US20100152845A1 - Annuloplasty Device Having Shape-Adjusting Tension Filaments - Google Patents

Annuloplasty Device Having Shape-Adjusting Tension Filaments Download PDF

Info

Publication number
US20100152845A1
US20100152845A1 US12/710,475 US71047510A US2010152845A1 US 20100152845 A1 US20100152845 A1 US 20100152845A1 US 71047510 A US71047510 A US 71047510A US 2010152845 A1 US2010152845 A1 US 2010152845A1
Authority
US
United States
Prior art keywords
mitral valve
annulus
ring
flexible
flexible ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/710,475
Inventor
Eliot Bloom
Nasser Rafiee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Vascular Inc filed Critical Medtronic Vascular Inc
Priority to US12/710,475 priority Critical patent/US20100152845A1/en
Publication of US20100152845A1 publication Critical patent/US20100152845A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus

Definitions

  • This invention relates generally to the treatment of mitral valve regurgitation and particularly to a method and device to improve mitral valve coaptation in a diseased heart.
  • the heart is a four-chambered pump that moves blood efficiently through the vascular system.
  • Blood enters the heart through the vena cava and flows into the right atrium. From the right atrium, blood flows through the tricuspid valve and into the right ventricle, which then contracts and forces blood through the pulmonic valve and into the lungs.
  • Oxygenated blood returns from the lungs and enters the heart through the left atrium and passes through the mitral valve into the left ventricle. The left ventricle contracts and pumps blood through the aortic valve into the aorta and to the vascular system.
  • the mitral valve consists of two leaflets (anterior and posterior) attached to a fibrous ring or annulus.
  • the mitral valve leaflets close during contraction of the left ventricle and prevent blood from flowing back into the left atrium.
  • the mitral valve annulus may become distended causing the leaflets to remain partially open during ventricular contraction and thus allow regurgitation of blood into the left atrium. This results in reduced ejection volume from the left ventricle, causing the left ventricle to compensate with a larger stroke volume.
  • the increased workload eventually results in dilation and hypertrophy of the left ventricle, further enlarging and distorting the shape of the mitral valve. If left untreated, the condition may result in cardiac insufficiency, ventricular failure, and ultimately death.
  • Valve replacement involves an open-heart surgical procedure in which the patient's mitral valve is removed and replaced with an artificial valve. This is a complex, invasive surgical procedure with the potential for many complications and a long recovery period.
  • Mitral valve repair includes a variety of procedures to repair or reshape the leaflets to improve closure of the valve during ventricular contraction. If the mitral valve annulus has become distended, a frequent repair procedure involves implanting an annuloplasty ring on the mitral valve annulus.
  • the annuloplasty ring generally has a smaller diameter than the annulus, and when sutured to the annulus the annuloplasty ring draws the annulus into a smaller configuration, bringing the mitral valve leaflets closer together, and allowing improved closure during ventricular contraction.
  • Annuloplasty rings may be rigid, flexible or a combination, having both rigid and flexible segments.
  • Rigid annuloplasty rings have the disadvantage of causing the mitral valve annulus to be rigid and unable to flex in response to the contractions of the ventricle, thus inhibiting the normal, three dimensional movement of the mitral valve that is required for it to function optimally.
  • Flexible annuloplasty rings are frequently made of Dacron® fabric and must be sewn to the annular ring with a line of sutures. This eventually leads to scar tissue formation and loss of flexibility and function of the mitral valve.
  • combination rings must generally be sutured in place and also cause scar tissue formation and loss of mitral valve flexibility and function.
  • Another approach to treating mitral valve regurgitation requires a flexible elongated device that is inserted into the coronary sinus and adapts to the shape of the coronary sinus. The device then undergoes a change that causes it to assume a reduced radius of curvature and, as a result, causes the radius of curvature of the coronary sinus and the circumference of the mitral annulus to be reduced. While likely to be effective for modest changes in the size or shape of the mitral annulus, this device may cause significant tissue compression in patients requiring a larger change in the configuration of the mitral annulus. Alternatively, the coronary sinus in a particular individual may not wrap around the heart far enough to allow effective encircling of the mitral valve, making this treatment ineffective.
  • a device in the coronary sinus may result in formation and breaking off of thrombus that may pass into the right atrium, right ventricle, and ultimately the lungs causing a pulmonary embolism.
  • Another disadvantage is that the coronary sinus is typically used for placement of a pacing lead, which may be precluded with the placement of the prosthesis in the coronary sinus.
  • One aspect of the invention provides a system for treating mitral valve regurgitation comprising a delivery catheter and a tensioning device.
  • the tensioning device comprises a flexible ring having a plurality of anchoring members and a tensioning filament attached to the flexible ring.
  • the tensioning device is deployed from the catheter adjacent to the mitral valve.
  • the anchoring members are fixed to the annulus of the mitral valve, and the tensioning filament is adjusted so that the shape of the annulus is changed in order to achieve coaptation of the mitral valve leaflets.
  • Another aspect of the invention provides a method for treating mitral valve regurgitation and includes preloading a tensioning device into an internal lumen of a delivery catheter.
  • the tensioning device comprises a flexible ring, a plurality of anchoring members attached to the flexible ring, and a tensioning filament attached to the flexible ring.
  • the method further comprises deploying the tensioning device from the catheter adjacent to the mitral valve, positioning the flexible ring against the annulus of the mitral valve, and embedding the anchoring members into the annulus.
  • the lengths of segments of the tensioning filament are adjusted, causing the shape of the flexible ring to change. Altering the shape of the flexible ring causes the shape of the annulus to change, thus reducing regurgitation through the mitral valve.
  • a tensioning device for treating mitral valve regurgitation comprising a flexible ring, a plurality of anchoring members attached to the ring, and a tensioning filament, also attached to the flexible ring.
  • the tensioning device may be deployed proximate the mitral valve.
  • FIG. 1 is a cross sectional schematic view of a heart showing the location of the mitral valve
  • FIG. 2 is a view of the tensioning device having a flexible ring in a D-shaped configuration, in accordance with one aspect of the invention
  • FIG. 3 shows a cleat portion of the tensioning device, in accordance with one aspect of the invention
  • FIG. 4 portrays the flexible ring of the tensioning device in a D-shaped configuration, in accordance with one aspect of the invention
  • FIG. 5 portrays the flexible ring of the tensioning device in an elongated configuration, in accordance with one aspect of the invention
  • FIG. 6 is a side view of a tensioning device in an elongated configuration inside the distal portion of a delivery catheter, in accordance with one aspect of the invention.
  • FIG. 7 is a schematic view illustrating the placement of the tensioning device adjacent to the mitral valve, in accordance with one aspect of the invention.
  • FIG. 8 is a schematic view illustrating the tensioning device placed adjacent to the mitral valve, in accordance with one aspect of the invention.
