US20100078810A1 - Semiconductor apparatus, substrate design method, and substrate design apparatus - Google Patents

Semiconductor apparatus, substrate design method, and substrate design apparatus Download PDF

Info

Publication number
US20100078810A1
US20100078810A1 US12/567,893 US56789309A US2010078810A1 US 20100078810 A1 US20100078810 A1 US 20100078810A1 US 56789309 A US56789309 A US 56789309A US 2010078810 A1 US2010078810 A1 US 2010078810A1
Authority
US
United States
Prior art keywords
substrate
area
holes
boundary
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/567,893
Other versions
US8816510B2 (en
Inventor
Noriyuki Matsui
Hidehisa Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATSUI, NORIYUKI, SAKAI, HIDEHISA
Publication of US20100078810A1 publication Critical patent/US20100078810A1/en
Application granted granted Critical
Publication of US8816510B2 publication Critical patent/US8816510B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • a semiconductor package typically such as a BGA package may be produced by a method that primarily mounts a silicon chip on a resin substrate and secondarily mounts it on a printed substrate through solder balls.
  • the difference in thermal expansion coefficient between the substrate and the silicon causes intensive stress against the solder balls and/or solder pads at ends of the silicon chip, resulting in soldering peel during a temperature cycle test, for example.
  • a semiconductor apparatus including a substrate and a semiconductor chip mounted on the substrate, wherein the substrate has plural holes, the plural holes are provided such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.
  • FIG. 1 is a section view illustrating an example of the configuration of a BGA package, which is a comparison example
  • FIG. 4 is a section view illustrating an example of the configuration of a BGA package of a first embodiment
  • FIG. 5 is a bottom view illustrating an example of the configuration of a BGA substrate of the first embodiment
  • FIG. 7 is a flowchart illustrating an example of a BGA substrate design method
  • FIG. 9 is a section view illustrating an example of the connection route by the diverting processing.
  • FIG. 10 is a section view illustrating an example of the configuration of a BGA package according to a second embodiment
  • FIG. 12 is a section view illustrating an example of the configuration of a BGA package according to a third embodiment
  • FIG. 13 is a bottom view illustrating an example of the configuration of a BGA substrate of the third embodiment.
  • FIG. 14 is a diagram illustrating an example of the computer system.
  • a BGA package which is a comparison example, will be described below.
  • FIG. 1 is a section view illustrating an example of the configuration of a BGA package, which is a comparison example.
  • the BGA package 1 illustrated in FIG. 1 includes a si (silicon) chip 11 (which is a semiconductor chip), a BGA substrate 12 (which may be a substrate, a resin substrate, or an interposer), and solder balls 3 (or bumps).
  • the BGA package 1 is mounted on a substrate 15 (which may be an external substrate or a main substrate) through the solder balls 3 .
  • FIG. 2 is a bottom view of an example of the configuration of the BGA substrate, which is the comparison example.
  • the BGA substrate 12 has a bottom surface (on the mounted substrate 15 side) having the solder balls 3 in a matrix form.
  • chip area 16 the area on the bottom surface, which is the back of the area having the chip 11 .
  • the circumference of the chip area 16 is called chip boundary (first boundary).
  • the solder balls 3 include solder balls 3 d , which are inside of the chip boundary and are the closest to the apexes of the chip boundary, solder balls 3 a , which are the outermost of the inside of the chip boundary, excluding the solder balls 3 d , solder balls 3 b , which are more outside than the solder balls 3 a , and solder balls 3 c , which are more inside than the solder balls 3 a and 3 d.
  • the heat stress analysis assumed a temperature cycle test and increased the temperature of the entire BGA package 1 and calculated the distortions of the solder balls 3 .
  • FIG. 3 is a bottom view illustrating an example of the magnitudes of the distortion of the solder balls under the heat stress analysis.
  • FIG. 3 illustrates the identical layout of the BGA substrate 12 and the solder balls 3 a , 3 b , 3 c , and 3 d to that in FIG. 2 .
  • the solder balls 3 a , 3 b , 3 c , and 3 d are illustrated differently as white circles, shaded circles and black circles in increasing order of distortion.
  • the distortions of the solder balls 3 a , 3 b , 3 c , and 3 d were larger. This is because the thermal expansion coefficient of the BGA substrate 12 is higher than the thermal expansion coefficient of the chip 11 . Furthermore, comparing the distortions of the solder balls 3 a and 3 d , the distortions of the solder balls 3 d were the largest.
  • FIG. 4 is a section view illustrating an example of the configuration of a BGA package of a first embodiment.
  • a BGA package 1 a illustrated in FIG. 4 the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1 , and the description thereon will be omitted herein.
  • a BGA substrate 12 a is similar to the BGA substrate 12 except for different holes.
  • FIG. 5 is a bottom view illustrating an example of the configuration of a BGA substrate of the first embodiment.
  • the same reference numerals as those in FIG. 2 are given to the same or equivalent components as those in FIG. 2 , and the description thereon will be omitted herein.
  • the distance between the solder balls 3 a , 3 b , 3 c and 3 d , which are neighboring to each other, is called solder ball distance D.
  • FIG. 4 is a section view taken along the cut plane in FIG. 5 .
  • through holes 21 a are provided between the solder balls 3 a and the solder balls 3 c which are neighboring to the inner side.
  • Through holes 21 a are provided between the solder balls 3 d and the solder balls 3 a which are neighboring to them.
  • the through holes 21 a are indicated by the shaded circles.
  • a part or all of the plural through hole 21 a may have electrodes on their inner surface.
  • the electrodes of the chip 11 and the solder balls 3 are wired through electrodes (or vias) of the through holes 21 a .
  • a through hole without an electrode, which is provided for reducing intensive stress and distortions, will be called dummy through hole in the following descriptions.
