US20100106194A1 - Stabilizing a spinal anatomical structure - Google Patents

Stabilizing a spinal anatomical structure Download PDF

Info

Publication number
US20100106194A1
US20100106194A1 US12/576,992 US57699209A US2010106194A1 US 20100106194 A1 US20100106194 A1 US 20100106194A1 US 57699209 A US57699209 A US 57699209A US 2010106194 A1 US2010106194 A1 US 2010106194A1
Authority
US
United States
Prior art keywords
anatomical structure
fastener
spinal
spinal anatomical
flexible line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/576,992
Inventor
Peter M. Bonutti
Glen A. Phillips
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P Tech LLC
Original Assignee
P Tech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43857172&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100106194(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US11/202,294 priority Critical patent/US9463012B2/en
Priority claimed from US11/258,795 external-priority patent/US20060089646A1/en
Priority to US11/258,795 priority patent/US20060089646A1/en
Priority to US11/358,311 priority patent/US9173647B2/en
Priority claimed from US11/358,311 external-priority patent/US9173647B2/en
Priority to US12/576,992 priority patent/US20100106194A1/en
Application filed by P Tech LLC filed Critical P Tech LLC
Assigned to P TECH, LLC reassignment P TECH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BONUTTI, PETER M., PHILLIPS, GLEN A.
Publication of US20100106194A1 publication Critical patent/US20100106194A1/en
Priority to US12/872,140 priority patent/US10813764B2/en
Priority to PCT/US2010/052018 priority patent/WO2011044484A1/en
Priority to US13/871,892 priority patent/US9814453B2/en
Priority to US13/873,389 priority patent/US9867706B2/en
Priority to US14/032,969 priority patent/US9226828B2/en
Priority to US14/076,818 priority patent/US20140066959A1/en
Priority to US14/866,001 priority patent/US9980761B2/en
Priority to US15/163,425 priority patent/US10238378B2/en
Priority to US15/726,503 priority patent/US10376259B2/en
Priority to US15/989,806 priority patent/US11013542B2/en
Priority to US16/244,773 priority patent/US20190142411A1/en
Priority to US16/510,484 priority patent/US10441269B1/en
Priority to US16/601,338 priority patent/US11219446B2/en
Priority to US16/833,326 priority patent/US20200222041A1/en
Priority to US17/240,949 priority patent/US20220079640A1/en
Priority to US17/452,556 priority patent/US20220160345A1/en
Priority to US17/933,274 priority patent/US20230110881A1/en
Priority to US18/495,593 priority patent/US20240050083A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0482Needle or suture guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0483Hand-held instruments for holding sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1637Hollow drills or saws producing a curved cut, e.g. cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1675Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/683Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin comprising bone transfixation elements, e.g. bolt with a distal cooperating element such as a nut
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7053Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant with parts attached to bones or to each other by flexible wires, straps, sutures or cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7064Devices acting on, attached to, or simulating the effect of, vertebral facets; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7067Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/82Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin for bone cerclage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/844Fasteners therefor or fasteners being internal fixation devices with expandable anchors or anchors having movable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8861Apparatus for manipulating flexible wires or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8863Apparatus for shaping or cutting osteosynthesis equipment by medical personnel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8869Tensioning devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30749Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4405Joints for the spine, e.g. vertebrae, spinal discs for apophyseal or facet joints, i.e. between adjacent spinous or transverse processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/441Joints for the spine, e.g. vertebrae, spinal discs made of inflatable pockets or chambers filled with fluid, e.g. with hydrogel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0467Instruments for cutting sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0485Devices or means, e.g. loops, for capturing the suture thread and threading it through an opening of a suturing instrument or needle eyelet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1615Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/685Elements to be fitted on the end of screws or wires, e.g. protective caps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00893Material properties pharmaceutically effective
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00898Material properties expandable upon contact with fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00951Material properties adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0404Buttons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0414Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having a suture-receiving opening, e.g. lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0458Longitudinal through hole, e.g. suture blocked by a distal suture knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0464Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • A61B2017/0488Instruments for applying suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • A61B2017/06176Sutures with protrusions, e.g. barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • A61B2090/035Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself preventing further rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/4435Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00359Bone or bony tissue