  • FIG. 9 is a flow diagram of a method of treating mitral valve regurgitation in accordance with one aspect of the invention.
  • FIG. 1 shows a cross-sectional view of heart 1 having tricuspid valve 2 and tricuspid valve annulus 3 .
  • Mitral valve 4 is adjacent mitral valve annulus 5 .
  • Mitral valve 4 is a bicuspid valve having anterior cusp 7 and posterior cusp 6 .
  • Anterior cusp 7 and posterior cusp 6 are often referred to, respectively, as the anterior and posterior leaflets.
  • FIG. 2 portrays a tensioning device 100 for treating mitral valve regurgitation.
  • Tensioning device 100 includes annuloplasty ring 102 .
  • Annuloplasty ring 102 is made of a flexible, biocompatible material that has “shape memory” so that ring 102 can be extended into an elongated configuration and inserted into a delivery catheter, but will re-assume its original shape and dimensions when deployed adjacent to the mitral valve annulus 5 .
  • flexible ring 102 comprises nitinol, a biocompatible material that gives the ring the needed flexibility and shape memory. Fabrication of annuloplasty ring 102 may include chemical machining, forming or heat setting of nitinol.
  • annuloplasty ring 102 should be hemocompatible, and cause minimal blood clotting or hemolysis when exposed to flowing blood.
  • annuloplasty ring 102 comprises a flexible, nitinol ring with a Dacron® cover.
  • Dacron® a polyester fiber (E.I. Du Pont De Nemours & CO., Inc.) is a material known in the art to have the necessary hemocompatible properties and may be used in the cardiovascular system.
  • annuloplasty ring 102 The size and shape of annuloplasty ring 102 are selected to fit the configuration of the mitral valve annulus 5 .
  • the annuloplasty ring 102 is shaped like the letter D, and has a small gap 104 in the straight portion.
  • a plurality of anchoring members 106 are disposed about flexible annuloplasty ring 102 and are used to attach annuloplasty ring 102 to the mitral valve annulus.
  • anchoring members 106 are barbs or prongs, and are formed as part of flexible D-shaped ring 102 .
  • Anchoring members 106 are oriented at an angle of 10-45 degrees in relation to the plane of flexible ring 102 so that they will embed in the annulus when ring 102 is positioned against the surface of the mitral valve annulus.
  • a plurality of cleats 108 is disposed about flexible ring 102 .
  • Each cleat is paired with an anchoring member 106 and each cleat/anchoring member pair is located at the same planar point of flexible ring 102 .
  • cleats 108 are formed as part of flexible D-shaped ring 102 .
  • Each cleat 108 has either one or two through holes 110 there through ( FIG. 3 ).
  • Holes 110 may be approximately 0.05 to 0.2 mm in diameter and may be counter-bored.
  • Filament 112 is laced through holes 110 and spans flexible ring 102 .
  • Filament 112 may be made of metal wire or polymer, and may be a monofilament or a twisted or braided fiber. Holes 110 allow filament 112 to be adjusted to change the length of the segment of filament 112 spanning flexible ring 102 between each pair of cleats 108 . Each segment of filament 112 may be adjusted by pulling on filament 112 at the outside edge of cleat 108 at the end of that segment of filament 112 , and drawing it through the adjacent hole 110 . Once filament 112 is moved through selected hole 110 in one direction, flexible lip 202 surrounding selected hole 110 grips filament 112 and prevents it from moving. Thus, each segment of filament 112 spanning the flexible ring 102 may be adjusted individually and placed under a different amount of tension.
  • Flexible ring 102 can be transformed from its D-shaped configuration ( FIG. 4 ) into an elongated, linear configuration ( FIG. 5 ).
  • the two ends 304 , 306 of flexible ring 102 may be moved in opposite directions until tensioning device 100 is in an elongated, essentially linear shape.
  • flexible ring 102 comprises a shape memory material such as nitinol, tensioning device 100 will spontaneously revert to an unconstrained, D-shaped ring configuration when free to do so.
  • FIG. 6 is a side view of the distal portion of system 400 for treating mitral valve regurgitation using minimally invasive surgical techniques.
  • Flexible tensioning device 100 is contained within a sheath 402 forming the distal portion of delivery catheter 408 .
  • delivery catheter 402 is flexible and configured so that it can be inserted into the cardiovascular system of a patient.
  • catheters are well known in the art and typically are approximately 12 French in diameter, and are made of flexible, biocompatible polymeric materials such as polyurethane, polyethylene, nylon and polytetrafluoroethylene (PTFE).
  • Flexible annuloplasty ring 102 of tensioning device 100 is opened to its elongated configuration ( FIG. 5 ), and placed within the lumen of catheter 408 near catheter distal end 404 .
  • a deployment device such as flexible rod 406 that is used to deploy tensioning device 100 by pushing it from catheter distal tip 404 .
  • flexible rod 406 may be withdrawn from catheter 408 .
  • the interior surface of catheter 408 is coated with a lubricious material such as silicone, polytetrafluroethylene (PTFE), or a hydrophilic coating. The lubricious interior surface of catheter 408 facilitates the longitudinal movement of flexible rod 406 and deployment of tensioning device 100 .
  • transeptal wall 504 between right atrium 502 and left atrium 506 is perforated according to well-established techniques.
  • Delivery catheter 400 containing tensioning device 100 may be inserted into the subclavian vein, through the superior vena cava, and into right atrium 502 . Then, the distal end of delivery catheter 400 is advanced through the septal perforation, into left atrium 506 and placed in proximity to annulus 510 of mitral valve 508 .
  • the placement procedure is performed using fluoroscopic or echocardiographic guidance.
  • FIG. 9 is a flowchart illustrating method 900 for treating mitral valve regurgitation, in accordance with one aspect of the invention.
  • the distal tip of a delivery catheter containing the flexible annuloplasty ring is placed in the left atrium adjacent to the mitral valve (Block 902 ).
  • the catheter 700 is inserted into the vascular system of the patient, through the right atrium, and into the left atrium, adjacent to the mitral valve annulus.
  • the tensioning device is deployed from the catheter (Block 904 ).
  • the flexible tip of the delivery catheter is moved along the surface of the annular ring, and used to direct the placement of the tensioning device.
  • a deployment device such as a flexible rod within the catheter is used to deploy the ring by pushing it from the distal tip of the catheter and laying the flexible ring along the mitral valve annulus.
  • the D-shaped ring is positioned so that the straight portion is disposed on the posterior annulus.
  • the tensioning device will automatically assume a D-shaped configuration when it is pushed from the catheter, and lays on the surface of the annulus, with the barbs against the surface of the annulus.
  • an inflatable balloon is then extended from the distal tip of the delivery catheter immediately adjacent to the top of the D-shaped ring. The balloon is inflated to push the flexible ring against the annular surface, causing the barbs to be embedded in the valve annulus and anchor the tensioning device in place (Block 906 ).
  • each segment of the tension filament that spans the flexible ring is adjusted so that force vectors are exerted on the mitral valve annulus (Block 908 ).
  • the flexible rod used to deploy the tensioning device is withdrawn from the catheter, forceps are advanced through the catheter and the tip of the forceps is placed adjacent the mitral valve annulus.
  • each segment of the tensioning filament is adjusted by using the forceps to grasp the filament at the cleat surface facing the outside of the ring at the ends of the filament segment that is to be adjusted. The filament is then pulled through the hole in that cleat.
  • FIG. 8 illustrates a schematic view of the tensioning device 100 placed adjacent to the mitral valve in accordance with method 900 .