  • Other through hole may be provided at positions excluding the positions of the through hole 21 a.
  • solder ball boundary The square formed by connecting the centers of the solder balls 3 a and 3 d , which are inside of the chip boundary and outermost, on the bottom surface of the BGA substrate 12 a will be called solder ball boundary.
  • the area which is inside of the solder ball boundary and has a distance equal to or shorter than the solder ball distance D (first distance) from the solder ball boundary is called chip peripheral area (first area).
  • the area, which is within the chip peripheral area and has a distance equal to or shorter than the solder ball distance D from two sides, which are neighboring each other, of the solder ball boundary (second distance) (that is, the area which is within the chip peripheral area and is surrounded by the centers of four solder balls being neighboring to each other and including the solder ball 3 d ) will be called corner area (second area).
  • the layout of the through hole 21 a as described above allows a higher density of the through holes in the chip peripheral area than the density of the through holes in the area excluding the chip peripheral area.
  • the density of the through holes in the corner area may be higher than the density of the through holes in the chip peripheral area excluding the corner area.
  • a total size of the openings of the through holes within the specific area to the size of the plane of the specific area will be called surface density of the through holes.
  • the layout of the through holes 21 a as described above allows a higher surface density of the through holes in the chip peripheral area than the surface density of the through holes in the area excluding the chip peripheral area.
  • the surface density of the through holes in the corner area may be higher than the surface density of the through holes in the chip peripheral area excluding the corner area.
  • the area having a distance equal to or shorter than the solder ball distance D from the chip boundary may be called chip peripheral area.
  • the area having a distance equal to or shorter than the solder ball distance D from an apex of the chip peripheral area may be called corner area.
  • the layout of the through holes 21 a as described above may reduce intensive stress and distortions on the chip boundary, particularly, near the corners of the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • a substrate design apparatus for designing the BGA substrate 12 a and a BGA substrate design method with the substrate design apparatus will be described below.
  • the BGA substrate 12 a is designed by a substrate design apparatus.
  • the substrate design apparatus may be implemented by a CAD (Computer Aided Design) system.
  • FIG. 6 is a block diagram illustrating an example of the configuration of a substrate design apparatus according to the embodiment.
  • the substrate design apparatus includes a wiring portion 31 , a diverting portion 32 , a hole arranging portion 33 , a design data storage portion 34 and an electrode arranging portion 35 .
  • the electrode arranging portion 35 corresponds to the semiconductor chip position determining portion.
  • the hole arranging portion 33 corresponds to the hole position determining portion.
  • the wiring portion 31 defines in the design data on the BGA substrate 12 the positions of the connection routes (or wiring) from the signal terminals of the chip 11 to the solder balls 3 .
  • the hole arranging portion 33 defines in the design data on the BGA substrate 12 the positions of holes such as vias, through holes, dummy through holes and inner vias.
  • the diverting portion 32 diverts a connection route so as to pass through the through holes and/or inner vias in the chip peripheral area to correct the position of the connection route thereby.
  • FIG. 7 is a flowchart illustrating an example of a BGA substrate design method according to the embodiment.
  • the electrode arranging portion 35 reads design data on the BGA substrate 12 a , which is prestored in the design data storage portion 34 , determines the positions of the chip 11 and solder balls 3 on the BGA substrate 12 a and determines the positions of the electrodes on the top surface of the BGA substrate 12 a and the positions of the electrodes on the bottom surface of the BGA substrate 12 a (S 11 ).
  • the hole arranging portion 33 determines the positions of the vias the number of which is equal to the number of electrodes on the surfaces such that they are arranged in a matrix form (S 12 ).
  • the wiring portion 31 selects one of the signal terminals of the chip 11 and determines the position of the connection route by a shortest distance from the selected signal terminal to the corresponding solder ball 3 (S 13 ).
  • the hole arranging portion 33 determines whether the chip peripheral area has any via or not (S 21 ).
  • the hole arranging portion 33 adds vias at predetermined positions in the chip peripheral area (S 22 ).
  • the predetermined positions in the chip peripheral area are the position of the through hole 21 a.
  • the diverting portion 32 performs diverting processing of diverting the connection route to pass through the vias (S 23 ).
  • the wiring portion 31 determines whether the connection routes for all signal terminals have completely determined or not (S 24 ).
  • step S 24 /no the flow returns to step S 13 where the wiring portion 31 selects the next signal terminal. If so (S 24 /yes), dummy through holes are added to the position with no through holes at the predetermined positions in the chip peripheral area (S 25 ), and the flow ends.
  • FIG. 8 is a section view illustrating an example of a connection route by a shortest distance on the BGA substrate.
  • Step S 11 defines a connection route 22 e by a shortest distance from a signal terminal 22 e of the chip 11 to a solder ball 3 e through a through hole 21 e.
  • the wiring within the BGA substrate 12 a connecting the signal terminals of the chip 11 and the solder balls 3 are defined to extend through vias in the chip peripheral area. Furthermore, dummy through holes for reducing the stress may be provided in the chip peripheral area.
  • FIG. 10 is a section view illustrating an example of the configuration of a BGA package according to a second embodiment.