Definitions

  • the present disclosure is directed to surgical repair, stabilization, and/or fixation of tissue and/or implants. More specifically, the present disclosure pertains to guiding, positioning, repairing, reconstructing, augmenting, stabilizing, and/or fixing surgical devices, implants, tissues, within the body.
  • implants may include bone plates, fasteners, stents, filters, drug eluting implants, tissue alignment members, organ transplants, tissue scaffolding, tissue grafts, intervertebral disc replacement components, nucleus pulposus replacement component, and other joint replacements components, prostheses, robotic components, nanotechnology devices, sensors, emitters, radiofrequency emitting diodes, computer chips, RFID (radiofrequency identification) tags, adhesives, and sealants.
  • Incised or torn soft tissue may be approximated with bandages, sutures, or staples.
  • Proper and more rapid healing of broken or fractured bones likewise may be facilitated by applying constant pressure to the bone.
  • physicians may insert pins, screws, or bolts in the area of the fracture in order to apply compression and stabilization to the fracture.
  • inserting screws through or around fractures can be complex and time-consuming.
  • the process of inserting a screw typically involves multiple steps conducted from multiple incisions or openings that provide access to the treated bone or tissue, including the steps of drilling holes, measuring the relevant distances to determine the appropriate screw selection, tapping the hole to establish threads, and screwing the screw into the hole.
  • bone screws may lose their grip and strip out of the bone.
  • currently available lag screws typically provide only one side of cortex fixation and are generally not suited for percutaneus surgery.
  • the physician may not accurately set the screw into the distal hole or may miss the distal hole completely, thereby resulting in the screw stripping the threads or breaking the bone.
  • U.S. Pat. No. 4,257,411 to Cho discloses a surgical drill guide tool adapted to be temporarily mounted about a distal portion of the femur for drilling a bony tunnel through a portion of the femur.
  • the surgical tool allows for very precise location of the drill exit within the intercondylar notch, which is often critical in proper reconstruction of the anterior cruciate ligament of the knee.
  • the surgical tool drill guide is characterized by having a first and second upright, with first and second drill sheaths located at their respective distal ends wherein transverse mounting means are provided to allow the surgeon to position the first and second drill sheaths tightly against opposite surfaces of the femur to provide a continuing and exact alignment for the drilling of the bony tunnel.
  • the drill sheath at the distal end of the second upright is configured to fit inside the intercondylar notch, and allow exact placement of the exit of a bony tunnel which is drilled extra-articularly through the skin, and through the lateral femoral condyle.
  • U.S. Pat. No. 4,922,897 to Sapega et al. discloses a method and apparatus for the permanent surgical reconstruction of the anterior cruciate ligament in the human knee, which will stabilize the tibia and femur relative to each other and restore a full range of motion to the knee, by precisely locating the ends and angular relationship of a replacement ligament within the knee joint, at bone attachment sites such that the degree of shortening and lengthening experienced by the replacement ligament over the range of joint motion is either as close to zero (isometric) as possible, or closely matches that of the natural uninjured ligament (physometric), whichever the surgeon feels is most desirable.
  • U.S. Pat. No. 5,573,538 to Laboureau discloses ancillary instruments for the reconstruction of a posterior cruciate knee ligament by drilling one or two tibial canals using a surgical operation performed from the front.
  • the instrument set includes a system for protecting the posterior surface of the upper tibia end and an aiming device for guiding at least one drill.
  • the protection system includes at least one bent tube removably coupled by an extension portion to a locking handle for securing the tube through the intercondylar fossa of the femur on the posterior surface of the upper end of the tibia, so that the distal end of the bent tube serves as the stop to the drill guided by the aiming device and emerging from the tibial bone canal, and the bent tube can form, together with a rectilinear wire feed-through tube disposed in the place of the drill, a continuous canal for guiding a metallic loop used to draw the prosthetic posterior cruciate knee ligament from the anterior surface of the tibia to the femur insertion point.
  • U.S. Patent Publication No. 2003/0216742 to Wetzler et al. discloses a surgical drill guide generally including a handle connected to an arm with an end that contacts bone.
  • the handle has a plurality of non-parallel channels therein for receiving a sleeve at different angles. Once properly positioned, the sleeve can be used to guide a K-wire into the bone, which can then be used as a guide for drilling a tunnel. The various angles allow the surgeon to achieve a range of tunnel lengths.
  • the guide has a locking mechanism for locking the sleeve in the channels.
  • tissue is either intentionally or accidentally displaced, torn, or fractured to create a pathway to a desired operation site. In doing so, this tissue is damaged to a point where it may not function properly.
  • the skin incision is approximated.
  • the other tissue like the muscles, ligaments, tendons, cartilage, bones, etc. which were damaged to create the pathway are not necessarily repaired or reconstructed.
  • a frequent complication is late instability where there is shearing antero-posteriorly or superior inferiorly due to excess motion because the ligaments have been damaged during surgical exposure. This complication may lead to degenerative disc disease and lower back pain.
  • U.S. Pat. No. 6,425,919 issued to Lambrecht discloses a disc herniation constraining device for implantation into the disc.
  • the constraining device includes a fastener, a barrier, and a support member connecting the fastener and barrier.
  • the barrier closes a defect in the annulus of the disc, while the fastener supports the position of the barrier.
  • the barrier is placed between the annulus and the nucleus of the disc.
  • the barrier may include a sealant and an enlarger.
  • U.S. Pat. No. 6,592,625 issued to Cauthen discloses a collapsible patch which is inserted through a surgical incision or rupture of the annulus.
  • the patch is positioned within the subannular space.
  • the patch expands to bridge the incision or rupture thereby occluding the aperture from the interior of the disc and preventing migration of nucleus pulposus.
  • U.S. Pat. No. 6,679,889 issued to West, Jr. et al discloses a method and apparatus of repairing the anterior cruciate ligament.
  • the device enables the surgeon to independently apply a desired tensile load onto individual strands of a multiple-stranded soft tissue graft.
  • the device is equipped with structure for fastening or otherwise attaching the device to a patient's limb during the conditioning and pre-tensioning procedure.
  • U.S. Pat. No. 6,699,286 issued to Sklar discloses methods and apparatus of making repairs with graft ligaments.
  • the method for graft ligament reconstruction includes harvesting a graft ligament consisting entirely of soft tissue.
  • the graft ligament is compacted through compression so as to significantly reduce the cross-sectional area and increase the density of the collagen material of the graft ligament.
  • the compressed graft ligament is deployed within the human body.
  • U.S. Pat. No. 5,108,438 issued to Stone discloses a mesh skirt to anchor a prosthetic intervertebral disc.
  • the implant includes a dry, porous, volume matrix of biocompatible and bioabsorbable fibers which may be interspersed with glyscosaminoglycan molecules.
  • the matrix is adapted to have an outer surface contour substantially the same as that of a natural intervertebral disc.
  • a mesh member extends from the lateral surface of the implant. After implantation, the mesh member may be sutured to adjacent tissue to anchor the disc in place. The mesh member may function in this capacity until sufficient tissue ingrowth occurs to provide that function.
  • U.S. Pat. No. 6,733,531 issued to Trieu discloses a spinal implant which is anchored using a device having an elongated anchoring body, such as an anchoring rod, and at least one securing member attached to the anchoring rod.
  • the anchoring body or rod is configured to anchor, hold, or otherwise retain a spinal implant.
  • the securing members are spaced apart along the length of the anchoring rod and may define a region for disposing an implant therebetween.
  • the anchoring rod has a first end and a second end, wherein the first end is securable to an adjacent vertebra.
  • U.S. Pat. No. 6,652,585 issued to Lange discloses a spine stabilization system including a flexible member attachable to a portion of the spinal column.
  • the member includes components that are oriented and function similar to the natural fiber orientation of the anterior longitudinal ligament and annulus tissue. The use of components resist loading applied by extension and rotation of the spine, while the flexibility of the member does not subject it to the compressive loading of the spinal column segment to which it is attached.
  • U.S. Pat. No. 6,293,949 issued to Justis et al. discloses a device for stabilizing the spinal column.
  • the device includes a longitudinal member sized to span a distance between at least two vertebral bodies and being at least partially formed of a shape-memory material exhibiting pseudoelastic characteristics at about human body temperature.
  • the longitudinal member is reformed from an initial configuration to a different configuration in response to the imposition of stress caused by relative displacement between the vertebral bodies, and recovers toward the initial configuration when the stress is removed to thereby provide flexible stabilization to the spinal column.
  • tissue may be compressed to other tissue or an implant to improve healing.
  • Hard tissue for example, may require rigid fixation while soft tissue to require flexible fixation.
  • the repair, reconstruction, and augmentation of tissue and the securing of implants “on the way out” of the body after performing a surgical procedure creates a stabilized and enhanced healing environment.
  • inserting screws through or around fractures can be complex and time-consuming.
  • the process of inserting a screw typically involves multiple steps conducted from multiple incisions or openings that provide access to the treated bone or tissue, including the steps of drilling holes, measuring the relevant distances to determine the appropriate screw selection, tapping the hole to establish threads, and screwing the screw into the hole.
  • bone screws also may lose their grip and strip out of the bone.
  • currently available lag screws also typically provide only one side of cortex fixation and are generally not suited for percutaneous surgery.
  • the physician may not accurately set the screw into the distal hole or may miss the distal hole completely, thereby resulting in the screw stripping the threads or breaking the bone.
  • U.S. Pat. No. 5,921,986 discloses a bone suture and associated methods for implantation and fracture fixation.
  • the '986 Patent describes fasteners and anchors used in conjunction with an elongate fixation element, such as a suture. In some cases, it may be advantageous to use more rigid fixation elements.
  • tissue fixation instrument which can provide flexible or rigid fixation of tissue while accessing the tissue from a small skin portal.
  • the present disclosure includes instruments and methods for guiding and positioning various implants within the body.
  • the instrument may provide for the placement of a biocompatible implant within tissue and/or may provide for dynamic and rigid fixation of tissue.
  • An implant guidance and positioning device includes a body member connected with a hook. The hook may have a lumen extending therethrough.
  • the device also includes a guide channel disposed in the body member. The longitudinal axis of the guide channel may be generally aligned with or slightly offset from a distal end of the hook.
  • the device may further include a pushrod for positioning a fastener and suture in the lumen of the hook.
  • the device may include an elongated claw dimensioned for insertion through the guide channel. The claw may include means for grabbing the suture.
  • the positioning device in another embodiment, includes a body member, an elongated member connected with the body member, a socket member connected to the distal end of the elongated member, and a guide slot disposed in the body member.
  • the longitudinal axis of the guide slot is generally aligned with or slightly offset with the socket member.
  • the socket member may be dimensioned and configured for holding a fastener.
  • the device may also include a fastening member dimensioned for insertion in the guide slot.
  • the fastening member may include means for attaching the fastening member to the fastener, such as threads, ribs, magnets, adhesives, or expandable material.
  • the distal portion of the hook or elongated member is curved to be positionable at least partially on the distal or backside of the bone or tissue, while the proximal portion of the hook or elongated member may be generally parallel with the guide channel or slot.
  • the hook or elongated member may be removably connected with the body member with means for holding and releasing the hook or elongated member.
  • the positioning device may further include a drill system having a drill bit dimensioned for insertion through the guide channel or slot.
  • the drill system may create a linear or non-linear passage in tissue.
  • the drill system may be a cannulated drill system.
  • the positioning device may also include means for clamping the device to tissue. Such means may include a threaded tube adjustably attached to the body member, a tube and a finger grip attached to the body member, or one or more pins placed between the positioning device and tissue.
  • the device may include a tensioning mechanism for tensioning the suture or fastening member.
  • the present disclosure includes the repair, reconstruction, augmentation, and securing of tissue or implants during a surgical procedure and “on the way out” after the surgical procedure has been performed.
  • Hard and soft tissue at and around the operation site and tissue between the operation site and the skin incision may be compressed and/or rebuilt so that tissue-function may be at least partially restored and the operation region may be stabilized for enhanced healing.
  • Ligaments may be fastened to ligaments; ligaments to bones; bones to bones; ligaments to muscles; muscles to muscles; tissue grafts to bone; tissue grafts to ligaments; grafts to grafts; and any other combination of tissue and implants. It is further contemplated that the methods and devices of the present invention may be utilized with minimally invasive techniques.
  • a method for stabilizing a body joint is provided.
  • a fastener is positioned in contact with first body tissue on one side of the joint.
  • Another fastener is positioned in contact with second body tissue on the other side of the joint.
  • a suture is placed between the fasteners and tensioned. The tensioned suture is secured to the fasteners to restrict normal movement of the joint.
  • the fasteners may be positioned in contact with the outer surface of the body tissues or inside of the body tissues.
  • the suture may be positioned adjacent to the joint, through the joint, or in combination.
  • the body tissues may be bones, muscles, ligaments, tendons, nerves, skin, organs, cartilage, fascia, and blood vessels.
  • the bones and ligaments may be bones and ligaments of the knee, ankle, elbow, wrist, feet, hand, hip, shoulder, jaw, and spine.
  • bones of the knee may include the femur, tibia, and patella.
  • Ligaments of the knee may include the medial collateral ligament, lateral collateral ligament, posterior oblique ligament, arcuate ligament, oblique popliteal ligament, anterior cruciate ligament, and posterior cruciate ligament.
  • Bones of the spine may include transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina, and vertebral body.
  • Ligaments of the spine may include the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • Such bones of the spine and ligaments of the spine (as well as all other body tissues associated with the spine) may be referred to as spinal anatomical structures.
  • a tubular member may be positioned between the fasteners, and the suture may be placed within the tubular member such that a portion of the tubular member contacts the first body part and another portion of the tubular member contacts the second body part thereby maintaining the body parts in alignment with each other.
  • a method for approximating an incision in tissue A suture is positioned in portions of tissue located on opposite sides of the incision. The proximal and distal ends of the suture extend from the tissue and are adjacent the incision. A fastener is placed transverse to the incision with the ends of the suture disposed within at least one channel of the fastener. The suture is tensioned and secured to the fastener to thereby approximate the incision.
  • the tissue may be bone, muscle, ligament, tendon, skin, organ, cartilage, and blood vessels.
  • two fasteners may be positioned generally parallel to an incision with the first fastener placed on one side of the incision and the second fastener placed on the opposite side of the incision.
  • a suture may be positioned in portions of tissue located on opposite sides of the incision with the middle section of the suture slidably disposed within at least one channel of the first fastener and the end portions of the suture disposed within at least one channel of the second fastener. The suture may be tensioned and secured to the fasteners to thereby approximate the incision.
  • a fastener in accordance with another aspect of the present invention, includes an elongated member and at least one channel extending therethrough generally perpendicular to the longitudinal axis of the elongated member. A portion of the outer surface of the fastener may be concave, flat, and/or convex.
  • a method of using a fastener At least a portion of the surface of the fastener is placed in contact with tissue.
  • the fastener may be placed in contact with an outer surface of the tissue and/or the inner portion of the tissue.
  • a portion of the surface of the fastener may be flat, convex, or concave.
  • a convex portion of the fastener may be placed in contact with a concave portion of the tissue.
  • a flat portion of the fastener may be placed in contact with a flat portion of the tissue.
  • a concave portion of the fastener may be placed in contact with a convex portion of the tissue. In these configurations, the shaped portions of the fasteners mate with the tissue.
  • a fastener assembly in accordance with yet another aspect of the present invention, includes a plurality of fastener members, each fastener member having at least one channel extending therethrough.
  • a plurality of connecting members links the fastener members to each other.
  • the fastener members may be linked together end to end, side to side, or end to side. When linked together, the fastener members may form a linear, circular, rectangular, J, L, or U configuration.
  • the connecting members may be hinges, pins, ball and socket, interconnecting loops, hooks, flexible filaments and/or rigid members.
  • the channels of the fastener members may be generally transverse to the longitudinal axis of the fastener member.
  • Each fastener member may include two or more channels, and the channels may be generally parallel to each other.
  • the fastener strip or assembly includes a plurality of fastener members disposed on a flexible strip. Each fastener member has at least one channel extending therethrough. The channel may be generally transverse to the longitudinal axis of the fastener member.
  • the fastener members are positioned on the flexible strip to form a linear, circular, rectangular, J, L, and/or U configuration.
  • the fastener members may be affixed to the upper surface of the flexible strip.
  • the fastener members may be affixed to the upper surface of the flexible strip with adhesive.
  • the flexible strip may also have adhesive on its lower or bottom surface for adhesion to tissue.
  • Such adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive.
  • the flexible strip may be bioabsorbable, bioerodible, degradable, biodegradable, expandable, and/or hydrophilic.
  • the fastener assembly is positioned against tissue.
  • a suture or sutures are positioned within the tissue and through the suture assembly to secure the assembly to the tissue.
  • the assembly is placed over an incision in the tissue.
  • the fastener members are positioned such that channel of the fastener members are located on each side of the incision.
  • a suture or sutures are positioned within the portions of tissue on opposite sides of the incision and through the fastener assembly.
  • the suture or sutures are tensioned and secured with the fastener members.
  • the type and configuration of the fastener assembly is determined with respect to the shape or configuration of the tissue.
  • the shape of the incision also determines the shape of the fastener assembly.
  • a total disc replacement implant in accordance with a further aspect of the present invention, includes a superior or upper portion made of a rigid material.
  • the upper surface of the superior portion is configured to adjoin to a cut portion of a superior or upper vertebra.
  • the implant also includes an inferior or lower portion made of a rigid material.
  • the lower surface of the inferior portion is configured to adjoin to a cut portion of an inferior or lower vertebra.
  • the implant further includes a middle portion made of a flexible material. The middle portion is affixed to the lower surface of the superior portion and the upper surface of the inferior portion.
  • the superior and inferior portions of the implant may include polymeric, composite, metallic, ceramic, and expandable material.
  • the portions may also include synthetic bone and body tissue like bone, collagen, cartilage, and ligaments.
  • the portions may also be bioabsorbable, bioerodible, degradable, and biodegradable.
  • the middle portion of the implant may include rubber, gel, foam, polymer, collagen, and body tissue.
  • the total disc replacement implant may be made of a plurality of components; that is, the implant may be modular.
  • the components may be connected with each other to form the implant.
  • the components may mechanically interlock with one another. Each component may have a size approximately the same as the length of the incision through which the components are inserted.
  • a method for total disc replacement An incision is made through tissue for access to the spine. The dimensions of the incision may be minimized to reduce trauma to surrounding tissue like muscle, ligaments, tendons, and cartilage.
  • the vertebra located superior to the damaged disc being replaced is cut. The cut may be made on the lower or bottom portion of the superior vertebra. The cut may be planar or multiplanar. The superior vertebra may be cut without disturbing or at least minimally disturbing the adjacent ligaments, cartilage, and muscles. The cut may be angled to avoid damaging or loosening the spinal ligaments like the anterior and posterior longitudinal ligaments.
  • the vertebra located inferior to the disc being removed is cut in a similar manner, except the upper surface of the inferior vertebra is cut. Once cut, the cut portions of vertebrae and the intervertebral disc are removed through the incision. The cut vertebrae are further prepared for receiving an implant.
  • the total disc replacement implant or modular implant is positioned between the cut superior and inferior vertebrae.
  • a modular implant may be positioned one component at a time or already assembled. The implant is anchored to the surrounding tissue like the adjacent vertebral bodies. Any ligaments, muscles, cartilage, tendons, or other body tissue cut or damaged during the procedure is repaired prior to closing the incision. Finally, the incision is approximated.
  • a tissue alignment sleeve in accordance with another aspect of the present invention, includes a tubular member having a wall.
  • the interior surface of the wall is generally smooth.
  • the exterior surface of the wall includes means for gripping and creating friction.
  • the gripping means may include threads, a plurality of raised regions, and a plurality of circumferential elevated areas or rings.
  • the wall may include a plurality of openings for tissue ingrowth and outgrowth.
  • the wall may include one or more longitudinal slits such that the tubular member or sleeve may be bendable to increase and decrease the diameter of the sleeve.
  • tissue alignment sleeve A channel is created in tissue.
  • the sleeve is positioned within the tissue.
  • the gripping or friction means of the sleeve holds the sleeve within the tissue.
  • the tissue may include first and second portions. When positioned within the first and second portions of the tissue, the portions are aligned and maintained in position relative to each other.
  • the first and second portions may be portions of bone on opposite sides of a fracture.
  • the portions may be tissue of a body joint.
  • the portions may be bones of a joint located on opposite sides of the joint, such that when the sleeve is positioned, movement of the joint is restricted.
  • a sleeve with at least one longitudinal slit may be positioned with the channel created in tissue.
  • the diameter of the sleeve may be decreased by closing the gap in the longitudinal slit. In a decreased diameter, the sleeve may be inserted into the channel. Once positioned, the diameter of the sleeve may be increased thereby engaging the gripping means with the tissue.
  • a suture or sutures may be placed through the lumen of the sleeve to secure tissue located at the ends of the sleeve. After the sleeve has gripped the adjacent tissue with the gripping means, therapeutic substances or graft material (autogenic, allogenic, xenogenic, or synthetic) may be packed into the tubular member.
  • a method for stabilizing an implant is provided.
  • a first fastener is positioned in contact with tissue located adjacent the implant.
  • a second fastener is positioned in contact with tissue located adjacent the implant generally opposite the first fastener.
  • a suture is placed between the fasteners and in contact with the implant. The suture is tensioned, and the fasteners are secured to the tensioned suture such that the suture transmits force to the implant.
  • the suture may be positioned in contact with the surface of the implant.
  • the suture may also be positioned within the implant.
  • a method for stabilizing an implant within a body is provided.
  • a first fastener is positioned in contact with the implant.
  • a second fastener is positioned in contact with tissue located adjacent the implant.
  • a suture is placed between the fasteners. The suture is tensioned, and the fasteners are secured to the tensioned suture to anchor the implant to the tissue.
  • the first fastener may be positioned within the implant or on the surface of the implant. The suture may be placed against or within the implant.
  • a method for anchoring an implant for directional expansion within the body A first fastener is positioned in contact with the first side of an expandable implant. A second fastener is positioned in contact with tissue located adjacent a second side of the implant which is opposite the first side. A first suture is positioned between the fasteners and tensioned. The first suture is secured with the first and second fasteners. In this configuration, the first side of the expandable implant is restricted from expanding, but all other sides of the implant can expand.
  • a third fastener is positioned in contact with the second side of the implant.
  • a fourth fastener is positioned in contact with tissue located adjacent the first side of the implant.
  • a second suture is positioned between the third and fourth fasteners. The second suture is tensioned and secured with the fasteners.
  • the second side of the implant is restricted from expanding.
  • more fasteners and sutures may be positioned as previously described such that the implant is limited to expansion in one, two, or more directions.
  • the sutures may be positioned in contact with the expandable implant such that the sutures transmit force to the implant thereby anchoring the implant and further restricting expansion.
  • a device for anchoring an implant includes a pouch dimensioned and configured for receiving an implant.
  • the pouch has an access port for inserting the implant. At least one anchoring point is connected with the pouch.
  • the device may further include a flap attached to the pouch for closing the access port.
  • the implant may be expandable, and when positioned in the pouch, the implant generally expands primarily in the direction of the access port.
  • the pouch may include a plurality of access ports. An expandable implant placed in a pouch with a plurality of access ports expands primarily in the directions of the access ports.
  • a fastener is positioned in contact with the ligament adjacent the first side of a damaged region of the ligament.
  • Another fastener is positioned in contact with the ligament adjacent a second side of the damaged region which is generally opposite the first side.
  • a suture is positioned between the fasteners. The suture is tensioned and secured with the fasteners such that the ligament is tightened.
  • the suture may be positioned through the ligament.
  • the suture may also be positioned through tissue adjacent the damaged area.
  • the tissue may be spine tissue such as one or more vertebrae and one or more intervertebral discs.
  • the ligament may be a ligament of the spine such as the anterior or posterior longitudinal ligament, or any of the previously identified ligaments.
  • the damaged region may be a loosened ligament area, a torn ligament area, or a missing ligament area.
  • a method for reconstructing a ligament is provided.
  • a tissue graft is positioned adjacent a damaged region of the ligament.
  • a first fastener is positioned in contact with the tissue graft on a first side of the damaged region.
  • a second fastener is positioned in contact with the tissue graft on a second side of the damaged region which is generally opposite the first side.
  • a suture is positioned between the fasteners with the suture passing through the tissue graft and ligament. The suture is tensioned and secured with the fasteners to hold the tissue graft against the ligament.
  • the tissue graft may include ligamentous tissue or bone tissue.
  • the ligament may be a ligament of the spine.
  • the suture may be positioned within tissue located adjacent the ligament.
  • the tissue may be spine tissue including one or more vertebrae and one or more intervertebral discs.
  • a tissue graft is positioned adjacent a damaged region of the ligament.
  • a first fastener is positioned in contact with the tissue graft on a first side of the damaged region.
  • a second fastener is positioned in contact with tissue adjacent the ligament.
  • a suture is positioned between the fasteners with the suture passing through the tissue graft and ligament. The suture is tensioned and secured to the fasteners such that at least a portion of the tissue graft is held to the ligament.
  • the tissue graft may include ligamentous tissue or bone tissue.
  • the ligament may be a ligament of the spine like the anterior or posterior longitudinal ligament.
  • the suture may be positioned within the tissue adjacent the ligament.
  • the tissue may be spine tissue including one or more vertebrae and one or more intervertebral discs.
  • the present disclosure includes a tissue fixation system.
  • the system comprises an elongate fastening member and a fastener moveable with respect to the elongate fastening member from a first orientation to a second orientation, the fastener having a body with a tissue contacting surface that includes a groove configured and dimensioned to receive a portion of the elongate member in the first orientation.
  • the system can also include a second fastener or other means for maintaining tension in the elongate fastening member.
  • a biasing means can be provided to maintain the fastener in the first orientation.
  • the biasing means can be an adhesive between the groove and the portion of the elongate fastening member received in the groove.
  • the biasing means could also be a frangible connection between the groove and the portion of the elongate fastening member received in the groove.
  • the fastener body can have a free surface opposite the tissue contacting surface, with the free surface including a channel configured and dimensioned to receive a portion of the elongate member in the first orientation.
  • the fastener body can also include a through bore extending from the tissue contacting surface through the free surface.
  • the fastener body includes leading and trailing ends.
  • the leading end can be tapered or otherwise shaped to facilitate insertion.
  • the groove terminates at the through bore and extends toward one of the leading and trailing ends and the channel terminates at the through bore and extends toward the other of the leading and trailing ends.
  • the groove extends toward the leading end and the channel extends toward the trailing end.
  • the free surface of the fastener body can be provided with a well surrounding the through bore.
  • the well can be configured and dimensioned to receive at least a portion of the stop.
  • a distal end of the elongate fastening member can include a stop larger than the through bore.
  • the present invention also relates to a medical instrument or device for securing the fastener with respect to the elongate fastening member.
  • the medical device tensions the elongate fastening member and crimps either the fastener or a bushing.
  • Another aspect of the invention relates to methods of tissue fixation using the disclosed tissue fixation systems.
  • a method for stabilizing a spinal anatomical structure may include introducing, into a body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end; providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure; and securing the fastener with respect to the spinal anatomical structure.
  • the fastener may be secured with respect to the spinal anatomical structure utilizing at least one flexible line.
  • the at least one flexible line may extend from the fastener, through at least a portion of the spinal anatomical structure to a separate securing point within the body.
  • a method may include securing the at least one flexible line at the separate securing point by a second fastener.
  • the step of securing the at least one flexible line at the separate securing point by the second fastener may include crimping the second fastener to the flexible line.
  • the crimping step may include introducing a crimping mechanism extending from an elongate rod of a crimping tool through an incision in the body and adjacent to the second fastener.
  • the at least one flexible line may include a suture.
  • the at least one flexible line may include a cable.
  • the flexible line may be provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure, and the method may include a step of passing the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body.
  • the passing step may be performed utilizing a gripper at a leading end of an elongate gripper rod which pulls the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body.
  • the elongate fastener placement rod and elongate gripper rod may extend from a hand-held guidance and positioning device.
  • a method may include forming a hole through the portion of the spinal anatomical structure prior to the pulling step.
  • the hole forming step may be performed by an elongate drill rod extending from the hand-held guidance and positioning device.
  • the elongate gripper rod and elongate drill rod may be guided by a guide tube extending from the hand-held guidance and positioning device.
  • the elongate gripper rod may extend from the hand-held guidance and positioning device along an axis that runs adjacent to or through the leading end of the curved segment of the fastener placement rod.
  • a method may include forming a hole through the portion of the spinal anatomical structure prior to the passing step.
  • the spinal anatomical structure may be a first spinal anatomical structure; the flexible line may be provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure; and a method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the separate securing point within the body, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other.
  • the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a vertebra.
  • the first spinal anatomical structure may include a first vertebra and the second spinal anatomical structure may include a second vertebra.
  • the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include an intevertebral disc.
  • the first spinal anatomical structure may include a first spinous process and the second spinal anatomical structure may include a second spinous process.
  • the first spinal anatomical structure may include a first ligament segment and the second spinal anatomical structure may include a second ligament segment.
  • the first and second ligament segments may be torn or severed segments of the same ligament.
  • the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include a vertebra.
  • the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include an intevertebral disc.
  • the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure is a ligament.
  • the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a ligament.
  • a method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other.
  • at least two of the first, second and third spinal anatomical structures may include spinous processes.
  • at least two of the first, second and third spinal anatomical structures may include facets.
  • the drawing step may include passing the flexible line through an implant.
  • the implant may include a graft.
  • the implant may include a disc implant.
  • the implant may include a scaffold.
  • the first spinal anatomical structure may include a spinous process and the second spinal anatomical structure may include at least one of a pedicle and bone of a facet joint.
  • the first spinal anatomical structure may include at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure may include a spinous process.
  • the first spinal anatomical structure may include a first side of a cervical spine and the second anatomical structure may include a second side of the cervical spine.
  • a method may include passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures.
  • the first spinal anatomical structure may include a first facet and the second spinal anatomical structure may include a second facet.
  • a method may include a step of tensioning at least a portion of the flexible line extending between the fastener and the separate securing point.
  • the spinal anatomical structure may include annulus fibrosus.
  • the spinal anatomical structure may include nucleus pulposus.
  • the flexible line may extend through an intervertebral disc and through an adjacent vertebra.
  • the flexible line may extend through adjacent vertebrae and an intervertebral disc between the adjacent vertebrae.
  • the flexible line may extend through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae.
  • the flexible line may extend through an upper spinous process and through a lower spinous process. In a detailed embodiment, the flexible line may extend through a vertebra and to or though a disc implant. In a detailed embodiment, the flexible line may extend through the spinal anatomical structure to or through a graft.
  • the flexible line may extend through the spinal anatomical structure and through or to a disc implant or a vertebral implant.
  • the spinal anatomical structure may include annulus fibrosus.
  • the spinal anatomical structure may include a vertebra.
  • the spinal anatomical structure may include a facet.
  • the flexible line may extend through two severed portions of a spinal ligament. In a detailed embodiment, the flexible line may extend through two portions of a spinal ligament. In a detailed embodiment, the flexible line further may extend through a vertebra adjacent to at least one of the two portions of the spinal ligament. In a detailed embodiment, the flexible line may further extend through an intervertebral disc.
  • the flexible line may extend to or through a stabilization rod or plate.
  • the spinal anatomical structure may include a spinous process.
  • the elongate fastener placement rod may be hollow.
  • the portion of the elongate fastener placement rod that may be hollow may open onto the leading end of the curved segment of the fastener placement rod.
  • the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure may include a step of sending the fastener through the portion of the elongate faster placement rod that is hollow to the leading end of the curved segment.
  • the sending step may further include sending a flexible line with the fastener through the portion of the elongate fastener placement rod that may be hollow to the leading end of the curved segment, wherein the fastener may be secured in place utilizing at least a portion of flexible line.
  • the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure may be preceded by a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod.
  • a method may include a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod.
  • the engaging step may include a step of disposing at least a portion of the fastener within the leading end of the curved segment of the fastener placement rod.
  • a method may include a step of disengaging the fastener from the leading end of the curved segment of the fastener placement rod while the fastener is approximate to, adjacent to or on the spinal anatomical structure.
  • the introducing step may include introducing the curved segment of an elongate, fastener placement rod through an incision in the skin as part of a minimally invasive procedure.
  • the spinal anatomical structure may include at least one of bone, vertebral body, nucleus pulposus, muscle, tendon and cartilage.
  • the spinal anatomical structure may include at least one bone such as a transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina and vertebral body.
  • bone such as a transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina and vertebral body.
  • the spinal anatomical structure may include at least one ligament taken such as an anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligament, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, ligament of the sacrum and ligament of the coccyx spine.
  • ligament taken such as an anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligament, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, ligament of the sacrum and ligament of the coccyx spine.
  • a method for stabilizing a spinal anatomical structure may include connecting a flexible line and a fastener; introducing, through an incision in the body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end; providing, at the leading end of the curved segment of the fastener placement rod, the fastener and attached flexible line at a fastener placement point that is approximate to, adjacent to or on the spinal anatomical structure, the providing step including passing the fastener and attached flexible line through the curved segment of the elongate fastener placement rod to the leading end; passing the connected flexible line from approximate the fastener placement point through at least a portion of the spinal anatomical structure to a securing point; tensioning the flexible line between the fastener placement point and the securing point; and securing the flexible line at the securing point.
  • the step of securing the flexible line at the securing point may include a step of tying the flexible line.
  • the step of securing the flexible line at the securing point may include a step of fastening the flexible line at the securing point using another fastener.
  • the step of fastening the flexible line at the securing point using another fastener may include crimping the other fastener to the flexible line.
  • the flexible line may include a suture.
  • the flexible line may include a cable.
  • the passing step may be performed utilizing a gripper at a leading end of an elongate gripper rod to pull the connected flexible line from approximate the fastener placement point through at least the portion of the spinal anatomical structure to the securing point.
  • the elongate fastener placement rod and the elongate gripper rod may extend from a hand-held guidance and positioning device.
  • a method may include forming a hole through the portion of the spinal anatomical structure prior to the pulling step.
  • the hole forming step may be performed by an elongate drill rod extending from the hand-held guidance and positioning device.
  • the elongate gripper rod and the elongate drill rod may be guided by a guide tube extending from the hand-held guidance and positioning device.
  • the spinal anatomical structure may include annulus fibrosus.
  • the flexible line may extend through an intervertebral disc and through an adjacent vertebra. In a detailed embodiment, the flexible line may extend through adjacent vertebrae and an intervertebral disc between the adjacent vertebra. In a detailed embodiment, the flexible line may extend through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae. In a detailed embodiment, the flexible line may extend through an upper spinous process and through a lower spinous process. In a detailed embodiment, the flexible line may extend through a vertebra and to or though a disc implant. In a detailed embodiment, the flexible line may extend through the spinal anatomical structure to or through a graft.
  • the flexible line may extend through the spinal anatomical structure and through or to a disc implant or a vertebral implant.
  • the spinal anatomical structure may include annulus fibrosus.
  • the spinal anatomical structure may include a vertebra.
  • the spinal anatomical structure may include a facet.
  • the flexible line may extend through two severed portions of a spinal ligament.
  • the flexible line may extend through two portions of a spinal ligament. In a detailed embodiment, the flexible line may further extend through a vertebra adjacent to at least one of the two portions of the spinal ligament. In a detailed embodiment, the flexible line may further extend through an intervertebral disc.
  • the flexible line may extend to or through a stabilization rod or plate.
  • the spinal anatomical structure may include a spinous process.
  • the flexible line may extend through at least one portion of a spinal ligament and through or to a ligament graft.
  • the spinal anatomical structure may include a first spinal anatomical structure; and a method may include a step of passing the flexible line from approximate the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the securing point, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other.
  • the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a vertebra.
  • the first spinal anatomical structure may include a first vertebra and the second spinal anatomical structure may include a second vertebra.
  • the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include an intevertebral disc.
  • the first spinal anatomical structure may include a first spinous process and the second spinal anatomical structure may include a second spinous process.
  • first spinal anatomical structure may include a first ligament segment and the second spinal anatomical structure may include a second ligament segment.
  • first and second ligament segments may include torn or severed segments of the same ligament.
  • the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include a vertebra.
  • the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include an intevertebral disc.
  • the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include a ligament.
  • the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a ligament.
  • the method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other.
  • at least two of the first, second and third spinal anatomical structures may include spinous processes.
  • at least two of the first, second and third spinal anatomical structures may include facets.
  • the passing step may further include passing the flexible line through an implant.
  • the implant may include a graft.
  • the implant may include a disc implant.
  • the implant may include a scaffold.
  • the first spinal anatomical structure may include a spinous process and the second spinal anatomical structure may include at least one of a pedicle and bone of a facet joint.
  • the first spinal anatomical structure may include at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure may include a spinous process.
  • the first spinal anatomical structure may include a first side of a cervical spine and the second anatomical structure may include a second side of the cervical spine.
  • the method may further include passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures.
  • the first spinal anatomical structure may include a first facet and the second spinal anatomical structure may include a second facet.
  • a method may include a step for tensioning the flexible line between the fastener and the securing point.
  • FIG. 1 shows an exemplary embodiment of the guidance and positioning device of the present invention
  • FIG. 2 illustrates a cannulated drill system inserted in the device
  • FIG. 3 shows a pushrod configured for inserting a fastener and suture into a hook of the positioning device
  • FIG. 4 illustrates a fastener and suture positioned in the hook
  • FIG. 5 shows a suture claw positioned in the guide channel of the device
  • FIG. 6 illustrates the suture claw withdrawn from the guide channel with the suture disposed in the guide channel
  • FIG. 7 shows the suture connected with the fastener on the distal side of the bone and the suture extending from the drill system
  • FIG. 8 illustrates a fractured bone with the suture extending therethrough
  • FIG. 9 shows a fastener positioned on the proximal side of the bone and secured to the suture
  • FIG. 10 illustrates another embodiment of the implant guidance and positioning device
  • FIG. 11 shows a cannulated drill system disposed in a guide slot of the device
  • FIG. 12 illustrates a fastener disposed in a socket on the distal end of a hookshaped member of the device
  • FIG. 13 shows a fastening member positioned in the guide slot of the device
  • FIG. 14 illustrates a threaded distal portion of the fastening member disposed in a threaded hole of the fastener
  • FIG. 15 shows a fractured bone with the fastening member extending therethrough
  • FIG. 16 illustrates a fastener positioned on the proximal side of the bone and secured to the fastening member
  • FIG. 17 shows one embodiment of a clamping mechanism of the device
  • FIG. 18 illustrates another embodiment of the clamping mechanism of the device
  • FIG. 19 shows an embodiment of a tensioning mechanism of the device
  • FIGS. 20A-20H illustrate multiple embodiments of fasteners and fastener assemblies
  • FIGS. 21A-21G show a plurality of embodiments of tissue alignment sleeves
  • FIG. 22 illustrates the repair of the annulus of an intervertebral disc as well as stabilization of the spinal joint
  • FIG. 23 illustrates a total intervertebral disc replacement implant
  • FIG. 24 illustrates an embodiment for the anchoring of an implant
  • FIG. 25 shows a further embodiment for the anchoring of an implant
  • FIG. 26 illustrates anchorage of an expandable implant for directional expansion
  • FIGS. 27A-27C show multiple embodiments of implant pouches
  • FIG. 28 illustrates ligament repair and stabilization
  • FIG. 29 shows ligament reconstruction and stabilization
  • FIGS. 30A-30C illustrate ligament augmentation/reinforcement
  • FIG. 32 illustrates stabilization of the cervical spine and head
  • FIG. 33 shows decompression and stabilization of the spinal column.
  • FIG. 34 illustrates a drill/sleeve combination in accordance with the present invention
  • FIG. 35 is a cross sectional view of FIG. 34 ;
  • FIG. 36 shows the drill/sleeve combination in use to repair a fractured bone
  • FIG. 37 illustrates the sleeve positioned across the fracture of the bone
  • FIG. 38 shows another exemplary embodiment of the drill/sleeve combination
  • FIG. 39 is a cross sectional view of FIG. 38 ;
  • FIG. 40 illustrates the drill/sleeve combination functioning as a fastener
  • FIG. 41 shows an exemplary distal portion of the fastener
  • FIG. 42 illustrates another exemplary distal portion of the fastener
  • FIG. 43 shows another embodiment of the guidance and positioning device having multiple hooks and guide channels.
  • FIG. 44 shows a schematic illustration of a tissue fixation system according to the present invention utilized for fracture fixation
  • FIG. 45 shows a perspective view of a fastener according to the present invention.
  • FIG. 47 shows a bottom view of the fastener of FIG. 45 ;
  • FIG. 48 shows a top view of the fastener of FIG. 45 ;
  • FIG. 49 shows a fastener and elongate fastening member with the fastener in a first orientation with respect to the elongate fastening member
  • FIG. 50 shows a front view of a fastener in the first orientation with respect to the elongate fastening member with the fastener rotated 180° compared to FIG. 49 ;
  • FIG. 51 shows a back view of the fastener and elongate fastening member of FIG. 50 ;
  • FIG. 52A shows an elongate fastening member according to the present invention
  • FIG. 52B shows an elongate fastening member including expandable members
  • FIG. 53 shows a fastener in a second orientation with respect to an elongate fastening member
  • FIG. 54 shows a cannulated drill system used to create a passage through the tissue to be fixed
  • FIG. 55 shows a sleeve having a lumen through which the fixation system can be passed
  • FIG. 56 shows a distal fastener being inserted into the sleeve
  • FIG. 57 shows a pushrod used to move the distal fastener through the sleeve
  • FIG. 58 shows the distal fastener in the second orientation
  • FIG. 59 shows a proximal fastener being used to maintain the tension in the elongate fastening member
  • FIG. 60 depicts a front isometric view of the medical device of the present invention.
  • FIG. 61 depicts a rear partial isometric view showing the tensioning mechanism of the medical device of FIG. 60 ;
  • FIG. 62 depicts a rear isometric view showing the tensioning mechanism of the medical device of FIG. 60 ;
  • FIG. 63 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 60 ;
  • FIG. 64 depicts a partial isometric view showing the handle portion of the crimping mechanism of the medical device of FIG. 60 ;
  • FIG. 65 depicts a top sectional view of the crimping mechanism collett closer of the medical device of FIG. 60 ;
  • FIG. 66 depicts a partial isometric view showing the cutting mechanism of the medical device of FIG. 60 ;
  • FIG. 67 depicts a partial isometric view showing the collett portion of the cutting mechanism of FIG. 66 ;
  • FIG. 68 depicts an isometric view showing the cutting arm of the cutting mechanism of FIG. 67 ;
  • FIG. 69 depicts the medical device of FIG. 60 in use to secure a bone fracture
  • FIG. 70 depicts a front isometric view of an alternative medical device of the present invention.
  • FIG. 71 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 70 ;
  • FIG. 72 depicts an isometric view of the crimping mechanism collett closer of the medical device of FIG. 70 ;
  • FIG. 73 depicts a sectional view of the medical device of FIG. 70 in use to secure a bone fracture
  • FIG. 74 depicts an exemplary fastener for use with the medical device of FIG. 70 ;
  • FIG. 75 depicts an alternative sectional view of the medical device of FIG. 70 in use to secure a bone fracture
  • FIG. 76 depicts an alternative fastener for use with the medical device of FIG. 75 ;
  • FIG. 77 depicts an alternative cable tensioner for the medical device of FIG. 60 ;
  • FIG. 78 depicts a sectional view of the cable tensioner of FIG. 77 ;
  • FIG. 79 depicts a front isometric view of the medical device of the present invention.
  • FIG. 80 depicts a side sectional view showing the tensioning mechanism of the medical device of FIG. 79 ;
  • FIG. 81 depicts a rear exploded view showing the tensioning mechanism of the medical device of FIG. 79 ;
  • FIG. 82 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 79 ;
  • FIG. 83 depicts a partial isometric view showing the handle portion of the crimping mechanism of the medical device of FIG. 79 ;
  • FIG. 84 depicts a partial isometric view showing the cutting mechanism of the medical device of FIG. 79 ;
  • FIG. 85 depicts an isometric view of the cutting mechanism in the collett of the medical device of FIG. 79 ;
  • FIG. 86 depicts the cutting wedge of the medical device of FIG. 79 ;
  • FIG. 87 depicts a safety lock of the medical device of FIG. 79 .
  • the present disclosure includes instruments and methods for guiding and positioning tissue and/or an implant within the body.
  • the instrument may provide for the placement of a biocompatible implant within tissue or may provide for dynamic and rigid fixation of tissue.
  • the device can access and treat a fractured, incised or torn tissue, or the like, from one access area (i.e., from only one opening to the tissue to be fastened) instead of requiring two or more openings. That is, the device is a linear system that can be used with a single, small incision or portal in the skin or other soft tissue to gain access to the tissue, for example a fractured bone.
  • the guidance and positioning device may be an all-in-one system for creating a passage in tissue, positioning fasteners or other implants, and tensioning an elongated fastening member, like a suture, thread, wire, or pin (generally, a “flexible line”).
  • the device may allow for the implantation of multiple sutures and fasteners in tissue with little or no repositioning of the device.
  • the device may have two or more of the elements described below connected to a single grip or handle.
  • the incision or opening providing access to the treated bone or tissue may extend at least partially in a direction along the length of the treated area so that the processes described below may be repeatedly performed on other, nearby portions of the bone or tissue in a similar manner.
  • the device includes a generally cylindrical handle 22 and a hook 24 with a proximal end connected to the handle 22 .
  • the hook has a tubular construction (e.g., may be hollow).
  • An interior passageway may extend from the proximal end to the distal end.
  • the hook 24 (which may be referred to as a fastener placement rod) may be curved as illustrated in the Figures, may be angular (e.g., may have an open-sided geometric shape), or may have any other desired shape so that its distal end is disposed approximately around the bone or tissue to be treated or fastened.
  • the proximal portion of the hook 24 may be positioned generally parallel with the longitudinal axis of the handle 22 .
  • a plurality of interchangeable hooks 24 may be releasably and interchangeably connected to the handle. In this manner, hooks of different sizes, shapes, or other features may be selected and used as desired by a physician.
  • the device 20 may have a lever, clip, set-screw, button, spring, match, or latch 26 that allows selective securing and releasing of hooks 24 to or from the handle 22 .
  • the lever 26 allows different sized hooks 24 to be placed in the handle 22 .
  • the hook may include different sized lumens extending therethrough, may be different lengths, and/or may have different radii of curvature.
  • the curved or angled portion 28 of the hook 24 may be configured for positioning around a fractured bone 30 (as seen in FIG. 1 ), multiple pieces of similar tissue, multiple pieces of different tissue, or a single tissue element.
  • tissue includes, not is not limited to, bone, muscle, cartilage, ligament, tendon, skin, etc.
  • the tissue may be stomach tissue, and the positioning device may be used during bariatric surgery, like gastric stapling. It is further contemplated that measurements such as the depth, angle, length, and/or compression of the hook may be determined.
  • the handle may include guides or indicia for measuring and displaying these measurements.
  • the positioning device may include sensors for taking these measurements.
  • the handle of the device may include sensors and/or radiofrequency transmitters for determining and sending measurements to a computer and/or display.
  • a guide channel 32 (which may be referred to as a guide tube) extends through the handle 22 .
  • the guide channel 32 extends generally parallel with the longitudinal axis of the handle 22 .
  • the longitudinal axis of the guide channel 32 is generally aligned with or is slightly offset from the distal end 34 of the hook 24 .
  • the shortest distance between the longitudinal axis of the guide channel and the distal end of the hook may be about 2 cm or less. In other embodiments, the shortest distance may be about 1 cm or less, or even about 0.25 cm or less.
  • the guide channel 32 and hook 24 are configured so that the device can be used with a single, small incision in the skin or other soft tissue to gain access to the fractured bone or other tissue requiring fixation.
  • the portions of the guide channel 32 and hook 34 that are near the opening or incision may be spaced apart from each other by about 5 cm or less, and preferably are spaced about 2 cm or less from each other near the incision or opening.
  • the guide channel and hook are generally parallel and relatively close to each other for a substantial portion of the distance between the handle and the incision or opening.
  • the device 20 is positioned with the curved portion 28 (also referred to as a curved segment) of the hook 24 placed next to and around the tissue to be fastened.
  • the hook may be positioned subcutaneously, percutaneously, and/or minimally invasively.
  • the tissue may be a fractured bone, a tissue fragment having tendon and bone or ligament and bone, or a tissue with avulsion type fragments.
  • a curved portion 28 of the hook 24 is placed around a fractured bone 30 (fracture not shown) or tissue.
  • a drill system 36 is positioned in the guide channel 32 .
  • the drill system 36 includes a headpiece 38 configured for attachment to a drill 40 .
  • a drill bit 42 (also referred to as a drill rod) is positioned at the distal end of the drill system 36 .
  • a drill stop 44 is located distal from the headpiece 38 and prevents the drill bit 42 from penetrating too far beyond the tissue to be drilled.
  • the drill system 36 may be a cannulated drill system.
  • a cannula or sleeve 46 may encircle the drill bit 42 or at least the shaft portion of the drill bit 42 . As the drill bit 42 creates a passage 48 through the bone 30 , the sleeve 46 is positioned in the passage 48 to link the bone passage 48 and the guide channel 32 .
  • the drill system 36 is used to create a passage 48 in the bone 30 from the proximal side of the bone 30 to the distal side of the bone 30 , then the drill 40 and drill bit 42 are removed from the sleeve 46 and guide channel 32 .
  • the distal opening of the bone passage 48 is generally near the distal aperture 50 (which may be located at or near the leading end) of the hook 24 .
  • the drill system may be used to create a non-linear passage in tissue.
  • the non-linear passage may be formed to go around implants such as an intramedullary rod or prosthesis.
  • the non-linear passage may also allow a physician to avoid critical body parts or tissues such as vessels or organs.
  • a no drill system may be employed to create a passage in the tissue.
  • the guide channel may be used to guide and position a self-introducing elongate member like a guide wire, k-wire, claw, grabber, etc.
  • the self-introducing member may be forced through the soft or hard tissue instead of pre-drilling a passage.
  • a fastener 52 is positioned at the distal end of a flexible pushrod 54 .
  • the fastener 52 may be connected with the pushrod 54 or may be loosely fitted with the distal end of the pushrod 54 .
  • a suture 56 is looped through or connected with the fastener 52 such that one, two, or more sections, legs, strands, or portions of the suture 56 extend from the fastener 52 .
  • Examples of fasteners may be found in U.S. Pat. Nos. 5,163,960 and 5,593,425 entitled “Surgical Devices Assembled Using Heat Bondable Materials” which disclose fasteners assembled from a plurality of discrete components, one of which includes a heat bondable material for bonding the components together.
  • the heat bondable material is preferably a polymeric or composite material suitable for surgical applications and implantation in the human body.
  • the heat bondable material may be a biodegradable material.
  • a laser, hot air gun, welding gun, soldering gun, or Bovie tip may be used as a heat source for bonding the fastener.
  • U.S. Pat. No. 6,368,343 entitled “Method of Using Ultrasonic Vibration to Secure Body Tissue” further discloses using ultrasonic vibration energy to bond the heat bondable material of the components of the fastener.
  • U.S. Pat. No. 5,403,348 entitled “Suture Anchor” discloses an anchor for securing a suture in the body.
  • the anchor includes a tubular wall having a central axis.
  • the tubular wall has a proximal end and a distal end each free of axially inwardly extending slots.
  • the tubular wall also has an inner surface extending for the entire length of the tube and defining in the anchor a central opening extending between the proximal end and the distal end.
  • the anchor has a width less than its length.
  • a suture may extend through the anchor within the central opening. First and second end portions of the suture extend out of opposite ends of the anchor and are sufficiently long to project out of the body when the suture is secured in the body by the anchor.
  • the anchor has an anchoring orientation in the body achieved by manipulation of the distal end of the anchor by pulling on the second end portion of the suture. Furthermore, the anchor has a removal orientation in the body achieved by manipulation of the proximal end of the anchor by pulling on the first end portion of the suture.
  • U.S. Pat. No. 5,464,426 entitled “Method of Closing Discontinuity in Tissue” discloses a suture anchor having a generally cylindrical configuration with a lumen extending therethrough.
  • a suture is inserted through openings in a plurality of anchors. Pulling on the suture presses the anchors against the body tissue and presses the body tissue together.
  • the anchors may be pushed through the body tissue with a pusher member or by pushing the anchors against each other.
  • U.S. Pat. No. 5,549,630 entitled “Method and Apparatus for Anchoring a Suture” discloses a tubular anchor having a polygonal cross-sectional configuration with flat outer side surfaces areas connected by a plurality of outer corner portions.
  • a passage through the anchor may be formed by flat inner side surfaces interconnected by inner corner portions.
  • a suture is inserted through the passage.
  • a concentrated force may be applied against a limited area on a trailing end of the anchor to rotate the anchor to move an outer corner portion of the anchor into engagement with body tissue.
  • the suture may engage an inner corner portion of the anchor.
  • the suture may be inserted through a plurality of anchors and the anchors moved through a tubular member into the body tissue under the influence of force transmitted from a trailing anchor to a leading anchor.
  • the leading anchor When the leading anchor is moved into the body tissue, it is rotated under the influence of force applied against a trailing end of the leading anchor.
  • two anchors may be interconnected.
  • a groove may advantageously be provided along the leading end and side of an anchor to receive the suture.
  • U.S. Pat. No. 5,713,921 entitled “Suture Anchor” discloses a suture anchor formed from body tissue.
  • the body tissue is shaped to a desired configuration for the anchor and defines a passage through the anchor.
  • a suture is inserted into the passage in the body tissue of the anchor.
  • the anchor is then positioned in a patient's body with a suture extending into the passage in the anchor.
  • the anchor may be formed of osseous body tissue, hard compact bone, dense connective body tissue, or other body tissue.
  • the body tissue may be dried so that it absorbs fluid and expands upon being inserted into a patient's body.
  • U.S. Pat. No. 5,718,717 also entitled “Suture Anchor” discloses an anchor formed of a material which absorbs body liquid when exposed to body liquid.
  • the anchor may be at least partially formed of a material having a strong affinity for body liquids. This enables the anchor to absorb body liquid and expand upon being inserted into a patient's body.
  • At least one embodiment of the suture anchor has portions formed of a relatively hard material which does not absorb body liquids and is pressed against body tissue by the material which absorbs body liquid to mechanically interlock the suture anchor and the body tissue.
  • the anchor may be at least partially formed of a cellular material. The cells expand to absorb body liquid.
  • At least one embodiment of the anchor has a pointed leading end portion to form an opening in an imperforate surface on body tissue. The configuration of the anchor may be changed by tensioning the suture while the anchor is disposed in body tissue.
  • U.S. Pat. No. 5,782,862 entitled “Suture Anchor Inserter Assembly and Method” discloses a suture anchor inserter assembly including a manually engageable handle and a shaft which extends axially outward from the handle.
  • the shaft includes an inner member which is fixedly connected with the handle and an outer member which is retractable into the handle.
  • An anchor is received in a chamber formed at the outer end of the shaft.
  • U.S. Pat. No. 5,814,072 entitled “Method and Apparatus for Use in Anchoring a Suture” discloses a suture anchor inserter including a manually engageable handle and a shaft which extends from the handle through a passage in the anchor. During insertion of the anchor into body tissue, an end portion of the shaft pierces the body tissue in advance of the anchor. At the same time, a pusher surface on the shaft applies force against a trailing end portion of the anchor to push the anchor into the body tissue. When the orientation of the anchor is to be changed, rotational force is applied to the anchor by tensioning the suture and pressing the end portion of the shaft against an inner surface of the passage in the anchor.
  • U.S. Pat. No. 5,814,073 entitled “Method and Apparatus for Positioning a Suture Anchor” discloses an inserter assembly operable between a closed condition blocking movement of a suture anchor through the inserter assembly and an open condition in which the inserter assembly is ineffective to block movement of the anchor.
  • U.S. Pat. No. 5,845,645 entitled “Method of Anchoring a Suture” discloses a process of fastening a suture to an anchor.
  • the suture is inserted through passages which are spaced apart along and extend transversely to a longitudinal central axis of an anchor.
  • a first portion of the suture extends from the first passage in the anchor through an opening in the body tissue to a location disposed to one side of the body tissue.
  • a second portion of the suture extends from the second passage in the anchor through the opening in the body tissue.
  • the suture is tensioned to apply force to the anchor.
  • the force applied to the anchor by the suture initiates tipping of the anchor and movement of an end surface on the anchor across a leading end surface on an inserter member.
  • U.S. Pat. No. 5,921,986 entitled “Bone Suture” discloses an anchor connected with a suture moved through a passage between opposite sides of a bone. The anchor is then pivoted to change its orientation. A second anchor is connected with the suture. While tension is maintained in the suture, the suture is secured against movement relative to the anchors. This may be done by tying the suture or by using a suture retainer to hold the suture. A suture retainer may be used in place of the second anchor.
  • U.S. Pat. No. 5,948,002 entitled “Apparatus and Method for Use in Positioning a Suture Anchor” discloses an apparatus which includes a tubular outer member and an inner or pusher member. During assembly of the apparatus, a suture is positioned in a slot in the outer member. During use of the apparatus, the slot facilitates visualization of the position of the suture anchor relative to body tissue. In addition, the slot facilitates separation of the apparatus from the suture after the suture anchor has been positioned in the body tissue.
  • a suture anchor retainer may be provided at one end of the tubular outer member to grip the suture anchor and hold the suture anchor in place during assembly.
  • the tubular outer member may be utilized to guide a drill during formation of an opening in body tissue and may be subsequently utilized to guide movement of a suture anchor into the opening in the body tissue.
  • U.S. Pat. Nos. 6,010,525; 6,159,234; and 6,475,230 entitled “Method and Apparatus for Securing a Suture” disclose improved method to secure a suture relative to body tissue.
  • a suture retainer is moved along first and second sections of a suture toward the body tissue.
  • the first and second sections of the suture are gripped with the suture retainer by plastically deforming material of the suture retainer.
  • the material of the suture retainer cold flows under the influence of force applied against the surface areas on the suture retainer.
  • One or more bends are formed in each of the sections of the suture to increase the holding action between the suture retainer and the sections of the suture.
  • the bends may be formed by wrapping a turn of the suture around a portion of the suture retainer. During movement of the suture retainer toward the body tissue, the bends are moved along the first and second sections of the suture.
  • U.S. Pat. No. 6,045,551 entitled “Bone Suture” discloses an anchor connected with a suture moved through a passage between opposite sides of a bone. The anchor is then pivoted to change its orientation. A second anchor is connected with the suture. While tension is maintained in the suture, the suture is secured against movement relative to the anchors. This may be done by tying the suture or by using a suture retainer to hold the suture. A suture retainer may be used in place of the second anchor.
  • the passage may extend across a fracture in the bone. The passage may have either a nonlinear or linear configuration.
  • a tubular member may be positioned in the passage with the tubular member extending into portions of the passage on opposite sides of the fracture. Opposite end portions of the tubular member may be disposed in a compact outer layer of the bone. If desired, a member other than a suture may be used as a force transmitting member between the two anchors.
  • the tubular member may be formed of bone.
  • U.S. Pat. No. 6,447,516 entitled “Method of Securing Tissue” discloses a retainer member formed of bone which secures tissue against movement relative to a portion of a bone in a patient's body.
  • the retainer member is utilized to form an opening in a compact outer layer of a portion of the bone in the patient's body.
  • the retainer member formed of bone is advantageously enclosed in a tubular member or sleeve to prevent breaking of the retainer member during the forming of the opening in the bone.
  • the extent of movement of the retainer member into the bone in the patient's body is determined as the retainer member is moved into the bone.
  • a suture may be connected with the retainer member and used to connect tissue with the bone.
  • U.S. Pat. No. 6,592,609 entitled “Method and Apparatus for Securing Tissue” discloses an anchor having a pointed end portion may be utilized to form an opening in a bone in a patient's body.
  • the anchor is moved into the opening formed in the bone in the patient's body with a suture connected to the anchor.
  • the suture may then be utilized to retain body tissue in a desired position relative to the bone.
  • the body tissue may be either hard or soft body tissue.
  • the anchor may be utilized in conjunction with layers of soft body tissue.
  • a suture When a suture is used it may be secured by connecting a retainer with the suture. Alternatively, sections of the suture may be interconnected.
  • the suture may be secured in place by exposing a retainer to ultrasonic vibratory energy or by applying the ultrasonic vibratory energy directly to sections of the suture.
  • U.S. Pat. No. 6,635,073 entitled “Method of Securing Body Tissue” discloses a process to secure a first body tissue with a second body tissue.
  • a first anchor is moved along a first path through the first body tissue into the second body tissue.
  • a second anchor is moved along a second path through the first body tissue into the second body tissue.
  • a suture extending between the anchors may be tightened by moving the second anchor along a path which extends transverse to the path of the first anchor.
  • the suture which extends between the anchors may have free ends which are connected with a suture retainer. The free ends of the suture may be interconnected either before or after the anchors are moved along the first and second paths.
  • the suture may be a continuous loop which extends between the two anchors.
  • a guide assembly may be provided to guide movement of the anchors along the two paths. The paths along which the anchors move may intersect so that the anchors may be interconnected at the intersection between the two paths.
  • U.S. Pat. No. 6,719,765 entitled “Magnetic Suturing System and Method” discloses an instrument and method for passing a medical implement through tissue with magnetic forces.
  • the implement can be an implant, either permanent or temporary, and is provided with a magnetic component. A magnetic field is established and the magnetic component and/or magnetic field is manipulated to drive the implant through tissue.
  • the instrument itself is the implement and includes at least one magnetic element so that a magnetic field established by an external magnetic generator drives the instrument through tissue.
  • the instrument includes two magnetic elements that are moveable with respect to one another and interaction between the magnetic elements drives the instrument through the tissue. Examples of applications of the present invention include a suture passer and a tissue anchor.
  • U.S. Pat. No. 7,094,251 entitled “Apparatus and Method for Securing a Suture,” discloses a suture retainer having an upper or cover section and a lower or base section which cooperate to define passages through which portions of a suture extend. Projections on the cover section of the retainer extend into recesses on the base section of the retainer. A center projection on the base section extends between the two projections on the cover section. The projections cooperate with surfaces on body sections of the cover and base section of the retainer to position and grip portions of the suture.
  • the retainer may be moved along the portions of the suture while the retainer is gripped by an applicator assembly.
  • the applicator assembly is operable to apply energy to the retainer to bond end portions of the projections on the cover section to bottoms of recesses in the base section of the retainer.
  • U.S. Patent Application Publication Nos. 2004/0230223 and 2004/0220616 and U.S. Pat. No. 7,329,263, entitled “Method and Device for Securing Body Tissue,” disclose sutures and suture retainers positioned relative to body tissue. Energy, such as ultrasonic vibratory energy, is utilized to heat the suture retainer and effect a bonding of portions of the suture retainer to each other and/or to the suture. Portions of the body tissue may be pressed into linear apposition with each other and held in place by cooperation between the suture and the suture retainer.
  • the suture retainer may include one or more portions between which the suture extends.
  • the suture retainer may include sections which have surface areas which are bonded together.
  • the suture may be wrapped around one of the sections of the suture retainer.
  • the suture retainer may be formed with a recess in which the suture is received. If desired, the suture retainer may be omitted and the sections of the suture bonded to each other.
  • the fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barbed, bubbled, laminated, coated, blocking, pneumatic, one-piece, Morse taper single piece, multi-component, solid, hollow, polygon-shaped, pointed, locking and unlocking, self-introducing, knotless, and combinations thereof.
  • the fasteners may include metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, biocompatible adhesive, and combinations thereof.
  • body tissue examples include bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, autograft, and synthetic graft material.
  • the fasteners may also be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • the fasteners may also be made of or have a coating made of an expandable material.
  • the material could be compressed then allowed to expand.
  • the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are PEEK, ePTFE, and desiccated body tissue.
  • the fasteners and implants of the present invention may include any combination of materials and agents disclosed herein.
  • a fastener may include combinations of hydrophilic material, synthetic body tissue, collagen, synthetic collagen, heat bonded material, biocompatible adhesive, and cells, such as stem cells.
  • the fasteners described herein and incorporated by reference may include therapeutic substances to promote healing.
  • These substances could include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), tissue inductive factors, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof.
  • These therapeutic substances may be combined with the materials used to make the fasteners to produce a composite fastener or implant.
  • the therapeutic substances may be impregnated or coated on the fastener.
  • Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener.
  • the therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • a fastener may take the configuration of an integrated fastener and arm member.
  • the flexible arm may be incorporated into the fastener and extend therefrom.
  • the arm may be connected with an end portion of the fastener or with any portion between the end portions, like the midpoint.
  • the fastener and flexible arm may include the same or different materials and/or therapeutic agents.
  • the fastener may be positioned at the distal end of the hook with the flexible arm extending from the fastener either within the lumen of the hook or exterior to the hook. Once the fastener is properly placed within the body, the flexible arm may be positioned through or around tissue and/or an implant and tensioned to compress and stabilize the tissue and/or implant. Another fastener may be connected with the flexible arm to maintain tension and position of the arm.
  • the sutures of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, copolymeric material, or combinations thereof.
  • the sutures may be degradable, biodegradable, bioabsorbable, or nonbiodegradable.
  • suture materials are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, PLA, PGA, caprolactam, and copolymers of glycolic and lactic acid.
  • the sutures are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced.
  • the sutures may have a coating of therapeutic substances or drugs.
  • the sutures may include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • the pushrod 54 With the fastener 52 and suture 56 on the distal end of the flexible pushrod 54 , the pushrod 54 is moved distally through the lumen of the hook 24 until the fastener 52 is positioned generally next to the distal opening of the bone passage 48 , as seen in FIG. 4 .
  • the pushrod 54 may be advanced to push the fastener 52 beyond the distal aperture 50 of the hook 24 or may be advanced to position the fastener 52 partially in and partially out of the hook 24 . In the latter configuration, the fastener 52 may be easily withdrawn, if necessary, from the hook 24 by moving the pushrod 54 proximally.
  • the fastener 52 and suture assembly may be assembled in the lumen prior to inserting the device in a patient.
  • a suture may be threaded into the lumen from the distal end of the hook 24 , or may be inserted through the proximal end as described above before inserting the hook into the patient's body. This allows visual confirmation of that the fastener is in a desired position before introducing it into the patient's body.
  • the hollow interior of the hook 24 may be sized to allow sutures to be placed therethrough, but sufficiently small to preclude the fastener 52 from entering it.
  • the distal end may have a bracket or assembly that holds the fastener 52 in a desired position.
  • the bracket or assembly may grip the fastener in place, such as by an interference fit or with friction. In one embodiment, application of tensioning forces to the suture helps hold the fastener 52 in a desired position relative to the distal end of the hook 24 .
  • a suture claw or grabber 58 (which may be referred to as a gripper rod) is positioned in the guide channel 32 and through the bone passage 48 .
  • a hook, claw, or clip 60 (which may be referred to as a gripper) is attached to the distal end of the suture claw 58 .
  • the hook or clip 60 exits or at least partially exits the distal opening of the bone passage 48 . Since the fastener 52 is positioned near the distal opening of the bone passage 48 , the hook or clip 60 of the suture claw 58 can grab or capture the suture 56 extending from the fastener 52 .
  • the suture 56 may be grabbed by rotating the suture claw 58 and allowing the suture 56 to wrap around the hook 60 at the distal end of the suture claw 58 .
  • the suture 56 may be grabbed with a clip 60 , like an alligator clip, which may be activated from the proximal end of the suture claw 58 .
  • a spiral member like a corkscrew, may be disposed on the distal end of the suture claw. The suture claw may be twisted to thereby allow the spiral member to grab the suture.
  • the suture claw should grab all the suture legs or portions attached to the fastener. For example, in FIG. 5 , there are two suture legs extending from the fastener. Both legs should be captured by the suture claw either simultaneously or sequentially.
  • the fastener or suture may be pulled or placed in position using magnetic or electromagnetic force.
  • a magnet may be used to pull a suture through the passage.
  • the arm may be pulled through the passage.
  • the suture or flexible arm may include a material which is attracted to a magnet.
  • the suture claw may include a distal tip configured for penetrating into and through the tissue. Using a self-introducing suture claw eliminates the need to bore a passage through the tissue before pulling the suture through the tissue.
  • the suture claw 58 is shown retracted from the guide channel 32 . As the suture claw 58 is retracted, it pulls the suture and/or suture portions 56 from the lumen of the hook 24 and into the guide channel 32 . As seen in FIG. 7 , the proximal ends of the suture portions 56 may extend beyond the proximal end of the guide channel 32 when the suture claw is fully retracted.
  • the hook, handle, and drill sleeve of the drill system are removed from the bone 30 .
  • the fastener 52 (not shown) is located on the distal side of the bone 30 .
  • the suture 56 extends from the fastener 52 through the bone passage and out the proximal opening of the bone or tissue passage.
  • another fastener 62 is placed around or otherwise connected with the suture and/or suture portions 56 .
  • the suture 56 is tensioned, and the fastener 62 is secured to the suture 56 to thereby approximate the fracture and stabilize the bone 30 .
  • the tension of the suture pulls on the fasteners 52 and 62 generally towards each other, thereby applying pressure to the fractured bone or tissue.
  • FIG. 10 Another exemplary embodiment of the guidance and positioning device 70 is illustrated in FIG. 10 .
  • the device 70 is shown positioned around a fractured bone 30 . It should be understood that the device may be used to fasten any tissue type or combination of tissues as described herein.
  • the device 70 includes a generally cylindrical handle 22 and a hookshaped elongated member 72 attached to the handle 22 .
  • the hook-shaped elongated member 72 does not necessarily include a lumen extending therethrough.
  • the proximal portion of the hook-shaped member 72 may be positioned generally parallel with the longitudinal axis of the handle 22 .
  • the device 70 may include a lever, clip, set-screw, button, spring, or latch 26 for securing and releasing the hook-shaped elongated member 72 .
  • the lever 26 allows different sized hooks to be placed in the handle 22 .
  • the hooks may be of different lengths, have different radii of curvature, or have different types or sizes of bone engagement portions 28 .
  • a guide slot 74 extends through the handle 22 generally parallel with the longitudinal axis of the handle 22 .
  • the longitudinal axis of the guide slot 74 is generally aligned with the distal end of the hook-shaped member 72 .
  • the guide slot 74 and hook-shaped member 72 are generally parallel and relatively close to each other at and just distal to the handle 22 . In this configuration, a single, small, percutaneous incision may be made in skin or other soft tissue to gain access to the fractured bone or other tissue requiring fixation.
  • the device 70 is positioned with the hook-shaped portion 76 of the hook-shaped elongated member 72 placed next to and around the tissue to be fastened.
  • the hook-shape portion 76 is placed around a fractured bone 30 (fracture not shown).
  • a drill system 36 is positioned in the guide slot.
  • the drill system 36 includes a headpiece 38 configured for attachment to a drill 40 .
  • a drill bit 42 is positioned at the distal end of the drill system 36 .
  • a drill stop 44 is located distal from the headpiece 38 and prevents the drill bit 42 from penetrating too far beyond the tissue to be drilled.
  • the drill system 36 may be a cannulated drill system.
  • the drill system 36 is used to create a passage 48 in the bone 30 from the proximal side of the bone 30 to the distal side of the bone 30 .
  • the distal opening of the bone passage 48 is generally near a socket 78 at the distal end of the hook-shaped portion 76 of the elongated member 72 .
  • a drill system may not be needed to form a passage in the tissue.
  • An elongated member with a distal tip configured for penetrating through tissue may be placed in the guide slot and used for passage through tissue.
  • the elongate member may be a guide wire, k-wire, needle, or like device.
  • FIG. 12 illustrates the socket 78 at the distal end of the hook-shaped portion 76 of the elongated member.
  • the socket 78 is dimensioned and configured for holding and/or carrying a fastener 52 .
  • the socket 78 may be a hollow cylinder or any other configuration capable of accepting a fastener 52 .
  • the socket 78 is positioned at the distal end of the hook-shaped member 72 such that the fastener 52 is generally aligned with the distal opening of bone passage 48 .
  • the fastener may include characteristics, materials, therapeutic substances, coatings, or any other features as described herein. It is contemplated that the socket may hold the fastener magnetically, frictionally, with an interlocking mechanism such as a snap, with adhesive, etc.
  • FIG. 13 the drill system is removed from the guide slot 74 .
  • a fastening member 80 is placed in the guide slot 74 and through the passage in the bone 30 .
  • the fastening member 80 is moved distally through the passage and inserted into the fastener disposed in the socket at the distal end of the hook-shaped member 72 .
  • the fastening member may be made of metal, polymer, ceramic, composite, body tissue, or combinations thereof.
  • the fastening member may also include features, therapeutic agents, and coatings similar to the fastener and suture described herein.
  • FIG. 14 illustrates one exemplary embodiment of the connection between the fastening member 80 and the fastener 52 .
  • the distal end of the fastening member includes a threaded portion 82
  • the fastener 52 includes a threaded hole.
  • the fastening member 80 is screwed into the fastener 52 .
  • Other examples of connecting the fastening member and fastener include ball and socket, hook and loop, mechanical expansion, material expansion, dovetail, orientation change, heat bondable material, biocompatible adhesive, and other similar connection means.
  • the fastening member 80 may include a sharp or pointed distal tip to allow the member to be moved through the tissue, free of a passage. Using a self-introducing fastening member may eliminate the need to pre-drill the passage in the tissue.
  • the guidance and positioning device is removed from the bone 30 .
  • the fastener 52 (not shown) is located on the distal side of the bone 30 .
  • the fastening member 80 extends through the bone passage and out the proximal opening of the bone passage.
  • another fastener 62 is placed around the fastening member 80 .
  • the fastening member 80 is tensioned, and the fastener 62 is secured to the fastener member 80 to thereby approximate the fracture and stabilize the bone 30 .
  • the tension of the fastening member pulls the fasteners toward each other, which in turn causes pressure to be applied to the treated bone or tissue.
  • the guidance and positioning device 20 , 70 may be used without a distal fastener.
  • the device 20 , 70 is used to position a suture on the backside or distal portion of the tissue.
  • the suture claw, grabber, or elongate member may be placed in the guide channel or guide slot and moved distally toward the suture located at the distal end of the hook.
  • one or two sections of the suture may be pulled through the tissue to the proximal side of the tissue.
  • the suture or sutures may be pulled through a pre-drilled passage created by a drill system or may be pulled through a passage created by a self-introducing suture claw.
  • the suture Once a portion of the suture is positioned on the proximal side of the tissue (e.g., a securing point), it may be tensioned and secured with a fastener.
  • the proximally extending suture section may be fastened with another section of the suture extending from the distal end of the hook and around the tissue.
  • a suture loop is formed with tissue caught or positioned in the middle of the loop. The two sections of the suture may be secured with a knot or a fastener.
  • FIGS. 17 and 18 illustrate exemplary embodiments of clamping mechanisms for the guidance and positioning device.
  • FIG. 17 shows a tubular clamp member 84 connected with the handle 22 of the device 20 , 70 .
  • the clamp member 84 includes a lumen extending therethrough for allowing passage of the drill system, suture claw, and suture as previously described.
  • the proximal portion of the clamp member 84 includes threads 86 , a ratchet, or the like for advancing the clamp member 84 into and out of the handle 22 .
  • the distal end of the clamp member 84 may include a tissue pad 88 for contacting tissue.
  • the tissue pad 88 may be integrally formed on the distal end of the clamp member.
  • its cross-section may initially be relatively the same size along its length, including at the distal end. Subsequently, the distal end may be deformed or flattened to have a larger cross section.
  • the tissue pad 88 also may be connected to the clamp member in a manner that allows it to rotate and/or swivel. As the clamp member 84 is moved toward the bone or tissue, some areas of the tissue pad 88 may begin to make contact even though the clamp member 84 may require additional rotation or advancement in order to obtain a desired amount of contact. If the tissue pad 88 is able to rotate or swivel, it can adjust to the contours of the bone or tissue while also reducing potential abrasion.
  • the contact surface of the tissue pad 88 may be substantially flat, as shown in FIG. 17 , but it also may be curved or have a different shape that may correspond generally to the curvature or shape of the bone or tissue that it may contact.
  • the contact surface also may be deformable so that it can more easily conform to an uneven surface of bone or tissue.
  • the deformable surface of the tissue pad may be formed from a layer of elastomeric material (e.g., rubber or urethane), foam material, or any other elastomeric material suitable for use in a surgical procedure.
  • the device 20 is positioned about a bone, or other tissue.
  • the clamp member 84 is moved or rotated distally so that the tissue pad 88 contacts the proximal side of the bone. Further advancement of the clamp member 84 causes the tissue pad 88 to apply pressure on the bone or tissue.
  • Teeth or other friction means 90 may be disposed on the distal portion of the hook 24 to make contact with the distal side of the bone so that when the clamp member 84 extended, the device 20 is clamped or held in position relative to the bone.
  • the contacting surface of the hook also may be modified or configured in the manner described above for the tissue pad.
  • FIG. 18 shows another embodiment of a clamping mechanism.
  • the tubular clamp member 84 is slideably disposed or connected with the handle 22 of the device 20 , 70 .
  • the clamp member 84 may also include a lumen extending therethrough.
  • a squeeze/finger grip 92 is connected with the handle 22 for advancing and retracting the clamp member 84 relative to the handle 22 .
  • the clamp member 84 may be moved or ratcheted distally thereby pressing the tissue pad 88 against the bone or other tissue.
  • the clamp member functions like a come-along with detents and/or teeth.
  • the squeeze grip 92 may be moved away from the handle 22 to move the clamp member 84 proximally, or a release button or spring or clip may be activated to permit the clamp member 84 to move proximally.
  • Teeth or other friction means 90 may be disposed on the proximal side of the socket 78 . With the clamp member 84 extended, the device 70 is held to the bone or other tissue between the tissue pad 88 and teeth 90 or socket 78 .
  • the guidance and positioning device 20 , 70 may include one or more inflatable members, such balloons.
  • An inflatable balloon may be positioned along the hook at a location where the hook passes near the proximal surface of the tissue. That is, the balloon may be located at the proximal end of the curved portion of the hook.
  • the device In a deflated configuration, the device may be properly positioned by the physician. The balloon may then be inflated to press against the proximal side of the tissue causing the distal end of the hook to press against the distal side of the tissue and thereby hold or lock the device in place.
  • the balloon may be inflated with air, gas, or liquid.
  • Inflation may be made manually with a hand pump, electrically with an electric pump or battery-operated pump, or pneumatically with a pressure cartridge.
  • the balloon may also help guide the distal end of the hook into the proper position. Multiple balloons may be inflated and/or deflated together or separately to guide the hook. Also, the balloon(s) may be used to create space in tissue.
  • the device 20 , 70 may include a balloon at the distal end of the hook. Operation of the balloon may be similar to as previously described; however, in the current embodiment, the balloon may inflate to press against the distal side of the tissue causing the proximal portion of the hook (which may include a tissue pad or gripping teeth) to press against the proximal side of the tissue to thereby hold the device in position. Furthermore, two or more balloons may be used to position and hold the device relative to the tissue. The plurality of balloons may be located along the hook or guide channel and inflated together or individually to properly align and hold the device in place. In addition to holding the device relative to the tissue, the balloon or balloons may compress the tissue, tissue elements, and/or implant. With the tissue and/or implant compressed, a fastener or other implant may be positioned within the body.
  • the device 20 , 70 may include a tensioning mechanism 94 to tension the suture 56 or fastening member 80 .
  • the tensioning mechanism 94 may be attached to the handle 22 , tubular member 24 , elongated member 72 , or other component of the device 20 , 70 . After the suture 56 or fastening member 80 is inserted through the passage in tissue, like a fractured bone 30 , the tensioning mechanism 94 may pull and tension the suture 56 or fastening member 80 while a proximal fastener 62 is positioned to maintain the tension in the suture 56 or fastening member 80 .
  • the tensioning mechanism 94 may be, but is not limited to, two elements which pinch the suture 56 or fastening member 80 to pull it proximally or a spool which rotates to pull the suture 56 or fastening member 80 .
  • a tension gauge, strain gauge, read-out display, tension limiter, and/or an audio or visual tension indicator may be used to apply the proper tension to the suture or fastening member.
  • measurement of the tension may be accomplished with a spring, a radiofrequency emitting device, and/or a sensor such as an electrical sensor, flexible sensor, compressive sensor, piezoelectric sensor.
  • Other examples of tension applicators are disclosed in U.S. Pat. Nos.
  • the distal portion 96 of the tubular clamp member 84 may be offset or curved thereby exposing the suture 56 or fastening member 80 between the fractured bone 30 and clamp member 84 .
  • the tubular clamp member 84 may include a lumen extending therethrough with the lumen having an aperture at or near the proximal end of the offset portion 96 or the distal end of the straight section of the clamp member 84 .
  • the offset distal portion 96 allows a fastener 62 to be placed around the suture 56 or fastening member 80 adjacent to the proximal side of the bone 30 .
  • the fastener 62 may be applied to maintain the tension in the suture 56 or fastening member 80 .
  • the guidance and positioning device of the present invention may include more than one hook or elongated member for positioning multiple fasteners at the distal side of tissue.
  • the device 150 may include two hooks or elongated members 152 and 154 attached to the handle 156 and positioned generally parallel to each other.
  • the handle 156 may then include two guide channels, slots, or pins 158 and 160 , each being aligned with one of the distal ends of the hook shaped tubular or elongated members.
  • two passages 162 and 164 may be drilled in tissue, like a fractured bone 166 , and two sutures or fastening members may be positioned through the passages, tensioned, and secured.
  • One passage 162 may be non-linear while the other passage 164 may be linear. Having multiple hooks and guide channels or slots allows a physician to implant multiple fasteners thereby producing compression on the implant or tissue, enhancing the healing environment, and allowing for tissue ingrowth.
  • the device with multiple hooks or pins may also be used to position other implants disclosed herein, such as adhesives, tissue scaffolds, medicaments, etc.
  • the device of the present invention may be disposable or may be sterilized after use and reused.
  • the device may be partly disposable and partly reusable.
  • the handle may be reusable and the hook and/or guide channel may be disposable.
  • the handle may be disposable.
  • the device, its components, fasteners, drill bits, sutures, and other apparatus disclosed herein may be package in a kit.
  • the kit may be set-up of a specific procedure, such as repair of a fractured bone, securing of an implant, approximating body tissue, etc.
  • the present invention not only provides an instrument and method for dynamic and rigid fastening of tissue, but it also provides for the guidance and positioning of an implant within the body.
  • the present invention may be utilized with tissue scaffolds as described in U.S. Pat. No. 7,299,805, entitled “Scaffold and Method for Implanting Cells,” by Peter M. Bonutti. Viable cells may be positioned on a support structure then implanted within a body. One or more blood vessels may be connected with the support structure to provide a flow of blood through the support structure.
  • the devices and methods of the present invention may be used to guide and position the support structure within the body and fasten the scaffold to tissue or another implant by way of a sling support and/or strut.
  • the above mentioned application is hereby incorporated by reference.
  • the present invention may be used in combination with a medical system for the administration of a pharmaceutical agent in vivo to a patient.
  • the medical system may include an implant positionable in a body of a patient.
  • a pharmaceutical agent may be disposed on the medical implant and at least partially coated with a reactive coating.
  • the reactive coating acts to control the release of the pharmaceutical agent.
  • An energy unit may be provided for transmitting an energy signal to the reactive coating, wherein the reactive coating reacts to the energy signal to control the release rate of the pharmaceutical agent.
  • the energy unit may also heat up the treatment site, locally increasing vascularity at the treatment site and allowing thermal necrosis of tissue.
  • the localized increasing in temperature increases the permeability of the local tissue, allowing for an increased and more efficient adsorption of the pharmaceutical agent into the treatment site.
  • the local cells may release beneficial proteins, enzymes, hormones, etc.
  • a pharmaceutical agent, drug, or medicament may be delivered within the body using the positioning device described herein.
  • the hook and/or guide channel of the positioning device may conduct the passage of a medicament to a specific location within the body.
  • the drug may be transported through the lumen of the hook or guide channel or, alternatively, may be placed on the exterior of the hook or guide channel.
  • the medicament may be released in a constant stream or in a pulsatile manner.
  • medicaments examples include those disclosed throughout this application and, additionally, but not limited to, an anti-inflammatory agent, non-proliferative agent, anti-coagulant, anti-platelet agent, Tyrosine Kinase inhibitor, anti-infective agent, anti-tumor agent, anti-leukemic agent, and combinations thereof.
  • One or more medicaments may be placed in one or more reservoirs which are in fluid communication with the positioning device.
  • the reservoir may be physically separate from the device with tubing interconnecting the device and reservoir. Alternatively, the reservoir may be integrated into or attached to the positioning device. Release of the medicament may be achieved through manual operation such as with a plunger, air pressure, or valve or through electrical operation such as with a pump or valve.
  • the medicament may be released from the positioning device or remotely away from the device as with a radiofrequency or signal emitting device.
  • an adhesive may be delivered within the body in the way a medicament is delivered as described above.
  • the adhesive could a polysaccharide based adhesive, fibrin adhesive, mollusc based adhesive, cyanoacrylate based adhesive, polymeric based adhesive, or other biocompatible adhesive.
  • the adhesive could be thermally activated or pH activated.
  • the adhesive could be a single part adhesive or a two part adhesive requiring both parts to activate the adhesive.
  • the adhesive may also be hydrophilic or include hydrophilic material. The hydrophilic adhesive/material may expand upon imbibing liquid, such as body fluid. In use, the adhesive may be delivered within the body to bond tissue together such as soft tissue to soft tissue, soft tissue to hard tissue, or hard tissue to hard tissue.
  • portions of a fractured bone may be adhered, a muscle may be bonded to other muscle or to a tendon, and a ligament may be adhered to another ligament, to muscle, and/or to bone.
  • the adhesive may also be used to bond an implant with body tissue or to another implant.
  • a bone or joint replacement component may be adhered to another replacement component or to other bone
  • tissue scaffolding with cells may be bonded to other tissue or other scaffolding
  • fasteners may be adhered to tissue or sutures.
  • an energy sink such as a pH sink
  • the pH sink is configured to absorb energy from the energy unit, releasing a chemical to either increase or decreasing the local pH.
  • the change in local pH can either increase or decrease the degradation rate of a degradable polymer coating, which in turn can control the release rate of a pharmaceutical agent.
  • the pH sink can be formed from calcium carbonate. Additionally, the localized change in pH created by the pH sink has beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent.
  • a localized increasing in pH increases the permeability of the local tissue, allowing for an increased and more efficient adsorption of the pharmaceutical agent into the treatment site.
  • the energy sink may also be used to induce the release of beneficial enzymes, proteins, hormones, etc. from the cells in the treatment site.
  • a localized increase in acidity and/or temperature can be perceived as a physical damage or an infection to the local area.
  • to the local cells may release beneficial proteins, enzymes, hormones, etc.
  • the positioning device and method of the present invention may be used to guide and position a drug-eluting implant, a heat sink, or pH sink within the body.
  • the present invention may also be used with various procedures for repairing, reconstructing, and stabilizing tissue and implants within the body.
  • tissue include bone, muscle, ligament, tendon, skin, organ, cartilage, and blood vessels.
  • implants include an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic.
  • Other implants include breast implants, biodegradable plates, metallic fasteners, rods, plates, screws, screw strips, spacers, cages, compliant bearing implants for one or more compartments of the knee, nucleus pulposus implant, stents, meniscal implants, tissue grafts, tissue scaffolds, biodegradable collagen scaffolds, polymeric or other biocompatible scaffolds, abdominal hernia meshes, cochlear implants, tracheal implants, small intestine submucosal grafts, TISSUEMEND scaffolds, prostheses, nanotechnology devices, sensors, emitters, radiofrequency emitting diodes, computer chips, RFID (radiofrequency identification) tags, adhesives, and sealants.
  • nucleus pulposus implant stents, meniscal implants, tissue grafts, tissue scaffolds, biodegradable collagen scaffolds, polymeric or other biocompatible scaffolds, abdominal hernia meshes, cochlear implants, tracheal implants, small intestine submuco
  • Example devices and methods may provide for the repair, reconstruction, augmentation, and securing of tissue and/or implants during a surgical procedure and “on the way out” after the surgical procedure has been performed but before the skin incision has been closed. Tissue at and around the operation site and tissue between the operation site and skin incision is rebuilt so that tissue-function may be at least partially restored and the operation region may be stabilized for enhanced healing.
  • the devices used to repair, reconstruct, augment, and/or secure tissue or implants may be any biocompatible fastener described herein or found in the prior art. Examples of fasteners, implants, and their methods of employment may be found in U.S. Pat. Nos. 5,163,960; 5,403,348; 5,441,538; 5,464,426; 5,549,630; 5,593,425; 5,713,921; 5,718,717; 5,782,862; 5,814,072; 5,814,073; 5,845,645; 5,921,986; 5,948,002; 6,010,525; 6,045,551; 6,086,593; 6,099,531; 6,159,234; 6,368,343; 6,447,516; 6,475,230; 6,592,609; 6,635,073; and 6,719,765.
  • the fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barded, bubbled, laminated, coated, blocking, pneumatic, one-piece, multi-component, solid, hollow, polygon-shaped, pointed, self-introducing, and combinations thereof.
  • the fasteners may include, but are not limited to, metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, and combinations thereof.
  • the fasteners of the present invention may be linear fixation fasteners.
  • Such fasteners secure tissue or an implant with access to only one side of the tissue or implant.
  • the fastener is advanced through the tissue or implant, usually through a pre-made passage or without a passage when the fastener is self-introducing.
  • a distal portion of the fastener expands, biases outward, or changes configuration such that the distal portion prevents the fastener from being pulled back out of the tissue or implant.
  • the proximal portion of the fastener is secured thereby anchoring the tissue or implant. Examples of linear fixation fasteners are further disclosed in the incorporated references.
  • the methods and devices of the present invention may be used in conjunction with any surgical procedure of the body.
  • the repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part.
  • tissue may be repaired, reconstructed, augmented, and secured during and “on the way out” following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • ACL anterior cruciate ligament
  • tissue may be repaired after an implant has been inserted within the body.
  • implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc.
  • the implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic.
  • Other implants include breast implants, biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearing for medial compartment of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold.
  • the scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • the present invention further provides flexible and rigid fixation of tissue.
  • Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue.
  • a fractured bone for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing.
  • bones may be flexibly secured to provide flexible stabilization between two or more bones.
  • Soft tissue like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing.
  • Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals.
  • joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint.
  • Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes.
  • the fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • Examples 1 through 8 which illustrate uses of the present invention are for illustrative purposes and are not limiting examples.
  • any fastener disclosed herein or incorporated by reference may be used with the exemplary methods.
  • a limited number of fastener types will be used to illustrate the exemplary methods.
  • the fasteners disclosed in U.S. Pat. No. 5,921,986 will be used to represent any disclosed or known fastener.
  • the fasteners may be placed against tissue, and a suture may be looped through the tissue with the ends of the suture positioned within the fasteners.
  • the suture is tensioned, and the ends of the suture are secured using a knot or any other suitable means for maintaining the tension of the suture between the fasteners.
  • the tensioning of the suture, or similar cable, pin, thread, etc. may be controlled and monitored with sensor technology, like a magnetic sensor, which may unload the pressure if necessary.
  • sensor technology like a magnetic sensor, which may unload the pressure if necessary.
  • Other known tensioning apparatus may also be utilized.
  • the tensioning system may be spring loaded, pneumatic, electrical, pisoelectric, and magnetic.
  • the tensioning system may be connected with an introducer or cannula or may be part of a fastener or implant.
  • the tensioning system may include a read-out display outside the body.
  • the read-out display may receive tension data through radiofrequency energy, infrared energy, or other suitable energy source.
  • two or more fasteners may be utilized to secure body tissue and/or an implant.
  • one fastener is placed against or within one tissue area and the second fastener is placed against or within another tissue area.
  • the suture is looped through one fastener while the ends of the suture are positioned within the second fastener.
  • the suture is tensioned and the ends fastened with a knot or fastened using a device or method disclosed herein or incorporated by reference.
  • the suture includes two generally parallel legs or portions located between the fasteners.
  • a single suture may be employed leaving only one leg between the fasteners. In this configuration, each end of the suture is positioned in different fasteners.
  • the suture may be tensioned and the ends secured. It is further contemplated that the fasteners and sutures may be inserted through a passage in the tissue or implant.
  • a passage may be drilled through tissue or implant for insertion of the fastener or suture. With the fastener in place, these passages may be packed or filled with tricalcium phosphate (TCP), calcium phosphate, a thermal polymer, polymethyl methacrylate (PMMA) with hydroxyaptite (HA), polylactic acid (PLA) with HA, and other suitable materials. These materials may harden within the passage and would provide additional stabilization of the tissue or implant.
  • TCP tricalcium phosphate
  • PMMA polymethyl methacrylate
  • HA hydroxyaptite
  • PLA polylactic acid
  • FIGS. 20A-20F illustrate exemplary fasteners 630 with at least one channel 632 .
  • FIG. 20A shows a generally cylindrical shaped fastener 630 a .
  • Two channels or slots 632 a for receiving a suture or other similar filament extend through the fastener 630 a and are generally perpendicular to the longitudinal axis 634 of the fastener 630 a .
  • FIG. 20B shows a generally half cylindrical shaped fastener 630 b .
  • the fastener 630 b includes a generally flat surface 636 on one side and an arched surface 638 on the other side. The flat surface 636 may be placed against the tissue or implant to provide increased contact area.
  • FIG. 20A shows a generally cylindrical shaped fastener 630 a .
  • Two channels or slots 632 a for receiving a suture or other similar filament extend through the fastener 630 a and are generally perpendicular to the longitudinal axis 634 of the fastener 630 a
  • FIG. 20C shows a cylindrical shaped fastener 630 c with a hemispheric or concave surface 640 on one side.
  • This surface 640 may be placed against an implant or tissue, like a bone, which has a convex surface, so that the concave surface 640 of the fastener 630 c and the convex surface of the tissue/implant are in contact.
  • FIG. 20D shows a generally rectangular fastener 630 d .
  • the fastener 630 d may have a thickness which minimizes protrusion of the fastener 630 d from the outer surface of the tissue or implant which it is positioned against.
  • fasteners have been described as generally longitudinal members, it is also contemplated that the fasteners can take the form of a square, oval, sphere, button, or any other suitable configuration.
  • FIG. 20E shows a fastener assembly 630 e having a plurality of fastener members 642 positioned generally parallel to each other with connecting members 644 between them.
  • the fastener members 642 may take the form of any shape described herein or incorporated by reference.
  • the connecting members 644 attach the fastener members 642 to each other.
  • the connecting members 644 may be hingedly or pivotally connected with the fastener members 642 to allow the fastener assembly 630 e to flex or bend.
  • the connecting members 644 may be made of a flexible material such as a suture, wire, cable, or thread, which could flex or bend.
  • the channels 632 e of the fastener members 642 are positioned such that a row of channels 646 are aligned over one portion of tissue located on one side of an incision while another row of channels 648 are aligned over the other portion of the tissue located on the opposite side of the incision.
  • Multiple sutures may be used with the fastener assembly for securing tissue or an implant.
  • the fastener members 630 e may be connected with one another with a flexible strip 650 .
  • four fastener members 642 are affixed to the flexible strip 650 and are generally parallel to each other and spaced apart from each other.
  • the strip 650 may be handled and placed against tissue or an implant thereby positioning all the fastener members 642 at about the same time.
  • the flexible strip 650 can be made of or include graft material such as collagen, demineralized bone, etc.
  • the flexible strip 650 may be expandable, hydrophilic, bioabsorbable, bioerodible, degradable, biodegradable, or combinations thereof.
  • It may include a therapeutic substance such as antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, germicides, and combinations thereof.
  • a therapeutic substance such as antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, germicides, and combinations thereof.
  • the flexible strip 650 may also include an adhesive on one side to adhere the fastener members 642 to the strip 650 and may further include adhesive of the other side to adhere the strip 650 to tissue or implant.
  • adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive.
  • FIG. 20G shows another fastener assembly 630 g of the present invention.
  • This fastener assembly 630 g is generally L-shaped or J-shaped.
  • the fastener members 642 of FIG. 20G may be attached to one another with connecting members 644 or with a flexible strip 650 .
  • FIG. 20H shows a U-shaped fastener assembly 630 h for closing a U-shaped incision in tissue, like those frequently made in the annulus.
  • the rows of channels 646 and 648 of the fastener members 642 are arranged as described herein, with one line of channels 646 on one side of the incision and the other line of channels 648 of the other side of the incision.
  • the type and shape of the incision determine the size and configuration of the fastener assembly used.
  • a U-shaped incision could be closed with a U-shaped fastener assembly 630 h
  • an L-shaped incision could be closed with an L-shaped fastener assembly 630 g .
  • the suture or sutures used with the fastener assemblies may be tensioned and secured with a knot, or alternatively may be secured with devices and methods described herein and those incorporated by reference.
  • the exemplary fasteners may be utilized with one or more sutures, filaments, cables, or other similar implant.
  • one suture may be used for the fasteners of FIGS. 20A-20D when only one fastener is employed.
  • multiple sutures may be employed.
  • the fasteners of FIGS. 20E-20H may use multiple sutures.
  • the ends of sutures may be placed through the channels of the fastener members, and the sutures tensioned.
  • a single suture could be used. That is, the single suture may be threaded in and out of the channels of the fastener members to secure tissue or an implant.
  • the exemplary fasteners and fastener assemblies of the present invention may be formed of any natural or artificial material.
  • they may be formed from material which is polymeric, metallic, composite, ceramic, or combinations thereof.
  • the fasteners and assemblies may be made of body tissue including bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, and autograft. They may be bioabsorbable, bioerodible, degradable, biodegradable, mechanically expandable, hydrophilic, and combinations thereof.
  • the fasteners and assemblies may be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • the fasteners and assemblies may also be made of or have a coating made of an expandable material.
  • the material could be compressed then allowed to expand once sutured to tissue or an implant.
  • the fastener and assembly material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are desiccated body tissue, foam, and expandable polymers.
  • the fasteners, fastener assemblies, and implants described herein and incorporated by reference may include therapeutic substances to promote healing.
  • therapeutic substances could include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof.
  • BMP bone morphogenetic protein
  • demineralized bone matrix collagen
  • growth factors growth factors
  • autogenetic bone marrow progenitor cells
  • calcium sulfate calcium sulfate
  • immo suppressants fibrin
  • osteoinductive materials apatite compositions
  • germicides fetal cells
  • stem cells enzymes,
  • the therapeutic substances may be impregnated or coated on the fastener or implant.
  • Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener or implant.
  • the therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • the sutures of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, copolymeric material, or combinations thereof.
  • the sutures may be degradable, biodegradable, bioabsorbable, or non-biodegradable.
  • suture materials are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, and copolymers of glycolic and lactic acid.
  • the sutures are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced.
  • the sutures may have a coating of therapeutic substances or drugs.
  • the sutures may include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • FIGS. 21A-21C illustrate exemplary embodiments of another fastener 652 .
  • the fastener or tubular member or sleeve 652 a in FIG. 21A is generally tubular shaped having a wall 654 with an inner surface 656 and an outer surface 658 .
  • the inner surface 656 defines a lumen 660 which is dimensioned and configured for receiving a suture, cable, K-wire, or similar device.
  • FIG. 21B shows a sleeve 652 b with a slit 662 through the tubular wall 654 .
  • the slit 662 allows the sleeve 652 b to be decreased in diameter for implantation and increased in diameter after implantation for proper alignment of the implantation site.
  • the sleeve 652 c of FIG. 21C includes two slits 662 in the tubular wall 654 thereby forming two semi-tubular members.
  • the semi-tubular members may be placed separately at the implantation site then aligned to form a complete tubular member.
  • the tubular member is a solid member.
  • the tubular member may be flexible to enable the tubular member to be inserted into a nonlinear passage through the bone.
  • the tubular member may be formed of metallic material, composite material, ceramic material, polymeric material, or combinations thereof.
  • the tubular member may be made from a degradable, biodegradable, bioerodible, or bioabsorbable material, such as a polymer, composite, or ceramic.
  • the tubular member may also include a therapeutic substance to form a composite tubular member, or the therapeutic substance may be coated onto the tubular member. Furthermore, therapeutic substances or graft material (autogenic, allogenic, xenogenic, or synthetic) may be packed into the tubular member.
  • the outer surface 658 of the tubular member 652 may include a friction or gripping means.
  • FIG. 21D shows a portion of the outer surface 658 of the tubular member with threads 664 .
  • the outer surface 658 includes raised pebbles, or bumps 666 .
  • FIG. 21F illustrates raised ridges or hills 668 around the outer surface 658 .
  • the wall of the sleeve may include openings 670 for tissue ingrowth, as shown in FIG. 21G . It is contemplated that any of the fasteners, fastener assemblies, and implants disclosed herein and incorporated by reference may also include a friction or gripping means as described above.
  • tissue and implants may be secured with biologic adhesive, or fasteners disclosed herein and incorporated by reference may be used with the biologic adhesive.
  • biologic adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive.
  • tissue scaffolds and tissue welding fasteners disclosed herein or incorporated by reference may be used with adhesive and an energy source, like ultrasound, RF, laser, electromagnet, ultraviolet, infrared, electro-shockwave, or other suitable energy source, to activate or deactivate the adhesive.
  • the present invention provides devices and methods for fastening body tissue and/or an implant.
  • One example is the fastening or repair of ligamentous tissue.
  • Ligamentous tissue is found, among other locations, within intervertebral discs of the spinal column.
  • the spinal column is formed from a number of vertebrae which are separated from each other by intervertebral discs.