Abstract

A system for treating mitral valve regurgitation includes a tensioning device having a flexible annuloplasty ring, a plurality of anchoring members and a tensioning filament attached to the flexible ring. One embodiment of the invention includes a method for attaching a flexible annuloplasty ring to the annulus of a mitral valve, and adjusting the lengths of segments of the tension filament attached to the flexible ring in order to exert force vectors on the annulus, thereby reshaping the mitral valve annulus so that the anterior and posterior leaflets of the mitral valve close completely during ventricular contraction.

Description

    RELATED APPLICATIONS
  • This application is a Division of and claims the benefit of U.S. patent application Ser. No. 11/247,724 filed Oct. 11, 2005. The disclosures of which are herein incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • This invention relates generally to the treatment of mitral valve regurgitation and particularly to a method and device to improve mitral valve coaptation in a diseased heart.
  • BACKGROUND
  • The heart is a four-chambered pump that moves blood efficiently through the vascular system. Blood enters the heart through the vena cava and flows into the right atrium. From the right atrium, blood flows through the tricuspid valve and into the right ventricle, which then contracts and forces blood through the pulmonic valve and into the lungs. Oxygenated blood returns from the lungs and enters the heart through the left atrium and passes through the mitral valve into the left ventricle. The left ventricle contracts and pumps blood through the aortic valve into the aorta and to the vascular system.
  • The mitral valve consists of two leaflets (anterior and posterior) attached to a fibrous ring or annulus. In a healthy heart, the mitral valve leaflets close during contraction of the left ventricle and prevent blood from flowing back into the left atrium. Due to various cardiac diseases, however, the mitral valve annulus may become distended causing the leaflets to remain partially open during ventricular contraction and thus allow regurgitation of blood into the left atrium. This results in reduced ejection volume from the left ventricle, causing the left ventricle to compensate with a larger stroke volume. However, the increased workload eventually results in dilation and hypertrophy of the left ventricle, further enlarging and distorting the shape of the mitral valve. If left untreated, the condition may result in cardiac insufficiency, ventricular failure, and ultimately death.
  • It is common medical practice to treat mitral valve regurgitation by either valve replacement or repair. Valve replacement involves an open-heart surgical procedure in which the patient's mitral valve is removed and replaced with an artificial valve. This is a complex, invasive surgical procedure with the potential for many complications and a long recovery period.
  • Mitral valve repair includes a variety of procedures to repair or reshape the leaflets to improve closure of the valve during ventricular contraction. If the mitral valve annulus has become distended, a frequent repair procedure involves implanting an annuloplasty ring on the mitral valve annulus. The annuloplasty ring generally has a smaller diameter than the annulus, and when sutured to the annulus the annuloplasty ring draws the annulus into a smaller configuration, bringing the mitral valve leaflets closer together, and allowing improved closure during ventricular contraction. Annuloplasty rings may be rigid, flexible or a combination, having both rigid and flexible segments. Rigid annuloplasty rings have the disadvantage of causing the mitral valve annulus to be rigid and unable to flex in response to the contractions of the ventricle, thus inhibiting the normal, three dimensional movement of the mitral valve that is required for it to function optimally. Flexible annuloplasty rings are frequently made of Dacron® fabric and must be sewn to the annular ring with a line of sutures. This eventually leads to scar tissue formation and loss of flexibility and function of the mitral valve. Similarly, combination rings must generally be sutured in place and also cause scar tissue formation and loss of mitral valve flexibility and function.
  • Another approach to treating mitral valve regurgitation requires a flexible elongated device that is inserted into the coronary sinus and adapts to the shape of the coronary sinus. The device then undergoes a change that causes it to assume a reduced radius of curvature and, as a result, causes the radius of curvature of the coronary sinus and the circumference of the mitral annulus to be reduced. While likely to be effective for modest changes in the size or shape of the mitral annulus, this device may cause significant tissue compression in patients requiring a larger change in the configuration of the mitral annulus. Alternatively, the coronary sinus in a particular individual may not wrap around the heart far enough to allow effective encircling of the mitral valve, making this treatment ineffective. Furthermore, leaving a device in the coronary sinus may result in formation and breaking off of thrombus that may pass into the right atrium, right ventricle, and ultimately the lungs causing a pulmonary embolism. Another disadvantage is that the coronary sinus is typically used for placement of a pacing lead, which may be precluded with the placement of the prosthesis in the coronary sinus.
  • It would be desirable, therefore to provide a method and device for reducing mitral valve regurgitation that would use minimally invasive surgical techniques, but would overcome the limitations and disadvantages inherent in the devices described above.
  • BRIEF SUMMARY OF THE INVENTION
  • One aspect of the invention provides a system for treating mitral valve regurgitation comprising a delivery catheter and a tensioning device. The tensioning device comprises a flexible ring having a plurality of anchoring members and a tensioning filament attached to the flexible ring. The tensioning device is deployed from the catheter adjacent to the mitral valve. The anchoring members are fixed to the annulus of the mitral valve, and the tensioning filament is adjusted so that the shape of the annulus is changed in order to achieve coaptation of the mitral valve leaflets.