  • the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1 , and the description thereon will be omitted herein.
  • the BGA substrate 12 b is similar to the BGA substrate 12 a except for different holes.
  • FIG. 11 is a bottom view illustrating an example of the configuration of a BGA substrate of the second embodiment.
  • the same reference numerals as those in FIG. 2 are given to the same or equivalent components as those in FIG. 2 , and the description thereon will be omitted herein.
  • FIG. 10 is a section view taken along the cut plane in FIG. 11 .
  • a through hole 21 ba is provided at the center of four solder balls 3 , which are neighboring each other, including the solder ball 3 a or solder ball 3 d and the solder ball 3 b , which is internally neighboring it.
  • a through hole 21 bb is provided at the center of four solder balls 3 , which are neighboring each other, including the solder ball 3 a or solder ball 3 d and the solder ball 3 c , which is externally neighboring it.
  • the through holes 21 ba are indicated by the black circles
  • the through holes 21 bb are indicated by the shaded circles.
  • the plural through holes 21 ba have electrodes on their inner surfaces.
  • the electrodes of the chip 11 and the solder balls 3 are wired through electrodes (or vias) of the through holes 21 ba .
  • a part of the plural through hole 21 ba may have electrodes.
  • a part or all of the plural through hole 21 bb may have electrodes.
  • the layout of the through holes 21 ba and 21 bb as described above may reduce intensive stress and distortions on the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • FIG. 12 is a section view illustrating an example of the configuration of a BGA package according to a third embodiment.
  • the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1 , and the description thereon will be omitted herein.
  • the BGA substrate 12 c is similar to the BGA substrate 12 a except that it is a multi-layered substrate and has different holes.
  • an inner via (which may be called blind hole or buried hole) 21 ca is provided between a solder ball 3 a and a solder ball 3 b which is internally neighboring it. Furthermore, an inner via 21 ca is provided between a solder ball 3 d and a solder ball 3 a which is neighboring it.
  • an inner via 21 cb is provided at a position away from the inner via 21 ca .
  • the through holes 21 ca are indicated by shaded circles, and the through hole 21 cb are indicated by the black circles.
  • a part or all of the plural inner vias 21 ca and 21 ca may have electrodes on their inner surfaces.
  • the electrodes of the chip 11 and the solder balls 3 are wired through the electrodes of the inner vias 21 cb , the electrodes in the inner layer of the BGA substrate 12 c , and the electrodes of the inner vias 21 ca.
  • the layout of the inner via 21 ca as described above allows a higher surface density of the inner vias in the chip peripheral area than the surface density of the inner vias in the area excluding the chip peripheral area. Furthermore, on the BGA substrate 12 c , the surface density of the inner vias in the corner area is higher than the surface density of the inner vias in the chip peripheral area excluding the corner area.
  • the layout of the inner vias 21 ca as described above may reduce intensive stress and distortions on the chip boundary, particularly, near a corner of the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • the BGA substrate 12 c is designed by the same substrate design apparatus and BGA substrate design method as in the first embodiment.
  • the predetermined positions in the chip peripheral area are the positions of the inner vias 21 ca.
  • the stress reduction effect with the through holes or inner vias decreases when the rigidity of the entire BGA substrate is high and increases as the flexibility of a material of the substrate increases.
  • FIG. 14 is a diagram illustrating an example of the computer system to which the embodiments are applicable.
  • the illustrated computer system 900 includes a body unit 901 internally having a CPU and a disk drive, a display 902 that displays an image in accordance with an instruction from the body unit 901 , a keyboard 903 for inputting various information to the computer system 900 , a mouse 904 for designating an arbitrary position on a display screen 902 a of the display 902 , and a communication device 905 that accesses an external database, for example, and downloads a program stored in a different computer system.
  • the communication device 905 may be a network communication card or a modem, for example.
  • a program that implements the steps described above in a computer system applying in the substrate design apparatus as described above may be provided as a substrate design program.
  • the program may be stored in a recording medium readable by the computer system so that it may be executed by the computer system applying the substrate design apparatus.
  • the program that implements the steps may be stored in a portable recording medium such as the disk 910 or may be downloaded from a recording medium 906 in other computer system through the communication device 905 .
  • the substrate design program that provides at least the substrate design function to the computer system 900 is input to the computer system 900 and is compiled therein.
  • the program causes the computer system 900 to operate as the substrate design system having the substrate design function.
  • the program may be stored in a computer-readable recording medium such as the disk 910 .
  • the recording media readable by the computer system 900 may include an internal storage device to be internally implemented in a computer, such as a ROM and a RAM, a portable storage medium such as the disk 910 , a flexible disk, a DVD, a magneto-optical disk and an IC card, a database holding a computer program, other computer system and its database, and a recording medium accessible by a computer system connectable through communication means such as the communication device 905 .
  • an internal storage device to be internally implemented in a computer such as a ROM and a RAM
  • a portable storage medium such as the disk 910 , a flexible disk, a DVD, a magneto-optical disk and an IC card
  • a database holding a computer program other computer system and its database
  • a recording medium accessible by a computer system connectable through communication means such as the communication device 905 .

Abstract

A semiconductor apparatus including: a substrate; and a semiconductor chip mounted on the substrate, wherein the substrate has plural holes, and the plural holes are provided such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application NO. 2008-252348 filed on Sep. 30, 2008, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The embodiments discussed herein are related to semiconductor apparatus for mounting a semiconductor chip, substrate design methods, and substrate design apparatus, whereby a semiconductor chip is mountable on an external substrate through a substrate.
  • BACKGROUND
  • Many semiconductors each having many signal lines, such as SRAMs (Static Random Access Memories) and an ASIC (Application Specific Integrated Circuits) frequently use a BGA (Ball Grid Array) package.
  • A semiconductor package typically such as a BGA package may be produced by a method that primarily mounts a silicon chip on a resin substrate and secondarily mounts it on a printed substrate through solder balls.
  • Technologies in the past include technologies that reduces the stress against the semiconductor package (refer to patent Document 1, patent Document 2, and patent Document 3).
  • [patent Document 1]
    International Publication Pamphlet No. WO 2006/100759
    [patent Document 2]
  • Japanese Patent No. 3919353
  • [patent Document 3]
  • Japanese Patent No. 3493088
  • However, after the secondary mounting, the difference in thermal expansion coefficient between the substrate and the silicon causes intensive stress against the solder balls and/or solder pads at ends of the silicon chip, resulting in soldering peel during a temperature cycle test, for example.
  • SUMMARY
  • According to an aspect of the embodiments, a semiconductor apparatus including a substrate and a semiconductor chip mounted on the substrate, wherein the substrate has plural holes, the plural holes are provided such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.
  • The object and advantages of the embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
  • It is to be understood that both the foregoing general description and the following detailed description and are exemplary and explanatory and are not restrictive of the embodiments, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a section view illustrating an example of the configuration of a BGA package, which is a comparison example;
  • FIG. 2 is a bottom view of an example of the configuration of the BGA substrate, which is the comparison example;
  • FIG. 3 is a bottom view illustrating an example of the magnitudes of the distortion of the solder balls under the heat stress analysis on the BGA package, which is the comparison example;
  • FIG. 4 is a section view illustrating an example of the configuration of a BGA package of a first embodiment;
  • FIG. 5 is a bottom view illustrating an example of the configuration of a BGA substrate of the first embodiment;
  • FIG. 6 is a block diagram illustrating an example of the configuration of a substrate design apparatus;
  • FIG. 7 is a flowchart illustrating an example of a BGA substrate design method;
  • FIG. 8 is a section view illustrating an example of a connection route by a shortest distance on the BGA substrate;
  • FIG. 9 is a section view illustrating an example of the connection route by the diverting processing;
  • FIG. 10 is a section view illustrating an example of the configuration of a BGA package according to a second embodiment;
  • FIG. 11 is a bottom view illustrating an example of the configuration of a BGA substrate of the second embodiment;
  • FIG. 12 is a section view illustrating an example of the configuration of a BGA package according to a third embodiment;
  • FIG. 13 is a bottom view illustrating an example of the configuration of a BGA substrate of the third embodiment; and
  • FIG. 14 is a diagram illustrating an example of the computer system.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • With reference to drawings, embodiments will be described below.
  • Comparison Example
  • A BGA package, which is a comparison example, will be described below.
  • FIG. 1 is a section view illustrating an example of the configuration of a BGA package, which is a comparison example. The BGA package 1 illustrated in FIG. 1 includes a si (silicon) chip 11 (which is a semiconductor chip), a BGA substrate 12 (which may be a substrate, a resin substrate, or an interposer), and solder balls 3 (or bumps). The BGA package 1 is mounted on a substrate 15 (which may be an external substrate or a main substrate) through the solder balls 3.
  • FIG. 2 is a bottom view of an example of the configuration of the BGA substrate, which is the comparison example. The BGA substrate 12 has a bottom surface (on the mounted substrate 15 side) having the solder balls 3 in a matrix form. Here, on the BGA substrate 12, the area on the bottom surface, which is the back of the area having the chip 11, is called chip area 16. The circumference of the chip area 16 is called chip boundary (first boundary). The solder balls 3 include solder balls 3 d, which are inside of the chip boundary and are the closest to the apexes of the chip boundary, solder balls 3 a, which are the outermost of the inside of the chip boundary, excluding the solder balls 3 d, solder balls 3 b, which are more outside than the solder balls 3 a, and solder balls 3 c, which are more inside than the solder balls 3 a and 3 d.
  • The result of a heat stress analysis on the BGA package 1 will be described below.
  • The heat stress analysis assumed a temperature cycle test and increased the temperature of the entire BGA package 1 and calculated the distortions of the solder balls 3.
  • FIG. 3 is a bottom view illustrating an example of the magnitudes of the distortion of the solder balls under the heat stress analysis. FIG. 3 illustrates the identical layout of the BGA substrate 12 and the solder balls 3 a, 3 b, 3 c, and 3 d to that in FIG. 2. Here, the solder balls 3 a, 3 b, 3 c, and 3 d are illustrated differently as white circles, shaded circles and black circles in increasing order of distortion.
  • Comparing the distortions of the solder balls 3 a, 3 b, 3 c, and 3 d, the distortions of the solder balls 3 a, and 3 d near the chip boundary were larger. This is because the thermal expansion coefficient of the BGA substrate 12 is higher than the thermal expansion coefficient of the chip 11. Furthermore, comparing the distortions of the solder balls 3 a and 3 d, the distortions of the solder balls 3 d were the largest.
  • The distortions of the solder balls 3 b were smaller. This is because the ratios of expansion and contraction of the BGA substrate 12 and the mounted substrate 15 are equal. The distortions of the solder balls 3 c were smaller. This is because the expansion and contraction is suppressed by the chip 21.
  • As described above, the intensive distortions near the corners of the chip boundary of the BGA substrate 22 increased the damage on the solder balls 3 d.
  • First Embodiment
  • FIG. 4 is a section view illustrating an example of the configuration of a BGA package of a first embodiment. In a BGA package 1 a illustrated in FIG. 4, the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1, and the description thereon will be omitted herein. A BGA substrate 12 a is similar to the BGA substrate 12 except for different holes.
  • FIG. 5 is a bottom view illustrating an example of the configuration of a BGA substrate of the first embodiment. In FIG. 5, the same reference numerals as those in FIG. 2 are given to the same or equivalent components as those in FIG. 2, and the description thereon will be omitted herein. Here, the distance between the solder balls 3 a, 3 b, 3 c and 3 d, which are neighboring to each other, is called solder ball distance D. FIG. 4 is a section view taken along the cut plane in FIG. 5.
  • In the BGA substrate 12 a, through holes 21 a are provided between the solder balls 3 a and the solder balls 3 c which are neighboring to the inner side. Through holes 21 a are provided between the solder balls 3 d and the solder balls 3 a which are neighboring to them. In FIG. 4 and FIG. 5, the through holes 21 a are indicated by the shaded circles.
  • Here, a part or all of the plural through hole 21 a may have electrodes on their inner surface. In this case, the electrodes of the chip 11 and the solder balls 3 are wired through electrodes (or vias) of the through holes 21 a. A through hole without an electrode, which is provided for reducing intensive stress and distortions, will be called dummy through hole in the following descriptions. Other through hole may be provided at positions excluding the positions of the through hole 21 a.
  • The square formed by connecting the centers of the solder balls 3 a and 3 d, which are inside of the chip boundary and outermost, on the bottom surface of the BGA substrate 12 a will be called solder ball boundary.
  • In the description according to this embodiment, the area which is inside of the solder ball boundary and has a distance equal to or shorter than the solder ball distance D (first distance) from the solder ball boundary is called chip peripheral area (first area). The area, which is within the chip peripheral area and has a distance equal to or shorter than the solder ball distance D from two sides, which are neighboring each other, of the solder ball boundary (second distance) (that is, the area which is within the chip peripheral area and is surrounded by the centers of four solder balls being neighboring to each other and including the solder ball 3 d) will be called corner area (second area).
  • On the BGA substrate 12 a, the layout of the through hole 21 a as described above allows a higher density of the through holes in the chip peripheral area than the density of the through holes in the area excluding the chip peripheral area. Furthermore, on the BGA substrate 12 a, the density of the through holes in the corner area may be higher than the density of the through holes in the chip peripheral area excluding the corner area. Here, in a specific area of the BGA substrate 12 a, a total size of the openings of the through holes within the specific area to the size of the plane of the specific area will be called surface density of the through holes. In this case, on the BGA substrate 12 a, the layout of the through holes 21 a as described above allows a higher surface density of the through holes in the chip peripheral area than the surface density of the through holes in the area excluding the chip peripheral area. Furthermore, on the BGA substrate 12 a, the surface density of the through holes in the corner area may be higher than the surface density of the through holes in the chip peripheral area excluding the corner area.
  • Notably, on the bottom surface of the BGA substrate 12 a, the area having a distance equal to or shorter than the solder ball distance D from the chip boundary may be called chip peripheral area. The area having a distance equal to or shorter than the solder ball distance D from an apex of the chip peripheral area may be called corner area.
  • The layout of the through holes 21 a as described above may reduce intensive stress and distortions on the chip boundary, particularly, near the corners of the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • A substrate design apparatus for designing the BGA substrate 12 a and a BGA substrate design method with the substrate design apparatus will be described below.
  • The BGA substrate 12 a is designed by a substrate design apparatus. The substrate design apparatus may be implemented by a CAD (Computer Aided Design) system. FIG. 6 is a block diagram illustrating an example of the configuration of a substrate design apparatus according to the embodiment. The substrate design apparatus includes a wiring portion 31, a diverting portion 32, a hole arranging portion 33, a design data storage portion 34 and an electrode arranging portion 35. The electrode arranging portion 35 corresponds to the semiconductor chip position determining portion. The hole arranging portion 33 corresponds to the hole position determining portion.
  • The design data storage portion 34 stores design data on the BGA substrate 12 a. The electrode arranging portion 35 determines the positions of the electrodes (first electrodes) on the top surface (first surface) of the BGA substrate 12 a for connecting to a signal terminal of the chip 11 and the positions of the electrodes (second electrodes) on the bottom surface (second surface) of the BGA substrate 12 a for connecting to the solder balls 3. Generally, the number of the electrodes on the top surface of the BGA substrate 12 a is equal to the number of electrodes on the bottom surface of the BGA substrate 12 a.
  • The wiring portion 31 defines in the design data on the BGA substrate 12 the positions of the connection routes (or wiring) from the signal terminals of the chip 11 to the solder balls 3. The hole arranging portion 33 defines in the design data on the BGA substrate 12 the positions of holes such as vias, through holes, dummy through holes and inner vias. The diverting portion 32 diverts a connection route so as to pass through the through holes and/or inner vias in the chip peripheral area to correct the position of the connection route thereby.
  • FIG. 7 is a flowchart illustrating an example of a BGA substrate design method according to the embodiment. First of all, the electrode arranging portion 35 reads design data on the BGA substrate 12 a, which is prestored in the design data storage portion 34, determines the positions of the chip 11 and solder balls 3 on the BGA substrate 12 a and determines the positions of the electrodes on the top surface of the BGA substrate 12 a and the positions of the electrodes on the bottom surface of the BGA substrate 12 a (S11). Next, the hole arranging portion 33 determines the positions of the vias the number of which is equal to the number of electrodes on the surfaces such that they are arranged in a matrix form (S12).
  • Next, the wiring portion 31 selects one of the signal terminals of the chip 11 and determines the position of the connection route by a shortest distance from the selected signal terminal to the corresponding solder ball 3 (S13). Next, the hole arranging portion 33 determines whether the chip peripheral area has any via or not (S21).
  • If so (S21/yes), the flow moves to step S15. If not (S21/no), the hole arranging portion 33 adds vias at predetermined positions in the chip peripheral area (S22). Here, the predetermined positions in the chip peripheral area are the position of the through hole 21 a.
  • Next, the diverting portion 32 performs diverting processing of diverting the connection route to pass through the vias (S23). Next, the wiring portion 31 determines whether the connection routes for all signal terminals have completely determined or not (S24).
  • If not (S24/no), the flow returns to step S13 where the wiring portion 31 selects the next signal terminal. If so (S24/yes), dummy through holes are added to the position with no through holes at the predetermined positions in the chip peripheral area (S25), and the flow ends.
  • The details of the diverting processing will be described below.
  • FIG. 8 is a section view illustrating an example of a connection route by a shortest distance on the BGA substrate. In FIG. 8, the same reference numerals as those in FIG. 4 are given to the same or equivalent components as those in FIG. 4, and the description thereon will be omitted herein. Step S11 defines a connection route 22 e by a shortest distance from a signal terminal 22 e of the chip 11 to a solder ball 3 e through a through hole 21 e.
  • FIG. 9 is a section view illustrating an example of the connection route by the diverting processing according to the embodiment. In FIG. 9, the same reference numerals as those in FIG. 4 are given to the same or equivalent components as those in FIG. 4, and the description thereon will be omitted herein. Step S23 changes the connection route 22 e to a connection route 22 a from a signal terminal 22 e of the chip 11 to a solder ball 3 e through the through hole 21 a in the chip peripheral area. The distance of the connection route 22 a is longer than the distance of the connection route 22 e.
  • According to the BGA substrate design method, the wiring within the BGA substrate 12 a connecting the signal terminals of the chip 11 and the solder balls 3 are defined to extend through vias in the chip peripheral area. Furthermore, dummy through holes for reducing the stress may be provided in the chip peripheral area.
  • Second Embodiment
  • FIG. 10 is a section view illustrating an example of the configuration of a BGA package according to a second embodiment. In the BGA package 1 b illustrated in FIG. 10, the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1, and the description thereon will be omitted herein. The BGA substrate 12 b is similar to the BGA substrate 12 a except for different holes.
  • FIG. 11 is a bottom view illustrating an example of the configuration of a BGA substrate of the second embodiment. In FIG. 11, the same reference numerals as those in FIG. 2 are given to the same or equivalent components as those in FIG. 2, and the description thereon will be omitted herein. FIG. 10 is a section view taken along the cut plane in FIG. 11.
  • On the BGA substrate 12 b, a through hole 21 ba is provided at the center of four solder balls 3, which are neighboring each other, including the solder ball 3 a or solder ball 3 d and the solder ball 3 b, which is internally neighboring it. A through hole 21 bb is provided at the center of four solder balls 3, which are neighboring each other, including the solder ball 3 a or solder ball 3 d and the solder ball 3 c, which is externally neighboring it. In FIG. 10 and FIG. 11, the through holes 21 ba are indicated by the black circles, and the through holes 21 bb are indicated by the shaded circles.
  • Here, the plural through holes 21 ba have electrodes on their inner surfaces. In this case, the electrodes of the chip 11 and the solder balls 3 are wired through electrodes (or vias) of the through holes 21 ba. Notably, a part of the plural through hole 21 ba may have electrodes. A part or all of the plural through hole 21 bb may have electrodes.
  • According to this embodiment, the innermost square of the squares formed by connecting the centers of the solder balls outside of the solder ball boundary is called outside solder ball boundary (second boundary). The innermost square of the squares formed by connecting the centers of the solder balls inside of the solder ball boundary is called inside solder ball boundary (third boundary). The area between the outside solder ball boundary and the inside solder ball boundary is called chip peripheral area.
  • On the BGA substrate 12 b, the layout of the through holes 21 ba and 21 bb as described above allows a higher density of the through holes in the chip peripheral area than the density of the through holes in the area excluding the chip peripheral area. Here, in a specific area of the BGA substrate 12 b, a total size of the openings of the through holes within the specific area to the size of the plane of the specific area will be called surface density of the through holes. In this case, the layout of the through holes 21 ba and 21 bb as described above allows, on the BGA substrate 12 b, a higher surface density of the through holes in the chip peripheral area is higher than the surface density of the through holes in the area excluding the chip peripheral area.
  • The layout of the through holes 21 ba and 21 bb as described above may reduce intensive stress and distortions on the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • The BGA substrate 12 b is designed by the same substrate design apparatus and BGA substrate design method as in the first embodiment. Here, the predetermined positions in the chip peripheral area are the positions of the through holes 21 ba and 21 bb.
  • Third Embodiment
  • FIG. 12 is a section view illustrating an example of the configuration of a BGA package according to a third embodiment. In the BGA package lc illustrated in FIG. 12, the same reference numerals as those in FIG. 1 are given to the same or equivalent components as those in FIG. 1, and the description thereon will be omitted herein. The BGA substrate 12 c is similar to the BGA substrate 12 a except that it is a multi-layered substrate and has different holes.
  • FIG. 13 is a bottom view illustrating an example of the configuration of a BGA substrate of the third embodiment. In FIG. 13, the same reference numerals as those in FIG. 2 are given to the same or equivalent components as those in FIG. 2, and the description thereon will be omitted herein. FIG. 12 is a section view taken along the cut plane in FIG. 13.
  • On the bottom surface of the BGA substrate 12 c, an inner via (which may be called blind hole or buried hole) 21 ca is provided between a solder ball 3 a and a solder ball 3 b which is internally neighboring it. Furthermore, an inner via 21 ca is provided between a solder ball 3 d and a solder ball 3 a which is neighboring it. On the top surface of the BGA substrate 12 c, an inner via 21 cb is provided at a position away from the inner via 21 ca. In FIG. 12 and FIG. 13, the through holes 21 ca are indicated by shaded circles, and the through hole 21 cb are indicated by the black circles.
  • Here, a part or all of the plural inner vias 21 ca and 21 ca may have electrodes on their inner surfaces. In this case, the electrodes of the chip 11 and the solder balls 3 are wired through the electrodes of the inner vias 21 cb, the electrodes in the inner layer of the BGA substrate 12 c, and the electrodes of the inner vias 21 ca.
  • In the description according to this embodiment, the area which is inside of the solder ball boundary and has a distance equal to or shorter than the solder ball distance D from the solder ball boundary is called chip peripheral area. The area, which is within the chip peripheral area and has a distance equal to or shorter than the solder ball distance D from two neighboring sides of the solder ball boundary (that is, the area which is within the chip peripheral area and is surrounded by the centers of four solder balls being neighboring to each other and including a solder ball 3 d) will be called corner area.
  • On the BGA substrate 12 c, the layout of the inner vias 21 ca as described above allows a higher density of the inner vias in the chip peripheral area than the density of the inner vias in the area excluding the chip peripheral area. Furthermore, on the BGA substrate 12 c, the density of the inner vias in the corner area is higher than the density of the inner vias in the chip peripheral area excluding the corner area. Here, in a specific area of the BGA substrate 12 c, a total size of the openings of the inner vias within the specific area to the size of the plane of the specific area will be called surface density of the inner vias. In this case, on the BGA substrate 12 c, the layout of the inner via 21 ca as described above allows a higher surface density of the inner vias in the chip peripheral area than the surface density of the inner vias in the area excluding the chip peripheral area. Furthermore, on the BGA substrate 12 c, the surface density of the inner vias in the corner area is higher than the surface density of the inner vias in the chip peripheral area excluding the corner area.
  • The layout of the inner vias 21 ca as described above may reduce intensive stress and distortions on the chip boundary, particularly, near a corner of the chip boundary and may thus prevent the peel of the solder balls 3 a and 3 d.
  • The BGA substrate 12 c is designed by the same substrate design apparatus and BGA substrate design method as in the first embodiment. Here, the predetermined positions in the chip peripheral area are the positions of the inner vias 21 ca.
  • According to the embodiments, the stress reduction effect with the through holes or inner vias decreases when the rigidity of the entire BGA substrate is high and increases as the flexibility of a material of the substrate increases.
  • Notably, the embodiments are applicable to the computer systems which will be described below. FIG. 14 is a diagram illustrating an example of the computer system to which the embodiments are applicable. The illustrated computer system 900 includes a body unit 901 internally having a CPU and a disk drive, a display 902 that displays an image in accordance with an instruction from the body unit 901, a keyboard 903 for inputting various information to the computer system 900, a mouse 904 for designating an arbitrary position on a display screen 902 a of the display 902, and a communication device 905 that accesses an external database, for example, and downloads a program stored in a different computer system. The communication device 905 may be a network communication card or a modem, for example.
  • A program that implements the steps described above in a computer system applying in the substrate design apparatus as described above may be provided as a substrate design program. The program may be stored in a recording medium readable by the computer system so that it may be executed by the computer system applying the substrate design apparatus. The program that implements the steps may be stored in a portable recording medium such as the disk 910 or may be downloaded from a recording medium 906 in other computer system through the communication device 905. The substrate design program that provides at least the substrate design function to the computer system 900 is input to the computer system 900 and is compiled therein. The program causes the computer system 900 to operate as the substrate design system having the substrate design function. The program may be stored in a computer-readable recording medium such as the disk 910. Here, the recording media readable by the computer system 900 may include an internal storage device to be internally implemented in a computer, such as a ROM and a RAM, a portable storage medium such as the disk 910, a flexible disk, a DVD, a magneto-optical disk and an IC card, a database holding a computer program, other computer system and its database, and a recording medium accessible by a computer system connectable through communication means such as the communication device 905.
  • The embodiments may be implemented in other various forms without departing from the spirit and essential characteristics thereof. Therefore, the embodiments are given for the illustration purposes only in any points and should not be interpreted limitedly. The scope of the present invention is defined by the claims and is not confined by the description in the specification at all. Furthermore, all changes and various improvements, alterations and modifications belonging to the equivalents of the claims are all included within the scope of the present invention.
  • All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a depicting of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.

Claims (20)

1. A semiconductor apparatus comprising:
a substrate; and
a semiconductor chip mounted on the substrate, wherein the substrate has plural holes, and the plural holes are provided such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.
2. The semiconductor apparatus according to claim 1, wherein the semiconductor chip has plural signal terminals, and the substrate has a first surface, which is a surface on which the semiconductor chip is mounted and has plural first electrodes to be connected to the signal terminals, a second surface, which is the back surface of the first surface and has plural second electrodes connectable to an external substrate, and plural wires that connect the first electrodes and the second electrodes through the holes.
3. The semiconductor apparatus according to claim 2, wherein, on the substrate, a first boundary, which is a boundary of the area facing the semiconductor chip, is a square.
4. The semiconductor apparatus according to claim 3, wherein the first area is an area which is the inside of the first boundary and has a distance equal to or shorter than a predetermined first distance from the first boundary.
5. The semiconductor apparatus according to claim 4, wherein the first distance is a minimum distance between the second electrodes.
6. The semiconductor apparatus according to claim 4, wherein the holes in the first area are provided at the positions at an equal distance from two, which are neighboring each other, of the second electrodes.
7. The semiconductor apparatus according to claim 4, wherein the density on the substrate surface of the holes in a second area, which is an area within the first area and has a distance equal to or shorter than a predetermined second distance from two sides, which are neighboring each other, of the first boundary is higher than the density on the substrate surface of the holes provided in the area excluding the second area in the first area.
8. The semiconductor apparatus according to claim 7, wherein the second distance is a minimum distance between the second electrodes.
9. The semiconductor apparatus according to claim 3, wherein the first area is an area between a second boundary, which is an innermost square of the squares formed by connecting the centers of the second electrodes outside of the first boundary and a third boundary, which is an outermost square of the squares formed by connecting the centers of the second electrodes inside of the first boundary.
10. The semiconductor apparatus according to claim 9, wherein the holes in the first area are provided at the positions at an equal distance from four, which are neighboring each other, of the second electrodes.
11. The semiconductor apparatus according to claim 2, wherein the wires extend through the holes in the first area.
12. The semiconductor apparatus according to claim 2, wherein the holes in the first area extend between the first surface and the second surface.
13. The semiconductor apparatus according to claim 2, wherein:
the substrate is a multi-layered substrate; and
the holes in the first area have openings of the holes on the first surface or the second surface.
14. The semiconductor apparatus according to claim 2, wherein the first area is an area within the substrate surface and has a distance equal to or shorter than a predetermined first distance from the first boundary.
15. A substrate design method that designs a substrate for a semiconductor apparatus having a substrate and a semiconductor chip mounted on the substrate, the substrate being connectable to an external substrate, the method comprising:
determining the position of the semiconductor chip on the substrate;
determining the positions of the plural holes on the substrate on the basis of the determined position of the semiconductor chip; and
determining the positions of the plural holes such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.
16. The substrate design method according to claim 15, in which:
the semiconductor chip has plural signal terminals;
the substrate has a first surface, which is a surface on which the semiconductor chip is mounted and has plural first electrodes to be connected to the signal terminals, a second surface, which is the back surface of the first surface and has plural second electrodes connectable to an external substrate, the method further comprising:
determining the positions of wires that connect the first electrodes and the second electrodes through a part of the holes the positions of which have been determined.
17. The substrate design method according to claim 16, wherein, on the substrate, a first boundary, which is a boundary of the area facing the semiconductor chip, is a square.
18. The substrate design method according to claim 17, wherein the first area is an area which is the inside of the first boundary and having a distance equal to or shorter than a predetermined first distance from the first boundary.
19. The substrate design method according to claim 15, wherein the positions of the wires are determined such that the wires is extendable through the holes within the first area.
20. A substrate design apparatus that designs a substrate for a semiconductor apparatus having a substrate and a semiconductor chip mounted on the substrate, the substrate being connectable to an external substrate, the substrate design apparatus comprising:
a semiconductor chip position determining section that determines the position of the semiconductor chip on the substrate, determines the positions of the plural holes on the substrate on the basis of the position of the semiconductor chip, which is determined by the semiconductor chip position determining section; and
a hole position determining section that determines the positions of the plural holes such that the density on a substrate surface of the holes in a first area, which is an area of the substrate facing a semiconductor chip peripheral portion, is higher than the density on the substrate surface of the holes in an area excluding the first area on the substrate.
US12/567,893 2008-09-30 2009-09-28 Semiconductor apparatus, substrate design method, and substrate design apparatus Expired - Fee Related US8816510B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008252348A JP5223571B2 (en) 2008-09-30 2008-09-30 Semiconductor device, substrate design method, substrate design apparatus
JP2008-252348 2008-09-30

Publications (2)

Publication Number Publication Date
US20100078810A1 true US20100078810A1 (en) 2010-04-01
US8816510B2 US8816510B2 (en) 2014-08-26

Family

ID=42056516

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/567,893 Expired - Fee Related US8816510B2 (en) 2008-09-30 2009-09-28 Semiconductor apparatus, substrate design method, and substrate design apparatus

Country Status (3)

Country Link
US (1) US8816510B2 (en)
JP (1) JP5223571B2 (en)
KR (1) KR101100590B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006467A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US20120005893A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US20140162405A1 (en) * 2012-05-03 2014-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Interposer Having a Defined Through Via Pattern
US20160086883A1 (en) * 2013-03-29 2016-03-24 Stmicroelectronics (Rousset) Sas Method for making a photolithography mask intended for the formation of contacts, mask and integrated circuit corresponding thereto
EP3451371A4 (en) * 2016-04-25 2019-10-23 KYOCERA Corporation Substrate for mounting electronic component, electronic device and electronic module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028519A (en) * 2010-07-22 2012-02-09 Denso Corp Semiconductor package

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893216A (en) * 1988-08-09 1990-01-09 Northern Telecom Limited Circuit board and method of soldering
US4912603A (en) * 1985-12-09 1990-03-27 Fujitsu Limited High density printed wiring board
US5216278A (en) * 1990-12-04 1993-06-01 Motorola, Inc. Semiconductor device having a pad array carrier package
US5379191A (en) * 1991-02-26 1995-01-03 Microelectronics And Computer Technology Corporation Compact adapter package providing peripheral to area translation for an integrated circuit chip
US5450290A (en) * 1993-02-01 1995-09-12 International Business Machines Corporation Printed circuit board with aligned connections and method of making same
US5703402A (en) * 1995-11-13 1997-12-30 Acc Microelectronics Corporation Output mapping of die pad bonds in a ball grid array
US5784262A (en) * 1995-11-06 1998-07-21 Symbios, Inc. Arrangement of pads and through-holes for semiconductor packages
US5952726A (en) * 1996-11-12 1999-09-14 Lsi Logic Corporation Flip chip bump distribution on die
US6057596A (en) * 1998-10-19 2000-05-02 Silicon Integrated Systems Corp. Chip carrier having a specific power join distribution structure
US6064113A (en) * 1998-01-13 2000-05-16 Lsi Logic Corporation Semiconductor device package including a substrate having bonding fingers within an electrically conductive ring surrounding a die area and a combined power and ground plane to stabilize signal path impedances
US6140710A (en) * 1999-05-05 2000-10-31 Lucent Technologies Inc. Power and ground and signal layout for higher density integrated circuit connections with flip-chip bonding
US6285086B1 (en) * 1999-06-29 2001-09-04 Sharp Kabushiki Kaisha Semiconductor device and substrate for semiconductor device
US6465743B1 (en) * 1994-12-05 2002-10-15 Motorola, Inc. Multi-strand substrate for ball-grid array assemblies and method
US20050258519A1 (en) * 2004-05-20 2005-11-24 Koya Kikuchi Semiconductor device and method for fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919353B2 (en) 1998-09-03 2007-05-23 株式会社東芝 Ball grid array type semiconductor device and manufacturing method thereof
WO2006100759A1 (en) 2005-03-22 2006-09-28 Fujitsu Limited Semiconductor device and method for manufacturing same
JP4825529B2 (en) * 2006-02-06 2011-11-30 ルネサスエレクトロニクス株式会社 Semiconductor device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912603A (en) * 1985-12-09 1990-03-27 Fujitsu Limited High density printed wiring board
US4893216A (en) * 1988-08-09 1990-01-09 Northern Telecom Limited Circuit board and method of soldering
US5216278A (en) * 1990-12-04 1993-06-01 Motorola, Inc. Semiconductor device having a pad array carrier package
US5379191A (en) * 1991-02-26 1995-01-03 Microelectronics And Computer Technology Corporation Compact adapter package providing peripheral to area translation for an integrated circuit chip
US5450290A (en) * 1993-02-01 1995-09-12 International Business Machines Corporation Printed circuit board with aligned connections and method of making same
US6465743B1 (en) * 1994-12-05 2002-10-15 Motorola, Inc. Multi-strand substrate for ball-grid array assemblies and method
US6710265B2 (en) * 1994-12-05 2004-03-23 Motorola, Inc. Multi-strand substrate for ball-grid array assemblies and method
US7199306B2 (en) * 1994-12-05 2007-04-03 Freescale Semiconductor, Inc. Multi-strand substrate for ball-grid array assemblies and method
US7397001B2 (en) * 1994-12-05 2008-07-08 Freescale Semiconductor, Inc. Multi-strand substrate for ball-grid array assemblies and method
US5784262A (en) * 1995-11-06 1998-07-21 Symbios, Inc. Arrangement of pads and through-holes for semiconductor packages
US5703402A (en) * 1995-11-13 1997-12-30 Acc Microelectronics Corporation Output mapping of die pad bonds in a ball grid array
US5952726A (en) * 1996-11-12 1999-09-14 Lsi Logic Corporation Flip chip bump distribution on die
US6064113A (en) * 1998-01-13 2000-05-16 Lsi Logic Corporation Semiconductor device package including a substrate having bonding fingers within an electrically conductive ring surrounding a die area and a combined power and ground plane to stabilize signal path impedances
US6057596A (en) * 1998-10-19 2000-05-02 Silicon Integrated Systems Corp. Chip carrier having a specific power join distribution structure
US6140710A (en) * 1999-05-05 2000-10-31 Lucent Technologies Inc. Power and ground and signal layout for higher density integrated circuit connections with flip-chip bonding
US6285086B1 (en) * 1999-06-29 2001-09-04 Sharp Kabushiki Kaisha Semiconductor device and substrate for semiconductor device
US20050258519A1 (en) * 2004-05-20 2005-11-24 Koya Kikuchi Semiconductor device and method for fabricating the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006467A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US20120005893A1 (en) * 2010-07-08 2012-01-12 Noboru Kawai Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US8567052B2 (en) * 2010-07-08 2013-10-29 Seiko Instruments Inc. Method of manufacturing through electrode-attached glass substrate and method of manufacturing electronic component
US8596092B2 (en) * 2010-07-08 2013-12-03 Seiko Instruments Inc. Method of manufacturing through electrode-attached glass substrate
US20140162405A1 (en) * 2012-05-03 2014-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Interposer Having a Defined Through Via Pattern
US9460989B2 (en) * 2012-05-03 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Interposer having a defined through via pattern
US20160086883A1 (en) * 2013-03-29 2016-03-24 Stmicroelectronics (Rousset) Sas Method for making a photolithography mask intended for the formation of contacts, mask and integrated circuit corresponding thereto
US10115666B2 (en) 2013-03-29 2018-10-30 Stmicroelectronics (Rousset) Sas Method for making a photolithography mask intended for the formation of contacts, mask and integrated circuit corresponding thereto
US10418322B2 (en) * 2013-03-29 2019-09-17 Stmicroelectronics (Rousset) Sas Method for making a photolithography mask intended for the formation of contacts, mask and integrated circuit corresponding thereto
EP3451371A4 (en) * 2016-04-25 2019-10-23 KYOCERA Corporation Substrate for mounting electronic component, electronic device and electronic module

Also Published As

Publication number Publication date
US8816510B2 (en) 2014-08-26
KR101100590B1 (en) 2011-12-29
JP5223571B2 (en) 2013-06-26
JP2010087082A (en) 2010-04-15
KR20100036971A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US10510651B2 (en) Hard macro having blockage sites, integrated circuit including same and method of routing through a hard macro
US8816510B2 (en) Semiconductor apparatus, substrate design method, and substrate design apparatus
US7831949B2 (en) Method of designing semiconductor integrated circuit, designing apparatus, semiconductor integrated circuit system, semiconductor integrated circuit mounting substrate, package and semiconductor integrated circuit
US20090193374A1 (en) Method of designing semiconductor integrated circuit device, designing apparatus, and semiconductor integrated circuit device
US20030011071A1 (en) Semiconductor device
US7472367B1 (en) Method of optimizing interconnect distribution to improve signal integrity
US8302067B2 (en) Pin-out designation method for package-board codesign
US6664620B2 (en) Integrated circuit die and/or package having a variable pitch contact array for maximization of number of signal lines per routing layer
US8093708B2 (en) Semiconductor package having non-uniform contact arrangement
US20170256527A1 (en) Semiconductor memory device including output buffer
US7447039B2 (en) Motherboard configured to minimize or prevent damage to a chip thereon
US7772705B2 (en) Low thermal resistance package
US20190319385A1 (en) Ground heat sink for dual inline memory module cooling
US9633953B2 (en) Methodology to achieve zero warpage for IC package
JP7041368B2 (en) Semiconductor integrated circuit equipment
US8102667B2 (en) Method and apparatus for spatially optimizing surface mount pads on a ball grid array package
US8698325B2 (en) Integrated circuit package and physical layer interface arrangement
US8912656B2 (en) Integrated circuit package and physical layer interface arrangement
US11817378B2 (en) Apparatus and method for providing a scalable ball grid array (BGA) assignment and a PCB circuit trace breakout pattern for RF chip interfaces
US20090289363A1 (en) Fine-Pitch Ball Grid Array Package Design
US8237262B2 (en) Method and system for innovative substrate/package design for a high performance integrated circuit chipset
JP2008060215A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUI, NORIYUKI;SAKAI, HIDEHISA;REEL/FRAME:023303/0209

Effective date: 20090821

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUI, NORIYUKI;SAKAI, HIDEHISA;REEL/FRAME:023303/0209

Effective date: 20090821

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220826