  • the intervertebral discs stabilize and distribute force between the many vertebrae.
  • spinal joint or joint of the spine includes this intervertebral space.
  • intervertebral discs are made of a soft, central nucleus pulposus surrounded by a tough, woven annulus fibrosus. Herniation of a disc is a result of a weakening in the annulus. Symptomatic herniations occur when weakness in the annulus allows the nucleus pulposus to bulge or leak posteriorly toward the spinal cord and major nerve roots.
  • One treatment of a herniated, displaced, or ruptured intervertebral disc is a discectomy. This procedure involves removal of disc materials impinging on the nerve roots or spinal cord posterior to the disc.
  • nucleus pulposus is removed from within the disc space either through the herniation site or through an incision in the annulus.
  • other surgical procedures where the present invention may be used include a vertebroplasty and kyphoplasty.
  • FIG. 22 illustrates an exemplary embodiment of repairing an intervertebral disc 680 .
  • the disc 680 is located between a superior vertebra 682 and an inferior vertebra 684 .
  • an incision 686 A is made through the annulus fibrosus 688 for the removal of all or a portion of the nucleus pulposus 690 .
  • the incision 686 A is approximated.
  • a fastener 630 A is positioned generally transverse to the incision 686 A.
  • the fastener 630 A is positioned on the outer surface of the annulus 688 with one channel 632 on one side on the incision 686 A and the other channel 632 on the other side of the incision 686 A.
  • a suture 700 A is positioned through the portions of annulus 688 located on opposite sides of the incision 686 A in a generally U-shaped, looped, or curved configuration. The ends of the suture 700 A are placed within the channels 632 of the fastener 630 A and tensioned to draw together the two portions of the annulus 688 on opposite sides of the incision 686 A.
  • the suture 700 A is secured to the fastener 630 A with a knot or other means disclosed herein or incorporated by reference. Depending on the length of the incision, a plurality of fasteners and sutures may be used to fully close the incision.
  • One or more additional incisions 686 B in the annulus 688 may be necessary for increased access to the nucleus 690 . These other incisions will also need to be approximated. As seen in FIG. 22 , one fastener 630 B is placed on one side of the incision 686 B generally parallel to the incision 686 B. A second fastener 630 C is positioned on the other side of the incision 686 B. Closure of the incision 686 B is accomplished by placing a suture or sutures through the annulus 688 so that the annulus portions on opposite sides of the incision 686 B are drawn together when the suture is tensioned. The ends of the suture are secured by the fasteners 630 B, 630 C. Depending on the length of the incision, more than two fasteners may be utilized to approximate the incision. The closure of the incision enhances the natural healing and reconstruction of the annulus wall.
  • the incisions of FIG. 22 are generally linear, other incision configurations may be made for increased accessibility through the annulus.
  • the incision may be circular, L-shaped, U-shaped, C-shaped, J-shaped, etc.
  • Different configurations and types of fasteners illustrated in FIG. 20 may be used to close these non-linear incisions.
  • these incisions may be made anywhere along the annulus (posterior, anterior, or sides) or between the annulus and vertebral body.
  • a channel(s) or passage(s) 692 may extend from the outer side surface of the vertebral body to the adjacent nucleus.
  • the channel may be formed with a bone drill bit and/or a tissue harvesting device as described in U.S. Pat. No. 5,269,785 entitled Apparatus and Method for Tissue Removal, which is hereby incorporated by reference.
  • the nucleus pulposus material may be fully or partially removed through the channel 692 .
  • Means for removing the material may include suction, scrapper, scooper, syringe, or other similar device.
  • the physician may close the channel 692 with graft material such as autograft material, allograft material, and/or other implantable materials disclosed herein.
  • graft material such as autograft material, allograft material, and/or other implantable materials disclosed herein.
  • a plug/seal 693 made of metal, polymer, composite, or ceramic may be inserted into the channel 692 at either end of the channel or at both ends of the channel.
  • the plug 693 may be removable for gaining access to the nucleus pulposus during a subsequent surgery.
  • the annulus fibrosus is not incised, punctured, or weakened thereby reducing the healing time of the disc.
  • nucleus pulposus replacement material or a nucleus pulposus prosthesis may be positioned between a superior vertebra and inferior vertebra. One or more incisions may be made through the annulus for access to the nucleus. The nucleus pulposus may be removed, and the replacement material or prosthesis may be inserted. Alternatively, the nucleus pulposus also remain in place with the replacement material or prosthesis positioned next to or along with the existing nucleus pulposus. Furthermore, the nucleus pulposus can be removed, conditioned or treated, and then re-implanted either alone or with a replacement material.
  • the temporarily removed nucleus pulposus can serve as a scaffold seeded with cells or treated with a growth factor or any other of the therapeutic agents disclosed herein.
  • the fasteners and sutures of the present invention may be used to approximate the annulus incisions. Any number of fasteners may be used to fully close the incision.
  • the nucleus pulposus replacement material or prosthesis may also be positioned between the superior and inferior vertebrae through a vertebral body. As mentioned previously, a passage or channel may be made through the vertebral body extending from the outer surface to the adjacent nucleus pulposus. All, some, or none of the existing nucleus pulposus may be removed prior to insertion of the replacement material or prosthesis.
  • the replacement material is injected through the incision or channel in the vertebra and into the nucleus pulposus area. This material may be flowable for injection then once injected may become less flowable to form a gel-like material or, alternatively, may become generally solid to form a rubber-like material. Additionally, the nucleus pulposus replacement material may be flowable or injected into a balloon or bladder which may be positioned between adjacent vertebral bodies.
  • the replacement material or prosthesis may be rubber-like or gel-like pellets having a configuration which allows them to be passed through the incision or channel.
  • the replacement material or prosthesis may be expandable so that, once inserted, it can fill the implant area.
  • the materials or prosthesis may include an adhesive and/or therapeutic substances, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • Surgery of the intervertebral disc may leave the spine with increased motion or shear which can cause further disc failure, facet hypertrophy, or arthritis of the facet joints.
  • the devices and methods of the present invention may be utilized. Flexible fixation of tissue at and near the operation site may allow compression of tissue and limited motion of the repaired intervertebral disc allowing ligaments, the annulus fibrosis, interspinous ligaments, and other soft tissue to properly heal. Stabilizing one vertebral body to another vertebral body under compression would still allow for some range of motion of the joint yet prevent disc degeneration.
  • the vertebral bodies may be stabilized anteriorly and/or posteriorly or with a hybrid approach such as an anterior-lateral or posterior-lateral approach.
  • two fasteners 630 D, 630 E are positioned to secure the ends of a suture 700 B placed through the intervertebral disc 680 and through adjacent vertebrae 682 and 684 in a curved or looped configuration.
  • Two other fasteners 630 F, 630 G are positioned against or within the vertebrae 682 and 684 to hold the ends of a suture or sutures 700 C placed through the disc 680 and through the adjacent vertebrae 682 and 684 in a generally straight configuration.
  • Two more fasteners 630 H, 6301 are positioned against or within two vertebrae 702 and 704 located a distance from the repaired disc 680 .
  • a suture or sutures 700 D are placed between these vertebrae 702 and 704 and tensioned. These fasteners and sutures provide stability and an enhanced healing environment for the intervertebral disc.
  • FIG. 22 illustrates another exemplary embodiment for stabilizing tissue around a repaired tissue region.
  • One fastener 630 J is positioned against or within an upper spinous process 706 adjacent the repaired disc 680
  • another fastener 630 K is positioned against or within a lower spinous process 708 also adjacent the repaired disc 680 .
  • a suture or sutures 700 E are placed between the fasteners 630 J, 630 K and tensioned. This configuration and placement of fasteners and sutures limits or prevents the movement of the repaired disc.
  • a damaged intervertebral disc may require replacement instead of just minor repair.
  • the disc may be replaced with a prosthetic disc which may include a biocompatible material such as metal, polymer, composite, ceramic, or combinations thereof.
  • FIG. 23 illustrates a total intervertebral disc replacement using the devices and methods of the present invention. While a disc replacement is shown and described below, it is contemplated that any skeletal region, like a joint, may be fitted with an implant, and the implant fastened and stabilized with the sutures, fasteners, and methods disclosed herein and incorporated by reference.
  • a knee replacement component may be affixed to the femur, tibia, or patella in accordance with the following described methods.
  • a disc replacement component may be positioned between the lower surface of a superior vertebra and the upper surface of an inferior vertebra. In this configuration, the disc replacement component takes the place of the original intervertebral disc and provides the proper spacing between the vertebrae. Such a disc component may be anchored to the surfaces of the superior and inferior vertebrae with the fasteners and sutures described herein and incorporated by reference.
  • the disc replacement implant 710 may be larger in height than the normal height of an intervertebral disc.
  • the implant 710 may include upper 712 , middle 714 , and lower 716 sections.
  • the upper and lower sections 712 and 716 are made of a biocompatible material which allows integration of the bone tissue of the vertebral bodies.
  • This material may be polymeric, composite, metallic, ceramic or combinations thereof.
  • the material may be body tissue including bone, collagen, cartilage, ligaments, or tissue graft material.
  • the material may be bioabsorbable, bioerodiable, degradable, and/or biodegradable.
  • the upper and lower sections 712 and 716 of the disc replacement component 710 may include therapeutic substances, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • the upper and lower sections 712 and 716 may include an expandable material. This material could be compressed then allowed to expand once implanted. Alternatively, the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are desiccated body tissue, foam, and expandable polymers.
  • the middle section 714 of the disc implant 710 includes a flexible or resilient material.
  • the middle section 714 functions as the original intervertebral disc.
  • Materials which may be used in the middle section 714 include rubber, gel, foam, polymer, collagen, body tissue, or other suitable material.
  • the middle section 714 may also include an expandable material.
  • therapeutic substances such as antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides may be included in the middle section 114 of the disc replacement implant 710 .
  • the disc implant 710 is positioned as follows.
  • the superior vertebra 718 may be cut to receive the upper section 712 of the disc implant 710
  • the inferior vertebra 720 may be cut to receive the lower section 716 of the implant 710 .
  • the cuts may be made from any side of the vertebral body. However, it is preferred that cutting the vertebrae 718 and 720 results in minimal disruption of the surrounding tendons, muscles, nerves, and ligaments, like the anterior and posterior longitudinal ligaments.
  • the cuts may be planar and generally perpendicular to the longitudinal axis of the spine.
  • the cuts may also be multi-planar such that the pedicles and facet joints are not affected or weakened.
  • the upper, middle, and lower sections 712 , 714 , and 716 of the implant 710 combine to form a height which when the implant 710 is positioned between the cut portions of the superior and inferior vertebrae 718 and 720 , is generally the same height of the normal intervertebral disc and adjacent vertebral bodies.
  • This technique is analogous to a total knee replacement procedure.
  • the femur, tibia, and patella are cut and prepared for implant components. Once affixed, the knee replacement components return the knee joint to its normal height, configuration, and function.
  • the spinal implant 710 of the present invention is similar; it returns the spinal column to its normal height and function.
  • a fastener 630 L is positioned within or against the superior vertebra 682
  • a second fastener 630 M is placed within or against the upper section 712 of the disc implant 710
  • a suture 700 F positioned between the fasteners 630 L, 630 M is tensioned thereby anchoring the implant 710 to the superior vertebra 682
  • a graft 720 like a tissue graft, is positioned over the lower section 716 of the implant 710 and the inferior vertebra 684 .
  • Two fasteners 630 N, 6300 with sutures hold the graft 720 in place thereby anchoring the implant 710 to the inferior vertebra 684 .
  • a first fastener 630 P is positioned within or against a spinous process 706
  • a second fastener 630 Q is placed within or against a different spinous process 708 .
  • a suture 700 G extends between the fasteners 630 P, 630 Q and is tensioned to limit movement of the spinous processes 706 and 708 and their relative vertebral bodies.
  • the disc implant 710 is further anchored to the superior and inferior vertebrae 682 and 684 with fasteners, sutures, and tubular members.
  • Two fasteners 630 R, 630 S are positioned within or against the vertebrae 682 and 684 .
  • Two other fasteners 630 T, 630 U are placed within or against the disc implant.
  • Sutures 700 H, 7001 are positioned within tubular members or sleeves 652 A, 652 B that extend between the fasteners.
  • the tubular members 652 A, 652 B may have a thin cylindrical wall which engages the bone of the vertebrae 682 and 684 and material of the implant 710 .
  • the tubular member or sleeve may be placed within ligaments, tendons, muscles, bones, or combinations thereof.
  • the tubular member may be positioned in bones, including transverse process, pedicles, facets, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, and vertebral body.
  • the tubular member may also be positioned in ligaments, including the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • the spine and surrounding tissue may be become weakened.
  • the devices and methods of the present invention may be utilized. Flexible fixation of tissue at and near the operation site may allow compression of tissue and limited motion of the prosthetic intervertebral disc allowing ligaments, the annulus fibrosis, interspinous ligaments, and other hard or soft tissue to properly heal. Stabilizing one vertebral body to another vertebral body under compression would allow for some range of motion of the joint and prevent disc degeneration and reduce the incidence of postoperative pain.
  • the devices and methods of the present invention may be further used to stabilize an implant positioned within the body.
  • the implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic.
  • Other implants include breast implants, biodegradable plates, metallic fasteners, rods, plates, screws, spacers, cages, compliant bearing implants for one or more compartments of the knee, nucleus pulposus implant, stents, meniscal implants, tissue grafts, tissue scaffolds, biodegradable collagen scaffolds, and polymeric or other biocompatible scaffolds.
  • fasteners and sutures may be utilized to position bone replacement implants including joint replacement components such as for the knee and hip, drug delivery implants, pain pumps, spinal implants, dental implants, tissue implants, tissue patches such as porcine, bovine, or patches disclosed in U.S. Pat. No. 6,592,625 to Cauthen, and other implants.
  • the previously mentioned patent is hereby incorporated by reference.
  • the implants, fasteners, and sutures may also include cells bonded to their surface. The cells may be bonded with a biocompatible adhesive, such as those describe herein, and/or may be bonded electromagnetically or with vanderwalls forces. While implant anchoring is described below in reference to intervertebral disc implants, it should be understood that the methods described herein may be used for anchoring any implant with the body.
  • a prosthetic disc implant 730 is positioned between two vertebrae (only one shown) 684 .
  • the annulus fibrosis 688 encircles the implant 730 .
  • a fastener 630 V is placed within the posterior portion of the annulus 688 .
  • a suture 700 J loops around and/or through the implant 730 , and the suture 700 J is secured with the fastener 630 V. Tensioning the suture 700 J in this configuration stabilizes the implant 730 by preventing movement of the implant 730 in a posterior-anterior direction.
  • Two other fasteners 630 W, 630 X are positioned against the annulus 688 generally on the sides of the annulus.
  • a suture 700 K connects these two fasteners 630 W, 630 X and holds the implant 730 preventing movement in a side-to-side or lateral direction. It is contemplated that the sutures and fasteners used to anchor an implant may extend through or around the implant.
  • FIG. 25 illustrates a disc implant 730 stabilized between a superior vertebra 682 and inferior vertebra 684 .
  • a fastener 630 Y is positioned within the implant 730 while another fastener 630 Z is placed within or against the superior vertebra 682 .
  • a suture 700 L is tensioned between the fasteners 630 to hold the implant 730 to the lower surface of the superior vertebra 682 .
  • a fastener 630 AA is placed within or against the inferior vertebra 684 while another fastener 630 AB is positioned against the implant 730 .
  • a suture 700 M passes through the implant 730 and the fasteners 630 AA, 630 AB, and the ends of the suture 700 M are secured. Any of the methods and devices described herein or incorporated by reference may be used to fasten the ends of the suture.
  • the implant may be any object surgically placed within the body.
  • the implant may be made from various biocompatible materials.
  • the implant may be expandable within the body.
  • a hydrophilic implant may swell or expand by absorbing liquid.
  • a resilient implant may be compressed prior to implantation, then expand once positioned within the body.
  • an expandable implant may be stabilized using any method and device disclosed herein.
  • the expandable implant may be held with fasteners and sutures such that expansion of the implant may be directed in a preferred direction or directions.
  • electromagnetic pulsed energy may be used to thermally lock a suture to the implant within the body.
  • an implant 730 is stabilized to a vertebra 684 with multiple sutures and fasteners in a way to allow the implant to expand anteriorly.
  • a first fastener 630 AC is positioned against the left side of the annulus 688
  • a second fastener 630 AD is placed within or against the right side of the implant 730 .
  • a suture 700 N extends between the first and second fasteners 630 AC, 630 AD. When tensioned, the suture 700 N prevents the implant 730 from expanding to the right while holding the top of the implant 730 as well.
  • a third fastener 630 AE is positioned against the right side of the annulus 688 .
  • a suture 700 O is looped around and/or through the implant 730 and secured with the third fastener 630 AE to thereby prevent the implant 730 from expanding to the left.
  • a fifth fastener 630 AF is positioned against the anterior side of the annulus 688
  • a sixth fastener 630 AG is place within or against the posterior side of the implant 730 .
  • a suture 700 P positioned between the fifth and sixth fasteners 630 AF, 630 AG keeps the implant 730 from expanding in the posterior direction. Given this configuration of sutures and fasteners, the implant 730 is limited to expansion in only the anterior direction. It is contemplated that other configurations of sutures and fasteners may be used to limit the expansion of the implant to one or more directions. That is, the implant may be allowed to expand to the left, right, posterior, anterior, up, down, diagonally, or any combination thereof.
  • FIG. 27A illustrates an enclosure (or pouch, bag, sac, etc) 740 a for an implant.
  • the implant may be expandable or non-expandable.
  • the pouch 740 may include one or more anchoring points 742 .
  • the anchoring points 742 may be placed on any of the corners, edges, or other surfaces so that when anchored the pouch 740 is properly secured at the desired location and orientation.
  • a flap or lid 744 allows access into the pouch 740 for positioning of the implant.
  • the flap 744 may be closed and sealed so the entire implant is enclosed.
  • a pouch that completely encloses an expandable implant would allow the implant to expand omni-directionally until restricted by the pouch.
  • the lip or flap may be resealable such that the material may be added to or removed from the pouch inside the body.
  • the pouch may be made from any natural or artificial material.
  • it may be formed from material which is polymeric, composite, metallic, ceramic, or combinations thereof.
  • the pouch may be made of or include body tissue including bone, collagen, cartilage, muscle, tendon, ligaments, or other tissue graft material.
  • the material of the pouch may be solid, porous, bioabsorbable, bioerodible, degradable, and/or biodegradable.
  • the pouch may be made from a porous matrix or mesh of biocompatible and/or bioabsorbable fibers or filaments acting as a scaffold to regenerate tissue.
  • the fibers or filaments may be interlaced, braided, or knitted to form the pouch.
  • the pouch may include or may be filled with therapeutic substances or drugs, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • the pouch may further include or be filled with a gelatin which may contain a therapeutic agent. The gelatin inside the pouch may slowly osmotically leak out into the surrounding tissue.
  • the pouch may also include an adhesive to bond the pouch to the implant, to bond the pouch to the implantation site, and/or bond the flap to the pouch.
  • adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive.
  • a pouch filled with one or more therapeutic agents may form a drug cocktail implant. The therapeutic agents selected to be inserted within the pouch may be specifically tailored to the needs of the patient.
  • the pouch may be filled outside or within the patient. Once placed within the body, the therapeutic agent may slowly dissolve and exit the pouch through an osmotic member to reach the surrounding tissue.
  • FIG. 27B shows a pouch 740 b with a bi-directional expansion ports 746 on the left and right sides.
  • the implant When an expandable implant is placed in the pouch 740 and secured at the implantation site, the implant is restricted in expansion in all directions except to the left and right. It is contemplated that the pouch 740 may be designed with one or more expansion ports 746 facing in any direction.
  • the pouch 740 c includes a unidirectional expansion port 748 .
  • the pouch 740 allows the expandable implant to expand upward.
  • a pouch with an upward or downward pointing expansion port may be particularly useful for prosthetic disc replacement.
  • Joints of the musculoskeletal system have varying degrees of intrinsic stability based on joint geometry and ligament and soft tissue investment.
  • Ligaments are soft tissue condensations in or around the joint that reinforce and hold the joint together while also controlling and restricting various movements of the joints.
  • a joint becomes unstable, either through disease or traumatic injury, its soft tissue or bony structures allow for excessive motion of the joint surfaces relative to each other and in directions not normally permitted by the ligaments.
  • the present invention also provides methods of tensioning a ligament (or tendon) or group of ligaments (or tendons) during a surgical procedure and “on the way out” after the surgical procedure to prevent joint instability and reduce pain. These methods can be applied to any ligament in the body, including the ligaments of the knee (like the anterior cruciate ligament and iliotibial band), shoulder, elbow, wrist, hip, ankle, hands, and feet. For illustrative purposes, the methods of the present invention are described with reference to the spine.
  • ligaments may become relaxed. These ligaments may include, but are not limited to, the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • FIG. 28 shows an anterior longitudinal ligament 750 which has become weakened.
  • the fasteners and sutures of the present invention may be used to tighten the anterior longitudinal ligament 750 and decrease anteroposterior translation of the adjacent intervertebral discs. It should be understood that the methods described with respect to the anterior longitudinal ligament may also be applied to tightening other ligaments of the body.
  • a fastener 630 AH is positioned against the ligament 750 adjacent the upper end of a loosened region 752 of the ligament 750 .
  • Another fastener 630 AI is positioned against the ligament 750 adjacent the lower end of the loosened region 752 .
  • a suture 700 Q is positioned through the ligament 750 and through the fasteners 630 AH, 630 AI. The suture 700 Q is tensioned thereby tightening the loosened region 752 of the ligament 750 .
  • a fastener 630 AJ is positioned against the ligament 750 above a stretched region 754 .
  • Another fastener 630 AK is placed against the ligament 750 below the stretched region 754 .
  • a suture 700 R is placed through the ligament 750 , adjacent vertebrae 756 and 758 , and intervertebral disc 680 in a curved or looped configuration. The suture 700 R is tensioned to tighten the stretched region 754 .
  • one fastener 630 AL is positioned against the ligament 750 above a missing or torn ligament region 760 .
  • Another fastener 630 AM is positioned against the ligament 750 below the missing region 760 .
  • the suture 700 S is positioned through the superior and inferior ends of the ligament 750 at the missing or torn region 760 .
  • the suture 700 S is tensioned between the fasteners 630 AL, 630 AM causing the ends of the ligament 750 to be drawn together.
  • a stabilization implant such as a rod or plate 762
  • the fasteners and sutures of the present invention may be used to secure the rod or plate 762 to the spine.
  • a plurality of fasteners 630 AN is positioned against the rod or plate 762 proximate to each spinous process 764 .
  • a second plurality of fasteners 630 AO is placed within or against the spinous processes 764 .
  • Sutures 700 T extend between the fasteners 630 AN, 630 AO and are tensioned. Once anchored, the rod or plate 762 limits movement of the spinous processes 764 relative to each other thereby limiting movement of the anterior longitudinal ligament 750 .
  • the fasteners of the present invention be placed within or adjacent any bone of the body.
  • the fasteners may be placed adjacent the femur, tibia, or patella.
  • an fastener may be positioned adjacent a posterior arch, a spinous process, a lateral or medial articular process, a pedicle, odontoid process, uncinate process, a posterior tubercle, carotid tubercle, or a vertebral body.
  • the present invention may also be used in ligament or tendon reconstruction.
  • Ligaments are frequently damaged, detached, torn, or ruptured as the result of injury or surgery.
  • a damaged ligament can impede proper motion of a joint and cause pain. Therefore, during or “on the way out” from a surgical procedure, a ligament may be reconstructed using a fastener, a tissue graft, and/or a tissue scaffold with or without cells.
  • the devices and methods of the present invention may be used with a tissue or artificial graft to tension and stabilize the damaged ligament.
  • Any ligament of the body may be repaired using the present invention, including the ligaments of the spine, shoulder, elbow, hip, knee, ankle, feet, and hands.
  • the present invention is described in reference to ligaments of the spine including the anterior and posterior longitudinal ligaments, interspinous ligaments, supraspinous ligaments, superior costotransverse ligaments, ligamentum flavum, facet capsulary ligament, intertransverse ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • FIG. 29 shows a damaged anterior longitudinal ligament 750 .
  • a ligament graft 770 is positioned adjacent the damaged region 772 .
  • a first fastener 630 AP is placed against the inferior end of the ligament graft 770
  • a second fastener 630 AQ is positioned within or against a vertebral body 774 .
  • a suture 700 U extends through the graft 770 , ligament 750 , and vertebra 774 .
  • the suture 700 U is tensioned, and the ends of the suture 700 U are secured.
  • two fasteners 630 AR, 630 AS and a suture 700 V are positioned at the superior end of the ligament graft.
  • one fastener 630 AT is positioned against the graft 770 on one side of the damaged region 772
  • another fastener 630 AU is placed against the graft 770 on the other side of the damaged region 772 .
  • a suture 700 W is placed through the graft 770 , ligament 750 , adjacent vertebrae 682 and 684 , and intervertebral disc 680 in a generally curved, looped, or C configuration.
  • the suture 700 W is tensioned, and the ends of the suture 700 W secured. It is also contemplated that the curved or looped suture may be placed through multiple intervertebral discs and vertebrae.
  • FIG. 29 shows a graft 770 positioned between two adjacent vertebrae 682 and 684 .
  • the ligament or bone graft 770 is positioned adjacent the damaged region 772 of the anterior longitudinal ligament 750 .
  • the graft 770 may be attached using any of the devices and methods described herein and incorporated by reference.
  • two fasteners 630 AV, 630 AW are placed at the superior and inferior ends of the graft 770 .
  • Two other fasteners (not shown) are positioned within or against each vertebra 682 and 684 .
  • Sutures are positioned between the fasteners and tensioned.
  • sutures and fasteners may be placed on the posterior side of the spine for stabilization.
  • One fastener 630 AX is placed within or against a spinous process 764
  • another fastener 630 AY is positioned within or against a pedicle or bone of the facet joint 776 .
  • a suture 700 X extends between the fasteners 630 AX, 630 AY thereby limiting movement of the spine.
  • FIG. 29 shows an additional stabilization device between an upper and lower spinous process. In this configuration, the suture and fasteners provide additional restriction to the movement of the spine.
  • the ligament or bone graft may be obtained from a variety of sources and/or made from various materials.
  • the ligament graft is made of collagen.
  • the graft could also include autograft, allograft, or xenograft material.
  • the graft may be a tendon graft, bone-tendon-bone graft, or a meniscus graft.
  • Other material which may be used in the formation of the graft is polymer, carbon fiber, PEEK, PTFE, a biodegradable material, elastic or flexible material, Gore-Tex®, or woven fiber.
  • the ligament graft may include therapeutic substances.
  • antibiotics include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • grafts or patches to repair, reconstruct, and augment tissue, like a ligament may include patches such as TissueMend® patches, Restore® patches, or similar products.
  • the devices and methods of the present invention may be used for ligament or tendon augmentation.
  • Ligament augmentation reinforces or supplements natural ligaments.
  • a ligament may be augmented or reinforced after it has been repaired or reconstructed.
  • a non-repaired ligament may be augmented prophylactically.
  • the augmentation may be used to increase the load-bearing capacity of the ligament or tendon.
  • the augmentation may be used to prevent a potential injury to a ligament or tendon. For example, an athlete may undergo minimally invasive surgery to reinforce a ligament or tendon so as to prevent the ligament or tendon from being injured later in the athlete's career.
  • the devices and techniques described herein relate to augmenting any ligament or tendon of the body including ligaments of the knee, shoulder, spine, hand, foot, hip, and elbow.
  • ligament augmentation is described with reference to the anterior cruciate ligament (ACL) of the knee. It should be understood that the description of augmentation to the knee is not limiting to other ligaments and tendons.
  • fasteners and a suture may be used to augment a ligament.
  • a fastener 630 may be positioned near one end of the ligament 780 , while another fastener 630 may be placed near the opposite end of the ligament 780 .
  • the suture or cable 700 may be placed between the fasteners 630 and may be generally parallel with the ligament 780 .
  • the suture 700 may be tensioned, and the ends of the suture 700 secured with the fasteners 630 .
  • multiple fasteners and multiple sutures may be utilized to augment the ligament.
  • a suture 700 may be placed at an angle to the ligament 780 with the ends of the suture 700 secured with fasteners 630 . Having multiple sutures at different angles relative to each other and/or the ligament may provide multiple-direction augmentation.
  • a tissue graft or scaffold (reinforcement means) 782 may be used to augment the ligament or tendon 780 .
  • the graft or scaffold 782 may be configured and include materials as described herein.
  • the graft or scaffold 782 may be positioned generally parallel to the ligament 180 requiring augmentation.
  • the ends of the graft 782 may be anchored to bone, ligament, or other tissue using the devices and methods of the present invention.
  • one fastener may be positioned in or against the graft while another fastener may be placed in or against adjacent tissue.
  • a suture may be tensioned between the fasteners, and the ends of the suture secured with the fasteners.
  • a fastener 630 may be positioned against the graft or adjacent tissue, and a suture 700 may be wrapped around the adjacent tissue and graft one or multiple times to form a band or latching.
  • the suture 700 may be tensioned and secured with the fastener 630 .
  • multiple grafts and/or scaffolds may be used to augment the ligament or tendon.
  • grafts or scaffolds may be at different angles to the ligament to provide augmentation in multiple directions.
  • the graft or scaffold 782 used to augment the ligament or tendon may be secured to tissue using a band-like device 784 .
  • the band 784 may be wrapped around the graft or scaffold 782 and adjacent tissue, like a bone 786 .
  • the band 784 may be a biocompatible elastic band, a tissue graft, a polymeric or metallic tie (like a wire tie), or other suitable banding apparatus.
  • the suture and/or graft (reinforcement means) 782 used to augment the ligament or tendon may be placed parallel or diagonal to the ligament or tendon. Also, the suture and/or graft may be helically or spirally wrapped around the ligament or tendon. The ligament or tendon may be helically or spirally wrapped around the suture or graft.
  • the reinforcement means may be positioned within or interwoven, braided, or weaved into the ligament or tendon.
  • an athlete may desire to undergo elective surgery to “fail safe” a joint and/or ligaments.
  • a football player for example, who is at high risk for a knee injury may choose to augment or reinforce the anterior cruciate ligament 850 , posterior cruciate ligament 852 , tibial collateral ligament 854 , fibular collateral ligament 856 , posterior meniscofemoral ligament 858 , and/or transverse ligament 860 .
  • the suture, cable, and/or graft used to reinforce the ligament may be tensioned and positioned such that the natural ligament is exclusively used during normal athletic activities.
  • the reinforcement means engages to stop the extension or dislocation thereby preventing injury to the joint.
  • the engagement of the reinforcement means may provide a sudden stopping action when the joint or ligament is about to reach or has reached an abnormal position.
  • the engagement of the reinforcement means may provide a gradual stopped action (e.g. stretching/elastic) as the joint/ligament approaches its maximum normal range.
  • the reinforcement means 782 may be implanted between bones, ligaments, and/or tendons.
  • the reinforcement means may extend between the femur 862 , tibia 864 , and/or fibula 865 , may extend from the superior end of the ligament to the tibia and/or fibula, may extend from the inferior end of the ligament to the femur, and/or may extend between the superior and inferior ends of the ligament itself.
  • the reinforcement means may be positioned parallel or at an angle to the ligament.
  • the means may be a tubular sheath 866 that encapsulates the ligament, like a sheath on a wire or a braided sheath 868 on a fuel or hydraulic line.
  • the sheath (reinforcement means) would function as previously described, i.e. provide gradual and/or sudden stopping action to the joint/ligament.
  • augmentation or reinforcement of ligaments and tendons of a joint for athletes or other patients be performed using minimally invasive techniques.
  • the surgeon must produce a minimum amount of dislocation and resection of soft tissue in order to minimize recovery time.
  • physicians could take into consideration the natural growing rate of the athlete/patient. As the athlete grows and/or gains size and weight from physical workouts, the length, strength, and size of joints/ligaments/tendons may change.
  • the reinforcement means may be modifiable using a small portal in soft tissue to access the means in the joint. Once accessed, an extension 870 may be added to the reinforcement means.
  • the reinforcement means may include three portions.
  • the two end portions 872 may be fastened in tissue while the middle portion 874 resides between the end portions.
  • the middle portion 874 may be disconnected from the end portions 872 and replaced with a different middle portion 874 having a different length, strength, and/or size. In this configuration, the end portions are not removed from the tissue therefore there is no healing time required for the end portions to secure to tissue.
  • a laminectomy is a surgical procedure which is designed to relieve pressure on the spinal cord or nerve root that is being caused by a slipped or herniated disk in the lumbar spine.
  • a laminectomy removes a portion of bone over the nerve root or disc material from under the nerve root to give the nerve root more space and a better healing environment.
  • a laminectomy is effective to decrease pain and improve function for a patient with lumbar spinal stenosis.
  • Spinal stenosis is caused by degenerative changes that result in enlargement of the facet joints. The enlarged joints place pressure on the nerves.
  • the back muscles or erector spinae are dissected off the lamina on both sides and at multiple levels.
  • the facet joints, directly over the nerve roots, are cut to give the nerve roots space.
  • the operation is completed by closing the skin incision.
  • the methods and devices of the present invention may be used to repair, reconstruct, augment, and stabilize tissue or an implant “on the way out” of the pathway created in the soft tissue to access the nerve roots.
  • Muscle may be reattached to muscle; ligaments may be repaired or reconstructed; tissue grafts may be implanted; bones may be stabilized; and implants may be inserted.
  • a laminectomy site is illustrated.
  • a portion of the ligamentum flavum 790 is dissected and removed between two spinous processes 706 and 708 .
  • the distal end of the lamina 792 is removed from the superior spinous process 706 .
  • the laminectomy site and surrounding tissue is repaired, reconstructed, or augmented to compress and stabilize the tissue for enhanced healing.
  • Fasteners 630 BA and sutures or cables 700 Y are placed in the adjacent vertebral bodies 682 and 684 to provide flexible fixation of the spinal joint and limit the range of motion of the spine.
  • a fastener 630 BB is positioned on the posterior side of the ligamentum flavum 790 above the laminectomy site.
  • Another fastener 630 BC is positioned on the posterior side of ligamentum flavum 790 below the operation site.
  • a suture 700 Z is placed between the fasteners 630 BB, 630 BC.
  • the suture 700 Z is tensioned and secured with the fasteners 630 BB, 630 BC to provide flexible fixation of the ligamentum flavum 790 .
  • a fixation device is placed between the inferior and superior spinous processes.
  • a fastener 630 BD may be positioned against one of the spinous processes 764 , and a suture 700 AA may be wrapped between two spinous processes 706 , 708 .
  • the suture 700 AA may be tensioned, and the ends of the suture 700 SS may be secured with the fastener 630 BD.
  • This configuration provides further flexible stabilization of the spinal column near the laminectomy site.
  • a ligament graft or scaffold 782 may be positioned along the ligamentum flavum 790 over the laminectomy site. The graft 782 may reconnect and stabilize the ligamentum flavum 790 . It should be understood that additional fasteners may be used to compress and stabilize surrounding tissue.
  • the soft tissue around and near the joint may become weakened, and the range of motion of the joint usually increases thereby allowing excessive tissue laxity.
  • instability of a joint may be caused by structural changes within the joint as a result of trauma, degeneration, aging, disease, surgery, or a combinations thereof.
  • An unstable joint may be fused to form a permanent or rigid internal fixation of all or part of the joint.
  • joints may be stabilized with the devices and methods of the present invention, without fusion.
  • tissue may be repaired, reconstructed, augmented, and stabilized during and “on the way out” of a surgical procedure such as those surgical procedures described herein. Compressing and stabilizing the tissue around a joint enhances tissue healing.
  • the tissue may be secured but still allow for some range of motion of the joint.
  • the devices and methods of the present invention may be used for rigid fixation, such as for bones.
  • fasteners and sutures could be used to stabilize the knee joint.
  • the sutures could be positioned between at least two of the femur, tibia, patella, and adjacent ligaments to stabilize the knee without significantly restricting the knee's normal range of motion.
  • the devices and methods may be used to stabilize any joint of the body, including the spine, shoulder, elbow, wrist, hip, knee, ankle, and joints of the hands and feet.
  • the present invention may be used with a temporal mandibular joint, SI joint, facet joint, temporomandibular joint, and sacroiliac joint.
  • FIG. 32 shows a posterior view of the head and cervical spine with three vertebrae: C 1 (Atlas), C 2 (Axis), and C 3 .
  • the cervical spine and head are stabilized using diagonally positioned sutures.
  • Fasteners 630 BE, 630 BF are positioned within or against the left and right side of the occipital bone 800 of the head.
  • Two other fasteners 630 BG, 630 BH are placed within or against the left and right sides of the posterior arch of the C 1 vertebra 802 .
  • a suture 700 AB extends between the left fasteners 630 BE, 630 BG, while another suture 700 AC extends between the right fasteners 630 BF, 630 BH.
  • the sutures 700 AB, 700 AC limit movement of the head relative to the cervical spine.
  • FIG. 32 also shows tissue graft 804 , such as a ligament and/or bone graft, positioned between a vertebra 806 and the head 808 .
  • the grafts 804 may be attached using any of the devices and methods described herein and incorporated by reference.
  • fasteners 630 BI are placed at the superior and inferior ends of the graft.
  • Other fasteners are positioned within or adjacent the bone. Sutures extend between the fasteners and are tensioned.
  • FIG. 1 Further stabilization of the cervical spine may be obtained by placing sutures and fasteners lower in the cervical spine.
  • a crisscross pattern of sutures is placed between two adjacent vertebrae.
  • the upper fasteners 630 BJ may be placed within or against the superior vertebra 682
  • the lower fasteners 630 BK may be positioned within or against the inferior vertebra 684 .
  • Sutures 700 AD extend between the fasteners, and when tensioned, the sutures 700 AD stabilize the vertebrae 682 and 684 from movement between one another.
  • a vertebra 814 has been decompressed using fasteners and a suture.
  • a first fastener 630 BL is placed within or adjacent an upper vertebra 812
  • a second fastener 630 BM is positioned within or adjacent a lower vertebra 816 .
  • a suture 700 AE is positioned through the left side of the vertebrae 812 , 814 , and 816 in a curved, looped, or C configuration.
  • the suture 700 AE is tensioned, and the ends of the suture 700 AE secured. By tensioning the suture 700 AE, the right side of the middle vertebra 814 becomes decompressed.
  • multiple vertebrae may be decompressed by positioning fasteners 630 BN, 630 BO on two vertebrae 810 and 818 which are separated by two or more vertebrae.
  • a tubular member or sleeve 652 is positioned between the fasteners 630 BN, 630 BO and through the vertebrae in between.
  • a suture 700 AF is placed within the sleeve 652 , tensioned, and secured with the fasteners 630 BN, 630 BO.
  • the fasteners 630 BN, 630 BO may be placed on any part/portion of the vertebrae 810 and 818 , as described previously, so when the suture is tensioned, one or more vertebrae are decompressed, forming a decompressed region 824 .
  • a fastener 630 BP is placed within or adjacent a pedicle 820 .
  • a second fastener 630 BQ is placed within or adjacent another pedicle 822 .
  • a suture 700 AG extends between the fasteners 630 BP, 630 BQ either through the pedicles or outside the pedicles. The suture 700 AG is tensioned and the ends of the suture secured.
  • FIG. 33 illustrated a suture positioned between two pedicles, it is contemplated that the suture may be affixed to any portion/part of the vertebrae.
  • a suture may be tensioned between any one or more of the following: transverse process, pedicles, facets, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, and vertebral body.
  • the suture or similar device like a cable, band, flexible moment arm, pin, rod, or K-wire, is made of a material having sufficient strength and fatigue characteristics.
  • the suture may be biodegradable and/or flexible. It may include metallic material, ceramic material, polymeric material, composite material, or combinations thereof.
  • the suture is formed of fiber material like carbon or polyamide fibers.
  • Sutures may also be formed from Mersilene®, polypropylene braided or collagen strips, allograft or xenograft strips, braided mesh, a polymer, PTFE, or Gore-Tex®.
  • the suture may be made of or include an elastic, flexible material which stabilizes the skeletal and ligamentous system but allows some movement of the joints. Also, the suture may be barbed or could be a threaded wiring device.
  • a suture may be positioned between a vertebra and a longitudinal ligament, between a spinous process and the supraspinous ligament, or between a facet and a facet capsulary ligament. Any combination of attachment points is contemplated to stabilize the joint.
  • any of the methods described herein could utilize a plurality of sutures and more than two fasteners.
  • the use of multiple sutures can vary the tension or resistance between the fasteners securing the suture, thereby providing various levels of stability.
  • the use of multiple fasteners, preferably spaced apart and positioned adjacent the region of the joint to be stabilized, could provide various angles of stabilization.
  • ligaments and bones of the spine may be selectively tightened or stabilized to provide a customized environment for spine healing.
  • the sutures may be tightened sequentially between the fasteners, or the entire construct could be tightened down together.
  • the devices and methods of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels.
  • a small incision(s) may be made adjacent the damaged tissue area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention.
  • U.S. Pat. No. 5,320,611 entitled, Expandable Cannula Having Longitudinal Wire and Method of Use discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter.
  • the cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue.
  • the expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening.
  • U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths.
  • the cannula has a pointed end portion and includes wires having cores which are enclosed by jackets.
  • the jackets are integrally formed as one piece with a sheath of the cannula.
  • the cannula may be expanded by inserting members or by fluid pressure.
  • the cannula is advantageously utilized to expand a vessel, such as a blood vessel.
  • An expandable chamber may be provided at the distal end of the cannula.
  • an introducer may be utilized to position fasteners at a specific location within the body.
  • U.S. Pat. No. 5,948,002 entitled, Apparatus and Method for Use in Positioning a Suture Anchor discloses devices for controlling the placement depth of a fastener.
  • U.S. Patent Application Publication No. 2003/0181800 discloses methods of securing body tissue with a robotic mechanism. The above-mentioned patent and application are hereby incorporated by reference.
  • Another introducer or cannula which may be used with the present invention is the VersaStep® System by Tyco® Healthcare.
  • the present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Pat. Nos. 6,702,821, 6,770,078, and 7,104,996.
  • These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement.
  • the femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference.
  • the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure.
  • the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired.
  • the patent documents mentioned above are hereby incorporated by reference.
  • the devices and methods of the present invention may by used to approximate a skin incision where there may be undue tension on the skin.
  • Fasteners may be placed on opposite sides of the incision, and a suture or cable may be placed between the fasteners.
  • the suture When the suture is tensioned, the skin may be pulled together and held until the skin tissue relaxes. Then, the fasteners may be unlocked, and the suture may be tensioned again to further approximate the skin incision. The locking and unlocking of the fasteners along with the tensioning of the suture may be repeated until the incision is fully closed.
  • the present invention may be used with bariatric surgery, colorectal surgery, plastic surgery, gastroesophageal reflex disease (GERD) surgery, or for repairing hernias.
  • a band, mesh, or cage of synthetic material or body tissue may be placed around an intestine or other tubular body member.
  • the band may seal the intestine.
  • This method may be performed over a balloon or bladder so that anastomosis is maintained.
  • the inner diameter of the tubular body part is maintained by the balloon.
  • the outer diameter of the body part is then closed or wrapped with a band, mesh, or patch.
  • the inner diameter of the tubular body member may be narrowed or restricted by the band.
  • the band may be secured to the tubular body part or surrounding tissue with the devices and methods described herein and incorporated by reference.
  • intramedullary fracture fixation and comminuted fracture fixation may be achieved with the devices and methods of the present invention.
  • a plate or rod may be positioned within or against the fractured bone.
  • a fastener may be driven across the bone and locked onto the plate, rod, or another fastener.
  • an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents.
  • the above-mentioned patents are hereby incorporated by reference.
  • the devices and methods of the present invention may be used with heat bondable materials as disclosed in U.S. Pat. No. 5,593,425 entitled, Surgical Devices Assembled Using Heat Bondable Materials.
  • the fasteners of the present invention may include heat bondable material. The material may be deformed to secure tissue or hold a suture or cable.
  • the fasteners made of heat bondable material may be mechanically crimped, plastically crimped, or may be welded to a suture or cable with RF (Bovie devices), laser, ultrasound, electromagnet, ultraviolet, infrared, electro-shockwave, or other known energy.
  • the welding may be performed in an aqueous, dry, or moist environment.
  • the welding device may be disposable, sterilizable, single-use, and/or battery-operated.
  • the methods of the present invention may be performed under indirect visualization, such as endoscopic guidance, computer assisted navigation, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, or other suitable visualization technique.
  • the implants, fasteners, fastener assemblies, and sutures of the present invention may include a radiopaque material for enhancing indirect visualization.
  • the use of these visualization means along with minimally invasive surgery techniques permits physicians to accurately and rapidly repair, reconstruct, augment, and secure tissue or an implant within the body.
  • U.S. Pat. Nos. 5,329,924; 5,349,956; and 5,542,423 disclose apparatus and methods for use in medical imaging.
  • the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above-mentioned patents are hereby incorporated by reference.
  • the fasteners and methods of the present invention may be used for the repair and reconstruction of a tubular pathway like a blood vessel, intestine, urinary tract, esophagus, or other similar body parts.
  • a blood vessel may be intentionally severed during a surgical operation, or the blood vessel may be damaged or torn as a result of an injury. Flexible fixation of the vessel would permit the vessel to function properly and also compress and stabilize the vessel for enhanced healing.
  • a balloon may be inserted into the lumen and expanded so the damaged, severed, or torn portion of the vessel is positioned against the outer surface of the inflated balloon. In this configuration, the fasteners and methods described and incorporated herein may be used to approximate the damaged portion of the vessel.
  • the guidance and positioning device of the present invention may be used to stabilize or fasten various implants and tissues.
  • the spine may be repaired or stabilized with fasteners, sutures, and cables to provide flexible or rigid reinforcement of the joints of the spine.
  • the nucleus pulposus of an intervertebral disc may be repaired or replaced using the guidance and positioning device of the present invention.
  • a prosthetic disc nucleus is positioned between two vertebral bodies and may be secured to surrounding tissue with fasteners and sutures.
  • the annulus may be repaired following a nucleus pulposus repair or replacement.
  • the positioning device of the present invention may be used to position a fastener and suture on the internal side of the annulus.
  • the suture may be pulled proximally through the annulus, tensioned, and secured with another fastener.
  • tissue alignment sleeves disclosed in the provisional application may be guided and positioned with the instrument and methods of the present invention.
  • the present invention may be utilized with the tracheal tube positioning apparatus of U.S. Pat. No. 6,820,614, entitled “Tracheal Intubation,” by Peter M. Bonutti. That patent discloses positioning apparatus located relative to a patient's trachea by engaging the patient's trachea. Indicia on relatively movable sections of the positioning apparatus provide an indication of the distance between the patient's mouth and the patient's larynx. A flexible guide rod is moved through a distance corresponding to the distance between the patient's mouth and larynx, as determined by the positioning apparatus. A magnet is utilized to attract a leading end portion of the guide rod. A plurality of emitters may be disposed in an array around the patient's trachea. Outputs from the emitters are detected by a detector connected with the tracheal tube.
  • the above mentioned patent is hereby incorporated by reference.
  • a drill bit and sleeve combination 100 is provided.
  • the drill bit and sleeve combination or system 100 is explained with reference to the fixation of two bones, like two portions of a fractured bone. It should be understood that the present embodiment may be utilized for fastening or securing tissue to tissue, an implant to tissue, or an implant to an implant.
  • the system 100 includes a tubular member or sleeve 102 for aligning two portions of bone located on opposite sides of a fracture.
  • a drill bit 104 extends through the longitudinal lumen of the sleeve 102 .
  • the distal portion 106 of the drill bit 104 has one or more pivoting blades 108 .
  • the system 100 may also include a pusher means 110 for inserting the sleeve 102 into the bone passage created by the drill bit 104 .
  • the pusher means 110 may be connected to the sleeve, bit, or the drill.
  • a portion of the pusher means 110 does not rotate with the bit or drill so that the sleeve 102 is not rotated as the pusher means 110 contacts the sleeve 102 during the drilling operation.
  • the pusher means 110 include a washer-shaped member or donut-shaped member positioned over the bit or a U-shaped fork positionable around the shaft of the bit.
  • the lower side of the pusher means 110 may be configured for contact with the proximal end of the sleeve, while the upper side of the pusher means 110 may be configured of applying a distal force with a hand, hammer, or press.
  • the blades 108 when extended from the bit 104 , increase the drilling diameter of the bit 104 .
  • the bone passage created by the drill bit 104 and the extended blades 108 has a diameter generally equal to the outside diameter of the sleeve 102 .
  • the blades 108 when retracted, pivot into or against the distal portion 106 of the bit 104 .
  • the diameter of the drill bit 104 with the blades 108 retracted is slightly less than the inside diameter of the sleeve 102 .
  • the pivoting blades 108 of the system 100 may be connected with the distal portion 106 of the bit 104 in a variety of ways, but preferably, the blades 108 are pivotally attached to the bit 104 .
  • the blades 108 extend and retract along radial axes of the bit 104 .
  • the blades 108 may pivot downwardly or distally into an extended configuration and may pivot upwardly or proximally into a retracted configuration. In the retracted state, the blades 108 may be positioned within a groove or notch within the distal portion 106 of the bit 104 .
  • the blades 108 may be spring loaded to normally reside in the retracted configuration. When the drill bit 104 is rotated with a drill, the centrifugal force generated by the drill may cause the blades 108 to pivot into the extended configuration. Once in the extended position, the blades 108 may be locked into position to allow drilling or cutting of the bone.
  • the blades 108 may be manually pivoted distally and proximally.
  • a pin or shaft may extend along the center of the drill bit 104 with the distal end of the pin in contact with the blades 108 .
  • the proximal portion of the pin may include a lever or other means for moving or advancing the pin along the center axis of the bit 104 .
  • the blades 108 may be extended and retracted radially in and out of the distal portion of the bit 104 along a linear path instead of being pivoted as previously described.
  • the blades 108 may extend with centrifugal force and retract with a spring-like mechanism or may be manually extended and retracted with a pin or shaft along the central axis of the bit 104 .
  • the blades may be generally arch-shaped to conform to the outside circumference of the bit. The distal ends of the blades may be pivotally attached to the bit allowing the blades to extended radially outward for maximum cutting diameter or retract against the outer surface of the bit to minimize the bit diameter.
  • FIGS. 36 and 37 illustrate the drill bit and sleeve system 100 in use to repair a fractured bone 112 .
  • the drill bit 104 is inserted into the lumen of the sleeve 102 .
  • the distal portion 106 of the bit 104 and the pivoting blades 108 extend beyond the distal end of the sleeve 102 .
  • the amount of bit 104 extending from distal end of the sleeve 102 is minimized to prevent damage to soft tissue of the distal side of the bone 112 .
  • the proximal portion of the bit or shank 114 extends from the proximal end of the sleeve 102 and is connected to a drill 116 .
  • the pivoting blades 108 located beyond the distal end of the sleeve 102 , are in the extended configuration.
  • the bit 104 is rotated and advanced distally through the fractured bone 112 .
  • the sleeve 104 is moved distally into the passage with the pusher means 110 .
  • the sleeve 102 is tight or snug within the passage since the diameter of the passage is generally equal to the outside diameter of the sleeve 102 .
  • the bit 104 may be pulled from the lumen of the sleeve 102 because the blades 108 may be positioned in the retracted configuration giving the drill bit 104 a diameter generally smaller than the diameter of the lumen of the sleeve 102 . With the sleeve 102 in place, the bone is compressed, and the fracture is stabilized.
  • the drill bit and sleeve combination or system 100 is dimensioned and configured for transformation into a fastener.
  • the system 100 includes the tubular member or sleeve 102 , the pusher means 110 , and a drill bit 104 with an expanding distal portion 122 .
  • the drill bit 104 extends through the lumen of the sleeve 102 with the distal portion 122 of the bit 104 extending beyond the distal end of the sleeve 102 .
  • the cutting diameter of the distal portion 122 of the bit 104 is generally equal to the outside diameter of the sleeve 102 .
  • the distal portion 122 of the bit 104 does not include pivoting cutting blades. However, the distal portion 122 does include means for expansion to a diameter greater than the cutting diameter.
  • expansion means includes one or more mechanically extending barbs 126 from the distal portion 122 of the bit 104 .
  • the barbs 126 When extended or expanded, the barbs 126 increase the overall diameter of the drill bit 104 .
  • the barbs 126 may extend to the outside diameter of the sleeve 102 , but preferably the barbs 126 extend beyond the outside edge of the sleeve 102 . Most preferably, the barbs 126 extend over or into the distal side of the fractured bone 112 .
  • the drill bit 104 is prevented from being pulled proximally out of the sleeve 102 .
  • the expansion means includes a distal portion 128 of the drill bit 104 which pivots.
  • the distal portion 128 of the bit 104 In a first orientation during a drilling procedure, the distal portion 128 of the bit 104 is generally in-line with rest of the drill bit 104 .
  • the distal portion 128 of the bit 104 is rotated about a pivot point into a second orientation. In the second orientation, the distal portion 128 is generally perpendicular to the rest of the drill bit 104 .
  • the end sections 132 and 134 of the pivoted distal portion 128 of the bit 104 extend beyond the outer diameter of the sleeve 102 .
  • the end sections 132 and 134 extend over or into the distal side of the fractured bone 112 to prevent the bit 104 from being pulled from the sleeve 102 .
  • the expansion means includes a distal portion 136 of the bit 104 which has two or more longitudinal sections 138 and 140 that are biased radially outward.
  • the longitudinal sections 138 and 140 may be normally biased outward but held together by the lumen of the sleeve 102 when drilling through the bone 112 .
  • the longitudinal sections 138 and 140 may be normally in a non-biased configuration.
  • a plunger 142 within the drill bit 104 may be moved distally biasing the longitudinal sections 138 and 140 radially outward. With the longitudinal sections 138 and 140 biased, the distal portion 136 of the bit 104 may extend over or into the distal side of the fractured bone 112 to secure the bit 104 within the sleeve 102 and bone passage.
  • the drill bit and sleeve system 100 which transforms into a fastener may be utilized to secure various tissue and implants.
  • the drill bit 104 is inserted into the lumen of the sleeve 102 with the distal portion of the bit 104 extending beyond the distal end of the sleeve 102 .
  • the proximal portion of the bit or shank 114 extends from the proximal end of the sleeve 102 and connects to a drill.
  • the bit 104 is rotated and advanced distally through the fractured bone 112 .
  • the sleeve 102 is moved distally into the passage with the pusher means 110 .
  • the shank 114 of the drill bit 104 is removed from the drill.
  • the distal portion of the bit 104 which extends just beyond the distal surface of the bone 112 , is expanded with the expansion means.
  • the drill bit 104 is prevented from being pulled out of the bone passage.
  • a retainer 144 may then be placed around the shank 114 of the bit 104 and moved distally to engage the proximal side of the bone 112 .
  • the retainer 144 is secured to the shank 114 .
  • the drill bit (and the sleeve) is transformed into a fastener which holds the fractured bone in compression. It is also contemplated that the drill bit may be used without the sleeve so that the drill bit alone becomes a fastener.
  • the tubular member or sleeve of the present invention is generally tubular shaped having a wall with an inner surface and an outer surface.
  • the inner surface defines a lumen which is dimensioned and configured for receiving a drill bit, suture, cable, K-wire, or similar device.
  • the sleeve may include a slit through the tubular wall. The slit allows the sleeve to be decreased in diameter for implantation and increased in diameter after implantation for proper alignment of the implantation site.
  • the sleeve may include two slits in the tubular wall thereby forming two semi-tubular members. The semi-tubular members may be placed separately at the implantation site then aligned to form a complete tubular member.
  • the tubular member is a solid member.
  • the tubular member or sleeve may be flexible to enable the tubular member to be inserted into a linear or nonlinear passage through the bone.
  • the tubular member may be formed of metallic material, composite material, ceramic material, polymeric material, or combinations thereof.
  • the sleeve may be made from a degradable, biodegradable, bioerodible, or bioabsorbable material, such as a polymer, composite, or ceramic.
  • the tubular member may also include a therapeutic substance to form a composite tubular member, or the therapeutic substance may be coated onto the tubular member.
  • therapeutic substances or graft material autogenic, allogenic, xenogenic, or synthetic may be packed into the sleeve.
  • the outer surface of the tubular member may include a friction or gripping means.
  • a portion of the outer surface of the tubular member may include threads, raised pebbles, bumps, raised ridges, or hills.
  • the wall of the sleeve may include openings for tissue ingrowth.
  • the guidance and positioning device of the present invention may be placed within the body of a patient with precise navigation.
  • one or more guide wires or k-wires may be utilized—one to hold the device in position and a second wire to drill or pass through tissue toward the distal end of the hook of the device.
  • One of the guide wires or an additional wire can be used to pull a suture or fastener through the tissue.
  • the positioning device may be positioned through an expanding retractor with percutaneous guidance.
  • Other navigation techniques for precise placement of the positioning device of the present invention include endoscopic guidance, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, computer assisted navigation, magnetic guidance, electromagnetic guidance, radiofrequency guidance, optical guidance, and laser guidance.
  • the hook and/or guide channel of the positioning device may include a magnet, a radiofrequency emitter, or a thermal emitter/sensor.
  • U.S. Pat. No. 7,104,996 entitled “Method of Performing Surgery” discloses computer assisted navigation.
  • emitters, receivers, and/or reflectors may be attached to the positioning device and/or tissue.
  • the computer navigation system may utilize multiple separate registers which have optical feedback to a central unit.
  • the computer navigation system may utilize electromagnetic or photo-optical feedback.
  • U.S. Pat. Nos. 5,329,924 entitled “Sequential Imaging Apparatus”; 5,349,956 entitled “Apparatus and Method for Use in Medical Imaging”; and 5,542,423 entitled “Indexing Assembly for Joint Imaging” disclose further devices and methods for use in medical imaging. Also, the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above mentioned patents are hereby incorporated by reference.
  • the device and method of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels.
  • a small incision(s) may be made adjacent the target area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention.
  • U.S. Pat. No. 5,320,611 entitled “Expandable Cannula Having Longitudinal Wire and Method of Use” discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter.
  • the cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue.
  • the expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening. The above mentioned patent is hereby incorporated by reference.
  • U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths.
  • the cannula has a pointed end portion and includes wires having cores which are enclosed by jackets.
  • the jackets are integrally formed as one piece with a sheath of the cannula.
  • the cannula may be expanded by inserting members or by fluid pressure.
  • the cannula is advantageously utilized to expand a vessel, such as a blood vessel.
  • An expandable chamber may be provided at the distal end of the cannula.
  • the present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Pat. Nos. 6,702,821, 6,770,078, and 7,104,996.
  • These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement.
  • the femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference.
  • the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure.
  • the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired.
  • the patent documents mentioned above are hereby incorporated by reference.
  • the present invention may be used with bariatric surgery, gastric stapling, colorectal surgery, plastic surgery, gastroesophageal reflex disease (GERD) surgery, ligament reconstruction surgery (such as the anterior cruciate ligament, ACL), or for repairing hernias.
  • a band, mesh, or cage of synthetic material or body tissue may be placed around an intestine or other tubular body member.
  • the band may seal the intestine.
  • This method may be performed over a balloon or bladder so that anastomosis is maintained.
  • the inner diameter of the tubular body part is maintained by the balloon.
  • the outer diameter of the body part is then closed or wrapped with a band, mesh, or patch.
  • the inner diameter of the tubular body member may be narrowed or restricted by the band.
  • the band may be secured to the tubular body part or surrounding tissue with the device and method of the present invention.
  • an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents.
  • the above mentioned patents are hereby incorporated by reference.
  • fasteners may include heat bondable material.
  • the material may be deformed to secure tissue or hold a suture or cable.
  • the fasteners made of heat bondable material may be mechanically crimped, plastically crimped, or may be welded to a suture or cable with RF (Bovie devices), laser, ultrasound, electromagnet, ultraviolet, infrared, electro-shockwave, or other known energy.
  • the welding may be performed in an aqueous, dry, or moist environment.
  • the welding device may be disposable, sterilizable, single-use, and/or battery-operated.
  • the device and method of the present invention may be used for the repair and reconstruction of a tubular pathway like a blood vessel, intestine, urinary tract, esophagus, or similar tubular body parts.
  • a blood vessel may be intentionally severed during a surgical operation, or the blood vessel may be damaged or torn as a result of an injury. Flexible fixation of the vessel would permit the vessel to function properly and also compress and stabilize the vessel for enhanced healing.
  • a balloon may be inserted into the lumen and expanded so the damaged, severed, or torn portion of the vessel is positioned against the outer surface of the inflated balloon. In this configuration, the positioning device of the present invention may be used then to approximate the damaged portion of the vessel.
  • the devices, fasteners, and other apparatus disclosed herein may include RFID (radiofrequency identification) tags.
  • any surgical device, described herein or not, such as surgical instruments, implants, trays, sponges, screws, bolts, plates, knives, scalpels, etc. may include RFID emitting chips.
  • RFID provides for inventory control before, during, and after surgery. Objects with RFID chips/tags which are located under sterile drapes or within sterile containers may be easily located without having to break the sterile environment. Also, surgical devices and instruments stored in cabinets or placed in an operating room may be scanned with an RFID receiver to help technicians and nurses quickly identify location, type, and quantity. RFID chips/tags placed on surgical objects may save significant time and money during surgery and inventory.
  • matching RFID chips/tags may be placed on an instrument/device and on the tray which holds the device. Using the RF scanner/transmitter, the correct placement of the device can be determined. It is further contemplated that the kits previously described may include RFID chips/tags placed on the container and the components therein.
  • the guidance and positioning device of the present invention may be used with pneumatic operated surgical instruments.
  • a gas-powered drill may be couple with the channel guide and/or handle of the positioning device.
  • a surgeon may operate the drill by activating a switch to start the fluid of gas which rotates an air motor thereby rotating a drill bit.
  • the drill may be connected to a compressed gas source with tubing.
  • the drill includes a connecting port for attaching a gas cartridge or canister.
  • a gas cartridge may be sized to fit within the drill body or attached externally on the drill body.
  • the cartridge may be refillable or disposable.
  • the clamping mechanism of the positioning device may be gas-powered. By activating the flow of gas, the clamp may be moved to engage and compress tissue and/or an implant, holding the tissue and/or implant in place until fasteners may be inserted. It is further contemplated that other surgical tools, such as saws, shavers, reamers, grinders, etc., may include gas cartridges as previously described. These gas-powered tools may also include a microprocessor for control and feedback.
  • the present disclosure includes a tissue fixation system for dynamic and rigid fixation of tissue.
  • the system can be utilized for the fixation and stabilization of body tissue, including soft tissue to soft tissue, soft tissue to bone, and bone to bone.
  • the surgical system can additionally be used to affix implants and grafts to body tissue.
  • the system can access and treat fractured, incised or torn tissue, or the like, from one access area (i.e., from only one opening to the tissue to be fastened) instead of requiring two or more openings. That is, the system is a linear fixation system that can be used with a single, small incision or portal in the skin or other soft tissue to gain access to the fractured bone.
  • the fixation system may be an all-in-one system, packaged as a system kit, for creating a passage in tissue, positioning fasteners, and tensioning an elongate fastening member (e.g., a flexible line), like a suture, thread, cable, wire, rod, or pin.
  • an elongate fastening member e.g., a flexible line
  • the individual components of the system can either be reusable or single use components.
  • FIG. 44 shows an exemplary embodiment of a tissue fixation system 900 according to the present invention.
  • a fractured portion 902 of a bone 904 is approximated by system 900 .
  • Use of system 900 is not limited to any particular type of fracture.
  • use of system 900 is not limited to fracture fixation.
  • system 900 can be utilized for other tissue fixation applications (such as soft tissue) or similar clinical indications. Examples of such tissue includes, are not limited to, muscle, cartilage, ligament, tendon, skin, etc.
  • the tissue may be stomach tissue, and the system may be used during bariatric surgery, like stomach stapling. Additionally, the system 900 can be used for the fixation of implants to tissue.
  • the present invention may be used in conjunction with any surgical procedure of the body.
  • the repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part.
  • tissue may be repaired, reconstructed, augmented, and secured following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • ACL anterior cruciate ligament
  • rotator cuff surgery capsule repair surgery
  • fractured bone surgery pelvic fracture surgery
  • avulsion fragment surgery hernia repair surgery
  • hernia repair surgery and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • an anastomosis is performed over a balloon and the methods and devices of the present invention are used to repair the vessel.
  • tissue may be repaired after an implant has been inserted within the body.
  • implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc.
  • the implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic.
  • Other implants include breast implants, biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearing for medial compartment of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold.
  • the scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • the present invention further provides flexible and rigid fixation of tissue.
  • Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue.
  • a fractured bone for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing.
  • bones may be flexibly secured to provide flexible stabilization between two or more bones.
  • Soft tissue like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing.
  • Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals.
  • joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint.
  • Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes.
  • the fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • the present invention can be used for microscopic applications.
  • individual cells or fibers may need to be repaired.
  • muscle repair may require tightening of individual muscle fibers.
  • System 900 includes a distal fastener 906 contacting fracture portion 902 , a proximal fastener 908 contacting bone 904 , and an elongate fastening member 910 extending through the fracture and coupling distal and proximal fasteners 906 , 908 .
  • Tension is maintained in elongate fastening member 910 to press fasteners 906 , 908 against opposite sides of bone 904 with a desired force. This force presses fracture portion 902 against bone 904 firmly together to promote healing of the fracture.
  • buttons or other force distributing members could be provided between fasteners 906 , 908 and the bone.
  • distal and proximal fasteners 906 , 908 as having the same construction, they could have differing construction. However, for convenience and practical purposes, it may be beneficial if distal and proximal fasteners 906 and 908 have substantially the same construction.
  • FIGS. 45-48 show an exemplary embodiment of a fastener 912 that can be used as part of system 900 , i.e. as either or both of distal and proximal fasteners 906 , 908 .
  • Fastener 912 has a body 914 that is configured and dimensioned to facilitate implantation through minimally invasive procedures, e.g. through a cannula or sleeve.
  • body 914 includes a tissue contacting surface 916 that is provided with groove 1018 that receives a portion of elongate fastening member 910 when fastener 912 is in a first orientation with respect to elongate fastening member 910 . This is seen in FIG. 49 .
  • elongate fastening member 910 within groove 918 helps to minimize the profile of the assembly of fastener 912 and elongate fastening member 910 .
  • the reduced profile can be more readily passed through a cannula or sleeve.
  • an adhesive can be provided within groove 918 to bias fastener 912 in the first orientation.
  • a frangible connection can be provided between groove 918 and the portion of elongate fastening member 910 . This frangible connection keeps fastener 912 in the first orientation with respect to elongate fastening member 910 until it is broken.
  • Fastener 912 is provided with first and second ends 920 , 922 . As shown in FIG. 49 , first end 920 is the leading end and second end 922 is the trailing end. In this position, when fastener 912 is pivoted to a second orientation, like distal fastener 906 of FIG. 44 , tissue contacting surface 916 is in contact with the tissue. As shown in FIGS. 50 and 51 , second end 922 is the leading end and first end 920 is the trailing end. In this position, when fastener 912 is pivoted to the second orientation, like proximal fastener 908 of FIG. 44 , tissue contacting surface 916 is in contact with the tissue.
  • Fastener body 914 has a free surface 924 opposite tissue contacting surface 916 .
  • Free surface 924 is provided with a channel 926 that receives a portion of elongate fastening member 910 when fastener 912 is in a first orientation with respect to elongate fastening member 910 .
  • fastener 912 is being slid along elongate fastening member 910 .
  • a through bore 928 extends from tissue contacting surface 916 through free surface 924 .
  • Through bore 928 is larger in diameter than elongate fastening member 910 so that fastener 912 freely slides along elongate fastening member 910 .
  • a portion of elongate fastening member 910 fits within channel 926 on free surface 924 and a portion of elongate fastening member 910 fits within groove 918 on tissue contacting surface 916 .
  • Fastener body 914 is shown with first end 920 having a substantially flat profile and second end 922 having a tapered profile.
  • any suitable external configuration can be used for fastener 912 . Examples of fasteners may be found in U.S. Pat. Nos.
  • Fastener 912 can be made of any biocompatible material suitable for a given application.
  • the fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barbed, bubbled, laminated, coated, blocking, pneumatic, one-piece, multi-component, solid, hollow, polygon-shaped, pointed, self-introducing, and combinations thereof.
  • the fasteners may include metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, and combinations thereof.
  • body tissue examples include bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, and autograft.
  • the fasteners may also be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • the fasteners may further be made of or have a coating made of an expandable material.
  • the material could be compressed then allowed to expand.
  • the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are ePTFE and desiccated body tissue.
  • the fasteners described herein and incorporated by reference may include therapeutic substances to promote healing.
  • These substances could include antibiotics, hydroxyapatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof.
  • These therapeutic substances may be combined with the materials used to make the fasteners to produce a composite fastener.
  • the therapeutic substances may be impregnated or coated on the fastener.
  • Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener.
  • the therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • FIG. 52A shows an exemplary embodiment of an elongate fastening member 930 .
  • Elongate fastening member 930 includes a body 932 and has a stop 934 at a distal end.
  • Body 932 can be selected for a given application. For example, if a rigid elongate fastening member 930 is needed, body 932 can be a rod or a tube. If a more flexible elongate fastening member 930 is needed, body 932 can be a suture. In general, a wire analogous to those used for cerclage of bone fractures is believed to provide a suitable combination of strength and flexibility. Although body 932 is shown as a single strand wire, the invention can be used with any type of surgical cable, such as a multi-strand cable.
  • Stop 934 can be made integral with body 932 or separate and then attached. Stop 934 is larger in diameter than through bore 928 in body 914 of fastener 912 . Thus, once stop 934 reaches through bore 928 , fastener 912 cannot be slid any further along elongate fastening member 930 . As shown in FIG. 48 , free surface 924 of fastener 912 is provided with a well 936 surrounding through bore 928 . Well 936 is configured and dimensioned to receive at least a portion of stop 934 . As shown in FIG. 53 , this helps reduce the profile of the assembly when fastener 912 is in a second orientation with respect to elongate fastening member 930 .
  • the elongated fastener member 930 includes expandable members 931 , positioned along the body 932 . Upon insertion into the tissue, the expandable members 931 expand to engage the surrounding tissue.
  • the expandable members 931 can be barbs. The barbs 931 engage the surrounding tissue, maintaining the elongated fastener member's 930 position within the tissue.
  • the elongate fastening members of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, co polymeric material, or combinations thereof.
  • the members may be degradable, biodegradable, bioabsorbable, or nonbiodegradable.
  • suture materials that can be used for the elongate fastening members are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, and copolymers of glycolic and lactic acid.
  • the members are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced.
  • the members may have a coating of therapeutic substances or drugs.
  • the members may include antibiotics, hydroxyapatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • the use of the tissue fixation system according to the present invention will now be described using fracture fixation as an example. If necessary, the fracture is reduced bringing fracture portion 902 into contact with bone 904 ( FIG. 54 ). The reduction can be achieved using any number of techniques.
  • Drill system 938 is used to drill across the fracture, thereby creating a passage completely through bone 904 .
  • Drill system 938 includes a drill bit 940 with a headpiece configured for attachment to a drill.
  • a drill stop can be placed on the headpiece and prevents drill bit 940 from penetrating too far beyond the tissue to be drilled.
  • Drill system 938 may be a cannulated drill system that fits over a k-wire or other similar guide wire.
  • a cannula or sleeve 942 may encircle drill bit 940 or at least the shaft portion of drill bit 940 .
  • sleeve 942 is positioned in the passage.
  • Drill system 938 is used to create a passage in bone 904 from the proximal side of bone 904 to the distal side of bone 904 , then the drill and drill bit 940 are removed from sleeve 942 ( FIG. 55 ).
  • a distal fastener 912 a is inserted into sleeve 942 .
  • Distal fastener 912 a is inserted in the first orientation with respect to elongate fastening member 930 with first end 920 as the leading end.
  • tissue contacting surface 916 will be in contact with fracture portion 902 when distal fastener 912 a is pivoted into the second orientation.
  • a pushrod 944 is used to advance distal fastener 912 a and elongate fastening member 930 through sleeve 942 .
  • Pushrod 944 also facilitates the pivoting of distal fastener 912 a from the first orientation to the second orientation. This pivoting is not possible until distal fastener 912 a has exited through sleeve 942 . Also, since the length of distal fastener 912 a is larger than the passage created in bone 904 , pulling back on elongate fastening member 930 helps to ensure distal fastener 912 a is in the second orientation and flush against fracture portion 902 .
  • sleeve 942 is removed from bone 904 .
  • Fastener 912 a is located on the distal side of bone 904 .
  • Elongate fastening member 930 extends from fastener 912 a through the bone passage and out the proximal opening of the bone or tissue passage. Any suitable means can be used to keep distal fastener 912 a against fracture portion 902 with tension, where the tension can be measure and controlled in accordance with use.
  • elongate fastening member 930 can be deformed at the proximal end of the passage such that the deformed section rests against bone 904 . The deformation would depend on the nature of elongate fastening member 930 .
  • elongate fastening member 930 is a relatively flexible element, such as a suture, cable, or wire, then simply tying a knot in fastening member 930 could be sufficient to maintain the tension. If elongate fastening member 930 does not allow a knot, such as would be the case with a rod or tube, then mechanical deformation of elongate fastening member 930 to create an enlarged head could be sufficient to maintain the tension.
  • U.S. Pat. No. 7,361,178 discloses mechanisms to mechanically deform an extension member and could be used to deform elongate fastening member 930 .
  • the elongated fastening member 930 can be deformed by an energy, such as thermal energy, to deform elongate fastening member 930 to create an enlarged head sufficient to maintain the tension.
  • an energy such as thermal energy
  • a proximal fastener 912 b is used to secure distal fastener 912 a and elongate fastening member 930 .
  • proximal fastener 912 b is identical to distal fastener 912 a . If not already pre-loaded, proximal fastener 912 b is loaded onto elongate fastening member 930 .
  • Proximal fastener 912 b is loaded as shown in FIGS. 50 and 51 , i.e. with second end 922 as the leading end so that after proximal fastener 912 b is slid down against bone 904 and pivoted into the second orientation, tissue contacting surface 916 is in contact with bone 904 .
  • Elongate fastening member 930 is tensioned, and proximal fastener 912 b is secured to elongate fastening member 930 to thereby approximate the fracture and stabilize bone 904 .
  • the tension of elongate fastening member 930 pulls on distal and proximal fasteners 912 a , 912 b generally toward each other, thereby applying pressure to the fractured bone or tissue.
  • a bushing 946 can be used to secure proximal fastener 912 b with the desired tension.
  • Single or multiple elongated members 930 can be used to secure the fractured bone or tissue.
  • the present invention also provides a medical device for securing a fastener against relative movement with respect to a cable.
  • a cable and pair of oppositely spaced fasteners can be used to secure a bone fracture.
  • the cable is passed through the bone and fracture; a first fastener secures the cable on a first side (fracture side) of the bone; and a second fastener is positioned about the cable on a second side of the bone, opposite the first fastener.
  • a bushing is positioned onto the cable to secure the second fastener against the second side of the bone.
  • a force is applied to the bushing, compressing the second fastener against the second side of the bone and providing a tension to the cable.
  • the tension in the cable can be measured and controlled, for example, with the used of a sensor and spring element.
  • the spring can apply the force to tension the cable, and the sensor can be used to measure the resulting tension.
  • the sensor can measure the compression of the tissue to determine the tension.
  • the bushing is crimped about the cable, securing the second fastener against the second side of the bone, such that a tension is provided through the cable between the first and second fasteners.
  • a medical device 1200 is provided for securing the bushing to the cable.
  • the medical device 1200 includes a handle portion 1202 having a tensioning mechanism 1204 , tensioning the cable and applying a force to the bushing, and a crimping mechanism 1206 for securing the bushing to the cable.
  • the tensioning mechanism 1204 includes a collett holder 1208 defining a longitudinal passage along a central longitudinal axis A.
  • the collett holder 1208 is affixedly positioned through a top portion 1212 of the handle portion 1202 with collett holder pin 1214 .
  • a cable tensioner 1216 is slidably positioned on a first end 1218 of the collett holder 1208 .
  • the cable tensioner 1216 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 1208 .
  • An end portion 1222 of the cable tensioner 1216 includes a cable aperture 1224 for threading the cable there through.
  • a radial groove 1226 and circumferential groove 1228 are provided on the end portion 1222 of the cable tensioner 1216 , such that the cable can be wrapped about the circumferential groove 1228 of the cable tensioner 1216 , thereby preventing relative movement between the cable and the cable tensioner 1216 .
  • a cable tension lever 1230 is pivotally connected to the cable tensioner 1216 with a lever pin 1232 .
  • the cable tension lever 1230 is adjustably positioned on the handle portion 1202 with body pins 1234 , wherein a body pin 1234 is mirrorly positioned on opposite sides of the handle portion 1202 .
  • the body pins 1234 are engaged in the cable tension lever 1230 arcuate lever slots 1236 , such that cable tension lever 1230 and cable tensioner 1216 are movably connected to the handle portion 1202 .
  • the body pins 1234 traverse the arcuate lever slots 1236 , resulting in a translation of the cable tensioner 1216 along the first end 1218 of the collett holder 1208 from a first tensioner position T 1 to a second tensioner position T 2 .
  • a tension bias member 1238 is interposed between the cable tensioner 1216 and the handle portion 1202 , biasing the cable tensioner 1216 into the first tensioner position T 1 .
  • the cable tension lever 1230 includes tension indicating markings 1240 along each of the arcuate lever slots 1236 . The tension markings 1240 indicate the tension to be applied to the cable.
  • an alternative cable tensioner 440 is provided.
  • Cable tensioner 440 is slidably positioned on a first end 1218 of the collett holder 1208 .
  • the cable tensioner 440 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 1208 .
  • An end portion 442 of the cable tensioner 440 includes a cleat 444 and a cleat stop 446 .
  • the cleat 444 is pivotally mounted to the cable tensioner 440 , including a bias member 448 biasing the cleat 444 into a closed position.
  • a cable 450 is threadable between the cleat 446 and the cleat stop 448 , where in the closed position the cleat 446 imparts a force onto the cable 450 , securing the cable 450 in the cable tensioner 440 .
  • the bias member 448 biases the cleat 444 such that in the closed position the cable can be further drawn through the cable tensioner 440 , for example, to position the fastener proximal to the tissue while removing any initial slack from the cable 450 .
  • the cleat 444 prevents the cable 450 from being drawn back through the cable tensioner 440 .
  • the cleat 444 can include an arcuate contact surface 452 such that the force imparted on the cable 450 in the closed position increases as the tension on the cable 450 increases, preventing the cable 450 from being drawn back through the cable tensioner 440 .
  • the cleat arcuate surface 452 can further include a plurality of teeth 454 , which can be utilized to grip cable 450 .
  • a collett 1242 is affixed to a second end portion 1244 of the collett holder 1208 , opposite the cable tensioner 1216 .
  • the collett 1242 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208 along the central longitudinal axis A.
  • An end portion of the collett 1242 is bisected, forming first and second collett arms 1248 and 1250 .
  • a gap portion 1252 is provided between the first and second collett arms 1248 and 1250 .
  • Each of the first and second collett arms 1248 and 1250 includes force application end portions 1254 and 1256 .
  • the force application end portions 1254 and 1256 combine to form a bushing aperture 1258 configured to received the bushing therein.
  • the collett 1242 is made of a semi-rigid material, such that the first and second collett arms 1248 and 1250 can be moved from an open to a closed position, closing the gap 1252 between the force application end portions 1254 and 1256 .
  • the tensioning mechanism 1204 is used to tension the cable.
  • the cable can include a single or multiple filaments.
  • the cable is inserted through the medical device 1200 along the central longitudinal axis A, through the collett 1242 , collett holder 208 , and the cable tensioner 1216 , positioning the bushing in the bushing aperture 1258 and extending the cable through the cable aperture 1224 .
  • the cable tension lever 1230 is actuated from the first lever position L 1 to the second lever position L 2 , sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T 1 , into the handle portion 1202 against the tension bias member 1238 , to the second tensioner position T 2 .
  • the cable is positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216 , securing the cable to the cable tensioner 1216 .
  • the cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T 2 towards the first tensioner position T 1 .
  • the movement of the cable tensioner 1216 towards the first tensioner position T 1 applies a tension to the cable, forcing the bushing into the second fastener.
  • the applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240 .
  • the crimping mechanism 1206 includes an outer tube 1260 slidingly positioned over the collett holder 1208 .
  • the outer tube 1260 includes a first end 1262 operably connected to a trigger 1264 and a second end 1266 connected to a collett closer 1268 .
  • the trigger 1264 is pivotally mounted in the handle portion 1202 , such that the trigger 1264 can be actuated from a first trigger position TR 1 to a second trigger position TR 2 .
  • a locking mechanism 1265 prevents the trigger 1264 from being actuated. The locking mechanism 1265 is rotated to disengage the trigger 1264 , allowing actuation of the trigger 1264 .
  • the operable connection between the first end of the outer tube 1262 and the trigger 1264 includes an outer tube ferrule 1270 slidably positioned about the collett holder 1208 and affixed to the first end of the outer tube 1262 .
  • a tube bias member 1272 is interposed between the handle portion 1202 and the outer tube ferrule 1270 , such that the tube bias member 1272 biases the outer tube ferrule 1270 and the outer tube 1260 into a first tube position P 1 .
  • a pair of crimp cams 1274 are pivotally connected to the handle portion 1202 on opposite sides of the trigger 1264 .
  • the crimp cams 1274 each include first edges 1276 having an arcuate section 1278 for engaging the outer tube ferrule 1270 , where the crimp cams 1274 are translatable with respect to the handle portion 1202 from a first cam position C 1 to a second cam position C 2 .
  • An actuation of the trigger 1264 from a first trigger position TR 1 to a second trigger position TR 2 translated the crimp cams 1274 with respect to the handle portion from a first cam position C 1 to a second cam position C 2 position.
  • the arcuate sections 1278 of the crimp cams 1274 engage the outer tube ferrule 1270 , translating the outer tube ferrule 1270 and the outer tube 1260 along the collett holder 1208 from the first tube position P 1 to a second tube position P 2 .
  • the tube bias member 1272 biases the outer tube ferrule 1270 and the outer tube 1260 from the second tube position P 2 to the first tube position P 1 .
  • the crimp cams 1274 and the trigger 1264 are moved to the first cam position C 1 and the first trigger position TR 1 .
  • the collett closer 1268 is positioned on the outer tube 1260 proximal to the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250 .
  • the collett closer 1268 includes inner tapered surfaces 1280 , such that the inner tapered surfaces 1280 apply compressive forces to the force application end portions 1254 and 1256 as the collett closer 1268 is moved over the force application end portions 1254 and 1256 , closing the gap 1252 there between.
  • the trigger 1264 is actuated from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P 1 to the second tube position P 2 , moving collett closer 1268 about the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250 .
  • the inner tapered surfaces 1280 of the collett closer 1268 apply compressive forces to the first and second force application end portions 1254 and 1256 , closing the gap 1252 there between.
  • the trigger 1264 is released, allowing the tube bias member 1272 to bias the outer tube 1260 from the second tube position P 2 to the first tube position P 1 , moving the collett closer 1268 from the force application end portions 1254 and 1256 .
  • the crimping mechanism 1206 can further include a cutting mechanism.
  • the cutting mechanism includes a cut off cam 1284 slidingly positioned along a bottom portion of the collett holder 1208 .
  • the cut off cam 1284 includes a first end portion 1286 positioned through the outer tube ferrule 1270 .
  • a cut off cam ring 1288 is slidably positioned about the collett holder 1208 , engaging the first end portion 1286 of the cut off cam 1284 .
  • the cut off cam ring 1288 is positioned proximal to the trigger 1264 , such that as the trigger 1264 is actuated from the first trigger 1264 position TR 1 to the second trigger 1264 position TR 2 , a top portion 1290 of the trigger 1264 engages the cut off cam ring 1288 , sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208 .
  • a cut off bias member 1291 is interposed between the outer tube ferrule 1270 and the cut off cam ring 1288 .
  • a cut off arm 1292 is connected to the collett 1242 , at least partially positioned in the gap 1252 between the first and second collett arms 1248 and 1250 .
  • the cut off arm 1292 includes a cutting head portion 1294 positioned proximal to the first and second force application end portions 1254 and 1256 , at least partially positioned in the gap 1252 , interposed between the first and second collett arms 1248 and 1250 .
  • the cutting head portion 1294 includes a cutting edge 1296 , for cutting the cable, and a lower angular surface 1298 for engagement by a second end portion 1300 of the cut off cam 1284 .
  • the trigger 1264 is actuation from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288 , sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208 .
  • the second end portion 1300 of the cut off cam 1284 engages the angular surface 1298 of the cutting head 1294 , forcing the cutting edge 1296 into the cable, cutting the cable.
  • the trigger 1264 is released, allowing the cut off bias member 1291 to bias the cut off cam 1284 from the cutting head 1294 .
  • the cable is passed through the bone and fracture, where a first fastener secures the cable on a first side (fracture side) of the bone and a second fastener is positioned about the cable on a second side of the bone, opposite the first fastener.
  • a bushing is positioned onto the cable to secure the second fastener against the second side of the bone.
  • the cable is inserted through the medical device 1200 along the central longitudinal axis “A”, through the collett 1242 , collett holder 1208 , and the cable tensioner 1216 , positioning the bushing in the bushing aperture 1258 and extending the cable through the cable aperture 1224 .
  • the cable tension lever 1230 is actuated from the first lever position L 1 to the second lever position L 2 , sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T 1 , into the handle portion 1202 against the tension bias member 1238 , to the second tensioner position T 2 .
  • the cable is positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216 , securing the cable to the cable tensioner 1216 .
  • the cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T 2 towards the first tensioner position T 1 .
  • the movement of the cable tensioner 1216 towards the first tensioner position T 1 applies a tension to the cable, pressing the bushing against the second fastener.
  • the applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240 .
  • the trigger 1264 is actuated from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P 1 to the second tube position P 2 , moving collett closer 1268 about the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250 .
  • the inner tapered surfaces 1280 of the collett closer 1268 apply compressive forces to the first and second force application end portions 1254 and 1256 , compressing the first and second force application end portions 1254 and 1256 about the bushing positioned in the bushing aperture 1258 .
  • the compressive forces crimp the bushing about the cable, securing the bushing to the cable.
  • the actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288 , sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208 .
  • the second end portion 1300 of the cut off cam 1284 engages the angular surface 1298 of the cutting head 1294 , forcing the cutting edge 1296 into the cable, cutting the cable.
  • a medical device 1320 of the present invention secures a fastener against relative movement with respect to a suture, with the fastener itself being deformed.
  • Medical device 1320 is substantially similar to medical device 1200 and like reference number shall be used to indicate like items.
  • medical device 1320 includes collett 1322 .
  • collett 1322 is affixed to the second end portion 1244 of the collett holder 1208 , opposite the cable tensioner 1216 .
  • the collett 1322 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208 , along the central longitudinal axis A.
  • An end portion of the collett 1322 is bisected, forming first and second collett arms 1324 and 1326 .
  • a gap portion 1328 is provided between the first and second collett arm 1324 and 1326 .
  • Each of the first and second collett arms 1324 and 1326 includes force application end portions 1330 and 1332 .
  • the force application end portions 1330 and 1332 combine to form a fastener aperture 1334 configured to receive the fastener therein.
  • the force application end portions 1330 and 1332 each include opposing compressive members 1336 for compressing the fastener about the suture.
  • medical device 1320 includes collett closer 1340 .
  • the collett closer 1340 is positioned on the outer tube 1260 proximal to the force application end portions 1330 and 1332 of the first and second collett arms 1324 and 1326 .
  • the collett closer 1340 includes slotted sections 1342 configured for receiving end portions of the fastener therein.
  • the collett closer is moved over the force application end portions 1330 and 1332 .
  • the collett closer 1340 includes inner tapered surfaces 1280 (See FIG. 65 ), such that the inner tapered surfaces 1280 apply compressive forces to the force application end portions 1330 and 1332 as the collett closer 1340 is moved over the force application end portions 1330 and 1332 , closing the gap 1328 there between.
  • suture 1360 is inserted through the bone 1362 and fracture 1364 , where the suture 1360 is threaded through a fastener 1366 on a first side (fracture side) of the bone 1362 .
  • the suture 1360 is reinserted through the fracture 1364 and bone 1362 , such that first and second ends 1368 and 1370 of the suture 1360 extend from the bone 1362 .
  • the first and second ends of the suture 1368 and 1370 are threaded through a fastener 1372 , where the first end of the suture 1368 is threaded through a first aperture 1374 in the fastener 1372 and the second end of the suture 1370 is threaded through a second aperture 1376 in the fastener 1372 .
  • the ends of the suture 1368 and 1370 are inserted through the medical device 1320 along the central longitudinal axis A, through the collett 1322 , collett holder 1208 , and the cable tensioner 1216 , positioning the fastener 1372 in the fastener aperture 1334 and extending the ends of the suture 1368 and 1370 through the cable aperture 1224 .
  • the cable tension lever 1230 is actuated from the first lever position L 1 to the second lever position L 2 , sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T 1 , into the handle portion 1202 against the tension bias member 1238 , to the second tensioner position T 2 .
  • the suture ends 1368 and 1370 are positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216 , securing the suture 1360 to the cable tensioner 1216 .
  • the cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T 2 towards the first tensioner position T 1 .
  • the movement of the cable tensioner 1216 towards the first tensioner position T 1 applies tension to the suture 1360 , compressing the fastener 1372 against the bone 1362 .
  • the applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240 .
  • the trigger 1264 is actuation from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P 1 to the second tube position P 2 , moving collett closer 1340 about the force application end portions 1330 and 1332 of the first and second collett arms 1324 and 1326 .
  • the inner tapered surfaces 1280 of the collett closer 1340 apply compressive forces to the first and second force application end portions 1330 and 1332 , compressing compressive members 1336 of the first and second force application end portions 1330 and 1332 into the first and second fastener apertures 1374 and 1376 .
  • the compressive forces crimp the first and second fastener apertures 1374 and 1376 about the suture ends 1368 and 1370 , securing the fastener 1372 to the suture ends 1368 and 1370 .
  • the actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288 , sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208 .
  • the second end portion 1200 of the cut off cam 1283 engages the angular surface 1298 of the cutting head 1294 , forcing the cutting edge 1296 into the suture ends 1268 and 1270 , cutting the suture ends 1368 and 1370 .
  • a collett 400 is affixed to a second end portion 1244 of the collett holder 1208 , opposite the cable tensioner 1216 .
  • the collett 400 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208 along the central longitudinal axis A.
  • An end portion of the collett 400 is bisected, forming first and second collett arms 402 and 404 .
  • a gap portion 406 is provided between the first and second collett arms 402 and 404 .
  • Each of the first and second collett arms 402 and 404 includes force application end portions 408 and 410 .
  • the force application end portions 408 and 410 combine to form a bushing aperture 412 configured to received the bushing therein 414 .
  • the collett 400 is made of a semi-rigid material, such that the first and second collett arms 402 and 404 can be moved from an open to a closed position, closing the gap 406 between the force application end portions 408 and 410 .
  • suture 416 is inserted through the bone 418 and fracture 420 , where the suture 416 is threaded through a fastener 422 on a first side (fracture side) of the bone 424 .
  • the suture 416 is reinserted through the fracture 420 and bone 418 , such that first and second ends 426 and 428 of the suture 416 extend from the bone 418 .
  • the first and second ends of the suture 426 and 428 are threaded through a fastener 414 , where the first and second ends 426 and 428 of the suture 416 is threaded through an aperture 430 in the fastener 414 .
  • the ends of the suture 426 and 428 are inserted through the medical device 1320 along the central longitudinal axis A, through the collett 400 , collett holder 1208 , and the cable tensioner 1216 , positioning the fastener 414 in the fastener aperture 412 and extending the ends of the suture 426 and 428 through the cable aperture 1224 .
  • the cable tension lever 1230 is actuated from the first lever position L 1 to the second lever position L 2 , sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T 1 , into the handle portion 1202 against the tension bias member 1238 , to the second tensioner position T 2 .
  • the suture ends 426 and 428 are positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216 , securing the suture 1360 to the cable tensioner 1216 .
  • the cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T 2 towards the first tensioner position T 1 .
  • the movement of the cable tensioner 1216 towards the first tensioner position T 1 applies tension to the suture 416 , compressing the fastener 414 against the bone 418 .
  • the applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240 .
  • the trigger 1264 is actuated from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P 1 to the second tube position P 2 , moving collett closer 1340 about the force application end portions 408 and 410 of the first and second collett arms 402 and 404 .
  • the inner tapered surfaces 1280 of the collett closer 1340 apply compressive forces to the first and second force application end portions 408 and 410 .
  • the compressive forces crimp the aperture 430 about the suture ends 426 and 428 , securing the fastener 414 to the suture ends 426 and 428 .
  • a medical device 500 is provided for securing the bushing to the cable.
  • the medical device 500 includes a handle portion 502 having a tensioning mechanism 504 , tensioning the cable and applying a force to the bushing, and a crimping mechanism 506 for securing the bushing to the cable.
  • the tensioning mechanism 504 includes a collett holder 508 defining a longitudinal passage along a central longitudinal axis A.
  • the collett holder 508 is affixedly positioned through a top portion 510 of the handle portion 502 .
  • a cable tensioner 512 is slidably positioned on a first end 514 of the collett holder 508 .
  • the cable tensioner 512 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 508 .
  • An end portion 516 of the cable tensioner 512 includes a cable aperture for threading the cable there through.
  • a radial groove and circumferential groove 518 are provided on the end portion 516 of the cable tensioner 512 , such that the cable can be wrapped about the circumferential groove 518 of the cable tensioner 512 , thereby preventing relative movement between the cable and the cable tensioner 512 .
  • the cable tensioner 512 can include a retention bushing 520 and a tension insert 522 .
  • the tension insert 522 defines a cable passage longitudinally aligned with the longitudinal passage of the cable tensioner 512 .
  • the retention bushing 520 is positioned about a portion of the tension insert 522 , where an end portion 524 is threaded into the end portion 516 of the cable tensioner 512 .
  • An opposite end portion 526 of the tension insert 522 includes a cable aperture 528 for threading the cable there through.
  • a radial groove 530 is provided on the end portion 526 of the cable tensioner 512 and the retention bushing 520 and the tension insert 522 combine to form a circumferential groove 532 , such that the cable can be wrapped about the circumferential groove 532 , thereby preventing relative movement between the cable and the cable tensioner 512 .
  • a cable tension lever 534 is pivotally connected to the cable tensioner 512 with a lever pin 536 .
  • the cable tension lever 534 is adjustably positioned on the handle portion 502 with body pins 538 , wherein a body pin 538 is mirrorly positioned on opposite sides of the handle portion 502 .
  • the body pins 538 are engaged in the cable tension lever 536 arcuate lever slots 540 , such that cable tension lever 534 and cable tensioner 512 are movably connected to the handle portion 502 .
  • the body pins 538 traverse the arcuate lever slots 540 , resulting in a translation of the cable tensioner 512 along the first end 514 of the collett holder 508 from a first tensioner position T 1 to a second tensioner position T 2 .
  • a tension bias member 542 is interposed between the cable tensioner 512 and the handle portion 502 , biasing the cable tensioner 512 into the first tensioner position T 1 .
  • a collett 544 is affixed to a second end portion 546 of the collett holder 508 , opposite the cable tensioner 512 .
  • the collett 544 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 508 along the central longitudinal axis A.
  • An end portion of the collett 544 is bisected, forming first and second collett arms 548 and 550 .
  • a gap portion 552 is provided between the first and second collett arms 548 and 550 .
  • Each of the first and second collett arms 548 and 550 includes force application end portions 554 and 556 .
  • the force application end portions 554 and 556 combine to form a bushing aperture 558 configured to received the bushing therein.
  • the collett 544 is made of a semi-rigid material, such that the first and second collett arms 548 and 550 can be moved from an open to a closed position, closing the gap 552 between the force application end portions 554 and 556 .
  • the tensioning mechanism 504 is used to tension the cable.
  • the cable can include single or multiple filaments.
  • the cable is inserted through the medical device 500 along the central longitudinal axis A, through the collett 544 , collett holder 508 , and the cable tensioner 512 , positioning the bushing in the bushing aperture 558 and extending the cable through the cable aperture 530 .
  • the cable tension lever 354 is actuated from the first lever position L 1 to the second lever position L 2 , sliding the cable tensioner 512 along the collett holder 508 from the first tensioner position T 1 , into the handle portion 502 against the tension bias member 542 , to the second tensioner position T 2 .
  • the cable is positioned through the radial groove 528 and wrapped about the circumferential groove 532 on the between the retention bushing 520 and the tension insert 522 , securing the cable to the cable tensioner 512 .
  • the cable tension lever 534 is released, such that tension bias member 542 biases the cable tensioner 512 from the second tensioner position T 2 towards the first tensioner position T 1 .
  • the movement of the cable tensioner 512 towards the first tensioner position T 1 applies a tension to the cable, forcing the bushing into the second fastener.
  • the applied tension can be selected by actuating the cable tension lever 534 to the desired tension.
  • the crimping mechanism 506 includes an outer tube 560 slidingly positioned over the collett holder 508 .
  • the outer tube 560 includes a first end 562 operably connected to a trigger 564 and a second end 566 connected to a collett closer 568 .
  • the trigger 1264 is pivotally mounted in the handle portion 502 , such that the trigger 564 can be actuated from a first trigger position TR 1 to a second trigger position TR 2 .
  • a locking mechanism 570 prevents the trigger 564 from being actuated. The locking mechanism 570 is disengaged by rotating it away from the handle, where the locking mechanism is secured to the trigger with the locking pawl 572 . (See also FIG. 80 ).
  • the operable connection between the first end of the outer tube 562 and the trigger 564 includes an outer tube ferrule 574 slidably positioned about the collett holder 408 and affixed to the first end of the outer tube 562 .
  • a tube bias member 576 is interposed between the handle portion 502 and the outer tube ferrule 574 , such that the tube bias member 576 biases the outer tube ferrule 574 and the outer tube 560 into a first tube position P 1 .
  • a tube washer 578 can be provided between the tube ferrule 574 and the bias member 576 .
  • An actuation of the trigger 564 from a first trigger position TR 1 to a second trigger position TR 2 translates the outer tube ferrule 574 along the collett holder 1208 from the first tube position P 1 to a second tube position P 2 .
  • a tube pawl 580 engages the outer tube ferrule 574 , hold the outer tube ferrule in the second tub position P 2 .
  • the collett closer 568 is positioned on the outer tube 560 proximal to the force application end portions 554 and 556 of the first and second collett arms 548 and 550 .
  • the collett closer 568 includes inner tapered surfaces 582 , such that the inner tapered surfaces 580 apply compressive forces to the force application end portions 554 and 556 as the collett closer 568 is moved over the force application end portions 554 and 556 , closing the gap 552 there between.
  • the trigger 564 is actuated from the first trigger position TR 1 to the second trigger position TR 2 .
  • the actuation of the trigger 564 slides the outer tube 560 along the collett holder 508 from the first tube position P 1 to the second tube position P 2 , moving collett closer 568 about the force application end portions 554 and 556 of the first and second collett arms 548 and 550 .
  • the inner tapered surfaces 580 of the collett closer 568 apply compressive forces to the first and second force application end portions 554 and 556 , closing the gap 552 there between.
  • the crimping mechanism 506 can further include a cutting mechanism.
  • the cutting mechanism includes a pair of cut off cams 582 and 584 positioned in the collett gap 552 .
  • a pair of wedges 586 and 588 are slidingly positioned along and on opposite sides of the collett 550 and the collett holder 508 .
  • Each of the wedges 586 and 588 include tapered ends 590 and 592 positioned proximal to the cut off arms, such that when the wedges are moved from a first wedge position W 1 to a second wedge position W 2 , the tapered ends 590 and 592 compress the cut off cams 582 and 584 together, cutting the cable.
  • the handle 502 further includes a wedge pusher 594 slidingly positioned about the collett holder 508 , adjacent to second ends 594 and 596 of wedges 586 and 588 .
  • the wedge pusher 594 is slidable from a first position to a second position, such that the wedges 586 and 588 are moved from the first wedge position W 1 to the second wedge position W 2 .
  • a rocker 596 is pivotally connected to the handle 502 , such that an actuation of the rocker 596 from a first rocker position R 1 to a second rocker position R 2 , slides the wedge pusher 594 from the first position to the second position, moving wedges 586 and 588 from the first wedge position W 1 to the second wedge position W 2
  • the locking mechanism 570 includes a rocker kicker 598 pivotally affixed therein.
  • the rocker kicker 598 is biasedly connected to the locking mechanism 570 , being held in a closed position by a pin 600 .
  • the trigger 564 is actuated from the first trigger position TR 1 to the second trigger position TR 2 , the release 602 engages the pin 600 , releasing the rocker kicker 590 .
  • the trigger 564 is released, allowing the trigger 564 to move from the second trigger position TR 2 to the first trigger position TR 1 .
  • the trigger is again moved from the first trigger position TR 1 to the second trigger position TR 2 , such that the rocker kicker 598 engages the rocker 596 , pivoting the rocker 596 from the first rocker position R 1 to the second rocker position.
  • the rocker 596 slides the wedge pusher 594 from the first position to the second position, moving wedges 586 and 588 from the first wedge position W 1 to the second wedge position W 2 , such that, the tapered ends 590 and 592 compress the cut off cams 582 and 584 together, cutting the cable.
  • the trigger 564 can then be released, releasing the crimped fastener.
  • system and medical device of the present invention may be disposable or may be sterilized after use and reused.
  • the methods and devices of the present invention may be used in conjunction with any surgical procedure of the body.
  • the repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part.
  • tissue may be repaired, reconstructed, augmented, and secured following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • ACL anterior cruciate ligament
  • rotator cuff surgery capsule repair surgery
  • fractured bone surgery pelvic fracture surgery
  • avulsion fragment surgery hernia repair surgery
  • hernia repair surgery and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • an anastomosis is performed over a balloon and the methods and devices of the present invention are used to repair the vessel.
  • tissue may be repaired after an implant has been inserted within the body.
  • implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc.
  • the implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic.
  • Other implants include biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearings for one or more compartments of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold.
  • the scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • the present invention further provides flexible and rigid fixation of tissue.
  • Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue.
  • a fractured bone for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing.
  • bones may be flexibly secured to provide flexible stabilization between two or more bones.
  • Soft tissue like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing.
  • Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals.
  • joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint.
  • Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes.
  • the fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • the devices and methods of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels.
  • a small incision(s) may be made adjacent the damaged tissue area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention.
  • U.S. Pat. No. 5,320,611 entitled, Expandable Cannula Having Longitudinal Wire and Method of Use discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter.
  • the cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue.
  • the expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening.
  • U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths.
  • the cannula has a pointed end portion and includes wires having cores which are enclosed by jackets.
  • the jackets are integrally formed as one piece with a sheath of the cannula.
  • the cannula may be expanded by inserting members or by fluid pressure.
  • the cannula is advantageously utilized to expand a vessel, such as a blood vessel.
  • An expandable chamber may be provided at the distal end of the cannula.
  • an introducer may be utilized to position fasteners at a specific location within the body.
  • U.S. Pat. No. 5,948,002 entitled Apparatus and Method for Use in Positioning a Suture Anchor discloses devices for controlling the placement depth of a fastener.
  • U.S. Patent Application Publication No. 2003/0181800 discloses methods of securing body tissue with a robotic mechanism. The above-mentioned patent and application are hereby incorporated by reference.
  • Another introducer or cannula which may be used with the present invention is the VersaStep® System by Tyco® Healthcare.
  • the present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Patent Application Publication No. 2003/0181800 and U.S. Pat. Nos. 6,702,821 and 6,770,078.
  • These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement.
  • the femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference.
  • the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure.
  • the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired.
  • the patent documents mentioned above are hereby incorporated by reference.
  • intramedullary fracture fixation and comminuted fracture fixation may be achieved with the devices and methods of the present invention.
  • a plate or rod may be positioned within or against the fractured bone.
  • a fastener may be driven through or about the bone and locked onto the plate, rod, or another fastener.
  • an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents.
  • the above-mentioned patents are hereby incorporated by reference.
  • the methods of the present invention may be performed under indirect visualization, such as endoscopic guidance, computer assisted navigation, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, or other suitable visualization technique.
  • the implants, fasteners, fastener assemblies, and sutures of the present invention may include a radiopaque material for enhancing indirect visualization.
  • the use of these visualization means along with minimally invasive surgery techniques permits physicians to accurately and rapidly repair, reconstruct, augment, and secure tissue or an implant within the body.
  • U.S. Pat. Nos. 5,329,924; 5,349,956; and 5,542,423 disclose apparatus and methods for use in medical imaging.
  • the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above-mentioned patents are hereby incorporated by reference.