  • Another aspect of the invention provides a method for treating mitral valve regurgitation and includes preloading a tensioning device into an internal lumen of a delivery catheter. The tensioning device comprises a flexible ring, a plurality of anchoring members attached to the flexible ring, and a tensioning filament attached to the flexible ring. The method further comprises deploying the tensioning device from the catheter adjacent to the mitral valve, positioning the flexible ring against the annulus of the mitral valve, and embedding the anchoring members into the annulus. Next, the lengths of segments of the tensioning filament are adjusted, causing the shape of the flexible ring to change. Altering the shape of the flexible ring causes the shape of the annulus to change, thus reducing regurgitation through the mitral valve.
  • Another aspect of the invention provides a tensioning device for treating mitral valve regurgitation comprising a flexible ring, a plurality of anchoring members attached to the ring, and a tensioning filament, also attached to the flexible ring. Using a catheter, the tensioning device may be deployed proximate the mitral valve. When the anchoring members are fixed to the annulus of the mitral valve and the tensioning filament is adjusted, the shape of the annulus is changed.
  • The present invention is illustrated by the accompanying drawings of various embodiments and the detailed description given below. The drawings should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof. The drawings are not to scale. The foregoing aspects and other attendant advantages of the present invention will become more readily appreciated by the detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a cross sectional schematic view of a heart showing the location of the mitral valve;
  • FIG. 2 is a view of the tensioning device having a flexible ring in a D-shaped configuration, in accordance with one aspect of the invention;
  • FIG. 3 shows a cleat portion of the tensioning device, in accordance with one aspect of the invention;
  • FIG. 4 portrays the flexible ring of the tensioning device in a D-shaped configuration, in accordance with one aspect of the invention;
  • FIG. 5 portrays the flexible ring of the tensioning device in an elongated configuration, in accordance with one aspect of the invention;
  • FIG. 6 is a side view of a tensioning device in an elongated configuration inside the distal portion of a delivery catheter, in accordance with one aspect of the invention;
  • FIG. 7 is a schematic view illustrating the placement of the tensioning device adjacent to the mitral valve, in accordance with one aspect of the invention;
  • FIG. 8 is a schematic view illustrating the tensioning device placed adjacent to the mitral valve, in accordance with one aspect of the invention; and
  • FIG. 9 is a flow diagram of a method of treating mitral valve regurgitation in accordance with one aspect of the invention.
  • DETAILED DESCRIPTION
  • Throughout this specification, like numbers refer to like structures.
  • Referring to the drawings, FIG. 1 shows a cross-sectional view of heart 1 having tricuspid valve 2 and tricuspid valve annulus 3. Mitral valve 4 is adjacent mitral valve annulus 5. Mitral valve 4 is a bicuspid valve having anterior cusp 7 and posterior cusp 6. Anterior cusp 7 and posterior cusp 6 are often referred to, respectively, as the anterior and posterior leaflets.
  • Referring to the drawings, FIG. 2 portrays a tensioning device 100 for treating mitral valve regurgitation. Tensioning device 100 includes annuloplasty ring 102. Annuloplasty ring 102 is made of a flexible, biocompatible material that has “shape memory” so that ring 102 can be extended into an elongated configuration and inserted into a delivery catheter, but will re-assume its original shape and dimensions when deployed adjacent to the mitral valve annulus 5. In one embodiment of the invention, flexible ring 102 comprises nitinol, a biocompatible material that gives the ring the needed flexibility and shape memory. Fabrication of annuloplasty ring 102 may include chemical machining, forming or heat setting of nitinol. In addition, the surface of annuloplasty ring 102 should be hemocompatible, and cause minimal blood clotting or hemolysis when exposed to flowing blood. In one embodiment of the invention, annuloplasty ring 102 comprises a flexible, nitinol ring with a Dacron® cover. Dacron®, a polyester fiber (E.I. Du Pont De Nemours & CO., Inc.) is a material known in the art to have the necessary hemocompatible properties and may be used in the cardiovascular system.
  • The size and shape of annuloplasty ring 102 are selected to fit the configuration of the mitral valve annulus 5. In one embodiment of the invention, the annuloplasty ring 102 is shaped like the letter D, and has a small gap 104 in the straight portion.
  • A plurality of anchoring members 106 are disposed about flexible annuloplasty ring 102 and are used to attach annuloplasty ring 102 to the mitral valve annulus. In one embodiment of the invention, anchoring members 106 are barbs or prongs, and are formed as part of flexible D-shaped ring 102. Anchoring members 106 are oriented at an angle of 10-45 degrees in relation to the plane of flexible ring 102 so that they will embed in the annulus when ring 102 is positioned against the surface of the mitral valve annulus.
  • A plurality of cleats 108 is disposed about flexible ring 102. Each cleat is paired with an anchoring member 106 and each cleat/anchoring member pair is located at the same planar point of flexible ring 102. In one embodiment of the invention, cleats 108 are formed as part of flexible D-shaped ring 102. Each cleat 108 has either one or two through holes 110 there through (FIG. 3). Holes 110 may be approximately 0.05 to 0.2 mm in diameter and may be counter-bored. Filament 112 is laced through holes 110 and spans flexible ring 102. Filament 112 may be made of metal wire or polymer, and may be a monofilament or a twisted or braided fiber. Holes 110 allow filament 112 to be adjusted to change the length of the segment of filament 112 spanning flexible ring 102 between each pair of cleats 108. Each segment of filament 112 may be adjusted by pulling on filament 112 at the outside edge of cleat 108 at the end of that segment of filament 112, and drawing it through the adjacent hole 110. Once filament 112 is moved through selected hole 110 in one direction, flexible lip 202 surrounding selected hole 110 grips filament 112 and prevents it from moving. Thus, each segment of filament 112 spanning the flexible ring 102 may be adjusted individually and placed under a different amount of tension. As each segment of filament 112 is adjusted, force vectors resulting from the pull on two adjacent segments of filament 112 are exerted on flexible ring 102, and cause the shape of flexible ring 102 to change. The direction and magnitude of the force vectors exerted at each cleat 108 are determined by adjusting the segment of filament 112 that extends through each cleat 108. Because flexible ring 102 is fastened to the annulus of the mitral valve, the annulus is drawn into a configuration similar to that of flexible ring 102. Consequently, the shape of the mitral valve annulus is altered by the force vectors exerted at each cleat 108 on both flexible ring 102 and the annulus. The force vectors are selected to change the configuration of the annulus as needed in order to achieve coaptation of the mitral valve leaflets.
  • Flexible ring 102 can be transformed from its D-shaped configuration (FIG. 4) into an elongated, linear configuration (FIG. 5). The two ends 304, 306 of flexible ring 102 may be moved in opposite directions until tensioning device 100 is in an elongated, essentially linear shape. Because flexible ring 102 comprises a shape memory material such as nitinol, tensioning device 100 will spontaneously revert to an unconstrained, D-shaped ring configuration when free to do so.
  • FIG. 6 is a side view of the distal portion of system 400 for treating mitral valve regurgitation using minimally invasive surgical techniques. Flexible tensioning device 100 is contained within a sheath 402 forming the distal portion of delivery catheter 408. In one embodiment of the invention, delivery catheter 402 is flexible and configured so that it can be inserted into the cardiovascular system of a patient. Such catheters are well known in the art and typically are approximately 12 French in diameter, and are made of flexible, biocompatible polymeric materials such as polyurethane, polyethylene, nylon and polytetrafluoroethylene (PTFE). Flexible annuloplasty ring 102 of tensioning device 100 is opened to its elongated configuration (FIG. 5), and placed within the lumen of catheter 408 near catheter distal end 404. Within the lumen of catheter 408, and proximal to tensioning device 100 is a deployment device, such as flexible rod 406 that is used to deploy tensioning device 100 by pushing it from catheter distal tip 404. After tensioning device 100 is deployed, flexible rod 406 may be withdrawn from catheter 408. In one embodiment of the invention, the interior surface of catheter 408 is coated with a lubricious material such as silicone, polytetrafluroethylene (PTFE), or a hydrophilic coating. The lubricious interior surface of catheter 408 facilitates the longitudinal movement of flexible rod 406 and deployment of tensioning device 100.
  • To deliver tensioning device 100 adjacent to the mitral valve (FIG. 7), transeptal wall 504 between right atrium 502 and left atrium 506 is perforated according to well-established techniques. Delivery catheter 400 containing tensioning device 100 may be inserted into the subclavian vein, through the superior vena cava, and into right atrium 502. Then, the distal end of delivery catheter 400 is advanced through the septal perforation, into left atrium 506 and placed in proximity to annulus 510 of mitral valve 508. In one embodiment of the invention, the placement procedure is performed using fluoroscopic or echocardiographic guidance.
  • FIG. 9 is a flowchart illustrating method 900 for treating mitral valve regurgitation, in accordance with one aspect of the invention. The distal tip of a delivery catheter containing the flexible annuloplasty ring is placed in the left atrium adjacent to the mitral valve (Block 902). As shown in FIG. 7, the catheter 700 is inserted into the vascular system of the patient, through the right atrium, and into the left atrium, adjacent to the mitral valve annulus. Next, the tensioning device is deployed from the catheter (Block 904). The flexible tip of the delivery catheter is moved along the surface of the annular ring, and used to direct the placement of the tensioning device. At the same time, a deployment device, such as a flexible rod within the catheter is used to deploy the ring by pushing it from the distal tip of the catheter and laying the flexible ring along the mitral valve annulus. The D-shaped ring is positioned so that the straight portion is disposed on the posterior annulus. The tensioning device will automatically assume a D-shaped configuration when it is pushed from the catheter, and lays on the surface of the annulus, with the barbs against the surface of the annulus. In one embodiment of the invention, an inflatable balloon is then extended from the distal tip of the delivery catheter immediately adjacent to the top of the D-shaped ring. The balloon is inflated to push the flexible ring against the annular surface, causing the barbs to be embedded in the valve annulus and anchor the tensioning device in place (Block 906).
  • Once the flexible ring is secured to the valve annulus by the anchoring barbs, the length of each segment of the tension filament that spans the flexible ring is adjusted so that force vectors are exerted on the mitral valve annulus (Block 908). In one embodiment of the invention, the flexible rod used to deploy the tensioning device is withdrawn from the catheter, forceps are advanced through the catheter and the tip of the forceps is placed adjacent the mitral valve annulus. Next, each segment of the tensioning filament is adjusted by using the forceps to grasp the filament at the cleat surface facing the outside of the ring at the ends of the filament segment that is to be adjusted. The filament is then pulled through the hole in that cleat. When released, the newly adjusted length of each filament segment is fixed in place by the inner lip of the hole(s) through the cleat at each end of the segment. Because the flexible ring is securely fastened to the annular ring of the mitral valve, the shape and diameter of the annular ring will also be changed by the force vectors exerted on it (Block 910). The magnitude and direction of the force vectors can be selected so that force is exerted on the valve annulus only where it is needed to reshape the mitral valve annulus so that the anterior and posterior leaflets close during ventricular contraction. Improvement in the valve closure can be evaluated by checking for decreased pressure in the left atrium. Finally, the delivery catheter is withdrawn from the body of the patient. FIG. 8 illustrates a schematic view of the tensioning device 100 placed adjacent to the mitral valve in accordance with method 900.
  • While the invention has been described with reference to particular embodiments, it will be understood by one skilled in the art that variations and modifications may be made in form and detail without departing from the spirit and scope of the invention.

Claims (8)

1-13. (canceled)
14. A tensioning device for treating mitral valve regurgitation comprising:
a flexible ring, a plurality of anchoring members disposed about the flexible ring, and a tensioning filament attached to the flexible ring;
wherein when the tensioning device is preloaded into a catheter, and delivered proximate the mitral valve, the tensioning device is deployed, the anchoring members are embedded into an annulus of the mitral valve and the tensioning filament is adjusted, the shape of the annulus is changed.
15. The device of claim 14 wherein the flexible ring has a D-shaped planar configuration and a constrained configuration.
16. The device of claim 14 wherein the anchoring members are barbs positioned between 10 and 45 degrees to the plane of the flexible ring.
17. The device of claim 16 further comprising a series of cleats disposed about the flexible ring wherein each cleat is paired with a barb and each cleat/barb pair is located at the same planar point on the flexible ring.
18. The device of claim 17 wherein the tensioning filament is slidably attached to each cleat.
19. The device of claim 18 wherein when the tensioning filament is adjusted at each cleat, force vectors are exerted on the mitral annulus and cause the shape of the mitral annulus to change.
20. The device of claim 17 wherein the tensioning filament is attached to each cleat using at least one hole through the cleat.
US12/710,475 2005-10-11 2010-02-23 Annuloplasty Device Having Shape-Adjusting Tension Filaments Abandoned US20100152845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/710,475 US20100152845A1 (en) 2005-10-11 2010-02-23 Annuloplasty Device Having Shape-Adjusting Tension Filaments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/247,724 US7695510B2 (en) 2005-10-11 2005-10-11 Annuloplasty device having shape-adjusting tension filaments
US12/710,475 US20100152845A1 (en) 2005-10-11 2010-02-23 Annuloplasty Device Having Shape-Adjusting Tension Filaments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/247,724 Division US7695510B2 (en) 2005-10-11 2005-10-11 Annuloplasty device having shape-adjusting tension filaments

Publications (1)

Publication Number Publication Date
US20100152845A1 true US20100152845A1 (en) 2010-06-17

Family

ID=37911859

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/247,724 Active 2028-06-23 US7695510B2 (en) 2005-10-11 2005-10-11 Annuloplasty device having shape-adjusting tension filaments
US12/710,475 Abandoned US20100152845A1 (en) 2005-10-11 2010-02-23 Annuloplasty Device Having Shape-Adjusting Tension Filaments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/247,724 Active 2028-06-23 US7695510B2 (en) 2005-10-11 2005-10-11 Annuloplasty device having shape-adjusting tension filaments

Country Status (1)

Country Link
US (2) US7695510B2 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106245A1 (en) * 2009-10-29 2011-05-05 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US20130116780A1 (en) * 2011-11-04 2013-05-09 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
CN104000671A (en) * 2013-02-27 2014-08-27 金仕生物科技(常熟)有限公司 Mitral valve forming ring
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US9561104B2 (en) 2009-02-17 2017-02-07 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9913706B2 (en) 2014-07-17 2018-03-13 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US10258466B2 (en) 2015-02-13 2019-04-16 Millipede, Inc. Valve replacement using moveable restrains and angled struts
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US10973662B2 (en) 2016-05-16 2021-04-13 Elixir Medical Corporation Methods and devices for heart valve repair
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244555A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
US20080188936A1 (en) * 2007-02-02 2008-08-07 Tornier, Inc. System and method for repairing tendons and ligaments
BRPI0721250A2 (en) * 2007-02-15 2013-01-15 Roberto Erminio Parravicini annulus mitral annulus
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US8784483B2 (en) 2007-11-19 2014-07-22 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
ES2338508B1 (en) * 2008-01-21 2011-01-03 Jose Manuel Bernal Marco PROTECTIVE RING FOR CARDIAC SURGERY PEFECTED.
US8795352B2 (en) * 2008-04-15 2014-08-05 Medtronic Vascular, Inc. Devices and methods for treating valvular regurgitation
US7972370B2 (en) * 2008-04-24 2011-07-05 Medtronic Vascular, Inc. Stent graft system and method of use
US20110288637A1 (en) * 2009-02-11 2011-11-24 De Marchena Eduardo Percutaneous Mitral Annular Stitch to Decrease Mitral Regurgitation
EP2509538B1 (en) 2009-12-08 2017-09-20 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CN105658178B (en) 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 Feature is complied with thrombus management and structure for prosthetic heart valve
CA2919379C (en) 2013-08-01 2021-03-30 Tendyne Holdings, Inc. Epicardial anchor devices and methods
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
JP6554094B2 (en) 2013-10-28 2019-07-31 テンダイン ホールディングス,インコーポレイテッド Prosthetic heart valve and system and method for delivering an artificial heart valve
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
AU2016215197B2 (en) 2015-02-05 2020-01-02 Tendyne Holdings Inc. Expandable epicardial pads and devices and methods for their delivery
EP4070763A1 (en) 2015-04-16 2022-10-12 Tendyne Holdings, Inc. Apparatus for retrieval of transcathter prosthetic valves
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
CN113143539A (en) * 2015-12-10 2021-07-23 姆维亚克斯股份有限公司 System for reshaping a heart valve annulus
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US20170340443A1 (en) * 2016-05-24 2017-11-30 Edwards Lifesciences Corporation Posterior mitral valve leaflet approximation
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
WO2020198259A1 (en) 2019-03-25 2020-10-01 Laminar, Inc. Devices and systems for treating the left atrial appendage
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
WO2022142784A1 (en) * 2020-12-29 2022-07-07 杭州德晋医疗科技有限公司 Valvuloplasty ring delivery apparatus and annuloplasty system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030144732A1 (en) * 2000-10-05 2003-07-31 Cosgrove Delos M. Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US20040260393A1 (en) * 2000-09-20 2004-12-23 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20050004668A1 (en) * 2003-07-02 2005-01-06 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
US20050143811A1 (en) * 2003-12-02 2005-06-30 Fidel Realyvasquez Methods and apparatus for mitral valve repair
US7044905B2 (en) * 2000-03-21 2006-05-16 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044905B2 (en) * 2000-03-21 2006-05-16 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US20040260393A1 (en) * 2000-09-20 2004-12-23 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20030144732A1 (en) * 2000-10-05 2003-07-31 Cosgrove Delos M. Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US20050004668A1 (en) * 2003-07-02 2005-01-06 Flexcor, Inc. Annuloplasty rings and methods for repairing cardiac valves
US20050143811A1 (en) * 2003-12-02 2005-06-30 Fidel Realyvasquez Methods and apparatus for mitral valve repair

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US10561498B2 (en) 2005-03-17 2020-02-18 Valtech Cardio, Ltd. Mitral valve treatment techniques
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US9872769B2 (en) 2006-12-05 2018-01-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US10363137B2 (en) 2006-12-05 2019-07-30 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9351830B2 (en) 2006-12-05 2016-05-31 Valtech Cardio, Ltd. Implant and anchor placement
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10357366B2 (en) 2006-12-05 2019-07-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US9713530B2 (en) 2008-12-22 2017-07-25 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US9636224B2 (en) 2008-12-22 2017-05-02 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US9662209B2 (en) 2008-12-22 2017-05-30 Valtech Cardio, Ltd. Contractible annuloplasty structures
US9561104B2 (en) 2009-02-17 2017-02-07 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US10350068B2 (en) 2009-02-17 2019-07-16 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US10548729B2 (en) 2009-05-04 2020-02-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US11844665B2 (en) 2009-05-04 2023-12-19 Edwards Lifesciences Innovation (Israel) Ltd. Deployment techniques for annuloplasty structure
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US11723774B2 (en) 2009-05-07 2023-08-15 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
US9592122B2 (en) 2009-05-07 2017-03-14 Valtech Cardio, Ltd Annuloplasty ring with intra-ring anchoring
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9937042B2 (en) 2009-05-07 2018-04-10 Valtech Cardio, Ltd. Multiple anchor delivery tool
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9968454B2 (en) 2009-10-29 2018-05-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of artificial chordae
US10751184B2 (en) 2009-10-29 2020-08-25 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US20110106245A1 (en) * 2009-10-29 2011-05-05 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US9414921B2 (en) 2009-10-29 2016-08-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US10492909B2 (en) 2009-12-02 2019-12-03 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10363136B2 (en) 2011-11-04 2019-07-30 Valtech Cardio, Ltd. Implant having multiple adjustment mechanisms
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US9265608B2 (en) 2011-11-04 2016-02-23 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US9775709B2 (en) 2011-11-04 2017-10-03 Valtech Cardio, Ltd. Implant having multiple adjustable mechanisms
US20130116780A1 (en) * 2011-11-04 2013-05-09 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US10568738B2 (en) 2011-11-08 2020-02-25 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US11890190B2 (en) 2012-10-23 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Location indication system for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10610360B2 (en) 2012-12-06 2020-04-07 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US11793505B2 (en) 2013-02-26 2023-10-24 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
CN104000671A (en) * 2013-02-27 2014-08-27 金仕生物科技(常熟)有限公司 Mitral valve forming ring
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11744573B2 (en) 2013-08-31 2023-09-05 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US11766263B2 (en) 2013-10-23 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Anchor magazine
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US10265170B2 (en) 2013-12-26 2019-04-23 Valtech Cardio, Ltd. Implantation of flexible implant
US10695160B2 (en) 2014-07-17 2020-06-30 Boston Scientific Scimed, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US9913706B2 (en) 2014-07-17 2018-03-13 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US10136985B2 (en) 2014-07-17 2018-11-27 Millipede, Inc. Method of reconfiguring a mitral valve annulus
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10258466B2 (en) 2015-02-13 2019-04-16 Millipede, Inc. Valve replacement using moveable restrains and angled struts
US11918462B2 (en) 2015-02-13 2024-03-05 Boston Scientific Scimed, Inc. Valve replacement using moveable restraints and angled struts
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11660192B2 (en) 2015-12-30 2023-05-30 Edwards Lifesciences Corporation System and method for reshaping heart
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10973662B2 (en) 2016-05-16 2021-04-13 Elixir Medical Corporation Methods and devices for heart valve repair
US11191656B2 (en) 2016-05-16 2021-12-07 Elixir Medical Corporation Methods and devices for heart valve repair
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11883611B2 (en) 2017-04-18 2024-01-30 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11701228B2 (en) 2018-03-20 2023-07-18 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11931261B2 (en) 2018-03-20 2024-03-19 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11890191B2 (en) 2018-07-12 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Fastener and techniques therefor
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies

Also Published As

Publication number Publication date
US7695510B2 (en) 2010-04-13
US20070083259A1 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US7695510B2 (en) Annuloplasty device having shape-adjusting tension filaments
US20210045875A1 (en) Mitral valve annuloplasty systems and methods
US20230122916A1 (en) Transcatheter valve with torsion spring fixation and related systems and methods
US10130472B2 (en) Devices and methods for treating valvular regurgitation
CN109310500B (en) Heart valve repair device and method of implanting the same
US7955384B2 (en) Coronary sinus approach for repair of mitral valve regurgitation
US20060293698A1 (en) Retainer device for mitral valve leaflets
US7316706B2 (en) Tensioning device, system, and method for treating mitral valve regurgitation
US20070027533A1 (en) Cardiac valve annulus restraining device
US7611534B2 (en) Percutaneous atrioventricular valve and method of use
JP5198431B2 (en) Annuloplasty device with helical anchor
US7442207B2 (en) Device, system, and method for treating cardiac valve regurgitation
JP4282993B2 (en) Methods and apparatus for catheter-based annuloplasty (Background of the Invention) 1. Field of the Invention The present invention relates generally to techniques for treating mitral valve dysfunction, such as mitral valve leakage. More specifically, the invention relates to systems and methods for treating leaky mitral valves in a minimally invasive manner.
US20070203391A1 (en) System for Treating Mitral Valve Regurgitation
US20170354500A1 (en) Mitral prolapse valve restrictor
US20070066863A1 (en) Device for treating mitral valve regurgitation
US20060282161A1 (en) Valve annulus reduction system
US20040210240A1 (en) Method and repair device for treating mitral valve insufficiency
WO2005046530A1 (en) Coronary sinus approach for repair of mitral valve reguritation
JP2007510525A (en) Heart annulus reduction system
SE531468C2 (en) An apparatus for controlling blood flow
WO2005102015A2 (en) Implantable prosthetic valve

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION