Synthetic Blood Corporation Oral insulin and a method of making the same
US4690952A (en) * 1984-11-26 1987-09-01 Yamanouchi Pharmaceutical Co., Inc. Pharmaceutical compositions for nasal administration comprising calcitonin and an absorption-promoting substance
US5288497A (en) * 1985-05-01 1994-02-22 The University Of Utah Compositions of oral dissolvable medicaments
US4822773A (en) * 1985-06-28 1989-04-18 Merck & Co., Inc. Enhancement of absorption of drugs from gastrointestinal tract using choline ester salts
US4729989A (en) * 1985-06-28 1988-03-08 Merck & Co., Inc. Enhancement of absorption of drugs from gastrointestinal tract using choline ester salts
US4973579A (en) * 1985-06-28 1990-11-27 Merck & Co., Inc. Enhancment of absorption of drugs from gastrointestinal tract using choline ester salts
US4835138A (en) * 1985-08-16 1989-05-30 Merck & Co., Inc. Choline esters as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal cavities
US4963556A (en) * 1985-08-16 1990-10-16 Merck & Co., Inc. Choline esters as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal cavities
US5023252A (en) * 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US4849227A (en) * 1986-03-21 1989-07-18 Eurasiam Laboratories, Inc. Pharmaceutical compositions
US5053389A (en) * 1986-04-18 1991-10-01 Per Balschmidt Insulin preparation for non-parenteral administration
US5179079A (en) * 1986-12-16 1993-01-12 Novo Nordisk A/S Nasal formulation and intranasal administration therewith
US5690954A (en) * 1987-05-22 1997-11-25 Danbiosyst Uk Limited Enhanced uptake drug delivery system having microspheres containing an active drug and a bioavailability improving material
US5656289A (en) * 1988-09-29 1997-08-12 Patralan Limited Pharmaceutical formulations that have a biologically active hydrophilic phase and a chylomicra-containing hydrophobic phase
US5049389A (en) * 1988-12-14 1991-09-17 Liposome Technology, Inc. Novel liposome composition for the treatment of interstitial lung diseases
US5200393A (en) * 1989-02-17 1993-04-06 The Liposome Company, Inc. Lipid excipient for nasal delivery and topical application
US5362491A (en) * 1989-07-06 1994-11-08 Yutaka Mizushima Modified biologically active protein composition
US5376646A (en) * 1990-01-24 1994-12-27 Hoffmann-La Roche Inc. Topical preparations containing the salt of a cholanic acid and a lipid
US5665700A (en) * 1990-03-29 1997-09-09 Skua Investments Limited Pharmaceutical formulations
US5230884A (en) * 1990-09-11 1993-07-27 University Of Wales College Of Cardiff Aerosol formulations including proteins and peptides solubilized in reverse micelles and process for making the aerosol formulations
US5292499A (en) * 1990-09-11 1994-03-08 University Of Wales College Of Cardiff Method of preparing medical aerosol formulations including drug dissolved in reverse micelles
US5591713A (en) * 1991-03-12 1997-01-07 Takeda Chemical Industries, Ltd. Water-soluble composition for sustained-release
US5633226A (en) * 1991-04-19 1997-05-27 Lds Technologies, Inc. Convertible microemulsion formulations
US5646109A (en) * 1991-04-19 1997-07-08 Lds Technologies, Inc. Convertible microemulsion formulations
US5629011A (en) * 1992-02-05 1997-05-13 Danbiosyst Uk Limited Composition for nasal administration
US5656277A (en) * 1992-06-30 1997-08-12 Monteresearch S.R.L. Nor- and homo- bile acids derivatives as absorption enhancers for medicaments
US5273965A (en) * 1992-07-02 1993-12-28 Cambridge Biotech Corporation Methods for enhancing drug delivery with modified saponins
US5443829A (en) * 1992-07-02 1995-08-22 Cambridge Biotech Corporation Modified saponins isolated from Quillaja saponaria
US5770559A (en) * 1992-10-14 1998-06-23 The Regents Of The University Of Colorado Solubilization of pharmaceutical substances in an organic solvent and preparation of pharmaceutical powders using the same
US5672581A (en) * 1993-01-29 1997-09-30 Aradigm Corporation Method of administration of insulin
US6191105B1 (en) * 1993-05-10 2001-02-20 Protein Delivery, Inc. Hydrophilic and lipophilic balanced microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents such as insulin
US5662932A (en) * 1993-05-18 1997-09-02 Pharmos Corporation Solid fat nanoemulsions
US5952008A (en) * 1993-06-24 1999-09-14 Ab Astra Processes for preparing compositions for inhalation
US5658878A (en) * 1993-06-24 1997-08-19 Ab Astra Therapeutic preparation for inhalation
US5506203A (en) * 1993-06-24 1996-04-09 Ab Astra Systemic administration of a therapeutic preparation
US5506203C1 (en) * 1993-06-24 2001-02-06 Astra Ab Systemic administration of a therapeutic preparation
US5747445A (en) * 1993-06-24 1998-05-05 Astra Aktiebolag Therapeutic preparation for inhalation
US5536444A (en) * 1993-07-08 1996-07-16 Asta Medica Aktiengesellschaft Compressed-gas packages using polyoxyethylene glyceryl fatty-acid esters as suspension stabilizers and valve lubricants
US5663198A (en) * 1993-07-15 1997-09-02 Hoechst Aktiengesellschaft Drug formulations comprising coated, very sparingly water-soluble drugs for inhalational pharmaceutical forms, and process for their preparation
US5424289A (en) * 1993-07-30 1995-06-13 Alza Corporation Solid formulations of therapeutic proteins for gastrointestinal delivery
US5514670A (en) * 1993-08-13 1996-05-07 Pharmos Corporation Submicron emulsions for delivery of peptides
US5876721A (en) * 1993-10-06 1999-03-02 Proteus Molecular Design Limited Vaccines
US5676931A (en) * 1993-12-02 1997-10-14 Abbott Laboratories Aerosol drug formulations for use with non CFC propellants
US5716639A (en) * 1994-02-04 1998-02-10 Scotia Lipidteknik Ab Lipophilic carrier preparations
US5447729A (en) * 1994-04-07 1995-09-05 Pharmavene, Inc. Multilamellar drug delivery systems
US5451569A (en) * 1994-04-19 1995-09-19 Hong Kong University Of Science And Technology R & D Corporation Limited Pulmonary drug delivery system
US5574017A (en) * 1994-07-05 1996-11-12 Gutheil; William G. Antibacterial agents
US5853748A (en) * 1994-08-31 1998-12-29 Cortecs (Uk) Limited Pharmaceutical compositions
US5707641A (en) * 1994-10-13 1998-01-13 Pharmaderm Research & Development Ltd. Formulations comprising therapeutically-active proteins or polypeptides
US5858398A (en) * 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
US5747066A (en) * 1995-03-07 1998-05-05 Hoffmann-La Roche Inc. Mixed micelles
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals
US5985309A (en) * 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US6004575A (en) * 1996-08-01 1999-12-21 Basf Aktiengesellschaft Use of (meth) acrylic acid/maleic acid copolymers for improving mucosal permeability
US5898028A (en) * 1997-03-20 1999-04-27 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
US6017545A (en) * 1998-02-10 2000-01-25 Modi; Pankaj Mixed micellar delivery system and method of preparation
US6221378B1 (en) * 1998-02-10 2001-04-24 Generex Pharmaceuticals Incorporated Mixed micellar delivery system and method of preparation
US6231882B1 (en) * 1998-02-10 2001-05-15 Generex Pharmaceuticals Inc. Mixed micellar delivery system and method of preparation
US6350458B1 (en) * 1998-02-10 2002-02-26 Generex Pharmaceuticals Incorporated Mixed micellar drug deliver system and method of preparation
US7070799B1 (en) * 1998-02-10 2006-07-04 Generex Pharmaceuticals, Inc. Method for administering insulin to the buccal region
US7687453B2 (en) * 1998-02-10 2010-03-30 Generex Pharmaceuticals Incorporated Method for administering insulin to the buccal region
US6432383B1 (en) * 2000-03-30 2002-08-13 Generex Pharmaceuticals Incorporated Method for administering insulin

Also Published As

Publication number Publication date
US7687453B2 (en) 2010-03-30
US7070799B1 (en) 2006-07-04
US20030171259A1 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
US6231882B1 (en) Mixed micellar delivery system and method of preparation
US6221378B1 (en) Mixed micellar delivery system and method of preparation
US6432383B1 (en) Method for administering insulin
US6312665B1 (en) Aerosol formulations for buccal and pulmonary application
US6350458B1 (en) Mixed micellar drug deliver system and method of preparation
US6375975B1 (en) Pharmaceutical compositions for buccal and pulmonary application
US20100203105A1 (en) Method for administering insulin to the buccal region
US6451286B1 (en) Pharmaceutical compositions for buccal and pulmonary administration comprising an alkali metal alkyl sulfate and at least three micelle-forming compounds
US6436367B1 (en) Aerosol formulations for buccal and pulmonary application
CA2494132C (en) Pharmaceutical composition, metered dose dispenser containing same, and use of pharmaceutical composition and metered dose dispenser in administering pharmaceutical agent to oral membranes
WO2001072278A2 (en) Method for administering insulin to the buccal region
EP1338272A1 (en) Aerosol formulations for buccal and pulmonary application comprising chenodeoxycholate or deoxycholate
CA2229286C (en) Mixed micellar delivery system and method of preparation
AU2002301424B2 (en) Mixed micellar pharmaceutical delivery system and method of preparation
AU763251B2 (en) Mixed micellar pharmaceutical delivery system and method for preparation
MXPA00007802A (en) Mixed micellar pharmaceutical delivery system and method of preparation
AU2003259466A1 (en) Methods of administering and enhancing absorption of pharmaceutical agents

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NABRIVA THERAPEUTICS AG, AUSTRIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KREOS CAPITAL IV (UK) LIMITED;REEL/FRAME:037093/0308

Effective date: 20151009