Abstract

Methods and devices for stabilizing spinal anatomical structures. Some example methods may include introducing a curved segment of an elongate fastener placement rod adjacent to a spinal anatomical structure, providing a fastener at the leading end of the curved segment, and/or securing the fastener in place with respect to the spinal anatomical structure.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of prior application Ser. No. 11/258,795, filed Oct. 26, 2005, which claims the benefit of U.S. Provisional Application No. 60/622,095, filed Oct. 26, 2004; is a continuation-in-part of prior application Ser. No. 11/358,311, filed Feb. 21, 2006, which claims the benefit of U.S. Provisional Application No. 60/655,140, filed Feb. 22, 2005; and is a continuation of prior application Ser. No. 11/202,294, filed Oct. 5, 2005; all of which are incorporated by reference.
  • BACKGROUND
  • The present disclosure is directed to surgical repair, stabilization, and/or fixation of tissue and/or implants. More specifically, the present disclosure pertains to guiding, positioning, repairing, reconstructing, augmenting, stabilizing, and/or fixing surgical devices, implants, tissues, within the body.
  • In the medical arts, physicians use various methods and devices to attach soft tissue to other soft tissue, soft tissue to hard tissue, and hard tissue to other hard tissue. These same or similar techniques and devices are also used to position or fix an implant within the body. Such implants may include bone plates, fasteners, stents, filters, drug eluting implants, tissue alignment members, organ transplants, tissue scaffolding, tissue grafts, intervertebral disc replacement components, nucleus pulposus replacement component, and other joint replacements components, prostheses, robotic components, nanotechnology devices, sensors, emitters, radiofrequency emitting diodes, computer chips, RFID (radiofrequency identification) tags, adhesives, and sealants.
  • Applying pressure or compression to tissue and/or an implant helps during the healing process. Incised or torn soft tissue, for example, may be approximated with bandages, sutures, or staples. Proper and more rapid healing of broken or fractured bones likewise may be facilitated by applying constant pressure to the bone. For instance, physicians may insert pins, screws, or bolts in the area of the fracture in order to apply compression and stabilization to the fracture.
  • However, inserting screws through or around fractures can be complex and time-consuming. For example, the process of inserting a screw typically involves multiple steps conducted from multiple incisions or openings that provide access to the treated bone or tissue, including the steps of drilling holes, measuring the relevant distances to determine the appropriate screw selection, tapping the hole to establish threads, and screwing the screw into the hole.
  • In addition to the length and complexity of the process, bone screws also may lose their grip and strip out of the bone. Also, currently available lag screws typically provide only one side of cortex fixation and are generally not suited for percutaneus surgery. Moreover, when placing the screws in the bone, the physician may not accurately set the screw into the distal hole or may miss the distal hole completely, thereby resulting in the screw stripping the threads or breaking the bone.
  • Many devices and instruments have been disclosed to fasten soft and hard tissue for enhanced healing or tissue reconstruction. Examples of such devices include bone plates, bone wraps, external bone supports, and the like.
  • For example, U.S. Pat. No. 4,257,411 to Cho discloses a surgical drill guide tool adapted to be temporarily mounted about a distal portion of the femur for drilling a bony tunnel through a portion of the femur. The surgical tool allows for very precise location of the drill exit within the intercondylar notch, which is often critical in proper reconstruction of the anterior cruciate ligament of the knee. The surgical tool drill guide is characterized by having a first and second upright, with first and second drill sheaths located at their respective distal ends wherein transverse mounting means are provided to allow the surgeon to position the first and second drill sheaths tightly against opposite surfaces of the femur to provide a continuing and exact alignment for the drilling of the bony tunnel. The drill sheath at the distal end of the second upright is configured to fit inside the intercondylar notch, and allow exact placement of the exit of a bony tunnel which is drilled extra-articularly through the skin, and through the lateral femoral condyle.
  • U.S. Pat. No. 4,922,897 to Sapega et al. discloses a method and apparatus for the permanent surgical reconstruction of the anterior cruciate ligament in the human knee, which will stabilize the tibia and femur relative to each other and restore a full range of motion to the knee, by precisely locating the ends and angular relationship of a replacement ligament within the knee joint, at bone attachment sites such that the degree of shortening and lengthening experienced by the replacement ligament over the range of joint motion is either as close to zero (isometric) as possible, or closely matches that of the natural uninjured ligament (physometric), whichever the surgeon feels is most desirable.
  • U.S. Pat. No. 5,573,538 to Laboureau discloses ancillary instruments for the reconstruction of a posterior cruciate knee ligament by drilling one or two tibial canals using a surgical operation performed from the front. The instrument set includes a system for protecting the posterior surface of the upper tibia end and an aiming device for guiding at least one drill. The protection system includes at least one bent tube removably coupled by an extension portion to a locking handle for securing the tube through the intercondylar fossa of the femur on the posterior surface of the upper end of the tibia, so that the distal end of the bent tube serves as the stop to the drill guided by the aiming device and emerging from the tibial bone canal, and the bent tube can form, together with a rectilinear wire feed-through tube disposed in the place of the drill, a continuous canal for guiding a metallic loop used to draw the prosthetic posterior cruciate knee ligament from the anterior surface of the tibia to the femur insertion point.
  • U.S. Patent Publication No. 2003/0216742 to Wetzler et al. discloses a surgical drill guide generally including a handle connected to an arm with an end that contacts bone. The handle has a plurality of non-parallel channels therein for receiving a sleeve at different angles. Once properly positioned, the sleeve can be used to guide a K-wire into the bone, which can then be used as a guide for drilling a tunnel. The various angles allow the surgeon to achieve a range of tunnel lengths. In some embodiments, the guide has a locking mechanism for locking the sleeve in the channels.
  • Accordingly, a need exists for a method and device which can provide guided positioning and flexible or rigid fixation of tissue and/or an implant within the body while accessing the procedure site from a small skin portal.
  • During a surgical procedure, tissue is either intentionally or accidentally displaced, torn, or fractured to create a pathway to a desired operation site. In doing so, this tissue is damaged to a point where it may not function properly. After the intended surgical procedure or implantation is performed at the operation site, the skin incision is approximated. Currently, however, the other tissue like the muscles, ligaments, tendons, cartilage, bones, etc. which were damaged to create the pathway are not necessarily repaired or reconstructed. For example, following spinal surgery, a frequent complication is late instability where there is shearing antero-posteriorly or superior inferiorly due to excess motion because the ligaments have been damaged during surgical exposure. This complication may lead to degenerative disc disease and lower back pain.
  • Various methods and devices have been disclosed for repairing tissue. For example, U.S. Pat. No. 6,425,919 issued to Lambrecht discloses a disc herniation constraining device for implantation into the disc. The constraining device includes a fastener, a barrier, and a support member connecting the fastener and barrier. The barrier closes a defect in the annulus of the disc, while the fastener supports the position of the barrier. The barrier is placed between the annulus and the nucleus of the disc. The barrier may include a sealant and an enlarger.
  • In another example, U.S. Pat. No. 6,592,625 issued to Cauthen discloses a collapsible patch which is inserted through a surgical incision or rupture of the annulus. The patch is positioned within the subannular space. The patch expands to bridge the incision or rupture thereby occluding the aperture from the interior of the disc and preventing migration of nucleus pulposus.
  • U.S. Pat. No. 6,679,889 issued to West, Jr. et al discloses a method and apparatus of repairing the anterior cruciate ligament. The device enables the surgeon to independently apply a desired tensile load onto individual strands of a multiple-stranded soft tissue graft. The device is equipped with structure for fastening or otherwise attaching the device to a patient's limb during the conditioning and pre-tensioning procedure.
  • Additionally, U.S. Pat. No. 6,699,286 issued to Sklar discloses methods and apparatus of making repairs with graft ligaments. The method for graft ligament reconstruction includes harvesting a graft ligament consisting entirely of soft tissue. The graft ligament is compacted through compression so as to significantly reduce the cross-sectional area and increase the density of the collagen material of the graft ligament. The compressed graft ligament is deployed within the human body.
  • Various methods and devices have been disclosed for inserting an implant within the body. For example, U.S. Pat. No. 5,108,438 issued to Stone discloses a mesh skirt to anchor a prosthetic intervertebral disc. The implant includes a dry, porous, volume matrix of biocompatible and bioabsorbable fibers which may be interspersed with glyscosaminoglycan molecules. The matrix is adapted to have an outer surface contour substantially the same as that of a natural intervertebral disc. A mesh member extends from the lateral surface of the implant. After implantation, the mesh member may be sutured to adjacent tissue to anchor the disc in place. The mesh member may function in this capacity until sufficient tissue ingrowth occurs to provide that function.
  • In another example, U.S. Pat. No. 6,733,531 issued to Trieu discloses a spinal implant which is anchored using a device having an elongated anchoring body, such as an anchoring rod, and at least one securing member attached to the anchoring rod. The anchoring body or rod is configured to anchor, hold, or otherwise retain a spinal implant. The securing members are spaced apart along the length of the anchoring rod and may define a region for disposing an implant therebetween. The anchoring rod has a first end and a second end, wherein the first end is securable to an adjacent vertebra.
  • Once tissue has been repaired or an implant has been inserted within the body, the repaired region and surrounding tissue may be stabilized to enhance healing. U.S. Pat. No. 6,652,585 issued to Lange discloses a spine stabilization system including a flexible member attachable to a portion of the spinal column. The member includes components that are oriented and function similar to the natural fiber orientation of the anterior longitudinal ligament and annulus tissue. The use of components resist loading applied by extension and rotation of the spine, while the flexibility of the member does not subject it to the compressive loading of the spinal column segment to which it is attached.
  • In addition, U.S. Pat. No. 6,293,949 issued to Justis et al. discloses a device for stabilizing the spinal column. The device includes a longitudinal member sized to span a distance between at least two vertebral bodies and being at least partially formed of a shape-memory material exhibiting pseudoelastic characteristics at about human body temperature. The longitudinal member is reformed from an initial configuration to a different configuration in response to the imposition of stress caused by relative displacement between the vertebral bodies, and recovers toward the initial configuration when the stress is removed to thereby provide flexible stabilization to the spinal column.
  • There exists a need for devices and methods for repairing, reconstructing, augmenting, and securing tissue or an implant during surgery and “on the way out” after surgery has been performed at an intended operation site. Upon completion of the intended surgery, tissue may be compressed to other tissue or an implant to improve healing. Hard tissue, for example, may require rigid fixation while soft tissue to require flexible fixation. The repair, reconstruction, and augmentation of tissue and the securing of implants “on the way out” of the body after performing a surgical procedure creates a stabilized and enhanced healing environment.
  • It is well-known in the medical arts that applying pressure to tissue helps during the healing process. Incised or torn soft tissue, for example, may be approximated with bandages, sutures, or staples. Proper and more rapid healing of broken or fractured bones likewise may be facilitated by applying constant pressure to the bone. For instance, physicians may insert pins, screws, or bolts in the area of the fracture in order to apply pressure to the fracture.
  • However, inserting screws through or around fractures can be complex and time-consuming. For example, the process of inserting a screw typically involves multiple steps conducted from multiple incisions or openings that provide access to the treated bone or tissue, including the steps of drilling holes, measuring the relevant distances to determine the appropriate screw selection, tapping the hole to establish threads, and screwing the screw into the hole.
  • In addition to the length and complexity of the process, bone screws also may lose their grip and strip out of the bone. In addition, currently available lag screws also typically provide only one side of cortex fixation and are generally not suited for percutaneous surgery. Moreover, when placing the screws in the bone, the physician may not accurately set the screw into the distal hole or may miss the distal hole completely, thereby resulting in the screw stripping the threads or breaking the bone.
  • Many devices and instruments have been disclosed to fasten soft and hard tissue for enhanced healing or tissue reconstruction. Examples of such devices include bone plates, bone wraps, external bone supports, and the like.
  • For example, U.S. Pat. No. 5,921,986, the contents of which are incorporated herein by reference, discloses a bone suture and associated methods for implantation and fracture fixation. The '986 Patent describes fasteners and anchors used in conjunction with an elongate fixation element, such as a suture. In some cases, it may be advantageous to use more rigid fixation elements.
  • Accordingly, a need exists for a tissue fixation instrument which can provide flexible or rigid fixation of tissue while accessing the tissue from a small skin portal.
  • SUMMARY
  • The present disclosure includes instruments and methods for guiding and positioning various implants within the body. The instrument may provide for the placement of a biocompatible implant within tissue and/or may provide for dynamic and rigid fixation of tissue. An implant guidance and positioning device includes a body member connected with a hook. The hook may have a lumen extending therethrough. The device also includes a guide channel disposed in the body member. The longitudinal axis of the guide channel may be generally aligned with or slightly offset from a distal end of the hook. The device may further include a pushrod for positioning a fastener and suture in the lumen of the hook. Furthermore, the device may include an elongated claw dimensioned for insertion through the guide channel. The claw may include means for grabbing the suture.
  • In another embodiment, the positioning device includes a body member, an elongated member connected with the body member, a socket member connected to the distal end of the elongated member, and a guide slot disposed in the body member. The longitudinal axis of the guide slot is generally aligned with or slightly offset with the socket member. The socket member may be dimensioned and configured for holding a fastener. The device may also include a fastening member dimensioned for insertion in the guide slot. The fastening member may include means for attaching the fastening member to the fastener, such as threads, ribs, magnets, adhesives, or expandable material.
  • In a related aspect of the present invention, the distal portion of the hook or elongated member is curved to be positionable at least partially on the distal or backside of the bone or tissue, while the proximal portion of the hook or elongated member may be generally parallel with the guide channel or slot. The hook or elongated member may be removably connected with the body member with means for holding and releasing the hook or elongated member.
  • The positioning device may further include a drill system having a drill bit dimensioned for insertion through the guide channel or slot. The drill system may create a linear or non-linear passage in tissue. The drill system may be a cannulated drill system. The positioning device may also include means for clamping the device to tissue. Such means may include a threaded tube adjustably attached to the body member, a tube and a finger grip attached to the body member, or one or more pins placed between the positioning device and tissue. Furthermore, the device may include a tensioning mechanism for tensioning the suture or fastening member.
  • The present disclosure includes the repair, reconstruction, augmentation, and securing of tissue or implants during a surgical procedure and “on the way out” after the surgical procedure has been performed. Hard and soft tissue at and around the operation site and tissue between the operation site and the skin incision may be compressed and/or rebuilt so that tissue-function may be at least partially restored and the operation region may be stabilized for enhanced healing. This could be ligament repair, tendon repair, muscle repair, bone repair, cartilage repair, and repair of any other tissue type. Ligaments may be fastened to ligaments; ligaments to bones; bones to bones; ligaments to muscles; muscles to muscles; tissue grafts to bone; tissue grafts to ligaments; grafts to grafts; and any other combination of tissue and implants. It is further contemplated that the methods and devices of the present invention may be utilized with minimally invasive techniques.
  • In accordance with one aspect of the present invention, a method for stabilizing a body joint is provided. A fastener is positioned in contact with first body tissue on one side of the joint. Another fastener is positioned in contact with second body tissue on the other side of the joint. A suture is placed between the fasteners and tensioned. The tensioned suture is secured to the fasteners to restrict normal movement of the joint. The fasteners may be positioned in contact with the outer surface of the body tissues or inside of the body tissues. The suture may be positioned adjacent to the joint, through the joint, or in combination.
  • The body tissues may be bones, muscles, ligaments, tendons, nerves, skin, organs, cartilage, fascia, and blood vessels. The bones and ligaments may be bones and ligaments of the knee, ankle, elbow, wrist, feet, hand, hip, shoulder, jaw, and spine. Specifically, bones of the knee may include the femur, tibia, and patella. Ligaments of the knee may include the medial collateral ligament, lateral collateral ligament, posterior oblique ligament, arcuate ligament, oblique popliteal ligament, anterior cruciate ligament, and posterior cruciate ligament. Bones of the spine may include transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina, and vertebral body. Ligaments of the spine may include the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine. Such bones of the spine and ligaments of the spine (as well as all other body tissues associated with the spine) may be referred to as spinal anatomical structures.
  • A tubular member may be positioned between the fasteners, and the suture may be placed within the tubular member such that a portion of the tubular member contacts the first body part and another portion of the tubular member contacts the second body part thereby maintaining the body parts in alignment with each other.
  • In accordance with another aspect of the present invention, there is provided a method for approximating an incision in tissue. A suture is positioned in portions of tissue located on opposite sides of the incision. The proximal and distal ends of the suture extend from the tissue and are adjacent the incision. A fastener is placed transverse to the incision with the ends of the suture disposed within at least one channel of the fastener. The suture is tensioned and secured to the fastener to thereby approximate the incision. The tissue may be bone, muscle, ligament, tendon, skin, organ, cartilage, and blood vessels.
  • Additionally, two fasteners may be positioned generally parallel to an incision with the first fastener placed on one side of the incision and the second fastener placed on the opposite side of the incision. A suture may be positioned in portions of tissue located on opposite sides of the incision with the middle section of the suture slidably disposed within at least one channel of the first fastener and the end portions of the suture disposed within at least one channel of the second fastener. The suture may be tensioned and secured to the fasteners to thereby approximate the incision.
  • In accordance with another aspect of the present invention, a fastener is provided. The fastener includes an elongated member and at least one channel extending therethrough generally perpendicular to the longitudinal axis of the elongated member. A portion of the outer surface of the fastener may be concave, flat, and/or convex.
  • There is also provided a method of using a fastener. At least a portion of the surface of the fastener is placed in contact with tissue. The fastener may be placed in contact with an outer surface of the tissue and/or the inner portion of the tissue. A portion of the surface of the fastener may be flat, convex, or concave. A convex portion of the fastener may be placed in contact with a concave portion of the tissue. A flat portion of the fastener may be placed in contact with a flat portion of the tissue. A concave portion of the fastener may be placed in contact with a convex portion of the tissue. In these configurations, the shaped portions of the fasteners mate with the tissue.
  • In accordance with yet another aspect of the present invention, a fastener assembly is provided. The assembly includes a plurality of fastener members, each fastener member having at least one channel extending therethrough. A plurality of connecting members links the fastener members to each other. The fastener members may be linked together end to end, side to side, or end to side. When linked together, the fastener members may form a linear, circular, rectangular, J, L, or U configuration. The connecting members may be hinges, pins, ball and socket, interconnecting loops, hooks, flexible filaments and/or rigid members. There may be two or more connecting members which link adjacent fastener members. The channels of the fastener members may be generally transverse to the longitudinal axis of the fastener member. Each fastener member may include two or more channels, and the channels may be generally parallel to each other.
  • Furthermore, a fastener strip or assembly is provided. The fastener strip or assembly includes a plurality of fastener members disposed on a flexible strip. Each fastener member has at least one channel extending therethrough. The channel may be generally transverse to the longitudinal axis of the fastener member. The fastener members are positioned on the flexible strip to form a linear, circular, rectangular, J, L, and/or U configuration. The fastener members may be affixed to the upper surface of the flexible strip. The fastener members may be affixed to the upper surface of the flexible strip with adhesive. The flexible strip may also have adhesive on its lower or bottom surface for adhesion to tissue. Such adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive. The flexible strip may be bioabsorbable, bioerodible, degradable, biodegradable, expandable, and/or hydrophilic.
  • There is also provided a method for using a fastener assembly. The fastener assembly is positioned against tissue. A suture or sutures are positioned within the tissue and through the suture assembly to secure the assembly to the tissue. In one embodiment, the assembly is placed over an incision in the tissue. The fastener members are positioned such that channel of the fastener members are located on each side of the incision. A suture or sutures are positioned within the portions of tissue on opposite sides of the incision and through the fastener assembly. The suture or sutures are tensioned and secured with the fastener members. The type and configuration of the fastener assembly is determined with respect to the shape or configuration of the tissue. The shape of the incision also determines the shape of the fastener assembly.
  • In accordance with a further aspect of the present invention, a total disc replacement implant is provided. The implant includes a superior or upper portion made of a rigid material. The upper surface of the superior portion is configured to adjoin to a cut portion of a superior or upper vertebra. The implant also includes an inferior or lower portion made of a rigid material. The lower surface of the inferior portion is configured to adjoin to a cut portion of an inferior or lower vertebra. The implant further includes a middle portion made of a flexible material. The middle portion is affixed to the lower surface of the superior portion and the upper surface of the inferior portion.
  • The superior and inferior portions of the implant may include polymeric, composite, metallic, ceramic, and expandable material. The portions may also include synthetic bone and body tissue like bone, collagen, cartilage, and ligaments. The portions may also be bioabsorbable, bioerodible, degradable, and biodegradable. The middle portion of the implant may include rubber, gel, foam, polymer, collagen, and body tissue. The total disc replacement implant may be made of a plurality of components; that is, the implant may be modular. The components may be connected with each other to form the implant. The components may mechanically interlock with one another. Each component may have a size approximately the same as the length of the incision through which the components are inserted.
  • In addition, there is provided a method for total disc replacement. An incision is made through tissue for access to the spine. The dimensions of the incision may be minimized to reduce trauma to surrounding tissue like muscle, ligaments, tendons, and cartilage. The vertebra located superior to the damaged disc being replaced is cut. The cut may be made on the lower or bottom portion of the superior vertebra. The cut may be planar or multiplanar. The superior vertebra may be cut without disturbing or at least minimally disturbing the adjacent ligaments, cartilage, and muscles. The cut may be angled to avoid damaging or loosening the spinal ligaments like the anterior and posterior longitudinal ligaments.
  • The vertebra located inferior to the disc being removed is cut in a similar manner, except the upper surface of the inferior vertebra is cut. Once cut, the cut portions of vertebrae and the intervertebral disc are removed through the incision. The cut vertebrae are further prepared for receiving an implant. The total disc replacement implant or modular implant is positioned between the cut superior and inferior vertebrae. A modular implant may be positioned one component at a time or already assembled. The implant is anchored to the surrounding tissue like the adjacent vertebral bodies. Any ligaments, muscles, cartilage, tendons, or other body tissue cut or damaged during the procedure is repaired prior to closing the incision. Finally, the incision is approximated.
  • In accordance with another aspect of the present invention, a tissue alignment sleeve is provided. The sleeve includes a tubular member having a wall. The interior surface of the wall is generally smooth. The exterior surface of the wall includes means for gripping and creating friction. The gripping means may include threads, a plurality of raised regions, and a plurality of circumferential elevated areas or rings. The wall may include a plurality of openings for tissue ingrowth and outgrowth. The wall may include one or more longitudinal slits such that the tubular member or sleeve may be bendable to increase and decrease the diameter of the sleeve.
  • There is further provided a method of using a tissue alignment sleeve. A channel is created in tissue. The sleeve is positioned within the tissue. The gripping or friction means of the sleeve holds the sleeve within the tissue. The tissue may include first and second portions. When positioned within the first and second portions of the tissue, the portions are aligned and maintained in position relative to each other. The first and second portions may be portions of bone on opposite sides of a fracture. The portions may be tissue of a body joint. The portions may be bones of a joint located on opposite sides of the joint, such that when the sleeve is positioned, movement of the joint is restricted.
  • A sleeve with at least one longitudinal slit may be positioned with the channel created in tissue. The diameter of the sleeve may be decreased by closing the gap in the longitudinal slit. In a decreased diameter, the sleeve may be inserted into the channel. Once positioned, the diameter of the sleeve may be increased thereby engaging the gripping means with the tissue. A suture or sutures may be placed through the lumen of the sleeve to secure tissue located at the ends of the sleeve. After the sleeve has gripped the adjacent tissue with the gripping means, therapeutic substances or graft material (autogenic, allogenic, xenogenic, or synthetic) may be packed into the tubular member.
  • In accordance with a further aspect of the present invention, a method for stabilizing an implant is provided. A first fastener is positioned in contact with tissue located adjacent the implant. A second fastener is positioned in contact with tissue located adjacent the implant generally opposite the first fastener. A suture is placed between the fasteners and in contact with the implant. The suture is tensioned, and the fasteners are secured to the tensioned suture such that the suture transmits force to the implant. The suture may be positioned in contact with the surface of the implant. The suture may also be positioned within the implant.
  • In addition, a method for stabilizing an implant within a body is provided. A first fastener is positioned in contact with the implant. A second fastener is positioned in contact with tissue located adjacent the implant. A suture is placed between the fasteners. The suture is tensioned, and the fasteners are secured to the tensioned suture to anchor the implant to the tissue. The first fastener may be positioned within the implant or on the surface of the implant. The suture may be placed against or within the implant.
  • In accordance with another aspect of the present invention, there is provided a method for anchoring an implant for directional expansion within the body. A first fastener is positioned in contact with the first side of an expandable implant. A second fastener is positioned in contact with tissue located adjacent a second side of the implant which is opposite the first side. A first suture is positioned between the fasteners and tensioned. The first suture is secured with the first and second fasteners. In this configuration, the first side of the expandable implant is restricted from expanding, but all other sides of the implant can expand.
  • For further restriction of expansion, a third fastener is positioned in contact with the second side of the implant. A fourth fastener is positioned in contact with tissue located adjacent the first side of the implant. A second suture is positioned between the third and fourth fasteners. The second suture is tensioned and secured with the fasteners. The second side of the implant is restricted from expanding. To further restrict expansion of the implant, more fasteners and sutures may be positioned as previously described such that the implant is limited to expansion in one, two, or more directions.
  • The sutures may be positioned in contact with the expandable implant such that the sutures transmit force to the implant thereby anchoring the implant and further restricting expansion.
  • In accordance with a further aspect of the present invention, a device for anchoring an implant is provided. The device includes a pouch dimensioned and configured for receiving an implant. The pouch has an access port for inserting the implant. At least one anchoring point is connected with the pouch. The device may further include a flap attached to the pouch for closing the access port. The implant may be expandable, and when positioned in the pouch, the implant generally expands primarily in the direction of the access port. The pouch may include a plurality of access ports. An expandable implant placed in a pouch with a plurality of access ports expands primarily in the directions of the access ports.
  • In accordance with another aspect of the present invention, there is provided a method for repairing a ligament. A fastener is positioned in contact with the ligament adjacent the first side of a damaged region of the ligament. Another fastener is positioned in contact with the ligament adjacent a second side of the damaged region which is generally opposite the first side. A suture is positioned between the fasteners. The suture is tensioned and secured with the fasteners such that the ligament is tightened. The suture may be positioned through the ligament. The suture may also be positioned through tissue adjacent the damaged area. The tissue may be spine tissue such as one or more vertebrae and one or more intervertebral discs. The ligament may be a ligament of the spine such as the anterior or posterior longitudinal ligament, or any of the previously identified ligaments. The damaged region may be a loosened ligament area, a torn ligament area, or a missing ligament area.
  • Furthermore, a method for reconstructing a ligament is provided. A tissue graft is positioned adjacent a damaged region of the ligament. A first fastener is positioned in contact with the tissue graft on a first side of the damaged region. A second fastener is positioned in contact with the tissue graft on a second side of the damaged region which is generally opposite the first side. A suture is positioned between the fasteners with the suture passing through the tissue graft and ligament. The suture is tensioned and secured with the fasteners to hold the tissue graft against the ligament. The tissue graft may include ligamentous tissue or bone tissue. The ligament may be a ligament of the spine. The suture may be positioned within tissue located adjacent the ligament. The tissue may be spine tissue including one or more vertebrae and one or more intervertebral discs.
  • Moreover, there is provided another method for reconstructing a ligament. A tissue graft is positioned adjacent a damaged region of the ligament. A first fastener is positioned in contact with the tissue graft on a first side of the damaged region. A second fastener is positioned in contact with tissue adjacent the ligament. A suture is positioned between the fasteners with the suture passing through the tissue graft and ligament. The suture is tensioned and secured to the fasteners such that at least a portion of the tissue graft is held to the ligament. The tissue graft may include ligamentous tissue or bone tissue. The ligament may be a ligament of the spine like the anterior or posterior longitudinal ligament. The suture may be positioned within the tissue adjacent the ligament. The tissue may be spine tissue including one or more vertebrae and one or more intervertebral discs.
  • The present disclosure includes a tissue fixation system. The system comprises an elongate fastening member and a fastener moveable with respect to the elongate fastening member from a first orientation to a second orientation, the fastener having a body with a tissue contacting surface that includes a groove configured and dimensioned to receive a portion of the elongate member in the first orientation. The system can also include a second fastener or other means for maintaining tension in the elongate fastening member.
  • A biasing means can be provided to maintain the fastener in the first orientation. The biasing means can be an adhesive between the groove and the portion of the elongate fastening member received in the groove. The biasing means could also be a frangible connection between the groove and the portion of the elongate fastening member received in the groove.
  • The fastener body can have a free surface opposite the tissue contacting surface, with the free surface including a channel configured and dimensioned to receive a portion of the elongate member in the first orientation. The fastener body can also include a through bore extending from the tissue contacting surface through the free surface.
  • In one embodiment, the fastener body includes leading and trailing ends. The leading end can be tapered or otherwise shaped to facilitate insertion. The groove terminates at the through bore and extends toward one of the leading and trailing ends and the channel terminates at the through bore and extends toward the other of the leading and trailing ends. In an exemplary embodiment, the groove extends toward the leading end and the channel extends toward the trailing end.
  • The free surface of the fastener body can be provided with a well surrounding the through bore. The well can be configured and dimensioned to receive at least a portion of the stop. A distal end of the elongate fastening member can include a stop larger than the through bore.
  • The present invention also relates to a medical instrument or device for securing the fastener with respect to the elongate fastening member. The medical device tensions the elongate fastening member and crimps either the fastener or a bushing. Another aspect of the invention relates to methods of tissue fixation using the disclosed tissue fixation systems.
  • In an aspect, a method for stabilizing a spinal anatomical structure may include introducing, into a body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end; providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure; and securing the fastener with respect to the spinal anatomical structure.
  • In a detailed embodiment, the fastener may be secured with respect to the spinal anatomical structure utilizing at least one flexible line. In a detailed embodiment, the at least one flexible line may extend from the fastener, through at least a portion of the spinal anatomical structure to a separate securing point within the body. In a detailed embodiment, a method may include securing the at least one flexible line at the separate securing point by a second fastener. In a detailed embodiment, the step of securing the at least one flexible line at the separate securing point by the second fastener may include crimping the second fastener to the flexible line. In a detailed embodiment, the crimping step may include introducing a crimping mechanism extending from an elongate rod of a crimping tool through an incision in the body and adjacent to the second fastener. In a detailed embodiment, the at least one flexible line may include a suture. In a detailed embodiment, the at least one flexible line may include a cable.
  • In a detailed embodiment, the flexible line may be provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure, and the method may include a step of passing the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body. In a detailed embodiment, the passing step may be performed utilizing a gripper at a leading end of an elongate gripper rod which pulls the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body. In a detailed embodiment, the elongate fastener placement rod and elongate gripper rod may extend from a hand-held guidance and positioning device. In a detailed embodiment, a method may include forming a hole through the portion of the spinal anatomical structure prior to the pulling step. In a detailed embodiment, the hole forming step may be performed by an elongate drill rod extending from the hand-held guidance and positioning device. In a detailed embodiment, the elongate gripper rod and elongate drill rod may be guided by a guide tube extending from the hand-held guidance and positioning device.
  • In a detailed embodiment, the elongate gripper rod may extend from the hand-held guidance and positioning device along an axis that runs adjacent to or through the leading end of the curved segment of the fastener placement rod.
  • In a detailed embodiment, a method may include forming a hole through the portion of the spinal anatomical structure prior to the passing step.
  • In a detailed embodiment, the spinal anatomical structure may be a first spinal anatomical structure; the flexible line may be provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure; and a method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the separate securing point within the body, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other. In a detailed embodiment, the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a vertebra. In a detailed embodiment, the first spinal anatomical structure may include a first vertebra and the second spinal anatomical structure may include a second vertebra. In a detailed embodiment, the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include an intevertebral disc. In a detailed embodiment, the first spinal anatomical structure may include a first spinous process and the second spinal anatomical structure may include a second spinous process. In a detailed embodiment, the first spinal anatomical structure may include a first ligament segment and the second spinal anatomical structure may include a second ligament segment. In a detailed embodiment, the first and second ligament segments may be torn or severed segments of the same ligament. In a detailed embodiment, the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include a vertebra. In a detailed embodiment, the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include an intevertebral disc. In a detailed embodiment, the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure is a ligament. In a detailed embodiment, the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a ligament.
  • In a detailed embodiment, a method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other. In a detailed embodiment, at least two of the first, second and third spinal anatomical structures may include spinous processes. In a detailed embodiment, at least two of the first, second and third spinal anatomical structures may include facets.
  • In a detailed embodiment, the drawing step may include passing the flexible line through an implant. In a detailed embodiment, the implant may include a graft. In a detailed embodiment, the implant may include a disc implant. In a detailed embodiment, the implant may include a scaffold.
  • In a detailed embodiment, the first spinal anatomical structure may include a spinous process and the second spinal anatomical structure may include at least one of a pedicle and bone of a facet joint. In a detailed embodiment, the first spinal anatomical structure may include at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure may include a spinous process. In a detailed embodiment, the first spinal anatomical structure may include a first side of a cervical spine and the second anatomical structure may include a second side of the cervical spine. In a detailed embodiment, a method may include passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures. In a detailed embodiment, the first spinal anatomical structure may include a first facet and the second spinal anatomical structure may include a second facet.
  • In a detailed embodiment, a method may include a step of tensioning at least a portion of the flexible line extending between the fastener and the separate securing point. In a detailed embodiment, the spinal anatomical structure may include annulus fibrosus. In a detailed embodiment, the spinal anatomical structure may include nucleus pulposus. In a detailed embodiment, the flexible line may extend through an intervertebral disc and through an adjacent vertebra. In a detailed embodiment, the flexible line may extend through adjacent vertebrae and an intervertebral disc between the adjacent vertebrae. In a detailed embodiment, the flexible line may extend through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae. In a detailed embodiment, the flexible line may extend through an upper spinous process and through a lower spinous process. In a detailed embodiment, the flexible line may extend through a vertebra and to or though a disc implant. In a detailed embodiment, the flexible line may extend through the spinal anatomical structure to or through a graft.
  • In a detailed embodiment, the flexible line may extend through the spinal anatomical structure and through or to a disc implant or a vertebral implant. In a detailed embodiment, the spinal anatomical structure may include annulus fibrosus. In a detailed embodiment, the spinal anatomical structure may include a vertebra. In a detailed embodiment, the spinal anatomical structure may include a facet.
  • In a detailed embodiment, the flexible line may extend through two severed portions of a spinal ligament. In a detailed embodiment, the flexible line may extend through two portions of a spinal ligament. In a detailed embodiment, the flexible line further may extend through a vertebra adjacent to at least one of the two portions of the spinal ligament. In a detailed embodiment, the flexible line may further extend through an intervertebral disc.
  • In a detailed embodiment, the flexible line may extend to or through a stabilization rod or plate. In a detailed embodiment, the spinal anatomical structure may include a spinous process.
  • In a detailed embodiment, the flexible line may extend through at least one portion of a spinal ligament and through or to a ligament graft.
  • In a detailed embodiment, at least a portion of the elongate fastener placement rod may be hollow. In a detailed embodiment, the portion of the elongate fastener placement rod that may be hollow may open onto the leading end of the curved segment of the fastener placement rod. In a detailed embodiment, the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure, may include a step of sending the fastener through the portion of the elongate faster placement rod that is hollow to the leading end of the curved segment. In a detailed embodiment, the sending step may further include sending a flexible line with the fastener through the portion of the elongate fastener placement rod that may be hollow to the leading end of the curved segment, wherein the fastener may be secured in place utilizing at least a portion of flexible line.
  • In a detailed embodiment, the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure, may be preceded by a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod.
  • In a detailed embodiment, a method may include a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod. In a detailed embodiment, the engaging step may include a step of disposing at least a portion of the fastener within the leading end of the curved segment of the fastener placement rod. In a detailed embodiment, a method may include a step of disengaging the fastener from the leading end of the curved segment of the fastener placement rod while the fastener is approximate to, adjacent to or on the spinal anatomical structure.
  • In a detailed embodiment, the introducing step may include introducing the curved segment of an elongate, fastener placement rod through an incision in the skin as part of a minimally invasive procedure.
  • In a detailed embodiment, the spinal anatomical structure may include at least one of bone, vertebral body, nucleus pulposus, muscle, tendon and cartilage.
  • In a detailed embodiment, the spinal anatomical structure may include at least one bone such as a transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina and vertebral body.
  • In a detailed embodiment, the spinal anatomical structure may include at least one ligament taken such as an anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligament, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, ligament of the sacrum and ligament of the coccyx spine.
  • In an aspect, a method for stabilizing a spinal anatomical structure may include connecting a flexible line and a fastener; introducing, through an incision in the body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end; providing, at the leading end of the curved segment of the fastener placement rod, the fastener and attached flexible line at a fastener placement point that is approximate to, adjacent to or on the spinal anatomical structure, the providing step including passing the fastener and attached flexible line through the curved segment of the elongate fastener placement rod to the leading end; passing the connected flexible line from approximate the fastener placement point through at least a portion of the spinal anatomical structure to a securing point; tensioning the flexible line between the fastener placement point and the securing point; and securing the flexible line at the securing point.
  • In a detailed embodiment, the step of securing the flexible line at the securing point may include a step of tying the flexible line. In a detailed embodiment, the step of securing the flexible line at the securing point may include a step of fastening the flexible line at the securing point using another fastener. In a detailed embodiment, the step of fastening the flexible line at the securing point using another fastener may include crimping the other fastener to the flexible line. In a detailed embodiment, the flexible line may include a suture. In a detailed embodiment, the flexible line may include a cable.
  • In a detailed embodiment, the passing step may be performed utilizing a gripper at a leading end of an elongate gripper rod to pull the connected flexible line from approximate the fastener placement point through at least the portion of the spinal anatomical structure to the securing point. In a detailed embodiment, the elongate fastener placement rod and the elongate gripper rod may extend from a hand-held guidance and positioning device. In a detailed embodiment, a method may include forming a hole through the portion of the spinal anatomical structure prior to the pulling step. In a detailed embodiment, the hole forming step may be performed by an elongate drill rod extending from the hand-held guidance and positioning device. In a detailed embodiment, the elongate gripper rod and the elongate drill rod may be guided by a guide tube extending from the hand-held guidance and positioning device.
  • In a detailed embodiment, the spinal anatomical structure may include annulus fibrosus. In a detailed embodiment, the flexible line may extend through an intervertebral disc and through an adjacent vertebra. In a detailed embodiment, the flexible line may extend through adjacent vertebrae and an intervertebral disc between the adjacent vertebra. In a detailed embodiment, the flexible line may extend through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae. In a detailed embodiment, the flexible line may extend through an upper spinous process and through a lower spinous process. In a detailed embodiment, the flexible line may extend through a vertebra and to or though a disc implant. In a detailed embodiment, the flexible line may extend through the spinal anatomical structure to or through a graft.
  • In a detailed embodiment, the flexible line may extend through the spinal anatomical structure and through or to a disc implant or a vertebral implant. In a detailed embodiment, the spinal anatomical structure may include annulus fibrosus. In a detailed embodiment, the spinal anatomical structure may include a vertebra. In a detailed embodiment, the spinal anatomical structure may include a facet.
  • In a detailed embodiment, the flexible line may extend through two severed portions of a spinal ligament.
  • In a detailed embodiment, the flexible line may extend through two portions of a spinal ligament. In a detailed embodiment, the flexible line may further extend through a vertebra adjacent to at least one of the two portions of the spinal ligament. In a detailed embodiment, the flexible line may further extend through an intervertebral disc.
  • In a detailed embodiment, the flexible line may extend to or through a stabilization rod or plate. In a detailed embodiment, the spinal anatomical structure may include a spinous process.
  • In a detailed embodiment, the flexible line may extend through at least one portion of a spinal ligament and through or to a ligament graft.
  • In a detailed embodiment, the spinal anatomical structure may include a first spinal anatomical structure; and a method may include a step of passing the flexible line from approximate the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the securing point, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other. In a detailed embodiment, the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a vertebra. In a detailed embodiment, the first spinal anatomical structure may include a first vertebra and the second spinal anatomical structure may include a second vertebra. In a detailed embodiment, the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include an intevertebral disc. In a detailed embodiment, the first spinal anatomical structure may include a first spinous process and the second spinal anatomical structure may include a second spinous process.
  • In a detailed embodiment, the first spinal anatomical structure may include a first ligament segment and the second spinal anatomical structure may include a second ligament segment. In a detailed embodiment, the first and second ligament segments may include torn or severed segments of the same ligament.
  • In a detailed embodiment, the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include a vertebra. In a detailed embodiment, the first spinal anatomical structure may include a ligament and the second spinal anatomical structure may include an intevertebral disc. In a detailed embodiment, the first spinal anatomical structure may include a vertebra and the second spinal anatomical structure may include a ligament. In a detailed embodiment, the first spinal anatomical structure may include an intervertebral disc and the second spinal anatomical structure may include a ligament.
  • In a detailed embodiment, the method may include a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other. In a detailed embodiment, at least two of the first, second and third spinal anatomical structures may include spinous processes. In a detailed embodiment, at least two of the first, second and third spinal anatomical structures may include facets.
  • In a detailed embodiment, the passing step may further include passing the flexible line through an implant. In a detailed embodiment, the implant may include a graft. In a detailed embodiment, the implant may include a disc implant. In a detailed embodiment, the implant may include a scaffold.
  • In a detailed embodiment, the first spinal anatomical structure may include a spinous process and the second spinal anatomical structure may include at least one of a pedicle and bone of a facet joint. In a detailed embodiment, the first spinal anatomical structure may include at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure may include a spinous process. In a detailed embodiment, the first spinal anatomical structure may include a first side of a cervical spine and the second anatomical structure may include a second side of the cervical spine. In a detailed embodiment, the method may further include passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures. In a detailed embodiment, the first spinal anatomical structure may include a first facet and the second spinal anatomical structure may include a second facet.
  • In an aspect, a method for stabilizing a spinal anatomical structure may include a step for introducing a fastener approximate to, adjacent to or on a spinal anatomical structure using a curved end of an introducer means; a step for passing a flexible line attached to the fastener through at least a portion of the spinal anatomical structure to a securing point; and a step for securing the flexible line at the securing point.
  • In a detailed embodiment, a method may include a step for tensioning the flexible line between the fastener and the securing point.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description refers to the following figures in which:
  • FIG. 1 shows an exemplary embodiment of the guidance and positioning device of the present invention;
  • FIG. 2 illustrates a cannulated drill system inserted in the device;
  • FIG. 3 shows a pushrod configured for inserting a fastener and suture into a hook of the positioning device;
  • FIG. 4 illustrates a fastener and suture positioned in the hook;
  • FIG. 5 shows a suture claw positioned in the guide channel of the device;
  • FIG. 6 illustrates the suture claw withdrawn from the guide channel with the suture disposed in the guide channel;
  • FIG. 7 shows the suture connected with the fastener on the distal side of the bone and the suture extending from the drill system;
  • FIG. 8 illustrates a fractured bone with the suture extending therethrough;
  • FIG. 9 shows a fastener positioned on the proximal side of the bone and secured to the suture;
  • FIG. 10 illustrates another embodiment of the implant guidance and positioning device;
  • FIG. 11 shows a cannulated drill system disposed in a guide slot of the device;
  • FIG. 12 illustrates a fastener disposed in a socket on the distal end of a hookshaped member of the device;
  • FIG. 13 shows a fastening member positioned in the guide slot of the device;
  • FIG. 14 illustrates a threaded distal portion of the fastening member disposed in a threaded hole of the fastener;
  • FIG. 15 shows a fractured bone with the fastening member extending therethrough;
  • FIG. 16 illustrates a fastener positioned on the proximal side of the bone and secured to the fastening member;
  • FIG. 17 shows one embodiment of a clamping mechanism of the device;
  • FIG. 18 illustrates another embodiment of the clamping mechanism of the device;
  • FIG. 19 shows an embodiment of a tensioning mechanism of the device;
  • FIGS. 20A-20H illustrate multiple embodiments of fasteners and fastener assemblies;
  • FIGS. 21A-21G show a plurality of embodiments of tissue alignment sleeves;
  • FIG. 22 illustrates the repair of the annulus of an intervertebral disc as well as stabilization of the spinal joint;
  • FIG. 23 illustrates a total intervertebral disc replacement implant;
  • FIG. 24 illustrates an embodiment for the anchoring of an implant;
  • FIG. 25 shows a further embodiment for the anchoring of an implant;
  • FIG. 26 illustrates anchorage of an expandable implant for directional expansion;
  • FIGS. 27A-27C show multiple embodiments of implant pouches;
  • FIG. 28 illustrates ligament repair and stabilization;
  • FIG. 29 shows ligament reconstruction and stabilization;
  • FIGS. 30A-30C illustrate ligament augmentation/reinforcement;
  • FIG. 31 shows a laminectomy site;
  • FIG. 32 illustrates stabilization of the cervical spine and head; and
  • FIG. 33 shows decompression and stabilization of the spinal column.
  • FIG. 34 illustrates a drill/sleeve combination in accordance with the present invention;
  • FIG. 35 is a cross sectional view of FIG. 34;
  • FIG. 36 shows the drill/sleeve combination in use to repair a fractured bone;
  • FIG. 37 illustrates the sleeve positioned across the fracture of the bone;
  • FIG. 38 shows another exemplary embodiment of the drill/sleeve combination;
  • FIG. 39 is a cross sectional view of FIG. 38;
  • FIG. 40 illustrates the drill/sleeve combination functioning as a fastener;
  • FIG. 41 shows an exemplary distal portion of the fastener;
  • FIG. 42 illustrates another exemplary distal portion of the fastener; and
  • FIG. 43 shows another embodiment of the guidance and positioning device having multiple hooks and guide channels.
  • FIG. 44 shows a schematic illustration of a tissue fixation system according to the present invention utilized for fracture fixation;
  • FIG. 45 shows a perspective view of a fastener according to the present invention;
  • FIG. 46 shows a side view of the fastener of FIG. 45;
  • FIG. 47 shows a bottom view of the fastener of FIG. 45;
  • FIG. 48 shows a top view of the fastener of FIG. 45;
  • FIG. 49 shows a fastener and elongate fastening member with the fastener in a first orientation with respect to the elongate fastening member;
  • FIG. 50 shows a front view of a fastener in the first orientation with respect to the elongate fastening member with the fastener rotated 180° compared to FIG. 49;
  • FIG. 51 shows a back view of the fastener and elongate fastening member of FIG. 50;
  • FIG. 52A shows an elongate fastening member according to the present invention;
  • FIG. 52B shows an elongate fastening member including expandable members;
  • FIG. 53 shows a fastener in a second orientation with respect to an elongate fastening member;
  • FIG. 54 shows a cannulated drill system used to create a passage through the tissue to be fixed;
  • FIG. 55 shows a sleeve having a lumen through which the fixation system can be passed;
  • FIG. 56 shows a distal fastener being inserted into the sleeve;
  • FIG. 57 shows a pushrod used to move the distal fastener through the sleeve;
  • FIG. 58 shows the distal fastener in the second orientation;
  • FIG. 59 shows a proximal fastener being used to maintain the tension in the elongate fastening member;
  • FIG. 60 depicts a front isometric view of the medical device of the present invention;
  • FIG. 61 depicts a rear partial isometric view showing the tensioning mechanism of the medical device of FIG. 60;
  • FIG. 62 depicts a rear isometric view showing the tensioning mechanism of the medical device of FIG. 60;
  • FIG. 63 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 60;
  • FIG. 64 depicts a partial isometric view showing the handle portion of the crimping mechanism of the medical device of FIG. 60;
  • FIG. 65 depicts a top sectional view of the crimping mechanism collett closer of the medical device of FIG. 60;
  • FIG. 66 depicts a partial isometric view showing the cutting mechanism of the medical device of FIG. 60;
  • FIG. 67 depicts a partial isometric view showing the collett portion of the cutting mechanism of FIG. 66;
  • FIG. 68 depicts an isometric view showing the cutting arm of the cutting mechanism of FIG. 67;
  • FIG. 69 depicts the medical device of FIG. 60 in use to secure a bone fracture;
  • FIG. 70 depicts a front isometric view of an alternative medical device of the present invention;
  • FIG. 71 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 70;
  • FIG. 72 depicts an isometric view of the crimping mechanism collett closer of the medical device of FIG. 70;
  • FIG. 73 depicts a sectional view of the medical device of FIG. 70 in use to secure a bone fracture;
  • FIG. 74 depicts an exemplary fastener for use with the medical device of FIG. 70;
  • FIG. 75 depicts an alternative sectional view of the medical device of FIG. 70 in use to secure a bone fracture;
  • FIG. 76 depicts an alternative fastener for use with the medical device of FIG. 75;
  • FIG. 77 depicts an alternative cable tensioner for the medical device of FIG. 60;
  • FIG. 78 depicts a sectional view of the cable tensioner of FIG. 77;
  • FIG. 79 depicts a front isometric view of the medical device of the present invention;
  • FIG. 80 depicts a side sectional view showing the tensioning mechanism of the medical device of FIG. 79;
  • FIG. 81 depicts a rear exploded view showing the tensioning mechanism of the medical device of FIG. 79;
  • FIG. 82 depicts an isometric view of the crimping mechanism collett of the medical device of FIG. 79;
  • FIG. 83 depicts a partial isometric view showing the handle portion of the crimping mechanism of the medical device of FIG. 79;
  • FIG. 84 depicts a partial isometric view showing the cutting mechanism of the medical device of FIG. 79;
  • FIG. 85 depicts an isometric view of the cutting mechanism in the collett of the medical device of FIG. 79;
  • FIG. 86 depicts the cutting wedge of the medical device of FIG. 79; and
  • FIG. 87 depicts a safety lock of the medical device of FIG. 79.
  • DETAILED DESCRIPTION
  • The present disclosure includes instruments and methods for guiding and positioning tissue and/or an implant within the body. The instrument may provide for the placement of a biocompatible implant within tissue or may provide for dynamic and rigid fixation of tissue. The device can access and treat a fractured, incised or torn tissue, or the like, from one access area (i.e., from only one opening to the tissue to be fastened) instead of requiring two or more openings. That is, the device is a linear system that can be used with a single, small incision or portal in the skin or other soft tissue to gain access to the tissue, for example a fractured bone.
  • The guidance and positioning device may be an all-in-one system for creating a passage in tissue, positioning fasteners or other implants, and tensioning an elongated fastening member, like a suture, thread, wire, or pin (generally, a “flexible line”). In some embodiments, the device may allow for the implantation of multiple sutures and fasteners in tissue with little or no repositioning of the device. For example, the device may have two or more of the elements described below connected to a single grip or handle. Likewise, the incision or opening providing access to the treated bone or tissue may extend at least partially in a direction along the length of the treated area so that the processes described below may be repeatedly performed on other, nearby portions of the bone or tissue in a similar manner.
  • Tissue Repair
  • Referring now to the drawing figures in which like reference designators refer to like elements, there is shown in FIG. 1 an exemplary embodiment of the guidance and positioning device 20. The device includes a generally cylindrical handle 22 and a hook 24 with a proximal end connected to the handle 22. In one embodiment, the hook has a tubular construction (e.g., may be hollow). An interior passageway may extend from the proximal end to the distal end. The hook 24 (which may be referred to as a fastener placement rod) may be curved as illustrated in the Figures, may be angular (e.g., may have an open-sided geometric shape), or may have any other desired shape so that its distal end is disposed approximately around the bone or tissue to be treated or fastened.
  • The proximal portion of the hook 24 may be positioned generally parallel with the longitudinal axis of the handle 22. A plurality of interchangeable hooks 24 may be releasably and interchangeably connected to the handle. In this manner, hooks of different sizes, shapes, or other features may be selected and used as desired by a physician. Thus, the device 20 may have a lever, clip, set-screw, button, spring, match, or latch 26 that allows selective securing and releasing of hooks 24 to or from the handle 22. The lever 26 allows different sized hooks 24 to be placed in the handle 22. For example, the hook may include different sized lumens extending therethrough, may be different lengths, and/or may have different radii of curvature. The curved or angled portion 28 of the hook 24 may be configured for positioning around a fractured bone 30 (as seen in FIG. 1), multiple pieces of similar tissue, multiple pieces of different tissue, or a single tissue element. Examples of such tissue includes, not is not limited to, bone, muscle, cartilage, ligament, tendon, skin, etc. Also, the tissue may be stomach tissue, and the positioning device may be used during bariatric surgery, like gastric stapling. It is further contemplated that measurements such as the depth, angle, length, and/or compression of the hook may be determined. The handle may include guides or indicia for measuring and displaying these measurements. Alternatively, the positioning device may include sensors for taking these measurements. For example, the handle of the device may include sensors and/or radiofrequency transmitters for determining and sending measurements to a computer and/or display.
  • A guide channel 32 (which may be referred to as a guide tube) extends through the handle 22. Preferably, the guide channel 32 extends generally parallel with the longitudinal axis of the handle 22. The longitudinal axis of the guide channel 32 is generally aligned with or is slightly offset from the distal end 34 of the hook 24. For instance, the shortest distance between the longitudinal axis of the guide channel and the distal end of the hook may be about 2 cm or less. In other embodiments, the shortest distance may be about 1 cm or less, or even about 0.25 cm or less.
  • Preferably, the guide channel 32 and hook 24 are configured so that the device can be used with a single, small incision in the skin or other soft tissue to gain access to the fractured bone or other tissue requiring fixation. For example, the portions of the guide channel 32 and hook 34 that are near the opening or incision may be spaced apart from each other by about 5 cm or less, and preferably are spaced about 2 cm or less from each other near the incision or opening. In one embodiment, the guide channel and hook are generally parallel and relatively close to each other for a substantial portion of the distance between the handle and the incision or opening.
  • In use, the device 20 is positioned with the curved portion 28 (also referred to as a curved segment) of the hook 24 placed next to and around the tissue to be fastened. The hook may be positioned subcutaneously, percutaneously, and/or minimally invasively. The tissue may be a fractured bone, a tissue fragment having tendon and bone or ligament and bone, or a tissue with avulsion type fragments. In FIG. 2, a curved portion 28 of the hook 24 is placed around a fractured bone 30 (fracture not shown) or tissue. A drill system 36 is positioned in the guide channel 32. The drill system 36 includes a headpiece 38 configured for attachment to a drill 40. A drill bit 42 (also referred to as a drill rod) is positioned at the distal end of the drill system 36. A drill stop 44 is located distal from the headpiece 38 and prevents the drill bit 42 from penetrating too far beyond the tissue to be drilled. The drill system 36 may be a cannulated drill system. A cannula or sleeve 46 may encircle the drill bit 42 or at least the shaft portion of the drill bit 42. As the drill bit 42 creates a passage 48 through the bone 30, the sleeve 46 is positioned in the passage 48 to link the bone passage 48 and the guide channel 32. The drill system 36 is used to create a passage 48 in the bone 30 from the proximal side of the bone 30 to the distal side of the bone 30, then the drill 40 and drill bit 42 are removed from the sleeve 46 and guide channel 32. The distal opening of the bone passage 48 is generally near the distal aperture 50 (which may be located at or near the leading end) of the hook 24.
  • It is contemplated that the drill system may be used to create a non-linear passage in tissue. The non-linear passage may be formed to go around implants such as an intramedullary rod or prosthesis. The non-linear passage may also allow a physician to avoid critical body parts or tissues such as vessels or organs. Alternatively, a no drill system may be employed to create a passage in the tissue. Rather, as described in more detail below, the guide channel may be used to guide and position a self-introducing elongate member like a guide wire, k-wire, claw, grabber, etc. The self-introducing member may be forced through the soft or hard tissue instead of pre-drilling a passage.
  • Next, as seen in FIG. 3, a fastener 52 is positioned at the distal end of a flexible pushrod 54. The fastener 52 may be connected with the pushrod 54 or may be loosely fitted with the distal end of the pushrod 54. A suture 56 is looped through or connected with the fastener 52 such that one, two, or more sections, legs, strands, or portions of the suture 56 extend from the fastener 52. Examples of fasteners may be found in U.S. Pat. Nos. 5,163,960 and 5,593,425 entitled “Surgical Devices Assembled Using Heat Bondable Materials” which disclose fasteners assembled from a plurality of discrete components, one of which includes a heat bondable material for bonding the components together. The heat bondable material is preferably a polymeric or composite material suitable for surgical applications and implantation in the human body. The heat bondable material may be a biodegradable material. A laser, hot air gun, welding gun, soldering gun, or Bovie tip may be used as a heat source for bonding the fastener. U.S. Pat. No. 6,368,343 entitled “Method of Using Ultrasonic Vibration to Secure Body Tissue” further discloses using ultrasonic vibration energy to bond the heat bondable material of the components of the fastener.
  • U.S. Pat. No. 5,403,348 entitled “Suture Anchor” discloses an anchor for securing a suture in the body. The anchor includes a tubular wall having a central axis. The tubular wall has a proximal end and a distal end each free of axially inwardly extending slots. The tubular wall also has an inner surface extending for the entire length of the tube and defining in the anchor a central opening extending between the proximal end and the distal end. The anchor has a width less than its length. A suture may extend through the anchor within the central opening. First and second end portions of the suture extend out of opposite ends of the anchor and are sufficiently long to project out of the body when the suture is secured in the body by the anchor. The anchor has an anchoring orientation in the body achieved by manipulation of the distal end of the anchor by pulling on the second end portion of the suture. Furthermore, the anchor has a removal orientation in the body achieved by manipulation of the proximal end of the anchor by pulling on the first end portion of the suture.
  • U.S. Pat. No. 5,464,426 entitled “Method of Closing Discontinuity in Tissue” discloses a suture anchor having a generally cylindrical configuration with a lumen extending therethrough. In use, a suture is inserted through openings in a plurality of anchors. Pulling on the suture presses the anchors against the body tissue and presses the body tissue together. The anchors may be pushed through the body tissue with a pusher member or by pushing the anchors against each other.
  • U.S. Pat. No. 5,549,630 entitled “Method and Apparatus for Anchoring a Suture” discloses a tubular anchor having a polygonal cross-sectional configuration with flat outer side surfaces areas connected by a plurality of outer corner portions. A passage through the anchor may be formed by flat inner side surfaces interconnected by inner corner portions. A suture is inserted through the passage. A concentrated force may be applied against a limited area on a trailing end of the anchor to rotate the anchor to move an outer corner portion of the anchor into engagement with body tissue. The suture may engage an inner corner portion of the anchor. The suture may be inserted through a plurality of anchors and the anchors moved through a tubular member into the body tissue under the influence of force transmitted from a trailing anchor to a leading anchor. When the leading anchor is moved into the body tissue, it is rotated under the influence of force applied against a trailing end of the leading anchor. If desired, two anchors may be interconnected. A groove may advantageously be provided along the leading end and side of an anchor to receive the suture.
  • U.S. Pat. No. 5,713,921 entitled “Suture Anchor” discloses a suture anchor formed from body tissue. The body tissue is shaped to a desired configuration for the anchor and defines a passage through the anchor. A suture is inserted into the passage in the body tissue of the anchor. The anchor is then positioned in a patient's body with a suture extending into the passage in the anchor. The anchor may be formed of osseous body tissue, hard compact bone, dense connective body tissue, or other body tissue. The body tissue may be dried so that it absorbs fluid and expands upon being inserted into a patient's body.
  • U.S. Pat. No. 5,718,717 also entitled “Suture Anchor” discloses an anchor formed of a material which absorbs body liquid when exposed to body liquid. The anchor may be at least partially formed of a material having a strong affinity for body liquids. This enables the anchor to absorb body liquid and expand upon being inserted into a patient's body. At least one embodiment of the suture anchor has portions formed of a relatively hard material which does not absorb body liquids and is pressed against body tissue by the material which absorbs body liquid to mechanically interlock the suture anchor and the body tissue. The anchor may be at least partially formed of a cellular material. The cells expand to absorb body liquid. At least one embodiment of the anchor has a pointed leading end portion to form an opening in an imperforate surface on body tissue. The configuration of the anchor may be changed by tensioning the suture while the anchor is disposed in body tissue.
  • U.S. Pat. No. 5,782,862 entitled “Suture Anchor Inserter Assembly and Method” discloses a suture anchor inserter assembly including a manually engageable handle and a shaft which extends axially outward from the handle. The shaft includes an inner member which is fixedly connected with the handle and an outer member which is retractable into the handle. An anchor is received in a chamber formed at the outer end of the shaft.
  • U.S. Pat. No. 5,814,072 entitled “Method and Apparatus for Use in Anchoring a Suture” discloses a suture anchor inserter including a manually engageable handle and a shaft which extends from the handle through a passage in the anchor. During insertion of the anchor into body tissue, an end portion of the shaft pierces the body tissue in advance of the anchor. At the same time, a pusher surface on the shaft applies force against a trailing end portion of the anchor to push the anchor into the body tissue. When the orientation of the anchor is to be changed, rotational force is applied to the anchor by tensioning the suture and pressing the end portion of the shaft against an inner surface of the passage in the anchor.
  • U.S. Pat. No. 5,814,073 entitled “Method and Apparatus for Positioning a Suture Anchor” discloses an inserter assembly operable between a closed condition blocking movement of a suture anchor through the inserter assembly and an open condition in which the inserter assembly is ineffective to block movement of the anchor.
  • U.S. Pat. No. 5,845,645 entitled “Method of Anchoring a Suture” discloses a process of fastening a suture to an anchor. The suture is inserted through passages which are spaced apart along and extend transversely to a longitudinal central axis of an anchor. When the anchor is moved into body tissue, a first portion of the suture extends from the first passage in the anchor through an opening in the body tissue to a location disposed to one side of the body tissue. A second portion of the suture extends from the second passage in the anchor through the opening in the body tissue. The suture is tensioned to apply force to the anchor. The force applied to the anchor by the suture initiates tipping of the anchor and movement of an end surface on the anchor across a leading end surface on an inserter member.
  • U.S. Pat. No. 5,921,986 entitled “Bone Suture” discloses an anchor connected with a suture moved through a passage between opposite sides of a bone. The anchor is then pivoted to change its orientation. A second anchor is connected with the suture. While tension is maintained in the suture, the suture is secured against movement relative to the anchors. This may be done by tying the suture or by using a suture retainer to hold the suture. A suture retainer may be used in place of the second anchor.
  • U.S. Pat. No. 5,948,002 entitled “Apparatus and Method for Use in Positioning a Suture Anchor” discloses an apparatus which includes a tubular outer member and an inner or pusher member. During assembly of the apparatus, a suture is positioned in a slot in the outer member. During use of the apparatus, the slot facilitates visualization of the position of the suture anchor relative to body tissue. In addition, the slot facilitates separation of the apparatus from the suture after the suture anchor has been positioned in the body tissue. A suture anchor retainer may be provided at one end of the tubular outer member to grip the suture anchor and hold the suture anchor in place during assembly. The tubular outer member may be utilized to guide a drill during formation of an opening in body tissue and may be subsequently utilized to guide movement of a suture anchor into the opening in the body tissue.
  • U.S. Pat. Nos. 6,010,525; 6,159,234; and 6,475,230 entitled “Method and Apparatus for Securing a Suture” disclose improved method to secure a suture relative to body tissue. A suture retainer is moved along first and second sections of a suture toward the body tissue. When a predetermined minimum force is being transmitted between the suture retainer and the body tissue, the first and second sections of the suture are gripped with the suture retainer by plastically deforming material of the suture retainer. The material of the suture retainer cold flows under the influence of force applied against the surface areas on the suture retainer. One or more bends are formed in each of the sections of the suture to increase the holding action between the suture retainer and the sections of the suture. The bends may be formed by wrapping a turn of the suture around a portion of the suture retainer. During movement of the suture retainer toward the body tissue, the bends are moved along the first and second sections of the suture.
  • U.S. Pat. No. 6,045,551 entitled “Bone Suture” discloses an anchor connected with a suture moved through a passage between opposite sides of a bone. The anchor is then pivoted to change its orientation. A second anchor is connected with the suture. While tension is maintained in the suture, the suture is secured against movement relative to the anchors. This may be done by tying the suture or by using a suture retainer to hold the suture. A suture retainer may be used in place of the second anchor. The passage may extend across a fracture in the bone. The passage may have either a nonlinear or linear configuration. A tubular member may be positioned in the passage with the tubular member extending into portions of the passage on opposite sides of the fracture. Opposite end portions of the tubular member may be disposed in a compact outer layer of the bone. If desired, a member other than a suture may be used as a force transmitting member between the two anchors. The tubular member may be formed of bone.
  • U.S. Pat. No. 6,447,516 entitled “Method of Securing Tissue” discloses a retainer member formed of bone which secures tissue against movement relative to a portion of a bone in a patient's body. The retainer member is utilized to form an opening in a compact outer layer of a portion of the bone in the patient's body. The retainer member formed of bone is advantageously enclosed in a tubular member or sleeve to prevent breaking of the retainer member during the forming of the opening in the bone. The extent of movement of the retainer member into the bone in the patient's body is determined as the retainer member is moved into the bone. A suture may be connected with the retainer member and used to connect tissue with the bone.
  • U.S. Pat. No. 6,592,609 entitled “Method and Apparatus for Securing Tissue” discloses an anchor having a pointed end portion may be utilized to form an opening in a bone in a patient's body. The anchor is moved into the opening formed in the bone in the patient's body with a suture connected to the anchor. The suture may then be utilized to retain body tissue in a desired position relative to the bone. The body tissue may be either hard or soft body tissue. If desired the anchor may be utilized in conjunction with layers of soft body tissue. When a suture is used it may be secured by connecting a retainer with the suture. Alternatively, sections of the suture may be interconnected. It is believed that it may be preferred to secure the suture in place after at least a predetermined tension has been established in the suture and/or a predetermined force has been transmitted to the body tissue. The suture may be secured in place by exposing a retainer to ultrasonic vibratory energy or by applying the ultrasonic vibratory energy directly to sections of the suture.
  • U.S. Pat. No. 6,635,073 entitled “Method of Securing Body Tissue” discloses a process to secure a first body tissue with a second body tissue. A first anchor is moved along a first path through the first body tissue into the second body tissue. A second anchor is moved along a second path through the first body tissue into the second body tissue. A suture extending between the anchors may be tightened by moving the second anchor along a path which extends transverse to the path of the first anchor. The suture which extends between the anchors may have free ends which are connected with a suture retainer. The free ends of the suture may be interconnected either before or after the anchors are moved along the first and second paths. Alternatively, the suture may be a continuous loop which extends between the two anchors. A guide assembly may be provided to guide movement of the anchors along the two paths. The paths along which the anchors move may intersect so that the anchors may be interconnected at the intersection between the two paths.
  • U.S. Pat. No. 6,719,765 entitled “Magnetic Suturing System and Method” discloses an instrument and method for passing a medical implement through tissue with magnetic forces. The implement can be an implant, either permanent or temporary, and is provided with a magnetic component. A magnetic field is established and the magnetic component and/or magnetic field is manipulated to drive the implant through tissue. Alternatively, the instrument itself is the implement and includes at least one magnetic element so that a magnetic field established by an external magnetic generator drives the instrument through tissue. In another embodiment, the instrument includes two magnetic elements that are moveable with respect to one another and interaction between the magnetic elements drives the instrument through the tissue. Examples of applications of the present invention include a suture passer and a tissue anchor.
  • Other fastener types and fastening methods are disclosed in U.S. Patent Application Publication No. 2003/0181800, entitled “Methods of Securing Body Tissue,” which discloses an improved method of securing body tissue performed with a robotic mechanism. The robotic mechanism may be utilized to tension a suture with a predetermined force and urge a suture retainer toward body tissue with a predetermined force. Ultrasonic vibratory energy may be transmitted to the suture retainer to effect a gripping of the suture by the suture retainer. The body tissue may be secured with a staple. Legs of the staple may be bonded together to secure the staple. The legs of the staple may be bonded together by transmitting ultrasonic vibratory energy to the legs of the staple. A tissue positioning assembly may be used to hold the body tissue in a desired position. Images of the body tissue being secured may be obtained using various known devices including one or more endoscopes, a fluoroscope, a magnetic resonance imaging device, and/or other known imaging devices.
  • U.S. Pat. No. 7,094,251, entitled “Apparatus and Method for Securing a Suture,” discloses a suture retainer having an upper or cover section and a lower or base section which cooperate to define passages through which portions of a suture extend. Projections on the cover section of the retainer extend into recesses on the base section of the retainer. A center projection on the base section extends between the two projections on the cover section. The projections cooperate with surfaces on body sections of the cover and base section of the retainer to position and grip portions of the suture. The retainer may be moved along the portions of the suture while the retainer is gripped by an applicator assembly. The applicator assembly is operable to apply energy to the retainer to bond end portions of the projections on the cover section to bottoms of recesses in the base section of the retainer.
  • U.S. Patent Application Publication Nos. 2004/0230223 and 2004/0220616 and U.S. Pat. No. 7,329,263, entitled “Method and Device for Securing Body Tissue,” disclose sutures and suture retainers positioned relative to body tissue. Energy, such as ultrasonic vibratory energy, is utilized to heat the suture retainer and effect a bonding of portions of the suture retainer to each other and/or to the suture. Portions of the body tissue may be pressed into linear apposition with each other and held in place by cooperation between the suture and the suture retainer. The suture retainer may include one or more portions between which the suture extends. The suture retainer may include sections which have surface areas which are bonded together. If desired, the suture may be wrapped around one of the sections of the suture retainer. The suture retainer may be formed with a recess in which the suture is received. If desired, the suture retainer may be omitted and the sections of the suture bonded to each other.
  • The characteristics and features of the fasteners and fastening methods just described may be combined and integrated with the devices and methods of the present invention. The above cited patents and patent applications are incorporated herein by reference.
  • Furthermore, the fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barbed, bubbled, laminated, coated, blocking, pneumatic, one-piece, Morse taper single piece, multi-component, solid, hollow, polygon-shaped, pointed, locking and unlocking, self-introducing, knotless, and combinations thereof. Also, the fasteners may include metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, biocompatible adhesive, and combinations thereof. Examples of body tissue include bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, autograft, and synthetic graft material. The fasteners may also be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • The fasteners may also be made of or have a coating made of an expandable material. The material could be compressed then allowed to expand. Alternatively, the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are PEEK, ePTFE, and desiccated body tissue. It is contemplated that the fasteners and implants of the present invention may include any combination of materials and agents disclosed herein. For example, a fastener may include combinations of hydrophilic material, synthetic body tissue, collagen, synthetic collagen, heat bonded material, biocompatible adhesive, and cells, such as stem cells.
  • Moreover, the fasteners described herein and incorporated by reference may include therapeutic substances to promote healing. These substances could include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), tissue inductive factors, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof. These therapeutic substances may be combined with the materials used to make the fasteners to produce a composite fastener or implant. Alternatively, the therapeutic substances may be impregnated or coated on the fastener. Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener. The therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • In addition to including the materials and agents described elsewhere herein, a fastener may take the configuration of an integrated fastener and arm member. The flexible arm may be incorporated into the fastener and extend therefrom. The arm may be connected with an end portion of the fastener or with any portion between the end portions, like the midpoint. The fastener and flexible arm may include the same or different materials and/or therapeutic agents. In use with the positioning device of the present invention, the fastener may be positioned at the distal end of the hook with the flexible arm extending from the fastener either within the lumen of the hook or exterior to the hook. Once the fastener is properly placed within the body, the flexible arm may be positioned through or around tissue and/or an implant and tensioned to compress and stabilize the tissue and/or implant. Another fastener may be connected with the flexible arm to maintain tension and position of the arm.
  • The sutures of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, copolymeric material, or combinations thereof. The sutures may be degradable, biodegradable, bioabsorbable, or nonbiodegradable. Examples of suture materials are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, PLA, PGA, caprolactam, and copolymers of glycolic and lactic acid. Preferably, the sutures are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced. The sutures may have a coating of therapeutic substances or drugs. For example, the sutures may include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • With the fastener 52 and suture 56 on the distal end of the flexible pushrod 54, the pushrod 54 is moved distally through the lumen of the hook 24 until the fastener 52 is positioned generally next to the distal opening of the bone passage 48, as seen in FIG. 4. The pushrod 54 may be advanced to push the fastener 52 beyond the distal aperture 50 of the hook 24 or may be advanced to position the fastener 52 partially in and partially out of the hook 24. In the latter configuration, the fastener 52 may be easily withdrawn, if necessary, from the hook 24 by moving the pushrod 54 proximally.
  • Alternatively, the fastener 52 and suture assembly may be assembled in the lumen prior to inserting the device in a patient. For example, a suture may be threaded into the lumen from the distal end of the hook 24, or may be inserted through the proximal end as described above before inserting the hook into the patient's body. This allows visual confirmation of that the fastener is in a desired position before introducing it into the patient's body. The hollow interior of the hook 24 may be sized to allow sutures to be placed therethrough, but sufficiently small to preclude the fastener 52 from entering it. The distal end may have a bracket or assembly that holds the fastener 52 in a desired position. The bracket or assembly may grip the fastener in place, such as by an interference fit or with friction. In one embodiment, application of tensioning forces to the suture helps hold the fastener 52 in a desired position relative to the distal end of the hook 24.
  • As illustrated in FIG. 5, a suture claw or grabber 58 (which may be referred to as a gripper rod) is positioned in the guide channel 32 and through the bone passage 48. A hook, claw, or clip 60 (which may be referred to as a gripper) is attached to the distal end of the suture claw 58. When the suture claw 58 is inserted distally into the guide channel 32, the hook or clip 60 exits or at least partially exits the distal opening of the bone passage 48. Since the fastener 52 is positioned near the distal opening of the bone passage 48, the hook or clip 60 of the suture claw 58 can grab or capture the suture 56 extending from the fastener 52. The suture 56 may be grabbed by rotating the suture claw 58 and allowing the suture 56 to wrap around the hook 60 at the distal end of the suture claw 58. Alternatively, the suture 56 may be grabbed with a clip 60, like an alligator clip, which may be activated from the proximal end of the suture claw 58. In another embodiment, a spiral member, like a corkscrew, may be disposed on the distal end of the suture claw. The suture claw may be twisted to thereby allow the spiral member to grab the suture. It should be understood that the suture claw should grab all the suture legs or portions attached to the fastener. For example, in FIG. 5, there are two suture legs extending from the fastener. Both legs should be captured by the suture claw either simultaneously or sequentially.
  • It is also contemplated that the fastener or suture may be pulled or placed in position using magnetic or electromagnetic force. For example, once a passage is drilled through tissue or an implant, a magnet may be used to pull a suture through the passage. Alternatively, when using a fastener with a flexible arm, the arm may be pulled through the passage. In these embodiments, the suture or flexible arm may include a material which is attracted to a magnet.
  • As previously described, a passage may not need to be pre-drilled into the tissue or bone. In this instance, the suture claw may include a distal tip configured for penetrating into and through the tissue. Using a self-introducing suture claw eliminates the need to bore a passage through the tissue before pulling the suture through the tissue.
  • In FIG. 6, the suture claw 58 is shown retracted from the guide channel 32. As the suture claw 58 is retracted, it pulls the suture and/or suture portions 56 from the lumen of the hook 24 and into the guide channel 32. As seen in FIG. 7, the proximal ends of the suture portions 56 may extend beyond the proximal end of the guide channel 32 when the suture claw is fully retracted.
  • As illustrated in FIG. 8, the hook, handle, and drill sleeve of the drill system are removed from the bone 30. The fastener 52 (not shown) is located on the distal side of the bone 30. The suture 56 extends from the fastener 52 through the bone passage and out the proximal opening of the bone or tissue passage. In FIG. 9, another fastener 62 is placed around or otherwise connected with the suture and/or suture portions 56. The suture 56 is tensioned, and the fastener 62 is secured to the suture 56 to thereby approximate the fracture and stabilize the bone 30. The tension of the suture pulls on the fasteners 52 and 62 generally towards each other, thereby applying pressure to the fractured bone or tissue.
  • Another exemplary embodiment of the guidance and positioning device 70 is illustrated in FIG. 10. The device 70 is shown positioned around a fractured bone 30. It should be understood that the device may be used to fasten any tissue type or combination of tissues as described herein. The device 70 includes a generally cylindrical handle 22 and a hookshaped elongated member 72 attached to the handle 22. In this embodiment, the hook-shaped elongated member 72 does not necessarily include a lumen extending therethrough. The proximal portion of the hook-shaped member 72 may be positioned generally parallel with the longitudinal axis of the handle 22. The device 70 may include a lever, clip, set-screw, button, spring, or latch 26 for securing and releasing the hook-shaped elongated member 72. The lever 26 allows different sized hooks to be placed in the handle 22. For example, the hooks may be of different lengths, have different radii of curvature, or have different types or sizes of bone engagement portions 28.
  • A guide slot 74 extends through the handle 22 generally parallel with the longitudinal axis of the handle 22. The longitudinal axis of the guide slot 74 is generally aligned with the distal end of the hook-shaped member 72. The guide slot 74 and hook-shaped member 72 are generally parallel and relatively close to each other at and just distal to the handle 22. In this configuration, a single, small, percutaneous incision may be made in skin or other soft tissue to gain access to the fractured bone or other tissue requiring fixation.
  • In use, the device 70 is positioned with the hook-shaped portion 76 of the hook-shaped elongated member 72 placed next to and around the tissue to be fastened. In FIG. 11, the hook-shape portion 76 is placed around a fractured bone 30 (fracture not shown). A drill system 36 is positioned in the guide slot. The drill system 36 includes a headpiece 38 configured for attachment to a drill 40. A drill bit 42 is positioned at the distal end of the drill system 36. A drill stop 44 is located distal from the headpiece 38 and prevents the drill bit 42 from penetrating too far beyond the tissue to be drilled. The drill system 36 may be a cannulated drill system. The drill system 36 is used to create a passage 48 in the bone 30 from the proximal side of the bone 30 to the distal side of the bone 30. The distal opening of the bone passage 48 is generally near a socket 78 at the distal end of the hook-shaped portion 76 of the elongated member 72.
  • As previously noted, a drill system may not be needed to form a passage in the tissue. An elongated member with a distal tip configured for penetrating through tissue may be placed in the guide slot and used for passage through tissue. The elongate member may be a guide wire, k-wire, needle, or like device.
  • FIG. 12 illustrates the socket 78 at the distal end of the hook-shaped portion 76 of the elongated member. The socket 78 is dimensioned and configured for holding and/or carrying a fastener 52. The socket 78 may be a hollow cylinder or any other configuration capable of accepting a fastener 52. As seen in FIG. 11, the socket 78 is positioned at the distal end of the hook-shaped member 72 such that the fastener 52 is generally aligned with the distal opening of bone passage 48. The fastener may include characteristics, materials, therapeutic substances, coatings, or any other features as described herein. It is contemplated that the socket may hold the fastener magnetically, frictionally, with an interlocking mechanism such as a snap, with adhesive, etc.
  • Next, as shown is FIG. 13, the drill system is removed from the guide slot 74. A fastening member 80 is placed in the guide slot 74 and through the passage in the bone 30. The fastening member 80 is moved distally through the passage and inserted into the fastener disposed in the socket at the distal end of the hook-shaped member 72. The fastening member may be made of metal, polymer, ceramic, composite, body tissue, or combinations thereof. The fastening member may also include features, therapeutic agents, and coatings similar to the fastener and suture described herein. FIG. 14 illustrates one exemplary embodiment of the connection between the fastening member 80 and the fastener 52. The distal end of the fastening member includes a threaded portion 82, and the fastener 52 includes a threaded hole. The fastening member 80 is screwed into the fastener 52. Other examples of connecting the fastening member and fastener include ball and socket, hook and loop, mechanical expansion, material expansion, dovetail, orientation change, heat bondable material, biocompatible adhesive, and other similar connection means.
  • In the embodiment wherein a drill system is not used create a passage in the tissue, the fastening member 80 may include a sharp or pointed distal tip to allow the member to be moved through the tissue, free of a passage. Using a self-introducing fastening member may eliminate the need to pre-drill the passage in the tissue.
  • As illustrated in FIG. 15, the guidance and positioning device is removed from the bone 30. The fastener 52 (not shown) is located on the distal side of the bone 30. The fastening member 80 extends through the bone passage and out the proximal opening of the bone passage. In FIG. 16, another fastener 62 is placed around the fastening member 80. The fastening member 80 is tensioned, and the fastener 62 is secured to the fastener member 80 to thereby approximate the fracture and stabilize the bone 30. Once again, the tension of the fastening member pulls the fasteners toward each other, which in turn causes pressure to be applied to the treated bone or tissue.
  • It is further contemplated that the guidance and positioning device 20, 70 may be used without a distal fastener. In this embodiment, the device 20,70 is used to position a suture on the backside or distal portion of the tissue. The suture claw, grabber, or elongate member may be placed in the guide channel or guide slot and moved distally toward the suture located at the distal end of the hook. Using the suture claw, one or two sections of the suture may be pulled through the tissue to the proximal side of the tissue. The suture or sutures may be pulled through a pre-drilled passage created by a drill system or may be pulled through a passage created by a self-introducing suture claw. Once a portion of the suture is positioned on the proximal side of the tissue (e.g., a securing point), it may be tensioned and secured with a fastener. Alternatively, the proximally extending suture section may be fastened with another section of the suture extending from the distal end of the hook and around the tissue. In this embodiment a suture loop is formed with tissue caught or positioned in the middle of the loop. The two sections of the suture may be secured with a knot or a fastener.
  • FIGS. 17 and 18 illustrate exemplary embodiments of clamping mechanisms for the guidance and positioning device. FIG. 17 shows a tubular clamp member 84 connected with the handle 22 of the device 20,70. The clamp member 84 includes a lumen extending therethrough for allowing passage of the drill system, suture claw, and suture as previously described. The proximal portion of the clamp member 84 includes threads 86, a ratchet, or the like for advancing the clamp member 84 into and out of the handle 22. The distal end of the clamp member 84 may include a tissue pad 88 for contacting tissue.
  • The tissue pad 88 may be integrally formed on the distal end of the clamp member. For example, during fabrication of the clamp member, its cross-section may initially be relatively the same size along its length, including at the distal end. Subsequently, the distal end may be deformed or flattened to have a larger cross section.
  • Alternatively, the tissue pad 88 also may be connected to the clamp member in a manner that allows it to rotate and/or swivel. As the clamp member 84 is moved toward the bone or tissue, some areas of the tissue pad 88 may begin to make contact even though the clamp member 84 may require additional rotation or advancement in order to obtain a desired amount of contact. If the tissue pad 88 is able to rotate or swivel, it can adjust to the contours of the bone or tissue while also reducing potential abrasion.
  • The contact surface of the tissue pad 88 may be substantially flat, as shown in FIG. 17, but it also may be curved or have a different shape that may correspond generally to the curvature or shape of the bone or tissue that it may contact. The contact surface also may be deformable so that it can more easily conform to an uneven surface of bone or tissue. The deformable surface of the tissue pad may be formed from a layer of elastomeric material (e.g., rubber or urethane), foam material, or any other elastomeric material suitable for use in a surgical procedure.
  • In use, the device 20 is positioned about a bone, or other tissue. The clamp member 84 is moved or rotated distally so that the tissue pad 88 contacts the proximal side of the bone. Further advancement of the clamp member 84 causes the tissue pad 88 to apply pressure on the bone or tissue.
  • Teeth or other friction means 90 may be disposed on the distal portion of the hook 24 to make contact with the distal side of the bone so that when the clamp member 84 extended, the device 20 is clamped or held in position relative to the bone. The contacting surface of the hook also may be modified or configured in the manner described above for the tissue pad.
  • FIG. 18 shows another embodiment of a clamping mechanism. The tubular clamp member 84 is slideably disposed or connected with the handle 22 of the device 20,70. The clamp member 84 may also include a lumen extending therethrough. A squeeze/finger grip 92 is connected with the handle 22 for advancing and retracting the clamp member 84 relative to the handle 22. When the squeeze grip 92 is moved toward the handle 22, the clamp member 84 may be moved or ratcheted distally thereby pressing the tissue pad 88 against the bone or other tissue. In this configuration, the clamp member functions like a come-along with detents and/or teeth. The squeeze grip 92 may be moved away from the handle 22 to move the clamp member 84 proximally, or a release button or spring or clip may be activated to permit the clamp member 84 to move proximally. Teeth or other friction means 90 may be disposed on the proximal side of the socket 78. With the clamp member 84 extended, the device 70 is held to the bone or other tissue between the tissue pad 88 and teeth 90 or socket 78.
  • Other embodiments of the clamping mechanism are further contemplated. For example, the guidance and positioning device 20,70 may include one or more inflatable members, such balloons. An inflatable balloon may be positioned along the hook at a location where the hook passes near the proximal surface of the tissue. That is, the balloon may be located at the proximal end of the curved portion of the hook. In a deflated configuration, the device may be properly positioned by the physician. The balloon may then be inflated to press against the proximal side of the tissue causing the distal end of the hook to press against the distal side of the tissue and thereby hold or lock the device in place. The balloon may be inflated with air, gas, or liquid. Inflation may be made manually with a hand pump, electrically with an electric pump or battery-operated pump, or pneumatically with a pressure cartridge. The balloon may also help guide the distal end of the hook into the proper position. Multiple balloons may be inflated and/or deflated together or separately to guide the hook. Also, the balloon(s) may be used to create space in tissue.
  • In another example, the device 20,70 may include a balloon at the distal end of the hook. Operation of the balloon may be similar to as previously described; however, in the current embodiment, the balloon may inflate to press against the distal side of the tissue causing the proximal portion of the hook (which may include a tissue pad or gripping teeth) to press against the proximal side of the tissue to thereby hold the device in position. Furthermore, two or more balloons may be used to position and hold the device relative to the tissue. The plurality of balloons may be located along the hook or guide channel and inflated together or individually to properly align and hold the device in place. In addition to holding the device relative to the tissue, the balloon or balloons may compress the tissue, tissue elements, and/or implant. With the tissue and/or implant compressed, a fastener or other implant may be positioned within the body.
  • As illustrated in FIG. 19, the device 20,70 may include a tensioning mechanism 94 to tension the suture 56 or fastening member 80. The tensioning mechanism 94 may be attached to the handle 22, tubular member 24, elongated member 72, or other component of the device 20,70. After the suture 56 or fastening member 80 is inserted through the passage in tissue, like a fractured bone 30, the tensioning mechanism 94 may pull and tension the suture 56 or fastening member 80 while a proximal fastener 62 is positioned to maintain the tension in the suture 56 or fastening member 80. The tensioning mechanism 94 may be, but is not limited to, two elements which pinch the suture 56 or fastening member 80 to pull it proximally or a spool which rotates to pull the suture 56 or fastening member 80. A tension gauge, strain gauge, read-out display, tension limiter, and/or an audio or visual tension indicator may be used to apply the proper tension to the suture or fastening member. Also, measurement of the tension may be accomplished with a spring, a radiofrequency emitting device, and/or a sensor such as an electrical sensor, flexible sensor, compressive sensor, piezoelectric sensor. Other examples of tension applicators are disclosed in U.S. Pat. Nos. 6,010,525 entitled “Method and Apparatus for Securing a Suture”; 6,447,516 entitled “Method of Securing Tissue”; and 6,635,073 entitled “Method of Securing Body Tissue.” The above mentioned patents are hereby incorporated by reference.
  • As further shown in FIG. 19, the distal portion 96 of the tubular clamp member 84 may be offset or curved thereby exposing the suture 56 or fastening member 80 between the fractured bone 30 and clamp member 84. The tubular clamp member 84 may include a lumen extending therethrough with the lumen having an aperture at or near the proximal end of the offset portion 96 or the distal end of the straight section of the clamp member 84. The offset distal portion 96 allows a fastener 62 to be placed around the suture 56 or fastening member 80 adjacent to the proximal side of the bone 30. When the suture 56 or fastening member 80 is tensioned with the tensioning mechanism 94, the fastener 62 may be applied to maintain the tension in the suture 56 or fastening member 80.
  • It is contemplated that the guidance and positioning device of the present invention may include more than one hook or elongated member for positioning multiple fasteners at the distal side of tissue. For example, as illustrated in FIG. 43, the device 150 may include two hooks or elongated members 152 and 154 attached to the handle 156 and positioned generally parallel to each other. The handle 156 may then include two guide channels, slots, or pins 158 and 160, each being aligned with one of the distal ends of the hook shaped tubular or elongated members. In this configuration, two passages 162 and 164 may be drilled in tissue, like a fractured bone 166, and two sutures or fastening members may be positioned through the passages, tensioned, and secured. One passage 162 may be non-linear while the other passage 164 may be linear. Having multiple hooks and guide channels or slots allows a physician to implant multiple fasteners thereby producing compression on the implant or tissue, enhancing the healing environment, and allowing for tissue ingrowth. The device with multiple hooks or pins may also be used to position other implants disclosed herein, such as adhesives, tissue scaffolds, medicaments, etc.
  • It is also contemplated that the device of the present invention may be disposable or may be sterilized after use and reused. The device may be partly disposable and partly reusable. For example, the handle may be reusable and the hook and/or guide channel may be disposable. Alternatively, the handle may be disposable. The device, its components, fasteners, drill bits, sutures, and other apparatus disclosed herein may be package in a kit. The kit may be set-up of a specific procedure, such as repair of a fractured bone, securing of an implant, approximating body tissue, etc.
  • Positioning Implants
  • The present invention not only provides an instrument and method for dynamic and rigid fastening of tissue, but it also provides for the guidance and positioning of an implant within the body. For example, the present invention may be utilized with tissue scaffolds as described in U.S. Pat. No. 7,299,805, entitled “Scaffold and Method for Implanting Cells,” by Peter M. Bonutti. Viable cells may be positioned on a support structure then implanted within a body. One or more blood vessels may be connected with the support structure to provide a flow of blood through the support structure. The devices and methods of the present invention may be used to guide and position the support structure within the body and fasten the scaffold to tissue or another implant by way of a sling support and/or strut. The above mentioned application is hereby incorporated by reference.
  • Furthermore, the present invention may be used in combination with a medical system for the administration of a pharmaceutical agent in vivo to a patient. The medical system may include an implant positionable in a body of a patient. A pharmaceutical agent may be disposed on the medical implant and at least partially coated with a reactive coating. The reactive coating acts to control the release of the pharmaceutical agent. An energy unit may be provided for transmitting an energy signal to the reactive coating, wherein the reactive coating reacts to the energy signal to control the release rate of the pharmaceutical agent. Additionally, the energy unit may also heat up the treatment site, locally increasing vascularity at the treatment site and allowing thermal necrosis of tissue. The localized increasing in temperature increases the permeability of the local tissue, allowing for an increased and more efficient adsorption of the pharmaceutical agent into the treatment site. Additionally, in response to localized increase in temperature, which can be perceived as physical damage or an infection to the local area, the local cells may release beneficial proteins, enzymes, hormones, etc.
  • In another embodiment, a pharmaceutical agent, drug, or medicament may be delivered within the body using the positioning device described herein. The hook and/or guide channel of the positioning device may conduct the passage of a medicament to a specific location within the body. The drug may be transported through the lumen of the hook or guide channel or, alternatively, may be placed on the exterior of the hook or guide channel. When the positioning device has been properly aligned, the medicament may be released in a constant stream or in a pulsatile manner. Examples of medicaments that may be used with the present invention include those disclosed throughout this application and, additionally, but not limited to, an anti-inflammatory agent, non-proliferative agent, anti-coagulant, anti-platelet agent, Tyrosine Kinase inhibitor, anti-infective agent, anti-tumor agent, anti-leukemic agent, and combinations thereof. One or more medicaments may be placed in one or more reservoirs which are in fluid communication with the positioning device. The reservoir may be physically separate from the device with tubing interconnecting the device and reservoir. Alternatively, the reservoir may be integrated into or attached to the positioning device. Release of the medicament may be achieved through manual operation such as with a plunger, air pressure, or valve or through electrical operation such as with a pump or valve. The medicament may be released from the positioning device or remotely away from the device as with a radiofrequency or signal emitting device.
  • It is contemplated that an adhesive may be delivered within the body in the way a medicament is delivered as described above. The adhesive could a polysaccharide based adhesive, fibrin adhesive, mollusc based adhesive, cyanoacrylate based adhesive, polymeric based adhesive, or other biocompatible adhesive. The adhesive could be thermally activated or pH activated. The adhesive could be a single part adhesive or a two part adhesive requiring both parts to activate the adhesive. The adhesive may also be hydrophilic or include hydrophilic material. The hydrophilic adhesive/material may expand upon imbibing liquid, such as body fluid. In use, the adhesive may be delivered within the body to bond tissue together such as soft tissue to soft tissue, soft tissue to hard tissue, or hard tissue to hard tissue. For example, portions of a fractured bone may be adhered, a muscle may be bonded to other muscle or to a tendon, and a ligament may be adhered to another ligament, to muscle, and/or to bone. The adhesive may also be used to bond an implant with body tissue or to another implant. For example, a bone or joint replacement component may be adhered to another replacement component or to other bone, tissue scaffolding with cells may be bonded to other tissue or other scaffolding, and fasteners may be adhered to tissue or sutures.
  • In another embodiment, an energy sink, such as a pH sink, may be incorporated into a medical implant or be positioned separate from the medical implant. The pH sink is configured to absorb energy from the energy unit, releasing a chemical to either increase or decreasing the local pH. The change in local pH can either increase or decrease the degradation rate of a degradable polymer coating, which in turn can control the release rate of a pharmaceutical agent. The pH sink can be formed from calcium carbonate. Additionally, the localized change in pH created by the pH sink has beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent.
  • For example, a localized increasing in pH increases the permeability of the local tissue, allowing for an increased and more efficient adsorption of the pharmaceutical agent into the treatment site. The energy sink may also be used to induce the release of beneficial enzymes, proteins, hormones, etc. from the cells in the treatment site. A localized increase in acidity and/or temperature can be perceived as a physical damage or an infection to the local area. In response, to the local cells may release beneficial proteins, enzymes, hormones, etc. The positioning device and method of the present invention may be used to guide and position a drug-eluting implant, a heat sink, or pH sink within the body.
  • The present invention may also be used with various procedures for repairing, reconstructing, and stabilizing tissue and implants within the body. Examples of such tissue include bone, muscle, ligament, tendon, skin, organ, cartilage, and blood vessels. Examples of implants include an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic. Other implants include breast implants, biodegradable plates, metallic fasteners, rods, plates, screws, screw strips, spacers, cages, compliant bearing implants for one or more compartments of the knee, nucleus pulposus implant, stents, meniscal implants, tissue grafts, tissue scaffolds, biodegradable collagen scaffolds, polymeric or other biocompatible scaffolds, abdominal hernia meshes, cochlear implants, tracheal implants, small intestine submucosal grafts, TISSUEMEND scaffolds, prostheses, nanotechnology devices, sensors, emitters, radiofrequency emitting diodes, computer chips, RFID (radiofrequency identification) tags, adhesives, and sealants.
  • Example devices and methods may provide for the repair, reconstruction, augmentation, and securing of tissue and/or implants during a surgical procedure and “on the way out” after the surgical procedure has been performed but before the skin incision has been closed. Tissue at and around the operation site and tissue between the operation site and skin incision is rebuilt so that tissue-function may be at least partially restored and the operation region may be stabilized for enhanced healing.
  • The devices used to repair, reconstruct, augment, and/or secure tissue or implants may be any biocompatible fastener described herein or found in the prior art. Examples of fasteners, implants, and their methods of employment may be found in U.S. Pat. Nos. 5,163,960; 5,403,348; 5,441,538; 5,464,426; 5,549,630; 5,593,425; 5,713,921; 5,718,717; 5,782,862; 5,814,072; 5,814,073; 5,845,645; 5,921,986; 5,948,002; 6,010,525; 6,045,551; 6,086,593; 6,099,531; 6,159,234; 6,368,343; 6,447,516; 6,475,230; 6,592,609; 6,635,073; and 6,719,765. Other fastener types are disclosed in U.S. patent application Ser. Nos. 10/102,413; 10/228,855; 10/779,978; 10/780,444; and 10/797,685. The above-cited patents and patent applications are hereby incorporated by reference.
  • The fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barded, bubbled, laminated, coated, blocking, pneumatic, one-piece, multi-component, solid, hollow, polygon-shaped, pointed, self-introducing, and combinations thereof. Also, the fasteners may include, but are not limited to, metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, and combinations thereof.
  • The fasteners of the present invention may be linear fixation fasteners. Such fasteners secure tissue or an implant with access to only one side of the tissue or implant. Generally, the fastener is advanced through the tissue or implant, usually through a pre-made passage or without a passage when the fastener is self-introducing. Once placed through the tissue or implant, a distal portion of the fastener expands, biases outward, or changes configuration such that the distal portion prevents the fastener from being pulled back out of the tissue or implant. The proximal portion of the fastener is secured thereby anchoring the tissue or implant. Examples of linear fixation fasteners are further disclosed in the incorporated references.
  • The methods and devices of the present invention may be used in conjunction with any surgical procedure of the body. The repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part. For example, tissue may be repaired, reconstructed, augmented, and secured during and “on the way out” following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc.
  • Also, tissue may be repaired after an implant has been inserted within the body. Such implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc. The implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic. Other implants include breast implants, biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearing for medial compartment of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold. The scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • The present invention further provides flexible and rigid fixation of tissue. Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue. A fractured bone, for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing. Also, bones may be flexibly secured to provide flexible stabilization between two or more bones. Soft tissue, like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing. Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals. Furthermore, joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint. Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes. The fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • Exemplary Fasteners
  • The following Examples 1 through 8 which illustrate uses of the present invention are for illustrative purposes and are not limiting examples. As mentioned above, any fastener disclosed herein or incorporated by reference may be used with the exemplary methods. To simplify the disclosure of the present invention, a limited number of fastener types will be used to illustrate the exemplary methods. For example, the fasteners disclosed in U.S. Pat. No. 5,921,986 will be used to represent any disclosed or known fastener.
  • As described in the above-mentioned patent, the fasteners may be placed against tissue, and a suture may be looped through the tissue with the ends of the suture positioned within the fasteners. The suture is tensioned, and the ends of the suture are secured using a knot or any other suitable means for maintaining the tension of the suture between the fasteners. The tensioning of the suture, or similar cable, pin, thread, etc., may be controlled and monitored with sensor technology, like a magnetic sensor, which may unload the pressure if necessary. Other known tensioning apparatus may also be utilized. For example, the tensioning system may be spring loaded, pneumatic, electrical, pisoelectric, and magnetic. The tensioning system may be connected with an introducer or cannula or may be part of a fastener or implant. The tensioning system may include a read-out display outside the body. The read-out display may receive tension data through radiofrequency energy, infrared energy, or other suitable energy source.
  • Additionally, two or more fasteners may be utilized to secure body tissue and/or an implant. When two fasteners are used, one fastener is placed against or within one tissue area and the second fastener is placed against or within another tissue area. The suture is looped through one fastener while the ends of the suture are positioned within the second fastener. The suture is tensioned and the ends fastened with a knot or fastened using a device or method disclosed herein or incorporated by reference. In this configuration, the suture includes two generally parallel legs or portions located between the fasteners. Furthermore, when two fasteners are used, a single suture may be employed leaving only one leg between the fasteners. In this configuration, each end of the suture is positioned in different fasteners. The suture may be tensioned and the ends secured. It is further contemplated that the fasteners and sutures may be inserted through a passage in the tissue or implant. For example, a passage may be drilled through tissue or implant for insertion of the fastener or suture. With the fastener in place, these passages may be packed or filled with tricalcium phosphate (TCP), calcium phosphate, a thermal polymer, polymethyl methacrylate (PMMA) with hydroxyaptite (HA), polylactic acid (PLA) with HA, and other suitable materials. These materials may harden within the passage and would provide additional stabilization of the tissue or implant.
  • FIGS. 20A-20F illustrate exemplary fasteners 630 with at least one channel 632. In an exemplary embodiment, FIG. 20A shows a generally cylindrical shaped fastener 630 a. Two channels or slots 632 a for receiving a suture or other similar filament extend through the fastener 630 a and are generally perpendicular to the longitudinal axis 634 of the fastener 630 a. FIG. 20B shows a generally half cylindrical shaped fastener 630 b. The fastener 630 b includes a generally flat surface 636 on one side and an arched surface 638 on the other side. The flat surface 636 may be placed against the tissue or implant to provide increased contact area. FIG. 20C shows a cylindrical shaped fastener 630 c with a hemispheric or concave surface 640 on one side. This surface 640 may be placed against an implant or tissue, like a bone, which has a convex surface, so that the concave surface 640 of the fastener 630 c and the convex surface of the tissue/implant are in contact. FIG. 20D shows a generally rectangular fastener 630 d. The fastener 630 d may have a thickness which minimizes protrusion of the fastener 630 d from the outer surface of the tissue or implant which it is positioned against.
  • Although the exemplary fasteners have been described as generally longitudinal members, it is also contemplated that the fasteners can take the form of a square, oval, sphere, button, or any other suitable configuration.
  • FIG. 20E shows a fastener assembly 630 e having a plurality of fastener members 642 positioned generally parallel to each other with connecting members 644 between them. The fastener members 642 may take the form of any shape described herein or incorporated by reference. The connecting members 644 attach the fastener members 642 to each other. The connecting members 644 may be hingedly or pivotally connected with the fastener members 642 to allow the fastener assembly 630 e to flex or bend. Alternatively, the connecting members 644 may be made of a flexible material such as a suture, wire, cable, or thread, which could flex or bend. In an exemplary embodiment, the channels 632 e of the fastener members 642 are positioned such that a row of channels 646 are aligned over one portion of tissue located on one side of an incision while another row of channels 648 are aligned over the other portion of the tissue located on the opposite side of the incision. Multiple sutures may be used with the fastener assembly for securing tissue or an implant.
  • Alternatively, the fastener members 630 e may be connected with one another with a flexible strip 650. As seen in FIG. 20F, four fastener members 642 are affixed to the flexible strip 650 and are generally parallel to each other and spaced apart from each other. The strip 650 may be handled and placed against tissue or an implant thereby positioning all the fastener members 642 at about the same time. In this regard, the flexible strip 650 can be made of or include graft material such as collagen, demineralized bone, etc. The flexible strip 650 may be expandable, hydrophilic, bioabsorbable, bioerodible, degradable, biodegradable, or combinations thereof. It may include a therapeutic substance such as antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, germicides, and combinations thereof.
  • The flexible strip 650 may also include an adhesive on one side to adhere the fastener members 642 to the strip 650 and may further include adhesive of the other side to adhere the strip 650 to tissue or implant. Such adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive.
  • FIG. 20G shows another fastener assembly 630 g of the present invention. This fastener assembly 630 g is generally L-shaped or J-shaped. Like the fastener assemblies of FIGS. 20E and 20F, the fastener members 642 of FIG. 20G may be attached to one another with connecting members 644 or with a flexible strip 650. FIG. 20H shows a U-shaped fastener assembly 630 h for closing a U-shaped incision in tissue, like those frequently made in the annulus. The rows of channels 646 and 648 of the fastener members 642 are arranged as described herein, with one line of channels 646 on one side of the incision and the other line of channels 648 of the other side of the incision.
  • The type and shape of the incision determine the size and configuration of the fastener assembly used. For example, a U-shaped incision could be closed with a U-shaped fastener assembly 630 h, and an L-shaped incision could be closed with an L-shaped fastener assembly 630 g. The suture or sutures used with the fastener assemblies may be tensioned and secured with a knot, or alternatively may be secured with devices and methods described herein and those incorporated by reference.
  • The exemplary fasteners may be utilized with one or more sutures, filaments, cables, or other similar implant. Generally, one suture may be used for the fasteners of FIGS. 20A-20D when only one fastener is employed. When two or more fasteners of FIGS. 20A-20D are used, multiple sutures may be employed. Similarly, the fasteners of FIGS. 20E-20H may use multiple sutures. The ends of sutures may be placed through the channels of the fastener members, and the sutures tensioned. Alternatively, a single suture could be used. That is, the single suture may be threaded in and out of the channels of the fastener members to secure tissue or an implant.
  • The exemplary fasteners and fastener assemblies of the present invention may be formed of any natural or artificial material. For example, they may be formed from material which is polymeric, metallic, composite, ceramic, or combinations thereof. Furthermore, the fasteners and assemblies may be made of body tissue including bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, and autograft. They may be bioabsorbable, bioerodible, degradable, biodegradable, mechanically expandable, hydrophilic, and combinations thereof. The fasteners and assemblies may be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • The fasteners and assemblies may also be made of or have a coating made of an expandable material. The material could be compressed then allowed to expand once sutured to tissue or an implant. Alternatively, the fastener and assembly material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are desiccated body tissue, foam, and expandable polymers.
  • Furthermore, the fasteners, fastener assemblies, and implants described herein and incorporated by reference may include therapeutic substances to promote healing. These substances could include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof. These therapeutic substances may be combined with the materials used to make the fasteners to produce a composite fastener or implant. Alternatively, the therapeutic substances may be impregnated or coated on the fastener or implant. Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener or implant. The therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • The sutures of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, copolymeric material, or combinations thereof. The sutures may be degradable, biodegradable, bioabsorbable, or non-biodegradable. Examples of suture materials are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, and copolymers of glycolic and lactic acid. In an exemplary embodiment, the sutures are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced. The sutures may have a coating of therapeutic substances or drugs. For example, the sutures may include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • FIGS. 21A-21C illustrate exemplary embodiments of another fastener 652. The fastener or tubular member or sleeve 652 a in FIG. 21A is generally tubular shaped having a wall 654 with an inner surface 656 and an outer surface 658. The inner surface 656 defines a lumen 660 which is dimensioned and configured for receiving a suture, cable, K-wire, or similar device. In another embodiment, FIG. 21B shows a sleeve 652 b with a slit 662 through the tubular wall 654. The slit 662 allows the sleeve 652 b to be decreased in diameter for implantation and increased in diameter after implantation for proper alignment of the implantation site. In a further embodiment, the sleeve 652 c of FIG. 21C includes two slits 662 in the tubular wall 654 thereby forming two semi-tubular members. The semi-tubular members may be placed separately at the implantation site then aligned to form a complete tubular member. In another embodiment, the tubular member is a solid member.
  • The tubular member may be flexible to enable the tubular member to be inserted into a nonlinear passage through the bone. The tubular member may be formed of metallic material, composite material, ceramic material, polymeric material, or combinations thereof. The tubular member may be made from a degradable, biodegradable, bioerodible, or bioabsorbable material, such as a polymer, composite, or ceramic. The tubular member may also include a therapeutic substance to form a composite tubular member, or the therapeutic substance may be coated onto the tubular member. Furthermore, therapeutic substances or graft material (autogenic, allogenic, xenogenic, or synthetic) may be packed into the tubular member.
  • Additionally, the outer surface 658 of the tubular member 652 may include a friction or gripping means. FIG. 21D shows a portion of the outer surface 658 of the tubular member with threads 664. In FIG. 21E, the outer surface 658 includes raised pebbles, or bumps 666. FIG. 21F illustrates raised ridges or hills 668 around the outer surface 658. In addition to a friction means on the outer surface of the tubular member, the wall of the sleeve may include openings 670 for tissue ingrowth, as shown in FIG. 21G. It is contemplated that any of the fasteners, fastener assemblies, and implants disclosed herein and incorporated by reference may also include a friction or gripping means as described above.
  • It is further contemplated that tissue and implants may be secured with biologic adhesive, or fasteners disclosed herein and incorporated by reference may be used with the biologic adhesive. Such adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive. For example, tissue scaffolds and tissue welding fasteners disclosed herein or incorporated by reference may be used with adhesive and an energy source, like ultrasound, RF, laser, electromagnet, ultraviolet, infrared, electro-shockwave, or other suitable energy source, to activate or deactivate the adhesive.
  • Example 1 Intervertebral Disc Repair
  • As previously described, the present invention provides devices and methods for fastening body tissue and/or an implant. One example is the fastening or repair of ligamentous tissue. Ligamentous tissue is found, among other locations, within intervertebral discs of the spinal column. The spinal column is formed from a number of vertebrae which are separated from each other by intervertebral discs. The intervertebral discs stabilize and distribute force between the many vertebrae. As used herein, “spinal joint” or joint of the spine includes this intervertebral space.
  • Generally, intervertebral discs are made of a soft, central nucleus pulposus surrounded by a tough, woven annulus fibrosus. Herniation of a disc is a result of a weakening in the annulus. Symptomatic herniations occur when weakness in the annulus allows the nucleus pulposus to bulge or leak posteriorly toward the spinal cord and major nerve roots. One treatment of a herniated, displaced, or ruptured intervertebral disc is a discectomy. This procedure involves removal of disc materials impinging on the nerve roots or spinal cord posterior to the disc. Depending on the surgeon's preference, a varying amount of nucleus pulposus is removed from within the disc space either through the herniation site or through an incision in the annulus. In addition to a discectomy, other surgical procedures where the present invention may be used include a vertebroplasty and kyphoplasty.
  • FIG. 22 illustrates an exemplary embodiment of repairing an intervertebral disc 680. The disc 680 is located between a superior vertebra 682 and an inferior vertebra 684. During a discectomy, an incision 686A is made through the annulus fibrosus 688 for the removal of all or a portion of the nucleus pulposus 690. After the appropriate amount of the nucleus 690 has been removed, the incision 686A is approximated. In one embodiment showing the closing of the incision 686A, a fastener 630A is positioned generally transverse to the incision 686A. The fastener 630A is positioned on the outer surface of the annulus 688 with one channel 632 on one side on the incision 686A and the other channel 632 on the other side of the incision 686A. A suture 700A is positioned through the portions of annulus 688 located on opposite sides of the incision 686A in a generally U-shaped, looped, or curved configuration. The ends of the suture 700A are placed within the channels 632 of the fastener 630A and tensioned to draw together the two portions of the annulus 688 on opposite sides of the incision 686A. The suture 700A is secured to the fastener 630A with a knot or other means disclosed herein or incorporated by reference. Depending on the length of the incision, a plurality of fasteners and sutures may be used to fully close the incision.
  • One or more additional incisions 686B in the annulus 688 may be necessary for increased access to the nucleus 690. These other incisions will also need to be approximated. As seen in FIG. 22, one fastener 630B is placed on one side of the incision 686B generally parallel to the incision 686B. A second fastener 630C is positioned on the other side of the incision 686B. Closure of the incision 686B is accomplished by placing a suture or sutures through the annulus 688 so that the annulus portions on opposite sides of the incision 686B are drawn together when the suture is tensioned. The ends of the suture are secured by the fasteners 630B, 630C. Depending on the length of the incision, more than two fasteners may be utilized to approximate the incision. The closure of the incision enhances the natural healing and reconstruction of the annulus wall.
  • While the incisions of FIG. 22 are generally linear, other incision configurations may be made for increased accessibility through the annulus. For example, the incision may be circular, L-shaped, U-shaped, C-shaped, J-shaped, etc. Different configurations and types of fasteners illustrated in FIG. 20 may be used to close these non-linear incisions. Furthermore, these incisions may be made anywhere along the annulus (posterior, anterior, or sides) or between the annulus and vertebral body.
  • It is further contemplated that access to the nucleus pulposus may be obtained through a vertebral body. A channel(s) or passage(s) 692 may extend from the outer side surface of the vertebral body to the adjacent nucleus. The channel may be formed with a bone drill bit and/or a tissue harvesting device as described in U.S. Pat. No. 5,269,785 entitled Apparatus and Method for Tissue Removal, which is hereby incorporated by reference. The nucleus pulposus material may be fully or partially removed through the channel 692. Means for removing the material may include suction, scrapper, scooper, syringe, or other similar device. When no new material is required to be implanted in the region where the nucleus pulposus material was removed, the physician may close the channel 692 with graft material such as autograft material, allograft material, and/or other implantable materials disclosed herein. Alternatively, a plug/seal 693 made of metal, polymer, composite, or ceramic may be inserted into the channel 692 at either end of the channel or at both ends of the channel. The plug 693 may be removable for gaining access to the nucleus pulposus during a subsequent surgery. In this method, the annulus fibrosus is not incised, punctured, or weakened thereby reducing the healing time of the disc.
  • Depending on the severity of herniation or damage to the disc, nucleus pulposus replacement material or a nucleus pulposus prosthesis may be positioned between a superior vertebra and inferior vertebra. One or more incisions may be made through the annulus for access to the nucleus. The nucleus pulposus may be removed, and the replacement material or prosthesis may be inserted. Alternatively, the nucleus pulposus also remain in place with the replacement material or prosthesis positioned next to or along with the existing nucleus pulposus. Furthermore, the nucleus pulposus can be removed, conditioned or treated, and then re-implanted either alone or with a replacement material. In this regard, the temporarily removed nucleus pulposus can serve as a scaffold seeded with cells or treated with a growth factor or any other of the therapeutic agents disclosed herein. The fasteners and sutures of the present invention may be used to approximate the annulus incisions. Any number of fasteners may be used to fully close the incision.
  • The nucleus pulposus replacement material or prosthesis may also be positioned between the superior and inferior vertebrae through a vertebral body. As mentioned previously, a passage or channel may be made through the vertebral body extending from the outer surface to the adjacent nucleus pulposus. All, some, or none of the existing nucleus pulposus may be removed prior to insertion of the replacement material or prosthesis. In an exemplary embodiment, the replacement material is injected through the incision or channel in the vertebra and into the nucleus pulposus area. This material may be flowable for injection then once injected may become less flowable to form a gel-like material or, alternatively, may become generally solid to form a rubber-like material. Additionally, the nucleus pulposus replacement material may be flowable or injected into a balloon or bladder which may be positioned between adjacent vertebral bodies.
  • In another embodiment, the replacement material or prosthesis may be rubber-like or gel-like pellets having a configuration which allows them to be passed through the incision or channel. The replacement material or prosthesis may be expandable so that, once inserted, it can fill the implant area. The materials or prosthesis may include an adhesive and/or therapeutic substances, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • Surgery of the intervertebral disc may leave the spine with increased motion or shear which can cause further disc failure, facet hypertrophy, or arthritis of the facet joints. To stabilize the repaired intervertebral disc “on the way out,” the devices and methods of the present invention may be utilized. Flexible fixation of tissue at and near the operation site may allow compression of tissue and limited motion of the repaired intervertebral disc allowing ligaments, the annulus fibrosis, interspinous ligaments, and other soft tissue to properly heal. Stabilizing one vertebral body to another vertebral body under compression would still allow for some range of motion of the joint yet prevent disc degeneration.
  • The vertebral bodies may be stabilized anteriorly and/or posteriorly or with a hybrid approach such as an anterior-lateral or posterior-lateral approach. For example, on the anterior side of the spine, two fasteners 630D, 630E are positioned to secure the ends of a suture 700B placed through the intervertebral disc 680 and through adjacent vertebrae 682 and 684 in a curved or looped configuration. Two other fasteners 630F, 630G are positioned against or within the vertebrae 682 and 684 to hold the ends of a suture or sutures 700C placed through the disc 680 and through the adjacent vertebrae 682 and 684 in a generally straight configuration. Two more fasteners 630H, 6301 are positioned against or within two vertebrae 702 and 704 located a distance from the repaired disc 680. A suture or sutures 700D are placed between these vertebrae 702 and 704 and tensioned. These fasteners and sutures provide stability and an enhanced healing environment for the intervertebral disc.
  • Finally, FIG. 22 illustrates another exemplary embodiment for stabilizing tissue around a repaired tissue region. One fastener 630J is positioned against or within an upper spinous process 706 adjacent the repaired disc 680, while another fastener 630K is positioned against or within a lower spinous process 708 also adjacent the repaired disc 680. A suture or sutures 700E are placed between the fasteners 630J, 630K and tensioned. This configuration and placement of fasteners and sutures limits or prevents the movement of the repaired disc.
  • Example 2 Intervertebral Disc Replacement
  • A damaged intervertebral disc may require replacement instead of just minor repair. The disc may be replaced with a prosthetic disc which may include a biocompatible material such as metal, polymer, composite, ceramic, or combinations thereof. FIG. 23 illustrates a total intervertebral disc replacement using the devices and methods of the present invention. While a disc replacement is shown and described below, it is contemplated that any skeletal region, like a joint, may be fitted with an implant, and the implant fastened and stabilized with the sutures, fasteners, and methods disclosed herein and incorporated by reference. For example, a knee replacement component may be affixed to the femur, tibia, or patella in accordance with the following described methods.
  • A disc replacement component may be positioned between the lower surface of a superior vertebra and the upper surface of an inferior vertebra. In this configuration, the disc replacement component takes the place of the original intervertebral disc and provides the proper spacing between the vertebrae. Such a disc component may be anchored to the surfaces of the superior and inferior vertebrae with the fasteners and sutures described herein and incorporated by reference.
  • Alternatively, and as shown in FIG. 23, the disc replacement implant 710 may be larger in height than the normal height of an intervertebral disc. The implant 710 may include upper 712, middle 714, and lower 716 sections. The upper and lower sections 712 and 716 are made of a biocompatible material which allows integration of the bone tissue of the vertebral bodies. This material may be polymeric, composite, metallic, ceramic or combinations thereof. Furthermore, the material may be body tissue including bone, collagen, cartilage, ligaments, or tissue graft material. The material may be bioabsorbable, bioerodiable, degradable, and/or biodegradable.
  • The upper and lower sections 712 and 716 of the disc replacement component 710 may include therapeutic substances, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides. Finally, the upper and lower sections 712 and 716 may include an expandable material. This material could be compressed then allowed to expand once implanted. Alternatively, the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are desiccated body tissue, foam, and expandable polymers.
  • The middle section 714 of the disc implant 710 includes a flexible or resilient material. The middle section 714 functions as the original intervertebral disc. Materials which may be used in the middle section 714 include rubber, gel, foam, polymer, collagen, body tissue, or other suitable material. The middle section 714 may also include an expandable material. Furthermore, therapeutic substances such as antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides may be included in the middle section 114 of the disc replacement implant 710.
  • The disc implant 710 is positioned as follows. The superior vertebra 718 may be cut to receive the upper section 712 of the disc implant 710, while the inferior vertebra 720 may be cut to receive the lower section 716 of the implant 710. The cuts may be made from any side of the vertebral body. However, it is preferred that cutting the vertebrae 718 and 720 results in minimal disruption of the surrounding tendons, muscles, nerves, and ligaments, like the anterior and posterior longitudinal ligaments. The cuts may be planar and generally perpendicular to the longitudinal axis of the spine. The cuts may also be multi-planar such that the pedicles and facet joints are not affected or weakened.
  • The upper, middle, and lower sections 712, 714, and 716 of the implant 710 combine to form a height which when the implant 710 is positioned between the cut portions of the superior and inferior vertebrae 718 and 720, is generally the same height of the normal intervertebral disc and adjacent vertebral bodies. This technique is analogous to a total knee replacement procedure. The femur, tibia, and patella are cut and prepared for implant components. Once affixed, the knee replacement components return the knee joint to its normal height, configuration, and function. The spinal implant 710 of the present invention is similar; it returns the spinal column to its normal height and function.
  • To secure the disc implant 710 to the cut superior and inferior vertebrae 682 and 684, the sutures, fasteners, and methods of the present invention may be used. As seen in FIG. 23, a fastener 630L is positioned within or against the superior vertebra 682, while a second fastener 630M is placed within or against the upper section 712 of the disc implant 710. A suture 700F positioned between the fasteners 630L, 630M is tensioned thereby anchoring the implant 710 to the superior vertebra 682. In addition, a graft 720, like a tissue graft, is positioned over the lower section 716 of the implant 710 and the inferior vertebra 684. Two fasteners 630N, 6300 with sutures hold the graft 720 in place thereby anchoring the implant 710 to the inferior vertebra 684. To help stabilize the region around the disc implant 710, a first fastener 630P is positioned within or against a spinous process 706, while a second fastener 630Q is placed within or against a different spinous process 708. A suture 700G extends between the fasteners 630P, 630Q and is tensioned to limit movement of the spinous processes 706 and 708 and their relative vertebral bodies.
  • The disc implant 710 is further anchored to the superior and inferior vertebrae 682 and 684 with fasteners, sutures, and tubular members. Two fasteners 630R, 630S are positioned within or against the vertebrae 682 and 684. Two other fasteners 630T, 630U are placed within or against the disc implant. Sutures 700H, 7001 are positioned within tubular members or sleeves 652A, 652B that extend between the fasteners. The tubular members 652A, 652B may have a thin cylindrical wall which engages the bone of the vertebrae 682 and 684 and material of the implant 710. By inserting the tubular members 652A, 652B in such an orientation, the superior and inferior vertebrae 682 and 684 and disc implant 710 are maintained in alignment.
  • It is also contemplated that the tubular member or sleeve may be placed within ligaments, tendons, muscles, bones, or combinations thereof. For example, the tubular member may be positioned in bones, including transverse process, pedicles, facets, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, and vertebral body. The tubular member may also be positioned in ligaments, including the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • Following intervertebral disc replacement, the spine and surrounding tissue may be become weakened. To stabilize these regions “on the way out,” the devices and methods of the present invention may be utilized. Flexible fixation of tissue at and near the operation site may allow compression of tissue and limited motion of the prosthetic intervertebral disc allowing ligaments, the annulus fibrosis, interspinous ligaments, and other hard or soft tissue to properly heal. Stabilizing one vertebral body to another vertebral body under compression would allow for some range of motion of the joint and prevent disc degeneration and reduce the incidence of postoperative pain.
  • Example 3 Implant Anchoring
  • The devices and methods of the present invention may be further used to stabilize an implant positioned within the body. In addition to the type of implants mentioned elsewhere herein, the implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic. Other implants include breast implants, biodegradable plates, metallic fasteners, rods, plates, screws, spacers, cages, compliant bearing implants for one or more compartments of the knee, nucleus pulposus implant, stents, meniscal implants, tissue grafts, tissue scaffolds, biodegradable collagen scaffolds, and polymeric or other biocompatible scaffolds.
  • Also, fasteners and sutures may be utilized to position bone replacement implants including joint replacement components such as for the knee and hip, drug delivery implants, pain pumps, spinal implants, dental implants, tissue implants, tissue patches such as porcine, bovine, or patches disclosed in U.S. Pat. No. 6,592,625 to Cauthen, and other implants. The previously mentioned patent is hereby incorporated by reference. The implants, fasteners, and sutures may also include cells bonded to their surface. The cells may be bonded with a biocompatible adhesive, such as those describe herein, and/or may be bonded electromagnetically or with vanderwalls forces. While implant anchoring is described below in reference to intervertebral disc implants, it should be understood that the methods described herein may be used for anchoring any implant with the body.
  • In FIG. 24, a prosthetic disc implant 730 is positioned between two vertebrae (only one shown) 684. The annulus fibrosis 688 encircles the implant 730. A fastener 630V is placed within the posterior portion of the annulus 688. A suture 700J loops around and/or through the implant 730, and the suture 700J is secured with the fastener 630V. Tensioning the suture 700J in this configuration stabilizes the implant 730 by preventing movement of the implant 730 in a posterior-anterior direction. Two other fasteners 630W, 630X are positioned against the annulus 688 generally on the sides of the annulus. A suture 700K connects these two fasteners 630W, 630X and holds the implant 730 preventing movement in a side-to-side or lateral direction. It is contemplated that the sutures and fasteners used to anchor an implant may extend through or around the implant.
  • FIG. 25 illustrates a disc implant 730 stabilized between a superior vertebra 682 and inferior vertebra 684. A fastener 630Y is positioned within the implant 730 while another fastener 630Z is placed within or against the superior vertebra 682. A suture 700L is tensioned between the fasteners 630 to hold the implant 730 to the lower surface of the superior vertebra 682. For added stability, a fastener 630AA is placed within or against the inferior vertebra 684 while another fastener 630AB is positioned against the implant 730. A suture 700M passes through the implant 730 and the fasteners 630AA, 630AB, and the ends of the suture 700M are secured. Any of the methods and devices described herein or incorporated by reference may be used to fasten the ends of the suture.
  • As previously mentioned, the implant may be any object surgically placed within the body. The implant may be made from various biocompatible materials. Also, the implant may be expandable within the body. A hydrophilic implant may swell or expand by absorbing liquid. A resilient implant may be compressed prior to implantation, then expand once positioned within the body. It is contemplated that an expandable implant may be stabilized using any method and device disclosed herein. In addition, the expandable implant may be held with fasteners and sutures such that expansion of the implant may be directed in a preferred direction or directions. Moreover, electromagnetic pulsed energy may be used to thermally lock a suture to the implant within the body.
  • In FIG. 26, an implant 730 is stabilized to a vertebra 684 with multiple sutures and fasteners in a way to allow the implant to expand anteriorly. A first fastener 630AC is positioned against the left side of the annulus 688, while a second fastener 630AD is placed within or against the right side of the implant 730. A suture 700N extends between the first and second fasteners 630AC, 630AD. When tensioned, the suture 700N prevents the implant 730 from expanding to the right while holding the top of the implant 730 as well. A third fastener 630AE is positioned against the right side of the annulus 688. A suture 700O is looped around and/or through the implant 730 and secured with the third fastener 630AE to thereby prevent the implant 730 from expanding to the left. A fifth fastener 630AF is positioned against the anterior side of the annulus 688, while a sixth fastener 630AG is place within or against the posterior side of the implant 730. A suture 700P positioned between the fifth and sixth fasteners 630AF, 630AG keeps the implant 730 from expanding in the posterior direction. Given this configuration of sutures and fasteners, the implant 730 is limited to expansion in only the anterior direction. It is contemplated that other configurations of sutures and fasteners may be used to limit the expansion of the implant to one or more directions. That is, the implant may be allowed to expand to the left, right, posterior, anterior, up, down, diagonally, or any combination thereof.
  • The present invention also provides an enclosure 740 for stabilizing and anchoring an implant and furthermore to direct expansion of the implant in zero, one, or more desired directions. FIG. 27A illustrates an enclosure (or pouch, bag, sac, etc) 740 a for an implant. The implant may be expandable or non-expandable. The pouch 740 may include one or more anchoring points 742. The anchoring points 742 may be placed on any of the corners, edges, or other surfaces so that when anchored the pouch 740 is properly secured at the desired location and orientation. A flap or lid 744 allows access into the pouch 740 for positioning of the implant. The flap 744 may be closed and sealed so the entire implant is enclosed. A pouch that completely encloses an expandable implant would allow the implant to expand omni-directionally until restricted by the pouch. The lip or flap may be resealable such that the material may be added to or removed from the pouch inside the body.
  • The pouch may be made from any natural or artificial material. For example, it may be formed from material which is polymeric, composite, metallic, ceramic, or combinations thereof. Furthermore, the pouch may be made of or include body tissue including bone, collagen, cartilage, muscle, tendon, ligaments, or other tissue graft material. The material of the pouch may be solid, porous, bioabsorbable, bioerodible, degradable, and/or biodegradable. The pouch may be made from a porous matrix or mesh of biocompatible and/or bioabsorbable fibers or filaments acting as a scaffold to regenerate tissue. The fibers or filaments may be interlaced, braided, or knitted to form the pouch.
  • The pouch may include or may be filled with therapeutic substances or drugs, like antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides. The pouch may further include or be filled with a gelatin which may contain a therapeutic agent. The gelatin inside the pouch may slowly osmotically leak out into the surrounding tissue.
  • The pouch may also include an adhesive to bond the pouch to the implant, to bond the pouch to the implantation site, and/or bond the flap to the pouch. Such adhesives may include cyanoacrylate adhesives, hydrogel adhesives, monomer and polymer adhesives, fibrin, polysaccharide, Indermil® or any other biocompatible adhesive. A pouch filled with one or more therapeutic agents may form a drug cocktail implant. The therapeutic agents selected to be inserted within the pouch may be specifically tailored to the needs of the patient. The pouch may be filled outside or within the patient. Once placed within the body, the therapeutic agent may slowly dissolve and exit the pouch through an osmotic member to reach the surrounding tissue.
  • In another exemplary embodiment, FIG. 27B shows a pouch 740 b with a bi-directional expansion ports 746 on the left and right sides. When an expandable implant is placed in the pouch 740 and secured at the implantation site, the implant is restricted in expansion in all directions except to the left and right. It is contemplated that the pouch 740 may be designed with one or more expansion ports 746 facing in any direction. In FIG. 27C, the pouch 740 c includes a unidirectional expansion port 748. The pouch 740 allows the expandable implant to expand upward. A pouch with an upward or downward pointing expansion port may be particularly useful for prosthetic disc replacement. Once placed in the pouch and positioned between two vertebrae, an expandable implant may expand to increase the space between the vertebrae.
  • Example 4 Ligament Repair
  • Instability of joints between bones has long been the cause of disability and functional limitation in patients. Joints of the musculoskeletal system have varying degrees of intrinsic stability based on joint geometry and ligament and soft tissue investment. Ligaments are soft tissue condensations in or around the joint that reinforce and hold the joint together while also controlling and restricting various movements of the joints. When a joint becomes unstable, either through disease or traumatic injury, its soft tissue or bony structures allow for excessive motion of the joint surfaces relative to each other and in directions not normally permitted by the ligaments.
  • Common problems associated with excessive joint motion are malalignment problems, subluxation of the joint, and possibly joint dislocation. Typically, the more motion a joint normally demonstrates, the more inherently loose is the soft tissue surrounding the joint. A loose ligament or group of ligaments ultimately causes skeletal disorders. However, over tensioning ligaments restricts motion of the joint and can also cause musculoskeletal problems.
  • The present invention also provides methods of tensioning a ligament (or tendon) or group of ligaments (or tendons) during a surgical procedure and “on the way out” after the surgical procedure to prevent joint instability and reduce pain. These methods can be applied to any ligament in the body, including the ligaments of the knee (like the anterior cruciate ligament and iliotibial band), shoulder, elbow, wrist, hip, ankle, hands, and feet. For illustrative purposes, the methods of the present invention are described with reference to the spine.
  • When an intervertebral disc becomes herniated and loses nucleus pulposus tissue, the distance between the adjacent vertebrae is reduced from the compression of the annulus and remaining nucleus pulposus. As a result, the spine ligaments may become relaxed. These ligaments may include, but are not limited to, the anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligaments, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • FIG. 28 shows an anterior longitudinal ligament 750 which has become weakened. The fasteners and sutures of the present invention may be used to tighten the anterior longitudinal ligament 750 and decrease anteroposterior translation of the adjacent intervertebral discs. It should be understood that the methods described with respect to the anterior longitudinal ligament may also be applied to tightening other ligaments of the body.
  • A fastener 630AH is positioned against the ligament 750 adjacent the upper end of a loosened region 752 of the ligament 750. Another fastener 630AI is positioned against the ligament 750 adjacent the lower end of the loosened region 752. A suture 700Q is positioned through the ligament 750 and through the fasteners 630AH, 630AI. The suture 700Q is tensioned thereby tightening the loosened region 752 of the ligament 750.
  • In another embodiment, a fastener 630AJ is positioned against the ligament 750 above a stretched region 754. Another fastener 630AK is placed against the ligament 750 below the stretched region 754. A suture 700R is placed through the ligament 750, adjacent vertebrae 756 and 758, and intervertebral disc 680 in a curved or looped configuration. The suture 700R is tensioned to tighten the stretched region 754.
  • In a further embodiment represented in FIG. 28, one fastener 630AL is positioned against the ligament 750 above a missing or torn ligament region 760. Another fastener 630AM is positioned against the ligament 750 below the missing region 760. The suture 700S is positioned through the superior and inferior ends of the ligament 750 at the missing or torn region 760. The suture 700S is tensioned between the fasteners 630AL, 630AM causing the ends of the ligament 750 to be drawn together.
  • To stabilize the spine while a loosened or torn ligament heals, a stabilization implant, such as a rod or plate 762, may be positioned adjacent spinous processes 764. The fasteners and sutures of the present invention may be used to secure the rod or plate 762 to the spine. A plurality of fasteners 630AN is positioned against the rod or plate 762 proximate to each spinous process 764. A second plurality of fasteners 630AO is placed within or against the spinous processes 764. Sutures 700T extend between the fasteners 630AN, 630AO and are tensioned. Once anchored, the rod or plate 762 limits movement of the spinous processes 764 relative to each other thereby limiting movement of the anterior longitudinal ligament 750.
  • It is contemplated that the fasteners of the present invention be placed within or adjacent any bone of the body. When used in the knee, for example, the fasteners may be placed adjacent the femur, tibia, or patella. Within the spine, an fastener may be positioned adjacent a posterior arch, a spinous process, a lateral or medial articular process, a pedicle, odontoid process, uncinate process, a posterior tubercle, carotid tubercle, or a vertebral body.
  • Example 5 Ligament Reconstruction
  • The present invention may also be used in ligament or tendon reconstruction. Ligaments are frequently damaged, detached, torn, or ruptured as the result of injury or surgery. A damaged ligament can impede proper motion of a joint and cause pain. Therefore, during or “on the way out” from a surgical procedure, a ligament may be reconstructed using a fastener, a tissue graft, and/or a tissue scaffold with or without cells.
  • The devices and methods of the present invention may be used with a tissue or artificial graft to tension and stabilize the damaged ligament. Any ligament of the body may be repaired using the present invention, including the ligaments of the spine, shoulder, elbow, hip, knee, ankle, feet, and hands. The present invention is described in reference to ligaments of the spine including the anterior and posterior longitudinal ligaments, interspinous ligaments, supraspinous ligaments, superior costotransverse ligaments, ligamentum flavum, facet capsulary ligament, intertransverse ligament, ligamentum nuchae, and ligaments of the sacrum and coccyx spine.
  • In an exemplary embodiment, FIG. 29 shows a damaged anterior longitudinal ligament 750. A ligament graft 770 is positioned adjacent the damaged region 772. A first fastener 630AP is placed against the inferior end of the ligament graft 770, while a second fastener 630AQ is positioned within or against a vertebral body 774. A suture 700U extends through the graft 770, ligament 750, and vertebra 774. The suture 700U is tensioned, and the ends of the suture 700U are secured. Similarly, two fasteners 630AR, 630AS and a suture 700V are positioned at the superior end of the ligament graft. To further anchor the ligament graft 770 to the anterior longitudinal ligament 750, one fastener 630AT is positioned against the graft 770 on one side of the damaged region 772, and another fastener 630AU is placed against the graft 770 on the other side of the damaged region 772. A suture 700W is placed through the graft 770, ligament 750, adjacent vertebrae 682 and 684, and intervertebral disc 680 in a generally curved, looped, or C configuration. The suture 700W is tensioned, and the ends of the suture 700W secured. It is also contemplated that the curved or looped suture may be placed through multiple intervertebral discs and vertebrae.
  • In another embodiment, FIG. 29 shows a graft 770 positioned between two adjacent vertebrae 682 and 684. The ligament or bone graft 770 is positioned adjacent the damaged region 772 of the anterior longitudinal ligament 750. The graft 770 may be attached using any of the devices and methods described herein and incorporated by reference. In an exemplary embodiment, two fasteners 630AV, 630AW are placed at the superior and inferior ends of the graft 770. Two other fasteners (not shown) are positioned within or against each vertebra 682 and 684. Sutures are positioned between the fasteners and tensioned.
  • To stabilize the longitudinal ligament 750 while the damaged region 772 heals, sutures and fasteners may be placed on the posterior side of the spine for stabilization. One fastener 630AX is placed within or against a spinous process 764, while another fastener 630AY is positioned within or against a pedicle or bone of the facet joint 776. A suture 700X extends between the fasteners 630AX, 630AY thereby limiting movement of the spine. FIG. 29 shows an additional stabilization device between an upper and lower spinous process. In this configuration, the suture and fasteners provide additional restriction to the movement of the spine.
  • The ligament or bone graft may be obtained from a variety of sources and/or made from various materials. In an exemplary embodiment, the ligament graft is made of collagen. The graft could also include autograft, allograft, or xenograft material. The graft may be a tendon graft, bone-tendon-bone graft, or a meniscus graft. Other material which may be used in the formation of the graft is polymer, carbon fiber, PEEK, PTFE, a biodegradable material, elastic or flexible material, Gore-Tex®, or woven fiber. The ligament graft may include therapeutic substances. These include antibiotics, hydroxypatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • Use of grafts or patches to repair, reconstruct, and augment tissue, like a ligament, may include patches such as TissueMend® patches, Restore® patches, or similar products.
  • Example 6 Ligament Augmentation
  • In addition to ligament repair and reconstruction, the devices and methods of the present invention may be used for ligament or tendon augmentation. Ligament augmentation reinforces or supplements natural ligaments. A ligament may be augmented or reinforced after it has been repaired or reconstructed. Also, a non-repaired ligament may be augmented prophylactically. In this case, the augmentation may be used to increase the load-bearing capacity of the ligament or tendon. Additionally, or alternatively, the augmentation may be used to prevent a potential injury to a ligament or tendon. For example, an athlete may undergo minimally invasive surgery to reinforce a ligament or tendon so as to prevent the ligament or tendon from being injured later in the athlete's career. Many talented athletes' careers are cut short because of any injury to a body joint, like the knee, shoulder, ankle, spine, wrist, or hip. If an athlete desired to prevent or at least reduce the chance of sustaining a career ending injury, he/she could have surgery to augment or “fail-safe” a joint and its ligaments and tendons even if there are no other risk factors other than the occupation. Of course, other risk factors, such as genetic predisposition, could be considered, if desired.
  • The devices and techniques described herein relate to augmenting any ligament or tendon of the body including ligaments of the knee, shoulder, spine, hand, foot, hip, and elbow. For illustrative purposes only, ligament augmentation is described with reference to the anterior cruciate ligament (ACL) of the knee. It should be understood that the description of augmentation to the knee is not limiting to other ligaments and tendons.
  • In an exemplary embodiment, fasteners and a suture (or similar device like a cable, band, flexible moment arm, pin, rod, or K-wire) may be used to augment a ligament. Referring to FIGS. 30A, 30B, and 30C, a fastener 630 may be positioned near one end of the ligament 780, while another fastener 630 may be placed near the opposite end of the ligament 780. The suture or cable 700 may be placed between the fasteners 630 and may be generally parallel with the ligament 780. The suture 700 may be tensioned, and the ends of the suture 700 secured with the fasteners 630. It is contemplated that multiple fasteners and multiple sutures may be utilized to augment the ligament. For example, a suture 700 may be placed at an angle to the ligament 780 with the ends of the suture 700 secured with fasteners 630. Having multiple sutures at different angles relative to each other and/or the ligament may provide multiple-direction augmentation.
  • In a further exemplary embodiment, a tissue graft or scaffold (reinforcement means) 782 may be used to augment the ligament or tendon 780. The graft or scaffold 782 may be configured and include materials as described herein. The graft or scaffold 782 may be positioned generally parallel to the ligament 180 requiring augmentation. The ends of the graft 782 may be anchored to bone, ligament, or other tissue using the devices and methods of the present invention. For example, one fastener may be positioned in or against the graft while another fastener may be placed in or against adjacent tissue. A suture may be tensioned between the fasteners, and the ends of the suture secured with the fasteners. Also, a fastener 630 may be positioned against the graft or adjacent tissue, and a suture 700 may be wrapped around the adjacent tissue and graft one or multiple times to form a band or latching. The suture 700 may be tensioned and secured with the fastener 630. It is contemplated that multiple grafts and/or scaffolds may be used to augment the ligament or tendon. For example, grafts or scaffolds may be at different angles to the ligament to provide augmentation in multiple directions.
  • Furthermore, it is contemplated that the graft or scaffold 782 used to augment the ligament or tendon may be secured to tissue using a band-like device 784. The band 784 may be wrapped around the graft or scaffold 782 and adjacent tissue, like a bone 786. The band 784 may be a biocompatible elastic band, a tissue graft, a polymeric or metallic tie (like a wire tie), or other suitable banding apparatus.
  • The suture and/or graft (reinforcement means) 782 used to augment the ligament or tendon may be placed parallel or diagonal to the ligament or tendon. Also, the suture and/or graft may be helically or spirally wrapped around the ligament or tendon. The ligament or tendon may be helically or spirally wrapped around the suture or graft. The reinforcement means may be positioned within or interwoven, braided, or weaved into the ligament or tendon.
  • As previously described, an athlete may desire to undergo elective surgery to “fail safe” a joint and/or ligaments. A football player, for example, who is at high risk for a knee injury may choose to augment or reinforce the anterior cruciate ligament 850, posterior cruciate ligament 852, tibial collateral ligament 854, fibular collateral ligament 856, posterior meniscofemoral ligament 858, and/or transverse ligament 860. The suture, cable, and/or graft used to reinforce the ligament may be tensioned and positioned such that the natural ligament is exclusively used during normal athletic activities. However, when the joint (knee) is extended or dislocated beyond its normal range of motion, the reinforcement means (suture, cable, graft, flexible rod, etc.) engages to stop the extension or dislocation thereby preventing injury to the joint. The engagement of the reinforcement means may provide a sudden stopping action when the joint or ligament is about to reach or has reached an abnormal position. Alternatively or additionally, the engagement of the reinforcement means may provide a gradual stopped action (e.g. stretching/elastic) as the joint/ligament approaches its maximum normal range.
  • The reinforcement means 782 may be implanted between bones, ligaments, and/or tendons. When the ACL is to be augmented or reinforced, the reinforcement means may extend between the femur 862, tibia 864, and/or fibula 865, may extend from the superior end of the ligament to the tibia and/or fibula, may extend from the inferior end of the ligament to the femur, and/or may extend between the superior and inferior ends of the ligament itself. The reinforcement means may be positioned parallel or at an angle to the ligament. The means may be a tubular sheath 866 that encapsulates the ligament, like a sheath on a wire or a braided sheath 868 on a fuel or hydraulic line. The sheath (reinforcement means) would function as previously described, i.e. provide gradual and/or sudden stopping action to the joint/ligament.
  • It is contemplated that augmentation or reinforcement of ligaments and tendons of a joint for athletes or other patients be performed using minimally invasive techniques. In the case of an athlete undergoing reinforcement or “fail safe” surgery, the surgeon must produce a minimum amount of dislocation and resection of soft tissue in order to minimize recovery time. Furthermore, physicians could take into consideration the natural growing rate of the athlete/patient. As the athlete grows and/or gains size and weight from physical workouts, the length, strength, and size of joints/ligaments/tendons may change. To account for this, the reinforcement means may be modifiable using a small portal in soft tissue to access the means in the joint. Once accessed, an extension 870 may be added to the reinforcement means. Alternatively, the reinforcement means may include three portions. The two end portions 872 may be fastened in tissue while the middle portion 874 resides between the end portions. The middle portion 874 may be disconnected from the end portions 872 and replaced with a different middle portion 874 having a different length, strength, and/or size. In this configuration, the end portions are not removed from the tissue therefore there is no healing time required for the end portions to secure to tissue.
  • Example 7 Laminectomy
  • A laminectomy is a surgical procedure which is designed to relieve pressure on the spinal cord or nerve root that is being caused by a slipped or herniated disk in the lumbar spine. A laminectomy removes a portion of bone over the nerve root or disc material from under the nerve root to give the nerve root more space and a better healing environment. Also, a laminectomy is effective to decrease pain and improve function for a patient with lumbar spinal stenosis. Spinal stenosis is caused by degenerative changes that result in enlargement of the facet joints. The enlarged joints place pressure on the nerves. During a laminectomy, there is much muscle stripping and ligament tearing. The back muscles or erector spinae are dissected off the lamina on both sides and at multiple levels. The facet joints, directly over the nerve roots, are cut to give the nerve roots space. Usually, once the nerve roots are provided with more room, the operation is completed by closing the skin incision. The methods and devices of the present invention may be used to repair, reconstruct, augment, and stabilize tissue or an implant “on the way out” of the pathway created in the soft tissue to access the nerve roots. Muscle may be reattached to muscle; ligaments may be repaired or reconstructed; tissue grafts may be implanted; bones may be stabilized; and implants may be inserted.
  • Referring to FIG. 31, a laminectomy site is illustrated. A portion of the ligamentum flavum 790 is dissected and removed between two spinous processes 706 and 708. The distal end of the lamina 792 is removed from the superior spinous process 706. The laminectomy site and surrounding tissue is repaired, reconstructed, or augmented to compress and stabilize the tissue for enhanced healing. Fasteners 630BA and sutures or cables 700Y are placed in the adjacent vertebral bodies 682 and 684 to provide flexible fixation of the spinal joint and limit the range of motion of the spine. A fastener 630BB is positioned on the posterior side of the ligamentum flavum 790 above the laminectomy site. Another fastener 630BC is positioned on the posterior side of ligamentum flavum 790 below the operation site. A suture 700Z is placed between the fasteners 630BB, 630BC. The suture 700Z is tensioned and secured with the fasteners 630BB, 630BC to provide flexible fixation of the ligamentum flavum 790.
  • Another fixation device is placed between the inferior and superior spinous processes. A fastener 630BD may be positioned against one of the spinous processes 764, and a suture 700AA may be wrapped between two spinous processes 706, 708. The suture 700AA may be tensioned, and the ends of the suture 700SS may be secured with the fastener 630BD. This configuration provides further flexible stabilization of the spinal column near the laminectomy site. Finally, a ligament graft or scaffold 782 may be positioned along the ligamentum flavum 790 over the laminectomy site. The graft 782 may reconnect and stabilize the ligamentum flavum 790. It should be understood that additional fasteners may be used to compress and stabilize surrounding tissue.
  • Example 8 Joint Stabilization
  • Following surgery within the body, especially surgery of a joint, the soft tissue around and near the joint may become weakened, and the range of motion of the joint usually increases thereby allowing excessive tissue laxity. Also, instability of a joint may be caused by structural changes within the joint as a result of trauma, degeneration, aging, disease, surgery, or a combinations thereof. An unstable joint may be fused to form a permanent or rigid internal fixation of all or part of the joint. Alternatively, joints may be stabilized with the devices and methods of the present invention, without fusion. In an exemplary embodiment, tissue may be repaired, reconstructed, augmented, and stabilized during and “on the way out” of a surgical procedure such as those surgical procedures described herein. Compressing and stabilizing the tissue around a joint enhances tissue healing. Using flexible fixation, the tissue may be secured but still allow for some range of motion of the joint. Where flexible fixation is not desired, the devices and methods of the present invention may be used for rigid fixation, such as for bones.
  • As a further example, fasteners and sutures could be used to stabilize the knee joint. The sutures could be positioned between at least two of the femur, tibia, patella, and adjacent ligaments to stabilize the knee without significantly restricting the knee's normal range of motion. Moreover, the devices and methods may be used to stabilize any joint of the body, including the spine, shoulder, elbow, wrist, hip, knee, ankle, and joints of the hands and feet. Additionally, the present invention may be used with a temporal mandibular joint, SI joint, facet joint, temporomandibular joint, and sacroiliac joint.
  • For illustrative purposes, the present invention is described in greater detail with respect to the spine. FIG. 32 shows a posterior view of the head and cervical spine with three vertebrae: C1 (Atlas), C2 (Axis), and C3. The cervical spine and head are stabilized using diagonally positioned sutures. Fasteners 630BE, 630BF are positioned within or against the left and right side of the occipital bone 800 of the head. Two other fasteners 630BG, 630BH are placed within or against the left and right sides of the posterior arch of the C1 vertebra 802. A suture 700AB extends between the left fasteners 630BE, 630BG, while another suture 700AC extends between the right fasteners 630BF, 630BH. When tensioned, the sutures 700AB, 700AC limit movement of the head relative to the cervical spine.
  • FIG. 32 also shows tissue graft 804, such as a ligament and/or bone graft, positioned between a vertebra 806 and the head 808. The grafts 804 may be attached using any of the devices and methods described herein and incorporated by reference. In an exemplary embodiment, fasteners 630BI are placed at the superior and inferior ends of the graft. Other fasteners (not shown) are positioned within or adjacent the bone. Sutures extend between the fasteners and are tensioned.
  • Further stabilization of the cervical spine may be obtained by placing sutures and fasteners lower in the cervical spine. In an exemplary embodiment, a crisscross pattern of sutures is placed between two adjacent vertebrae. The upper fasteners 630BJ may be placed within or against the superior vertebra 682, while the lower fasteners 630BK may be positioned within or against the inferior vertebra 684. Sutures 700AD extend between the fasteners, and when tensioned, the sutures 700AD stabilize the vertebrae 682 and 684 from movement between one another.
  • In another embodiment as shown in FIG. 33, a vertebra 814 has been decompressed using fasteners and a suture. A first fastener 630BL is placed within or adjacent an upper vertebra 812, and a second fastener 630BM is positioned within or adjacent a lower vertebra 816. A suture 700AE is positioned through the left side of the vertebrae 812, 814, and 816 in a curved, looped, or C configuration. The suture 700AE is tensioned, and the ends of the suture 700AE secured. By tensioning the suture 700AE, the right side of the middle vertebra 814 becomes decompressed.
  • In another exemplary embodiment, multiple vertebrae may be decompressed by positioning fasteners 630BN, 630BO on two vertebrae 810 and 818 which are separated by two or more vertebrae. A tubular member or sleeve 652 is positioned between the fasteners 630BN, 630BO and through the vertebrae in between. A suture 700AF is placed within the sleeve 652, tensioned, and secured with the fasteners 630BN, 630BO. Moreover, the fasteners 630BN, 630BO may be placed on any part/portion of the vertebrae 810 and 818, as described previously, so when the suture is tensioned, one or more vertebrae are decompressed, forming a decompressed region 824.
  • As further seen in FIG. 33, the spine has been stabilized using the pedicles of the spine. A fastener 630BP is placed within or adjacent a pedicle 820. A second fastener 630BQ is placed within or adjacent another pedicle 822. A suture 700AG extends between the fasteners 630BP, 630BQ either through the pedicles or outside the pedicles. The suture 700AG is tensioned and the ends of the suture secured.
  • While FIG. 33 illustrated a suture positioned between two pedicles, it is contemplated that the suture may be affixed to any portion/part of the vertebrae. For example, a suture may be tensioned between any one or more of the following: transverse process, pedicles, facets, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, and vertebral body.
  • The suture, or similar device like a cable, band, flexible moment arm, pin, rod, or K-wire, is made of a material having sufficient strength and fatigue characteristics. The suture may be biodegradable and/or flexible. It may include metallic material, ceramic material, polymeric material, composite material, or combinations thereof. In one embodiment, the suture is formed of fiber material like carbon or polyamide fibers. Sutures may also be formed from Mersilene®, polypropylene braided or collagen strips, allograft or xenograft strips, braided mesh, a polymer, PTFE, or Gore-Tex®. The suture may be made of or include an elastic, flexible material which stabilizes the skeletal and ligamentous system but allows some movement of the joints. Also, the suture may be barbed or could be a threaded wiring device.
  • The disclosed methods for spine stabilization described thus far included positioning fasteners against bone or an implant. However, the present invention also contemplates stabilizing a joint of the body by affixing a suture between ligaments, tendons, bones, cartilage, tissue grafts or combinations thereof. For example, a suture may be positioned between a vertebra and a longitudinal ligament, between a spinous process and the supraspinous ligament, or between a facet and a facet capsulary ligament. Any combination of attachment points is contemplated to stabilize the joint.
  • Furthermore, any of the methods described herein could utilize a plurality of sutures and more than two fasteners. The use of multiple sutures can vary the tension or resistance between the fasteners securing the suture, thereby providing various levels of stability. The use of multiple fasteners, preferably spaced apart and positioned adjacent the region of the joint to be stabilized, could provide various angles of stabilization.
  • It is further contemplated that by using multiple sutures and fasteners at different locations of the spine, ligaments and bones of the spine may be selectively tightened or stabilized to provide a customized environment for spine healing. For example, the sutures may be tightened sequentially between the fasteners, or the entire construct could be tightened down together.
  • Related Techniques
  • It is contemplated that the devices and methods of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels. A small incision(s) may be made adjacent the damaged tissue area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention. U.S. Pat. No. 5,320,611 entitled, Expandable Cannula Having Longitudinal Wire and Method of Use, discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter. The cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue. The expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening.
  • Also, U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths. The cannula has a pointed end portion and includes wires having cores which are enclosed by jackets. The jackets are integrally formed as one piece with a sheath of the cannula. The cannula may be expanded by inserting members or by fluid pressure. The cannula is advantageously utilized to expand a vessel, such as a blood vessel. An expandable chamber may be provided at the distal end of the cannula. The above mentioned patents are hereby incorporated by reference.
  • In addition to using a cannula with the methods of the present invention, an introducer may be utilized to position fasteners at a specific location within the body. U.S. Pat. No. 5,948,002 entitled, Apparatus and Method for Use in Positioning a Suture Anchor, discloses devices for controlling the placement depth of a fastener. Also, U.S. Patent Application Publication No. 2003/0181800 discloses methods of securing body tissue with a robotic mechanism. The above-mentioned patent and application are hereby incorporated by reference. Another introducer or cannula which may be used with the present invention is the VersaStep® System by Tyco® Healthcare.
  • The present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Pat. Nos. 6,702,821, 6,770,078, and 7,104,996. These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement. The femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference. Furthermore, the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure. For example, the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired. The patent documents mentioned above are hereby incorporated by reference.
  • Moreover, the devices and methods of the present invention may by used to approximate a skin incision where there may be undue tension on the skin. Fasteners may be placed on opposite sides of the incision, and a suture or cable may be placed between the fasteners. When the suture is tensioned, the skin may be pulled together and held until the skin tissue relaxes. Then, the fasteners may be unlocked, and the suture may be tensioned again to further approximate the skin incision. The locking and unlocking of the fasteners along with the tensioning of the suture may be repeated until the incision is fully closed.
  • Furthermore, it is contemplated that the present invention may be used with bariatric surgery, colorectal surgery, plastic surgery, gastroesophageal reflex disease (GERD) surgery, or for repairing hernias. A band, mesh, or cage of synthetic material or body tissue may be placed around an intestine or other tubular body member. The band may seal the intestine. This method may be performed over a balloon or bladder so that anastomosis is maintained. The inner diameter of the tubular body part is maintained by the balloon. The outer diameter of the body part is then closed or wrapped with a band, mesh, or patch. The inner diameter of the tubular body member may be narrowed or restricted by the band. The band may be secured to the tubular body part or surrounding tissue with the devices and methods described herein and incorporated by reference.
  • In addition, intramedullary fracture fixation and comminuted fracture fixation may be achieved with the devices and methods of the present invention. For example, a plate or rod may be positioned within or against the fractured bone. A fastener may be driven across the bone and locked onto the plate, rod, or another fastener.
  • It is further contemplated that the present invention may be used in conjunction with the devices and methods disclosed in U.S. Pat. Nos. 5,329,846 entitled, Tissue Press and System, and 5,269,785 entitled, Apparatus and Method for Tissue Removal. For example, an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents. The above-mentioned patents are hereby incorporated by reference.
  • Additionally, it is contemplated that the devices and methods of the present invention may be used with heat bondable materials as disclosed in U.S. Pat. No. 5,593,425 entitled, Surgical Devices Assembled Using Heat Bondable Materials. For example, the fasteners of the present invention may include heat bondable material. The material may be deformed to secure tissue or hold a suture or cable. The fasteners made of heat bondable material may be mechanically crimped, plastically crimped, or may be welded to a suture or cable with RF (Bovie devices), laser, ultrasound, electromagnet, ultraviolet, infrared, electro-shockwave, or other known energy. The welding may be performed in an aqueous, dry, or moist environment. The welding device may be disposable, sterilizable, single-use, and/or battery-operated. The above-mentioned patent is hereby incorporated by reference.
  • Furthermore, it is contemplated that the methods of the present invention may be performed under indirect visualization, such as endoscopic guidance, computer assisted navigation, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, or other suitable visualization technique. The implants, fasteners, fastener assemblies, and sutures of the present invention may include a radiopaque material for enhancing indirect visualization. The use of these visualization means along with minimally invasive surgery techniques permits physicians to accurately and rapidly repair, reconstruct, augment, and secure tissue or an implant within the body. U.S. Pat. Nos. 5,329,924; 5,349,956; and 5,542,423 disclose apparatus and methods for use in medical imaging. Also, the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above-mentioned patents are hereby incorporated by reference.
  • Moreover, the fasteners and methods of the present invention may be used for the repair and reconstruction of a tubular pathway like a blood vessel, intestine, urinary tract, esophagus, or other similar body parts. For example, a blood vessel may be intentionally severed during a surgical operation, or the blood vessel may be damaged or torn as a result of an injury. Flexible fixation of the vessel would permit the vessel to function properly and also compress and stabilize the vessel for enhanced healing. To facilitate the repair or reconstruction of a body lumen, a balloon may be inserted into the lumen and expanded so the damaged, severed, or torn portion of the vessel is positioned against the outer surface of the inflated balloon. In this configuration, the fasteners and methods described and incorporated herein may be used to approximate the damaged portion of the vessel.
  • The guidance and positioning device of the present invention may be used to stabilize or fasten various implants and tissues. For example, the spine may be repaired or stabilized with fasteners, sutures, and cables to provide flexible or rigid reinforcement of the joints of the spine. Also, the nucleus pulposus of an intervertebral disc may be repaired or replaced using the guidance and positioning device of the present invention. For example, a prosthetic disc nucleus is positioned between two vertebral bodies and may be secured to surrounding tissue with fasteners and sutures. Additionally, the annulus may be repaired following a nucleus pulposus repair or replacement. The positioning device of the present invention may be used to position a fastener and suture on the internal side of the annulus. The suture may be pulled proximally through the annulus, tensioned, and secured with another fastener. Finally, the tissue alignment sleeves disclosed in the provisional application may be guided and positioned with the instrument and methods of the present invention. The above mentioned provisional application is incorporated herein by reference.
  • It is contemplated that the present invention may be utilized with the tracheal tube positioning apparatus of U.S. Pat. No. 6,820,614, entitled “Tracheal Intubation,” by Peter M. Bonutti. That patent discloses positioning apparatus located relative to a patient's trachea by engaging the patient's trachea. Indicia on relatively movable sections of the positioning apparatus provide an indication of the distance between the patient's mouth and the patient's larynx. A flexible guide rod is moved through a distance corresponding to the distance between the patient's mouth and larynx, as determined by the positioning apparatus. A magnet is utilized to attract a leading end portion of the guide rod. A plurality of emitters may be disposed in an array around the patient's trachea. Outputs from the emitters are detected by a detector connected with the tracheal tube. The above mentioned patent is hereby incorporated by reference.
  • Drill/Sleeve Combination
  • In another embodiment of the present invention, a drill bit and sleeve combination 100 is provided. In the following description, the drill bit and sleeve combination or system 100 is explained with reference to the fixation of two bones, like two portions of a fractured bone. It should be understood that the present embodiment may be utilized for fastening or securing tissue to tissue, an implant to tissue, or an implant to an implant.
  • In FIG. 34 the system 100 includes a tubular member or sleeve 102 for aligning two portions of bone located on opposite sides of a fracture. A drill bit 104 extends through the longitudinal lumen of the sleeve 102. The distal portion 106 of the drill bit 104 has one or more pivoting blades 108. The system 100 may also include a pusher means 110 for inserting the sleeve 102 into the bone passage created by the drill bit 104. The pusher means 110 may be connected to the sleeve, bit, or the drill. Preferably, a portion of the pusher means 110 does not rotate with the bit or drill so that the sleeve 102 is not rotated as the pusher means 110 contacts the sleeve 102 during the drilling operation. Examples of the pusher means 110 include a washer-shaped member or donut-shaped member positioned over the bit or a U-shaped fork positionable around the shaft of the bit. The lower side of the pusher means 110 may be configured for contact with the proximal end of the sleeve, while the upper side of the pusher means 110 may be configured of applying a distal force with a hand, hammer, or press.
  • As seen in FIG. 35, the blades 108, when extended from the bit 104, increase the drilling diameter of the bit 104. The bone passage created by the drill bit 104 and the extended blades 108 has a diameter generally equal to the outside diameter of the sleeve 102. The blades 108, when retracted, pivot into or against the distal portion 106 of the bit 104. The diameter of the drill bit 104 with the blades 108 retracted is slightly less than the inside diameter of the sleeve 102.
  • The pivoting blades 108 of the system 100 may be connected with the distal portion 106 of the bit 104 in a variety of ways, but preferably, the blades 108 are pivotally attached to the bit 104. In one exemplary embodiment as seen in FIGS. 34 and 21, the blades 108 extend and retract along radial axes of the bit 104. The blades 108 may pivot downwardly or distally into an extended configuration and may pivot upwardly or proximally into a retracted configuration. In the retracted state, the blades 108 may be positioned within a groove or notch within the distal portion 106 of the bit 104. Furthermore, the blades 108 may be spring loaded to normally reside in the retracted configuration. When the drill bit 104 is rotated with a drill, the centrifugal force generated by the drill may cause the blades 108 to pivot into the extended configuration. Once in the extended position, the blades 108 may be locked into position to allow drilling or cutting of the bone.
  • In another exemplary embodiment, the blades 108 may be manually pivoted distally and proximally. A pin or shaft may extend along the center of the drill bit 104 with the distal end of the pin in contact with the blades 108. As the pin moved longitudinally, the blades 108 may extend and retract. The proximal portion of the pin may include a lever or other means for moving or advancing the pin along the center axis of the bit 104.
  • It is further contemplated that the blades 108 may be extended and retracted radially in and out of the distal portion of the bit 104 along a linear path instead of being pivoted as previously described. In this embodiment, the blades 108 may extend with centrifugal force and retract with a spring-like mechanism or may be manually extended and retracted with a pin or shaft along the central axis of the bit 104. Furthermore, other embodiments of the blades are contemplated. For example, the blades may be generally arch-shaped to conform to the outside circumference of the bit. The distal ends of the blades may be pivotally attached to the bit allowing the blades to extended radially outward for maximum cutting diameter or retract against the outer surface of the bit to minimize the bit diameter.
  • FIGS. 36 and 37 illustrate the drill bit and sleeve system 100 in use to repair a fractured bone 112. The drill bit 104 is inserted into the lumen of the sleeve 102. The distal portion 106 of the bit 104 and the pivoting blades 108 extend beyond the distal end of the sleeve 102. Preferably, the amount of bit 104 extending from distal end of the sleeve 102 is minimized to prevent damage to soft tissue of the distal side of the bone 112. The proximal portion of the bit or shank 114 extends from the proximal end of the sleeve 102 and is connected to a drill 116. The pivoting blades 108, located beyond the distal end of the sleeve 102, are in the extended configuration. The bit 104 is rotated and advanced distally through the fractured bone 112. As the bit 104 advances and creates a passage in the bone 112, the sleeve 104 is moved distally into the passage with the pusher means 110. The sleeve 102 is tight or snug within the passage since the diameter of the passage is generally equal to the outside diameter of the sleeve 102. When the sleeve 102 is in its proper position securing the bone portions 118 and 120 of the fractured bone 112, and the drill bit 104 may be removed from the lumen of the sleeve 102. The bit 104 may be pulled from the lumen of the sleeve 102 because the blades 108 may be positioned in the retracted configuration giving the drill bit 104 a diameter generally smaller than the diameter of the lumen of the sleeve 102. With the sleeve 102 in place, the bone is compressed, and the fracture is stabilized.
  • In another embodiment of the present invention, the drill bit and sleeve combination or system 100 is dimensioned and configured for transformation into a fastener. As shown in FIGS. 38 and 39, the system 100 includes the tubular member or sleeve 102, the pusher means 110, and a drill bit 104 with an expanding distal portion 122. The drill bit 104 extends through the lumen of the sleeve 102 with the distal portion 122 of the bit 104 extending beyond the distal end of the sleeve 102. The cutting diameter of the distal portion 122 of the bit 104 is generally equal to the outside diameter of the sleeve 102. In this embodiment, the distal portion 122 of the bit 104 does not include pivoting cutting blades. However, the distal portion 122 does include means for expansion to a diameter greater than the cutting diameter.
  • Some examples of expansion means are shown in FIGS. 40-42. In FIG. 40 the expansion means includes one or more mechanically extending barbs 126 from the distal portion 122 of the bit 104. When extended or expanded, the barbs 126 increase the overall diameter of the drill bit 104. The barbs 126 may extend to the outside diameter of the sleeve 102, but preferably the barbs 126 extend beyond the outside edge of the sleeve 102. Most preferably, the barbs 126 extend over or into the distal side of the fractured bone 112. In the expanded configuration, the drill bit 104 is prevented from being pulled proximally out of the sleeve 102.
  • In FIG. 41, the expansion means includes a distal portion 128 of the drill bit 104 which pivots. In a first orientation during a drilling procedure, the distal portion 128 of the bit 104 is generally in-line with rest of the drill bit 104. After drilling, the distal portion 128 of the bit 104 is rotated about a pivot point into a second orientation. In the second orientation, the distal portion 128 is generally perpendicular to the rest of the drill bit 104. As a result, the end sections 132 and 134 of the pivoted distal portion 128 of the bit 104 extend beyond the outer diameter of the sleeve 102. Preferably, the end sections 132 and 134 extend over or into the distal side of the fractured bone 112 to prevent the bit 104 from being pulled from the sleeve 102.
  • In FIG. 42, the expansion means includes a distal portion 136 of the bit 104 which has two or more longitudinal sections 138 and 140 that are biased radially outward. The longitudinal sections 138 and 140 may be normally biased outward but held together by the lumen of the sleeve 102 when drilling through the bone 112. Alternatively, the longitudinal sections 138 and 140 may be normally in a non-biased configuration. After the passage is drilled in the bone 112, a plunger 142 within the drill bit 104 may be moved distally biasing the longitudinal sections 138 and 140 radially outward. With the longitudinal sections 138 and 140 biased, the distal portion 136 of the bit 104 may extend over or into the distal side of the fractured bone 112 to secure the bit 104 within the sleeve 102 and bone passage.
  • The drill bit and sleeve system 100 which transforms into a fastener may be utilized to secure various tissue and implants. Generally, in use, the drill bit 104 is inserted into the lumen of the sleeve 102 with the distal portion of the bit 104 extending beyond the distal end of the sleeve 102. The proximal portion of the bit or shank 114 extends from the proximal end of the sleeve 102 and connects to a drill. The bit 104 is rotated and advanced distally through the fractured bone 112. As the bit 104 advances and creates a passage in the bone 112, the sleeve 102 is moved distally into the passage with the pusher means 110. When the sleeve 102 is in its proper position connecting the two portions 118 and 120 of a fractured bone 112, the shank 114 of the drill bit 104 is removed from the drill. The distal portion of the bit 104, which extends just beyond the distal surface of the bone 112, is expanded with the expansion means.
  • Once expanded, the drill bit 104 is prevented from being pulled out of the bone passage. A retainer 144 may then be placed around the shank 114 of the bit 104 and moved distally to engage the proximal side of the bone 112. The retainer 144 is secured to the shank 114. With the distal portion of the bit expanded and the retainer connected to the shank, the drill bit (and the sleeve) is transformed into a fastener which holds the fractured bone in compression. It is also contemplated that the drill bit may be used without the sleeve so that the drill bit alone becomes a fastener.
  • The tubular member or sleeve of the present invention is generally tubular shaped having a wall with an inner surface and an outer surface. The inner surface defines a lumen which is dimensioned and configured for receiving a drill bit, suture, cable, K-wire, or similar device. The sleeve may include a slit through the tubular wall. The slit allows the sleeve to be decreased in diameter for implantation and increased in diameter after implantation for proper alignment of the implantation site. In a further embodiment, the sleeve may include two slits in the tubular wall thereby forming two semi-tubular members. The semi-tubular members may be placed separately at the implantation site then aligned to form a complete tubular member. In another embodiment, the tubular member is a solid member.
  • The tubular member or sleeve may be flexible to enable the tubular member to be inserted into a linear or nonlinear passage through the bone. The tubular member may be formed of metallic material, composite material, ceramic material, polymeric material, or combinations thereof. The sleeve may be made from a degradable, biodegradable, bioerodible, or bioabsorbable material, such as a polymer, composite, or ceramic. The tubular member may also include a therapeutic substance to form a composite tubular member, or the therapeutic substance may be coated onto the tubular member. Furthermore, therapeutic substances or graft material (autogenic, allogenic, xenogenic, or synthetic) may be packed into the sleeve.
  • Additionally, the outer surface of the tubular member may include a friction or gripping means. A portion of the outer surface of the tubular member may include threads, raised pebbles, bumps, raised ridges, or hills. In addition to a friction means on the outer surface of the tubular member, the wall of the sleeve may include openings for tissue ingrowth. The tubular member of the present invention is further described in U.S. Provisional Patent No. 60/622,095 entitled “Devices and Methods for Stabilizing Tissue and Implants,” which is hereby incorporated by reference.
  • Guidance and Navigation
  • The guidance and positioning device of the present invention may be placed within the body of a patient with precise navigation. For example, one or more guide wires or k-wires may be utilized—one to hold the device in position and a second wire to drill or pass through tissue toward the distal end of the hook of the device. One of the guide wires or an additional wire can be used to pull a suture or fastener through the tissue. Alternatively, the positioning device may be positioned through an expanding retractor with percutaneous guidance.
  • Other navigation techniques for precise placement of the positioning device of the present invention include endoscopic guidance, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, computer assisted navigation, magnetic guidance, electromagnetic guidance, radiofrequency guidance, optical guidance, and laser guidance. For example, the hook and/or guide channel of the positioning device may include a magnet, a radiofrequency emitter, or a thermal emitter/sensor. U.S. Pat. No. 7,104,996 entitled “Method of Performing Surgery” discloses computer assisted navigation. In using computer assisted navigation with the present invention, emitters, receivers, and/or reflectors may be attached to the positioning device and/or tissue. The computer navigation system may utilize multiple separate registers which have optical feedback to a central unit. The computer navigation system may utilize electromagnetic or photo-optical feedback. U.S. Pat. Nos. 5,329,924 entitled “Sequential Imaging Apparatus”; 5,349,956 entitled “Apparatus and Method for Use in Medical Imaging”; and 5,542,423 entitled “Indexing Assembly for Joint Imaging” disclose further devices and methods for use in medical imaging. Also, the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above mentioned patents are hereby incorporated by reference.
  • It is contemplated that the device and method of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels. A small incision(s) may be made adjacent the target area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention. U.S. Pat. No. 5,320,611 entitled “Expandable Cannula Having Longitudinal Wire and Method of Use” discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter. The cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue. The expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening. The above mentioned patent is hereby incorporated by reference.
  • Also, U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths. The cannula has a pointed end portion and includes wires having cores which are enclosed by jackets. The jackets are integrally formed as one piece with a sheath of the cannula. The cannula may be expanded by inserting members or by fluid pressure. The cannula is advantageously utilized to expand a vessel, such as a blood vessel. An expandable chamber may be provided at the distal end of the cannula. The above mentioned patents are hereby incorporated by reference.
  • The present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Pat. Nos. 6,702,821, 6,770,078, and 7,104,996. These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement. The femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference. Furthermore, the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure. For example, the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired. The patent documents mentioned above are hereby incorporated by reference.
  • Furthermore, it is contemplated that the present invention may be used with bariatric surgery, gastric stapling, colorectal surgery, plastic surgery, gastroesophageal reflex disease (GERD) surgery, ligament reconstruction surgery (such as the anterior cruciate ligament, ACL), or for repairing hernias. A band, mesh, or cage of synthetic material or body tissue may be placed around an intestine or other tubular body member. The band may seal the intestine. This method may be performed over a balloon or bladder so that anastomosis is maintained. The inner diameter of the tubular body part is maintained by the balloon. The outer diameter of the body part is then closed or wrapped with a band, mesh, or patch. The inner diameter of the tubular body member may be narrowed or restricted by the band. The band may be secured to the tubular body part or surrounding tissue with the device and method of the present invention.
  • It is further contemplated that the present invention may be used in conjunction with the devices and methods disclosed in U.S. Pat. Nos. 5,329,846 entitled “Tissue Press and System” and 5,269,785 entitled “Apparatus and Method for Tissue Removal.” For example, an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents. The above mentioned patents are hereby incorporated by reference.
  • Additionally, it is contemplated that the device and method of the present invention may be used with heat bondable materials as disclosed in U.S. Pat. No. 5,593,425 entitled “Surgical Devices Assembled Using Heat Bondable Materials.” For example, fasteners may include heat bondable material. The material may be deformed to secure tissue or hold a suture or cable. The fasteners made of heat bondable material may be mechanically crimped, plastically crimped, or may be welded to a suture or cable with RF (Bovie devices), laser, ultrasound, electromagnet, ultraviolet, infrared, electro-shockwave, or other known energy. The welding may be performed in an aqueous, dry, or moist environment. The welding device may be disposable, sterilizable, single-use, and/or battery-operated. The above mentioned patent is hereby incorporated by reference.
  • Moreover, the device and method of the present invention may be used for the repair and reconstruction of a tubular pathway like a blood vessel, intestine, urinary tract, esophagus, or similar tubular body parts. For example, a blood vessel may be intentionally severed during a surgical operation, or the blood vessel may be damaged or torn as a result of an injury. Flexible fixation of the vessel would permit the vessel to function properly and also compress and stabilize the vessel for enhanced healing. To facilitate the repair or reconstruction of a body lumen, a balloon may be inserted into the lumen and expanded so the damaged, severed, or torn portion of the vessel is positioned against the outer surface of the inflated balloon. In this configuration, the positioning device of the present invention may be used then to approximate the damaged portion of the vessel.
  • Radiofrequency Identification
  • The devices, fasteners, and other apparatus disclosed herein may include RFID (radiofrequency identification) tags. Moreover, any surgical device, described herein or not, such as surgical instruments, implants, trays, sponges, screws, bolts, plates, knives, scalpels, etc. may include RFID emitting chips. RFID provides for inventory control before, during, and after surgery. Objects with RFID chips/tags which are located under sterile drapes or within sterile containers may be easily located without having to break the sterile environment. Also, surgical devices and instruments stored in cabinets or placed in an operating room may be scanned with an RFID receiver to help technicians and nurses quickly identify location, type, and quantity. RFID chips/tags placed on surgical objects may save significant time and money during surgery and inventory. Furthermore, matching RFID chips/tags may be placed on an instrument/device and on the tray which holds the device. Using the RF scanner/transmitter, the correct placement of the device can be determined. It is further contemplated that the kits previously described may include RFID chips/tags placed on the container and the components therein.
  • Surgical Tools
  • In another exemplary embodiment, the guidance and positioning device of the present invention may be used with pneumatic operated surgical instruments. For example, a gas-powered drill may be couple with the channel guide and/or handle of the positioning device. A surgeon may operate the drill by activating a switch to start the fluid of gas which rotates an air motor thereby rotating a drill bit. The drill may be connected to a compressed gas source with tubing. However, preferably, the drill includes a connecting port for attaching a gas cartridge or canister. Such a drill would be free from electrical and battery power and free from encumbering wires and hoses. The gas cartridge may be sized to fit within the drill body or attached externally on the drill body. The cartridge may be refillable or disposable. In addition to the drill being gas-powered, the clamping mechanism of the positioning device may be gas-powered. By activating the flow of gas, the clamp may be moved to engage and compress tissue and/or an implant, holding the tissue and/or implant in place until fasteners may be inserted. It is further contemplated that other surgical tools, such as saws, shavers, reamers, grinders, etc., may include gas cartridges as previously described. These gas-powered tools may also include a microprocessor for control and feedback.
  • The present disclosure includes a tissue fixation system for dynamic and rigid fixation of tissue. The system can be utilized for the fixation and stabilization of body tissue, including soft tissue to soft tissue, soft tissue to bone, and bone to bone. The surgical system can additionally be used to affix implants and grafts to body tissue. The system can access and treat fractured, incised or torn tissue, or the like, from one access area (i.e., from only one opening to the tissue to be fastened) instead of requiring two or more openings. That is, the system is a linear fixation system that can be used with a single, small incision or portal in the skin or other soft tissue to gain access to the fractured bone. The fixation system may be an all-in-one system, packaged as a system kit, for creating a passage in tissue, positioning fasteners, and tensioning an elongate fastening member (e.g., a flexible line), like a suture, thread, cable, wire, rod, or pin. The individual components of the system can either be reusable or single use components.
  • Referring now to the drawing figures in which like reference designators refer to like elements, FIG. 44 shows an exemplary embodiment of a tissue fixation system 900 according to the present invention. A fractured portion 902 of a bone 904 is approximated by system 900. Use of system 900 is not limited to any particular type of fracture. Furthermore, use of system 900 is not limited to fracture fixation. In other words, system 900 can be utilized for other tissue fixation applications (such as soft tissue) or similar clinical indications. Examples of such tissue includes, are not limited to, muscle, cartilage, ligament, tendon, skin, etc. Also, the tissue may be stomach tissue, and the system may be used during bariatric surgery, like stomach stapling. Additionally, the system 900 can be used for the fixation of implants to tissue.
  • In this regard, the present invention may be used in conjunction with any surgical procedure of the body. The repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part. For example, tissue may be repaired, reconstructed, augmented, and secured following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc. In one particular application, an anastomosis is performed over a balloon and the methods and devices of the present invention are used to repair the vessel.
  • Also, tissue may be repaired after an implant has been inserted within the body. Such implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc. The implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic. Other implants include breast implants, biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearing for medial compartment of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold. The scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • The present invention further provides flexible and rigid fixation of tissue. Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue. A fractured bone, for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing. Also, bones may be flexibly secured to provide flexible stabilization between two or more bones. Soft tissue, like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing. Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals. Furthermore, joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint. Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes. The fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • Although the invention is described primarily on a macroscopic level, it is also envisioned that the present invention can be used for microscopic applications. For example, in the repair of nerve tissue, individual cells or fibers may need to be repaired. Similarly, muscle repair may require tightening of individual muscle fibers.
  • System 900 includes a distal fastener 906 contacting fracture portion 902, a proximal fastener 908 contacting bone 904, and an elongate fastening member 910 extending through the fracture and coupling distal and proximal fasteners 906, 908. Tension is maintained in elongate fastening member 910 to press fasteners 906, 908 against opposite sides of bone 904 with a desired force. This force presses fracture portion 902 against bone 904 firmly together to promote healing of the fracture. If desired, buttons or other force distributing members could be provided between fasteners 906, 908 and the bone. Although FIG. 44 shows distal and proximal fasteners 906, 908 as having the same construction, they could have differing construction. However, for convenience and practical purposes, it may be beneficial if distal and proximal fasteners 906 and 908 have substantially the same construction.
  • FIGS. 45-48 show an exemplary embodiment of a fastener 912 that can be used as part of system 900, i.e. as either or both of distal and proximal fasteners 906, 908. Fastener 912 has a body 914 that is configured and dimensioned to facilitate implantation through minimally invasive procedures, e.g. through a cannula or sleeve. In particular, body 914 includes a tissue contacting surface 916 that is provided with groove 1018 that receives a portion of elongate fastening member 910 when fastener 912 is in a first orientation with respect to elongate fastening member 910. This is seen in FIG. 49. The accommodation of elongate fastening member 910 within groove 918 helps to minimize the profile of the assembly of fastener 912 and elongate fastening member 910. The reduced profile can be more readily passed through a cannula or sleeve. If desired, an adhesive can be provided within groove 918 to bias fastener 912 in the first orientation. Alternatively, a frangible connection can be provided between groove 918 and the portion of elongate fastening member 910. This frangible connection keeps fastener 912 in the first orientation with respect to elongate fastening member 910 until it is broken.
  • Fastener 912 is provided with first and second ends 920, 922. As shown in FIG. 49, first end 920 is the leading end and second end 922 is the trailing end. In this position, when fastener 912 is pivoted to a second orientation, like distal fastener 906 of FIG. 44, tissue contacting surface 916 is in contact with the tissue. As shown in FIGS. 50 and 51, second end 922 is the leading end and first end 920 is the trailing end. In this position, when fastener 912 is pivoted to the second orientation, like proximal fastener 908 of FIG. 44, tissue contacting surface 916 is in contact with the tissue.
  • Fastener body 914 has a free surface 924 opposite tissue contacting surface 916. Free surface 924 is provided with a channel 926 that receives a portion of elongate fastening member 910 when fastener 912 is in a first orientation with respect to elongate fastening member 910. As shown in FIGS. 50 and 51, fastener 912 is being slid along elongate fastening member 910. In particular, a through bore 928 extends from tissue contacting surface 916 through free surface 924. Through bore 928 is larger in diameter than elongate fastening member 910 so that fastener 912 freely slides along elongate fastening member 910. A portion of elongate fastening member 910 fits within channel 926 on free surface 924 and a portion of elongate fastening member 910 fits within groove 918 on tissue contacting surface 916.
  • Fastener body 914 is shown with first end 920 having a substantially flat profile and second end 922 having a tapered profile. In general, any suitable external configuration can be used for fastener 912. Examples of fasteners may be found in U.S. Pat. Nos. 5,163,960; 5,403,348; 5,464,426; 5,549,630; 5,593,425; 5,713,921; 5,718,717; 5,782,862; 5,814,072; 5,814,073; 5,845,645; 5,921,986; 5,948,002; 6,010,525; 6,045,551; 6,159,234; 6,368,343; 6,447,516; 6,475,230; 6,592,609; 6,635,073; 6,719,765; 7,094,251; and 7,329,263. Other fastener types are disclosed in U.S. Patent Application Publication Nos. 2003/0181800, 2004/0230223, and 2004/0220616. The above cited patents and patent applications are hereby incorporated by reference.
  • Fastener 912 can be made of any biocompatible material suitable for a given application. For example, the fasteners may be, but are not limited to, degradable, biodegradable, bioerodible, bioabsorbable, mechanically expandable, hydrophilic, bendable, deformable, malleable, riveting, threaded, toggling, barbed, bubbled, laminated, coated, blocking, pneumatic, one-piece, multi-component, solid, hollow, polygon-shaped, pointed, self-introducing, and combinations thereof. Also, the fasteners may include metallic material, polymeric material, ceramic material, composite material, body tissue, synthetic tissue, hydrophilic material, expandable material, compressible material, heat bondable material, and combinations thereof. Examples of body tissue include bone, collagen, cartilage, ligaments, or tissue graft material like xenograft, allograft, and autograft. The fasteners may also be made from a porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate tissue.
  • The fasteners may further be made of or have a coating made of an expandable material. The material could be compressed then allowed to expand. Alternatively, the material could be hydrophilic and expand when it comes in contact with liquid. Examples of such expandable materials are ePTFE and desiccated body tissue.
  • Moreover, the fasteners described herein and incorporated by reference may include therapeutic substances to promote healing. These substances could include antibiotics, hydroxyapatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein (BMP), demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, germicides, fetal cells, stem cells, enzymes, proteins, hormones, cell therapy substances, gene therapy substances, and combinations thereof. These therapeutic substances may be combined with the materials used to make the fasteners to produce a composite fastener. Alternatively, the therapeutic substances may be impregnated or coated on the fastener. Time-released therapeutic substances and drugs may also be incorporated into or coated on the surface of the fastener. The therapeutic substances may also be placed in a bioabsorbable, degradable, or biodegradable polymer layer or layers.
  • FIG. 52A shows an exemplary embodiment of an elongate fastening member 930. Elongate fastening member 930 includes a body 932 and has a stop 934 at a distal end. Body 932 can be selected for a given application. For example, if a rigid elongate fastening member 930 is needed, body 932 can be a rod or a tube. If a more flexible elongate fastening member 930 is needed, body 932 can be a suture. In general, a wire analogous to those used for cerclage of bone fractures is believed to provide a suitable combination of strength and flexibility. Although body 932 is shown as a single strand wire, the invention can be used with any type of surgical cable, such as a multi-strand cable.
  • Stop 934 can be made integral with body 932 or separate and then attached. Stop 934 is larger in diameter than through bore 928 in body 914 of fastener 912. Thus, once stop 934 reaches through bore 928, fastener 912 cannot be slid any further along elongate fastening member 930. As shown in FIG. 48, free surface 924 of fastener 912 is provided with a well 936 surrounding through bore 928. Well 936 is configured and dimensioned to receive at least a portion of stop 934. As shown in FIG. 53, this helps reduce the profile of the assembly when fastener 912 is in a second orientation with respect to elongate fastening member 930.
  • Referring to FIG. 52B, in another embodiment, the elongated fastener member 930 includes expandable members 931, positioned along the body 932. Upon insertion into the tissue, the expandable members 931 expand to engage the surrounding tissue. For examples, the expandable members 931 can be barbs. The barbs 931 engage the surrounding tissue, maintaining the elongated fastener member's 930 position within the tissue.
  • The elongate fastening members of the present invention may be made of metallic material, non-metallic material, composite material, ceramic material, polymeric material, co polymeric material, or combinations thereof. The members may be degradable, biodegradable, bioabsorbable, or nonbiodegradable. Examples of suture materials that can be used for the elongate fastening members are polyethylene, polyester, cat gut, silk, nylon, polypropylene, linen, cotton, and copolymers of glycolic and lactic acid. Preferably, the members are flexible or bendable. They may be threadlike, monofilament, multifilament, braided, or interlaced. The members may have a coating of therapeutic substances or drugs. For example, the members may include antibiotics, hydroxyapatite, anti-inflammatory agents, steroids, antibiotics, analgesic agents, chemotherapeutic agents, bone morphogenetic protein, demineralized bone matrix, collagen, growth factors, autogenetic bone marrow, progenitor cells, calcium sulfate, immo suppressants, fibrin, osteoinductive materials, apatite compositions, fetal cells, stem cells, enzymes, proteins, hormones, and germicides.
  • The use of the tissue fixation system according to the present invention will now be described using fracture fixation as an example. If necessary, the fracture is reduced bringing fracture portion 902 into contact with bone 904 (FIG. 54). The reduction can be achieved using any number of techniques.
  • As also shown in FIG. 54, a drill system 938 is used to drill across the fracture, thereby creating a passage completely through bone 904. Drill system 938 includes a drill bit 940 with a headpiece configured for attachment to a drill. A drill stop can be placed on the headpiece and prevents drill bit 940 from penetrating too far beyond the tissue to be drilled. Drill system 938 may be a cannulated drill system that fits over a k-wire or other similar guide wire. A cannula or sleeve 942 may encircle drill bit 940 or at least the shaft portion of drill bit 940. As drill bit 940 creates a passage through bone 904, sleeve 942 is positioned in the passage. Drill system 938 is used to create a passage in bone 904 from the proximal side of bone 904 to the distal side of bone 904, then the drill and drill bit 940 are removed from sleeve 942 (FIG. 55).
  • As shown in FIG. 56, a distal fastener 912 a is inserted into sleeve 942. Distal fastener 912 a is inserted in the first orientation with respect to elongate fastening member 930 with first end 920 as the leading end. In this configuration, tissue contacting surface 916 will be in contact with fracture portion 902 when distal fastener 912 a is pivoted into the second orientation. This is best seen in FIGS. 57 and 58, in which a pushrod 944 is used to advance distal fastener 912 a and elongate fastening member 930 through sleeve 942. Pushrod 944 also facilitates the pivoting of distal fastener 912 a from the first orientation to the second orientation. This pivoting is not possible until distal fastener 912 a has exited through sleeve 942. Also, since the length of distal fastener 912 a is larger than the passage created in bone 904, pulling back on elongate fastening member 930 helps to ensure distal fastener 912 a is in the second orientation and flush against fracture portion 902.
  • As illustrated in FIG. 59, sleeve 942 is removed from bone 904. Fastener 912 a is located on the distal side of bone 904. Elongate fastening member 930 extends from fastener 912 a through the bone passage and out the proximal opening of the bone or tissue passage. Any suitable means can be used to keep distal fastener 912 a against fracture portion 902 with tension, where the tension can be measure and controlled in accordance with use. For example, elongate fastening member 930 can be deformed at the proximal end of the passage such that the deformed section rests against bone 904. The deformation would depend on the nature of elongate fastening member 930. If elongate fastening member 930 is a relatively flexible element, such as a suture, cable, or wire, then simply tying a knot in fastening member 930 could be sufficient to maintain the tension. If elongate fastening member 930 does not allow a knot, such as would be the case with a rod or tube, then mechanical deformation of elongate fastening member 930 to create an enlarged head could be sufficient to maintain the tension. U.S. Pat. No. 7,361,178, the contents of which are incorporated herein by reference, discloses mechanisms to mechanically deform an extension member and could be used to deform elongate fastening member 930.
  • Alternatively, the elongated fastening member 930 can be deformed by an energy, such as thermal energy, to deform elongate fastening member 930 to create an enlarged head sufficient to maintain the tension.
  • In an exemplary embodiment, a proximal fastener 912 b is used to secure distal fastener 912 a and elongate fastening member 930. In this embodiment, proximal fastener 912 b is identical to distal fastener 912 a. If not already pre-loaded, proximal fastener 912 b is loaded onto elongate fastening member 930. Proximal fastener 912 b is loaded as shown in FIGS. 50 and 51, i.e. with second end 922 as the leading end so that after proximal fastener 912 b is slid down against bone 904 and pivoted into the second orientation, tissue contacting surface 916 is in contact with bone 904.
  • Elongate fastening member 930 is tensioned, and proximal fastener 912 b is secured to elongate fastening member 930 to thereby approximate the fracture and stabilize bone 904. The tension of elongate fastening member 930 pulls on distal and proximal fasteners 912 a, 912 b generally toward each other, thereby applying pressure to the fractured bone or tissue. In this regard, a bushing 946 can be used to secure proximal fastener 912 b with the desired tension. Single or multiple elongated members 930 can be used to secure the fractured bone or tissue.
  • Although a number of mechanisms can be used to secure bushing 946, an instrument or medical device particularly useful for this will now be described.
  • In this regard, the present invention also provides a medical device for securing a fastener against relative movement with respect to a cable. As previously disclosed, a cable and pair of oppositely spaced fasteners can be used to secure a bone fracture. The cable is passed through the bone and fracture; a first fastener secures the cable on a first side (fracture side) of the bone; and a second fastener is positioned about the cable on a second side of the bone, opposite the first fastener. A bushing is positioned onto the cable to secure the second fastener against the second side of the bone. A force is applied to the bushing, compressing the second fastener against the second side of the bone and providing a tension to the cable. The tension in the cable can be measured and controlled, for example, with the used of a sensor and spring element. The spring can apply the force to tension the cable, and the sensor can be used to measure the resulting tension. Alternatively, the sensor can measure the compression of the tissue to determine the tension. The bushing is crimped about the cable, securing the second fastener against the second side of the bone, such that a tension is provided through the cable between the first and second fasteners.
  • Referring to FIG. 60, a medical device 1200 is provided for securing the bushing to the cable. The medical device 1200 includes a handle portion 1202 having a tensioning mechanism 1204, tensioning the cable and applying a force to the bushing, and a crimping mechanism 1206 for securing the bushing to the cable.
  • Referring also to FIGS. 61 and 62, the tensioning mechanism 1204 includes a collett holder 1208 defining a longitudinal passage along a central longitudinal axis A. The collett holder 1208 is affixedly positioned through a top portion 1212 of the handle portion 1202 with collett holder pin 1214. A cable tensioner 1216 is slidably positioned on a first end 1218 of the collett holder 1208. The cable tensioner 1216 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 1208. An end portion 1222 of the cable tensioner 1216 includes a cable aperture 1224 for threading the cable there through. A radial groove 1226 and circumferential groove 1228 are provided on the end portion 1222 of the cable tensioner 1216, such that the cable can be wrapped about the circumferential groove 1228 of the cable tensioner 1216, thereby preventing relative movement between the cable and the cable tensioner 1216.
  • A cable tension lever 1230 is pivotally connected to the cable tensioner 1216 with a lever pin 1232. The cable tension lever 1230 is adjustably positioned on the handle portion 1202 with body pins 1234, wherein a body pin 1234 is mirrorly positioned on opposite sides of the handle portion 1202. The body pins 1234 are engaged in the cable tension lever 1230 arcuate lever slots 1236, such that cable tension lever 1230 and cable tensioner 1216 are movably connected to the handle portion 1202.
  • In use, as the cable tension lever 1230 is pivoted about the cable tensioner 1216 from a first lever position L1 to a second lever position L2, the body pins 1234 traverse the arcuate lever slots 1236, resulting in a translation of the cable tensioner 1216 along the first end 1218 of the collett holder 1208 from a first tensioner position T1 to a second tensioner position T2. A tension bias member 1238 is interposed between the cable tensioner 1216 and the handle portion 1202, biasing the cable tensioner 1216 into the first tensioner position T1. The cable tension lever 1230 includes tension indicating markings 1240 along each of the arcuate lever slots 1236. The tension markings 1240 indicate the tension to be applied to the cable.
  • Referring also to FIG. 77 an alternative cable tensioner 440 is provided. Cable tensioner 440 is slidably positioned on a first end 1218 of the collett holder 1208. The cable tensioner 440 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 1208. An end portion 442 of the cable tensioner 440 includes a cleat 444 and a cleat stop 446. The cleat 444 is pivotally mounted to the cable tensioner 440, including a bias member 448 biasing the cleat 444 into a closed position. A cable 450 is threadable between the cleat 446 and the cleat stop 448, where in the closed position the cleat 446 imparts a force onto the cable 450, securing the cable 450 in the cable tensioner 440.
  • The bias member 448 biases the cleat 444 such that in the closed position the cable can be further drawn through the cable tensioner 440, for example, to position the fastener proximal to the tissue while removing any initial slack from the cable 450. However, the cleat 444 prevents the cable 450 from being drawn back through the cable tensioner 440. For example, the cleat 444 can include an arcuate contact surface 452 such that the force imparted on the cable 450 in the closed position increases as the tension on the cable 450 increases, preventing the cable 450 from being drawn back through the cable tensioner 440. The cleat arcuate surface 452 can further include a plurality of teeth 454, which can be utilized to grip cable 450.
  • Referring to FIGS. 61 and 63, a collett 1242 is affixed to a second end portion 1244 of the collett holder 1208, opposite the cable tensioner 1216. The collett 1242 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208 along the central longitudinal axis A. An end portion of the collett 1242 is bisected, forming first and second collett arms 1248 and 1250. A gap portion 1252 is provided between the first and second collett arms 1248 and 1250. Each of the first and second collett arms 1248 and 1250 includes force application end portions 1254 and 1256. The force application end portions 1254 and 1256 combine to form a bushing aperture 1258 configured to received the bushing therein. The collett 1242 is made of a semi-rigid material, such that the first and second collett arms 1248 and 1250 can be moved from an open to a closed position, closing the gap 1252 between the force application end portions 1254 and 1256.
  • In use, the tensioning mechanism 1204 is used to tension the cable. The cable can include a single or multiple filaments. The cable is inserted through the medical device 1200 along the central longitudinal axis A, through the collett 1242, collett holder 208, and the cable tensioner 1216, positioning the bushing in the bushing aperture 1258 and extending the cable through the cable aperture 1224. To tension the cable, the cable tension lever 1230 is actuated from the first lever position L1 to the second lever position L2, sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T1, into the handle portion 1202 against the tension bias member 1238, to the second tensioner position T2. The cable is positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216, securing the cable to the cable tensioner 1216. The cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T2 towards the first tensioner position T1. The movement of the cable tensioner 1216 towards the first tensioner position T1 applies a tension to the cable, forcing the bushing into the second fastener. The applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240.
  • Referring again to FIGS. 60 and 64, the crimping mechanism 1206 includes an outer tube 1260 slidingly positioned over the collett holder 1208. The outer tube 1260 includes a first end 1262 operably connected to a trigger 1264 and a second end 1266 connected to a collett closer 1268. The trigger 1264 is pivotally mounted in the handle portion 1202, such that the trigger 1264 can be actuated from a first trigger position TR1 to a second trigger position TR2. A locking mechanism 1265 prevents the trigger 1264 from being actuated. The locking mechanism 1265 is rotated to disengage the trigger 1264, allowing actuation of the trigger 1264.
  • The operable connection between the first end of the outer tube 1262 and the trigger 1264 includes an outer tube ferrule 1270 slidably positioned about the collett holder 1208 and affixed to the first end of the outer tube 1262. A tube bias member 1272 is interposed between the handle portion 1202 and the outer tube ferrule 1270, such that the tube bias member 1272 biases the outer tube ferrule 1270 and the outer tube 1260 into a first tube position P1. A pair of crimp cams 1274 are pivotally connected to the handle portion 1202 on opposite sides of the trigger 1264. The crimp cams 1274 each include first edges 1276 having an arcuate section 1278 for engaging the outer tube ferrule 1270, where the crimp cams 1274 are translatable with respect to the handle portion 1202 from a first cam position C1 to a second cam position C2.
  • An actuation of the trigger 1264 from a first trigger position TR1 to a second trigger position TR2 translated the crimp cams 1274 with respect to the handle portion from a first cam position C1 to a second cam position C2 position. The arcuate sections 1278 of the crimp cams 1274 engage the outer tube ferrule 1270, translating the outer tube ferrule 1270 and the outer tube 1260 along the collett holder 1208 from the first tube position P1 to a second tube position P2. As the trigger 1264 is released, the tube bias member 1272 biases the outer tube ferrule 1270 and the outer tube 1260 from the second tube position P2 to the first tube position P1. Simultaneously, the crimp cams 1274 and the trigger 1264 are moved to the first cam position C1 and the first trigger position TR1.
  • Referring to FIGS. 60 and 65, the collett closer 1268 is positioned on the outer tube 1260 proximal to the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250. As the outer tube 1260 is moved from the first tube position P1 to the second tube position P2, the collett closer 1268 is moved over the force application end portions 1254 and 1256. The collett closer 1268 includes inner tapered surfaces 1280, such that the inner tapered surfaces 1280 apply compressive forces to the force application end portions 1254 and 1256 as the collett closer 1268 is moved over the force application end portions 1254 and 1256, closing the gap 1252 there between.
  • In use, the trigger 1264 is actuated from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P1 to the second tube position P2, moving collett closer 1268 about the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250. The inner tapered surfaces 1280 of the collett closer 1268 apply compressive forces to the first and second force application end portions 1254 and 1256, closing the gap 1252 there between. The trigger 1264 is released, allowing the tube bias member 1272 to bias the outer tube 1260 from the second tube position P2 to the first tube position P1, moving the collett closer 1268 from the force application end portions 1254 and 1256.
  • Referring to FIGS. 66-68, the crimping mechanism 1206 can further include a cutting mechanism. The cutting mechanism includes a cut off cam 1284 slidingly positioned along a bottom portion of the collett holder 1208. The cut off cam 1284 includes a first end portion 1286 positioned through the outer tube ferrule 1270. A cut off cam ring 1288 is slidably positioned about the collett holder 1208, engaging the first end portion 1286 of the cut off cam 1284. The cut off cam ring 1288 is positioned proximal to the trigger 1264, such that as the trigger 1264 is actuated from the first trigger 1264 position TR1 to the second trigger 1264 position TR2, a top portion 1290 of the trigger 1264 engages the cut off cam ring 1288, sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208. A cut off bias member 1291 is interposed between the outer tube ferrule 1270 and the cut off cam ring 1288.
  • A cut off arm 1292 is connected to the collett 1242, at least partially positioned in the gap 1252 between the first and second collett arms 1248 and 1250. The cut off arm 1292 includes a cutting head portion 1294 positioned proximal to the first and second force application end portions 1254 and 1256, at least partially positioned in the gap 1252, interposed between the first and second collett arms 1248 and 1250. The cutting head portion 1294 includes a cutting edge 1296, for cutting the cable, and a lower angular surface 1298 for engagement by a second end portion 1300 of the cut off cam 1284.
  • In use, the trigger 1264 is actuation from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288, sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208. The second end portion 1300 of the cut off cam 1284 engages the angular surface 1298 of the cutting head 1294, forcing the cutting edge 1296 into the cable, cutting the cable. The trigger 1264 is released, allowing the cut off bias member 1291 to bias the cut off cam 1284 from the cutting head 1294.
  • Referring to FIG. 69, in a method of use, the cable is passed through the bone and fracture, where a first fastener secures the cable on a first side (fracture side) of the bone and a second fastener is positioned about the cable on a second side of the bone, opposite the first fastener. A bushing is positioned onto the cable to secure the second fastener against the second side of the bone.
  • The cable is inserted through the medical device 1200 along the central longitudinal axis “A”, through the collett 1242, collett holder 1208, and the cable tensioner 1216, positioning the bushing in the bushing aperture 1258 and extending the cable through the cable aperture 1224. To tension the cable, the cable tension lever 1230 is actuated from the first lever position L1 to the second lever position L2, sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T1, into the handle portion 1202 against the tension bias member 1238, to the second tensioner position T2. The cable is positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216, securing the cable to the cable tensioner 1216. The cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T2 towards the first tensioner position T1. The movement of the cable tensioner 1216 towards the first tensioner position T1 applies a tension to the cable, pressing the bushing against the second fastener. The applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240.
  • The trigger 1264 is actuated from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P1 to the second tube position P2, moving collett closer 1268 about the force application end portions 1254 and 1256 of the first and second collett arms 1248 and 1250. The inner tapered surfaces 1280 of the collett closer 1268 apply compressive forces to the first and second force application end portions 1254 and 1256, compressing the first and second force application end portions 1254 and 1256 about the bushing positioned in the bushing aperture 1258. The compressive forces crimp the bushing about the cable, securing the bushing to the cable.
  • Simultaneously, the actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288, sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208. The second end portion 1300 of the cut off cam 1284 engages the angular surface 1298 of the cutting head 1294, forcing the cutting edge 1296 into the cable, cutting the cable.
  • In another embodiment a medical device 1320 of the present invention secures a fastener against relative movement with respect to a suture, with the fastener itself being deformed. Medical device 1320 is substantially similar to medical device 1200 and like reference number shall be used to indicate like items.
  • Referring to FIGS. 70 and 71, medical device 1320 includes collett 1322. As with collett 1242, previously disclosed and illustrated, collett 1322 is affixed to the second end portion 1244 of the collett holder 1208, opposite the cable tensioner 1216. The collett 1322 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208, along the central longitudinal axis A. An end portion of the collett 1322 is bisected, forming first and second collett arms 1324 and 1326. A gap portion 1328 is provided between the first and second collett arm 1324 and 1326. Each of the first and second collett arms 1324 and 1326 includes force application end portions 1330 and 1332. The force application end portions 1330 and 1332 combine to form a fastener aperture 1334 configured to receive the fastener therein. The force application end portions 1330 and 1332 each include opposing compressive members 1336 for compressing the fastener about the suture.
  • Referring to FIGS. 70 and 72, medical device 1320 includes collett closer 1340. The collett closer 1340 is positioned on the outer tube 1260 proximal to the force application end portions 1330 and 1332 of the first and second collett arms 1324 and 1326. The collett closer 1340 includes slotted sections 1342 configured for receiving end portions of the fastener therein. As the outer tube 1260 is moved from the first tube position P1 to the second tube position P2, the collett closer is moved over the force application end portions 1330 and 1332. Similar to collett closer 1268, the collett closer 1340 includes inner tapered surfaces 1280 (See FIG. 65), such that the inner tapered surfaces 1280 apply compressive forces to the force application end portions 1330 and 1332 as the collett closer 1340 is moved over the force application end portions 1330 and 1332, closing the gap 1328 there between.
  • Referring to FIGS. 73 and 74, in a method of use suture 1360 is inserted through the bone 1362 and fracture 1364, where the suture 1360 is threaded through a fastener 1366 on a first side (fracture side) of the bone 1362. The suture 1360 is reinserted through the fracture 1364 and bone 1362, such that first and second ends 1368 and 1370 of the suture 1360 extend from the bone 1362. The first and second ends of the suture 1368 and 1370 are threaded through a fastener 1372, where the first end of the suture 1368 is threaded through a first aperture 1374 in the fastener 1372 and the second end of the suture 1370 is threaded through a second aperture 1376 in the fastener 1372.
  • Referring also to FIG. 69, the ends of the suture 1368 and 1370 are inserted through the medical device 1320 along the central longitudinal axis A, through the collett 1322, collett holder 1208, and the cable tensioner 1216, positioning the fastener 1372 in the fastener aperture 1334 and extending the ends of the suture 1368 and 1370 through the cable aperture 1224. To tension the suture 1360, the cable tension lever 1230 is actuated from the first lever position L1 to the second lever position L2, sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T1, into the handle portion 1202 against the tension bias member 1238, to the second tensioner position T2. The suture ends 1368 and 1370 are positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216, securing the suture 1360 to the cable tensioner 1216. The cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T2 towards the first tensioner position T1. The movement of the cable tensioner 1216 towards the first tensioner position T1 applies tension to the suture 1360, compressing the fastener 1372 against the bone 1362. The applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240.
  • The trigger 1264 is actuation from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P1 to the second tube position P2, moving collett closer 1340 about the force application end portions 1330 and 1332 of the first and second collett arms 1324 and 1326. The inner tapered surfaces 1280 of the collett closer 1340 apply compressive forces to the first and second force application end portions 1330 and 1332, compressing compressive members 1336 of the first and second force application end portions 1330 and 1332 into the first and second fastener apertures 1374 and 1376. The compressive forces crimp the first and second fastener apertures 1374 and 1376 about the suture ends 1368 and 1370, securing the fastener 1372 to the suture ends 1368 and 1370.
  • Simultaneously, the actuation of the trigger 1264 results in the top portion 1290 of the trigger 1264 engaging the cut off cam ring 1288, sliding the cut off cam ring 1288 and cut off cam 1284 along the collett holder 1208. The second end portion 1200 of the cut off cam 1283 engages the angular surface 1298 of the cutting head 1294, forcing the cutting edge 1296 into the suture ends 1268 and 1270, cutting the suture ends 1368 and 1370.
  • Referring to FIG. 75, similar to FIGS. 61 and 63, a collett 400 is affixed to a second end portion 1244 of the collett holder 1208, opposite the cable tensioner 1216. The collett 400 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 1208 along the central longitudinal axis A. An end portion of the collett 400 is bisected, forming first and second collett arms 402 and 404. A gap portion 406 is provided between the first and second collett arms 402 and 404. Each of the first and second collett arms 402 and 404 includes force application end portions 408 and 410. The force application end portions 408 and 410 combine to form a bushing aperture 412 configured to received the bushing therein 414. The collett 400 is made of a semi-rigid material, such that the first and second collett arms 402 and 404 can be moved from an open to a closed position, closing the gap 406 between the force application end portions 408 and 410.
  • Referring also to FIG. 75, in a method of use, suture 416 is inserted through the bone 418 and fracture 420, where the suture 416 is threaded through a fastener 422 on a first side (fracture side) of the bone 424. The suture 416 is reinserted through the fracture 420 and bone 418, such that first and second ends 426 and 428 of the suture 416 extend from the bone 418. The first and second ends of the suture 426 and 428 are threaded through a fastener 414, where the first and second ends 426 and 428 of the suture 416 is threaded through an aperture 430 in the fastener 414.
  • Referring also to FIGS. 69 and 72, the ends of the suture 426 and 428 are inserted through the medical device 1320 along the central longitudinal axis A, through the collett 400, collett holder 1208, and the cable tensioner 1216, positioning the fastener 414 in the fastener aperture 412 and extending the ends of the suture 426 and 428 through the cable aperture 1224. To tension the suture 416, the cable tension lever 1230 is actuated from the first lever position L1 to the second lever position L2, sliding the cable tensioner 1216 along the collett holder 1208 from the first tensioner position T1, into the handle portion 1202 against the tension bias member 1238, to the second tensioner position T2. The suture ends 426 and 428 are positioned through the radial groove 1226 and wrapped about the circumferential groove 1228 on the end portion 1222 of the cable tensioner 1216, securing the suture 1360 to the cable tensioner 1216. The cable tension lever 1230 is released, such that tension bias member 1238 biases the cable tensioner 1216 from the second tensioner position T2 towards the first tensioner position T1. The movement of the cable tensioner 1216 towards the first tensioner position T1 applies tension to the suture 416, compressing the fastener 414 against the bone 418. The applied tension can be selected by actuating the cable tension lever 1230 to the desired tension marking 1240.
  • The trigger 1264 is actuated from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 1264 slides the outer tube 1260 along the collett holder 1208 from the first tube position P1 to the second tube position P2, moving collett closer 1340 about the force application end portions 408 and 410 of the first and second collett arms 402 and 404. The inner tapered surfaces 1280 of the collett closer 1340 apply compressive forces to the first and second force application end portions 408 and 410. The compressive forces crimp the aperture 430 about the suture ends 426 and 428, securing the fastener 414 to the suture ends 426 and 428.
  • Referring to FIG. 79, a medical device 500 is provided for securing the bushing to the cable. The medical device 500 includes a handle portion 502 having a tensioning mechanism 504, tensioning the cable and applying a force to the bushing, and a crimping mechanism 506 for securing the bushing to the cable.
  • Referring also to FIGS. 80 and 81, the tensioning mechanism 504 includes a collett holder 508 defining a longitudinal passage along a central longitudinal axis A. The collett holder 508 is affixedly positioned through a top portion 510 of the handle portion 502. A cable tensioner 512 is slidably positioned on a first end 514 of the collett holder 508. The cable tensioner 512 defines a cable passage longitudinally aligned with the longitudinal passage of the collett holder 508. An end portion 516 of the cable tensioner 512 includes a cable aperture for threading the cable there through. A radial groove and circumferential groove 518 are provided on the end portion 516 of the cable tensioner 512, such that the cable can be wrapped about the circumferential groove 518 of the cable tensioner 512, thereby preventing relative movement between the cable and the cable tensioner 512.
  • In an exemplary embodiment, the cable tensioner 512 can include a retention bushing 520 and a tension insert 522. The tension insert 522 defines a cable passage longitudinally aligned with the longitudinal passage of the cable tensioner 512. The retention bushing 520 is positioned about a portion of the tension insert 522, where an end portion 524 is threaded into the end portion 516 of the cable tensioner 512. An opposite end portion 526 of the tension insert 522 includes a cable aperture 528 for threading the cable there through. A radial groove 530 is provided on the end portion 526 of the cable tensioner 512 and the retention bushing 520 and the tension insert 522 combine to form a circumferential groove 532, such that the cable can be wrapped about the circumferential groove 532, thereby preventing relative movement between the cable and the cable tensioner 512.
  • A cable tension lever 534 is pivotally connected to the cable tensioner 512 with a lever pin 536. The cable tension lever 534 is adjustably positioned on the handle portion 502 with body pins 538, wherein a body pin 538 is mirrorly positioned on opposite sides of the handle portion 502. The body pins 538 are engaged in the cable tension lever 536 arcuate lever slots 540, such that cable tension lever 534 and cable tensioner 512 are movably connected to the handle portion 502.
  • In use, as the cable tension lever 534 is pivoted about the cable tensioner 512 from a first lever position L1 to a second lever position L2, the body pins 538 traverse the arcuate lever slots 540, resulting in a translation of the cable tensioner 512 along the first end 514 of the collett holder 508 from a first tensioner position T1 to a second tensioner position T2. A tension bias member 542 is interposed between the cable tensioner 512 and the handle portion 502, biasing the cable tensioner 512 into the first tensioner position T1.
  • Referring to FIGS. 80 and 82, a collett 544 is affixed to a second end portion 546 of the collett holder 508, opposite the cable tensioner 512. The collett 544 defines a collett passage longitudinally aligned with the longitudinal passage of the collett holder 508 along the central longitudinal axis A. An end portion of the collett 544 is bisected, forming first and second collett arms 548 and 550. A gap portion 552 is provided between the first and second collett arms 548 and 550. Each of the first and second collett arms 548 and 550 includes force application end portions 554 and 556. The force application end portions 554 and 556 combine to form a bushing aperture 558 configured to received the bushing therein. The collett 544 is made of a semi-rigid material, such that the first and second collett arms 548 and 550 can be moved from an open to a closed position, closing the gap 552 between the force application end portions 554 and 556.
  • In use, the tensioning mechanism 504 is used to tension the cable. The cable can include single or multiple filaments. The cable is inserted through the medical device 500 along the central longitudinal axis A, through the collett 544, collett holder 508, and the cable tensioner 512, positioning the bushing in the bushing aperture 558 and extending the cable through the cable aperture 530. To tension the cable, the cable tension lever 354 is actuated from the first lever position L1 to the second lever position L2, sliding the cable tensioner 512 along the collett holder 508 from the first tensioner position T1, into the handle portion 502 against the tension bias member 542, to the second tensioner position T2. The cable is positioned through the radial groove 528 and wrapped about the circumferential groove 532 on the between the retention bushing 520 and the tension insert 522, securing the cable to the cable tensioner 512. The cable tension lever 534 is released, such that tension bias member 542 biases the cable tensioner 512 from the second tensioner position T2 towards the first tensioner position T1. The movement of the cable tensioner 512 towards the first tensioner position T1 applies a tension to the cable, forcing the bushing into the second fastener. The applied tension can be selected by actuating the cable tension lever 534 to the desired tension.
  • Referring to FIGS. 79 and 83, the crimping mechanism 506 includes an outer tube 560 slidingly positioned over the collett holder 508. The outer tube 560 includes a first end 562 operably connected to a trigger 564 and a second end 566 connected to a collett closer 568. The trigger 1264 is pivotally mounted in the handle portion 502, such that the trigger 564 can be actuated from a first trigger position TR1 to a second trigger position TR2. A locking mechanism 570 prevents the trigger 564 from being actuated. The locking mechanism 570 is disengaged by rotating it away from the handle, where the locking mechanism is secured to the trigger with the locking pawl 572. (See also FIG. 80).
  • The operable connection between the first end of the outer tube 562 and the trigger 564 includes an outer tube ferrule 574 slidably positioned about the collett holder 408 and affixed to the first end of the outer tube 562. A tube bias member 576 is interposed between the handle portion 502 and the outer tube ferrule 574, such that the tube bias member 576 biases the outer tube ferrule 574 and the outer tube 560 into a first tube position P1. A tube washer 578 can be provided between the tube ferrule 574 and the bias member 576.
  • An actuation of the trigger 564 from a first trigger position TR1 to a second trigger position TR2 translates the outer tube ferrule 574 along the collett holder 1208 from the first tube position P1 to a second tube position P2. In the second tube position P2 a tube pawl 580 engages the outer tube ferrule 574, hold the outer tube ferrule in the second tub position P2.
  • Referring to FIGS. 79 and 85, the collett closer 568 is positioned on the outer tube 560 proximal to the force application end portions 554 and 556 of the first and second collett arms 548 and 550. As the outer tube 560 is moved from the first tube position P1 to the second tube position P2, the collett closer 568 is moved over the force application end portions 554 and 556. The collett closer 568 includes inner tapered surfaces 582, such that the inner tapered surfaces 580 apply compressive forces to the force application end portions 554 and 556 as the collett closer 568 is moved over the force application end portions 554 and 556, closing the gap 552 there between.
  • In use, the trigger 564 is actuated from the first trigger position TR1 to the second trigger position TR2. The actuation of the trigger 564 slides the outer tube 560 along the collett holder 508 from the first tube position P1 to the second tube position P2, moving collett closer 568 about the force application end portions 554 and 556 of the first and second collett arms 548 and 550. The inner tapered surfaces 580 of the collett closer 568 apply compressive forces to the first and second force application end portions 554 and 556, closing the gap 552 there between.
  • Referring to FIGS. 84-86, the crimping mechanism 506 can further include a cutting mechanism. The cutting mechanism includes a pair of cut off cams 582 and 584 positioned in the collett gap 552. A pair of wedges 586 and 588 are slidingly positioned along and on opposite sides of the collett 550 and the collett holder 508. Each of the wedges 586 and 588 include tapered ends 590 and 592 positioned proximal to the cut off arms, such that when the wedges are moved from a first wedge position W1 to a second wedge position W2, the tapered ends 590 and 592 compress the cut off cams 582 and 584 together, cutting the cable.
  • The handle 502 further includes a wedge pusher 594 slidingly positioned about the collett holder 508, adjacent to second ends 594 and 596 of wedges 586 and 588. The wedge pusher 594 is slidable from a first position to a second position, such that the wedges 586 and 588 are moved from the first wedge position W1 to the second wedge position W2. A rocker 596 is pivotally connected to the handle 502, such that an actuation of the rocker 596 from a first rocker position R1 to a second rocker position R2, slides the wedge pusher 594 from the first position to the second position, moving wedges 586 and 588 from the first wedge position W1 to the second wedge position W2
  • Referring to FIGS. 84 and 87, the locking mechanism 570 includes a rocker kicker 598 pivotally affixed therein. The rocker kicker 598 is biasedly connected to the locking mechanism 570, being held in a closed position by a pin 600. When the trigger 564 is actuated from the first trigger position TR1 to the second trigger position TR2, the release 602 engages the pin 600, releasing the rocker kicker 590.
  • The trigger 564 is released, allowing the trigger 564 to move from the second trigger position TR2 to the first trigger position TR1. To actuate the cutting mechanism, the trigger is again moved from the first trigger position TR1 to the second trigger position TR2, such that the rocker kicker 598 engages the rocker 596, pivoting the rocker 596 from the first rocker position R1 to the second rocker position. The rocker 596 slides the wedge pusher 594 from the first position to the second position, moving wedges 586 and 588 from the first wedge position W1 to the second wedge position W2, such that, the tapered ends 590 and 592 compress the cut off cams 582 and 584 together, cutting the cable. The trigger 564 can then be released, releasing the crimped fastener.
  • It is also contemplated that the system and medical device of the present invention may be disposable or may be sterilized after use and reused.
  • The methods and devices of the present invention may be used in conjunction with any surgical procedure of the body. The repair, reconstruction, augmentation, and securing of tissue or an implant may be performed in connection with surgery of a joint, bone, muscle, ligament, tendon, cartilage, capsule, organ, skin, nerve, vessel, or other body part. For example, tissue may be repaired, reconstructed, augmented, and secured following intervertebral disc surgery, knee surgery, hip surgery, organ transplant surgery, bariatric surgery, spinal surgery, anterior cruciate ligament (ACL) surgery, tendon-ligament surgery, rotator cuff surgery, capsule repair surgery, fractured bone surgery, pelvic fracture surgery, avulsion fragment surgery, hernia repair surgery, and surgery of an intrasubstance ligament tear, annulus fibrosis, fascia lata, flexor tendons, etc. In one particular application, an anastomosis is performed over a balloon and the methods and devices of the present invention are used to repair the vessel.
  • Also, tissue may be repaired after an implant has been inserted within the body. Such implant insertion procedures include, but are not limited to, partial or total knee replacement surgery, hip replacement surgery, bone fixation surgery, etc. The implant may be an organ, partial organ grafts, tissue graft material (autogenic, allogenic, xenogenic, or synthetic), collagen, a malleable implant like a sponge, mesh, bag/sac/pouch, collagen, or gelatin, or a rigid implant made of metal, polymer, composite, or ceramic. Other implants include biodegradable plates, porcine or bovine patches, metallic fasteners, compliant bearings for one or more compartments of the knee, nucleus pulposus prosthetic, stent, tissue graft, tissue scaffold, biodegradable collagen scaffold, and polymeric or other biocompatible scaffold. The scaffold may include fetal cells, stem cells, embryonal cells, enzymes, and proteins.
  • The present invention further provides flexible and rigid fixation of tissue. Both rigid and flexible fixation of tissue and/or an implant provides compression to enhance the healing process of the tissue. A fractured bone, for example, requires the bone to be realigned and rigidly stabilized over a period time for proper healing. Also, bones may be flexibly secured to provide flexible stabilization between two or more bones. Soft tissue, like muscles, ligaments, tendons, skin, etc., may be flexibly or rigidly fastened for proper healing. Flexible fixation and compression of tissue may function as a temporary strut to allow motion as the tissue heals. Furthermore, joints which include hard and soft tissue may require both rigid and flexible fixation to enhance healing and stabilize the range of motion of the joint. Flexible fixation and compression of tissue near a joint may provide motion in one or more desired planes. The fasteners described herein and incorporated by reference provide for both rigid and flexible fixation.
  • It is contemplated that the devices and methods of the present invention be applied using minimally invasive incisions and techniques to preserve muscles, tendons, ligaments, bones, nerves, and blood vessels. A small incision(s) may be made adjacent the damaged tissue area to be repaired, and a tube, delivery catheter, sheath, cannula, or expandable cannula may be used to perform the methods of the present invention. U.S. Pat. No. 5,320,611 entitled, Expandable Cannula Having Longitudinal Wire and Method of Use, discloses cannulas for surgical and medical use expandable along their entire lengths. The cannulas are inserted through tissue when in an unexpanded condition and with a small diameter. The cannulas are then expanded radially outwardly to give a full-size instrument passage. Expansion of the cannulas occurs against the viscoelastic resistance of the surrounding tissue. The expandable cannulas do not require a full depth incision, or at most require only a needle-size entrance opening.
  • Also, U.S. Pat. Nos. 5,674,240; 5,961,499; and 6,338,730 disclose cannulas for surgical and medical use expandable along their entire lengths. The cannula has a pointed end portion and includes wires having cores which are enclosed by jackets. The jackets are integrally formed as one piece with a sheath of the cannula. The cannula may be expanded by inserting members or by fluid pressure. The cannula is advantageously utilized to expand a vessel, such as a blood vessel. An expandable chamber may be provided at the distal end of the cannula. The above mentioned patents are hereby incorporated by reference.
  • In addition to using a cannula with the methods of the present invention, an introducer may be utilized to position fasteners at a specific location within the body. U.S. Pat. No. 5,948,002 entitled Apparatus and Method for Use in Positioning a Suture Anchor, discloses devices for controlling the placement depth of a fastener. Also, U.S. Patent Application Publication No. 2003/0181800 discloses methods of securing body tissue with a robotic mechanism. The above-mentioned patent and application are hereby incorporated by reference. Another introducer or cannula which may be used with the present invention is the VersaStep® System by Tyco® Healthcare.
  • The present invention may also be utilized with minimally invasive surgery techniques disclosed in U.S. Patent Application Publication No. 2003/0181800 and U.S. Pat. Nos. 6,702,821 and 6,770,078. These patent documents disclose, inter alia, apparatus and methods for minimally invasive joint replacement. The femoral, tibial, and/or patellar components of a knee replacement may be fastened or locked to each other and to adjacent tissue using fasteners disclosed herein and incorporated by reference. Furthermore, the methods and devices of the present invention may be utilized for repairing, reconstructing, augmenting, and securing tissue or implants during and “on the way out” of a knee replacement procedure. For example, the anterior cruciate ligament and other ligaments may be repaired or reconstructed; quadriceps mechanisms and other muscles may be repaired. The patent documents mentioned above are hereby incorporated by reference.
  • In addition, intramedullary fracture fixation and comminuted fracture fixation may be achieved with the devices and methods of the present invention. For example, a plate or rod may be positioned within or against the fractured bone. A fastener may be driven through or about the bone and locked onto the plate, rod, or another fastener.
  • It is further contemplated that the present invention may be used in conjunction with the devices and methods disclosed in U.S. Pat. Nos. 5,329,846 entitled, Tissue Press and System, and 5,269,785 entitled, Apparatus and Method for Tissue Removal. For example, an implant secured within the body using the present invention may include tissue harvested, configured, and implanted as described in the patents. The above-mentioned patents are hereby incorporated by reference.
  • Furthermore, it is contemplated that the methods of the present invention may be performed under indirect visualization, such as endoscopic guidance, computer assisted navigation, magnetic resonance imaging, CT scan, ultrasound, fluoroscopy, X-ray, or other suitable visualization technique. The implants, fasteners, fastener assemblies, and sutures of the present invention may include a radiopaque material for enhancing indirect visualization. The use of these visualization means along with minimally invasive surgery techniques permits physicians to accurately and rapidly repair, reconstruct, augment, and secure tissue or an implant within the body. U.S. Pat. Nos. 5,329,924; 5,349,956; and 5,542,423 disclose apparatus and methods for use in medical imaging. Also, the present invention may be performed using robotics, such as haptic arms or similar apparatus. The above-mentioned patents are hereby incorporated by reference.
  • It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention. All references cited herein are expressly incorporated by reference in their entirety.
  • While exemplary embodiments have been set forth above for the purpose of disclosure, modifications of the disclosed embodiments as well as other embodiments thereof may occur to those skilled in the art. Accordingly, it is to be understood that the disclosure is not limited to the above precise embodiments and that changes may be made without departing from the scope. Likewise, it is to be understood that it is not necessary to meet any or all of the stated advantages or objects disclosed herein to fall within the scope of the disclosure, since inherent and/or unforeseen advantages may exist even though they may not have been explicitly discussed herein.

Claims (125)

1. A method for stabilizing a spinal anatomical structure, comprising:
introducing, into a body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end;
providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure; and
securing the fastener with respect to the spinal anatomical structure.
2. The method of claim 1, wherein the fastener is secured with respect to the spinal anatomical structure utilizing at least one flexible line.
3. The method of claim 2, wherein the at least one flexible line extends from the fastener, through at least a portion of the spinal anatomical structure to a separate securing point within the body.
4. The method of claim 3, further comprising securing the at least one flexible line at the separate securing point by a second fastener.
5. The method of claim 4, wherein the step of securing the at least one flexible line at the separate securing point by the second fastener comprises crimping the second fastener to the flexible line.
6. The method of claim 5, wherein the crimping step comprises introducing a crimping mechanism extending from an elongate rod of a crimping tool through an incision in the body and adjacent to the second fastener.
7. The method of claim 3, wherein the at least one flexible line comprises a suture.
8. The method of claim 3, wherein the at least one flexible line comprises a cable.
9. The method of claim 2, wherein the flexible line is provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure, and the method includes a step of passing the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body.
10. The method of claim 9, wherein the passing step is performed utilizing a gripper at a leading end of an elongate gripper rod which pulls the flexible line from the fastener and at least through the portion of the spinal anatomical structure to the separate securing point within the body.
11. The method of claim 10, wherein the elongate fastener placement rod and elongate gripper rod extend from a hand-held guidance and positioning device.
12. The method of claim 11, further comprising forming a hole through the portion of the spinal anatomical structure prior to the pulling step.
13. The method of claim 12, wherein the hole forming step is performed by an elongate drill rod extending from the hand-held guidance and positioning device.
14. The method of claim 13, wherein the elongate gripper rod and elongate drill rod are guided by a guide tube extending from the hand-held guidance and positioning device.
15. The method of claim 10, wherein the elongate gripper rod extends from the hand-held guidance and positioning device along an axis that runs adjacent to or through the leading end of the curved segment of the fastener placement rod.
16. The method of claim 9, further comprising forming a hole through the portion of the spinal anatomical structure prior to the passing step.
17. The method of claim 2, wherein
the spinal anatomical structure is a first spinal anatomical structure;
the flexible line is provided attached to the fastener approximate to, adjacent to or on the spinal anatomical structure; and
the method includes a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the separate securing point within the body, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other.
18. The method of claim 17, wherein the first spinal anatomical structure is an intervertebral disc and the second spinal anatomical structure is a vertebra.
19. The method of claim 17, wherein the first spinal anatomical structure is a first vertebra and the second spinal anatomical structure is a second vertebra.
20. The method of claim 17, wherein the first spinal anatomical structure is a vertebra and the second spinal anatomical structure is an intevertebral disc.
21. The method of claim 17, wherein the first spinal anatomical structure is a first spinous process and the second spinal anatomical structure is a second spinous process.
22. The method of claim 17, wherein the first spinal anatomical structure is a first ligament segment and the second spinal anatomical structure is a second ligament segment.
23. The method of claim 22, wherein the first and second ligament segments are torn or severed segments of the same ligament.
24. The method of claim 17, wherein the first spinal anatomical structure is a ligament and the second spinal anatomical structure is a vertebra.
25. The method of claim 17, wherein the first spinal anatomical structure is a ligament and the second spinal anatomical structure is an intevertebral disc.
26. The method of claim 17, wherein the first spinal anatomical structure is a vertebra and the second spinal anatomical structure is a ligament.
27. The method of claim 17, wherein the first spinal anatomical structure is an intervertebral disc and the second spinal anatomical structure is a ligament.
28. The method of claim 17, wherein the method includes a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other.
29. The method of claim 28, wherein at least two of the first, second and third spinal anatomical structures comprise spinous processes.
30. The method of claim 28, wherein at least two of the first, second and third spinal anatomical structures comprise facets.
31. The method of claim 17, wherein the drawing step further comprises passing the flexible line through an implant.
32. The method of claim 31, wherein the implant comprises a graft.
33. The method of claim 31, wherein the implant comprises a disc implant.
34. The method of claim 31, wherein the implant comprises a scaffold.
35. The method of claim 17, wherein the first spinal anatomical structure is a spinous process and the second spinal anatomical structure is at least one of a pedicle and bone of a facet joint.
36. The method of claim 17, wherein the first spinal anatomical structure is at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure is a spinous process.
37. The method of claim 17, wherein the first spinal anatomical structure is a first side of a cervical spine and the second anatomical structure is a second side of the cervical spine.
38. The method of claim 17, wherein the method further comprises passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures.
39. The method of claim 17, wherein the first spinal anatomical structure is a first facet and the second spinal anatomical structure is a second facet.
40. The method of claim 3, further comprising a step of tensioning at least a portion of the flexible line extending between the fastener and the separate securing point.
41. The method of claim 3, wherein the spinal anatomical structure comprises annulus fibrosus.
42. The method of claim 3, wherein the spinal anatomical structure comprises nucleus pulposus.
43. The method of claim 3, wherein the flexible line extends through an intervertebral disc and through an adjacent vertebra.
44. The method of claim 3, wherein the flexible line extends through adjacent vertebrae and an intervertebral disc between the adjacent vertebrae.
45. The method of claim 3, wherein the flexible line extends through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae.
46. The method of claim 3, wherein the flexible line extends through an upper spinous process and through a lower spinous process.
47. The method of claim 3, wherein the flexible line extends through a vertebra and to or though a disc implant.
48. The method of claim 3, wherein the flexible line extends through the spinal anatomical structure to or through a graft.
49. The method of claim 3, wherein the flexible line extends through the spinal anatomical structure and through or to a disc implant or a vertebral implant.
50. The method of claim 49, wherein the spinal anatomical structure comprises annulus fibrosus.
51. The method of claim 49, wherein the spinal anatomical structure comprises a vertebra.
52. The method of claim 49, wherein the spinal anatomical structure comprises a facet.
53. The method of claim 3, wherein the flexible line extends through two severed portions of a spinal ligament.
54. The method of claim 3, wherein the flexible line extends through two portions of a spinal ligament.
55. The method of claim 54, wherein the flexible line further extends through a vertebra adjacent to at least one of the two portions of the spinal ligament.
56. The method of claim 54, wherein the flexible line further extends through an intervertebral disc.
57. The method of claim 3, wherein the flexible line extends to or through a stabilization rod or plate.
58. The method of claim 57, wherein the spinal anatomical structure is a spinous process.
59. The method of claim 3, wherein the flexible line extends through at least one portion of a spinal ligament and through or to a ligament graft.
60. The method of claim 1, wherein at least a portion of the elongate fastener placement rod is hollow.
61. The method of claim 60, wherein the portion of the elongate fastener placement rod that is hollow opens onto the leading end of the curved segment of the fastener placement rod.
62. The method of claim 61, wherein the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure, includes a step of sending the fastener through the portion of the elongate faster placement rod that is hollow to the leading end of the curved segment.
63. The method of claim 62, wherein sending step further comprises sending a flexible line with the fastener through the portion of the elongate fastener placement rod that is hollow to the leading end of the curved segment, wherein the fastener is secured in place utilizing at least a portion of flexible line.
64. The method of claim 1, wherein the step of providing, at the leading end of the curved segment of the fastener placement rod, a fastener approximate to, adjacent to or on the spinal anatomical structure, is preceded by a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod.
65. The method of claim 1, further comprising a step of engaging the fastener with the leading end of the curved segment of the fastener placement rod.
66. The method of claim 65, wherein the engaging step includes a step of disposing at least a portion of the fastener within the leading end of the curved segment of the fastener placement rod.
67. The method of claim 65, further comprising a step of disengaging the fastener from the leading end of the curved segment of the fastener placement rod while the fastener is approximate to, adjacent to or on the spinal anatomical structure.
68. The method of claim 1, wherein the introducing step comprises introducing the curved segment of an elongate, fastener placement rod through an incision in the skin as part of a minimally invasive procedure.
69. The method of claim 1, wherein the spinal anatomical structure comprises at least one of bone, vertebral body, nucleus pulposus, muscle, tendon and cartilage.
70. The method of claim 1, wherein the spinal anatomical structure comprises at least one bone taken from a group consisting of: transverse process, pedicle, facet, spinous process, posterior arch, odontoid process, posterior tubercle, lateral articular process, uncinate process, anterior tubercle, carotid tubercle, odontoid process, lamina and vertebral body.
71. The method of claim 1, wherein the spinal anatomical structure comprises at least one ligament taken from a group consisting of: anterior longitudinal ligament, posterior longitudinal ligament, interspinous ligament, supraspinous ligament, ligamentum flavum, intertransverse ligament, facet capsulary ligament, ligamentum nuchae, ligament of the sacrum and ligament of the coccyx spine.
72. A method for stabilizing a spinal anatomical structure, comprising:
connecting a flexible line and a fastener;
introducing, through an incision in the body, a curved segment of an elongate, fastener placement rod approximate to, adjacent to or on a spinal anatomical structure, the curved segment having a leading end;
providing, at the leading end of the curved segment of the fastener placement rod, the fastener and attached flexible line at a fastener placement point that is approximate to, adjacent to or on the spinal anatomical structure, the providing step including passing the fastener and attached flexible line through the curved segment of the elongate fastener placement rod to the leading end;
passing the connected flexible line from approximate the fastener placement point through at least a portion of the spinal anatomical structure to a securing point;
tensioning the flexible line between the fastener placement point and the securing point; and
securing the flexible line at the securing point.
73. The method of claim 72 wherein the step of securing the flexible line at the securing point comprises a step of tying the flexible line.
74. The method of claim 72 wherein the step of securing the flexible line at the securing point comprises a step of fastening the flexible line at the securing point using another fastener.
75. The method of claim 74 wherein the step of fastening the flexible line at the securing point using another fastener comprises crimping the other fastener to the flexible line.
76. The method of claim 72 wherein the flexible line comprises a suture.
77. The method of claim 72 wherein the flexible line comprises a cable.
78. The method of claim 72 wherein the passing step is performed utilizing a gripper at a leading end of an elongate gripper rod to pull the connected flexible line from approximate the fastener placement point through at least the portion of the spinal anatomical structure to the securing point.
79. The method of claim 78 wherein the elongate fastener placement rod and the elongate gripper rod extend from a hand-held guidance and positioning device.
80. The method of claim 79 further comprising forming a hole through the portion of the spinal anatomical structure prior to the pulling step.
81. The method of claim 80 wherein the hole forming step is performed by an elongate drill rod extending from the hand-held guidance and positioning device.
82. The method of claim 81 wherein the elongate gripper rod and the elongate drill rod are guided by a guide tube extending from the hand-held guidance and positioning device.
83. The method of claim 72, wherein the spinal anatomical structure comprises annulus fibrosus.
84. The method of claim 72, wherein the flexible line extends through an intervertebral disc and through an adjacent vertebra.
85. The method of claim 72, wherein the flexible line extends through adjacent vertebrae and an intervertebral disc between the adjacent vertebra.
86. The method of claim 72, wherein the flexible line extends through two vertebrae and a disc positioned between but not adjacent to each of the two vertebrae.
87. The method of claim 72, wherein the flexible line extends through an upper spinous process and through a lower spinous process.
88. The method of claim 72, wherein the flexible line extends through a vertebra and to or though a disc implant.
89. The method of claim 72, wherein the flexible line extends through the spinal anatomical structure to or through a graft.
90. The method of claim 72, wherein the flexible line extends through the spinal anatomical structure and through or to a disc implant or a vertebral implant.
91. The method of claim 90, wherein the spinal anatomical structure comprises annulus fibrosus.
92. The method of claim 90, wherein the spinal anatomical structure comprises a vertebra.
93. The method of claim 90, wherein the spinal anatomical structure comprises a facet.
94. The method of claim 72, wherein the flexible line extends through two severed portions of a spinal ligament.
95. The method of claim 72, wherein the flexible line extends through two portions of a spinal ligament.
96. The method of claim 95, wherein the flexible line further extends through a vertebra adjacent to at least one of the two portions of the spinal ligament.
97. The method of claim 95, wherein the flexible line further extends through an intervertebral disc.
98. The method of claim 72, wherein the flexible line extends to or through a stabilization rod or plate.
99. The method of claim 98, wherein the spinal anatomical structure is a spinous process.
100. The method of claim 72, wherein the flexible line extends through at least one portion of a spinal ligament and through or to a ligament graft.
101. The method of claim 72, wherein
the spinal anatomical structure is a first spinal anatomical structure; and
the method comprises a step of passing the flexible line from approximate the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure to the securing point, thereby stabilizing at least the first and second spinal anatomical structures with respect to each other.
102. The method of claim 101, wherein the first spinal anatomical structure is an intervertebral disc and the second spinal anatomical structure is a vertebra.
103. The method of claim 101, wherein the first spinal anatomical structure is a first vertebra and the second spinal anatomical structure is a second vertebra.
104. The method of claim 101, wherein the first spinal anatomical structure is a vertebra and the second spinal anatomical structure is an intevertebral disc.
105. The method of claim 101, wherein the first spinal anatomical structure is a first spinous process and the second spinal anatomical structure is a second spinous process.
106. The method of claim 101, wherein the first spinal anatomical structure is a first ligament segment and the second spinal anatomical structure is a second ligament segment.
107. The method of claim 106, wherein the first and second ligament segments are torn or severed segments of the same ligament.
108. The method of claim 101, wherein the first spinal anatomical structure is a ligament and the second spinal anatomical structure is a vertebra.
109. The method of claim 101, wherein the first spinal anatomical structure is a ligament and the second spinal anatomical structure is an intevertebral disc.
110. The method of claim 101, wherein the first spinal anatomical structure is a vertebra and the second spinal anatomical structure is a ligament.
111. The method of claim 101, wherein the first spinal anatomical structure is an intervertebral disc and the second spinal anatomical structure is a ligament.
112. The method of claim 101, wherein the method includes a step of passing the flexible line from the fastener and at least through the portion of the first spinal anatomical structure, through at least a portion of a second anatomical structure, and through at least a portion of a third anatomical structure to the separate securing point within the body, thereby stabilizing at least the first, second and third spinal anatomical structures with respect to each other.
113. The method of claim 112, wherein at least two of the first, second and third spinal anatomical structures comprise spinous processes.
114. The method of claim 112, wherein at least two of the first, second and third spinal anatomical structures comprise facets.
115. The method of claim 101, wherein the passing step further comprises passing the flexible line through an implant.
116. The method of claim 115, wherein the implant comprises a graft.
117. The method of claim 115, wherein the implant comprises a disc implant.
118. The method of claim 115, wherein the implant comprises a scaffold.
119. The method of claim 101, wherein the first spinal anatomical structure is a spinous process and the second spinal anatomical structure is at least one of a pedicle and bone of a facet joint.
120. The method of claim 101, wherein the first spinal anatomical structure is at least one of a pedicle and bone of a facet joint and the second spinal anatomical structure is a spinous process.
121. The method of claim 101, wherein the first spinal anatomical structure is a first side of a cervical spine and the second anatomical structure is a second side of the cervical spine.
122. The method of claim 101, wherein the method further comprises passing the flexible line through a tubular implant positioned between the first and second spinal anatomical structures.
123. The method of claim 101, wherein the first spinal anatomical structure is a first facet and the second spinal anatomical structure is a second facet.
124. A method for stabilizing a spinal anatomical structure, comprising:
a step for introducing a fastener approximate to, adjacent to or on a spinal anatomical structure using a curved end of an introducer means;
a step for passing a flexible line attached to the fastener through at least a portion of the spinal anatomical structure to a securing point; and
a step for securing the flexible line at the securing point.
125. The method of claim 124 further comprising a step for tensioning the flexible line between the fastener and the securing point.
US12/576,992 2004-10-26 2009-10-09 Stabilizing a spinal anatomical structure Abandoned US20100106194A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
US11/202,294 US9463012B2 (en) 2004-10-26 2005-10-05 Apparatus for guiding and positioning an implant
US11/258,795 US20060089646A1 (en) 2004-10-26 2005-10-26 Devices and methods for stabilizing tissue and implants
US11/358,311 US9173647B2 (en) 2004-10-26 2006-02-21 Tissue fixation system
US12/576,992 US20100106194A1 (en) 2004-10-26 2009-10-09 Stabilizing a spinal anatomical structure
US12/872,140 US10813764B2 (en) 2004-10-26 2010-08-31 Expandable introducer system and methods
PCT/US2010/052018 WO2011044484A1 (en) 2009-10-09 2010-10-08 Stabilizing a spinal anatomical structure
US13/871,892 US9814453B2 (en) 2004-10-26 2013-04-26 Deformable fastener system
US13/873,389 US9867706B2 (en) 2004-10-26 2013-04-30 Tissue fastening system
US14/032,969 US9226828B2 (en) 2004-10-26 2013-09-20 Devices and methods for stabilizing tissue and implants
US14/076,818 US20140066959A1 (en) 2004-10-26 2013-11-11 Devices and methods for stabilizing tissue and implants
US14/866,001 US9980761B2 (en) 2004-10-26 2015-09-25 Tissue fixation system and method
US15/163,425 US10238378B2 (en) 2004-10-26 2016-05-24 Tissue fixation system and method
US15/726,503 US10376259B2 (en) 2005-10-05 2017-10-06 Deformable fastener system
US15/989,806 US11013542B2 (en) 2004-10-26 2018-05-25 Tissue fixation system and method
US16/244,773 US20190142411A1 (en) 2004-10-26 2019-01-10 Tissue fixation system and method
US16/510,484 US10441269B1 (en) 2005-10-05 2019-07-12 Deformable fastener system
US16/601,338 US11219446B2 (en) 2005-10-05 2019-10-14 Deformable fastener system
US16/833,326 US20200222041A1 (en) 2005-10-05 2020-03-27 Deformable fastener system
US17/240,949 US20220079640A1 (en) 2005-02-22 2021-04-26 Tissue fixation system and method
US17/452,556 US20220160345A1 (en) 2004-10-26 2021-10-27 Tissue fixation system and method
US17/933,274 US20230110881A1 (en) 2004-10-26 2022-09-19 Devices and methods for stabilizing tissue and implants
US18/495,593 US20240050083A1 (en) 2004-10-26 2023-10-26 Devices and methods for stabilizing tissue and implants

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US62209504P 2004-10-26 2004-10-26
US65514005P 2005-02-22 2005-02-22
US11/202,294 US9463012B2 (en) 2004-10-26 2005-10-05 Apparatus for guiding and positioning an implant
US11/258,795 US20060089646A1 (en) 2004-10-26 2005-10-26 Devices and methods for stabilizing tissue and implants
US11/358,311 US9173647B2 (en) 2004-10-26 2006-02-21 Tissue fixation system
US12/576,992 US20100106194A1 (en) 2004-10-26 2009-10-09 Stabilizing a spinal anatomical structure

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US11/202,294 Continuation US9463012B2 (en) 2004-10-26 2005-10-05 Apparatus for guiding and positioning an implant
US11/258,795 Continuation-In-Part US20060089646A1 (en) 2004-10-26 2005-10-26 Devices and methods for stabilizing tissue and implants
US11/358,311 Continuation-In-Part US9173647B2 (en) 2004-10-26 2006-02-21 Tissue fixation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/163,425 Continuation US10238378B2 (en) 2004-10-26 2016-05-24 Tissue fixation system and method

Publications (1)

Publication Number Publication Date
US20100106194A1 true US20100106194A1 (en) 2010-04-29

Family

ID=43857172

Family Applications (13)

Application Number Title Priority Date Filing Date
US11/202,294 Active 2028-05-17 US9463012B2 (en) 2004-10-26 2005-10-05 Apparatus for guiding and positioning an implant
US12/576,992 Abandoned US20100106194A1 (en) 2004-10-26 2009-10-09 Stabilizing a spinal anatomical structure
US13/871,892 Active US9814453B2 (en) 2004-10-26 2013-04-26 Deformable fastener system
US15/163,425 Active 2025-12-15 US10238378B2 (en) 2004-10-26 2016-05-24 Tissue fixation system and method
US15/726,503 Active US10376259B2 (en) 2005-10-05 2017-10-06 Deformable fastener system
US16/244,773 Abandoned US20190142411A1 (en) 2004-10-26 2019-01-10 Tissue fixation system and method
US16/510,484 Active US10441269B1 (en) 2005-10-05 2019-07-12 Deformable fastener system
US16/601,338 Active 2026-06-23 US11219446B2 (en) 2005-10-05 2019-10-14 Deformable fastener system
US16/833,326 Abandoned US20200222041A1 (en) 2005-10-05 2020-03-27 Deformable fastener system
US17/240,949 Pending US20220079640A1 (en) 2005-02-22 2021-04-26 Tissue fixation system and method
US17/452,556 Pending US20220160345A1 (en) 2004-10-26 2021-10-27 Tissue fixation system and method
US17/933,274 Pending US20230110881A1 (en) 2004-10-26 2022-09-19 Devices and methods for stabilizing tissue and implants
US18/495,593 Pending US20240050083A1 (en) 2004-10-26 2023-10-26 Devices and methods for stabilizing tissue and implants

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/202,294 Active 2028-05-17 US9463012B2 (en) 2004-10-26 2005-10-05 Apparatus for guiding and positioning an implant

Family Applications After (11)

Application Number Title Priority Date Filing Date
US13/871,892 Active US9814453B2 (en) 2004-10-26 2013-04-26 Deformable fastener system
US15/163,425 Active 2025-12-15 US10238378B2 (en) 2004-10-26 2016-05-24 Tissue fixation system and method
US15/726,503 Active US10376259B2 (en) 2005-10-05 2017-10-06 Deformable fastener system
US16/244,773 Abandoned US20190142411A1 (en) 2004-10-26 2019-01-10 Tissue fixation system and method
US16/510,484 Active US10441269B1 (en) 2005-10-05 2019-07-12 Deformable fastener system
US16/601,338 Active 2026-06-23 US11219446B2 (en) 2005-10-05 2019-10-14 Deformable fastener system
US16/833,326 Abandoned US20200222041A1 (en) 2005-10-05 2020-03-27 Deformable fastener system
US17/240,949 Pending US20220079640A1 (en) 2005-02-22 2021-04-26 Tissue fixation system and method
US17/452,556 Pending US20220160345A1 (en) 2004-10-26 2021-10-27 Tissue fixation system and method
US17/933,274 Pending US20230110881A1 (en) 2004-10-26 2022-09-19 Devices and methods for stabilizing tissue and implants
US18/495,593 Pending US20240050083A1 (en) 2004-10-26 2023-10-26 Devices and methods for stabilizing tissue and implants

Country Status (2)

Country Link
US (13) US9463012B2 (en)
WO (1) WO2011044484A1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090259261A1 (en) * 2004-08-09 2009-10-15 Mark A Reiley Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US20100292738A1 (en) * 2004-08-09 2010-11-18 Inbone Technologies, Inc. Systems and methods for the fixation or fusion of bone
US20110087296A1 (en) * 2004-08-09 2011-04-14 Si-Bone, Inc. Systems and methods for the fixation of fusion of bone using compressive implants
US20110118841A1 (en) * 2004-08-09 2011-05-19 Si-Bone, Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US20110118796A1 (en) * 2004-08-09 2011-05-19 Reiley Mark A Systems and methods for the fixation or fusion of bone
US20110125268A1 (en) * 2004-08-09 2011-05-26 Si-Bone, Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US20120136394A1 (en) * 2008-12-17 2012-05-31 Lanx, Inc. Modular vertebral stabilizer
US20120253339A1 (en) * 2011-03-31 2012-10-04 Tyco Healthcare Group Lp Radio frequency-based surgical implant fixation apparatus
US20120273548A1 (en) * 2011-04-27 2012-11-01 Tyco Healthcare Group Lp Device for monitoring physiological parameters in vivo
WO2013027210A1 (en) * 2011-08-24 2013-02-28 Mininvasive Ltd. Circular bone tunneling device employing a stabilizing element
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US20130204250A1 (en) * 2012-02-07 2013-08-08 Mnr Device Corporation Method and apparatus for treating a bone fracture
US20140107699A1 (en) * 2012-10-11 2014-04-17 Smith & Nephew, Inc. Active loaded fixation devices
US8778026B2 (en) 2012-03-09 2014-07-15 Si-Bone Inc. Artificial SI joint
US20140263555A1 (en) * 2013-03-12 2014-09-18 Covidien Lp Interchangeable Tip Reload
US8864777B2 (en) 2011-01-28 2014-10-21 Anchor Orthopedics Xt Inc. Methods for facilitating tissue puncture
US8876851B1 (en) 2008-10-15 2014-11-04 Nuvasive, Inc. Systems and methods for performing spinal fusion surgery
WO2014145529A3 (en) * 2013-03-15 2015-05-28 4-Web, Inc. Traumatic bone fracture repair systems and methods
US9044321B2 (en) 2012-03-09 2015-06-02 Si-Bone Inc. Integrated implant
US9050527B2 (en) 2012-08-23 2015-06-09 Wms Gaming Inc. Interactive tether using tension and feedback
US9119732B2 (en) 2013-03-15 2015-09-01 Orthocision, Inc. Method and implant system for sacroiliac joint fixation and fusion
US20160113644A1 (en) * 2014-10-23 2016-04-28 DePuy Synthes Products, Inc. Biceps Tenodesis Delivery Tools
CN105662503A (en) * 2014-10-23 2016-06-15 德普伊新特斯产品公司 Biceps tenodesis implants and delivery tools
US9421108B2 (en) 2008-12-18 2016-08-23 4Web, Inc. Implant system and method
US9549823B2 (en) 2012-09-25 2017-01-24 4-Web, Inc. Programmable implant having curved or arced struts
US9561059B1 (en) 2011-11-23 2017-02-07 Nuvasive, Inc. Minimally invasive facet release
US9592109B2 (en) 2013-03-12 2017-03-14 Covidien Lp Hernia mesh placement system and method for in-situ surgical applications
US20170086833A1 (en) * 2015-09-24 2017-03-30 Ethicon Endo-Surgery, Llc Surgical staple buttress with magnetic elements
US9662157B2 (en) 2014-09-18 2017-05-30 Si-Bone Inc. Matrix implant
US20170150886A1 (en) * 2015-11-30 2017-06-01 Chia-Wei Lin Force detecting apparatus
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US9700435B2 (en) 2013-03-14 2017-07-11 Warsaw Orthopedic, Inc. Surgical delivery system and method
US9757113B2 (en) 2013-07-31 2017-09-12 Medos International Sàrl Adjustable graft fixation device
US9763659B2 (en) 2011-08-24 2017-09-19 Mininvasive Ltd. Arthroscopic surgical device
US9770248B2 (en) 2010-07-11 2017-09-26 Mininvasive Ltd. Circular bone tunneling device
US20170273684A1 (en) * 2011-01-07 2017-09-28 Z-Medical Gmbh & Co. Kg Surgical instrument
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US20170360524A1 (en) * 2016-06-15 2017-12-21 Children's Hospital Medical Center Spheric endo-luminal traction device for esophageal elongation
US20180064473A1 (en) * 2015-03-17 2018-03-08 Emre KARADENIZ A wire stretcher for kirschner wire passing through wire retainers
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US20180110544A1 (en) * 2016-10-26 2018-04-26 Warsaw Orthopedic, Inc. Surgical instrument and method
US9974643B2 (en) 2013-03-11 2018-05-22 Medos International Sàrl Implant having adjustable filament coils
US20180153566A1 (en) * 2015-07-17 2018-06-07 Kator, Llc Transosseous guide and method
US20180199968A1 (en) * 2017-01-19 2018-07-19 Kinamed, Inc. Sternotomy closure technique using polymeric cable
US10052094B2 (en) 2013-03-11 2018-08-21 Medos International Sàrl Implant having adjustable filament coils
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US10206672B2 (en) 2013-03-18 2019-02-19 Mininvasive Ltd. Arthroscopic surgical device
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US10231740B2 (en) 2012-01-08 2019-03-19 Mininvasive Ltd. Arthroscopic surgical device
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US20190117214A1 (en) * 2015-12-31 2019-04-25 Mininvasive Ltd. Arthroscopic surgical device
US10357260B2 (en) 2015-11-02 2019-07-23 First Ray, LLC Orthopedic fastener, retainer, and guide methods
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
US10376367B2 (en) 2015-07-02 2019-08-13 First Ray, LLC Orthopedic fasteners, instruments and methods
US10405968B2 (en) 2013-12-11 2019-09-10 Medos International Sarl Implant having filament limbs of an adjustable loop disposed in a shuttle suture
US10426533B2 (en) 2012-05-04 2019-10-01 Si-Bone Inc. Fenestrated implant
US20190380757A1 (en) * 2018-06-19 2019-12-19 Summate Technologies, Inc. Automated Screw Identification System and Method
US10588644B2 (en) * 2017-08-31 2020-03-17 DePuy Synthes Products, Inc. Guide attachment for power tools
WO2020036557A3 (en) * 2018-05-04 2020-04-23 Kabalci Mehmet Suture with elasto-plastic characteristic and stabilization system
US10671969B2 (en) 2017-05-03 2020-06-02 Summate Technologies, Inc. Operating room situated, parts-inventory control system and supervisory arrangement for accurately tracking the use of and accounting for the ultimate disposition of an individual component part of a complete implant which is then being surgically engrafted in-vivo upon or into the body of a living subject
US10675016B2 (en) 2015-10-30 2020-06-09 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US10702260B2 (en) 2016-02-01 2020-07-07 Medos International Sàrl Soft tissue fixation repair methods using tissue augmentation scaffolds
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
US10786331B2 (en) 2018-06-19 2020-09-29 Summate Technologies, Inc. Automated implant identification system and method with combined machine-readable and human-readable markers
US10792029B2 (en) 2014-09-09 2020-10-06 Mininvasive Ltd. Padded transosseous suture
US10849613B2 (en) * 2015-09-24 2020-12-01 Mininvasive Ltd. Arthroscopic surgical device
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US10909343B1 (en) 2019-07-12 2021-02-02 Summate Technologies, Inc. Automated screw identification system and method with labeled pegs
US11090042B2 (en) * 2016-02-05 2021-08-17 Durastat Llc Devices and methods for suture placement
US11116519B2 (en) 2017-09-26 2021-09-14 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US11173048B2 (en) 2017-11-07 2021-11-16 Howmedica Osteonics Corp. Robotic system for shoulder arthroplasty using stemless implant components
US11234830B2 (en) 2019-02-14 2022-02-01 Si-Bone Inc. Implants for spinal fixation and or fusion
US11241285B2 (en) 2017-11-07 2022-02-08 Mako Surgical Corp. Robotic system for shoulder arthroplasty using stemless implant components
US11311284B2 (en) * 2019-03-06 2022-04-26 Speed Clip Solutions, LLC Suture tensioning and securement device, system, and methods
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
US11432945B2 (en) 2017-11-07 2022-09-06 Howmedica Osteonics Corp. Robotic system for shoulder arthroplasty using stemless implant components
US11484401B2 (en) 2016-02-01 2022-11-01 Medos International Sarl Tissue augmentation scaffolds for use in soft tissue fixation repair
WO2022265863A1 (en) * 2021-06-16 2022-12-22 Edwards Lifesciences Corporation Suture clip deployment devices with suture tensioning systems
EP3972498A4 (en) * 2019-06-10 2023-02-01 LSI Solutions, Inc. Device for suture tensioning and methods thereof
EP3972503A4 (en) * 2019-05-22 2023-02-01 Spinal Elements Inc. Bone tie and bone tie inserter
US11571245B2 (en) 2019-11-27 2023-02-07 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI joints
US11633292B2 (en) 2005-05-24 2023-04-25 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US20230210525A1 (en) * 2010-09-30 2023-07-06 Cilag Gmbh International Tissue thickness compensator comprising at least one medicament
US11752011B2 (en) 2020-12-09 2023-09-12 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation
WO2023186998A1 (en) * 2022-03-30 2023-10-05 Neos Surgery, S.L. Excision tool for sternal fixation elements
US11883028B2 (en) 2021-09-08 2024-01-30 Covidien Lp Systems and methods for post-operative anastomotic leak detection
US11918258B2 (en) 2013-09-27 2024-03-05 Spinal Elements, Inc. Device and method for reinforcement of a facet

Families Citing this family (455)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US7094251B2 (en) 2002-08-27 2006-08-22 Marctec, Llc. Apparatus and method for securing a suture
US9138222B2 (en) 2000-03-13 2015-09-22 P Tech, Llc Method and device for securing body tissue
FR2824261B1 (en) 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
EP1482841B1 (en) 2002-03-14 2005-12-07 Yeung, Jeffery E. Suture anchor and approximating device
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7497864B2 (en) 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
BRPI0507468A (en) 2004-02-04 2007-07-10 Ldr Medical intervertebral disc prosthesis
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20080039873A1 (en) 2004-03-09 2008-02-14 Marctec, Llc. Method and device for securing body tissue
FR2869528B1 (en) * 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20050278023A1 (en) * 2004-06-10 2005-12-15 Zwirkoski Paul A Method and apparatus for filling a cavity
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US9173647B2 (en) 2004-10-26 2015-11-03 P Tech, Llc Tissue fixation system
US20060089646A1 (en) 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7601165B2 (en) 2006-09-29 2009-10-13 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable suture loop
FR2879436B1 (en) 2004-12-22 2007-03-09 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US9089323B2 (en) 2005-02-22 2015-07-28 P Tech, Llc Device and method for securing body tissue
US8333776B2 (en) 2005-05-20 2012-12-18 Neotract, Inc. Anchor delivery system
US9549739B2 (en) 2005-05-20 2017-01-24 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8529584B2 (en) 2005-05-20 2013-09-10 Neotract, Inc. Median lobe band implant apparatus and method
US7896891B2 (en) 2005-05-20 2011-03-01 Neotract, Inc. Apparatus and method for manipulating or retracting tissue and anatomical structure
US8668705B2 (en) 2005-05-20 2014-03-11 Neotract, Inc. Latching anchor device
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US9504461B2 (en) 2005-05-20 2016-11-29 Neotract, Inc. Anchor delivery system
US8603106B2 (en) 2005-05-20 2013-12-10 Neotract, Inc. Integrated handle assembly for anchor delivery system
US8628542B2 (en) 2005-05-20 2014-01-14 Neotract, Inc. Median lobe destruction apparatus and method
US8945152B2 (en) 2005-05-20 2015-02-03 Neotract, Inc. Multi-actuating trigger anchor delivery system
US10195014B2 (en) 2005-05-20 2019-02-05 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8491606B2 (en) 2005-05-20 2013-07-23 Neotract, Inc. Median lobe retraction apparatus and method
US8394113B2 (en) 2005-05-20 2013-03-12 Neotract, Inc. Coiled anchor device
US9149266B2 (en) 2005-05-20 2015-10-06 Neotract, Inc. Deforming anchor device
US9364212B2 (en) 2005-05-20 2016-06-14 Neotract, Inc. Suture anchoring devices and methods for use
US8157815B2 (en) 2005-05-20 2012-04-17 Neotract, Inc. Integrated handle assembly for anchor delivery system
US10925587B2 (en) 2005-05-20 2021-02-23 Neotract, Inc. Anchor delivery system
US8425535B2 (en) 2005-05-20 2013-04-23 Neotract, Inc. Multi-actuating trigger anchor delivery system
US7645286B2 (en) 2005-05-20 2010-01-12 Neotract, Inc. Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures
US8834492B2 (en) 2005-05-20 2014-09-16 Neotract, Inc. Continuous indentation lateral lobe apparatus and method
US7909836B2 (en) 2005-05-20 2011-03-22 Neotract, Inc. Multi-actuating trigger anchor delivery system
FR2887762B1 (en) 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US7951179B2 (en) * 2005-10-25 2011-05-31 Anthem Orthopaedics Llc Bone attachment screw
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
US8100952B2 (en) * 2005-12-22 2012-01-24 Anthem Orthopaedics Llc Drug delivering bone plate and method and targeting device for use therewith
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9538998B2 (en) * 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9408599B2 (en) 2006-02-03 2016-08-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US11278331B2 (en) 2006-02-07 2022-03-22 P Tech Llc Method and devices for intracorporeal bonding of implants with thermal energy
US11253296B2 (en) 2006-02-07 2022-02-22 P Tech, Llc Methods and devices for intracorporeal bonding of implants with thermal energy
US7967820B2 (en) 2006-02-07 2011-06-28 P Tech, Llc. Methods and devices for trauma welding
US8496657B2 (en) 2006-02-07 2013-07-30 P Tech, Llc. Methods for utilizing vibratory energy to weld, stake and/or remove implants
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7976554B2 (en) * 2006-04-19 2011-07-12 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US20090281563A1 (en) * 2006-04-19 2009-11-12 Newell Matthew B Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US20090272388A1 (en) * 2006-04-19 2009-11-05 Shuji Uemura Minimally-invasive methods for implanting obesity treatment devices
US20090275972A1 (en) * 2006-04-19 2009-11-05 Shuji Uemura Minimally-invasive methods for implanting obesity treatment devices
US8585733B2 (en) * 2006-04-19 2013-11-19 Vibrynt, Inc Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US20090281500A1 (en) * 2006-04-19 2009-11-12 Acosta Pablo G Devices, system and methods for minimally invasive abdominal surgical procedures
US11246638B2 (en) 2006-05-03 2022-02-15 P Tech, Llc Methods and devices for utilizing bondable materials
US20070270688A1 (en) * 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8672969B2 (en) * 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8652120B2 (en) * 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US8617185B2 (en) 2007-02-13 2013-12-31 P Tech, Llc. Fixation device
US8465546B2 (en) * 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9072548B2 (en) * 2007-06-07 2015-07-07 Anthem Orthopaedics Llc Spine repair assembly
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8758366B2 (en) * 2007-07-09 2014-06-24 Neotract, Inc. Multi-actuating trigger anchor delivery system
US20090024140A1 (en) * 2007-07-20 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Surgical feedback system
US20110184426A1 (en) * 2007-09-04 2011-07-28 Garces Martin Gerardo Device for fixing screws in osteoporotic bones
ES2327374B1 (en) * 2007-09-04 2010-08-04 Veme Medico Quirurgica Sl INSTRUMENT FOR FIXING SCREWS IN OSTEOPOROTIC BONES.
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US20090157059A1 (en) * 2007-12-14 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Surgical instrument navigation system
US8489172B2 (en) * 2008-01-25 2013-07-16 Kardium Inc. Liposuction system
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
AU2015255260B2 (en) * 2008-02-28 2018-07-19 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Medical Apparatus and Method for Attaching a Suture to a Bone
AU2008351859B2 (en) * 2008-02-28 2013-12-05 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Medical apparatus and method for attaching a suture to a bone
US8029533B2 (en) 2008-04-04 2011-10-04 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US9364206B2 (en) 2008-04-04 2016-06-14 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
EP2303196B1 (en) 2008-07-23 2018-10-24 Marc I. Malberg Modular nucleus pulposus prosthesis
EP2345374B1 (en) 2008-07-30 2020-05-20 Neotract, Inc. Anchor delivery system with replaceable cartridge
WO2010014825A1 (en) 2008-07-30 2010-02-04 Neotract, Inc. Slotted anchor device
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
JP5192081B2 (en) * 2008-10-22 2013-05-08 カイエン メディカル インコーポレイテッド System for percutaneous repair of soft tissue
ITPI20080125A1 (en) * 2008-12-11 2010-06-12 Univ Pisa DEVICE FOR THE CONTROLLED TENSIONING OF METAL WIRE DURING THE PERFORMANCE OF A FRACTURE REDUCTION FOR A FRACTURE
US8936598B2 (en) 2009-01-14 2015-01-20 DePuy Synthes Products, LLC Spinal disc preparation tool
EP2400899A4 (en) 2009-02-24 2015-03-18 P Tech Llc Methods and devices for utilizing bondable materials
US8956372B2 (en) * 2009-05-26 2015-02-17 Tissue Solutions, Llc Filamentous tissue implant
CA2802554A1 (en) * 2009-06-16 2010-12-23 Marc Beauchamp Method and apparatus for arthroscopic rotator cuff repair using transosseous tunnels
US20110106124A1 (en) * 2009-06-16 2011-05-05 Marc Beauchamp Method and apparatus for arthroscopic rotator cuff repair using transosseous tunnels
US8087325B2 (en) * 2009-06-29 2012-01-03 Neubardt Seth L Tool device for inserting fasteners
US20120010644A1 (en) * 2009-07-09 2012-01-12 Sideris Eleftherios B Method and apparatus for occluding a physiological opening
TW201110929A (en) * 2009-09-18 2011-04-01 Univ Nat Yang Ming Biopsy device and method thereof
US8273110B2 (en) * 2009-09-22 2012-09-25 Globus Medical, Inc. System and method for installing an annular repair rivet through a vertebral body port
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US20110282237A1 (en) * 2010-05-14 2011-11-17 Ethicon Endo-Surgery, Inc. Trocar with specimen retrieval feature
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
EP2618748A1 (en) * 2010-09-21 2013-07-31 Sportwelding GmbH Connecting a plurality of tissue parts
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
EP3113692A4 (en) * 2011-01-11 2018-03-14 Amsel Medical Corporation Method and apparatus for occluding a blood vessel and/or other tubular structures
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US9486273B2 (en) 2011-01-21 2016-11-08 Kardium Inc. High-density electrode-based medical device system
CA2764494A1 (en) 2011-01-21 2012-07-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9161749B2 (en) 2011-04-14 2015-10-20 Neotract, Inc. Method and apparatus for treating sexual dysfunction
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9241784B2 (en) 2011-07-08 2016-01-26 Smith & Nephew, Inc. Soft tissue reconstruction
US9662105B2 (en) 2011-07-08 2017-05-30 Smith & Nephew, Inc. Suture passer and method
US10342529B2 (en) * 2011-07-08 2019-07-09 Smith & Nephew, Inc. Osteotomy guide and method
US9357997B2 (en) 2011-07-08 2016-06-07 Smith & Nephew, Inc. Suture passer and method
US8882834B2 (en) 2011-07-08 2014-11-11 Smith & Nephew, Inc. Soft tissue repair
WO2013040456A1 (en) * 2011-09-14 2013-03-21 Band-Lok, Llc Tether clamp and implantation system
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9782165B2 (en) 2011-11-11 2017-10-10 VentureMD Innovations, LLC Transosseous attachment
US10675014B2 (en) 2011-11-16 2020-06-09 Crossroads Extremity Systems, Llc Knotless soft tissue attachment
US10136883B2 (en) 2011-11-16 2018-11-27 VentureMD Innovations, LLC Method of anchoring a suture
US10470756B2 (en) 2011-11-16 2019-11-12 VentureMD Innovations, LLC Suture anchor and method
US10548585B2 (en) 2011-11-16 2020-02-04 VentureMD Innovations, LLC Soft tissue attachment
US20130218137A1 (en) * 2011-12-30 2013-08-22 Mako Surgical Corp. Integrated surgery system
US10363102B2 (en) 2011-12-30 2019-07-30 Mako Surgical Corp. Integrated surgery method
US9314362B2 (en) 2012-01-08 2016-04-19 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
US8382775B1 (en) 2012-01-08 2013-02-26 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
US10292801B2 (en) 2012-03-29 2019-05-21 Neotract, Inc. System for delivering anchors for treating incontinence
FR2988992B1 (en) * 2012-04-04 2015-03-20 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US9011423B2 (en) 2012-05-21 2015-04-21 Kardium, Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US10130353B2 (en) 2012-06-29 2018-11-20 Neotract, Inc. Flexible system for delivering an anchor
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US20140088647A1 (en) * 2012-09-21 2014-03-27 Atlas Spine, Inc. Minimally invasive spine surgery instruments: spinal rod with flange
US9545270B2 (en) * 2012-10-15 2017-01-17 K2M, Inc. Universal rod holder
US9510956B2 (en) * 2012-11-06 2016-12-06 Biomet Manufacturing, Llc Prosthetic system
US10076377B2 (en) 2013-01-05 2018-09-18 P Tech, Llc Fixation systems and methods
US9687221B2 (en) 2013-02-13 2017-06-27 Venture MD Innovations, LLC Method of anchoring a suture
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
EP2967595B1 (en) * 2013-03-14 2018-10-24 Zimmer Knee Creations, Inc. Surgical access tools, guide instruments and accessories for subchondral treatment of bone
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
RU2016129258A (en) 2013-12-20 2018-01-25 Артрокер Корпорейшн RECOVERY OF FABRIC WITH SURFACE MATERIAL FULLY WITHOUT NODES
CN103815957B (en) * 2014-03-20 2014-09-10 张英泽 Long bone fracture intramedullary repositor capable of automatically feeding wire
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
EP3190989B1 (en) 2014-09-12 2020-10-21 Innovision, Inc. Bone drill guides
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11464599B1 (en) 2015-05-15 2022-10-11 Marginview, Llc Specimen marking mechanism
US10258401B2 (en) 2015-07-17 2019-04-16 Kator, Llc Transosseous guide
US9962174B2 (en) 2015-07-17 2018-05-08 Kator, Llc Transosseous method
US10143462B2 (en) 2015-08-04 2018-12-04 Kator, Llc Transosseous suture anchor method
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
KR102563551B1 (en) * 2016-01-14 2023-08-04 후아이스 아이피 홀딩 엘엘씨 Autografting tool with enhanced flute profile and methods of use
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US9861410B2 (en) 2016-05-06 2018-01-09 Medos International Sarl Methods, devices, and systems for blood flow
US10426460B2 (en) 2016-07-05 2019-10-01 Mortise Medical, LLC Compression and tension instruments and methods of use to reinforce ligaments
EP3490474A4 (en) 2016-07-26 2019-08-28 Band-lok, LLC Orthopedic tethered implants and system
US11058442B2 (en) * 2016-08-15 2021-07-13 University Of Rochester Distal biceps tendon repair device
CN109788963A (en) * 2016-09-26 2019-05-21 思想外科有限公司 Pin for pin driver of performing the operation places retainer
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US20180242967A1 (en) * 2017-02-26 2018-08-30 Endoevolution, Llc Apparatus and method for minimally invasive suturing
CN107080664B (en) * 2017-04-25 2018-11-02 罗梅宏 A kind of device of bone marrow puncture auxiliary bend
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
DE202017103687U1 (en) * 2017-06-21 2017-07-03 Josef Heinen Medical instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
CA3086293A1 (en) * 2017-12-18 2019-06-27 Terumo Medical Corporation Knot delivery device
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
WO2019126718A1 (en) 2017-12-23 2019-06-27 Neotract, Inc. Expandable tissue engagement apparatus and method
US20190388086A1 (en) * 2018-06-26 2019-12-26 Leonard Gordon Suture transfer device
US20220346797A1 (en) * 2018-08-17 2022-11-03 Empress Medical, Inc. Device and method for passing tension member around tissue mass
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11361176B2 (en) 2019-06-28 2022-06-14 Cilag Gmbh International Surgical RFID assemblies for compatibility detection
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
EP3769693A1 (en) * 2019-07-24 2021-01-27 Smith & Nephew, Inc. System for transporting suture
US11395688B2 (en) * 2019-09-30 2022-07-26 DePuy Synthes Products, Inc. Tool for crimping orthopedic cable
US11331112B2 (en) 2019-11-06 2022-05-17 Mason James Bettenga Adjustable depth limiting drill guide and suture transporting method
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
CN111388032B (en) * 2020-03-19 2022-02-15 郑州大学第一附属医院 Organ suspension device for endoscopic surgery
US20210346073A1 (en) * 2020-05-11 2021-11-11 Sambhu N. Choudhury Cable passer device
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
CN114286646B (en) 2020-08-03 2024-03-08 泰利福生命科学有限公司 Handle and cassette system for medical intervention
US20220087671A1 (en) * 2020-09-18 2022-03-24 Board Of Regents, The University Of Texas System Suture anchor with real-time tension sensor
CN116648197A (en) 2020-10-23 2023-08-25 想象内窥镜公司 Endoscopic suture fastener
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11819425B2 (en) * 2021-04-29 2023-11-21 Cc-Instruments Oy Coracoid guiding system and a method for using thereof
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
USD990679S1 (en) 2021-06-21 2023-06-27 Marginview, Llc Tissue specimen marking clip
WO2023059887A1 (en) * 2021-10-07 2023-04-13 Clemson University Research Foundation Annulus repair devices, systems, and methods
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US20240057990A1 (en) 2022-08-22 2024-02-22 Anika Therapeutics, Inc. Suture anchor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195514A1 (en) * 2002-04-16 2003-10-16 Trieu Hai H. Annulus repair systems and techniques
US20050033366A1 (en) * 1998-01-26 2005-02-10 Orthodyne, Inc. Tissue anchoring system and method
US20050256582A1 (en) * 1999-10-08 2005-11-17 Ferree Bret A Spinal implants, including devices that reduce pressure on the annulus fibrosis
US20050283246A1 (en) * 1999-08-13 2005-12-22 Cauthen Joseph C Iii Method and apparatus for the treatment of the intervertebral disc annulus
US20060009846A1 (en) * 2001-02-28 2006-01-12 Hai Trieu Flexible systems for spinal stabilization and fixation
US20060089646A1 (en) * 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US20060229623A1 (en) * 2004-10-26 2006-10-12 Bonutti Peter M Tissue fixation system and method
US20060264953A1 (en) * 2002-10-10 2006-11-23 Falahee Mark H Percutaneous translaminar facet fixation system
US20070088362A1 (en) * 2004-10-26 2007-04-19 Bonutti,Ip, Llc Apparatus and methods for surgery
US20070233092A1 (en) * 2006-02-24 2007-10-04 Falahee Mark H Dynamic/static facet fixation device and method
US20080195145A1 (en) * 2007-02-13 2008-08-14 Bonutti Peter M Tissue fixation system and method

Family Cites Families (842)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US319296A (en) 1885-06-02 Peters
US668879A (en) 1900-07-19 1901-02-26 Wilber L Miller Vein-dilator for embalmers' use.
US668878A (en) 1900-09-06 1901-02-26 Carl Christian Jensen Rotary engine.
US702789A (en) 1902-03-20 1902-06-17 Charles Gordon Gibson Dilator.
US862712A (en) 1907-02-13 1907-08-06 James S Collins Medical instrument.
US2121193A (en) 1932-12-21 1938-06-21 Hanicke Paul Gustav Erich Fracture clamping apparatus
FR824389A (en) 1935-11-25 1938-02-07 Pump for introducing drugs into the vagina or anus and envelopes containing these drugs
US2199025A (en) 1936-06-08 1940-04-30 Carl E Conn Means and method of closing surgical incisions
US2187852A (en) 1936-08-18 1940-01-23 William D Friddle Fracture nail and fracture nail driver
US2235419A (en) 1938-03-18 1941-03-18 James J Callahan Fracture nail and director
US2248054A (en) 1939-06-07 1941-07-08 Becker Joseph Screw driver
US2270188A (en) 1940-07-12 1942-01-13 Harry Herschel Leiter Surgical threaded nail and method of applying same
US2518276A (en) 1947-09-06 1950-08-08 Franklin M Brawand Butt hook
US2621653A (en) 1949-04-29 1952-12-16 Briggs Henry Fracture reducing device
US2566499A (en) 1950-02-14 1951-09-04 Richter Bruno Expansile surgical needle
US2557669A (en) 1950-07-27 1951-06-19 Allen S Lloyd Adapter for a "smith-peterson" nail
US2725053A (en) 1953-10-26 1955-11-29 Bambara John Surgical nail guide
US2830587A (en) 1954-02-01 1958-04-15 Everett Samuel James Hypodermic needles
DE1903016U (en) 1960-03-18 1964-10-29 Wilhelm Reppel REMOVAL CAP OR SHELL FOR PIT REMOVAL.
AT219360B (en) 1960-05-10 1962-01-25 Purator Klaeranlagen Grosshand Device for sealing the sealing joint during the pouring of socket connections on clay pipes, in particular pipes of channels and the like. like
US3204635A (en) 1963-03-21 1965-09-07 Voss Hygienic devices
US3176395A (en) * 1963-12-27 1965-04-06 David H Warner Photoengraver's saber
US3367809A (en) 1964-05-08 1968-02-06 Branson Instr Sonics
US3347234A (en) 1964-08-05 1967-10-17 Joseph A Voss Hygienic devices
US3391690A (en) 1965-04-05 1968-07-09 Armao Thomas Anthony Biopsy instrument including tissue heating or cooling means and method of use
BE688399A (en) 1966-02-16 1967-04-18
US3518993A (en) 1967-05-01 1970-07-07 American Hospital Supply Corp Surgical clip applicator
US3477429A (en) * 1967-06-30 1969-11-11 Sampson Corp Extra-cortical clamp with detachable tensioning tool for internal fixation of bone fractures
US3636943A (en) 1967-10-27 1972-01-25 Ultrasonic Systems Ultrasonic cauterization
US3657056A (en) 1967-12-11 1972-04-18 Ultrasonic Systems Ultrasonic suturing apparatus
US3513848A (en) * 1967-12-11 1970-05-26 Ultrasonic Systems Ultrasonic suturing
US3608539A (en) 1968-11-06 1971-09-28 Daniel G Miller Method for the biopsy of subcutaneous masses
US3577991A (en) 1968-11-12 1971-05-11 Guilbert Roland Wilkinson Sewing tissue instruments or the like
US3711347A (en) 1968-12-09 1973-01-16 D Wagner Method of sealing and locking a fastener
DE1903016A1 (en) 1969-01-22 1970-08-06 Dr Friedrich Jutzi Coupling piece and lockable loop for connecting and separating two ropes
US3596292A (en) 1969-02-20 1971-08-03 Franklin Institute Hair implant structure
US3625220A (en) 1969-10-07 1971-12-07 Horizon Ind Ltd Extendible suture guard
US3760808A (en) 1969-12-01 1973-09-25 K Bleuer Tampon applicator assembly
US3653388A (en) 1969-12-04 1972-04-04 Battelle Development Corp Catheter insertion trocar
US3678980A (en) 1970-03-26 1972-07-25 Illinois Tool Works Panel insert device
US3709218A (en) 1970-04-24 1973-01-09 W Halloran Combination intramedullary fixation and external bone compression apparatus
US3648705A (en) 1970-07-16 1972-03-14 Banning G Lary Retention bar means for surgical incision closure
US3702611A (en) * 1971-06-23 1972-11-14 Meyer Fishbein Surgical expansive reamer for hip socket
GB1405091A (en) 1971-08-19 1975-09-03 Nat Res Dev Orthopaedic fracutre fixing device
US3811449A (en) 1972-03-08 1974-05-21 Becton Dickinson Co Dilating apparatus and method
US3802438A (en) 1972-03-31 1974-04-09 Technibiotics Surgical instrument
US3762418A (en) * 1972-05-17 1973-10-02 W Wasson Surgical suture
US3789852A (en) 1972-06-12 1974-02-05 S Kim Expandable trochar, especially for medical purposes
US3788318A (en) 1972-06-12 1974-01-29 S Kim Expandable cannular, especially for medical purposes
US3833003A (en) 1972-07-05 1974-09-03 A Taricco Intravascular occluding catheter
US3815694A (en) * 1973-01-04 1974-06-11 J Giustino Tool for drilling a ledged hole
US3835849A (en) 1973-01-26 1974-09-17 Guire G Mc Bone clamp and adjustable drill guide
US3842824A (en) 1973-03-19 1974-10-22 A Neufeld Notched surgical pin and breaking tool therefor
US3809075A (en) 1973-03-29 1974-05-07 A Matles Bone splint
US3825010A (en) 1973-04-23 1974-07-23 Donald B Mc Surgical apparatus for closing wounds
US3875652A (en) 1973-08-08 1975-04-08 Rca Corp Method of bonding metals together
US3857396A (en) 1973-08-22 1974-12-31 C Hardwick Suture clamp
US3918442A (en) 1973-10-10 1975-11-11 Georgy Alexandrovich Nikolaev Surgical instrument for ultrasonic joining of biological tissue
US3867932A (en) * 1974-01-18 1975-02-25 Donald R Huene Assembly for inserting rigid shafts into fractured bones
US3968800A (en) 1974-09-17 1976-07-13 Vilasi Joseph A Device for insertion into a body opening
US4023559A (en) 1975-01-28 1977-05-17 Smith & Nephew (Australia) Pty. Limited Sampling catheter device
US4320762A (en) 1975-03-10 1982-03-23 Bentov Itzhak E Dilator
DE2546824C2 (en) 1975-10-18 1986-05-07 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Coated endoprosthesis and process for their manufacture
US4199864A (en) 1975-12-22 1980-04-29 Arthur Ashman Endosseous plastic implant method
US4064566A (en) 1976-04-06 1977-12-27 Nasa Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement
US4089071A (en) 1976-09-08 1978-05-16 Kalnberz Viktor Konstantinovic Material for making bone endoprosthesis and endoprosthesis made of said material
US4128100A (en) * 1976-10-08 1978-12-05 Wendorff Erwin R Suture
NL173019C (en) 1977-04-01 1983-12-01 Atlantis Sa COMPOSITION FOR INTERNAL SPLASHING OF A BROKEN PIPE.
US4164794A (en) 1977-04-14 1979-08-21 Union Carbide Corporation Prosthetic devices having coatings of selected porous bioengineering thermoplastics
FR2389383A1 (en) 1977-05-04 1978-12-01 Johnson & Johnson
US4461281A (en) 1977-06-15 1984-07-24 Carson Robert W Arthroscopic surgical apparatus and method
US4183102A (en) 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
US4200939A (en) 1977-10-19 1980-05-06 Codman & Shurtleff, Inc. Method for fixation of prostheses to bone
US4156574A (en) 1978-02-06 1979-05-29 Boden Ogden W Cord lock with self locking spring feelers
US4171544A (en) 1978-04-05 1979-10-23 Board Of Regents, For And On Behalf Of The University Of Florida Bonding of bone to materials presenting a high specific area, porous, silica-rich surface
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4213816A (en) 1978-06-12 1980-07-22 Glasrock Products, Inc. Method for bonding porous coating to rigid structural member
DE2827529C2 (en) 1978-06-23 1982-09-30 Battelle-Institut E.V., 6000 Frankfurt Implantable bone replacement material consisting of a metal core and bioactive, sintered calcium phosphate ceramic particles and a process for its production
FR2439003A1 (en) * 1978-10-20 1980-05-16 Anvar NEW OSTEOSYNTHESIS PARTS, THEIR PREPARATION AND THEIR APPLICATION
US4210148A (en) 1978-11-03 1980-07-01 Stivala Oscar G Retention suture system
DE2853289C2 (en) 1978-12-09 1980-12-18 B. Braun Melsungen Ag, 3508 Melsungen Button for surgical use
US4257411A (en) 1979-02-08 1981-03-24 Cho Kenneth O Cruciate ligament surgical drill guide
US4265231A (en) 1979-04-30 1981-05-05 Scheller Jr Arnold D Curved drill attachment for bone drilling uses
US4315510A (en) 1979-05-16 1982-02-16 Cooper Medical Devices Corporation Method of performing male sterilization
US4351069A (en) 1979-06-29 1982-09-28 Union Carbide Corporation Prosthetic devices having sintered thermoplastic coatings with a porosity gradient
DE2928007A1 (en) 1979-07-11 1981-01-15 Riess Guido Dr BONE IMPLANT BODY FOR PROSTHESES AND BONE CONNECTORS AND METHOD FOR THE PRODUCTION THEREOF
US4364381A (en) 1980-01-31 1982-12-21 Sher Jay H Surgical clamp and drill-guiding instrument
EP0040041B1 (en) 1980-05-08 1985-03-27 MARTIN, BLACK & CO. (WIRE ROPES) LIMITED A method of producing a flemish eye on the end of a rope and a flemish eye device
CH645264A5 (en) 1980-05-28 1984-09-28 Straumann Inst Ag FITTING WITH A PLATE AND SCREWS THAT FIX IT TO A BONE.
GB2084468B (en) 1980-09-25 1984-06-06 South African Inventions Surgical implant
CH651192A5 (en) 1980-11-20 1985-09-13 Synthes Ag OSTEOSYNTHETIC DEVICE AND CORRESPONDING DRILL GAUGE.
US4547327A (en) 1980-12-08 1985-10-15 Medical Biological Sciences, Inc. Method for producing a porous prosthesis
US4501031A (en) 1981-01-22 1985-02-26 Zimmer, Inc. Metal and plastic composite tibial component for knee joint
DE8105177U1 (en) 1981-02-25 1984-01-12 Schuett Und Grundei Gmbh Medizintechnische Fabrikation, 2400 Luebeck Implant as a replacement for cancellous bones
NL8101674A (en) 1981-04-03 1982-11-01 Delphi Dental Ind IMPLANT MATERIAL FROM CERAMIC MATERIAL.
US4630609A (en) 1981-05-14 1986-12-23 Thomas J. Fogarty Dilatation catheter method and apparatus
US4409974A (en) 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
ATE23945T1 (en) 1981-07-30 1986-12-15 Ceraver TITANIUM OR TITANIUM ALLOY PROSTHETIC STEM FOR CEMENTLESS FIXATION IN A LONG BONE.
US4437362A (en) 1981-10-26 1984-03-20 Western Electric Co., Inc. Tools for handling magnetic articles
DE8132839U1 (en) 1981-11-10 1982-03-11 B. Braun Melsungen Ag, 3508 Melsungen REINFORCING CORE FOR A CATHETER TUBE
FR2515955B1 (en) 1981-11-11 1987-11-20 South African Inventions SURGICAL IMPLANT
US4414166A (en) 1982-01-04 1983-11-08 International Business Machines Corporation Laser joining of thermoplastic and thermosetting materials
US4448194A (en) 1982-02-03 1984-05-15 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
US4444180A (en) 1982-03-01 1984-04-24 Aktiebolaget Stille-Werner Surgical instrument for engaging a bony part of the human body and guiding a drill bit into a specific location in the bony part
US4514125A (en) 1982-03-19 1985-04-30 Invocas, Inc. Fastener improvement including introduction of selected capsule of adhesive into porous basket hung in bore for activation by fastener installation
US4526173A (en) 1982-04-12 1985-07-02 Kells Medical, Inc. Skin closure device
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4556350A (en) 1982-05-07 1985-12-03 Bernhardt Frederick W Mine roof anchor bolt
US4741330A (en) 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US5601557A (en) 1982-05-20 1997-02-11 Hayhurst; John O. Anchoring and manipulating tissue
US5417691A (en) 1982-05-20 1995-05-23 Hayhurst; John O. Apparatus and method for manipulating and anchoring tissue
US4823794A (en) 1982-07-12 1989-04-25 Pierce William S Surgical pledget
US4456005A (en) 1982-09-30 1984-06-26 Lichty Terry K External compression bone fixation device
US4566138A (en) 1983-03-08 1986-01-28 Zimmer, Inc. Prosthetic device with spacers
US4535772A (en) 1983-03-10 1985-08-20 Kells Medical, Incorporated Skin closure device
US4691741A (en) 1983-06-01 1987-09-08 General Connectors Corporation Shroud for aircraft duct
US4532926A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with ratchet leg staple and sealable latching receiver
US4621640A (en) 1984-01-09 1986-11-11 Mulhollan James S Mechanical needle carrier and method for its use
US4601893A (en) 1984-02-08 1986-07-22 Pfizer Inc. Laminate device for controlled and prolonged release of substances to an ambient environment and method of use
US4685458A (en) 1984-03-01 1987-08-11 Vaser, Inc. Angioplasty catheter and method for use thereof
US4589868A (en) 1984-03-12 1986-05-20 Dretler Stephen P Expandable dilator-catheter
US4990161A (en) 1984-03-16 1991-02-05 Kampner Stanley L Implant with resorbable stem
US4722948A (en) 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
CH668173A5 (en) 1984-05-14 1988-12-15 Synthes Ag DEVICE FOR FIXING TUBE BONE FRACTURES WITH A BONE MARBLE NAIL AND AT LEAST ONE CROSS-BOLT LOCKING.
GB8415265D0 (en) 1984-06-15 1984-07-18 Ici Plc Device
US4606335A (en) 1984-08-20 1986-08-19 Highland Orthopedic Center Cerclage wire passer
GB8424436D0 (en) 1984-09-27 1984-10-31 Pratt Int Ltd Burnerd Surgical appliance
DE3445738A1 (en) 1984-12-14 1986-06-19 Draenert Klaus IMPLANT FOR BONE REINFORCEMENT AND ANCHORING OF BONE SCREWS, IMPLANTS OR IMPLANT PARTS
US4632101A (en) 1985-01-31 1986-12-30 Yosef Freedland Orthopedic fastener
US4713077A (en) 1985-02-19 1987-12-15 Small Irwin A Method of applying a chin implant, drill guide tool and implant
US4750492A (en) 1985-02-27 1988-06-14 Richards Medical Company Absorbable suture apparatus, method and installer
FI75493C (en) 1985-05-08 1988-07-11 Materials Consultants Oy SJAELVARMERAT ABSORBERBART PURCHASING SYNTHESIS.
DE3517204A1 (en) 1985-05-13 1986-11-13 Gerald Dr. 8000 München Hauer PERMANENTLY PLASTIC TAPE WITH SELF-HOLDER
GB8513702D0 (en) 1985-05-30 1985-07-03 Gill S S Expansible trocar
US4718909A (en) 1985-07-16 1988-01-12 Brown Byron L Method and apparatus for cementing a femoral stem prosthesis within a femoral canal
US4706670A (en) 1985-11-26 1987-11-17 Meadox Surgimed A/S Dilatation catheter
US4645503A (en) 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
US4632100A (en) 1985-08-29 1986-12-30 Marlowe E. Goble Suture anchor assembly
US4722331A (en) 1985-09-03 1988-02-02 Fox James M Orthopaedic tool guide
US4669473A (en) 1985-09-06 1987-06-02 Acufex Microsurgical, Inc. Surgical fastener
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4662068A (en) 1985-11-14 1987-05-05 Eli Polonsky Suture fusing and cutting apparatus
US4705040A (en) 1985-11-18 1987-11-10 Medi-Tech, Incorporated Percutaneous fixation of hollow organs
USRE34021E (en) 1985-11-18 1992-08-04 Abbott Laboratories Percutaneous fixation of hollow organs
JPH0139449Y2 (en) 1985-12-28 1989-11-27
US4662063A (en) 1986-01-28 1987-05-05 The United States Of America As Represented By The Department Of The Navy Generation of ohmic contacts on indium phosphide
EP0257091B1 (en) 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4708139A (en) 1986-02-24 1987-11-24 Dunbar Iv William H Arthroscopic drill guide
US4792336A (en) 1986-03-03 1988-12-20 American Cyanamid Company Flat braided ligament or tendon implant device having texturized yarns
US4759765A (en) 1986-03-17 1988-07-26 Minnesota Mining And Manufacturing Company Tissue augmentation device
US4657460A (en) 1986-03-17 1987-04-14 Chrysler Motors Corporation Self-bonding threaded fasteners and method of curing same
US4738255A (en) 1986-04-07 1988-04-19 Biotron Labs, Inc. Suture anchor system
US4749585A (en) 1986-04-11 1988-06-07 University Of Medicine And Dentistry Of New Jersey Antibiotic bonded prosthesis and process for producing same
CH669724A5 (en) 1986-04-15 1989-04-14 Sulzer Ag
US4659268A (en) 1986-05-15 1987-04-21 Rockwell International Corporation Composite blind fasteners
US5123914A (en) 1986-05-19 1992-06-23 Cook Incorporated Visceral anchor for visceral wall mobilization
US4895148A (en) 1986-05-20 1990-01-23 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
US4776330A (en) 1986-06-23 1988-10-11 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4776738A (en) 1986-07-14 1988-10-11 Winston Emanuel A Fastening device
US4945625A (en) 1986-07-14 1990-08-07 Winston Emanuel A Method of making a fastening device
ZA875425B (en) 1986-07-23 1988-04-27 Gore & Ass Mechanical ligament
GB8622563D0 (en) * 1986-09-19 1986-10-22 Amis A A Artificial ligaments
US4883048A (en) 1986-10-03 1989-11-28 Purnell Mark L Apparatus and method for use in performing a surgical operation
US4781182A (en) 1986-10-03 1988-11-01 Purnell Mark L Apparatus and method for use in performing a surgical operation
US4922897A (en) * 1986-10-03 1990-05-08 Temple University Apparatus and method for reconstructive surgery
US4739751A (en) * 1986-10-03 1988-04-26 Temple University Apparatus and method for reconstructive surgery
US4832026A (en) 1986-10-08 1989-05-23 Prd Corporation Method of suturing
FI80605C (en) 1986-11-03 1990-07-10 Biocon Oy Bone surgical biocomposite material
US4935028A (en) 1987-01-12 1990-06-19 Drews Robert C Corneal rivet
FI81498C (en) 1987-01-13 1990-11-12 Biocon Oy SURGICAL MATERIAL OCH INSTRUMENT.
US4841960A (en) 1987-02-10 1989-06-27 Garner Eric T Method and apparatus for interosseous bone fixation
US4772286A (en) 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
US4890612A (en) 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US4843112A (en) 1987-03-12 1989-06-27 The Beth Israel Hospital Association Bioerodable implant composition
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
DE3722538A1 (en) 1987-07-08 1989-01-19 Wasserstein Isidor DEVICE FOR FIXING BONE SEGMENTS
IT1221530B (en) 1987-07-20 1990-07-12 Italpres Snc Di Fregni Bruno & PRECISION PERFORATION EQUIPMENT OF THE FEMOR AND TIBIA FOR THE INSTALLATION OF THE KNEE JOINT OF THE CRUSADED FRONT AND REAR PROSTHETIC LIGAMENTS
US4832025A (en) 1987-07-30 1989-05-23 American Cyanamid Company Thermoplastic surgical suture with a melt fused length
US5261886A (en) 1987-08-26 1993-11-16 United States Surgical Corporation Cabled core and braided suture made therefrom
US5261914A (en) 1987-09-02 1993-11-16 Russell Warren Surgical fastener
US5078744A (en) 1987-09-04 1992-01-07 Bio-Products, Inc. Method of using tendon/ligament substitutes composed of long, parallel, non-antigenic tendon/ligament fibers
US4921479A (en) 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
DE3734108A1 (en) 1987-10-06 1989-04-20 Mecron Med Prod Gmbh INTERMEDIATE NAIL FOR TREATMENT OF BONE BREAKS
US5009652A (en) 1987-10-16 1991-04-23 Morgan Cheryle I Medical sponges and wipes with a barrier impermeable to infectious agents
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4822224A (en) 1987-11-05 1989-04-18 Chrysler Motors Corporation Harness retainer stud
US4957498A (en) 1987-11-05 1990-09-18 Concept, Inc. Suturing instrument
US4935026A (en) 1987-12-09 1990-06-19 Mcfadden Joseph T Articulatable, rotatable, surgical clamping device
US4968315A (en) 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
FR2624747A1 (en) 1987-12-18 1989-06-23 Delsanti Gerard REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS
FR2624724B1 (en) 1987-12-22 1992-08-14 Rhenter Jean Luc SYNTHETIC LIGAMENT FOR KNEE
US4846812A (en) 1988-03-22 1989-07-11 Menlo Care, Inc. Softening catheter
US5254285A (en) 1988-04-28 1993-10-19 Sanai Fujita Flocculating agent for the purification of fluids
US4869242A (en) 1988-07-29 1989-09-26 Galluzzo Mose A Bone fixation pin and method of using the same
US4901721A (en) 1988-08-02 1990-02-20 Hakki Samir I Suturing device
US5053046A (en) 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
FI80667C (en) 1988-09-02 1990-07-10 Partek Ab Process and apparatus for the production of mineral wool
DE3831657A1 (en) 1988-09-17 1990-03-22 Boehringer Ingelheim Kg DEVICE FOR THE OSTEOSYNTHESIS AND METHOD FOR THE PRODUCTION THEREOF
US4924866A (en) 1988-10-26 1990-05-15 Inbae Yoon Wound-closing device
US5037404A (en) 1988-11-14 1991-08-06 Cordis Corporation Catheter having sections of variable torsion characteristics
US4985022A (en) 1988-11-23 1991-01-15 Med Institute, Inc. Catheter having durable and flexible segments
DE3839617A1 (en) * 1988-11-24 1990-05-31 Fischer Artur Werke Gmbh DEVICE FOR PRODUCING AN UNDERCUT IN A DRILL HOLE
US4899744A (en) 1988-12-15 1990-02-13 Tatsuo Fujitsuka Apparatus for anastomosing digestive tract
US4870957A (en) 1988-12-27 1989-10-03 Marlowe Goble E Ligament anchor system
US4963151A (en) 1988-12-28 1990-10-16 Trustees Of The University Of Pennsylvania Reinforced bone cement, method of production thereof and reinforcing fiber bundles therefor
US4966583A (en) 1989-02-03 1990-10-30 Elie Debbas Apparatus for locating a breast mass
US4969888A (en) 1989-02-09 1990-11-13 Arie Scholten Surgical protocol for fixation of osteoporotic bone using inflatable device
US5234425A (en) 1989-03-03 1993-08-10 Thomas J. Fogarty Variable diameter sheath method and apparatus for use in body passages
US4938760A (en) 1989-03-29 1990-07-03 American Medical Systems, Inc. Female suspension procedure
US5098433A (en) 1989-04-12 1992-03-24 Yosef Freedland Winged compression bolt orthopedic fastener
US5059206A (en) 1989-04-12 1991-10-22 Winters Thomas F Method and apparatus for repairing a tear in a knee meniscus
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
NL8901350A (en) 1989-05-29 1990-12-17 Wouter Matthijs Muijs Van De M CLOSURE ASSEMBLY.
US6190400B1 (en) 1991-10-22 2001-02-20 Kensey Nash Corporation Blood vessel sealing device and method of sealing an opening in a blood vessel
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US4946468A (en) 1989-06-06 1990-08-07 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5002550A (en) 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US4955910A (en) 1989-07-17 1990-09-11 Boehringer Mannheim Corporation Fixation system for an elongated prosthesis
US5382254A (en) 1989-07-18 1995-01-17 United States Surgical Corporation Actuating handle for surgical instruments
US5061286A (en) 1989-08-18 1991-10-29 Osteotech, Inc. Osteoprosthetic implant
US4932960A (en) 1989-09-01 1990-06-12 United States Surgical Corporation Absorbable surgical fastener
US5158934A (en) 1989-09-01 1992-10-27 Genentech, Inc. Method of inducing bone growth using TGF-β
US5242902A (en) 1989-09-06 1993-09-07 The Regents Of The University Of California Defensin peptide compositions and methods for their use
US5129906A (en) 1989-09-08 1992-07-14 Linvatec Corporation Bioabsorbable tack for joining bodily tissue and in vivo method and apparatus for deploying same
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US4950285A (en) 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US6099550A (en) 1989-12-05 2000-08-08 Yoon; Inbae Surgical instrument having jaws and an operating channel and method for use thereof
US4997445A (en) 1989-12-08 1991-03-05 Zimmer, Inc. Metal-backed prosthetic implant with enhanced bonding of polyethylene portion to metal base
DE4000200C1 (en) 1990-01-05 1991-05-23 Salzgitter Maschinenbau Gmbh, 3320 Salzgitter, De
US4961741A (en) 1990-01-08 1990-10-09 Hayhurst John O Suture knotting instrument
IT1238173B (en) 1990-01-15 1993-07-09 FOUR-TWO-TWO-TWO-CONVERGENT METAL STITCH SUITABLE FOR CONTEMPORARY SUTURE OF THE SKIN AND SUB-SKIN FABRIC
US5041093A (en) 1990-01-31 1991-08-20 Boston Scientific Corp. Catheter with foraminous anchor
US5391144A (en) 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5035713A (en) 1990-02-12 1991-07-30 Orthopaedic Research Institute, Inc. Surgical implants incorporating re-entrant material
US5002563A (en) 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
CA2049973C (en) 1990-02-28 2002-12-24 Rodney G. Wolff Intralumenal drug eluting prosthesis
US5197971A (en) 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
DE9002844U1 (en) 1990-03-10 1990-12-06 Giers, Roland, 4950 Minden, De
US5009663A (en) 1990-03-22 1991-04-23 Brava Patient Och Invent Ab Method for performing a surgical closure of a skin incision or wound and means for carrying out the method
US5013316A (en) 1990-03-26 1991-05-07 Marlowe Goble E Soft tissue anchor system
US5226899A (en) 1990-03-26 1993-07-13 Becton, Dickinson And Company Catheter tubing of controlled in vivo softening
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5064286A (en) 1990-05-31 1991-11-12 Wyko Corporation Optical alignment system utilizing alignment spot produced by image inverter
US5078731A (en) 1990-06-05 1992-01-07 Hayhurst John O Suture clip
US5102421A (en) 1990-06-14 1992-04-07 Wm. E. Anpach, III Suture anchor and method of forming
US5201756A (en) 1990-06-20 1993-04-13 Danforth Biomedical, Inc. Radially-expandable tubular elements for use in the construction of medical devices
US6203565B1 (en) * 1990-06-28 2001-03-20 Peter M. Bonutti Surgical devices assembled using heat bondable materials
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5593425A (en) 1990-06-28 1997-01-14 Peter M. Bonutti Surgical devices assembled using heat bonable materials
US5163960A (en) 1990-06-28 1992-11-17 Bonutti Peter M Surgical devices assembled using heat bondable materials
US6464713B2 (en) 1990-06-28 2002-10-15 Peter M. Bonutti Body tissue fastening
US5180388A (en) 1990-06-28 1993-01-19 American Cyanamid Company Bone pinning system
US5037422A (en) 1990-07-02 1991-08-06 Acufex Microsurgical, Inc. Bone anchor and method of anchoring a suture to a bone
US5041129A (en) 1990-07-02 1991-08-20 Acufex Microsurgical, Inc. Slotted suture anchor and method of anchoring a suture
US5269809A (en) 1990-07-02 1993-12-14 American Cyanamid Company Locking mechanism for use with a slotted suture anchor
US5236445A (en) 1990-07-02 1993-08-17 American Cyanamid Company Expandable bone anchor and method of anchoring a suture to a bone
US5258016A (en) 1990-07-13 1993-11-02 American Cyanamid Company Suture anchor and driver assembly
US5100417A (en) 1990-07-13 1992-03-31 American Cyanamid Company Suture anchor and driver assembly
US5209776A (en) 1990-07-27 1993-05-11 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5100405A (en) 1990-09-07 1992-03-31 Mclaren Alexander C Locking cap for medical implants
GB9020379D0 (en) 1990-09-18 1990-10-31 Femcare Ltd Suture apparatus
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
US5266325A (en) 1990-09-28 1993-11-30 Hydro Med Science Division Of National Patent Development Corp. Preparation of homogeneous hydrogel copolymers
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5051049A (en) 1990-10-29 1991-09-24 Wills Kevin P Sticky nut fastener
US5085661A (en) 1990-10-29 1992-02-04 Gerald Moss Surgical fastener implantation device
CA2366361C (en) 1990-10-30 2003-01-14 Bristol-Myers Squibb Company Orthopaedic implant device
US5685820A (en) 1990-11-06 1997-11-11 Partomed Medizintechnik Gmbh Instrument for the penetration of body tissue
US5372146A (en) 1990-11-06 1994-12-13 Branch; Thomas P. Method and apparatus for re-approximating tissue
US5203787A (en) 1990-11-19 1993-04-20 Biomet, Inc. Suture retaining arrangement
US5085660A (en) 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US5098434A (en) 1990-11-28 1992-03-24 Boehringer Mannheim Corporation Porous coated bone screw
US5192326A (en) 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5047055A (en) 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5366480A (en) 1990-12-24 1994-11-22 American Cyanamid Company Synthetic elastomeric buttressing pledget
US5234006A (en) 1991-01-18 1993-08-10 Eaton Alexander M Adjustable sutures and method of using the same
US5156613A (en) 1991-02-13 1992-10-20 Interface Biomedical Laboratories Corp. Collagen welding rod material for use in tissue welding
DE4106823C1 (en) 1991-03-04 1992-06-25 Liebscher Kunststofftechnik, 8032 Graefelfing, De
US5098436A (en) 1991-03-07 1992-03-24 Dow Corning Wright Corporation Modular guide for shaping of femur to accommodate intercondylar stabilizing housing and patellar track of implant
US5480403A (en) 1991-03-22 1996-01-02 United States Surgical Corporation Suture anchoring device and method
CA2063159C (en) 1991-03-22 1999-06-15 Thomas W. Sander Orthopedic fastener
US5354298A (en) 1991-03-22 1994-10-11 United States Surgical Corporation Suture anchor installation system
US5720753A (en) 1991-03-22 1998-02-24 United States Surgical Corporation Orthopedic fastener
US5192287A (en) 1991-04-05 1993-03-09 American Cyanamid Company Suture knot tying device
US5147362A (en) 1991-04-08 1992-09-15 Marlowe Goble E Endosteal ligament fixation device
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5258015A (en) 1991-05-03 1993-11-02 American Cyanamid Company Locking filament caps
US5244619A (en) 1991-05-03 1993-09-14 Burnham Warren R Method of making catheter with irregular inner and/or outer surfaces to reduce travelling friction
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5183464A (en) 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
EP0520177B1 (en) 1991-05-24 1995-12-13 Synthes AG, Chur Resorbable tendon and bone augmentation device
EP0523926A3 (en) 1991-07-15 1993-12-01 Smith & Nephew Richards Inc Prosthetic implants with bioabsorbable coating
US5120175A (en) 1991-07-15 1992-06-09 Arbegast William J Shape memory alloy fastener
US5242461A (en) * 1991-07-22 1993-09-07 Dow Corning Wright Variable diameter rotating recanalization catheter and surgical method
US5234443A (en) * 1991-07-26 1993-08-10 The Regents Of The University Of California Endoscopic knot tying apparatus and methods
US5329846A (en) 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5447503A (en) 1991-08-14 1995-09-05 Cordis Corporation Guiding catheter tip having a tapered tip with an expandable lumen
US5179964A (en) 1991-08-30 1993-01-19 Cook Melvin S Surgical stapling method
US5681572A (en) * 1991-10-18 1997-10-28 Seare, Jr.; William J. Porous material product and process
US5141520A (en) 1991-10-29 1992-08-25 Marlowe Goble E Harpoon suture anchor
EP0545091B1 (en) 1991-11-05 1999-07-07 The Children's Medical Center Corporation Occluder for repair of cardiac and vascular defects
FR2683712B1 (en) 1991-11-18 1995-12-29 Hades PROTECTIVE CAP FOR AN OSTEOSYNTHESIS SPINDLE AND ASSEMBLY COMPRISING THIS CAP AS WELL AS AN ORGAN FOR FIXING IT TO THE SPINDLE.
US5766221A (en) 1991-12-03 1998-06-16 Boston Scientific Technology, Inc. Bone anchor implantation device
US5349956A (en) 1991-12-04 1994-09-27 Apogee Medical Products, Inc. Apparatus and method for use in medical imaging
US5329924A (en) 1991-12-04 1994-07-19 Apogee Medical Products, Inc. Sequential imaging apparatus
US5542423A (en) 1991-12-04 1996-08-06 Apogee Medical Products, Inc. Indexing assembly for joint imaging
US5865834A (en) 1991-12-13 1999-02-02 Mcguire; David A. Coring reamer
US5156616A (en) 1992-02-10 1992-10-20 Meadows Bruce F Apparatus and method for suture attachment
US5154720A (en) 1992-02-19 1992-10-13 Linvatec Corporation Surgical drill guide
US5281235A (en) 1992-02-21 1994-01-25 Habley Medical Technology Corporation Needle manipulator
US5208950A (en) 1992-02-27 1993-05-11 Polytech Netting Industries, L.P. Elastic cord lock
US5171251A (en) 1992-03-02 1992-12-15 Ethicon, Inc. Surgical clip having hole therein and method of anchoring suture
US5217493A (en) 1992-03-11 1993-06-08 Board Of Regents, The University Of Texas System Antibacterial coated medical implants
GB9206018D0 (en) 1992-03-19 1992-04-29 Dall Desmond Meiring Bone fixation system
DE4209425C1 (en) 1992-03-24 1993-09-02 Markus 73563 Moegglingen De Dubberke
FR2689750B1 (en) * 1992-04-10 1997-01-31 Eurosurgical BONE ANCHORING ELEMENT AND SPINAL OSTEOSYNTHESIS DEVICE INCORPORATING SUCH ELEMENTS.
EP0565216B1 (en) 1992-04-10 1999-01-13 aap Implantate AG Medullar nail
US5336231A (en) * 1992-05-01 1994-08-09 Adair Edwin Lloyd Parallel channel fixation, repair and ligation suture device
US5197166A (en) 1992-05-06 1993-03-30 Illinois Tool Works Inc. Cord closure
US5258007A (en) 1992-05-14 1993-11-02 Robert F. Spetzler Powered surgical instrument
IT1259100B (en) 1992-05-20 1996-03-11 Lanfranco Callegaro USE OF HYDROGELS FOR THE LOCKING OF PROSTHETIC SYSTEMS
US5180385A (en) 1992-05-21 1993-01-19 Sidney Sontag Suturing assembly and method
US5176682A (en) 1992-06-01 1993-01-05 Chow James C Y Surgical implement
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5797931A (en) 1992-06-04 1998-08-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5383883A (en) 1992-06-07 1995-01-24 Wilk; Peter J. Method for ultrasonically applying a surgical device
US5779706A (en) 1992-06-15 1998-07-14 Medicon Eg Surgical system
US5290281A (en) 1992-06-15 1994-03-01 Medicon Eg Surgical system
FR2692467B1 (en) 1992-06-23 1994-12-16 Laboureau Jacques Ancillary instrumentation for the reconstruction of the posterior cruciate ligament of the knee.
US5478351A (en) 1992-06-24 1995-12-26 Microsurge, Inc. Endoscopic surgical tool with handle and detachable tool assembly
US5330486A (en) 1992-07-29 1994-07-19 Wilk Peter J Laparoscopic or endoscopic anastomosis technique and associated instruments
US5800537A (en) 1992-08-07 1998-09-01 Tissue Engineering, Inc. Method and construct for producing graft tissue from an extracellular matrix
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5593625A (en) 1992-08-11 1997-01-14 Phenix Biocomposites, Inc. Biocomposite material and method of making
GB9217578D0 (en) 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5254113A (en) 1992-08-31 1993-10-19 Wilk Peter J Anastomosis method
US5397311A (en) 1992-09-09 1995-03-14 Menlo Care, Inc. Bloodless splittable introducer
US5236438A (en) 1992-09-10 1993-08-17 Wilk Peter J Method and assembly for repairing liver laceration
CA2437773C (en) 1992-09-21 2005-02-22 United States Surgical Corporation Device for applying a meniscal staple
FR2696338B1 (en) 1992-10-07 1997-10-17 Max Perrin ARTIFICIAL LIGAMENT AND ITS PRESENTATION MODE.
AU4682093A (en) 1992-10-08 1994-05-09 Abbott Laboratories Laparoscopic jejunostomy instrumentation kit
WO1994008515A1 (en) 1992-10-09 1994-04-28 Li Medical Technologies, Inc. Suture throw rundown tool
US5383905A (en) 1992-10-09 1995-01-24 United States Surgical Corporation Suture loop locking device
US5282832A (en) 1992-10-09 1994-02-01 United States Surgical Corporation Suture clip
US5328480A (en) 1992-10-09 1994-07-12 Cook Incorporated Vascular wire guiode introducer and method of use
US6090072A (en) 1992-10-15 2000-07-18 Scimed Life Systems, Inc. Expandable introducer sheath
US5580344A (en) 1992-10-22 1996-12-03 Hasson; Harrith M. Incision converter & method of using the same
US5449382A (en) 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5354302A (en) 1992-11-06 1994-10-11 Ko Sung Tao Medical device and method for facilitating intra-tissue visual observation and manipulation of distensible tissues
CA2102084A1 (en) 1992-11-09 1994-05-10 Howard C. Topel Surgical cutting instrument for coring tissue affixed thereto
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5370646A (en) 1992-11-16 1994-12-06 Reese; H. William Bone clamp and installation tool
US5312410A (en) * 1992-12-07 1994-05-17 Danek Medical, Inc. Surgical cable tensioner
US5417699A (en) * 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5413585A (en) 1992-12-22 1995-05-09 Pagedas; Anthony C. Self locking suture lock
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5456722A (en) 1993-01-06 1995-10-10 Smith & Nephew Richards Inc. Load bearing polymeric cable
US5496318A (en) 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
JPH06233792A (en) 1993-01-08 1994-08-23 Keisuke Hirata Drum membrane performation prosthetic material and prum membrane rear surface cutting means
US5961499A (en) 1993-02-04 1999-10-05 Peter M. Bonutti Expandable cannula
US6338730B1 (en) 1993-02-04 2002-01-15 Peter M. Bonutti Method of using expandable cannula
US5320611A (en) 1993-02-04 1994-06-14 Peter M. Bonutti Expandable cannula having longitudinal wire and method of use
US5814073A (en) 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5674240A (en) 1993-02-04 1997-10-07 Peter M. Bonutti Expandable cannula
US5306301A (en) 1993-02-11 1994-04-26 American Cyanamid Company Graft attachment device and method of using same
US5380334A (en) 1993-02-17 1995-01-10 Smith & Nephew Dyonics, Inc. Soft tissue anchors and systems for implantation
US5609595A (en) 1993-03-25 1997-03-11 Pennig; Dietmar Fixation pin for small-bone fragments
US5417701A (en) 1993-03-30 1995-05-23 Holmed Corporation Surgical instrument with magnetic needle holder
US5441538A (en) 1993-04-12 1995-08-15 Bonutti; Peter M. Bone implant and method of securing
US5534028A (en) 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5449361A (en) * 1993-04-21 1995-09-12 Amei Technologies Inc. Orthopedic cable tensioner
US5540698A (en) * 1993-04-21 1996-07-30 Amei Technologies Inc. System and method for securing a medical cable
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5403348A (en) 1993-05-14 1995-04-04 Bonutti; Peter M. Suture anchor
US5464426A (en) 1993-05-14 1995-11-07 Bonutti; Peter M. Method of closing discontinuity in tissue
US5845645A (en) 1993-05-14 1998-12-08 Bonutti; Peter M. Method of anchoring a suture
US5549630A (en) 1993-05-14 1996-08-27 Bonutti; Peter M. Method and apparatus for anchoring a suture
EP1038503B1 (en) 1993-06-04 2003-08-27 Smith & Nephew, Inc. Surgical fastener
US5505735A (en) 1993-06-10 1996-04-09 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
CA2124996C (en) 1993-06-21 2006-01-31 Thomas W. Sander Orthopedic fastener applicator
US5522844A (en) 1993-06-22 1996-06-04 Johnson; Lanny L. Suture anchor, suture anchor installation device and method for attaching a suture to a bone
US5304119A (en) 1993-06-24 1994-04-19 Monsanto Company Instrument for injecting implants through animal hide
US5500000A (en) 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5562687A (en) 1993-07-12 1996-10-08 Mitek Surgical Products, Inc. Surgical repair kit and its method of use
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5830125A (en) 1993-08-12 1998-11-03 Scribner-Browne Medical Design Incorporated Catheter introducer with suture capability
US5507754A (en) 1993-08-20 1996-04-16 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
US5496335A (en) 1993-08-25 1996-03-05 Inlet Medical, Inc. Insertable suture passing grasping probe and methodology for using same
US5899911A (en) 1993-08-25 1999-05-04 Inlet Medical, Inc. Method of using needle-point suture passer to retract and reinforce ligaments
US5466262A (en) 1993-08-30 1995-11-14 Saffran; Bruce N. Malleable fracture stabilization device with micropores for directed drug delivery
US5540718A (en) 1993-09-20 1996-07-30 Bartlett; Edwin C. Apparatus and method for anchoring sutures
US5395308A (en) 1993-09-24 1995-03-07 Kimberly-Clark Corporation Thermoplastic applicator exhibiting accelerated breakup when immersed in water
US5499982A (en) 1993-09-28 1996-03-19 Adamson; Paul H. Surgical pin protector
US5591206A (en) 1993-09-30 1997-01-07 Moufarr+E,Gra E+Ee Ge; Richard Method and device for closing wounds
US5423796A (en) 1993-10-08 1995-06-13 United States Surgical Corporation Trocar with electrical tissue penetration indicator
US5330468A (en) * 1993-10-12 1994-07-19 Burkhart Stephen S Drill guide device for arthroscopic surgery
US5431670A (en) 1993-10-13 1995-07-11 Hol-Med Corporation Surgical suturing instrument
US5584835A (en) 1993-10-18 1996-12-17 Greenfield; Jon B. Soft tissue to bone fixation device and method
US5618290A (en) 1993-10-19 1997-04-08 W.L. Gore & Associates, Inc. Endoscopic suture passer and method
US5405359A (en) 1994-04-29 1995-04-11 Pierce; Javi Toggle wedge
US5324308A (en) 1993-10-28 1994-06-28 Javin Pierce Suture anchor
US5370660A (en) 1993-11-01 1994-12-06 Cordis Corporation Apparatus and method for delivering a vessel plug into the body of a patient
US5376126A (en) 1993-11-12 1994-12-27 Lin; Chih-I Artificial acetabular joint replacing device
JP3398200B2 (en) 1993-11-24 2003-04-21 テルモ株式会社 Needle holder
US5545180A (en) 1993-12-13 1996-08-13 Ethicon, Inc. Umbrella-shaped suture anchor device with actuating ring member
US5618314A (en) 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
US5527342A (en) 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
ATE260924T1 (en) 1993-12-29 2004-03-15 Syngenta Participations Ag VINYLCARBOXAMIDE DERIVATIVES AS INSECTICIDES AND ACARICIDES
US5643293A (en) 1993-12-29 1997-07-01 Olympus Optical Co., Ltd. Suturing instrument
US5391173A (en) 1994-02-10 1995-02-21 Wilk; Peter J. Laparoscopic suturing technique and associated device
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
IL108659A (en) * 1994-02-16 1997-11-20 Noga Eng Ltd Reversible countersink
US5417712A (en) 1994-02-17 1995-05-23 Mitek Surgical Products, Inc. Bone anchor
US5466243A (en) 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
CA2141911C (en) 1994-02-24 2002-04-23 Jude S. Sauer Surgical crimping device and method of use
DE4406323C2 (en) 1994-02-27 1997-07-17 Hahn Rainer Ultrasonic handpiece for the abrasive treatment of natural hard tissues as well as tooth and bone replacement materials
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5720747A (en) 1994-03-11 1998-02-24 Burke; Dennis W. Apparatus for crimping a surgical wire
FR2717368A1 (en) 1994-03-16 1995-09-22 Iserin Alain Anchor for securing object to bone, e.g. artificial limbs
US5649955A (en) 1994-03-17 1997-07-22 Terumo Kabushiki Kaisha Surgical instrument
US5486197A (en) 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5569253A (en) * 1994-03-29 1996-10-29 Danek Medical, Inc. Variable-angle surgical cable crimp assembly and method
US5411523A (en) 1994-04-11 1995-05-02 Mitek Surgical Products, Inc. Suture anchor and driver combination
US5531759A (en) 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5545178A (en) 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5472444A (en) 1994-05-13 1995-12-05 Acumed, Inc. Humeral nail for fixation of proximal humeral fractures
US5470337A (en) 1994-05-17 1995-11-28 Moss; Gerald Surgical fastener
AU2647795A (en) 1994-05-25 1995-12-18 American Cyanamid Company Vertebral fusion system with expandable anchor
US5630824A (en) 1994-06-01 1997-05-20 Innovasive Devices, Inc. Suture attachment device
US5464424A (en) 1994-06-27 1995-11-07 O'donnell, Jr.; Francis E. Laser adjustable suture
US5681310A (en) 1994-07-20 1997-10-28 Yuan; Hansen A. Vertebral auxiliary fixation device having holding capability
FR2722980B1 (en) 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
US5474554A (en) 1994-07-27 1995-12-12 Ku; Ming-Chou Method for fixation of avulsion fracture
US5573542A (en) 1994-08-17 1996-11-12 Tahoe Surgical Instruments-Puerto Rico Endoscopic suture placement tool
US5792096A (en) 1994-08-22 1998-08-11 Kiberly-Clark Worldwide, Inc. Tampon applicator having an improved pleated tip
US5462558A (en) 1994-08-29 1995-10-31 United States Surgical Corporation Suture clip applier
US5529075A (en) 1994-09-12 1996-06-25 Clark; David Fixation device and method for repair of pronounced hallux valgus
US5626718A (en) 1994-09-16 1997-05-06 Betz Laboratories, Inc. Use of polymers in the recycled fiber washing/deinking process
US5522845A (en) 1994-09-27 1996-06-04 Mitek Surgical Products, Inc. Bone anchor and bone anchor installation
US5569252A (en) 1994-09-27 1996-10-29 Justin; Daniel F. Device for repairing a meniscal tear in a knee and method
AU3683995A (en) 1994-09-28 1996-04-19 Innovasive Devices, Inc. Suture tensioning device
US5464427A (en) 1994-10-04 1995-11-07 Synthes (U.S.A.) Expanding suture anchor
US5681351A (en) 1994-10-21 1997-10-28 Ethicon, Inc. Suture clip suitable for use on monofilament sutures
US5504977A (en) 1994-10-24 1996-04-09 Newell Operating Company Device for releasably holding cords
US5601595A (en) 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods
FR2726755A1 (en) 1994-11-10 1996-05-15 Kehyayan Georges TEMPORARY LOCKING DEVICE FOR TWO PARTS OF A BONE PART
US5649963A (en) 1994-11-10 1997-07-22 Innovasive Devices, Inc. Suture anchor assembly and methods
CA2206099C (en) 1994-12-02 2007-02-06 Omeros Medical Systems, Inc. Tendon and ligament repair system
WO1996018363A1 (en) 1994-12-08 1996-06-20 Vanderbilt University Low profile intraosseous anterior spinal fusion system and method
US5584839A (en) * 1994-12-12 1996-12-17 Gieringer; Robert E. Intraarticular drill guide and arthroscopic methods
US5545206A (en) 1994-12-22 1996-08-13 Ventritex, Inc. Low profile lead with automatic tine activation
US5643295A (en) 1994-12-29 1997-07-01 Yoon; Inbae Methods and apparatus for suturing tissue
US5665109A (en) 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
FR2728779B1 (en) 1995-01-02 1997-07-18 Caffiniere Jean Yves De DEVICE FOR ANCHORING BY IMPACTION IN THE SPONGIOUS BONE OF THE FIXATION THREADS USED IN SURGERY
US5693055A (en) 1995-01-03 1997-12-02 Zahiri; Christopher A. Odd angle internal bone fixation device
DE19503011C2 (en) 1995-01-31 1997-11-27 Johnson & Johnson Gmbh Tampon applicator and method and device for its manufacture
US6348056B1 (en) 1999-08-06 2002-02-19 Scimed Life Systems, Inc. Medical retrieval device with releasable retrieval basket
US5584860A (en) 1995-02-15 1996-12-17 Mitek Surgical Products, Inc. Suture anchor loader and driver
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5634926A (en) 1995-04-25 1997-06-03 Jobe; Richard P. Surgical bone fixation apparatus
US5651377A (en) 1995-05-22 1997-07-29 O'donnell, Jr.; Francis E. Laser adjustable suture
US7128763B1 (en) 1995-05-26 2006-10-31 Gerald Blatt Joint treating method
US5569306A (en) 1995-06-06 1996-10-29 Thal; Raymond Knotless suture anchor assembly
US6086608A (en) 1996-02-22 2000-07-11 Smith & Nephew, Inc. Suture collet
US5730747A (en) 1995-06-07 1998-03-24 Smith & Nephew, Inc. Suture passing forceps
US5667513A (en) 1995-06-07 1997-09-16 Smith & Nephew Dyonics Inc. Soft tissue anchor delivery apparatus
WO1996039974A1 (en) 1995-06-07 1996-12-19 Implex Corporation Femoral head core channel filling prosthesis
US6017321A (en) 1995-06-08 2000-01-25 Boone; Jeffrey S. Tampon reminder
FI101933B (en) 1995-06-13 1998-09-30 Biocon Oy Joint prosthesis
FR2736257A1 (en) 1995-07-03 1997-01-10 Bertholet Maurice Surgical live tissue anchor - has pointed tip and retainer with shape memory effect formed with two vanes
US5945002A (en) 1995-09-01 1999-08-31 Water Research Committe Method of producing secondary metabolites
GB2306110A (en) 1995-09-20 1997-04-30 Olusola Olumide Akindele Oni Suture Anchor Installation Device
US5866634A (en) 1995-09-25 1999-02-02 Shin-Etsu Chemical Co., Ltd Biodegradable polymer compositions and shrink films
DE19536605A1 (en) 1995-09-30 1997-04-03 Bosch Gmbh Robert Accelerator pedal module
US6068637A (en) 1995-10-03 2000-05-30 Cedar Sinai Medical Center Method and devices for performing vascular anastomosis
EP0773004A1 (en) 1995-11-07 1997-05-14 IMPLANTS ORTHOPEDIQUES TOUTES APPLICATIONS, S.A.R.L. dite: Osteotomy plate for angle correction
US5681333A (en) * 1995-11-08 1997-10-28 Arthrex, Inc. Method and apparatus for arthroscopic rotator cuff repair utilizing bone tunnels for suture attachment
US5843084A (en) 1995-11-17 1998-12-01 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5688283A (en) 1995-11-17 1997-11-18 Knapp; John G. Drill guide for mandibular staple transosseous implants
US5824009A (en) 1995-12-06 1998-10-20 Kabushiki Kaisha Matsutani Seisakusho Guide instrument for a medical needle with thread
US5725556A (en) 1995-12-15 1998-03-10 M & R Medical, Inc. Suture locking apparatus
US5752974A (en) 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5626614A (en) 1995-12-22 1997-05-06 Applied Medical Resources Corporation T-anchor suturing device and method for using same
US5817107A (en) 1995-12-28 1998-10-06 Schaller; Guenter Grasping instrument with a guided-on, attachable modified knot pusher
US5645597A (en) 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5810853A (en) 1996-01-16 1998-09-22 Yoon; Inbae Knotting element for use in suturing anatomical tissue and methods therefor
US5980520A (en) 1996-01-16 1999-11-09 Vancaillie; Thierry G. Desiccation electrode
US5662658A (en) 1996-01-19 1997-09-02 Mitek Surgical Products, Inc. Bone anchor inserter, method for loading same, method for holding and delivering a bone anchor, and method for inserting a bone anchor in a bone
US5741282A (en) 1996-01-22 1998-04-21 The Anspach Effort, Inc. Soft tissue fastener device
US5725541A (en) 1996-01-22 1998-03-10 The Anspach Effort, Inc. Soft tissue fastener device
IL116891A0 (en) 1996-01-24 1996-05-14 Ovil Joel Surgical implement particularly useful for implanting prosthetic valves
US5702462A (en) 1996-01-24 1997-12-30 Oberlander; Michael Method of meniscal repair
US5697950A (en) 1996-02-07 1997-12-16 Linvatec Corporation Pre-loaded suture anchor
WO1997029708A1 (en) 1996-02-14 1997-08-21 Walter Lorenz Surgical, Inc. Bone fastener and instrument for insertion thereof
US5957953A (en) 1996-02-16 1999-09-28 Smith & Nephew, Inc. Expandable suture anchor
US5702397A (en) 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5817095A (en) * 1996-02-22 1998-10-06 Smith & Nephew, Inc. Undercutting surgical instrument
US5891160A (en) * 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
US5735877A (en) 1996-02-28 1998-04-07 Pagedas; Anthony C. Self locking suture lock
US5921967A (en) 1996-02-29 1999-07-13 Medi-Ject Corporation Plunger for nozzle assembly
US5839899A (en) 1996-03-01 1998-11-24 Robinson; Dane Q. Method and apparatus for growing jaw bone utilizing a guided-tissue regeneration plate support and fixation system
US5681352A (en) 1996-03-06 1997-10-28 Kinetikos Medical Incorporated Method and apparatus for anchoring surgical ties to bone
US5919193A (en) 1996-03-14 1999-07-06 Slavitt; Jerome A. Method and kit for surgically correcting malformations in digits of a finger or toe
US5823994A (en) 1996-03-15 1998-10-20 Oratec Interventions, Inc. Method and apparatus for soft tissue fixation
US5713921A (en) 1996-03-29 1998-02-03 Bonutti; Peter M. Suture anchor
US5868749A (en) 1996-04-05 1999-02-09 Reed; Thomas M. Fixation devices
US6125574A (en) 1996-05-20 2000-10-03 The Noknots Group, Incorporated Fishing line fastener
US6126677A (en) 1996-05-20 2000-10-03 Noknots Group Inc. Suture fastener and instrument
FR2750031B1 (en) 1996-06-19 1998-09-18 Martin Jean Jacques BONE ANCHORING DEVICE FOR SUTURE WIRE AND INSTRUMENT FOR THE IMPLEMENTATION OF THIS DEVICE
US5843178A (en) 1996-06-20 1998-12-01 St. Jude Medical, Inc. Suture guard for annuloplasty ring
US5919208A (en) 1996-06-27 1999-07-06 Valenti; Gabriele Suture block for surgical sutures
US5782862A (en) 1996-07-01 1998-07-21 Bonutti; Peter M. Suture anchor inserter assembly and method
US5925064A (en) 1996-07-01 1999-07-20 University Of Massachusetts Fingertip-mounted minimally invasive surgical instruments and methods of use
US5904147A (en) 1996-08-16 1999-05-18 University Of Massachusetts Intravascular catheter and method of controlling hemorrhage during minimally invasive surgery
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
US6007567A (en) 1996-08-19 1999-12-28 Bonutti; Peter M. Suture anchor
US5810884A (en) 1996-09-09 1998-09-22 Beth Israel Deaconess Medical Center Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject
GB9619787D0 (en) 1996-09-20 1996-11-06 Surgicarft Ltd Surgical fixation system
US5948001A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
US5948000A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
CA2217435C (en) 1996-10-04 2006-08-29 United States Surgical Corporation Tissue fastener implantation apparatus and method
US5891166A (en) 1996-10-30 1999-04-06 Ethicon, Inc. Surgical suture having an ultrasonically formed tip, and apparatus and method for making same
US6602293B1 (en) 1996-11-01 2003-08-05 The Johns Hopkins University Polymeric composite orthopedic implant
US5782831A (en) * 1996-11-06 1998-07-21 Sdgi Holdings, Inc. Method an device for spinal deformity reduction using a cable and a cable tensioning system
US5948002A (en) 1996-11-15 1999-09-07 Bonutti; Peter M. Apparatus and method for use in positioning a suture anchor
US5814072A (en) 1996-11-15 1998-09-29 Bonutti; Peter M. Method and apparatus for use in anchoring a suture
US6159224A (en) 1996-11-27 2000-12-12 Yoon; Inbae Multiple needle suturing instrument and method
US6494848B1 (en) 1996-12-19 2002-12-17 St. Jude Medical Puerto Rico B.V. Measuring device for use with a hemostatic puncture closure device
US5961554A (en) 1996-12-31 1999-10-05 Janson; Frank S Intervertebral spacer
US6083522A (en) 1997-01-09 2000-07-04 Neucoll, Inc. Devices for tissue repair and methods for preparation and use thereof
US5707395A (en) 1997-01-16 1998-01-13 Li Medical Technologies, Inc. Surgical fastener and method and apparatus for ligament repair
WO1998032386A1 (en) 1997-01-22 1998-07-30 Synthes Ag Chur Device for connecting a longitudinal bar to a pedicle screw
US5931838A (en) 1997-01-28 1999-08-03 Vito; Raymond P. Fixation assembly for orthopedic applications
US5709708A (en) 1997-01-31 1998-01-20 Thal; Raymond Captured-loop knotless suture anchor assembly
US5769894A (en) 1997-02-05 1998-06-23 Smith & Nephew, Inc. Graft attachment device and method of attachment
US5954057A (en) * 1997-02-12 1999-09-21 Li Medical Technologies, Inc. Soft tissue suspension clip, clip assembly, emplacement tool and method
US5918604A (en) 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
US6228086B1 (en) 1997-03-19 2001-05-08 Stryker Trauma-Selzach Ag Modular intramedullary nail
DK0968373T3 (en) 1997-03-21 2004-06-01 Woodwelding Ag Method of anchoring connecting elements in a material with pores or voids and connecting elements to the anchoring
US5947982A (en) 1997-04-02 1999-09-07 Smith & Nephew, Inc. Suture-passing forceps
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US5908429A (en) 1997-05-01 1999-06-01 Yoon; Inbae Methods of anatomical tissue ligation
DE19722062C2 (en) 1997-05-27 1999-07-08 Storz Karl Gmbh & Co Detachable medical instrument with self-orienting coupling
US5810849A (en) 1997-06-09 1998-09-22 Cardiologics, L.L.C. Device and method for suturing blood vessels and the like
US5944750A (en) 1997-06-30 1999-08-31 Eva Corporation Method and apparatus for the surgical repair of aneurysms
US5851185A (en) 1997-07-02 1998-12-22 Cabot Technology Corporation Apparatus for alignment of tubular organs
US6692499B2 (en) 1997-07-02 2004-02-17 Linvatec Biomaterials Oy Surgical fastener for tissue treatment
US5874235A (en) 1997-07-18 1999-02-23 The Johns Hopkins University Screening assays for cancer chemopreventative agents
US5919194A (en) 1997-07-21 1999-07-06 Anderson; David L. Orthopaedic implant
US5931869A (en) 1997-07-23 1999-08-03 Arthrotek, Inc. Apparatus and method for tibial fixation of soft tissue
US5899921A (en) 1997-07-25 1999-05-04 Innovasive Devices, Inc. Connector device and method for surgically joining and securing flexible tissue repair members
US6159234A (en) 1997-08-01 2000-12-12 Peter M. Bonutti Method and apparatus for securing a suture
US5871514A (en) 1997-08-01 1999-02-16 Medtronic, Inc. Attachment apparatus for an implantable medical device employing ultrasonic energy
US20050216059A1 (en) 2002-09-05 2005-09-29 Bonutti Peter M Method and apparatus for securing a suture
US6010525A (en) 1997-08-01 2000-01-04 Peter M. Bonutti Method and apparatus for securing a suture
US6475230B1 (en) 1997-08-01 2002-11-05 Peter M. Bonutti Method and apparatus for securing a suture
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
US5893880A (en) 1997-08-28 1999-04-13 Axya Medical Inc. Fused loop filamentous material
US6217591B1 (en) 1997-08-28 2001-04-17 Axya Medical, Inc. Suture fastening device
US6286746B1 (en) 1997-08-28 2001-09-11 Axya Medical, Inc. Fused loop of filamentous material and apparatus for making same
US5984929A (en) 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US6267761B1 (en) 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
US6149669A (en) 1997-10-30 2000-11-21 Li Medical Technologies, Inc. Surgical fastener assembly method of use
US6099552A (en) 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6120511A (en) * 1997-11-18 2000-09-19 Chan; Kwan-Ho Drill guide assembly and method for producing a bone tunnel
FR2771621A1 (en) 1997-11-28 1999-06-04 Eos Medical Impact driver for surgical bone implants
JPH11178833A (en) 1997-12-24 1999-07-06 Olympus Optical Co Ltd Ultrasonic treatment implement
US6033429A (en) 1998-01-13 2000-03-07 Cardiac Assist Technologies, Inc. System, apparatus and method for closing severed bone or tissue of a patient
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
US5921986A (en) 1998-02-06 1999-07-13 Bonutti; Peter M. Bone suture
US6045551A (en) 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
FR2774580B1 (en) 1998-02-06 2000-09-08 Laurent Fumex BONE ANCHORING SURGICAL DEVICE
US6352543B1 (en) 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
WO1999040865A1 (en) 1998-02-13 1999-08-19 Chugai Seiyaku Kabushikikaisha Bone fixing pin
FR2775183B1 (en) 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
US5928239A (en) * 1998-03-16 1999-07-27 University Of Washington Percutaneous surgical cavitation device and method
AU3812099A (en) 1998-04-01 1999-10-18 Bionx Implants Oy Bioabsorbable surgical fastener for tissue treatment
US6056751A (en) 1998-04-16 2000-05-02 Axya Medical, Inc. Sutureless soft tissue fixation assembly
US6106545A (en) 1998-04-16 2000-08-22 Axya Medical, Inc. Suture tensioning and fixation device
US5964765A (en) 1998-04-16 1999-10-12 Axya Medical, Inc. Soft tissue fixation device
US5941901A (en) 1998-04-16 1999-08-24 Axya Medical, Inc. Bondable expansion plug for soft tissue fixation
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
EP1078238A2 (en) 1998-05-15 2001-02-28 Robin Medical Inc. Method and apparatus for generating controlled torques on objects particularly objects inside a living body
WO1999060837A2 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Bone blocks and methods for inserting
US6224630B1 (en) 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US5968046A (en) 1998-06-04 1999-10-19 Smith & Nephew, Inc. Provisional fixation pin
US5951590A (en) 1998-06-09 1999-09-14 Goldfarb; Michael A. Soft tissue suture anchor
US6059797A (en) * 1998-06-17 2000-05-09 Ensurg, Inc. Self-disposing ligating band dispenser
US5993477A (en) 1998-06-25 1999-11-30 Ethicon Endo-Surgery, Inc. Ultrasonic bone anchor
US5993458A (en) * 1998-06-25 1999-11-30 Ethicon, Inc. Method of ultrasonically embedding bone anchors
US6086593A (en) 1998-06-30 2000-07-11 Bonutti; Peter M. Method and apparatus for use in operating on a bone
US6423088B1 (en) 1998-07-08 2002-07-23 Axya Medical, Inc. Sharp edged device for closing wounds without knots
US6409743B1 (en) 1998-07-08 2002-06-25 Axya Medical, Inc. Devices and methods for securing sutures and ligatures without knots
US6174324B1 (en) * 1998-07-13 2001-01-16 Axya Medical, Inc. Suture guide and fastener
US5940942A (en) 1998-07-28 1999-08-24 Fong; Mervin Fabric holder
WO2000007527A1 (en) 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6355066B1 (en) 1998-08-19 2002-03-12 Andrew C. Kim Anterior cruciate ligament reconstruction hamstring tendon fixation system
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
US6066166A (en) 1998-08-28 2000-05-23 Medtronic, Inc. Medical electrical lead
US6010526A (en) 1998-09-18 2000-01-04 Medtronic, Inc. Epicardial lead implant tool and method of use
FR2785171B1 (en) 1998-10-29 2001-01-19 Maurice Bertholet INTRA-BONE FASTENING METHOD AND DEVICE AND PERCUSSION SYSTEM FOR SUCH A DEVICE
US6066160A (en) 1998-11-23 2000-05-23 Quickie Llc Passive knotless suture terminator for use in minimally invasive surgery and to facilitate standard tissue securing
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
US6306159B1 (en) 1998-12-23 2001-10-23 Depuy Orthopaedics, Inc. Meniscal repair device
EP1016377B1 (en) 1998-12-30 2006-04-26 Ethicon Inc. Suture locking device
US6155756A (en) 1998-12-30 2000-12-05 Musculoskeletal Transplant Foundation Thread forming machine for bone material
EP2055244B1 (en) 1998-12-31 2012-02-01 Kensey Nash Corporation Tissue fastening devices
US6179850B1 (en) 1999-01-07 2001-01-30 Tushar Madhu Goradia Method and apparatus for modulating flow in biological conduits
DE19900284B4 (en) 1999-01-07 2008-02-07 Ingo Prof. Dr. Schmidt-Wolf Method for the efficient introduction of DNA into eukaryotic cells using an adenoviral vector
US6224593B1 (en) 1999-01-13 2001-05-01 Sherwood Services Ag Tissue sealing using microwaves
US5989256A (en) * 1999-01-19 1999-11-23 Spineology, Inc. Bone fixation cable ferrule
DE19902844C1 (en) 1999-01-20 1999-11-18 Kendall Med Erzeugnisse Gmbh Vaporizer for medicine, for inhalation purposes
US6080161A (en) 1999-03-19 2000-06-27 Eaves, Iii; Felmont F. Fastener and method for bone fixation
CR5992A (en) 1999-03-23 1999-06-08 Luis Orlich Bolmarcich Jose EXTERNAL UNILATERAL TUTOR FOR FIXATION, COMPRESSION OF FRACTURES OR DIAPHISIARIZATION IN HUMAN OSEO TISSUE
US6981983B1 (en) 1999-03-31 2006-01-03 Rosenblatt Peter L System and methods for soft tissue reconstruction
US6077277A (en) * 1999-04-05 2000-06-20 Starion Instruments, Inc. Suture welding device
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
DE19916155A1 (en) 1999-04-11 2000-11-16 Orochemie Duerr & Pflug Gmbh & Suspension for the treatment of natural hard tissue
DE19916161B4 (en) 1999-04-11 2008-06-05 Dürr Dental GmbH & Co. KG Device for generating high-frequency mechanical oscillations for a dental handpiece
DE19916156A1 (en) 1999-04-11 2000-10-26 Duerr Dental Gmbh Co Kg Dental instrument for sonic or ultrasound treatment
AU4810800A (en) 1999-04-26 2000-11-10 Li Medical Technologies, Inc. Prosthetic apparatus and method
US6805697B1 (en) 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
ATE400228T1 (en) 1999-05-12 2008-07-15 Zimmer Gmbh LOCKING NAIL FOR THE TREATMENT OF FEMUR SHAFT FRACTURES
US6050998A (en) 1999-05-21 2000-04-18 Stephen A. Fletcher Bone fastener
US7273497B2 (en) 1999-05-28 2007-09-25 Anova Corp. Methods for treating a defect in the annulus fibrosis
US6245107B1 (en) * 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
FR2794365A1 (en) 1999-06-04 2000-12-08 Oreal KERATIN FIBER OXIDATION DYEING COMPOSITION AND DYEING METHOD USING THE SAME
US7018380B2 (en) 1999-06-10 2006-03-28 Cole J Dean Femoral intramedullary rod system
CH694058A5 (en) 1999-06-18 2004-06-30 Woodwelding Ag Fabric conclusive Connect.
US6419705B1 (en) 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
US6187008B1 (en) 1999-07-07 2001-02-13 Bristol-Myers Squibb Device for temporarily fixing bones
US6179840B1 (en) 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
WO2001008717A1 (en) 1999-08-03 2001-02-08 Smith & Nephew, Inc. Controlled release implantable devices
US6592609B1 (en) 1999-08-09 2003-07-15 Bonutti 2003 Trust-A Method and apparatus for securing tissue
US6368343B1 (en) 2000-03-13 2002-04-09 Peter M. Bonutti Method of using ultrasonic vibration to secure body tissue
US6447516B1 (en) 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6200322B1 (en) 1999-08-13 2001-03-13 Sdgi Holdings, Inc. Minimal exposure posterior spinal interbody instrumentation and technique
US6719797B1 (en) 1999-08-13 2004-04-13 Bret A. Ferree Nucleus augmentation with in situ formed hydrogels
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6554852B1 (en) 1999-08-25 2003-04-29 Michael A. Oberlander Multi-anchor suture
DE19941574A1 (en) 1999-09-01 2001-03-08 Storz Karl Gmbh & Co Kg Instruments for implanting a tendon replacement
WO2001019267A1 (en) 1999-09-13 2001-03-22 Synthes Ag Chur Bone plate system
US6783546B2 (en) 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6238396B1 (en) 1999-10-07 2001-05-29 Blackstone Medical, Inc. Surgical cross-connecting apparatus and related methods
US6878167B2 (en) 2002-04-24 2005-04-12 Bret A. Ferree Methods and apparatus for placing intradiscal devices
US7052516B2 (en) * 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
GB9926564D0 (en) * 1999-11-10 2000-01-12 Depuy Int Ltd Bone resection device
US6736829B1 (en) 1999-11-11 2004-05-18 Linvatec Corporation Toggle anchor and tool for insertion thereof
US6641592B1 (en) 1999-11-19 2003-11-04 Lsi Solutions, Inc. System for wound closure
US6709457B1 (en) 1999-11-24 2004-03-23 St. Jude Medical, Inc. Attachment of suture cuff to prosthetic heart valve
US6551304B1 (en) 1999-12-01 2003-04-22 Abbeymoor Medical, Inc. Magnetic retrieval device and method of use
US7153312B1 (en) 1999-12-02 2006-12-26 Smith & Nephew Inc. Closure device and method for tissue repair
US6702821B2 (en) 2000-01-14 2004-03-09 The Bonutti 2003 Trust A Instrumentation for minimally invasive joint replacement and methods for using same
US7104996B2 (en) 2000-01-14 2006-09-12 Marctec. Llc Method of performing surgery
US6770078B2 (en) 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6552301B2 (en) 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
US6557426B2 (en) 2000-02-01 2003-05-06 Richard L. Reinemann, Jr. Method and apparatus for testing suture anchors
US6264675B1 (en) 2000-02-04 2001-07-24 Gregory R. Brotz Single suture structure
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US20020133155A1 (en) * 2000-02-25 2002-09-19 Ferree Bret A. Cross-coupled vertebral stabilizers incorporating spinal motion restriction
US6423065B2 (en) * 2000-02-25 2002-07-23 Bret A. Ferree Cross-coupled vertebral stabilizers including cam-operated cable connectors
US6248106B1 (en) * 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US9138222B2 (en) 2000-03-13 2015-09-22 P Tech, Llc Method and device for securing body tissue
US7329263B2 (en) 2000-03-13 2008-02-12 Marctec, Llc Method and device for securing body tissue
US7094251B2 (en) 2002-08-27 2006-08-22 Marctec, Llc. Apparatus and method for securing a suture
US8932330B2 (en) 2000-03-13 2015-01-13 P Tech, Llc Method and device for securing body tissue
US6623488B1 (en) 2000-03-16 2003-09-23 Leone Innovations Corporation Pelvic alignment assembly
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US6235033B1 (en) 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly
US6551344B2 (en) 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
DE10021122C1 (en) 2000-04-29 2001-11-08 Aesculap Ag & Co Kg Thread anchor system for connecting tissue parts and instrument for inserting an anchor implant
US6679917B2 (en) * 2000-05-01 2004-01-20 Arthrosurface, Incorporated System and method for joint resurface repair
WO2001087165A1 (en) 2000-05-17 2001-11-22 Axya Medical, Inc. Suture welder
CH694122A5 (en) 2000-05-26 2004-07-30 Woodwelding Ag Sealing.
US6823871B2 (en) 2000-06-01 2004-11-30 Arthrex, Inc. Allograft bone or synthetic wedges for osteotomy
US6638310B2 (en) 2000-07-26 2003-10-28 Osteotech, Inc. Intervertebral spacer and implant insertion instrumentation
AU2001260010B2 (en) 2000-07-27 2004-08-26 Synthes Gmbh Cranial flap clamp and instrument for use therewith
US7056321B2 (en) * 2000-08-01 2006-06-06 Endius, Incorporated Method of securing vertebrae
US20020026244A1 (en) 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
AU2001292668A1 (en) 2000-09-12 2002-03-26 Axya Medical, Inc. Apparatus and method for securing suture to bone
US6923824B2 (en) 2000-09-12 2005-08-02 Axya Medical, Inc. Apparatus and method for securing suture to bone
US7001411B1 (en) 2000-09-25 2006-02-21 Dean John C Soft tissue cleat
US6705179B1 (en) 2000-09-29 2004-03-16 Eja Limited Modified rope tensioner
US6618910B1 (en) 2000-10-11 2003-09-16 Illinois Tool Works Inc. Cord clamp
USD477776S1 (en) 2000-10-11 2003-07-29 Illinois Tool Works Inc. Cord clamp
US6733531B1 (en) 2000-10-20 2004-05-11 Sdgi Holdings, Inc. Anchoring devices and implants for intervertebral disc augmentation
US6605090B1 (en) 2000-10-25 2003-08-12 Sdgi Holdings, Inc. Non-metallic implant devices and intra-operative methods for assembly and fixation
US7445634B2 (en) 2000-10-27 2008-11-04 Warsaw Orthopedic, Inc. Annulus repair systems and methods
US6488683B2 (en) * 2000-11-08 2002-12-03 Cleveland Clinic Foundation Method and apparatus for correcting spinal deformity
US6527774B2 (en) 2000-11-08 2003-03-04 The Cleveland Clinic Foundation Apparatus for attaching fractured sections of bone
US6551320B2 (en) * 2000-11-08 2003-04-22 The Cleveland Clinic Foundation Method and apparatus for correcting spinal deformity
AU2002245092A1 (en) * 2000-12-08 2002-07-30 Todd M. Boyce Implant for orthopedic applications
IL140470A0 (en) 2000-12-19 2002-02-10 Friedman Shalom Suturing system
US6503259B2 (en) 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
US7229453B2 (en) * 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
US6645211B2 (en) * 2001-02-07 2003-11-11 Howmedica Osteonics Corp. Orthopedic support system and method of installation
US20050246023A1 (en) 2001-02-13 2005-11-03 Yeung Jeffrey E Disc shunt for treating back pain
US6623487B1 (en) 2001-02-13 2003-09-23 Biomet, Inc. Temperature sensitive surgical fastener
US6827743B2 (en) 2001-02-28 2004-12-07 Sdgi Holdings, Inc. Woven orthopedic implants
US6610080B2 (en) 2001-02-28 2003-08-26 Axya Medical, Inc. Parabolic eyelet suture anchor
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
ES2271212T3 (en) 2001-03-02 2007-04-16 Woodwelding Ag IMPANTS AND DEVICE TO JOIN TISSUE PARTS.
US6568313B2 (en) 2001-03-07 2003-05-27 Smc Kabushiki Kaisha Fluid pressure cylinder apparatus
EP1238637B1 (en) 2001-03-09 2004-07-21 Co-Ligne AG Longitudinal implant
US6802844B2 (en) * 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
US7916013B2 (en) 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US6620195B2 (en) * 2001-04-18 2003-09-16 Medicinelodge, Inc. Apparatus and method for attaching a graft ligament to a bone
US6719795B1 (en) 2001-04-25 2004-04-13 Macropore Biosurgery, Inc. Resorbable posterior spinal fusion system
FI117963B (en) * 2001-04-26 2007-05-15 Eija Marjut Pirhonen Material that replaces bone
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US6679888B2 (en) * 2001-05-29 2004-01-20 Synthes Femur lever
US20020183762A1 (en) 2001-06-01 2002-12-05 Ams Research Corporation Bone anchor inserters and methods
US7033379B2 (en) 2001-06-08 2006-04-25 Incisive Surgical, Inc. Suture lock having non-through bore capture zone
US20020188301A1 (en) * 2001-06-11 2002-12-12 Dallara Mark Douglas Tissue anchor insertion system
JP2003059090A (en) 2001-08-13 2003-02-28 Minebea Co Ltd Information reproducing and recording device for recording medium
US20030040758A1 (en) 2001-08-21 2003-02-27 Yulun Wang Robotically controlled surgical instrument, visual force-feedback
US20050033362A1 (en) 2001-09-13 2005-02-10 Grafton R. Donald High strength suture with collagen fibers
US6916321B2 (en) 2001-09-28 2005-07-12 Ethicon, Inc. Self-tapping resorbable two-piece bone screw
US6712849B2 (en) * 2001-10-01 2004-03-30 Scandius Biomedical, Inc. Apparatus and method for reconstructing a ligament
US6652563B2 (en) 2001-10-02 2003-11-25 Arthrex, Inc. Suture anchor with internal suture loop
US7094242B2 (en) * 2001-10-31 2006-08-22 K2M, Inc. Polyaxial drill guide
US20030097148A1 (en) 2001-11-20 2003-05-22 Tero Valimaa Tissue fastener
US6645227B2 (en) 2001-11-21 2003-11-11 Stryker Endoscopy Suture anchor
US6730092B2 (en) * 2001-12-03 2004-05-04 Pioneer Laboratories, Inc. System and method for bone fixation
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
US6780198B1 (en) 2001-12-06 2004-08-24 Opus Medical, Inc. Bone anchor insertion device
US20030125749A1 (en) 2001-12-27 2003-07-03 Ethicon, Inc. Cannulated screw and associated driver system
WO2003063683A2 (en) 2002-01-26 2003-08-07 Emory University Needle-suture combinations and methods of use
US7575578B2 (en) 2002-02-13 2009-08-18 Karl Storz Gmbh & Co. Kg Surgical drill guide
US20030158555A1 (en) 2002-02-15 2003-08-21 Roy Sanders Surgical screw and tool for its insertion
AU2003217285A1 (en) * 2002-02-25 2003-09-09 Graphion Technologies Usa, Llc Expandable fastener with compressive grips
US7048754B2 (en) * 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
US7572276B2 (en) 2002-05-06 2009-08-11 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for inserting implants
US6893434B2 (en) 2002-05-13 2005-05-17 Axya Medical, Inc. Ultrasonic soft tissue cutting and coagulation systems including a retractable grasper
US7416556B2 (en) 2002-06-06 2008-08-26 Abbott Laboratories Stop-cock suture clamping system
US7192448B2 (en) 2002-06-27 2007-03-20 Ferree Bret A Arthroplasty devices with resorbable component
US7066960B1 (en) 2002-06-28 2006-06-27 Dickman Curtis A Intervertebral disk replacement
US6955540B2 (en) 2002-08-23 2005-10-18 Woodwelding Ag Preparation for being fastened on a natural tooth part or tooth and corresponding fastening method
US7008226B2 (en) 2002-08-23 2006-03-07 Woodwelding Ag Implant, in particular a dental implant
WO2004021866A2 (en) 2002-09-06 2004-03-18 Alleyne Neville D Seal for posterior lateral vertebral disk cavity
US7563275B2 (en) * 2002-10-10 2009-07-21 U.S. Spinal Technologies, Llc Bone fixation implant system and method
US7608094B2 (en) * 2002-10-10 2009-10-27 U.S. Spinal Technologies, Llc Percutaneous facet fixation system
WO2004043271A1 (en) * 2002-11-08 2004-05-27 Sdgi Holdings, Inc. Transpedicular intervertebral disk access methods and devices
US7090690B2 (en) 2002-11-19 2006-08-15 Arthrocare Corporation Devices and methods for repairing soft tissue
WO2004045384A2 (en) * 2002-11-19 2004-06-03 Acumed Llc Guide system for bone-repair devices
US20040186471A1 (en) 2002-12-07 2004-09-23 Sdgi Holdings, Inc. Method and apparatus for intervertebral disc expansion
US6796003B1 (en) 2002-12-20 2004-09-28 David R. Marvel Rope knot system
US20040143334A1 (en) 2003-01-08 2004-07-22 Ferree Bret A. Artificial disc replacements (ADRS) with features to enhance longevity and prevent extrusion
US20040138705A1 (en) 2003-01-09 2004-07-15 Harri Heino Surgical staple for tissue treatment
EP2263584B1 (en) 2003-03-07 2012-09-05 Synthes GmbH Intramedullary nail with locking screw
US7377930B2 (en) 2003-04-02 2008-05-27 Frank Loughran Nerve protecting tube
WO2004093637A2 (en) * 2003-04-17 2004-11-04 Secant Medical, Llc Tool with deployable cutting blade
US7320701B2 (en) * 2003-06-02 2008-01-22 Linvatec Corporation Push-in suture anchor, insertion tool, and method for inserting a push-in suture anchor
US7252685B2 (en) 2003-06-05 2007-08-07 Sdgi Holdings, Inc. Fusion implant and method of making same
US20050043796A1 (en) 2003-07-01 2005-02-24 Grant Richard L. Spinal disc nucleus implant
US7326200B2 (en) 2003-07-25 2008-02-05 Warsaw Orthopedic, Inc. Annulus repair systems, instruments and techniques
US6958077B2 (en) 2003-07-29 2005-10-25 Loubert Suddaby Inflatable nuclear prosthesis
US7708766B2 (en) * 2003-08-11 2010-05-04 Depuy Spine, Inc. Distraction screw
AU2004270128B2 (en) * 2003-09-03 2010-12-23 Kyphon Sarl Devices for creating voids in interior body regions and related methods
US20050055024A1 (en) 2003-09-08 2005-03-10 James Anthony H. Orthopaedic implant and screw assembly
JP4504376B2 (en) 2003-09-18 2010-07-14 ハウメディカ・オステオニクス・コーポレイション Surgical retractor with removable arm
US7341558B2 (en) 2003-09-19 2008-03-11 Medcanica, Llc Pericardial retractor
US20050071012A1 (en) 2003-09-30 2005-03-31 Hassan Serhan Methods and devices to replace spinal disc nucleus pulposus
US7655012B2 (en) 2003-10-02 2010-02-02 Zimmer Spine, Inc. Methods and apparatuses for minimally invasive replacement of intervertebral discs
WO2005037150A1 (en) * 2003-10-16 2005-04-28 Osteotech, Inc. System and method for flexible correction of bony motion segment
WO2005037082A2 (en) 2003-10-17 2005-04-28 Highgate Orthorpedics, Inc. Systems, devices and apparatuses for bony fixation and disk repair and replacement and methods related thereto
EP1694228B1 (en) 2003-10-23 2011-08-31 TRANS1, Inc. Spinal mobility preservation apparatus
US20050090827A1 (en) 2003-10-28 2005-04-28 Tewodros Gedebou Comprehensive tissue attachment system
US7625387B2 (en) 2003-11-05 2009-12-01 Applied Medical Resources Corporation Suture securing device and method
US7217279B2 (en) 2003-11-14 2007-05-15 Ethicon, Inc. Suture loop anchor
AU2006203909A1 (en) * 2003-11-20 2006-07-13 Arthrosurface, Inc. System and method for retrograde procedure
US7597705B2 (en) 2003-12-03 2009-10-06 St. Jude Medical Puerto Rico Llc Vascular puncture seal anchor nest
US7723395B2 (en) 2004-04-29 2010-05-25 Kensey Nash Corporation Compressed porous materials suitable for implant
US6929664B2 (en) 2003-12-05 2005-08-16 Fossa Medical, Inc. Open lumen stents
US20050143826A1 (en) 2003-12-11 2005-06-30 St. Francis Medical Technologies, Inc. Disk repair structures with anchors
AU2004240175B2 (en) 2003-12-17 2011-03-03 Phytogen Seed Company, Llc Cotton cultivar PHY 800 Pima
US7867236B2 (en) * 2003-12-30 2011-01-11 Zimmer, Inc. Instruments and methods for preparing a joint articulation surface for an implant
US20050216087A1 (en) 2004-01-05 2005-09-29 St. Francis Medical Technologies, Inc. Disk repair structures for positioning disk repair material
CA2568937A1 (en) 2004-02-13 2005-09-01 Frantz Medical Development, Ltd Soft tissue repair apparatus and method
US20050192581A1 (en) * 2004-02-27 2005-09-01 Molz Fred J. Radiopaque, coaxial orthopedic tether design and method
US20080039873A1 (en) 2004-03-09 2008-02-14 Marctec, Llc. Method and device for securing body tissue
US20050228413A1 (en) * 2004-04-12 2005-10-13 Binmoeller Kenneth F Automated transluminal tissue targeting and anchoring devices and methods
US7985222B2 (en) 2004-04-21 2011-07-26 Medshape Solutions, Inc. Osteosynthetic implants and methods of use and manufacture
AU2005244848A1 (en) 2004-05-12 2005-12-01 Medivas, Llc Wound healing polymer compositions and methods for use thereof
US7585311B2 (en) * 2004-06-02 2009-09-08 Kfx Medical Corporation System and method for attaching soft tissue to bone
US7179259B1 (en) 2004-06-04 2007-02-20 Biomet Manufacturing Corp. Instrument assembly for lateral implant
US7429264B2 (en) * 2004-06-15 2008-09-30 Warsaw Orthopedic, Inc. Minimally invasive deployable cutting instrument
WO2006001010A1 (en) * 2004-06-24 2006-01-05 T.A.G. Medical Products A Limited Partnership Method and apparatus for repairing separations in the capsular labrum structure
EP1614525A1 (en) 2004-07-07 2006-01-11 Woodwelding AG Method for joining two objects and corresponding joining element
US8852195B2 (en) 2004-07-09 2014-10-07 Zimmer, Inc. Guide templates for surgical implants and related methods
US20060015101A1 (en) 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US20060122704A1 (en) 2004-07-27 2006-06-08 Synthes Inc. Supplementation or replacement of a nucleus pulposus of an intervertebral disc
WO2006015031A2 (en) * 2004-07-28 2006-02-09 Ethicon, Inc. Minimally invasive medical implant and insertion device and method for using the same
US20060026244A1 (en) 2004-07-30 2006-02-02 Xerox Corporation Electronic mail system having a recipient field modifier function
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US7510895B2 (en) 2004-10-29 2009-03-31 Nordson Corporation Inferential temperature control system
US8128658B2 (en) * 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8986345B2 (en) 2004-12-07 2015-03-24 Biomet Sports Medicine, Llc Expanding suture anchor having an actuator pin
US7641694B1 (en) * 2005-01-06 2010-01-05 IMDS, Inc. Line lock graft retention system and method
US20060190081A1 (en) * 2005-02-09 2006-08-24 Gary Kraus Facet stabilization schemes
US9089323B2 (en) 2005-02-22 2015-07-28 P Tech, Llc Device and method for securing body tissue
US8696707B2 (en) * 2005-03-08 2014-04-15 Zyga Technology, Inc. Facet joint stabilization
US20060241629A1 (en) * 2005-04-07 2006-10-26 Zimmer Technology, Inc. Expandable reamer
US8795364B2 (en) * 2005-05-06 2014-08-05 Kensey Nash Corporation System and devices for the repair of a vertebral disc defect
US8021365B2 (en) * 2005-07-11 2011-09-20 Kyphon Sarl Surgical device having interchangeable components and methods of use
US20070118129A1 (en) 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US9149267B2 (en) * 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20070191957A1 (en) * 2006-02-07 2007-08-16 Spinemedica Corporation Spinal implants with cooperating suture anchors
US7967820B2 (en) 2006-02-07 2011-06-28 P Tech, Llc. Methods and devices for trauma welding
US8496657B2 (en) 2006-02-07 2013-07-30 P Tech, Llc. Methods for utilizing vibratory energy to weld, stake and/or remove implants
US8903763B2 (en) 2006-02-21 2014-12-02 International Business Machines Corporation Method, system, and program product for transferring document attributes
US8672969B2 (en) * 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8062341B2 (en) 2006-10-18 2011-11-22 Globus Medical, Inc. Rotatable bone plate
CA2680827C (en) 2007-03-22 2016-09-13 P Tech, Llc Methods and devices for intracorporeal bonding or interlocking of implants with thermal energy
US20080269753A1 (en) 2007-04-26 2008-10-30 Blue Fury Consulting, Llc Dynamic cervical plate
US8041114B2 (en) 2007-06-15 2011-10-18 Microsoft Corporation Optimizing pixel labels for computer vision applications
WO2009029908A1 (en) 2007-08-30 2009-03-05 Marctec, Llc Methods and devices for utilizing thermal energy to bond, stake and/or remove implants
US8771314B2 (en) 2007-09-28 2014-07-08 Ethicon, Inc. Surgical anchor device
US20090093684A1 (en) 2007-10-08 2009-04-09 Scott Schorer Surgical retractor device and method of use
US8140982B2 (en) 2007-11-08 2012-03-20 International Business Machines Corporation Method and system for splitting virtual universes into distinct entities
US7891691B2 (en) 2008-02-05 2011-02-22 Dale Bearey Trailer hitch alignment guide
CA2720394C (en) 2008-04-02 2017-01-10 Linvatec Corporation Method and apparatus for meniscal repair
EP2400899A4 (en) 2009-02-24 2015-03-18 P Tech Llc Methods and devices for utilizing bondable materials
US8487844B2 (en) * 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
US9999499B2 (en) 2012-09-04 2018-06-19 Carl Zeiss Meditec Production, LLC Preloaded intraocular lens (IOL) system and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033366A1 (en) * 1998-01-26 2005-02-10 Orthodyne, Inc. Tissue anchoring system and method
US20050283246A1 (en) * 1999-08-13 2005-12-22 Cauthen Joseph C Iii Method and apparatus for the treatment of the intervertebral disc annulus
US20050256582A1 (en) * 1999-10-08 2005-11-17 Ferree Bret A Spinal implants, including devices that reduce pressure on the annulus fibrosis
US20060009846A1 (en) * 2001-02-28 2006-01-12 Hai Trieu Flexible systems for spinal stabilization and fixation
US20030195514A1 (en) * 2002-04-16 2003-10-16 Trieu Hai H. Annulus repair systems and techniques
US20060264953A1 (en) * 2002-10-10 2006-11-23 Falahee Mark H Percutaneous translaminar facet fixation system
US20060089646A1 (en) * 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US20060229623A1 (en) * 2004-10-26 2006-10-12 Bonutti Peter M Tissue fixation system and method
US20070088362A1 (en) * 2004-10-26 2007-04-19 Bonutti,Ip, Llc Apparatus and methods for surgery
US20070233092A1 (en) * 2006-02-24 2007-10-04 Falahee Mark H Dynamic/static facet fixation device and method
US20080195145A1 (en) * 2007-02-13 2008-08-14 Bonutti Peter M Tissue fixation system and method

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858601B2 (en) 2004-08-09 2014-10-14 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US9675394B2 (en) 2004-08-09 2017-06-13 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US20110087296A1 (en) * 2004-08-09 2011-04-14 Si-Bone, Inc. Systems and methods for the fixation of fusion of bone using compressive implants
US20110118841A1 (en) * 2004-08-09 2011-05-19 Si-Bone, Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US20110118796A1 (en) * 2004-08-09 2011-05-19 Reiley Mark A Systems and methods for the fixation or fusion of bone
US20110125268A1 (en) * 2004-08-09 2011-05-26 Si-Bone, Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US9561063B2 (en) 2004-08-09 2017-02-07 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US8202305B2 (en) 2004-08-09 2012-06-19 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9492201B2 (en) 2004-08-09 2016-11-15 Si-Bone Inc. Apparatus, systems and methods for achieving anterior lumbar interbody fusion
US9486264B2 (en) 2004-08-09 2016-11-08 Si-Bone Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US20090259261A1 (en) * 2004-08-09 2009-10-15 Mark A Reiley Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US8388667B2 (en) 2004-08-09 2013-03-05 Si-Bone, Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US8444693B2 (en) 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US9662128B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US10004547B2 (en) 2004-08-09 2018-06-26 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US8734462B2 (en) 2004-08-09 2014-05-27 Si-Bone Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US9375323B2 (en) 2004-08-09 2016-06-28 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US9956013B2 (en) 2004-08-09 2018-05-01 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US8840623B2 (en) 2004-08-09 2014-09-23 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9622783B2 (en) 2004-08-09 2017-04-18 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9662158B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US8986348B2 (en) 2004-08-09 2015-03-24 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US20100292738A1 (en) * 2004-08-09 2010-11-18 Inbone Technologies, Inc. Systems and methods for the fixation or fusion of bone
US8920477B2 (en) 2004-08-09 2014-12-30 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US9743969B2 (en) 2004-08-09 2017-08-29 Si-Bone Inc. Systems and methods for the fixation or fusion of bone
US9039743B2 (en) 2004-08-09 2015-05-26 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US11633292B2 (en) 2005-05-24 2023-04-25 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US9604040B1 (en) 2008-10-15 2017-03-28 Nuvasive, Inc. System and methods for performing spinal fusion surgery
US8876851B1 (en) 2008-10-15 2014-11-04 Nuvasive, Inc. Systems and methods for performing spinal fusion surgery
US9924933B2 (en) 2008-10-15 2018-03-27 Nuvasive, Inc. System and methods for performing spinal fusion surgery
US20120136394A1 (en) * 2008-12-17 2012-05-31 Lanx, Inc. Modular vertebral stabilizer
US20140364914A1 (en) * 2008-12-17 2014-12-11 Lanx, S.R.L. Modular Vertebral Stabilizer
US9339303B2 (en) * 2008-12-17 2016-05-17 Lanx, S.R.L. Modular vertebral stabilizer
US11510787B2 (en) 2008-12-18 2022-11-29 4-Web Spine, Inc. Implant having a shaft coated with a web structure
US9421108B2 (en) 2008-12-18 2016-08-23 4Web, Inc. Implant system and method
US11278421B2 (en) 2008-12-18 2022-03-22 4Web, Inc. Implant device having curved or arced struts
US9545317B2 (en) 2008-12-18 2017-01-17 4Web, Inc. Implant interface system and device
US9999516B2 (en) 2008-12-18 2018-06-19 4Web, Inc. Implant device having a non-planar surface
US9770248B2 (en) 2010-07-11 2017-09-26 Mininvasive Ltd. Circular bone tunneling device
US20230210525A1 (en) * 2010-09-30 2023-07-06 Cilag Gmbh International Tissue thickness compensator comprising at least one medicament
US20170273684A1 (en) * 2011-01-07 2017-09-28 Z-Medical Gmbh & Co. Kg Surgical instrument
US8864777B2 (en) 2011-01-28 2014-10-21 Anchor Orthopedics Xt Inc. Methods for facilitating tissue puncture
US20120253339A1 (en) * 2011-03-31 2012-10-04 Tyco Healthcare Group Lp Radio frequency-based surgical implant fixation apparatus
US9649113B2 (en) * 2011-04-27 2017-05-16 Covidien Lp Device for monitoring physiological parameters in vivo
US11160512B2 (en) 2011-04-27 2021-11-02 Covidien Lp Device for monitoring physiological parameters in vivo
US20120273548A1 (en) * 2011-04-27 2012-11-01 Tyco Healthcare Group Lp Device for monitoring physiological parameters in vivo
US10111655B2 (en) 2011-08-24 2018-10-30 Mininvasive Ltd. Arthroscopic surgical device
US10194920B2 (en) 2011-08-24 2019-02-05 Minivasive Ltd. Circular bone tunneling device employing a stabilizing element
US9820754B2 (en) 2011-08-24 2017-11-21 Mininvasive Ltd. Circular bone tunneling device employing a stabilizing element
US9763659B2 (en) 2011-08-24 2017-09-19 Mininvasive Ltd. Arthroscopic surgical device
US10912554B2 (en) 2011-08-24 2021-02-09 Mininvasive Ltd. Arthroscopic surgical device
WO2013027210A1 (en) * 2011-08-24 2013-02-28 Mininvasive Ltd. Circular bone tunneling device employing a stabilizing element
US9561059B1 (en) 2011-11-23 2017-02-07 Nuvasive, Inc. Minimally invasive facet release
US10231740B2 (en) 2012-01-08 2019-03-19 Mininvasive Ltd. Arthroscopic surgical device
US9277945B2 (en) * 2012-02-07 2016-03-08 Mnr Device Corporation Method and apparatus for treating a bone fracture
US20130204250A1 (en) * 2012-02-07 2013-08-08 Mnr Device Corporation Method and apparatus for treating a bone fracture
US10117686B2 (en) 2012-02-07 2018-11-06 The Vertical Group, Inc. Method and apparatus for treating a bone fracture
US11337821B2 (en) 2012-03-09 2022-05-24 Si-Bone Inc. Integrated implant
US11471286B2 (en) 2012-03-09 2022-10-18 Si-Bone Inc. Systems, devices, and methods for joint fusion
US8778026B2 (en) 2012-03-09 2014-07-15 Si-Bone Inc. Artificial SI joint
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
US9044321B2 (en) 2012-03-09 2015-06-02 Si-Bone Inc. Integrated implant
US11672664B2 (en) 2012-03-09 2023-06-13 Si-Bone Inc. Systems, devices, and methods for joint fusion
US10201427B2 (en) 2012-03-09 2019-02-12 Si-Bone Inc. Integrated implant
US11291485B2 (en) 2012-05-04 2022-04-05 Si-Bone Inc. Fenestrated implant
US10426533B2 (en) 2012-05-04 2019-10-01 Si-Bone Inc. Fenestrated implant
US11478287B2 (en) 2012-05-04 2022-10-25 Si-Bone Inc. Fenestrated implant
US11446069B2 (en) 2012-05-04 2022-09-20 Si-Bone Inc. Fenestrated implant
US9050527B2 (en) 2012-08-23 2015-06-09 Wms Gaming Inc. Interactive tether using tension and feedback
US9549823B2 (en) 2012-09-25 2017-01-24 4-Web, Inc. Programmable implant having curved or arced struts
US9757235B2 (en) 2012-09-25 2017-09-12 4Web, Inc. Spinal programmable implant
US10849756B2 (en) 2012-09-25 2020-12-01 4Web Medical Programmable implant
US9987137B2 (en) 2012-09-25 2018-06-05 4Web, Inc. Programmable implant having curved or arced struts
US9572669B2 (en) 2012-09-25 2017-02-21 4-Web, Inc. Programmable implant having an angled exterior surface
US20140107699A1 (en) * 2012-10-11 2014-04-17 Smith & Nephew, Inc. Active loaded fixation devices
US9974643B2 (en) 2013-03-11 2018-05-22 Medos International Sàrl Implant having adjustable filament coils
US10898178B2 (en) 2013-03-11 2021-01-26 Medos International Sàrl Implant having adjustable filament coils
US11896475B2 (en) 2013-03-11 2024-02-13 Medos International Sarl Implant having adjustable filament coils
US10856967B2 (en) 2013-03-11 2020-12-08 Medos International Sàrl Implant having adjustable filament coils
US10052094B2 (en) 2013-03-11 2018-08-21 Medos International Sàrl Implant having adjustable filament coils
US20140263555A1 (en) * 2013-03-12 2014-09-18 Covidien Lp Interchangeable Tip Reload
US9592109B2 (en) 2013-03-12 2017-03-14 Covidien Lp Hernia mesh placement system and method for in-situ surgical applications
US9936951B2 (en) * 2013-03-12 2018-04-10 Covidien Lp Interchangeable tip reload
US9700435B2 (en) 2013-03-14 2017-07-11 Warsaw Orthopedic, Inc. Surgical delivery system and method
US10959758B2 (en) 2013-03-15 2021-03-30 Si-Bone Inc. Implants for spinal fixation or fusion
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
US9636226B2 (en) 2013-03-15 2017-05-02 4Web, Inc. Traumatic bone fracture repair systems and methods
US10426539B2 (en) 2013-03-15 2019-10-01 Orthocision Inc. Method and implant system for sacroiliac joint fixation and fusion
US11083511B2 (en) 2013-03-15 2021-08-10 Orthocision Inc. Method and implant system for sacroiliac joint fixation and fusion
US9119732B2 (en) 2013-03-15 2015-09-01 Orthocision, Inc. Method and implant system for sacroiliac joint fixation and fusion
WO2014145529A3 (en) * 2013-03-15 2015-05-28 4-Web, Inc. Traumatic bone fracture repair systems and methods
US10321945B2 (en) 2013-03-15 2019-06-18 Orthocision Inc. Method and implant system for sacroiliac joint fixation and fusion
US10993757B2 (en) 2013-03-15 2021-05-04 Orthocision Inc. Method and implant system for sacroiliac joint fixation and fusion
US10206672B2 (en) 2013-03-18 2019-02-19 Mininvasive Ltd. Arthroscopic surgical device
US9757113B2 (en) 2013-07-31 2017-09-12 Medos International Sàrl Adjustable graft fixation device
US10441265B2 (en) 2013-07-31 2019-10-15 Medos International Sàrl Adjustable graft fixation device
US11918258B2 (en) 2013-09-27 2024-03-05 Spinal Elements, Inc. Device and method for reinforcement of a facet
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US10405968B2 (en) 2013-12-11 2019-09-10 Medos International Sarl Implant having filament limbs of an adjustable loop disposed in a shuttle suture
US11534288B2 (en) 2013-12-11 2022-12-27 Medos International Sarl Implant having filament limbs of an adjustable loop disposed in a shuttle suture
US10792029B2 (en) 2014-09-09 2020-10-06 Mininvasive Ltd. Padded transosseous suture
US10194962B2 (en) 2014-09-18 2019-02-05 Si-Bone Inc. Matrix implant
US11071573B2 (en) 2014-09-18 2021-07-27 Si-Bone Inc. Matrix implant
US9662157B2 (en) 2014-09-18 2017-05-30 Si-Bone Inc. Matrix implant
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US11684378B2 (en) 2014-09-18 2023-06-27 Si-Bone Inc. Implants for bone fixation or fusion
CN105662503A (en) * 2014-10-23 2016-06-15 德普伊新特斯产品公司 Biceps tenodesis implants and delivery tools
US10076374B2 (en) * 2014-10-23 2018-09-18 Medos International Sárl Biceps tenodesis delivery tools
US11622848B2 (en) 2014-10-23 2023-04-11 Medos International Sarl Biceps tenodesis anchor implants
US11576769B2 (en) 2014-10-23 2023-02-14 Medos International Sarl Method for anchoring biceps tenodesis
AU2015243088B2 (en) * 2014-10-23 2019-11-28 DePuy Synthes Products, Inc. Biceps tenodesis implants and delivery tools
EP3888593A1 (en) * 2014-10-23 2021-10-06 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
US20160113644A1 (en) * 2014-10-23 2016-04-28 DePuy Synthes Products, Inc. Biceps Tenodesis Delivery Tools
AU2015243097B2 (en) * 2014-10-23 2019-11-21 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
EP3020372A1 (en) * 2014-10-23 2016-05-18 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
US10709488B2 (en) * 2014-10-23 2020-07-14 Medos International Sárl Biceps tenodesis delivery tools
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
CN105769272A (en) * 2014-10-23 2016-07-20 德普伊新特斯产品公司 Biceps tenodesis delivery tools
US11284877B2 (en) 2014-10-23 2022-03-29 Medos International Sarl Biceps tenodesis implants and delivery tools
EP3020371A3 (en) * 2014-10-23 2016-08-24 DePuy Synthes Products, Inc. Biceps tenodesis implants and delivery tools
AU2019271985B2 (en) * 2014-10-23 2021-05-20 DePuy Synthes Products, Inc. Biceps tenodesis implants and delivery tools
US10869751B2 (en) 2014-10-23 2020-12-22 Medos International Sarl Biceps tenodesis implants and delivery tools
AU2020201041B2 (en) * 2014-10-23 2020-10-29 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US10034742B2 (en) 2014-10-23 2018-07-31 Medos International Sarl Biceps tenodesis implants and delivery tools
US20180064473A1 (en) * 2015-03-17 2018-03-08 Emre KARADENIZ A wire stretcher for kirschner wire passing through wire retainers
US10561457B2 (en) * 2015-03-17 2020-02-18 Emre KARADENIZ Wire stretcher for Kirschner wire passing through wire retainers
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
US11672647B2 (en) 2015-04-22 2023-06-13 Medos International Sarl Biceps repair device
US10758337B2 (en) 2015-04-22 2020-09-01 Medos International Sarl Biceps repair device
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US10376367B2 (en) 2015-07-02 2019-08-13 First Ray, LLC Orthopedic fasteners, instruments and methods
US11504140B2 (en) * 2015-07-17 2022-11-22 Crossroads Extremity Systems, Llc Transosseous guide and method
US10820918B2 (en) * 2015-07-17 2020-11-03 Crossroads Extremity Systems, Llc Transosseous guide and method
US20180153566A1 (en) * 2015-07-17 2018-06-07 Kator, Llc Transosseous guide and method
US20170086833A1 (en) * 2015-09-24 2017-03-30 Ethicon Endo-Surgery, Llc Surgical staple buttress with magnetic elements
US20210077090A1 (en) * 2015-09-24 2021-03-18 Mininvasive Ltd. Arthroscopic surgical device
US9987013B2 (en) * 2015-09-24 2018-06-05 Ethicon Llc Surgical staple buttress with magnetic elements
US10849613B2 (en) * 2015-09-24 2020-12-01 Mininvasive Ltd. Arthroscopic surgical device
US11375996B2 (en) 2015-10-30 2022-07-05 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US10835235B2 (en) 2015-10-30 2020-11-17 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US10765423B2 (en) 2015-10-30 2020-09-08 New York Society For The Relief Of The Ruptured And Crippled, Maintaing The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US11426156B2 (en) 2015-10-30 2022-08-30 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US10675016B2 (en) 2015-10-30 2020-06-09 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arthroscopic workflow
US10357260B2 (en) 2015-11-02 2019-07-23 First Ray, LLC Orthopedic fastener, retainer, and guide methods
US10702290B2 (en) 2015-11-02 2020-07-07 First Ray, LLC Orthopedic fastener, retainer, and guide
US20170150886A1 (en) * 2015-11-30 2017-06-01 Chia-Wei Lin Force detecting apparatus
US20190117214A1 (en) * 2015-12-31 2019-04-25 Mininvasive Ltd. Arthroscopic surgical device
US10835234B2 (en) * 2015-12-31 2020-11-17 Mininvasive Ltd. Arthroscopic surgical device
US11357495B2 (en) 2016-02-01 2022-06-14 Medos International Sarl Tissue augmentation scaffolds for use with soft tissue fixation repair systems and methods
US11523812B2 (en) 2016-02-01 2022-12-13 Medos International Sarl Soft tissue fixation repair methods using tissue augmentation constructs
US10702260B2 (en) 2016-02-01 2020-07-07 Medos International Sàrl Soft tissue fixation repair methods using tissue augmentation scaffolds
US11484401B2 (en) 2016-02-01 2022-11-01 Medos International Sarl Tissue augmentation scaffolds for use in soft tissue fixation repair
US11090042B2 (en) * 2016-02-05 2021-08-17 Durastat Llc Devices and methods for suture placement
US11065104B2 (en) 2016-04-08 2021-07-20 Medos International Sarl Tenodesis anchoring systems and tools
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US11071621B2 (en) 2016-04-08 2021-07-27 Medos International Sarl Tenodesis implants and tools
US11793624B2 (en) 2016-04-08 2023-10-24 Medos International Sarl Tenodesis implants and tools
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US11806194B2 (en) 2016-06-15 2023-11-07 Children's Hospital Medical Center Spheric endo-luminal traction device for esophageal elongation
US10869732B2 (en) * 2016-06-15 2020-12-22 Children's Hospital Medical Center Spheric endo-luminal traction device for esophageal elongation
US20170360524A1 (en) * 2016-06-15 2017-12-21 Children's Hospital Medical Center Spheric endo-luminal traction device for esophageal elongation
US10603078B2 (en) * 2016-10-26 2020-03-31 Warsaw Orthopedic, Inc. Surgical instrument and method
US20180110544A1 (en) * 2016-10-26 2018-04-26 Warsaw Orthopedic, Inc. Surgical instrument and method
US20180199968A1 (en) * 2017-01-19 2018-07-19 Kinamed, Inc. Sternotomy closure technique using polymeric cable
US10993752B2 (en) * 2017-01-19 2021-05-04 Kinamed, Inc. Sternotomy closure technique using polymeric cable
AU2018209968B2 (en) * 2017-01-19 2020-10-22 Kinamed, Inc. Sternotomy closure technique using polymeric cable
US10671969B2 (en) 2017-05-03 2020-06-02 Summate Technologies, Inc. Operating room situated, parts-inventory control system and supervisory arrangement for accurately tracking the use of and accounting for the ultimate disposition of an individual component part of a complete implant which is then being surgically engrafted in-vivo upon or into the body of a living subject
US10588644B2 (en) * 2017-08-31 2020-03-17 DePuy Synthes Products, Inc. Guide attachment for power tools
US11877756B2 (en) 2017-09-26 2024-01-23 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11116519B2 (en) 2017-09-26 2021-09-14 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
US11173048B2 (en) 2017-11-07 2021-11-16 Howmedica Osteonics Corp. Robotic system for shoulder arthroplasty using stemless implant components
US11241285B2 (en) 2017-11-07 2022-02-08 Mako Surgical Corp. Robotic system for shoulder arthroplasty using stemless implant components
US11432945B2 (en) 2017-11-07 2022-09-06 Howmedica Osteonics Corp. Robotic system for shoulder arthroplasty using stemless implant components
WO2020036557A3 (en) * 2018-05-04 2020-04-23 Kabalci Mehmet Suture with elasto-plastic characteristic and stabilization system
US20190380757A1 (en) * 2018-06-19 2019-12-19 Summate Technologies, Inc. Automated Screw Identification System and Method
US10786331B2 (en) 2018-06-19 2020-09-29 Summate Technologies, Inc. Automated implant identification system and method with combined machine-readable and human-readable markers
US10702321B2 (en) * 2018-06-19 2020-07-07 Summate Technologies, Inc. Automated screw identification system and method
US11678997B2 (en) 2019-02-14 2023-06-20 Si-Bone Inc. Implants for spinal fixation and or fusion
US11234830B2 (en) 2019-02-14 2022-02-01 Si-Bone Inc. Implants for spinal fixation and or fusion
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
US11311284B2 (en) * 2019-03-06 2022-04-26 Speed Clip Solutions, LLC Suture tensioning and securement device, system, and methods
EP3972503A4 (en) * 2019-05-22 2023-02-01 Spinal Elements Inc. Bone tie and bone tie inserter
EP3972498A4 (en) * 2019-06-10 2023-02-01 LSI Solutions, Inc. Device for suture tensioning and methods thereof
US10909343B1 (en) 2019-07-12 2021-02-02 Summate Technologies, Inc. Automated screw identification system and method with labeled pegs
US11672570B2 (en) 2019-11-27 2023-06-13 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI Joints
US11571245B2 (en) 2019-11-27 2023-02-07 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI joints
US11752011B2 (en) 2020-12-09 2023-09-12 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation
WO2022265863A1 (en) * 2021-06-16 2022-12-22 Edwards Lifesciences Corporation Suture clip deployment devices with suture tensioning systems
US11883028B2 (en) 2021-09-08 2024-01-30 Covidien Lp Systems and methods for post-operative anastomotic leak detection
WO2023186998A1 (en) * 2022-03-30 2023-10-05 Neos Surgery, S.L. Excision tool for sternal fixation elements

Also Published As

Publication number Publication date
US20220079640A1 (en) 2022-03-17
US20190142411A1 (en) 2019-05-16
US11219446B2 (en) 2022-01-11
US20070088362A1 (en) 2007-04-19
US20240050083A1 (en) 2024-02-15
US9463012B2 (en) 2016-10-11
US9814453B2 (en) 2017-11-14
US20170049487A1 (en) 2017-02-23
US20190328381A1 (en) 2019-10-31
US10376259B2 (en) 2019-08-13
US10441269B1 (en) 2019-10-15
US20220160345A1 (en) 2022-05-26
US20200222041A1 (en) 2020-07-16
US20130274769A1 (en) 2013-10-17
US20230110881A1 (en) 2023-04-13
US20180028172A1 (en) 2018-02-01
WO2011044484A1 (en) 2011-04-14
US10238378B2 (en) 2019-03-26
US20200155139A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US20220160345A1 (en) Tissue fixation system and method
US11457958B2 (en) Devices and methods for stabilizing tissue and implants
US10517584B1 (en) Tissue fixation system and method
US9867706B2 (en) Tissue fastening system
US9980761B2 (en) Tissue fixation system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: P TECH, LLC,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BONUTTI, PETER M.;PHILLIPS, GLEN A.;REEL/FRAME:023692/0975

Effective date: 20091130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION