US20100075971A1 - Substituted pyridine derivatives useful in the treatment of cancer and other disorders - Google Patents

Substituted pyridine derivatives useful in the treatment of cancer and other disorders Download PDF

Info

Publication number
US20100075971A1
US20100075971A1 US12/628,735 US62873509A US2010075971A1 US 20100075971 A1 US20100075971 A1 US 20100075971A1 US 62873509 A US62873509 A US 62873509A US 2010075971 A1 US2010075971 A1 US 2010075971A1
Authority
US
United States
Prior art keywords
phenyl
amino
linear
branched
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/628,735
Inventor
Jacques Dumas
Wendy Lee
Yuanwei Chen
Lila Adnane
William J. Scott
Sharad Verma
Jianqing Chen
Zhi Chen
Lin Yi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/628,735 priority Critical patent/US20100075971A1/en
Publication of US20100075971A1 publication Critical patent/US20100075971A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • This invention relates to novel compounds, pharmaceutical compositions containing such compounds and the use of those compounds or compositions for treating hyper-proliferative and angiogenesis disorders, as a sole agent or in combination with other active ingredients, e.g., cytotoxic therapies.
  • Raf kinase a downstream effector of ras, is recognized as a key mediator of these signals from cell surface receptors to the cell nucleus (Lowy, D. R.; Willumsen, B. M. Ann. Rev. Biochem. 1993, 62, 851; Bos, J. L. Cancer Res. 1989, 49, 4682).
  • tumor cells require a functional stroma, a support structure consisting of fibroblast, smooth muscle cells, endothelial cells, extracellular matrix proteins, and soluble factors (Folkman, J., Semin Oncol, 2002. 29(6 Suppl 16), 15-8).
  • Tumors induce the formation of stromal tissues through the secretion of soluble growth factors such as PDGF and transforming growth factor-beta (TGF-beta), which in turn stimulate the secretion of complimentary factors by host cells such as fibroblast growth factor (FGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF).
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • VEGF vascular endothelial growth factor
  • angiogenesis new blood vessels, or angiogenesis, which brings oxygen and nutrients to the tumor and allows it to grow and provides a route for metastasis.
  • some therapies directed at inhibiting stroma formation will inhibit the growth of epithelial tumors from a wide variety of histological types. (George, D. Semin Oncol, 2001. 28(5 Suppl 17), 27-33; Shaheen, R. M., et al., Cancer Res, 2001. 61(4), 1464-8; Shaheen, R. M., et al. Cancer Res, 1999. 59(21), 5412-6).
  • an agent targeting a single pathway may have limited efficacy.
  • PDGF vascular endothelial growth factor
  • FGF a chemo-attractant and mitogen for fibroblasts and endothelial cells
  • VEGF a potent regulator of vascularization
  • PDGF is another key regulator of stromal formation which is secreted by many tumors in a paracrine fashion and is believed to promote the growth of fibroblasts, smooth muscle and endothelial cells, promoting stroma formation and angiogenesis.
  • PDGF was originally identified as the v-sis oncogene product of the simian sarcoma virus (Heldin, C. H., et al., J Cell Sci Suppl, 1985, 3, 65-76).
  • the growth factor is made up of two peptide chains, referred to as A or B chains which share 60% homology in their primary amino acid sequence.
  • the chains are disulfide cross linked to form the 30 kDa mature protein composed of either AA, BB or AB homo- or heterodimmers.
  • PDGF is found at high levels in platelets, and is expressed by endothelial cells and vascular smooth muscle cells. In addition, the production of PDGF is up regulated under low oxygen conditions such as those found in poorly vascularized tumor tissue (Kourembanas, S., et al., Kidney Int, 1997, 51(2), 438-43). PDGF binds with high affinity to the PDGF receptor, a 1106 amino acid 124 kDa transmembrane tyrosine kinase receptor (Heldin, C. H., A. Ostman, and L.
  • PDGFR is found as homo- or heterodimer chains which have 30% homology overall in their amino acid sequence and 64% homology between their kinase domains (Heldin, C. H., et al. Embo J, 1988, 7(5), 1387-93).
  • PDGFR is a member of a family of tyrosine kinase receptors with split kinase domains that includes VEGFR2 (KDR), VEGFR3 (Flt4), c-Kit, and FLT3.
  • the PDGF receptor is expressed primarily on fibroblast, smooth muscle cells, and pericytes and to a lesser extent on neurons, kidney is mesangial, Leydig, and Schwann cells of the central nervous system. Upon binding to the receptor, PDGF induces receptor dimerization and undergoes auto- and trans-phosphorylation of tyrosine residues which increase the receptors' kinase activity and promotes the recruitment of downstream effectors through the activation of SH2 protein binding domains.
  • a number of signaling molecules form complexes with activated PDGFR including PI-3-kinase, phospholipase C-gamma, src and GAP (GTPase activating protein for p21-ras) (Soskic, V., et al. Biochemistry, 1999, 38(6), 1757-64).
  • PI-3-kinase phospholipase C-gamma
  • src GAP
  • PDGF PDGF-like protein
  • PDGF is found at high concentrations in platelets and is a potent chemoattractant for fibroblast, smooth muscle cells, neutrophils and macrophages.
  • PDGF is known to help maintain vascular homeostasis.
  • PDGF vascular endothelial growth factor
  • angiogenesis PDGF controls interstitial fluid pressure, regulating the permeability of vessels through its regulation of the interaction between connective tissue cells and the extracellular matrix. Inhibiting PDGFR activity can lower interstitial pressure and facilitate the influx of cytotoxics into tumors improving the anti-tumor efficacy of these agents (Pietras, K., et al. Cancer Res, 2002. 62(19), 5476-84; Pietras, K., et al. Cancer Res, 2001. 61(7), 2929-34).
  • PDGF can promote tumor growth through either the paracrine or autocrine stimulation of PDGFR receptors on stromal cells or tumor cells directly, or through the amplification of the receptor or activation of the receptor by recombination.
  • Over expressed PDGF can transform human melanoma cells and keratinocytes (Forsberg, is K., et al. Proc Natl Acad Sci USA., 1993. 90(2), 393-7; Skobe, M. and N. E. Fusenig, Proc Natl Acad Sci USA, 1998. 95(3), 1050-5), two cell types that do not express PDGF receptors, presumably by the direct effect of PDGF on stroma formation and induction of angiogenesis.
  • PDGFR inhibitors will interfere with tumor stromal development and are believed to inhibit tumor growth and metastasis.
  • VEGF vascular endothelial growth factor
  • VPF vascular permeability factor
  • VEGF expression is reported to be induced by hypoxia (Shweiki et al. Nature 1992, 359, 843), as well as by a variety of cytokines and growth factors, such as interleukin-1, interleukin-6, epidermal growth factor and transforming growth factor. To date, VEGF and the VEGF family members have been reported to bind to one or more of three transmembrane receptor tyrosine kinases (Mustonen et al. J.
  • VEGF receptor-1 also known as flt-1 (fms-like tyrosine kinase-1)
  • VEGFR-2 also known as kinase insert domain containing receptor (KDR); the murine analogue of KDR is known as fetal liver kinase-1 (flk-1)), and VEGFR-3 (also known as flt-4).
  • KDR and flt-1 have been shown to have different signal transduction properties (Waltenberger et al. J. Biol. Chem. 1994, 269, 26988); Park et al. Oncogene 1995, 10, 135).
  • KDR undergoes strong ligand-dependant tyrosine phosphorylation in intact cells, whereas flt-1 displays a weak response.
  • binding to KDR is believed to be a critical requirement for induction of the full spectrum of VEGF-mediated biological responses.
  • VEGF plays a central role in vasculogenesis, and induces angiogenesis and permeabilization of blood vessels.
  • Deregulated VEGF expression contributes to the development of a number of diseases that are characterized by abnormal angiogenesis and/or hyperpermeability processes. It is believed regulation of the VEGF-mediated signal transduction cascade by some agents can provide a useful mode for control of abnormal angiogenesis and/or hyperpermeability processes.
  • Angiogenesis is regarded as an important prerequisite for growth of tumors beyond about 1-2 mm. Oxygen and nutrients may be supplied to cells in tumor smaller than this limit through diffusion. However, it is believed every tumor is dependent on angiogenesis for continued growth after it has reached a certain size. Tumorigenic cells within hypoxic regions of tumors respond by stimulation of VEGF production, which triggers activation of quiescent endothelial cells to stimulate new blood vessel formation. (Shweiki et al. Proc. Nat'l. Acad. Sci., 1995, 92, 768). In addition, VEGF production in tumor regions where there is no angiogenesis may proceed through the ras signal transduction pathway (Grugel et al. J. Biol.
  • VEGF mRNA is strongly upregulated in a wide variety of human tumors, including lung (Mattern et al. Br. J. Cancer 1996, 73, 931), thyroid (Viglietto et al. Oncogene 1995, 11, 1569), breast (Brown et al. Human Pathol. 1995, 26, 86), gastrointestinal tract (Brown et al. Cancer Res. 1993, 53, 4727; Suzuki et al. Cancer Res. 1996, 56, 3004), kidney and bladder (Brown et al. Am. J. Pathol.
  • VEGF intraocular angiogenesis
  • ischemic retinal-vein occlusion a cascade of events
  • retinopathy of prematurity a number of retinopathies, including diabetic retinopathy, ischemic retinal-vein occlusion, and retinopathy of prematurity (Aiello et al. New Engl. J. Med. 1994, 331, 1480; Peer et al. Lab. Invest. 1995, 72, 638), and age-related macular degeneration (AMD; see, Lopez et al. Invest. Opththalmol. Vis. Sci. 1996, 37, 855).
  • AMD age-related macular degeneration
  • rheumatoid arthritis In rheumatoid arthritis (RA), the in-growth of vascular pannus may be mediated by production of angiogenic factors. Levels of immunoreactive VEGF are high in the synovial fluid of RA patients, while VEGF levels were low in the synovial fluid of patients with other forms of arthritis of with degenerative joint disease (Koch et al. J. Immunol. 1994, 152, 4149).
  • the angiogenesis inhibitor AGM-170 has been shown to prevent neovascularization of the joint in the rat collagen arthritis model (Peacock et al. J. Exper. Med. 1992, 175, 1135).
  • VEGF expression has also been shown in psoriatic skin, as well as bullous disorders associated with subepidermal blister formation, such as bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis (Brown et al. J. Invest. Dermatol. 1995, 104, 744).
  • VEGF, VEGF-C, VEGF-D vascular endothelial growth factors
  • VEGFR2, VEGFR3 vascular endothelial growth factors
  • VEGF, VEGF-C and VEGF-D are expressed in most tumors, primarily during periods of tumor growth and, often at substantially increased levels.
  • VEGF expression is stimulated by hypoxia, cytokines, oncogenes such as ras, or by inactivation of tumor suppressor genes (McMahon, G. Oncologist 2000, 5(Suppl. 1), 3-10; McDonald, N. Q.; Hendrickson, W. A. Cell 1993, 73, 421-424).
  • VEGFR3 (also called Flt-4) is predominantly expressed on lymphatic endothelium in normal adult tissues. VEGFR3 function is needed for new lymphatic vessel formation, but not for maintenance of the pre-existing lymphatics. VEGFR3 is also upregulated on blood vessel endothelium in tumors. Recently VEGF-C and VEGF-D, ligands for VEGFR3, have been identified as regulators of lymphangiogenesis in mammals. Lymphangiogenesis induced by tumor-associated lymphangiogenic factors could promote the growth of new vessels into the tumor, providing tumor cells access to systemic circulation. Cells that invade the lymphatics could find their way into the bloodstream via the thoracic duct.
  • VEGF-C, VEGF-D and VEGFR3 expression have allowed a direct comparison of VEGF-C, VEGF-D and VEGFR3 expression with clinicopathological factors that relate directly to the ability of primary tumors to spread (e.g., lymph node involvement, lymphatic invasion, secondary metastases, and disease-free survival). In many instances, these studies demonstrate a statistical correlation between the expression of lymphangiogenic factors and the ability of a primary solid tumor to metastasize (Skobe, M. et al. Nature Med. 2001, 7(2), 192-198; Stacker, S. A. et al. Nature Med. 2001, 7(2), 186-191; Makinen, T. et al. Nature Med. 2001, 7(2), 199-205; Mandriota, S. J.
  • hypoxia appears to be an important stimulus for VEGF production in malignant cells.
  • Activation of p38 MAP kinase is required for VEGF induction by tumor cells in response to hypoxia (Blaschke, F. et al. Biochem. Biophys. Res. Commun. 2002, 296, 890-896; Shemirani, B. et al. Oral Oncology 2002, 38, 251-257).
  • p38 MAP kinase promotes malignant cell invasion, and migration of different tumor types through regulation of collagenase activity and urokinase plasminogen activator expression (Laferriere, J. et al. J. Biol.
  • diarylureas have been described as having activity as serine-threonine kinase and/or as tyrosine kinase inhibitors.
  • the utility of these diarylureas as an active ingredient in pharmaceutical compositions for the treatment of cancer, angiogenesis disorders, and inflammatory disorders has been demonstated. See Redman et al., Bioorg. Med. Chem. Lett. 2001, 11, 9-12; Smith et al., Bioorg. Med. Chem. Lett. 2001, 11, 2775-2778; Dumas et al., Bioorg. Med. Chem. Lett. 2000, 10, 2047-2050; Dumas et al., Bioorg. Med. Chem. Lett.
  • the present invention pertains to:
  • novel compounds, salts, metabolites and prodrugs thereof, including diastereoisomeric forms (i) pharmaceutical compositions containing any of such compounds, and (iii) use of those compounds or compositions for treating diseases, e.g., hyper-proliferative and angiogenesis disorders, as a sole agent or in combination with other active ingredients, e.g., cytotoxic therapies.
  • diseases e.g., hyper-proliferative and angiogenesis disorders
  • other active ingredients e.g., cytotoxic therapies.
  • A is phenyl, naphthyl, mono- or bi-cyclic heteroaryl, or a group of the formula
  • B is phenyl, naphthyl, or pyridyl, optionally substituted with 1-4 substituents which are independently C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 3 alkoxy, hydroxy, amino, C 1 -C 3 alkylamino, C 1 -C 6 dialkylamino, halogen, cyano, or nitro.
  • B is preferably phenyl or pyridyl, optionally substituted with 1-4 substituents which are independently C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 3 alkoxy, hydroxy, amino, C 1 -C 3 alkylamino, C 1 -C 6 dialkylamino, halogen, cyano, or nitro.
  • L is a bridging group which is: (a) —(CH 2 ) m —O—(CH 2 ) l —, (b) —(CH 2 ) m —(CH 2 ) l —, (c) —(CH 2 ) m —C(O)—(CH 2 ) l —, (d) —(CH 2 ) m —NR 3 —(CH 2 ) l —, (e) —(CH 2 ) m —NR 3 C(O)—(CH 2 ) l —, (f) —(CH 2 ) m —S—(CH 2 ) l —, (g) —(CH 2 ) m —C(O)NR 3 —(CH 2 ) l —, or (h) a single bond.
  • the integers m and l are independently selected from 0-4 and are typically selected from 0-2.
  • L is most preferably —O— or —S—.
  • M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 3 alkoxy, hydroxy, amino, C 1 -C 3 alkylamino, C 1 -C 6 dialkylamino, halogen, or nitro.
  • R 1 , R 2 , R 13 , R 4 and R 5 is independently (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, (c) phenyl, (d) C 1 -C 3 phenyl-alkyl, (e) up to per-halo substituted C 1 -C 5 linear or branched alkyl, or (f) —(CH 2 ) q —X.
  • the substituent X is a 5 or 6 membered heterocyclic ring, containing at least one atom selected from oxygen, nitrogen and sulfur, which is saturated, partially saturated, or aromatic, or a 8-10 membered bicyclic heteroaryl having 1-4 heteroatoms selected from the group consisting of O, N and S.
  • R 4 and R 5 taken together may form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S.
  • This is optionally substituted with 1-3 substituents which are independently C 1 -C 5 linear or branched alkyl, up to perhalo substituted C 1 -C 5 linear or branched alkyl, C 1 -C 3 alkoxy, hydroxy, oxo, carboxy, amino, C 1 -C 3 alkylamino, C 1 -C 6 dialkylamino, halogen, cyano, or nitro.
  • R 6 is independently: (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, (c) cyano, (d) nitro, (e) up to per-halo substituted C 1 -C 5 linear or branched alkyl, or (f) —C(O)R 7 , where R 7 is C 1 -C 5 linear, branched, or cyclic alkyl.
  • R 6 is preferably independently: (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, or (c) cyano or (d) nitro, and most preferably, R 6 is independently: (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, or (c) cyano.
  • R 7 is hydrogen, or C 1 -C 5 linear, branched, or cyclic alkyl.
  • variable q is an integer 0, 1, 2, 3, or 4.
  • variable p is an integer 0, 1, or 2.
  • a group of compounds of interest are compounds of formula (I), salts, metabolites and prodrugs thereof, including diastereoisomeric forms (both isolated stereoisomers and mixtures of stereoisomers) wherein
  • A is substituted on any carbon atom by 0-4 substituents independently R 1 , OR 1 , S(O) p R 1 , C(O)R 1 , C(O)OR 1 , C(O)NR 1 R 2 , halogen, hydroxy, amino, cyano, or nitro; and B, L, M and Q of formula I are as defined above.
  • B is preferably phenyl or pyridyl, optionally substituted with 1-4 substituents which are independently C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 3 alkoxy, hydroxy, amino, C 1 -C 3 alkylamino, C 1 -C 6 dialkylamino, halogen, cyano, or nitro.
  • L is preferably —O—
  • M is preferably a pyridine ring substituted only by Q
  • Q is preferably
  • each of R 1 , R 2 , R 4 and R 5 is preferably, independently: (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, (c) phenyl, (d) C 1 -C 3 phenyl-alkyl, (e) up to per-halo substituted C 1 -C 5 linear or branched alkyl, or (f) —(CH 2 ) q —X, where the substituent X is pyridinyl and the variable q is preferably an integer 0 or 1, R 6 is preferably independently: (a) hydrogen, (b) C 1 -C 5 linear, branched, or cyclic alkyl, or (c) cyano.
  • Another group of compounds of interest are compounds of formula (I), salts, metabolites and prodrugs thereof, including diastereoisomeric forms (both isolated stereoisomers and mixtures of stereoisomers) wherein
  • B, L, M and Q of formula I are as defined above, and the preferred values for B, L, M and Q of formula I are as defined above.
  • any moiety When any moiety is “substituted”, it can have up to the highest number of indicated substituents, and each substituent can be located at any available position on the moiety and can be attached through any available atom on the substituent. “Any available position” means any position on the moiety that is chemically accessible through means known in the art or taught herein and that does not create an unduly unstable molecule. When there are two or more substituents on any moiety, each substituent is defined independently of any other substituent and can, accordingly, be the same or different.
  • M is pyridine
  • hydroxy as a pyridine substituent includes 2-, 3-, and 4-hydroxypyridine, but also includes those structures referred to in the art as 1-oxo-pyridine, 1-hydroxy-pyridine and pyridine N-oxide.
  • C 1 -C 5 alkyl means straight or branched chain alkyl groups having from one to five carbon atoms, which may be linear or branched with single or multiple branching. Such groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and the like.
  • haloC 1 -C 5 alkyl means a saturated hydrocarbon radical having up to five carbon atoms, which is substituted with a least one halogen atom, up to perhalo.
  • the radical may be linear or branched with single or multiple branching.
  • the halo substituent(s) include fluoro, chloro, bromo, or iodo. Fluoro, chloro and bromo are preferred, and fluoro and chloro are more preferred.
  • the halogen substituent(s) can be located on any available carbon. When more than one halogen substituent is present on this moiety, they may be the same or different.
  • halogenated alkyl substituents include but are not limited to chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, and 1,1,2,2-tetrafluoroethyl, and the like.
  • C 1 -C 3 alkoxy means straight or branched chain alkoxy group having from one to three saturated carbon atoms which may be linear or branched with single or multiple branching, and includes such groups as methoxy, ethoxy, n-propoxy, isopropoxy, and the like. It also includes halogenated groups such as 2,2-dichloroethoxy, trifluoromethoxy, and the like.
  • Halo or halogen means fluoro, chloro, bromo, or iodo. Fluoro, chloro and bromo are preferred, and fluoro and chloro are more preferred.
  • C 1 -C 3 alkylamine means methylamino, ethylamino, propylamino or isopropylamino.
  • C 1 -C 6 dialkylamine examples include but are not limited to diethylamino, ethyl-isopropylamino, methyl-isobytulamino and dihexylamino.
  • heteroaryl refers to both monocyclic and bicyclic heteroaryl rings.
  • Monocyclic heteroaryl means an aromatic monocyclic rings having 5 to 6 ring atoms, at least one of which is a hetero atom selected from N, O and S, the remaining atoms being carbon. When more than one hetero atom is present in the moiety, they are selected independently from the other(s) so that they may be the same or different.
  • Monocyclic heteroaryl rings include, but are not limited to pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, tetrazole, thiadiazole, oxadiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • Bicyclic heteroaryl means fused bicyclic moieties where one of the rings is chosen from the monocyclic heteroaryl rings described above and the second ring is either benzene or another monocyclic heteroaryl ring described above.
  • both rings in the bicyclic moiety are heteroaryl rings, they may be the same or different, as long as they are chemically accessible by means known in the art.
  • Bicyclic heteroaryl rings include synthetically accessible 5-5, 5-6, or 6-6 fused bicyclic aromatic structures including, for example but not by way of limitation, benzoxazole (fused benzene and oxazole), indazole (fused benzene and pyrazole), quinoline (fused phenyl and pyridine), quinazoline (fused pyrimidine and benzene), imidazopyrimidine (fused imidazole and pyrimidine), naphtyridine (two fused pyridines), and the like.
  • 5 or 6 membered heterocyclic ring, containing at least one atom selected from oxygen, nitrogen and sulfur, which is saturated, partially saturated, or is aromatic includes, by no way of limitation, tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine, and the like.
  • Non-limiting examples of Q substituents where R 4 and R 5 taken together may form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, which is optionally substituted include:
  • C 1 -C 3 phenyl-alkyl includes, by no way of limitation, 3-phenyl-propyl, 2-phenyl-1-methyl-ethyl. Substituted examples include 2-[2-chlorophenyl]ethyl, 3,4-dimethylphenyl-methyl, and the like.
  • the compounds of Formula I may contain one or more asymmetric centers, depending upon the location and nature of the various substituents desired.
  • Asymmetric carbon atoms may be present in the (R) or (S) configuration or (R,S) configuration. In certain instances, asymmetry may also be present due to restricted rotation about a given bond, for example, the central bond adjoining two substituted aromatic rings of the specified compounds. Substituents on a ring may also be present in either cis or trans form. It is intended that all such configurations (including enantiomers and diastereomers), are included within the scope of the present invention.
  • Preferred compounds are those with the absolute configuration of the compound of Formula I which produces the more desirable biological activity.
  • Separated, pure or partially purified isomers or racemic mixtures of the compounds of this invention are also included within the scope of the present invention. The purification of said isomers and the separation of said isomeric mixtures can be accomplished by standard techniques known in the art.
  • the optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, for example, by the formation of diastereoisomeric salts using an optically active acid or base or formation of covalent diastereomers.
  • appropriate acids are tartaric, diacetyltartaric, ditoluoyltartaric and camphorsulfonic acid.
  • Mixtures of diastereoisomers can be separated into their individual diastereomers on the basis of their physical and/or chemical differences by methods known in the art, for example, by chromatography or fractional crystallization.
  • the optically active bases or acids are then liberated from the separated diastereomeric salts.
  • a different process for separation of optical isomers involves the use of chiral chromatography (e.g., chiral HPLC columns), with or without conventional derivation, optimally chosen to maximize the separation of the enantiomers.
  • Suitable chiral HPLC columns are manufactured by Diacel, e.g., Chiracel OD and Chiracel OJ among many others, all routinely selectable.
  • Enzymatic separations, with or without derivitization, are also useful.
  • the optically active compounds of Formula I can likewise be obtained by chiral syntheses utilizing optically active starting materials.
  • the present invention also relates to useful forms of the compounds as disclosed herein, such as pharmaceutically acceptable salts, metabolites and prodrugs of all the compounds Formula (I).
  • pharmaceutically acceptable salt refers to a relatively non-toxic, inorganic or organic acid addition salt of a compound of the present invention. For example, see S. M. Berge, et al. “Pharmaceutical Salts,” J. Pharm. Sci. 1977, 66, 1-19.
  • Pharmaceutically acceptable salts include those obtained by reacting the main compound, functioning as a base, with an inorganic or organic acid to form a salt, for example, salts of hydrochloric acid, sulfuric acid, phosphoric acid, methane sulfonic acid, camphor sulfonic acid, oxalic acid, maleic acid, succinic acid and citric acid.
  • Pharmaceutically acceptable salts also include those in which the main compound functions as an acid and is reacted with an appropriate base to form, e.g., sodium, potassium, calcium, magnesium, ammonium, and choline salts.
  • acid addition salts of the claimed compounds may be prepared by reaction of the compounds with the appropriate inorganic or organic acid via any of a number of known methods.
  • alkali and alkaline earth metal salts are prepared by reacting the compounds of the invention with the appropriate base via a variety of known methods.
  • Representative salts of the compounds of this invention include the conventional non-toxic salts and the quaternary ammonium salts which are formed, for example, from inorganic or organic acids or bases by means well known in the art.
  • acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cinnamate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, itaconate, lactate, maleate, mandelate, methanesulfonate,
  • Base salts include alkali metal salts such as potassium and sodium salts, alkaline earth metal salts such as calcium and magnesium salts, and ammonium salts with organic bases such as dicyclohexylamine and N-methyl-D-glucamine. Additionally, basic nitrogen containing groups may be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, and dibutyl sulfate; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides,
  • Certain compounds of this invention can be further modified with labile functional groups that are cleaved after in vivo administration to furnish the parent active agent and the pharmacologically inactive derivatizing (functional) group.
  • labile functional groups that are cleaved after in vivo administration to furnish the parent active agent and the pharmacologically inactive derivatizing (functional) group.
  • prodrugs can be used, for example, to alter the physicochemical properties of the active agent, to target the active agent to a specific tissue, to alter the pharmacokinetic and pharmacodynamic properties of the active agent, and to reduce undesirable side effects
  • Prodrugs of the invention include, e.g., the esters of appropriate compounds of this invention are well-tolerated, pharmaceutically acceptable esters such as alkyl esters including methyl, ethyl, propyl, isopropyl, butyl, isobutyl or pentyl esters. Additional esters such as phenyl-C 1 -C 5 alkyl may be used, although methyl ester is preferred.
  • the metabolites of the compounds of this invention include oxidized derivatives of the compounds of Formula I, wherein one or more of the nitrogens are substituted with a hydroxy group; which includes derivatives where the nitrogen atom of the pyridine group is in the oxide form, referred to in the art as 1-oxo-pyridine or has a hydroxy substituent, referred to in the art as 1-hydroxy-pyridine.
  • the compounds of the invention may be prepared by use of known chemical reactions and procedures. Nevertheless, the following general preparative methods are presented to aid the reader in synthesizing the compounds of the present invention, with more detailed particular examples being presented below in the experimental section describing the working examples.
  • variable groups of these methods are as described in the generic description if they are not specifically defined below.
  • a variable group or substituent with a given symbol is used more than once in a given structure, it is to be understood that each of these groups or substituents may be independently varied within the range of definitions for that symbol.
  • compounds of the invention with each claimed optional functional group cannot be prepared with each of the below-listed methods.
  • optional substituents are used which are stable to the reaction conditions, or the functional groups which may participate in the reactions are present in protected form where necessary, and the removal of such protective groups is completed at appropriate stages by methods well known to those is skilled in the art.
  • the compounds of the invention can be made according to conventional chemical methods, and/or as disclosed below, from starting materials which are either commercially available or producible according to routine, conventional chemical methods. General methods for the preparation of the compounds are given below, and the preparation of representative compounds is specifically illustrated in examples.
  • the compounds (I) can be synthesized according to the reaction sequence shown in the General Method above.
  • the compounds (I) can be synthesized by reacting amino compounds (III) with isocyante compounds (II).
  • the compounds (II) are commercially available or can be synthesized according to methods commonly known to those skilled in the art [e.g. from treatment of an amine with phosgene or a phosgene equivalent such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl)carbonate (triphosgene), or N,N′-carbonyldiimidazole (CDI); or, alternatively by a Curtius-type rearrangement of an amide, or a carboxylic acid derivative, such as an ester, an acid halide or an anhydride].
  • the compounds (III) are commercially available or can be synthesized according methods commonly known is to those skilled in the art.
  • diaryl ureas are already described in the patent literature, and can be adapted to the compounds of the present invention.
  • Miller S. et al “Inhibition of p38 Kinase using Symmetrical and Unsymmetrical Diphenyl Ureas” PCT Int. Appl. WO 99 32463
  • Miller, S et al. “Inhibition of raf Kinase using Symmetrical and Unsymmetrical Substituted Diphenyl Ureas” PCT Int. Appl., WO 99 32436
  • Dumas J. et al., “Inhibition of p38 Kinase Activity using Substituted Heterocyclic Ureas” PCT Int.
  • Suitable solvents comprise the customary organic solvents which are inert under the reaction conditions.
  • ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxy ethane
  • hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, mineral oil fractions
  • halogenated hydrocarbons such as dichloromethane, trichloromethane, carbon tetrachloride, dichloroethane, trichloroethylene, chlorobenzene
  • alcohols such as methanol, ethanol, n-propanol, isopropanol
  • esters such as ethyl acetate
  • ketones such as acetone
  • nitriles such as acetonitrile
  • heteroaromatics such as pyridine
  • polar solvents such as pyridine
  • the compounds (III) are generally employed in an amount of from 1 to 3 mol per mol of compounds (II); an equimolar amount or slight excess of compounds (III) is preferred.
  • the reaction of the compounds (II) with (III) is generally carried out within a relatively wide temperature range. In general, they are carried out in a range of from ⁇ 20 to 200° C., preferably from 0 to 100° C., and more preferably from 25 to 50° C.
  • the steps of this reaction are generally carried out under atmospheric pressure. However, it is also possible to carry them out under superatmospheric pressure or under reduced pressure (for example, in a range of from 0.5 to 5 bar).
  • the reaction time can generally be varied within a relatively wide range. In general, the reaction is finished after a period of from 2 to 24 hours, preferably from 6 to 12 hours.
  • Synthetic transformations that may be employed in the synthesis of compounds of Formula I and in the synthesis of intermediates involved in the synthesis of compounds of Formula I are known by or accessible to one skilled in the art. Collections of synthetic transformations may be found in compilations, such as:
  • compositions containing one or more compounds of the present invention can be utilized to achieve the desired pharmacological effect by administration to a patient in need thereof.
  • a patient for the purpose of this invention, is a mammal, including a human, in need of treatment for the particular condition or disease. Therefore, the present invention includes pharmaceutical compositions which are comprised of a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound, or salt thereof, of the present invention.
  • a pharmaceutically acceptable carrier is preferably a carrier which is relatively non-toxic and innocuous to a patient at concentrations consistent with effective activity of the active ingredient so that any side effects ascribable to the carrier do not vitiate the beneficial effects of the active ingredient.
  • a pharmaceutically effective amount of compound is preferably that amount which produces a result or exerts an influence on the particular condition being treated.
  • the compounds of the present invention can be administered with pharmaceutically-acceptable carriers well known in the art using any effective conventional dosage unit forms, including immediate, slow and timed release preparations, orally, parenterally, topically, nasally, ophthalmically, optically, sublingually, rectally, vaginally, and the like.
  • the compounds can be formulated into solid or liquid preparations such as capsules, pills, tablets, troches, lozenges, melts, powders, solutions, suspensions, or emulsions, and may be prepared according to methods known to the art for the manufacture of pharmaceutical compositions.
  • the solid unit dosage forms can be a capsule which can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers such as lactose, sucrose, calcium phosphate, and corn starch.
  • the compounds of this invention may be tableted with is conventional tablet bases such as lactose, sucrose and cornstarch in combination with binders such as acacia, corn starch or gelatin, disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn starch, and guar gum, gum tragacanth, acacia, lubricants intended to improve the flow of tablet granulation and to prevent the adhesion of tablet material to the surfaces of the tablet dies and punches, for example talc, stearic acid, or magnesium, calcium or zinc stearate, dyes, coloring agents, and flavoring agents such as peppermint, oil of wintergreen, or cherry flavoring, intended to enhance the aesthetic qualities of the tablets and make them more acceptable to the patient.
  • binders such as acacia, corn starch or gelatin
  • disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn
  • Suitable excipients for use in oral liquid dosage forms include dicalcium phosphate and diluents such as water and alcohols, for example, ethanol, benzyl alcohol, and polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent or emulsifying agent.
  • Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance tablets, pills or capsules may be coated with shellac, sugar or both.
  • Dispersible powders and granules are suitable for the preparation of an aqueous suspension. They provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example those sweetening, flavoring and coloring agents described above, may also be present.
  • the pharmaceutical compositions of this invention may also be in the form of oil-in-water emulsions.
  • the oily phase may be a vegetable oil such as liquid paraffin or a mixture of vegetable oils.
  • Suitable emulsifying agents may be (1) naturally occurring gums such as gum acacia and gum tragacanth, (2) naturally occurring phosphatides such as soy bean and lecithin, (3) esters or partial esters derived form fatty acids and hexitol anhydrides, for example, sorbitan monooleate, (4) condensation products of said partial esters with ethylene oxide, for example, polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening and flavoring agents.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil such as, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent such as, for example, beeswax, hard paraffin, or cetyl alcohol.
  • the suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents such as sucrose or saccharin.
  • Syrups and elixirs may be formulated with sweetening agents such as, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, and preservative, such as methyl and propyl parabens and flavoring and coloring agents.
  • sweetening agents such as, for example, glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, and preservative, such as methyl and propyl parabens and flavoring and coloring agents.
  • the compounds of this invention may also be administered parenterally, that is, subcutaneously, intravenously, intraocularly, intrasynovially, intramuscularly, or interperitoneally, as injectable dosages of the compound in preferably a physiologically acceptable diluent with a pharmaceutical carrier which can be a sterile liquid or mixture of liquids such as water, saline, aqueous dextrose and related sugar solutions, an alcohol such as ethanol, isopropanol, or hexadecyl alcohol, glycols such as propylene glycol or polyethylene glycol, glycerol ketals such as 2,2-dimethyl-1,1-dioxolane-4-methanol, ethers such as poly(ethylene glycol) 400, an oil, a fatty acid, a fatty acid ester or, a fatty acid glyceride, or an acetylated fatty acid glyceride, with or without the addition of a pharmaceutically acceptable surfactant such
  • Suitable fatty acids include oleic acid, stearic acid, isostearic acid and myristic acid.
  • Suitable fatty acid esters are, for example, ethyl oleate and isopropyl myristate.
  • Suitable soaps include fatty acid alkali metal, ammonium, and triethanolamine salts and suitable detergents include cationic detergents, for example dimethyl dialkyl ammonium halides, alkyl pyridinium halides, and alkylamine acetates; anionic detergents, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates; non-ionic detergents, for example, fatty amine oxides, fatty acid alkanolamides, and poly(oxyethylene-oxypropylene)s or ethylene oxide or propylene oxide copolymers; and amphoteric detergents, for example, alkyl-beta-aminopropionates, and 2-alkylimidazoline quarternary ammonium salts, as well as mixtures.
  • suitable detergents include cationic detergents, for example di
  • compositions of this invention will typically contain from about 0.5% to about 25% by weight of the active ingredient in solution. Preservatives and buffers may also be used advantageously. In order to minimize or eliminate irritation at the site of injection, such compositions may contain a non-ionic surfactant having a hydrophile-lipophile balance (HLB) preferably of from about 12 to about 17. The quantity of surfactant in such formulation preferably ranges from about 5% to about 15% by weight.
  • the surfactant can be a single component having the above HLB or can be a mixture of two or more components having the desired HLB.
  • surfactants used in parenteral formulations are the class of polyethylene sorbitan fatty acid esters, for example, sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol.
  • compositions may be in the form of sterile injectable aqueous suspensions.
  • suspensions may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents which may be a naturally occurring phosphatide such as lecithin, a condensation product of an alkylene oxide with a fatty acid, for example, polyoxyethylene stearate, a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example, heptadeca-ethyleneoxycetanol, a condensation product of ethylene oxide with a partial ester derived form a fatty acid and a hexitol such as polyoxyethylene sorbitol monooleate, or a condensation product of an ethylene oxide with a partial ester derived from a
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent.
  • Diluents and solvents that may be employed are, for example, water, Ringer's solution, isotonic sodium chloride solutions and isotonic glucose solutions.
  • sterile fixed oils are conventionally employed as solvents or suspending media.
  • any bland, fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid can be used in the preparation of injectables.
  • composition of the invention may also be administered in the form of suppositories for rectal administration of the drug.
  • These compositions can be prepared by mixing the drug with a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • Such material are, for example, cocoa butter and polyethylene glycol.
  • transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
  • the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art (see, e.g., U.S. Pat. No. 5,023,252, issued Jun. 11, 1991, incorporated herein by reference).
  • patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
  • Controlled release formulations for parenteral administration include liposomal, polymeric microsphere and polymeric gel formulations which are known in the art.
  • a mechanical delivery device It may be desirable or necessary to introduce the pharmaceutical composition to the patient via a mechanical delivery device.
  • the construction and use of mechanical delivery devices for the delivery of pharmaceutical agents is well known in the art.
  • Direct techniques for, for example, administering a drug directly to the brain usually involve placement of a drug delivery catheter into the patient's ventricular system to bypass the blood-brain barrier.
  • One such implantable delivery system, used for the transport of agents to specific anatomical regions of the body is described in U.S. Pat. No. 5,011,472, issued Apr. 30, 1991.
  • compositions of the invention can also contain other conventional pharmaceutically acceptable compounding ingredients, generally referred to as carriers or diluents, as necessary or desired.
  • Conventional procedures for preparing such compositions in appropriate dosage forms can be utilized. Such ingredients and procedures include those described in the following references, each of which is incorporated herein by reference: Powell, M. F. et al, “Compendium of Excipients for Parenteral Formulations” PDA Journal of Pharmaceutical Science & Technology 1998, 52(5), 238-311; Strickley, R. G “Parenteral Formulations of Small Molecule Therapeutics Marketed in the United States (1999)-Part-1 ” PDA Journal of Pharmaceutical Science & Technology 1999, 53(6), 324-349; and Nema, S. et al, “Excipients and Their Use in Injectable Products” PDA Journal of Pharmaceutical Science & Technology 1997, 51(4), 166-171.
  • compositions for its intended route of administration include:
  • acidifying agents include but are not limited to acetic acid, citric acid, fumaric acid, hydrochloric acid, nitric acid);
  • alkalinizing agents examples include but are not limited to ammonia solution, ammonium carbonate, diethanolamine, monoethanolamine, potassium hydroxide, sodium borate, sodium carbonate, sodium hydroxide, triethanolamine, trolamine;
  • adsorbents examples include but are not limited to powdered cellulose and activated charcoal
  • aerosol propellants examples include but are not limited to carbon dioxide, CCl 2 F 2 , F 2 ClC—CClF 2 and CClF 3 )
  • air displacement agents examples include but are not limited to nitrogen and argon
  • antifungal preservatives examples include but are not limited to benzoic acid, butylparaben, ethylparaben, methylparaben, propylparaben, sodium benzoate);
  • antimicrobial preservatives examples include but are not limited to benzalkonium chloride, benzethonium chloride, benzyl alcohol, cetylpyridinium chloride, chlorobutanol, phenol, phenylethyl alcohol, phenylmercuric nitrate and thimerosal;
  • antioxidants examples include but are not limited to ascorbic acid, ascorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, hypophosphorus acid, monothioglycerol, propyl gallate, sodium ascorbate, sodium bisulfite, sodium formaldehyde sulfoxylate, sodium metabisulfite);
  • binding materials examples include but are not limited to block polymers, natural and synthetic rubber, polyacrylates, polyurethanes, silicones, polysiloxanes and styrene-butadiene copolymers;
  • buffering agents examples include but are not limited to potassium metaphosphate, dipotassium phosphate, sodium acetate, sodium citrate anhydrous and sodium citrate dihydrate
  • carrying agents examples include but are not limited to acacia syrup, aromatic syrup, aromatic elixir, cherry syrup, cocoa syrup, orange syrup, syrup, corn oil, mineral oil, peanut oil, sesame oil, bacteriostatic sodium chloride injection and bacteriostatic water for injection
  • examples include but are not limited to acacia syrup, aromatic syrup, aromatic elixir, cherry syrup, cocoa syrup, orange syrup, syrup, corn oil, mineral oil, peanut oil, sesame oil, bacteriostatic sodium chloride injection and bacteriostatic water for injection
  • chelating agents examples include but are not limited to edetate disodium and edetic acid
  • colorants examples include but are not limited to FD&C Red No. 3, FD&C Red No. 20, FD&C Yellow No. 6, FD&C Blue No. 2, D&C Green No. 5, D&C Orange No. 5, D&C Red No. 8, caramel and ferric oxide red);
  • clarifying agents examples include but are not limited to bentonite
  • emulsifying agents examples include but are not limited to acacia, cetomacrogol, cetyl alcohol, glyceryl monostearate, lecithin, sorbitan monooleate, polyoxyethylene 50 monostearate);
  • encapsulating agents examples include but are not limited to gelatin and cellulose acetate phthalate
  • flavorants examples include but are not limited to anise oil, cinnamon oil, cocoa, menthol, orange oil, peppermint oil and vanillin);
  • humectants examples include but are not limited to glycerol, propylene glycol and sorbitol
  • levigating agents examples include but are not limited to mineral oil and glycerin
  • oils examples include but are not limited to arachis oil, mineral oil, olive oil, peanut oil, sesame oil and vegetable oil);
  • ointment bases examples include but are not limited to lanolin, hydrophilic ointment, polyethylene glycol ointment, petrolatum, hydrophilic petrolatum, white ointment, yellow ointment, and rose water ointment;
  • penetration enhancers include but are not limited to monohydroxy or polyhydroxy alcohols, mono- or polyvalent alcohols, saturated or unsaturated fatty alcohols, saturated or unsaturated fatty esters, saturated or unsaturated dicarboxylic acids, essential oils, phosphatidyl derivatives, cephalin, terpenes, amides, ethers, ketones and ureas
  • monohydroxy or polyhydroxy alcohols mono- or polyvalent alcohols
  • saturated or unsaturated fatty alcohols saturated or unsaturated fatty esters
  • saturated or unsaturated dicarboxylic acids saturated or unsaturated dicarboxylic acids
  • essential oils phosphatidyl derivatives
  • cephalin cephalin
  • terpenes amides, ethers, ketones and ureas
  • plasticizers examples include but are not limited to diethyl phthalate and glycerol
  • solvents examples include but are not limited to ethanol, corn oil, cottonseed oil, glycerol, isopropanol, mineral oil, oleic acid, peanut oil, purified water, water for injection, sterile water for injection and sterile water for irrigation);
  • stiffening agents examples include but are not limited to cetyl alcohol, cetyl esters wax, microcrystalline wax, paraffin, stearyl alcohol, white wax and yellow wax;
  • suppository bases examples include but are not limited to cocoa butter and polyethylene glycols (mixtures));
  • surfactants examples include but are not limited to benzalkonium chloride, nonoxynol 10, oxtoxynol 9, polysorbate 80, sodium lauryl sulfate and sorbitan mono-palmitate);
  • suspending agents examples include but are not limited to agar, bentonite, carbomers, carboxymethylcellulose sodium, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, kaolin, methylcellulose, tragacanth and veegum);
  • sweetening agents examples include but are not limited to aspartame, dextrose, glycerol, mannitol, propylene glycol, saccharin sodium, sorbitol and sucrose;
  • tablet anti-adherents examples include but are not limited to magnesium stearate and talc
  • tablet binders examples include but are not limited to acacia, alginic acid, carboxymethylcellulose sodium, compressible sugar, ethylcellulose, gelatin, liquid glucose, methylcellulose, non-crosslinked polyvinyl pyrrolidone, and pregelatinized starch;
  • tablet and capsule diluents examples include but are not limited to dibasic calcium phosphate, kaolin, lactose, mannitol, microcrystalline cellulose, powdered cellulose, precipitated calcium carbonate, sodium carbonate, sodium phosphate, sorbitol and starch);
  • tablet coating agents examples include but are not limited to liquid glucose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose, ethylcellulose, cellulose acetate phthalate and shellac);
  • tablet direct compression excipients examples include but are not limited to dibasic calcium phosphate
  • tablet disintegrants examples include but are not limited to alginic acid, carboxymethylcellulose calcium, microcrystalline cellulose, polacrilin potassium, cross-linked polyvinylpyrrolidone, sodium alginate, sodium starch glycollate and starch;
  • tablet glidants examples include but are not limited to colloidal silica, corn starch and talc;
  • tablet lubricants examples include but are not limited to calcium stearate, magnesium stearate, mineral oil, stearic acid and zinc stearate);
  • tablet/capsule opaquants examples include but are not limited to titanium dioxide
  • tablet polishing agents examples include but are not limited to carnuba wax and white wax
  • thickening agents examples include but are not limited to beeswax, cetyl alcohol and paraffin
  • tonicity agents examples include but are not limited to dextrose and sodium chloride
  • viscosity increasing agents examples include but are not limited to alginic acid, bentonite, carbomers, carboxymethylcellulose sodium, methylcellulose, polyvinyl pyrrolidone, sodium alginate and tragacanth; and
  • wetting agents examples include but are not limited to heptadecaethylene oxycetanol, lecithins, sorbitol monooleate, polyoxyethylene sorbitol monooleate, and polyoxyethylene stearate).
  • compositions according to the present invention can be illustrated as follows:
  • Sterile IV Solution A 5 mg/ml solution of the desired compound of this invention can be made using sterile, injectable water, and the pH is adjusted if necessary. The solution is diluted for administration to 1-2 mg/ml with sterile 5% dextrose and is administered as an IV infusion over 60 minutes.
  • Lyophilized powder for IV administration A sterile preparation can be prepared with (i) 100-1000 mg of the desired compound of this invention as a lyophilized powder, (ii) 32-327 mg/ml sodium citrate, and (iii) 300-3000 mg Dextran 40.
  • the formulation is reconstituted with sterile, injectable saline or dextrose 5% to a concentration of 10 to 20 mg/ml, which is further diluted with saline or dextrose 5% to 0.2-0.4 mg/ml, and is administered either IV bolus or by IV infusion over 15-60 minutes.
  • Intramuscular suspension The following solution or suspension can be prepared, for intramuscular injection:
  • Hard Shell Capsules A large number of unit capsules are prepared by filling standard two-piece hard galantine capsules each with 100 mg of powdered active ingredient, 150 mg of lactose, 50 mg of cellulose and 6 mg of magnesium stearate.
  • Soft Gelatin Capsules A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into molten gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules are washed and dried. The active ingredient can be dissolved in a mixture of polyethylene glycol, glycerin and sorbitol to prepare a water miscible medicine mix.
  • Tablets A large number of tablets are prepared by conventional procedures so that the dosage unit is 100 mg of active ingredient, 0.2 mg. of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg. of starch, and 98.8 mg of lactose. Appropriate aqueous and non-aqueous coatings may be applied to increase palatability, improve elegance and stability or delay absorption. Immediate Release Tablets/Capsules: These are solid oral dosage forms made by conventional and novel processes. These units are taken orally without water for immediate dissolution and delivery of the medication. The active ingredient is mixed in a liquid containing ingredient such as sugar, gelatin, pectin and sweeteners.
  • the drug compounds may be compressed with viscoelastic and thermoelastic sugars and polymers or effervescent components to produce porous matrices intended for immediate release, without the need of water.
  • the present invention relates to a method for using the compounds described above (Compounds of Formula I), including salts and esters thereof and compositions thereof, to treat mammalian hyper-proliferative disorders.
  • This method comprises administering to a mammal in need thereof, including a human, an amount of a compound of this invention, or a pharmaceutically acceptable salt or ester thereof, which is effective to treat the disorder.
  • Hyper-proliferative disorders include but are not limited to solid tumors, such as cancers of the breast, respiratory tract, brain, reproductive organs, digestive tract, urinary tract, eye, liver, skin, head and neck, thyroid, parathyroid and their distant metastases. Those disorders also include lymphomas, sarcomas, and leukemias.
  • breast cancer examples include, but are not limited to invasive ductal carcinoma, invasive lobular carcinoma, ductal carcinoma in situ, and lobular carcinoma in situ.
  • cancers of the respiratory tract include, but are not limited to small-cell and non-small-cell lung carcinoma, as well as bronchial adenoma and pleuropulmonary blastoma.
  • brain cancers include, but are not limited to brain stem and hypothalamic glioma, cerebellar and cerebral astrocytoma, medulloblastoma, ependymoma, as well as neuroectodermal and pineal tumor.
  • Tumors of the male reproductive organs include, but are not limited to prostate and testicular cancer.
  • Tumors of the female reproductive organs include, but are not limited to endometrial, cervical, ovarian, vaginal, and vulvar cancer, as well as sarcoma of the uterus.
  • Tumors of the digestive tract include, but are not limited to anal, colon, colorectal, esophageal, gallbladder, gastric, pancreatic, rectal, small-intestine, and salivary gland cancers.
  • Tumors of the urinary tract include, but are not limited to bladder, penile, kidney, renal pelvis, ureter, and urethral cancers.
  • Eye cancers include, but are not limited to intraocular melanoma and retinoblastoma.
  • liver cancers include, but are not limited to hepatocellular carcinoma (liver cell carcinomas with or without fibrolamellar variant), cholangiocarcinoma (intrahepatic bile duct carcinoma), and mixed hepatocellular cholangiocarcinoma.
  • Skin cancers include, but are not limited to squamous cell carcinoma, Kaposi's sarcoma, malignant melanoma, Merkel cell skin cancer, and non-melanoma skin cancer.
  • Head-and-neck cancers include, but are not limited to laryngeal/hypopharyngeal/nasopharyngeal/oropharyngeal cancer, and lip and oral cavity cancer.
  • Lymphomas include, but are not limited to AIDS-related lymphoma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, Hodgkin's disease, and lymphoma of the central nervous system.
  • Sarcomas include, but are not limited to sarcoma of the soft tissue, osteosarcoma, malignant fibrous histiocytoma, lymphosarcoma, and rhabdomyosarcoma.
  • Leukemias include, but are not limited to acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia.
  • the effective dosage of the compounds of this invention can readily be determined for treatment of each desired indication.
  • the amount of the active ingredient to be administered in the treatment of one of these conditions can vary widely according to such considerations as the particular compound and dosage unit employed, the mode of administration, the period of treatment, the age and sex of the patient treated, and the nature and extent of the condition treated.
  • the total amount of the active ingredient to be administered will generally range from about 0.001 mg/kg to about 200 mg/kg body weight per day, and preferably from about 0.01 mg/kg to about 20 mg/kg body weight per day. It should be noted that the choice of dosing schedules is particularly important to maximize the efficacy and safety of drugs for the treatment of proliferative disorders such as cancer. Clinically useful dosing schedules will range from three times a day dosing to once every four weeks dosing. In addition, “drug holidays” in which a patient is not dosed with a drug for a certain period of time, may be beneficial to the overall balance between pharmacological effect and tolerability.
  • a unit dosage may contain from about 0.5 mg to about 1500 mg of active ingredient, and can be administered one or more times per day or less than once a day.
  • the average daily dosage for administration by injection including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/kg of total body weight.
  • the average daily rectal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight.
  • the average daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight.
  • the average daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily.
  • the transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200 mg/kg.
  • the average daily inhalation dosage regimen will preferably be from 0.01 to 100 mg/kg of total body weight.
  • the specific initial and continuing dosage regimen for each patient will vary according to the nature and severity of the condition as determined by the attending diagnostician, the activity of the specific compound employed, the age and general condition of the patient, time of administration, route of administration, rate of excretion of the drug, drug combinations, and the like.
  • the desired mode of treatment and number of doses of a compound of the present invention or a pharmaceutically acceptable salt or ester or composition thereof can be ascertained by those skilled in the art using conventional treatment tests.
  • the compounds of this invention can be administered as the sole pharmaceutical agent or in combination with one or more other pharmaceutical agents where the combination causes no unacceptable adverse effects.
  • the compounds of this invention can be combined with known anti-hyper-proliferative or other indication agents, and the like, as well as with admixtures and combinations thereof.
  • Optional anti-hyper-proliferative agents which can be added to the composition include but are not limited to compounds listed on the cancer chemotherapy drug regimens in the 11 th Edition of the Merck Index , (1996), which is hereby incorporated by reference, such as asparaginase, bleomycin, carboplatin, carmustine, chlorambucil, cisplatin, colaspase, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin (adriamycine), epirubicin, etoposide, 5-fluorouracil, hexamethylmelamine, hydroxyurea, ifosfamide, irinotecan, leucovorin, lomustine, mechlorethamine, 6-mercaptopurine, mesna, methotrexate, mitomycin C, mitoxantrone, prednisolone, prednis
  • anti-hyper-proliferative agents suitable for use with the composition of the invention include but are not limited to those compounds acknowledged to be used in the treatment of neoplastic diseases in Goodman and Gilman's The Pharmacological Basis of Therapeutics (Ninth Edition), editor Molinoff et al., publ.
  • anti-hyper-proliferative agents suitable for use with the composition of the invention include but are not limited to other anti-cancer agents such as epothilone and its derivatives, irinotecan, raloxifene and topotecan.
  • cytotoxic and/or cytostatic agents in combination with a compound or composition of the present invention will serve to:
  • HPLC-electrospray mass spectra were obtained using a Gilson HPLC system equipped with two Gilson 306 pumps, a Gilson 215 Autosampler, a Gilson diode array detector, a YMC Pro C-18 column (2 ⁇ 23 mm, 120 A), and a Micromass LCZ single quadrupole mass spectrometer with z-spray electrospray ionization. Spectra were scanned from 120-1000 amu over 2 seconds. ELSD (Evaporative Light Scattering Detector) data was also acquired as an analog channel.
  • Step 4 Preparation of the title compound 4-(4-Amino-phenoxy)pyridine-2-carboxylic acid methyl ester
  • Step 1 Preparation of 4-(3-Aminophenoxy)pyridine-2-carboxylic acid methylamide
  • the title compound was prepared in the same manner as 4-(4-aminophenoxy)pyridine-2-carboxylic acid methylamide mentioned above, substituting 4-chloro-2-[1,3,4]oxadiazol-2-yl-pyridine for 4-chloropyridine-2-carboxylic acid.
  • Step 1 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-[4-(pyridin-4-yloxy)phenyl]-urea
  • Step 2 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′- ⁇ 4-[(1-oxidopyridin-4-yl)oxy]-phenyl ⁇ urea
  • Step 3 Preparation of the title compound N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′- ⁇ 4-[(2-cyanopyridin-4-yl)oxy]phenyl ⁇ urea
  • Step 2 Preparation of the title compound N- ⁇ 4-[(2-Cyanopyridin-4-yl)oxy]phenyl ⁇ -N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
  • the title compound was prepared in the same manner described for 4-[3-( ⁇ [(1-methyl-1H-indazol-5-yl)amino]carbonyl ⁇ amino)phenoxy]pyridine-2-carboxylic acid, substituting methyl 4-[3-( ⁇ [(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl ⁇ amino)phenoxy]-pyridine-2-carboxylate for methyl 4-[3-( ⁇ [(1-methyl-1H-indazol-5-yl)amino]carbonyl ⁇ amino)-phenoxy]-pyridine-2-carboxylate.
  • the present invention provides, but is not limited, to the embodiments defined in the following paragraphs:
  • reaction mixture was stirred under Ar at room temperature for 18 h and then taken up in ethyl acetate (100 mL). The reaction mixture was washed with water and brine, dried over Na 2 SO 4 , filtered, and concentrated at reduced pressure. Purification of the residue using preparative TLC (100% EtOAc) afforded 2 mg (6%) of the title product.

Abstract

This invention relates to novel diaryl ureas, pharmaceutical compositions containing such compounds and the use of those compounds or compositions for treating hyper-proliferative and angiogenesis disorders, as a sole agent or in combination with cytotoxic therapies.

Description

    RELATED APPLICATIONS
  • This application claims priority to Ser. No. 60/450,323, filed Feb. 28, 2003, Ser. No. 60/450,324 filed Feb. 28, 2003 and Ser. No. 60/450,348 filed Feb. 28, 2003 which are incorporated by reference herein.
  • FIELD OF THE INVENTION
  • This invention relates to novel compounds, pharmaceutical compositions containing such compounds and the use of those compounds or compositions for treating hyper-proliferative and angiogenesis disorders, as a sole agent or in combination with other active ingredients, e.g., cytotoxic therapies.
  • BACKGROUND OF THE INVENTION
  • Activation of the ras signal transduction pathway indicates a cascade of events that have a profound impact on cellular proliferation, differentiation, and transformation. Raf kinase, a downstream effector of ras, is recognized as a key mediator of these signals from cell surface receptors to the cell nucleus (Lowy, D. R.; Willumsen, B. M. Ann. Rev. Biochem. 1993, 62, 851; Bos, J. L. Cancer Res. 1989, 49, 4682). It has been shown that inhibiting the effect of active ras by inhibiting the raf kinase signaling pathway by administration of deactivating antibodies to raf kinase or by co-expression of dominant negative raf kinase or dominant negative MEK, the substrate of raf kinase, leads to the reversion of transformed cells to the normal growth phenotype (see: Daum et al. Trends Biochem. Sci. 1994, 19, 474-80; Fridman et al. J. Biol. Chem. 1994, 269, 30105-8. Kolch et al. (Nature 1991, 349, 426-28) have further indicated that inhibition of raf expression by antisense RNA blocks cell proliferation in membrane-associated oncogenes. Similarly, inhibition of raf kinase (by antisense oligodeoxynucleotides) has been correlated in vitro and in vivo with inhibition of the growth of a variety of human tumor types (Monia et al., Nat. Med. 1996, 2, 668-75). Some examples of small molecule inhibitors of Raf kinase activity are important agents for the treatment of cancer. (Naumann, U.; Eisenmann-Tappe, I.; Rapp, U. R. Recent Results Cancer Res. 1997, 143, 237; Monia, B. P.; Johnston, J. F.; Geiger, T.; Muller, M.; Fabbro, D. Nature Medicine 1996, 2, 668).
  • To support progressive tumor growth beyond the size of 1-2 mm3, it is recognized that tumor cells require a functional stroma, a support structure consisting of fibroblast, smooth muscle cells, endothelial cells, extracellular matrix proteins, and soluble factors (Folkman, J., Semin Oncol, 2002. 29(6 Suppl 16), 15-8). Tumors induce the formation of stromal tissues through the secretion of soluble growth factors such as PDGF and transforming growth factor-beta (TGF-beta), which in turn stimulate the secretion of complimentary factors by host cells such as fibroblast growth factor (FGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF). These stimulatory factors induce the formation of new blood vessels, or angiogenesis, which brings oxygen and nutrients to the tumor and allows it to grow and provides a route for metastasis. It is believed some therapies directed at inhibiting stroma formation will inhibit the growth of epithelial tumors from a wide variety of histological types. (George, D. Semin Oncol, 2001. 28(5 Suppl 17), 27-33; Shaheen, R. M., et al., Cancer Res, 2001. 61(4), 1464-8; Shaheen, R. M., et al. Cancer Res, 1999. 59(21), 5412-6). However, because of the complex nature and the multiple growth factors involved in angiogenesis process and tumor progression, an agent targeting a single pathway may have limited efficacy. It is desirable to provide treatment against a number of key signaling pathways utilized by tumors to induce angiogenesis in the host stroma. These include PDGF, a potent stimulator of stroma formation (Ostman, A. and C. H. Heldin, Adv Cancer Res, 2001, 80, 1-38), FGF, a chemo-attractant and mitogen for fibroblasts and endothelial cells, and VEGF, a potent regulator of vascularization.
  • PDGF is another key regulator of stromal formation which is secreted by many tumors in a paracrine fashion and is believed to promote the growth of fibroblasts, smooth muscle and endothelial cells, promoting stroma formation and angiogenesis. PDGF was originally identified as the v-sis oncogene product of the simian sarcoma virus (Heldin, C. H., et al., J Cell Sci Suppl, 1985, 3, 65-76). The growth factor is made up of two peptide chains, referred to as A or B chains which share 60% homology in their primary amino acid sequence. The chains are disulfide cross linked to form the 30 kDa mature protein composed of either AA, BB or AB homo- or heterodimmers. PDGF is found at high levels in platelets, and is expressed by endothelial cells and vascular smooth muscle cells. In addition, the production of PDGF is up regulated under low oxygen conditions such as those found in poorly vascularized tumor tissue (Kourembanas, S., et al., Kidney Int, 1997, 51(2), 438-43). PDGF binds with high affinity to the PDGF receptor, a 1106 amino acid 124 kDa transmembrane tyrosine kinase receptor (Heldin, C. H., A. Ostman, and L. Ronnstrand, Biochim Biophys Acta, 1998. 1378(1), 79-113). PDGFR is found as homo- or heterodimer chains which have 30% homology overall in their amino acid sequence and 64% homology between their kinase domains (Heldin, C. H., et al. Embo J, 1988, 7(5), 1387-93). PDGFR is a member of a family of tyrosine kinase receptors with split kinase domains that includes VEGFR2 (KDR), VEGFR3 (Flt4), c-Kit, and FLT3. The PDGF receptor is expressed primarily on fibroblast, smooth muscle cells, and pericytes and to a lesser extent on neurons, kidney is mesangial, Leydig, and Schwann cells of the central nervous system. Upon binding to the receptor, PDGF induces receptor dimerization and undergoes auto- and trans-phosphorylation of tyrosine residues which increase the receptors' kinase activity and promotes the recruitment of downstream effectors through the activation of SH2 protein binding domains. A number of signaling molecules form complexes with activated PDGFR including PI-3-kinase, phospholipase C-gamma, src and GAP (GTPase activating protein for p21-ras) (Soskic, V., et al. Biochemistry, 1999, 38(6), 1757-64). Through the activation of PI-3-kinase, PDGF activates the Rho signaling pathway inducing cell motility and migration, and through the activation of GAP, induces mitogenesis through the activation of p21-ras and the MAPK signaling pathway.
  • In adults, it is believed the major function of PDGF is to facilitate and increase the rate of wound healing and to maintain blood vessel homeostasis (Baker, E. A. and D. J. Leaper, Wound Repair Regen, 2000. 8(5), 392-8; Yu, J., A. Moon, and H. R. Kim, Biochem Biophys Res Commun, 2001. 282(3), 697-700). PDGF is found at high concentrations in platelets and is a potent chemoattractant for fibroblast, smooth muscle cells, neutrophils and macrophages. In addition to its role in wound healing PDGF is known to help maintain vascular homeostasis. During the development of new blood vessels, PDGF recruits pericytes and smooth muscle cells that are needed for the structural integrity of the vessels. PDGF is thought to play a similar role during tumor neovascularization. As part of its role in angiogenesis PDGF controls interstitial fluid pressure, regulating the permeability of vessels through its regulation of the interaction between connective tissue cells and the extracellular matrix. Inhibiting PDGFR activity can lower interstitial pressure and facilitate the influx of cytotoxics into tumors improving the anti-tumor efficacy of these agents (Pietras, K., et al. Cancer Res, 2002. 62(19), 5476-84; Pietras, K., et al. Cancer Res, 2001. 61(7), 2929-34).
  • PDGF can promote tumor growth through either the paracrine or autocrine stimulation of PDGFR receptors on stromal cells or tumor cells directly, or through the amplification of the receptor or activation of the receptor by recombination. Over expressed PDGF can transform human melanoma cells and keratinocytes (Forsberg, is K., et al. Proc Natl Acad Sci USA., 1993. 90(2), 393-7; Skobe, M. and N. E. Fusenig, Proc Natl Acad Sci USA, 1998. 95(3), 1050-5), two cell types that do not express PDGF receptors, presumably by the direct effect of PDGF on stroma formation and induction of angiogenesis. This paracrine stimulation of tumor stroma is also observed in carcinomas of the colon, lung, breast, and prostate (Bhardwaj, B., et al. Clin Cancer Res, 1996, 2(4), 773-82; Nakanishi, K., et al. Mod Pathol, 1997, 10(4), 341-7; Sundberg, C., et al. Am J Pathol, 1997, 151(2), 479-92; Lindmark, G., et al. Lab Invest, 1993, 69(6), 682-9; Vignaud, J. M., et al, Cancer Res, 1994, 54(20), 5455-63) where the tumors express PDGF, but not the receptor. The autocrine stimulation of tumor cell growth, where a large fraction of tumors analyzed express both the ligand PDGF and the receptor, has been reported in glioblastomas (Fleming, T. P., et al. Cancer Res, 1992, 52(16), 4550-3), soft tissue sarcomas (Wang, J., M. D. Coltrera, and A. M. Gown, Cancer Res, 1994, 54(2), 560-4) and cancers of the ovary (Henriksen, R., et al. Cancer Res, 1993, 53(19), 4550-4), prostate (Fudge, K., C. Y. Wang, and M. E. Stearns, Mod Pathol, 1994, 7(5), 549-54), pancreas (Funa, K., et al. Cancer Res, 1990, 50(3), 748-53) and lung (Antoniades, H. N., et al., Proc Natl Acad Sci USA, 1992, 89(9), 3942-6). Ligand independent activation of the receptor is found to a lesser extent but has been reported in chronic myelomonocytic leukemia (CMML) where the a chromosomal translocation event forms a fusion protein between the Ets-like transcription factor TEL and the PDGF receptor. In addition, activating mutations in PDGFR have been found in gastrointestinal stromal tumors in which c-Kit activation is not involved (Heinrich, M. C., et al., Science, 2003, 9, 9).
  • Certain PDGFR inhibitors will interfere with tumor stromal development and are believed to inhibit tumor growth and metastasis.
  • Another major regulator of angiogenesis and vasculogenesis in both embryonic development and some angiogenic-dependent diseases is vascular endothelial growth factor (VEGF; also called vascular permeability factor, VPF). VEGF represents a family of isoforms of mitogens existing in homodimeric forms due to alternative RNA splicing. The VEGF isoforms are reported to be highly specific for vascular endothelial cells (for reviews, see: Farrara et al. Endocr. Rev. 1992, 13, 18; Neufield et al. FASEB J. 1999, 13, 9).
  • VEGF expression is reported to be induced by hypoxia (Shweiki et al. Nature 1992, 359, 843), as well as by a variety of cytokines and growth factors, such as interleukin-1, interleukin-6, epidermal growth factor and transforming growth factor. To date, VEGF and the VEGF family members have been reported to bind to one or more of three transmembrane receptor tyrosine kinases (Mustonen et al. J. Cell Biol., 1995, 129, 895), VEGF receptor-1 (also known as flt-1 (fms-like tyrosine kinase-1)), VEGFR-2 (also known as kinase insert domain containing receptor (KDR); the murine analogue of KDR is known as fetal liver kinase-1 (flk-1)), and VEGFR-3 (also known as flt-4). KDR and flt-1 have been shown to have different signal transduction properties (Waltenberger et al. J. Biol. Chem. 1994, 269, 26988); Park et al. Oncogene 1995, 10, 135). Thus, KDR undergoes strong ligand-dependant tyrosine phosphorylation in intact cells, whereas flt-1 displays a weak response. Thus, binding to KDR is believed to be a critical requirement for induction of the full spectrum of VEGF-mediated biological responses.
  • In vivo, VEGF plays a central role in vasculogenesis, and induces angiogenesis and permeabilization of blood vessels. Deregulated VEGF expression contributes to the development of a number of diseases that are characterized by abnormal angiogenesis and/or hyperpermeability processes. It is believed regulation of the VEGF-mediated signal transduction cascade by some agents can provide a useful mode for control of abnormal angiogenesis and/or hyperpermeability processes.
  • Angiogenesis is regarded as an important prerequisite for growth of tumors beyond about 1-2 mm. Oxygen and nutrients may be supplied to cells in tumor smaller than this limit through diffusion. However, it is believed every tumor is dependent on angiogenesis for continued growth after it has reached a certain size. Tumorigenic cells within hypoxic regions of tumors respond by stimulation of VEGF production, which triggers activation of quiescent endothelial cells to stimulate new blood vessel formation. (Shweiki et al. Proc. Nat'l. Acad. Sci., 1995, 92, 768). In addition, VEGF production in tumor regions where there is no angiogenesis may proceed through the ras signal transduction pathway (Grugel et al. J. Biol. Chem., 1995, 270, 25915; Rak et al. Cancer Res. 1995, 55, 4575). In situ hybridization studies have demonstrated VEGF mRNA is strongly upregulated in a wide variety of human tumors, including lung (Mattern et al. Br. J. Cancer 1996, 73, 931), thyroid (Viglietto et al. Oncogene 1995, 11, 1569), breast (Brown et al. Human Pathol. 1995, 26, 86), gastrointestinal tract (Brown et al. Cancer Res. 1993, 53, 4727; Suzuki et al. Cancer Res. 1996, 56, 3004), kidney and bladder (Brown et al. Am. J. Pathol. 1993, 1431, 1255), ovary (Olson et al. Cancer Res. 1994, 54, 1255), and cervical (Guidi et al. J. Nat'l Cancer Inst. 1995, 87, 12137) carcinomas, as well as angiosacroma (Hashimoto et al. Lab. Invest. 1995, 73, 859) and several intracranial tumors (Plate et al. Nature 1992, 359, 845; Phillips et al. Int. J. Oncol. 1993, 2, 913; Berkman et al. J. Clin. Invest., 1993, 91, 153). Neutralizing monoclonal antibodies to KDR have been shown to be efficacious in blocking tumor angiogenesis (Kim et al. Nature 1993, 362, 841; Rockwell et al. Mol. Cell. Differ. 1995, 3, 315).
  • Over expression of VEGF, for example under conditions of extreme hypoxia, can lead to intraocular angiogenesis, resulting in hyperproliferation of blood vessels, leading eventually to blindness. Such a cascade of events has been observed for a number of retinopathies, including diabetic retinopathy, ischemic retinal-vein occlusion, and retinopathy of prematurity (Aiello et al. New Engl. J. Med. 1994, 331, 1480; Peer et al. Lab. Invest. 1995, 72, 638), and age-related macular degeneration (AMD; see, Lopez et al. Invest. Opththalmol. Vis. Sci. 1996, 37, 855).
  • In rheumatoid arthritis (RA), the in-growth of vascular pannus may be mediated by production of angiogenic factors. Levels of immunoreactive VEGF are high in the synovial fluid of RA patients, while VEGF levels were low in the synovial fluid of patients with other forms of arthritis of with degenerative joint disease (Koch et al. J. Immunol. 1994, 152, 4149). The angiogenesis inhibitor AGM-170 has been shown to prevent neovascularization of the joint in the rat collagen arthritis model (Peacock et al. J. Exper. Med. 1992, 175, 1135).
  • Increased VEGF expression has also been shown in psoriatic skin, as well as bullous disorders associated with subepidermal blister formation, such as bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis (Brown et al. J. Invest. Dermatol. 1995, 104, 744).
  • The vascular endothelial growth factors (VEGF, VEGF-C, VEGF-D) and their receptors (VEGFR2, VEGFR3) are not only key regulators of tumor angiogenesis, but also lymphangiogenesis. VEGF, VEGF-C and VEGF-D are expressed in most tumors, primarily during periods of tumor growth and, often at substantially increased levels. VEGF expression is stimulated by hypoxia, cytokines, oncogenes such as ras, or by inactivation of tumor suppressor genes (McMahon, G. Oncologist 2000, 5(Suppl. 1), 3-10; McDonald, N. Q.; Hendrickson, W. A. Cell 1993, 73, 421-424).
  • The biological activities of the VEGFs are mediated through binding to their receptors. VEGFR3 (also called Flt-4) is predominantly expressed on lymphatic endothelium in normal adult tissues. VEGFR3 function is needed for new lymphatic vessel formation, but not for maintenance of the pre-existing lymphatics. VEGFR3 is also upregulated on blood vessel endothelium in tumors. Recently VEGF-C and VEGF-D, ligands for VEGFR3, have been identified as regulators of lymphangiogenesis in mammals. Lymphangiogenesis induced by tumor-associated lymphangiogenic factors could promote the growth of new vessels into the tumor, providing tumor cells access to systemic circulation. Cells that invade the lymphatics could find their way into the bloodstream via the thoracic duct. Tumor expression studies have allowed a direct comparison of VEGF-C, VEGF-D and VEGFR3 expression with clinicopathological factors that relate directly to the ability of primary tumors to spread (e.g., lymph node involvement, lymphatic invasion, secondary metastases, and disease-free survival). In many instances, these studies demonstrate a statistical correlation between the expression of lymphangiogenic factors and the ability of a primary solid tumor to metastasize (Skobe, M. et al. Nature Med. 2001, 7(2), 192-198; Stacker, S. A. et al. Nature Med. 2001, 7(2), 186-191; Makinen, T. et al. Nature Med. 2001, 7(2), 199-205; Mandriota, S. J. et al. EMBO J. 2001, 20(4), 672-82; Karpanen, T. et al. Cancer Res. 2001, 61(5), 1786-90; Kubo, H. et al. Blood 2000, 96(2), 546-53).
  • Hypoxia appears to be an important stimulus for VEGF production in malignant cells. Activation of p38 MAP kinase is required for VEGF induction by tumor cells in response to hypoxia (Blaschke, F. et al. Biochem. Biophys. Res. Commun. 2002, 296, 890-896; Shemirani, B. et al. Oral Oncology 2002, 38, 251-257). In addition to its involvement in angiogenesis through regulation of VEGF secretion, p38 MAP kinase promotes malignant cell invasion, and migration of different tumor types through regulation of collagenase activity and urokinase plasminogen activator expression (Laferriere, J. et al. J. Biol. Chem. 2001, 276, 33762-33772; Westermarck, J. et al. Cancer Res. 2000, 60, 7156-7162; Huang, S. et al. J. Biol. Chem. 2000, 275, 12266-12272; Simon, C. et al. Exp. Cell Res. 2001, 271, 344-355).
  • Some diarylureas have been described as having activity as serine-threonine kinase and/or as tyrosine kinase inhibitors. The utility of these diarylureas as an active ingredient in pharmaceutical compositions for the treatment of cancer, angiogenesis disorders, and inflammatory disorders has been demonstated. See Redman et al., Bioorg. Med. Chem. Lett. 2001, 11, 9-12; Smith et al., Bioorg. Med. Chem. Lett. 2001, 11, 2775-2778; Dumas et al., Bioorg. Med. Chem. Lett. 2000, 10, 2047-2050; Dumas et al., Bioorg. Med. Chem. Lett. 2000, 10, 2051-2054; Ranges et al., Book of Abstracts, 220th ACS National Meeting, Washington, D.C., USA, MEDI 149; Dumas et al., Bioorg. Med. Chem. Lett. 2002, 12, 1559-1562; Lowinger et al., Clin. Cancer Res. 2000, 6(suppl.), 335; Lyons et al., Endocr.-Relat. Cancer 2001, 8, 219-225; Riedl et al., Book of Abstracts, 92nd AACR Meeting, New Orleans, La., USA, abstract 4956; Khire et al., Book of Abstracts, 93rd AACR Meeting, San Francisco, Calif., USA, abstract 4211; Lowinger et al., Curr. Pharm. Design 2002, 8, 99-110; Regan et al., J. Med. Chem. 2002, 45, 2994-3008; Pargellis et al., Nature Struct. Biol. 2002, 9(4), 268-272; Carter et al., Book of Abstracts, 92nd AACR Meeting, New Orleans, La., USA, abstract 4954; Vincent et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 1900; Hilger et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 1916; Moore et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 1816; Strumberg et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 121; Madwed J B: Book of Abstracts, Protein Kinases: Novel Target Identification and Validation for Therapeutic Development, San Diego, Calif., USA, March 2002; Roberts et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 473; Tolcher et al., Book of Abstracts, 38th ASCO Meeting, Orlando, Fla., USA, abstract 334; and Karp et al., Book of Abstracts, 38th AACR Meeting, San Francisco, Calif., USA, abstract 2753.
  • Despite the advancements in the art, there remains a need for cancer treatments and anti-cancer compounds.
  • DESCRIPTION OF THE INVENTION
  • The present invention pertains to:
  • (i) novel compounds, salts, metabolites and prodrugs thereof, including diastereoisomeric forms,
    (ii) pharmaceutical compositions containing any of such compounds, and
    (iii) use of those compounds or compositions for treating diseases, e.g., hyper-proliferative and angiogenesis disorders, as a sole agent or in combination with other active ingredients, e.g., cytotoxic therapies.
  • The compounds of formula (I), salts, metabolites and prodrugs thereof, including diastereoisomeric forms (both isolated stereoisomers and mixtures of stereoisomers) are collectively referred to herein as the “compounds of the invention”. Formula I is as follows:
  • Figure US20100075971A1-20100325-C00001
  • A is phenyl, naphthyl, mono- or bi-cyclic heteroaryl, or a group of the formula
  • Figure US20100075971A1-20100325-C00002
  • optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, amino, cyano, or nitro;
    B is phenyl, naphthyl, or pyridyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro.
    B is preferably phenyl or pyridyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro.
    L is a bridging group which is:
    (a) —(CH2)m—O—(CH2)l—,
    (b) —(CH2)m—(CH2)l—,
    (c) —(CH2)m—C(O)—(CH2)l—,
    (d) —(CH2)m—NR3—(CH2)l—,
    (e) —(CH2)m—NR3C(O)—(CH2)l—,
    (f) —(CH2)m—S—(CH2)l—,
    (g) —(CH2)m—C(O)NR3—(CH2)l—, or
    (h) a single bond.
    The integers m and l are independently selected from 0-4 and are typically selected from 0-2.
    L is most preferably —O— or —S—.
    M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro.
  • Q is: (1) C(S)NR4R5; (2) C(O)NR7—NR4R5;
  • (3) tetrazolyl;
    (4) imidazolyl;
    (5) imidazoline-2-yl;
    (6) 1,3,4-oxadiazoline-2-yl;
    (7) 1,3-thiazoline-2-yl;
    (8) 5-thioxo-4,5-dihydro-1,3,4-thiazoline-2-yl;
    (9) 5-oxo-4,5-dihydro-1,3,4-oxadiazoline-2-yl; or
    (10) a group of the formula
  • Figure US20100075971A1-20100325-C00003
  • and is preferably (1), (2) or (10).
    Each of R1, R2, R13, R4 and R5 is independently
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl,
    (c) phenyl,
    (d) C1-C3 phenyl-alkyl,
    (e) up to per-halo substituted C1-C5 linear or branched alkyl, or
    (f) —(CH2)q—X.
  • The substituent X is a 5 or 6 membered heterocyclic ring, containing at least one atom selected from oxygen, nitrogen and sulfur, which is saturated, partially saturated, or aromatic, or a 8-10 membered bicyclic heteroaryl having 1-4 heteroatoms selected from the group consisting of O, N and S.
  • In addition, R4 and R5 taken together may form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S. This is optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, up to perhalo substituted C1-C5 linear or branched alkyl, C1-C3 alkoxy, hydroxy, oxo, carboxy, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro.
  • R6 is independently:
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl,
    (c) cyano,
    (d) nitro,
    (e) up to per-halo substituted C1-C5 linear or branched alkyl, or
    (f) —C(O)R7, where R7 is C1-C5 linear, branched, or cyclic alkyl.
    R6 is preferably independently:
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl, or
    (c) cyano or
    (d) nitro, and most preferably, R6 is independently:
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl, or
    (c) cyano.
    R7 is hydrogen, or C1-C5 linear, branched, or cyclic alkyl.
  • The variable q is an integer 0, 1, 2, 3, or 4. The variable p is an integer 0, 1, or 2.
  • A group of compounds of interest are compounds of formula (I), salts, metabolites and prodrugs thereof, including diastereoisomeric forms (both isolated stereoisomers and mixtures of stereoisomers) wherein
  • A is
  • Figure US20100075971A1-20100325-C00004
  • wherein A is substituted on any carbon atom by 0-4 substituents independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, amino, cyano, or nitro; and B, L, M and Q of formula I are as defined above.
  • For these compounds,
    B is preferably phenyl or pyridyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro.
    L is preferably —O—,
    M is preferably a pyridine ring substituted only by Q, and
    Q is preferably
  • C(S)NR4R5; C(O)NR7—NR4R5;
  • or
    a group of the formula
  • Figure US20100075971A1-20100325-C00005
  • wherein each of R1, R2, R4 and R5 is preferably, independently:
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl,
    (c) phenyl,
    (d) C1-C3 phenyl-alkyl,
    (e) up to per-halo substituted C1-C5 linear or branched alkyl, or
    (f) —(CH2)q—X, where the substituent X is pyridinyl and the variable q is preferably an integer 0 or 1,
    R6 is preferably independently:
    (a) hydrogen,
    (b) C1-C5 linear, branched, or cyclic alkyl, or
    (c) cyano.
  • Another group of compounds of interest are compounds of formula (I), salts, metabolites and prodrugs thereof, including diastereoisomeric forms (both isolated stereoisomers and mixtures of stereoisomers) wherein
  • A is
  • Figure US20100075971A1-20100325-C00006
  • and B, L, M and Q of formula I are as defined above, and the preferred values for B, L, M and Q of formula I are as defined above.
  • When any moiety is “substituted”, it can have up to the highest number of indicated substituents, and each substituent can be located at any available position on the moiety and can be attached through any available atom on the substituent. “Any available position” means any position on the moiety that is chemically accessible through means known in the art or taught herein and that does not create an unduly unstable molecule. When there are two or more substituents on any moiety, each substituent is defined independently of any other substituent and can, accordingly, be the same or different.
  • The term “optionally substituted” means that the moiety so modified may be is either unsubstituted, or substituted with the identified substituent(s).
  • It is understood that since M is pyridine, the term “hydroxy” as a pyridine substituent includes 2-, 3-, and 4-hydroxypyridine, but also includes those structures referred to in the art as 1-oxo-pyridine, 1-hydroxy-pyridine and pyridine N-oxide.
  • Where the plural form of the word compounds, salts, and the like, is used herein, this is taken to mean also a single compound, salt, or the like.
  • The term C1-C5alkyl means straight or branched chain alkyl groups having from one to five carbon atoms, which may be linear or branched with single or multiple branching. Such groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and the like.
  • The term haloC1-C5 alkyl means a saturated hydrocarbon radical having up to five carbon atoms, which is substituted with a least one halogen atom, up to perhalo. The radical may be linear or branched with single or multiple branching. The halo substituent(s) include fluoro, chloro, bromo, or iodo. Fluoro, chloro and bromo are preferred, and fluoro and chloro are more preferred. The halogen substituent(s) can be located on any available carbon. When more than one halogen substituent is present on this moiety, they may be the same or different. Examples of such halogenated alkyl substituents include but are not limited to chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, and 1,1,2,2-tetrafluoroethyl, and the like.
  • The term C1-C3 alkoxy means straight or branched chain alkoxy group having from one to three saturated carbon atoms which may be linear or branched with single or multiple branching, and includes such groups as methoxy, ethoxy, n-propoxy, isopropoxy, and the like. It also includes halogenated groups such as 2,2-dichloroethoxy, trifluoromethoxy, and the like.
  • Halo or halogen means fluoro, chloro, bromo, or iodo. Fluoro, chloro and bromo are preferred, and fluoro and chloro are more preferred.
  • C1-C3alkylamine means methylamino, ethylamino, propylamino or isopropylamino.
  • Examples of C1-C6 dialkylamine include but are not limited to diethylamino, ethyl-isopropylamino, methyl-isobytulamino and dihexylamino.
  • The term heteroaryl refers to both monocyclic and bicyclic heteroaryl rings. Monocyclic heteroaryl means an aromatic monocyclic rings having 5 to 6 ring atoms, at least one of which is a hetero atom selected from N, O and S, the remaining atoms being carbon. When more than one hetero atom is present in the moiety, they are selected independently from the other(s) so that they may be the same or different. Monocyclic heteroaryl rings include, but are not limited to pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, tetrazole, thiadiazole, oxadiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • Bicyclic heteroaryl means fused bicyclic moieties where one of the rings is chosen from the monocyclic heteroaryl rings described above and the second ring is either benzene or another monocyclic heteroaryl ring described above. When both rings in the bicyclic moiety are heteroaryl rings, they may be the same or different, as long as they are chemically accessible by means known in the art. Bicyclic heteroaryl rings include synthetically accessible 5-5, 5-6, or 6-6 fused bicyclic aromatic structures including, for example but not by way of limitation, benzoxazole (fused benzene and oxazole), indazole (fused benzene and pyrazole), quinoline (fused phenyl and pyridine), quinazoline (fused pyrimidine and benzene), imidazopyrimidine (fused imidazole and pyrimidine), naphtyridine (two fused pyridines), and the like.
  • The term “5 or 6 membered heterocyclic ring, containing at least one atom selected from oxygen, nitrogen and sulfur, which is saturated, partially saturated, or is aromatic” includes, by no way of limitation, tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine, and the like.
  • Non-limiting examples of Q substituents where R4 and R5 taken together may form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, which is optionally substituted include:
  • Figure US20100075971A1-20100325-C00007
  • The term “C1-C3 phenyl-alkyl” includes, by no way of limitation, 3-phenyl-propyl, 2-phenyl-1-methyl-ethyl. Substituted examples include 2-[2-chlorophenyl]ethyl, 3,4-dimethylphenyl-methyl, and the like.
  • The compounds of Formula I may contain one or more asymmetric centers, depending upon the location and nature of the various substituents desired. Asymmetric carbon atoms may be present in the (R) or (S) configuration or (R,S) configuration. In certain instances, asymmetry may also be present due to restricted rotation about a given bond, for example, the central bond adjoining two substituted aromatic rings of the specified compounds. Substituents on a ring may also be present in either cis or trans form. It is intended that all such configurations (including enantiomers and diastereomers), are included within the scope of the present invention. Preferred compounds are those with the absolute configuration of the compound of Formula I which produces the more desirable biological activity. Separated, pure or partially purified isomers or racemic mixtures of the compounds of this invention are also included within the scope of the present invention. The purification of said isomers and the separation of said isomeric mixtures can be accomplished by standard techniques known in the art.
  • The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, for example, by the formation of diastereoisomeric salts using an optically active acid or base or formation of covalent diastereomers. Examples of appropriate acids are tartaric, diacetyltartaric, ditoluoyltartaric and camphorsulfonic acid. Mixtures of diastereoisomers can be separated into their individual diastereomers on the basis of their physical and/or chemical differences by methods known in the art, for example, by chromatography or fractional crystallization. The optically active bases or acids are then liberated from the separated diastereomeric salts. A different process for separation of optical isomers involves the use of chiral chromatography (e.g., chiral HPLC columns), with or without conventional derivation, optimally chosen to maximize the separation of the enantiomers. Suitable chiral HPLC columns are manufactured by Diacel, e.g., Chiracel OD and Chiracel OJ among many others, all routinely selectable. Enzymatic separations, with or without derivitization, are also useful. The optically active compounds of Formula I can likewise be obtained by chiral syntheses utilizing optically active starting materials.
  • The present invention also relates to useful forms of the compounds as disclosed herein, such as pharmaceutically acceptable salts, metabolites and prodrugs of all the compounds Formula (I). The term “pharmaceutically acceptable salt” refers to a relatively non-toxic, inorganic or organic acid addition salt of a compound of the present invention. For example, see S. M. Berge, et al. “Pharmaceutical Salts,” J. Pharm. Sci. 1977, 66, 1-19. Pharmaceutically acceptable salts include those obtained by reacting the main compound, functioning as a base, with an inorganic or organic acid to form a salt, for example, salts of hydrochloric acid, sulfuric acid, phosphoric acid, methane sulfonic acid, camphor sulfonic acid, oxalic acid, maleic acid, succinic acid and citric acid. Pharmaceutically acceptable salts also include those in which the main compound functions as an acid and is reacted with an appropriate base to form, e.g., sodium, potassium, calcium, magnesium, ammonium, and choline salts. Those skilled in the art will further recognize that acid addition salts of the claimed compounds may be prepared by reaction of the compounds with the appropriate inorganic or organic acid via any of a number of known methods. Alternatively, alkali and alkaline earth metal salts are prepared by reacting the compounds of the invention with the appropriate base via a variety of known methods.
  • Representative salts of the compounds of this invention include the conventional non-toxic salts and the quaternary ammonium salts which are formed, for example, from inorganic or organic acids or bases by means well known in the art. For example, such acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cinnamate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, itaconate, lactate, maleate, mandelate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, sulfonate, tartrate, thiocyanate, tosylate, and undecanoate.
  • Base salts include alkali metal salts such as potassium and sodium salts, alkaline earth metal salts such as calcium and magnesium salts, and ammonium salts with organic bases such as dicyclohexylamine and N-methyl-D-glucamine. Additionally, basic nitrogen containing groups may be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, and dibutyl sulfate; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
  • Certain compounds of this invention can be further modified with labile functional groups that are cleaved after in vivo administration to furnish the parent active agent and the pharmacologically inactive derivatizing (functional) group. These derivatives, commonly referred to as prodrugs, can be used, for example, to alter the physicochemical properties of the active agent, to target the active agent to a specific tissue, to alter the pharmacokinetic and pharmacodynamic properties of the active agent, and to reduce undesirable side effects
  • Prodrugs of the invention include, e.g., the esters of appropriate compounds of this invention are well-tolerated, pharmaceutically acceptable esters such as alkyl esters including methyl, ethyl, propyl, isopropyl, butyl, isobutyl or pentyl esters. Additional esters such as phenyl-C1-C5 alkyl may be used, although methyl ester is preferred.
  • Methods for synthesizing prodrugs are described in the following reviews on the subject, which are incorporated herein by reference for their description of these methods:
    • Higuchi, T.; Stella, V. eds. Prodrugs As Novel Drug Delivery Systems. ACS Symposium Series. American Chemical Society: Washington, D.C. (1975).
    • Roche, E. B. Design of Biopharmaceutical Properties through Prodrugs and Analogs. American Pharmaceutical Association: Washington, D.C. (1977).
    • Sinkula, A. A.; Yalkowsky, S. H. J Pharm Sci. 1975, 64, 181-210.
    • Stella, V. J.; Charman, W. N. Naringrekar, V. H. Drugs 1985, 29, 455-473.
    • Bundgaard, H., ed. Design of Prodrugs. Elsevier: New York (1985).
    • Stella, V. J.; Himmelstein, K. J. J. Med. Chem. 1980, 23, 1275-1282.
    • Han, H-K; Amidon, G. L. AAPS Pharmsci 2000, 2, 1-11.
    • Denny, W. A. Eur. J. Med. Chem. 2001, 36, 577-595.
    • Wermuth, C. G. in Wermuth, C. G. ed. The Practice of Medicinal Chemistry Academic Press: San Diego (1996), 697-715.
    • Balant, L. P.; Doelker, E. in Wolff, M. E. ed. Burgers Medicinal Chemistry And Drug Discovery John Wiley & Sons: New York (1997), 949-982.
  • The metabolites of the compounds of this invention include oxidized derivatives of the compounds of Formula I, wherein one or more of the nitrogens are substituted with a hydroxy group; which includes derivatives where the nitrogen atom of the pyridine group is in the oxide form, referred to in the art as 1-oxo-pyridine or has a hydroxy substituent, referred to in the art as 1-hydroxy-pyridine.
  • General Preparative Methods
  • The particular process to be utilized in the preparation of the compounds used in this embodiment of the invention depends upon the specific compound desired. Such factors as the selection of the specific substituents play a role in the path to be followed in the preparation of the specific compounds of this invention. Those factors are readily recognized by one of ordinary skill in the art.
  • The compounds of the invention may be prepared by use of known chemical reactions and procedures. Nevertheless, the following general preparative methods are presented to aid the reader in synthesizing the compounds of the present invention, with more detailed particular examples being presented below in the experimental section describing the working examples.
  • All variable groups of these methods are as described in the generic description if they are not specifically defined below. When a variable group or substituent with a given symbol is used more than once in a given structure, it is to be understood that each of these groups or substituents may be independently varied within the range of definitions for that symbol. It is recognized that compounds of the invention with each claimed optional functional group cannot be prepared with each of the below-listed methods. Within the scope of each method optional substituents are used which are stable to the reaction conditions, or the functional groups which may participate in the reactions are present in protected form where necessary, and the removal of such protective groups is completed at appropriate stages by methods well known to those is skilled in the art.
  • The compounds of the invention can be made according to conventional chemical methods, and/or as disclosed below, from starting materials which are either commercially available or producible according to routine, conventional chemical methods. General methods for the preparation of the compounds are given below, and the preparation of representative compounds is specifically illustrated in examples.
  • General Method
  • Figure US20100075971A1-20100325-C00008
  • The compounds (I) can be synthesized according to the reaction sequence shown in the General Method above. Thus, the compounds (I) can be synthesized by reacting amino compounds (III) with isocyante compounds (II).
  • The compounds (II) are commercially available or can be synthesized according to methods commonly known to those skilled in the art [e.g. from treatment of an amine with phosgene or a phosgene equivalent such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl)carbonate (triphosgene), or N,N′-carbonyldiimidazole (CDI); or, alternatively by a Curtius-type rearrangement of an amide, or a carboxylic acid derivative, such as an ester, an acid halide or an anhydride]. The compounds (III) are commercially available or can be synthesized according methods commonly known is to those skilled in the art.
  • In addition, specific preparations of diaryl ureas are already described in the patent literature, and can be adapted to the compounds of the present invention. For example, Miller S. et al, “Inhibition of p38 Kinase using Symmetrical and Unsymmetrical Diphenyl Ureas” PCT Int. Appl. WO 99 32463, Miller, S et al. “Inhibition of raf Kinase using Symmetrical and Unsymmetrical Substituted Diphenyl Ureas” PCT Int. Appl., WO 99 32436, Dumas, J. et al., “Inhibition of p38 Kinase Activity using Substituted Heterocyclic Ureas” PCT Int. Appl., WO 99 32111, Dumas, J. et al., “Method for the Treatment of Neoplasm by Inhibition of raf Kinase using N-Heteroaryl-N′-(hetero)arylureas” PCT Int. Appl., WO 99 32106, Dumas, J. et al., “Inhibition of p38 Kinase Activity using Aryl- and Heteroaryl-Substituted Heterocyclic Ureas” PCT Int. Appl., WO 99 32110, Dumas, J., et al., “Inhibition of raf Kinase using Aryl- and Heteroaryl-Substituted Heterocyclic Ureas” PCT Int. Appl., WO 99 32455, Riedl, B., et al., “O-Carboxy Aryl Substituted Diphenyl Ureas as raf Kinase Inhibitors” PCT Int. Appl., WO 00 42012, Riedl, B., et al., “O-Carboxy Aryl Substituted Diphenyl Ureas as p38 Kinase Inhibitors” PCT Int. Appl., WO 00 41698, Dumas, J. et al. “Heteroaryl ureas containing nitrogen hetero-atoms as p38 kinase inhibitors” U.S. Pat. Appl. Publ., US 20020065296, Dumas, J. et al. “Preparation of N-aryl-N′-[(acylphenoxy)phenyl]ureas as raf kinase inhibitors” PCT Int. Appl., WO 02 62763, Dumas, J. et al. “Inhibition of raf kinase using quinolyl, isoquinolyl or pyridyl ureas” PCT Int. Appl., WO 02 85857, Dumas, J. et al. “Preparation of quinolyl, isoquinolyl or pyridyl-ureas as inhibitors of raf kinase for the treatment of tumors and/or cancerous cell growth” U.S. Pat. Appl. Publ., US 20020165394. All the preceding patent applications are hereby incorporated by reference.
  • The reaction of the compounds (II) with (III) is carried out preferably in a solvent. Suitable solvents comprise the customary organic solvents which are inert under the reaction conditions. Non-limiting examples include ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxy ethane; hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, mineral oil fractions; halogenated hydrocarbons such as dichloromethane, trichloromethane, carbon tetrachloride, dichloroethane, trichloroethylene, chlorobenzene; alcohols such as methanol, ethanol, n-propanol, isopropanol; esters such as ethyl acetate; ketones such as acetone; nitriles such as acetonitrile; heteroaromatics such as pyridine; polar solvents such as dimethyl formamide and hexamethyl phosphoric acid tris-amide; and mixtures of the above-mentioned solvents. Toluene, benzene, and dichloromethane are preferred.
  • The compounds (III) are generally employed in an amount of from 1 to 3 mol per mol of compounds (II); an equimolar amount or slight excess of compounds (III) is preferred.
  • The reaction of the compounds (II) with (III) is generally carried out within a relatively wide temperature range. In general, they are carried out in a range of from −20 to 200° C., preferably from 0 to 100° C., and more preferably from 25 to 50° C. The steps of this reaction are generally carried out under atmospheric pressure. However, it is also possible to carry them out under superatmospheric pressure or under reduced pressure (for example, in a range of from 0.5 to 5 bar). The reaction time can generally be varied within a relatively wide range. In general, the reaction is finished after a period of from 2 to 24 hours, preferably from 6 to 12 hours.
  • Synthetic transformations that may be employed in the synthesis of compounds of Formula I and in the synthesis of intermediates involved in the synthesis of compounds of Formula I are known by or accessible to one skilled in the art. Collections of synthetic transformations may be found in compilations, such as:
    • J. March. Advanced Organic Chemistry, 4th ed.; John Wiley: New York (1992)
    • R. C. Larock. Comprehensive Organic Transformations, 2nd ed.; Wiley-VCH: New York (1999)
    • F. A. Carey; R. J. Sundberg. Advanced Organic Chemistry, 2nd ed.; Plenum Press: New York (1984)
    • T. W. Greene; P. G. M. Wuts. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley: New York (1999)
    • L. S. Hegedus. Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.; University Science Books: Mill Valley, Calif. (1994)
    • L. A. Paquette, Ed. The Encyclopedia of Reagents for Organic Synthesis; John Wiley: New York (1994)
    • A. R. Katritzky; O. Meth-Cohn; C. W. Rees, Eds. Comprehensive Organic Functional Group Transformations; Pergamon Press: Oxford, UK (1995)
    • G. Wilkinson; F. G A. Stone; E. W. Abel, Eds. Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, UK (1982)
    • B. M. Trost; I. Fleming. Comprehensive Organic Synthesis; Pergamon Press: Oxford, UK (1991)
    • A. R. Katritzky; C. W. Rees Eds. Comprehensive Heterocylic Chemistry; Pergamon Press: Oxford, UK (1984)
    • A. R. Katritzky; C. W. Rees; E. F. V. Scriven, Eds. Comprehensive Heterocylic Chemistry II; Pergamon Press: Oxford, UK (1996)
    • C. Hansch; P. G. Sammes; J. B. Taylor, Eds. Comprehensive Medicinal Chemistry: Pergamon Press: Oxford, UK (1990).
  • In addition, recurring reviews of synthetic methodology and related topics include Organic Reactions; John Wiley: New York; Organic Syntheses; John Wiley: New York; Reagents for Organic Synthesis: John Wiley: New York; The Total Synthesis of Natural Products; John Wiley: New York; The Organic Chemistry of Drug Synthesis; John Wiley: New York; Annual Reports in Organic Synthesis; Academic Press: San Diego Calif.; and Methoden der Organischen Chemie (Houben-Weyl); Thieme: Stuttgart, Germany. Furthermore, databases of synthetic transformations include Chemical Abstracts, which may be searched using either CAS OnLine or SciFinder, Handbuch der Organischen Chemie (Beilstein), which may be searched using SpotFire, and REACCS.
  • Compositions of the Compounds of this Invention
  • This invention also relates to pharmaceutical compositions containing one or more compounds of the present invention. These compositions can be utilized to achieve the desired pharmacological effect by administration to a patient in need thereof. A patient, for the purpose of this invention, is a mammal, including a human, in need of treatment for the particular condition or disease. Therefore, the present invention includes pharmaceutical compositions which are comprised of a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound, or salt thereof, of the present invention. A pharmaceutically acceptable carrier is preferably a carrier which is relatively non-toxic and innocuous to a patient at concentrations consistent with effective activity of the active ingredient so that any side effects ascribable to the carrier do not vitiate the beneficial effects of the active ingredient. A pharmaceutically effective amount of compound is preferably that amount which produces a result or exerts an influence on the particular condition being treated. The compounds of the present invention can be administered with pharmaceutically-acceptable carriers well known in the art using any effective conventional dosage unit forms, including immediate, slow and timed release preparations, orally, parenterally, topically, nasally, ophthalmically, optically, sublingually, rectally, vaginally, and the like.
  • For oral administration, the compounds can be formulated into solid or liquid preparations such as capsules, pills, tablets, troches, lozenges, melts, powders, solutions, suspensions, or emulsions, and may be prepared according to methods known to the art for the manufacture of pharmaceutical compositions. The solid unit dosage forms can be a capsule which can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers such as lactose, sucrose, calcium phosphate, and corn starch.
  • In another embodiment, the compounds of this invention may be tableted with is conventional tablet bases such as lactose, sucrose and cornstarch in combination with binders such as acacia, corn starch or gelatin, disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn starch, and guar gum, gum tragacanth, acacia, lubricants intended to improve the flow of tablet granulation and to prevent the adhesion of tablet material to the surfaces of the tablet dies and punches, for example talc, stearic acid, or magnesium, calcium or zinc stearate, dyes, coloring agents, and flavoring agents such as peppermint, oil of wintergreen, or cherry flavoring, intended to enhance the aesthetic qualities of the tablets and make them more acceptable to the patient. Suitable excipients for use in oral liquid dosage forms include dicalcium phosphate and diluents such as water and alcohols, for example, ethanol, benzyl alcohol, and polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent or emulsifying agent. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance tablets, pills or capsules may be coated with shellac, sugar or both.
  • Dispersible powders and granules are suitable for the preparation of an aqueous suspension. They provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example those sweetening, flavoring and coloring agents described above, may also be present.
  • The pharmaceutical compositions of this invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil such as liquid paraffin or a mixture of vegetable oils. Suitable emulsifying agents may be (1) naturally occurring gums such as gum acacia and gum tragacanth, (2) naturally occurring phosphatides such as soy bean and lecithin, (3) esters or partial esters derived form fatty acids and hexitol anhydrides, for example, sorbitan monooleate, (4) condensation products of said partial esters with ethylene oxide, for example, polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil such as, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent such as, for example, beeswax, hard paraffin, or cetyl alcohol. The suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents such as sucrose or saccharin.
  • Syrups and elixirs may be formulated with sweetening agents such as, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, and preservative, such as methyl and propyl parabens and flavoring and coloring agents.
  • The compounds of this invention may also be administered parenterally, that is, subcutaneously, intravenously, intraocularly, intrasynovially, intramuscularly, or interperitoneally, as injectable dosages of the compound in preferably a physiologically acceptable diluent with a pharmaceutical carrier which can be a sterile liquid or mixture of liquids such as water, saline, aqueous dextrose and related sugar solutions, an alcohol such as ethanol, isopropanol, or hexadecyl alcohol, glycols such as propylene glycol or polyethylene glycol, glycerol ketals such as 2,2-dimethyl-1,1-dioxolane-4-methanol, ethers such as poly(ethylene glycol) 400, an oil, a fatty acid, a fatty acid ester or, a fatty acid glyceride, or an acetylated fatty acid glyceride, with or without the addition of a pharmaceutically acceptable surfactant such as a soap or a detergent, suspending agent such as pectin, carbomers, methylcellulose, hydroxypropylmethylcellulose, or carboxymethylcellulose, or emulsifying agent and other pharmaceutical adjuvants.
  • Illustrative of oils which can be used in the parenteral formulations of this invention are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, sesame oil, cottonseed oil, corn oil, olive oil, petrolatum and is mineral oil. Suitable fatty acids include oleic acid, stearic acid, isostearic acid and myristic acid. Suitable fatty acid esters are, for example, ethyl oleate and isopropyl myristate. Suitable soaps include fatty acid alkali metal, ammonium, and triethanolamine salts and suitable detergents include cationic detergents, for example dimethyl dialkyl ammonium halides, alkyl pyridinium halides, and alkylamine acetates; anionic detergents, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates; non-ionic detergents, for example, fatty amine oxides, fatty acid alkanolamides, and poly(oxyethylene-oxypropylene)s or ethylene oxide or propylene oxide copolymers; and amphoteric detergents, for example, alkyl-beta-aminopropionates, and 2-alkylimidazoline quarternary ammonium salts, as well as mixtures.
  • The parenteral compositions of this invention will typically contain from about 0.5% to about 25% by weight of the active ingredient in solution. Preservatives and buffers may also be used advantageously. In order to minimize or eliminate irritation at the site of injection, such compositions may contain a non-ionic surfactant having a hydrophile-lipophile balance (HLB) preferably of from about 12 to about 17. The quantity of surfactant in such formulation preferably ranges from about 5% to about 15% by weight. The surfactant can be a single component having the above HLB or can be a mixture of two or more components having the desired HLB.
  • Illustrative of surfactants used in parenteral formulations are the class of polyethylene sorbitan fatty acid esters, for example, sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol.
  • The pharmaceutical compositions may be in the form of sterile injectable aqueous suspensions. Such suspensions may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents which may be a naturally occurring phosphatide such as lecithin, a condensation product of an alkylene oxide with a fatty acid, for example, polyoxyethylene stearate, a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example, heptadeca-ethyleneoxycetanol, a condensation product of ethylene oxide with a partial ester derived form a fatty acid and a hexitol such as polyoxyethylene sorbitol monooleate, or a condensation product of an ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride, for example polyoxyethylene sorbitan monooleate.
  • The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Diluents and solvents that may be employed are, for example, water, Ringer's solution, isotonic sodium chloride solutions and isotonic glucose solutions. In addition, sterile fixed oils are conventionally employed as solvents or suspending media. For this purpose, any bland, fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can be used in the preparation of injectables.
  • A composition of the invention may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such material are, for example, cocoa butter and polyethylene glycol.
  • Another formulation employed in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art (see, e.g., U.S. Pat. No. 5,023,252, issued Jun. 11, 1991, incorporated herein by reference). Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
  • Controlled release formulations for parenteral administration include liposomal, polymeric microsphere and polymeric gel formulations which are known in the art.
  • It may be desirable or necessary to introduce the pharmaceutical composition to the patient via a mechanical delivery device. The construction and use of mechanical delivery devices for the delivery of pharmaceutical agents is well known in the art. Direct techniques for, for example, administering a drug directly to the brain usually involve placement of a drug delivery catheter into the patient's ventricular system to bypass the blood-brain barrier. One such implantable delivery system, used for the transport of agents to specific anatomical regions of the body, is described in U.S. Pat. No. 5,011,472, issued Apr. 30, 1991.
  • The compositions of the invention can also contain other conventional pharmaceutically acceptable compounding ingredients, generally referred to as carriers or diluents, as necessary or desired. Conventional procedures for preparing such compositions in appropriate dosage forms can be utilized. Such ingredients and procedures include those described in the following references, each of which is incorporated herein by reference: Powell, M. F. et al, “Compendium of Excipients for Parenteral Formulations” PDA Journal of Pharmaceutical Science & Technology 1998, 52(5), 238-311; Strickley, R. G “Parenteral Formulations of Small Molecule Therapeutics Marketed in the United States (1999)-Part-1” PDA Journal of Pharmaceutical Science & Technology 1999, 53(6), 324-349; and Nema, S. et al, “Excipients and Their Use in Injectable Products” PDA Journal of Pharmaceutical Science & Technology 1997, 51(4), 166-171.
  • Commonly used pharmaceutical ingredients which can be used as appropriate to formulate the composition for its intended route of administration include:
  • acidifying agents (examples include but are not limited to acetic acid, citric acid, fumaric acid, hydrochloric acid, nitric acid);
  • alkalinizing agents (examples include but are not limited to ammonia solution, ammonium carbonate, diethanolamine, monoethanolamine, potassium hydroxide, sodium borate, sodium carbonate, sodium hydroxide, triethanolamine, trolamine);
  • adsorbents (examples include but are not limited to powdered cellulose and activated charcoal);
  • aerosol propellants (examples include but are not limited to carbon dioxide, CCl2F2, F2ClC—CClF2 and CClF3)
  • air displacement agents (examples include but are not limited to nitrogen and argon);
  • antifungal preservatives (examples include but are not limited to benzoic acid, butylparaben, ethylparaben, methylparaben, propylparaben, sodium benzoate);
  • antimicrobial preservatives (examples include but are not limited to benzalkonium chloride, benzethonium chloride, benzyl alcohol, cetylpyridinium chloride, chlorobutanol, phenol, phenylethyl alcohol, phenylmercuric nitrate and thimerosal);
  • antioxidants (examples include but are not limited to ascorbic acid, ascorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, hypophosphorus acid, monothioglycerol, propyl gallate, sodium ascorbate, sodium bisulfite, sodium formaldehyde sulfoxylate, sodium metabisulfite);
  • binding materials (examples include but are not limited to block polymers, natural and synthetic rubber, polyacrylates, polyurethanes, silicones, polysiloxanes and styrene-butadiene copolymers);
  • buffering agents (examples include but are not limited to potassium metaphosphate, dipotassium phosphate, sodium acetate, sodium citrate anhydrous and sodium citrate dihydrate)
  • carrying agents (examples include but are not limited to acacia syrup, aromatic syrup, aromatic elixir, cherry syrup, cocoa syrup, orange syrup, syrup, corn oil, mineral oil, peanut oil, sesame oil, bacteriostatic sodium chloride injection and bacteriostatic water for injection)
  • chelating agents (examples include but are not limited to edetate disodium and edetic acid)
  • colorants (examples include but are not limited to FD&C Red No. 3, FD&C Red No. 20, FD&C Yellow No. 6, FD&C Blue No. 2, D&C Green No. 5, D&C Orange No. 5, D&C Red No. 8, caramel and ferric oxide red);
  • clarifying agents (examples include but are not limited to bentonite);
  • emulsifying agents (examples include but are not limited to acacia, cetomacrogol, cetyl alcohol, glyceryl monostearate, lecithin, sorbitan monooleate, polyoxyethylene 50 monostearate);
  • encapsulating agents (examples include but are not limited to gelatin and cellulose acetate phthalate)
  • flavorants (examples include but are not limited to anise oil, cinnamon oil, cocoa, menthol, orange oil, peppermint oil and vanillin);
  • humectants (examples include but are not limited to glycerol, propylene glycol and sorbitol);
  • levigating agents (examples include but are not limited to mineral oil and glycerin);
  • oils (examples include but are not limited to arachis oil, mineral oil, olive oil, peanut oil, sesame oil and vegetable oil);
  • ointment bases (examples include but are not limited to lanolin, hydrophilic ointment, polyethylene glycol ointment, petrolatum, hydrophilic petrolatum, white ointment, yellow ointment, and rose water ointment);
  • penetration enhancers (transdermal delivery) (examples include but are not limited to monohydroxy or polyhydroxy alcohols, mono- or polyvalent alcohols, saturated or unsaturated fatty alcohols, saturated or unsaturated fatty esters, saturated or unsaturated dicarboxylic acids, essential oils, phosphatidyl derivatives, cephalin, terpenes, amides, ethers, ketones and ureas)
  • plasticizers (examples include but are not limited to diethyl phthalate and glycerol);
  • solvents (examples include but are not limited to ethanol, corn oil, cottonseed oil, glycerol, isopropanol, mineral oil, oleic acid, peanut oil, purified water, water for injection, sterile water for injection and sterile water for irrigation);
  • stiffening agents (examples include but are not limited to cetyl alcohol, cetyl esters wax, microcrystalline wax, paraffin, stearyl alcohol, white wax and yellow wax);
  • suppository bases (examples include but are not limited to cocoa butter and polyethylene glycols (mixtures));
  • surfactants (examples include but are not limited to benzalkonium chloride, nonoxynol 10, oxtoxynol 9, polysorbate 80, sodium lauryl sulfate and sorbitan mono-palmitate);
  • suspending agents (examples include but are not limited to agar, bentonite, carbomers, carboxymethylcellulose sodium, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, kaolin, methylcellulose, tragacanth and veegum);
  • sweetening agents (examples include but are not limited to aspartame, dextrose, glycerol, mannitol, propylene glycol, saccharin sodium, sorbitol and sucrose);
  • tablet anti-adherents (examples include but are not limited to magnesium stearate and talc);
  • tablet binders (examples include but are not limited to acacia, alginic acid, carboxymethylcellulose sodium, compressible sugar, ethylcellulose, gelatin, liquid glucose, methylcellulose, non-crosslinked polyvinyl pyrrolidone, and pregelatinized starch);
  • tablet and capsule diluents (examples include but are not limited to dibasic calcium phosphate, kaolin, lactose, mannitol, microcrystalline cellulose, powdered cellulose, precipitated calcium carbonate, sodium carbonate, sodium phosphate, sorbitol and starch);
  • tablet coating agents (examples include but are not limited to liquid glucose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose, ethylcellulose, cellulose acetate phthalate and shellac);
  • tablet direct compression excipients (examples include but are not limited to dibasic calcium phosphate);
  • tablet disintegrants (examples include but are not limited to alginic acid, carboxymethylcellulose calcium, microcrystalline cellulose, polacrilin potassium, cross-linked polyvinylpyrrolidone, sodium alginate, sodium starch glycollate and starch);
  • tablet glidants (examples include but are not limited to colloidal silica, corn starch and talc);
  • tablet lubricants (examples include but are not limited to calcium stearate, magnesium stearate, mineral oil, stearic acid and zinc stearate);
  • tablet/capsule opaquants (examples include but are not limited to titanium dioxide);
  • tablet polishing agents (examples include but are not limited to carnuba wax and white wax);
  • thickening agents (examples include but are not limited to beeswax, cetyl alcohol and paraffin);
  • tonicity agents (examples include but are not limited to dextrose and sodium chloride);
  • viscosity increasing agents (examples include but are not limited to alginic acid, bentonite, carbomers, carboxymethylcellulose sodium, methylcellulose, polyvinyl pyrrolidone, sodium alginate and tragacanth); and
  • wetting agents (examples include but are not limited to heptadecaethylene oxycetanol, lecithins, sorbitol monooleate, polyoxyethylene sorbitol monooleate, and polyoxyethylene stearate).
  • Pharmaceutical compositions according to the present invention can be illustrated as follows:
  • Sterile IV Solution: A 5 mg/ml solution of the desired compound of this invention can be made using sterile, injectable water, and the pH is adjusted if necessary. The solution is diluted for administration to 1-2 mg/ml with sterile 5% dextrose and is administered as an IV infusion over 60 minutes.
  • Lyophilized powder for IV administration: A sterile preparation can be prepared with (i) 100-1000 mg of the desired compound of this invention as a lyophilized powder, (ii) 32-327 mg/ml sodium citrate, and (iii) 300-3000 mg Dextran 40. The formulation is reconstituted with sterile, injectable saline or dextrose 5% to a concentration of 10 to 20 mg/ml, which is further diluted with saline or dextrose 5% to 0.2-0.4 mg/ml, and is administered either IV bolus or by IV infusion over 15-60 minutes.
  • Intramuscular suspension: The following solution or suspension can be prepared, for intramuscular injection:
  • 50 mg/ml of the desired, water-insoluble compound of this invention
  • 5 mg/ml sodium carboxymethylcellulose
  • 4 mg/ml TWEEN 80
  • 9 mg/ml sodium chloride
  • 9 mg/ml benzyl alcohol
  • Hard Shell Capsules: A large number of unit capsules are prepared by filling standard two-piece hard galantine capsules each with 100 mg of powdered active ingredient, 150 mg of lactose, 50 mg of cellulose and 6 mg of magnesium stearate.
    Soft Gelatin Capsules: A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into molten gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules are washed and dried. The active ingredient can be dissolved in a mixture of polyethylene glycol, glycerin and sorbitol to prepare a water miscible medicine mix.
    Tablets: A large number of tablets are prepared by conventional procedures so that the dosage unit is 100 mg of active ingredient, 0.2 mg. of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg. of starch, and 98.8 mg of lactose. Appropriate aqueous and non-aqueous coatings may be applied to increase palatability, improve elegance and stability or delay absorption.
    Immediate Release Tablets/Capsules: These are solid oral dosage forms made by conventional and novel processes. These units are taken orally without water for immediate dissolution and delivery of the medication. The active ingredient is mixed in a liquid containing ingredient such as sugar, gelatin, pectin and sweeteners. These liquids are solidified into solid tablets or caplets by freeze drying and solid state extraction techniques. The drug compounds may be compressed with viscoelastic and thermoelastic sugars and polymers or effervescent components to produce porous matrices intended for immediate release, without the need of water.
  • Method of Treating Hyper-Proliferative Disorders
  • The present invention relates to a method for using the compounds described above (Compounds of Formula I), including salts and esters thereof and compositions thereof, to treat mammalian hyper-proliferative disorders. This method comprises administering to a mammal in need thereof, including a human, an amount of a compound of this invention, or a pharmaceutically acceptable salt or ester thereof, which is effective to treat the disorder. Hyper-proliferative disorders include but are not limited to solid tumors, such as cancers of the breast, respiratory tract, brain, reproductive organs, digestive tract, urinary tract, eye, liver, skin, head and neck, thyroid, parathyroid and their distant metastases. Those disorders also include lymphomas, sarcomas, and leukemias.
  • Examples of breast cancer include, but are not limited to invasive ductal carcinoma, invasive lobular carcinoma, ductal carcinoma in situ, and lobular carcinoma in situ.
  • Examples of cancers of the respiratory tract include, but are not limited to small-cell and non-small-cell lung carcinoma, as well as bronchial adenoma and pleuropulmonary blastoma.
  • Examples of brain cancers include, but are not limited to brain stem and hypothalamic glioma, cerebellar and cerebral astrocytoma, medulloblastoma, ependymoma, as well as neuroectodermal and pineal tumor.
  • Tumors of the male reproductive organs include, but are not limited to prostate and testicular cancer. Tumors of the female reproductive organs include, but are not limited to endometrial, cervical, ovarian, vaginal, and vulvar cancer, as well as sarcoma of the uterus.
  • Tumors of the digestive tract include, but are not limited to anal, colon, colorectal, esophageal, gallbladder, gastric, pancreatic, rectal, small-intestine, and salivary gland cancers.
  • Tumors of the urinary tract include, but are not limited to bladder, penile, kidney, renal pelvis, ureter, and urethral cancers.
  • Eye cancers include, but are not limited to intraocular melanoma and retinoblastoma.
  • Examples of liver cancers include, but are not limited to hepatocellular carcinoma (liver cell carcinomas with or without fibrolamellar variant), cholangiocarcinoma (intrahepatic bile duct carcinoma), and mixed hepatocellular cholangiocarcinoma.
  • Skin cancers include, but are not limited to squamous cell carcinoma, Kaposi's sarcoma, malignant melanoma, Merkel cell skin cancer, and non-melanoma skin cancer.
  • Head-and-neck cancers include, but are not limited to laryngeal/hypopharyngeal/nasopharyngeal/oropharyngeal cancer, and lip and oral cavity cancer.
  • Lymphomas include, but are not limited to AIDS-related lymphoma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, Hodgkin's disease, and lymphoma of the central nervous system.
  • Sarcomas include, but are not limited to sarcoma of the soft tissue, osteosarcoma, malignant fibrous histiocytoma, lymphosarcoma, and rhabdomyosarcoma.
  • Leukemias include, but are not limited to acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia.
  • These disorders have been well characterized in humans, but also exist with a similar etiology in other mammals, and can be treated by administering pharmaceutical compositions of the present invention.
  • Based upon standard laboratory techniques known to evaluate compounds useful for the treatment of hyper-proliferative disorders, by standard toxicity tests and by standard pharmacological assays for the determination of treatment of the conditions identified above in mammals, and by comparison of these results with the results of known medicaments that are used to treat these conditions, the effective dosage of the compounds of this invention can readily be determined for treatment of each desired indication. The amount of the active ingredient to be administered in the treatment of one of these conditions can vary widely according to such considerations as the particular compound and dosage unit employed, the mode of administration, the period of treatment, the age and sex of the patient treated, and the nature and extent of the condition treated.
  • The total amount of the active ingredient to be administered will generally range from about 0.001 mg/kg to about 200 mg/kg body weight per day, and preferably from about 0.01 mg/kg to about 20 mg/kg body weight per day. It should be noted that the choice of dosing schedules is particularly important to maximize the efficacy and safety of drugs for the treatment of proliferative disorders such as cancer. Clinically useful dosing schedules will range from three times a day dosing to once every four weeks dosing. In addition, “drug holidays” in which a patient is not dosed with a drug for a certain period of time, may be beneficial to the overall balance between pharmacological effect and tolerability. A unit dosage may contain from about 0.5 mg to about 1500 mg of active ingredient, and can be administered one or more times per day or less than once a day. The average daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily rectal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily. The transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200 mg/kg. The average daily inhalation dosage regimen will preferably be from 0.01 to 100 mg/kg of total body weight.
  • Of course the specific initial and continuing dosage regimen for each patient will vary according to the nature and severity of the condition as determined by the attending diagnostician, the activity of the specific compound employed, the age and general condition of the patient, time of administration, route of administration, rate of excretion of the drug, drug combinations, and the like. The desired mode of treatment and number of doses of a compound of the present invention or a pharmaceutically acceptable salt or ester or composition thereof can be ascertained by those skilled in the art using conventional treatment tests.
  • The compounds of this invention can be administered as the sole pharmaceutical agent or in combination with one or more other pharmaceutical agents where the combination causes no unacceptable adverse effects. For example, the compounds of this invention can be combined with known anti-hyper-proliferative or other indication agents, and the like, as well as with admixtures and combinations thereof.
  • Optional anti-hyper-proliferative agents which can be added to the composition include but are not limited to compounds listed on the cancer chemotherapy drug regimens in the 11th Edition of the Merck Index, (1996), which is hereby incorporated by reference, such as asparaginase, bleomycin, carboplatin, carmustine, chlorambucil, cisplatin, colaspase, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin (adriamycine), epirubicin, etoposide, 5-fluorouracil, hexamethylmelamine, hydroxyurea, ifosfamide, irinotecan, leucovorin, lomustine, mechlorethamine, 6-mercaptopurine, mesna, methotrexate, mitomycin C, mitoxantrone, prednisolone, prednisone, procarbazine, raloxifene, streptozocin, tamoxifen, thioguanine, topotecan, vinblastine, vincristine, and vindesine.
  • Other anti-hyper-proliferative agents suitable for use with the composition of the invention include but are not limited to those compounds acknowledged to be used in the treatment of neoplastic diseases in Goodman and Gilman's The Pharmacological Basis of Therapeutics (Ninth Edition), editor Molinoff et al., publ. by McGraw-Hill, pages 1225-1287, (1996), which is hereby incorporated by reference, such as aminoglutethimide, L-asparaginase, azathioprine, 5-azacytidine cladribine, busulfan, diethylstilbestrol, 2′,2′-difluorodeoxycytidine, docetaxel, erythrohydroxynonyladenine, ethinyl estradiol, 5-fluorodeoxyuridine, 5-fluorodeoxyuridine monophosphate, fludarabine phosphate, fluoxymesterone, flutamide, hydroxyprogesterone caproate, idarubicin, interferon, medroxyprogesterone acetate, megestrol acetate, melphalan, mitotane, paclitaxel, pentostatin, N-phosphonoacetyl-L-aspartate (PALA), plicamycin, semustine, teniposide, testosterone propionate, thiotepa, trimethylmelamine, uridine, and vinorelbine.
  • Other anti-hyper-proliferative agents suitable for use with the composition of the invention include but are not limited to other anti-cancer agents such as epothilone and its derivatives, irinotecan, raloxifene and topotecan.
  • Generally, the use of cytotoxic and/or cytostatic agents in combination with a compound or composition of the present invention will serve to:
  • (1) yield better efficacy in reducing the growth of a tumor or even eliminate the tumor as compared to administration of either agent alone,
  • (2) provide for the administration of lesser amounts of the administered chemotherapeutic agents,
  • (3) provide for a chemotherapeutic treatment that is well tolerated in the patient with fewer deleterious pharmacological complications than observed with single agent chemotherapies and certain other combined therapies,
  • (4) provide for treating a broader spectrum of different cancer types in mammals, especially humans,
  • (5) provide for a higher response rate among treated patients,
  • (6) provide for a longer survival time among treated patients compared to standard chemotherapy treatments,
  • (7) provide a longer time for tumor progression, and/or
  • (8) yield efficacy and tolerability results at least as good as those of the agents used alone, compared to known instances where other cancer agent combinations produce antagonistic effects.
  • Preparation of Synthetic Intermediates Abbreviations Used in this Specification
    • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
    • DMF N,N-dimethyl formamide
    • DCM Dichloromethane
    • DCE 1,2-dichloroethane
    • DMSO dimethyl sulphoxide
    • HPLC High pressure liquid chromatography
    • MPLC Medium pressure liquid chromatography
    • LC-MS liquid chromatography-coupled mass spectroscopy
    • RT retention time
    • MP melting point
    • NMR nuclear resonance spectroscopy
    • TLC thin layer chromatography
    • ES electrospray
    • DMA N,N-dimethylacetamide
    • HRMS high resolution mass spectroscopy
    • CDI 1,1′-carbonyldiimidazole
    • HOBT 1-hydroxybenzotriazole
    • EDCl 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride
    • TMSCl Trimethylsilyl chloride
    • m-CPBA 3-chloroperbenzoic acid
    • HEPES N-(2-hydroxyethyl)-piperazine-N′-(2-ethane sulphonic acid)
    • Tris/hydrochloric acid tris(hydroxymethyl)-aminomethane hydrochloride
    • ™Triton X-100® tert.-octyl-phenoxypolyethoxyethanol, Rohm & Haas, USA
  • The yield percentages of the following examples refer to the starting component which was used in the lowest molar amount.
  • LC-MS conditions: HPLC-electrospray mass spectra (HPLC ES-MS) were obtained using a Gilson HPLC system equipped with two Gilson 306 pumps, a Gilson 215 Autosampler, a Gilson diode array detector, a YMC Pro C-18 column (2×23 mm, 120 A), and a Micromass LCZ single quadrupole mass spectrometer with z-spray electrospray ionization. Spectra were scanned from 120-1000 amu over 2 seconds. ELSD (Evaporative Light Scattering Detector) data was also acquired as an analog channel. Gradient elution was used with Buffer A as 2% acetonitrile in water with 0.02% TFA and Buffer B as 2% water in Acetonitrile with 0.02% TFA at 1.5 mL/min. Samples were eluted as follows: 90% A for 0.5 minutes ramped to 95% B over 3.5 minutes and held at 95% B for 0.5 minutes and then the column is brought back to initial conditions over 0.1 minutes. Total run time is 4.8 minutes.
    Preparative HPLC: Preparative HPLC was obtained using a Gilson HPLC system equipped with two Gilson 322 pumps, a Gilson 215 Autosampler, a Gilson diode array detector, a YMC Pro C-18 column (20×150 mm, 120 A). Gradient elution was used with Buffer A as water with 0.1% TFA and Buffer B as acetonitrile with 0.1% TFA. Sample was dissolved in MeOH or MeOH/DMSO with concentration about 50 mg/ml. Injection volume was about 2-3 mL/injection. Sample was eluted as follows: 10-90% B over 15 minutes with flow rate of 25 mL/min, hold 2 minutes, back to 10% B. Desired fraction was collected with UV at 254 or 220 nm and evaporated with GeneVac speed vacuum.
  • Preparation of 4-(4-Amino-phenoxy)pyridine-2-carboxylic acid methyl ester
  • Figure US20100075971A1-20100325-C00009
  • Step 1: Preparation of 4-Chloropyridine-2-carbonyl chloride hydrochloride
  • Figure US20100075971A1-20100325-C00010
  • Anhydrous DMF (6.0 mL) was slowly added to SOCl2 (180 mL) between 40° C. and 50° C. The solution was stirred in that temperature range for 10 min., then picolinic acid (60.0 g, 487 mmol) was added in portions over 30 min. The resulting solution was heated at 72° C. for 16 h to generate a yellow solid precipitate. The resulting mixture was cooled to RT, diluted with toluene (500 mL) and concentrated to half its volume. The resulting residue was filtered and the solids were washed with toluene and dried under high vacuum for 4 h to afford 4-chloropyridine-2-carbonyl chloride HCl salt as a yellow solid (92.0 g, 89%).
  • Step 2: Preparation of 4-Chloropyridine-2-carboxylic acid methylamide
  • Figure US20100075971A1-20100325-C00011
  • A suspension of methyl 4-chloropyridine-2-carboxylate HCl salt (89.0 g, 428 mmol) in MeOH (75 mL) at 0° C. was treated with a 2.0 M methylamine solution in THF (1 L). The resulting mixture was stored at 3° C. for 5 h, then concentrated under reduced pressure. The resulting solids were suspended in EtOAc (1 L) and filtered. The filtrate was washed with a saturated NaCl solution (500 mL), dried over Na2SO4, and concentrated under reduced pressure to afford 4-chloro-N-methyl-2-pyridinecarboxamide as pale-yellow crystals (71.2 g, 97%). 1H-NMR (DMSO-d6) δ 2.81 (s, 3H), 7.74 (dd, J=5.1, 2.2 Hz, 1H), 8.00 (d, J=2.2 Hz, 1H), 8.61 (d, J=5.1 Hz, 1H), 8.85 (br d, 1H); Cl-MS m/z 171 (MH+); m.p. 41-43° C.
  • Step 3: Preparation of 4-(4-Aminophenoxy)pyridine-2-carboxylic acid methylamide
  • Figure US20100075971A1-20100325-C00012
  • A solution of 4-aminophenol (9.60 g, 88.0 mmol) in anhydrous DMF (150 mL) was treated with potassium tert-butoxide (10.29 g, 91.7 mmol), and the reddish-brown mixture was stirred at RT for 2 h. The contents were treated with 4-chloropyridine-2-carboxylic acid methylamide (15.0 g, 87.9 mmol) and K2CO3 (6.50 g, 47.0 mmol) and then heated at 80° C. for 8 h. The mixture was cooled to RT and partitioned between EtOAc (500 mL) and a saturated NaCl solution (500 mL). The aqueous phase was back-extracted with EtOAc (300 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The resulting solids were dried under reduced pressure at 35° C. for 3 h to afford the title compound (17.9 g, 84%) as a light-brown solid. 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 5.17 (br s, 2H), 6.64, 6.86 (AA′BB′ quartet, J=8.4 Hz, 4H), 7.06 (dd, J=5.5, 2.5 Hz, 1H), 7.33 (d, J=2.5 Hz, 1H), 8.44 (d, J=5.5 Hz, 1H), 8.73 (br d, 1H); HPLC ES-MS m/z 244 (MH+).
  • Step 4: Preparation of the title compound 4-(4-Amino-phenoxy)pyridine-2-carboxylic acid methyl ester
  • A mixture of 4-(4-aminophenoxy)pyridine-2-carboxylic acid methylamide (15.0 g, 61.7 mmol) and potassium hydroxide (34.6 g, 617 mmol) in ethanol (400 mL) and water (40 mL) was stirred at 90° C. for 48 h. After cooling to RT, 2.0 N hydrochloric acid was slowly added to the reaction mixture until pH=5. The solvent was removed completely and the residue redissolved in MeOH (400 mL). After slow addition of trimethylsilylchloride (178 mL, 140 mmol, 2.27 eq) at 0° C., the reaction mixture was stirred at reflux for 24 h and cooled to RT. The mixture was filtered, and the filtrate concentrated under reduced pressure and then partitioned between DCM and water. The organic layer was then washed with 1M aqueous sodium bicarbonate solution, dried over Na2SO4, filtered, and evaporated under reduced pressure. The resulting residue was washed further with H2O and reextracted with EtOAc/Hex (1:2 v/v) to afford the desired ester (6.27 g, 42%) as a light brown solid. 1H-NMR (DMSO-d6) δ 8.51 (d, J=5.7 Hz, 1H), 7.35 (d, J=2.4 Hz, 1H), 7.10 (dd, J=5.7, 2.7 Hz, 1H), 6.86 (dt, J=9.0, 2.4 Hz, 2H), 6.63 (dt, J=8.7, 2.4 Hz, 2H), 5.18 (br s, 2H), 3.86 (s, 3H); MS LC-MS [M+H]+=245, RT=1.04 min; TLC (75% EtOAc/hex), Rf=0.20.
  • Preparation of 4-(3-Aminophenoxy)pyridine-2-carboxylic acid
  • Figure US20100075971A1-20100325-C00013
  • Step 1: Preparation of 4-(3-Aminophenoxy)pyridine-2-carboxylic acid methylamide
  • Figure US20100075971A1-20100325-C00014
  • The title compound was prepared in the same manner described for 4-(4-aminophenoxy)pyridine-2-carboxylic acid methylamide, substituting 3-aminophenol for 4-aminophenol. 1H-NMR (DMSO-d6) δ 8.75 (br q, J=4.8 Hz, 1H), 8.48 (d, J=6.3 Hz, 1H), 7.39 (d, J=2.1 Hz, 1H), 7.15 to 7.07 (m, 2H), 5.51 to 6.47 (m, 1H), 6.31 to 6.24 (m, 2H), 5.40 (s, 2H), 2.77 (d, J=5.1 Hz, 3H).
  • Step 2: Preparation of the title compound 4-(3-Aminophenoxy)pyridine-2-carboxylic acid
  • A mixture of 4-(3-aminophenoxy)pyridine-2-carboxylic acid methylamide (5.64 g, 23.81 mmol) and potassium hydroxide (13.01 g, 232 mmol) in EtOH/H2O (55 mL, 10:1) was stirred at 90° C. for 48 h. The mixture was concentrated in vacuo, and the crude residue was dissolved in H2O (100 mL). The solution was carefully adjusted to pH=6-7 with aq. 1N HCl, and the resultant precipitate was filtered. The filtrate was then concentrated in vacuo, and the crude material was diluted with MeOH (150 mL), and the solid was collected. The combined filtered solids were washed with CH2Cl2 to give 5.25 g (98%) of 4-(3-amino-phenoxy)pyridine-2-carboxylic acid. 1H-NMR (CD3OD) δ 8.45 (d, 1H), 7.60 (d, 1H), 7.17 (t, 1H), 7.09 (d, 1H), 6.64 (dd, 1H), 6.47-6.45 (m, 1H), 6.40 (dd, 1H); MS LC-MS [M+H]+=231.
  • Preparation of 4-(3-Aminophenoxy)pyridine-2-carboxylic acid methyl ester
  • Figure US20100075971A1-20100325-C00015
  • To a 0° C. MeOH solution (100 mL) containing TMSCl (4.72 g, 43.4 mmol) was slowly added 4-(3-aminophenoxy)pyridine-2-carboxylic acid (0.5 g, 2.17 mmol) in MeOH (5 mL), and the reaction mixture heated to reflux for 12 h. The solvent was removed in is vacuo, and residue partitioned between CH2Cl2 and H2O. The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by silica gel chromatography eluting with hexanes/EtOAc (gradient—3/7 to 2/3) to obtain the desired product, 0.25 g (48%). 1H-NMR (CD3OD) δ 8.49 (d, 1H), 7.20 (d, 1H), 7.14 (dd, 1H), 6.64 (dd, 1H), 6.45 (t, 1H), 6.40 (dd, 1H), 3.92 (s, 3H); MS LC-MS [M+H]+=245.1, RT=0.52 min.
  • Preparation of 4-(2-[1,3,4]-Oxadiazol-2-yl-pyridin-4-yloxy)phenylamine
  • Figure US20100075971A1-20100325-C00016
  • Step 1: Preparation of 4-chloropyridine-2-carboxylic acid methyl ester
  • Figure US20100075971A1-20100325-C00017
  • A mixture of 4-chloropyridine-2-carbonyl chloride HCl (1.75 g, 8.22 mmol) and triethylamine (3.8 mL, 24.14 mmol, 3.3 eq) in THF (16 mL) and MeOH (4 mL) was stirred at 0° C. for 2 h until all of the SM has been consumed. The solvent was concentrated under reduced pressure, and the resultant crude material was purified using MPLC (biotage) eluted with 25 to 50% EtOAc-hexane to afford 878 mg (60.7%) of the methyl ester as a light tan crystalline solid. 1H-NMR (DMSO-d6) δ 8.69 (d, J=5.4 Hz, 1H), 8.07 (d, J=2.1 Hz, 1H), 7.82 (dd, J=5.4, 2.1 Hz, 1H), 3.89 (s, 3H); TLC (50% EtOAc/Hex), Rf=0.40.
  • Step 2: Preparation of 4-Chloropyridine-2-carboxylic acid hydrazide
  • Figure US20100075971A1-20100325-C00018
  • To 4-chloro-pyridine-2-carboxylic acid methyl (850 mg, 4.95 mmol) in anhydrous MeOH (50 mL) was added hydrazine hydrate (2.48 g, 49.5 mmol) dropwise, and the reaction mixture was stirred under argon at RT for 18 h. The mixture was diluted with EtOAc (200 mL), and the organic layer was washed with water and brine, dried over Na2SO4, filtered, and concentrated under reduce pressure. Recrystallization from MeOH afforded 500 mg (59%) of 4-chloropyridine-2-carboxylic acid hydrazide. 1H-NMR (Acetone-d6) δ 9.38 (s, 1H), 8.60 (d, 1H), 8.08 (d, 1H), 7.64 (dd, 1H), 4.46 (s, 2H); MS LC-MS [M+H]+=172, RT=0.86 min; TLC (100% EtOAc), Rf=0.35.
  • Step 3: Preparation of 4-Chloro-2-[1,3,4]oxadiazol-2-yl-pyridine
  • Figure US20100075971A1-20100325-C00019
  • A mixture of 4-chloro-pyridine-2-carboxylic acid hydrazide (550 mg, 2.91 mmol) in triethyl orthoformate (10 mL) was refluxed under argon for 48 h. The mixture was diluted with EtOAc (200 mL), and the organic layer was washed with water and brine, dried over Na2SO4, filtered, and concentrated under reduce pressure. The crude residue was purified by flash chromatography eluted with 50% EtOAc/Hex to give 360 mg (68%) of 4-chloro-2-[1,3,4]oxadiazol-2-yl-pyridine. 1H-NMR (Acetone-d6) δ 9.16 (s, 1H), 8.76 (d, 1H), 8.26 (d, 1H), 7.74 (dd, 1H); MS LC-MS [M+H]+=182, RT=1.36 min; TLC (100% EtOAc), Rf=0.70
  • Step 4: Preparation of the title compound 4-(2-[1,3,4]-Oxadiazol-2-yl-pyridin-4-yloxy)phenylamine
  • The title compound was prepared in the same manner as 4-(4-aminophenoxy)pyridine-2-carboxylic acid methylamide mentioned above, substituting 4-chloro-2-[1,3,4]oxadiazol-2-yl-pyridine for 4-chloropyridine-2-carboxylic acid. 1H-NMR (Acetone-d6) δ 9.04 (s, 1H), 8.59 (d, J=6.0 Hz, 1H), 7.62 (d, J=2.4 Hz, 1H), 7.06 (dd, J=2.4 Hz, 5.7 Hz, 1H), 6.96 (d, J=6.9 Hz, 2H), 6.78 (d, J=6.9 Hz, 2H), 4.81 (s, 2H); MS LC-MS [M+H]+=255, RT=0.95 min; TLC (100% EtOAc)=0.55.
  • Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}urea
  • Figure US20100075971A1-20100325-C00020
  • Step 1: Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-[4-(pyridin-4-yloxy)phenyl]-urea
  • Figure US20100075971A1-20100325-C00021
  • To a solution of 4-(4-aminophenoxy)pyridine (2 g, 10.74 mmol) in DCM (10 mL) was added 4-chloro-3-trifluoromethyl isocyanate (2.4 g, 10.74 mmol). The solution was stirred overnight at room temperature. The solvent was removed by distillation, and the resultant solid was washed with EtOAc to give 3.6 g (82%) of the title product; MS LC-MS [M+H]+=408.
  • Step 2: Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(1-oxidopyridin-4-yl)oxy]-phenyl}urea
  • Figure US20100075971A1-20100325-C00022
  • To a solution of N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[4-(pyridin-4-yloxy)phenyl]-urea (3.1 g, 7.6 mmol) in DCM (40 mL) and acetone (10 mL) was added m-CPBA (1.5 g). The mixture was stirred at room temperature for 12 h, followed by addition of another portion of m-CPBA (1.5 g) and the solution was stirred for another 12 h at RT. The solution was then washed with 10% aqueous sodium carbonate. The solvent was removed to give the title product, 2.9 g (90%); MS LC-MS [M+H]+=424.
  • Step 3: Preparation of the title compound N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}urea
  • To a solution of N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(1-oxidopyridin-4-yl)oxy]-phenyl}urea (2 g, 4.72 mmol) in anhydrous DMF (50 mL) was added trimethylsilyl cyanide (0.7 g, 7.1 mmol) at room temperature, followed by dropwise addition of dimethyl carbamyl chloride (1.27 g, 11.8 mmol) in DMF (10 mL) over 30 min. The mixture was stirred at room temperature for 24 h. A solution of 10% aqueous sodium carbonate (50 mL) was added dropwise and stirred for 10 min, followed by extraction with EtOAc (3×). The extracts were combined, dried over MgSO4, and evaporated under reduced pressure. The residue was purified by flash chromatography (EtOAc:Hexane:MeOH 45:45:10) to afford 1.8 g (88%) of the title product. 1H-NMR (DMSO-d6) δ 9.20 (s, 1H), 9.01 (s, 1H), 8.57 (d, J=5.7 Hz, 1H), 8.10 (d, J=2.4 Hz, 1H), 7.66 to 7.56 (m, 5H), 7.19 to 7.14 (m, 3H); MS LC-MS [M+H]+=433, RT=3.56 min; TLC (75% EtOAc/Hex), Rf=0.53.
  • Preparation of N-{4-[(2-Cyanopyridin-4-yl)oxy]phenyl}-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
  • Figure US20100075971A1-20100325-C00023
  • Step 1: Preparation of 4-(4-Aminophenoxy)pyridine-2-carbonitrile
  • Figure US20100075971A1-20100325-C00024
  • A solution of 4-aminophenol (1.0 g, 9.16 mmol) in anhydrous DMF (9.2 mL) was treated with potassium tert-butoxide (1.08 g, 9.62 mmol, 1.05 eq), and the orange-brown reaction mixture was stirred at RT for 1 h. The contents were treated with 2-cyano-4-chloropyridine (1.27 g, 9.16 mmol, 1.0 eq) and K2CO3 (497 mg, 5.04 mmol, 0.55 eq) and then heated at 90° C. for 17 h. The mixture was cooled to RT and partitioned between EtOAc (250 mL) and a saturated NaCl solution (100 mL). The aqueous phase was back-extracted with EtOAc (300 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. Purification on MPLC (biotage) eluted with 30% EtOAc—hexanes afforded 1.83 g (94.6%) of 4-(4-aminophenoxy)pyridine-2-carbonitrile as a yellow solid. 1H-NMR (DMSO-d6) δ 8.52 (d, J=6.3 Hz, 1H), 7.54 (d, J=2.4 Hz, 1H), 7.07 (dd, J=5.4, 2.4 Hz, 1H), 6.86 (d, J=8.7 Hz, 2H), 6.62 (d, J=8.7 Hz, 2H), 5.21 (s, 2H); MS LC-MS [M+H]+=212, RT=0.98 min; TLC (50% EtOAc/Hex), Rf=0.28.
  • Step 2: Preparation of the title compound N-{4-[(2-Cyanopyridin-4-yl)oxy]phenyl}-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
  • A solution of 4-(4-aminophenoxy)pyridine-2-carbonitrile (300 mg, 1.42 mmol) and 2,2,4,4-tetrafluoro-6-isocyanate-1,3-benzodioxene (389.2 mg, 1.56 mmol, 1.1 eq) in anhydrous 1,2-dichloroethane (7.1 mL) was stirred at 80° C. under argon for 17 h, where upon a white solid precipitated out during the course of the reaction. The reaction mixture was cooled to RT, and the precipitate was collected and washed with DCM (3.0 mL) and ether (3×5 mL) to give 355 mg (54.3%) of the title compound. 1H-NMR is (DMSO-d6) δ9.14 (s, 1H), 9.03 (s, 1H), 8.57 (d, J=6.0 Hz, 1H), 8.11 (d, J=2.7 Hz, 1H), 7.66 to 7.57 (m, 4H), 7.43 (d, J=9.0 Hz, 1H), 7.19 to 7.14 (m, 3H); MS LC-MS [M+H]+=461, RT=3.59 min; TLC (75% EtOAc/Hex), Rf=0.29.
  • Preparation of N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-(1-methyl-1H-indazol-5-yl)urea
  • Figure US20100075971A1-20100325-C00025
  • To a solution of 1-methyl-5-aminoindazole (230 mg, 1.56 mmol) in anhydrous DCE (2.4 mL) was added 1,1′-carbonyldiimidazole (281.5 mg, 1.70 mmol, 1.2 eq), and the reaction mixture was stirred at 65° C. under argon. After 16 h a solution of 5-(4-aminophenoxy)pyridine-2-carbonitrile (300 mg, 1.42 mmol, 0.91 eq) in anhydrous THF (4.0 mL) was added at ambient temperature, and the reaction mixture was stirred at 65° C. under argon for 7 h. The reaction mixture was partitioned between EtOAc and water, and the organic layer was washed with water and brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was triturated in DCM (10 mL) to afford 382.4 mg (70%) of the title compound as a white solid. 1H-NMR (DMSO-d6) δ 8.84 (s, 1H), 8.70 (s, 1H), 8.57 (d, J=6.0 Hz, 1H), 7.95 (d, J=1.0 Hz, 1H), 7.90 (d, J=1.8 Hz, 1H), 7.60 to 7.54 (m, 4H), 7.36 (dd, J=9.3, 2.1 Hz, 1H), 7.18 to 7.14 (m, 3H), 4.01 (s, 3H); MS LC-MS [M+H]+=385, RT=2.64 min; TLC (100% EtOAc), Rf=0.22.
  • Preparation of N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-Quinolin-6-ylurea
  • Figure US20100075971A1-20100325-C00026
  • The title compound was prepared in the same manner described for N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-(1-methyl-1H-indazol-5-yl)urea, substituting 6-aminoquino-line for 1-methyl-5-aminoindazole. 1H-NMR (DMSO-d6) δ 8.76 (dd, J=2.7, 7.2 Hz, 1H), 8.58 (dd, J=0.6, 5.7 Hz, 1H), 8.51 (s, 1H), 8.44 (s, 1H), 8.28 (d, J=2.7 Hz, 1H), 8.21 (dd, J=0.6, 7.8 Hz, 1H), 7.96 (d, J=9.3 Hz, 1H), 7.78-7.71 (m, 3H), 7.49-7.42 (m, 2H), 7.22-7.17 (m, 3H); MS LC-MS [M+H]+=382, RT=2.03 min; TLC (100% EtOAc), Rf=0.38.
  • Preparation of Methyl 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]-pyridine-2-carboxylate
  • Figure US20100075971A1-20100325-C00027
  • To a solution of 4-(3-amino-phenoxy)-pyridine-2-carboxylic acid methyl ester (0.79 g, 5.35 mmol) in DCM (3 mL) was added 1,1′-carbonyldiimidazole (0.87 g, 5.35 mmol), and the reaction mixture was stirred at room temperature for 12 h. A solution of 1-methyl-5-aminoindazole (1.02 g, 6.96 mmol) in DCM (4 mL) was added, and the mixture stirred at room temperature an additional 8 h. The mixture was concentrated in vacuo. Purification of the crude product by column chromatography eluted with 5% MeOH-DCM gave 850 mg (38%) of the title compound. 1H-NMR (CD3OD) δ 8.57 (dd, 1H), 7.95 (d, 1H), 7.87 (d, 1H), 7.54 (d, 1H), 7.53-7.51 (m, 2H), 7.47-7.32 (m, 2H), 7.32 (d, 1H), 7.21 (dd, 1H), 6.86 (dd, 1H). 4.07 (s, 3H), 3.96 (s, 3H); MS LC-MS [M+H]+=418, RT=2.91 min.
  • Preparation of Methyl 4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxylate
  • Figure US20100075971A1-20100325-C00028
  • To a stirring solution of 2,2,4,4-tetrafluoro-6-isocyanato-1,3-benzodioxene (0.816 g, 3.28 mmol) was added 4-(3-aminophenoxy)pyridine-2-carboxylic acid methyl ester (0.800 g, 3.28 mmol) in DCM (13 mL) in portions. The homogenous contents turned white and opaque within 1 min. of addition, and were allowed to stir at room temperature for 12 h. The heterogenous mixture was filtered, and solid product repeatedly washed with DCM to remove residual starting material. The desired product was collected as a white powder, 1.36 g (83%). 1H-NMR (DMSO-d6) δ 9.08 (d, 2H), 8.59 (s, 1H), 8.07 (s, 1H), 7.60 (dd, 1H), 7.37 (m, 4H), 7.25 (d, 1H), 7.20 (dd, 1H), 6.80 (d, 1H), 3.82 (s, 3H); MS LC MS [M+H]+=494.1, RT=3.23 min.
  • Preparation of Methyl 4-[4-({[(4-Chloro-3-trifluoromethyl-phenyl)amino]carbonyl}amino)-phenoxy]pyridine-2-carboxylate
  • Figure US20100075971A1-20100325-C00029
  • The title compound was prepared in the same manner described for methyl 4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxylate, substituting 4-chloro-3-(trifluoromethyl)phenyl isocyanate for 2,2,4,4-tetrafluoro-6-isocyanate-1,3-benzodioxene, and 4-(4-aminophenoxy)pyridine-2-carboxylic acid methyl ester for 4-(3-aminophenoxy)pyridine-2-carboxylic acid methyl ester. 1H-NMR (DMSO-d6) δ 9.21 (s, 1H), 9.00 (s, 1H), 8.57 (d, J=6.0 Hz, 1H), 8.11 (d, J=2.1 Hz, 1H), 7.64 to 7.56 (m, 4H), 7.41 (d, J=3.0 Hz, 1H), 7.19 to 7.15 (m, 3H), 3.83 (s, 3H); MS LC-MS [M+H]+=466.
  • Preparation of Methyl 4-[4-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylate
  • Figure US20100075971A1-20100325-C00030
  • The title compound was prepared in the same manner described for methyl 4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxylate, substituting 4-(4-aminophenoxy)pyridine-2-carboxylic acid methyl ester for 4-(3-aminophenoxy)pyridine-2-carboxylic acid methyl ester. 1H-NMR (Acetone-d6) δ 8.85 (broad s, 1H), 8.73 (broad s, 1H), 8.56 (d, J=5.7 Hz, 1H), 8.17 (d, J=2.7 Hz, 1H), 7.75 (dd, J=9.0, 2.4 Hz, 1H), 7.67 (dt, J=9.0, 3.6 Hz, 2H), 7.55 (d, J=2.4 Hz, 1H), 7.26 (dd, J=9.0, 1.2 Hz, 1H), 7.15 to 7.08 (m, 3H), 3.90 (s, 3H); MS LC-MS [M+H]+=494.
  • Preparation of 4-[3-({[(1-Methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylic acid
  • Figure US20100075971A1-20100325-C00031
  • A mixture of methyl 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)-phenoxy]pyridine-2-carboxylate (0.08 g, 0.19 mmol) and potassium hydroxide (0.03 g, 0.56 mmol) in MeOH/H2O (4 mL, 3:1) was heated at 40° C. for 3 hours. The solvent was removed under reduced pressure, and the crude residue was dissolved in H2O (5 mL). The aqueous solution was neutralized with aq. 1N HCl. The precipitated solid was then washed with water followed by DCM to give 0.55 g (70%) of the title compound. 1H-NMR (DMSO-d6) δ 9.97 (s, 1H), 9.77 (s, 1H), 8.46 (d, 1H), 7.93 (s, 1H), 7.90 (s, 1H), 7.51 (d, 1H), 7.43-7.34 (m, 5H), 7.07 (dd, 1H), 6.73 (dd, 1H), 3.97 (s, 3H); MS LC-MS [M+H]+=404.
  • Preparation of {4-[3-(2,2,4,4-Tetrafluoro-4H-benzo[1,3]dioxin-6-yl)phenoxy]phenyl}acetic acid
  • Figure US20100075971A1-20100325-C00032
  • The title compound was prepared in the same manner described for 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylic acid, substituting methyl 4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]-pyridine-2-carboxylate for methyl 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)-phenoxy]-pyridine-2-carboxylate. 1H-NMR (DMSO-d6) δ 9.58 (s, 1H), 9.39 (s, 1H), 8.58 (d, 1H), 8.08 (d, 1H), 7.62 (dd, 1H), 7.38-7.47 (m, 4H), 7.32 (dd, 1H), 7.18 (dd, 1H), 6.83 (dd, 1H); MS LC-MS [M+H]+=480.
  • Preparation of 4-[3-({[(4-chloro-3-trifluoromethyl-phenyl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylic acid
  • Figure US20100075971A1-20100325-C00033
  • The title compound was prepared in the same manner described for 4-[4-({[(4-Chloro-3-trifluoromethylphenyl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylate, substituting 4-(3-aminophenoxy)pyridine-2-carboxylic acid for 4-(4-aminophenoxy)pyridine-2-carboxylic acid methyl ester. 1H-NMR (CD3OD) δ 8.66 (d, J=4.2 Hz, 1H), 8.03 (d, J=2.7 Hz, 1H), 7.77 (d, J=2.2 Hz, 1H), 7.67 (dd, J=1.8, 5.4 Hz, 1H), 7.60 (t, J=2.7 Hz, 1H), 7.59 to 7.49 (m, 2H), 7.41 to 7.37 (m, 2H), 6.06 (dd, J=2.4 Hz, 1 Hz, 1H); MS LC-MS [M+H]+=452, RT=2.54 min.
  • The present invention provides, but is not limited, to the embodiments defined in the following paragraphs:
  • EXAMPLES Example 1 Preparation of 4-{4-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-pyridine-2-carboximidamide
  • Figure US20100075971A1-20100325-C00034
  • To a mixture of ammonium chloride (1.73 mmol) in toluene at 0° C. was added trimethylaluminum (1.73 mmol, 0.87 mL of 2 M in toluene), and the mixture was stirred at RT until the reaction becomes clear. N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}urea (0.35 mmol, 150 mg) was then added and the mixture was heated at 90° C. for 18 h. The solvent was removed and the residue was purified by flash chromatography (35:9:5:1 v/v EtOAc:MeOH:hexane:NH4OH) to give 18 mg (17%) of the title product as a white solid. 1H-NMR (CD3OD) δ 8.61 (s, 1H), 8.00 (s, 1H), 7.79 (s, 1H), 7.58 (m, 3H), 7.52 (m, 3H), 7.10 (m, 3H); MS LC-MS [M+H]+=450, RT=3.13 min.
  • Example 2 Preparation of 4-{4-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboximidamide
  • Figure US20100075971A1-20100325-C00035
  • To a mixture of methylamine hydrochloride (117 mg, 1.73 mmol) in anhydrous toluene at 0° C. was added trimethylaluminum (1.73 mmol, 0.87 mL of 2 M in toluene), and the reaction mixture was stirred at RT until the reaction becomes clear. N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}urea (0.35 mmol, 150 mg) was then added, and the mixture heated at 90° C. for 17 h. The solvent was then removed and the residue was purified by flash chromatography (35:10:4:1 v/v EtOAc:MeOH:Hexane:NH4OH) to give 79 mg (49%) of the title product as a yellow solid. 1H-NMR (DMSO-d6) δ 10.14 (s, 1H), 9.80 (s, 1H), 10.05 to 9.20 (broad s, 2H), 8.62 (d, J=5.4 Hz, 1H), 8.10 (s, 1H), 7.89 (d, J=2.4 Hz, 1H), 7.62 to 7.52 (m, 4H), 7.19 to 7.15 (m, 3H), 3.02 (s, 3H); MS LC-MS [M+H]+=464, RT=2.54 min.
  • Example 3 Preparation of N-Methyl-4-[4-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}-amino)phenoxy]pyridine-2-carboximidamide
  • Figure US20100075971A1-20100325-C00036
  • The title compound was prepared in the same manner described for 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboximid-amide, substituting N-{4[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)-oxy]phenyl}urea. 1H-NMR (DMSO-d6) δ 9.84 (s, 1H), 9.59 (s, 1H), 8.64 (d, J=5.4 Hz, 1H), 8.10 (d, J=2.4 Hz, 1H), 7.86 (d, J=2.4 Hz, 1H), 7.67 to 7.58 (m, 3H), 7.43 (d, J=9.0 Hz, 1H), 7.20 to 7.16 (m, 3H), 3.01 (s, 3H); MS LC-MS [M+H]+=492, RT=2.57 min.
  • Example 4 Preparation of N-Methyl-4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carboximidamide
  • Figure US20100075971A1-20100325-C00037
  • The title compound was prepared in the same manner described for 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboximid-amide, substituting N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-quinolin-6-ylurea for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)-oxy]phenyl}urea. 1H-NMR (DMSO-d6) δ 9.68 (s, 1H), 9.60 (s, 1H), 8.72 (dd, J=1.2, 3.9 Hz, 1H), 8.64 (d, J=5.71H, 1H), 8.25 (d, J=0.69 Hz, 1H), 8.16 (d, J=2.4 Hz, 1H), 7.94 (d, J=9.0 Hz, 1H), 7.87 (d, J=1.8 Hz, 1H), 7.73 (dd, J=2.4 Hz, 9.0 Hz, 1H), 7.66 to 7.62 (m, 2H), 7.46 to 7.42 (m, 1H), 7.21 to 7.17 (m, 3H), 3.02 (s, 3H); MS LC-MS [M+H]+=413, RT=1.58 min; TLC (EtOAc:MeOH:Hexanes:NH4OH v/v 35:10:4:1), Rf=0.22.
  • Example 5 Preparation of 4-{4-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-pyridine-2-carbothioamide
  • Figure US20100075971A1-20100325-C00038
  • Hydrogen sulfide gas was bubbled into a solution of N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)-oxy]phenyl}urea (230 mg, 0.53 mmol) in anhydrous DMF (30 mL) at RT. After 10 minutes diethylamine (58 mg, 0.80 mmol) was added, and the reaction mixture was heated to 60° C. for 1 h. The mixture was poured into EtOAc (200 mL), and the organic phase was washed with water (2×200 mL), brine (1×200 mL), dried over Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography eluted with 50% EtOAc/hexane to give 180 mg (73%) of the title product as a yellow solid. 1H-NMR (DMSO-d6) δ 10.2 (broad s, 1H), 9.93 (broad s, 1H), 9.23 (s, 1H), 9.02 (s, 1H), 8.47 (d, J=5.7 Hz, 1H), 8.11 (d, J=2.1 Hz, 1H), 7.95 (d, J=2.4 Hz, 1H), 7.67 to 7.57 (m, 4H), 7.19 to 7.11 (m, 3H); MS LC-MS [M+H]+=467, RT=3.47 min.
  • Example 6 Preparation of 4-(4-{[(Quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carbothioamide
  • Figure US20100075971A1-20100325-C00039
  • The title compound was prepared in the same manner described for 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carbothioamide, substituting N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-quinolin-6-ylurea for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)-oxy]phenyl}urea. 1H-NMR (DMSO-d6) δ 10.19 (s, 1H), 9.92 (s, 1H), 9.08 (s, 1H), 8.95 (s, 1H), 8.73 (dd, J=2.4, 4.5 Hz, 1H), 8.47 (d, J=5.4 Hz, 1H), 8.24 (dd, J=0.9, 7.8 Hz, 1H), 8.17 (d, J=2.4 Hz, 1H), 7.97 to 7.92 (m, 2H), 7.71 (dd, J=2.7, 9.0 Hz, 1H), 7.64 to 7.59 (m, 2H), 7.47 to 7.43 (m, 1H), 7.20 to 7.11 (m, 3H); MS LC-MS [M+H]+=416, RT=2.08 min; TLC (EtOAc:MeOH:Hexanes:NH4OH v/v 35:10:4:1), Rf=0.75.
  • Example 7 Preparation of 4-[4-({[(1-Methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carbothioamide
  • Figure US20100075971A1-20100325-C00040
  • The title compound was prepared in the same manner described for 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carbothioamide, substituting N-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}-N′-(1-methyl-1H-indazol-5-yl)urea for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)-oxy]phenyl}urea. 1H-NMR (DMSO-d6) δ 10.18 (s, 1H), 9.92 (s, 1H), 8.80 (s, 1H), 8.68 (s, 1H), 8.46 (d, J=5.7 Hz, 1H), 7.96 to 7.89 (m, 3H), 7.60 to 7.54 (m, 3H), 7.36 (dd, J=1.8, 9.0 Hz, 1H), 7.18 to 7.10 (m, 3H), 4.00 (s, 3H); MS LC-MS [M+H]+=419, RT=2.62 min.
  • Example 8 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00041
  • A mixture of methyl 4-[4-({[(4-chloro-3-trifluoromethyl-phenyl)amino]carbonyl}amino)-phenoxy]pyridine-2-carboxylate (600 mg, 1.29 mmol) and hydrazine hydrate (645 mg, 12.9 mmol) in anhydrous MeOH (50 mL) was stirred at RT under argon for 18 h. The reaction mixture was diluted with EtOAc (200 mL), washed with water and brine. The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromotography eluted with 100% EtOAc to give 580 mg (97%) of the title compound. 1H-NMR (DMSO-d6) δ 9.88 (s, 1H), 9.26 (s, 1H), 9.08 (s, 1H), 8.48 (d, 1H), 8.10 (d, 1H), 7.66-7.58 (m, 4H), 7.36 (d, 1H), 7.18-7.08 (m, 3H), 4.50 (s, 2H); MS LC-MS [M+H]+=466, RT=2.83 min; TLC (100% EtOAc), Rf=0.15.
  • Example 9 Preparation of N-(4-{[2-(Hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
  • Figure US20100075971A1-20100325-C00042
  • The title compound was prepared in the same manner described for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)urea, substituting methyl 4-[4-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}-amino)phenoxy]pyridine-2-carboxylate for methyl 4-[4-({[(4-chloro-3-trifluoromethylphenyl)-amino]-carbonyl}amino)phenoxy]pyridine-2-carboxylate. 1H-NMR (DMSO-d6) δ 9.89 to 9.86 (m, 1H), 9.17 (s, 1H), 9.03 (s, 1H), 8.46 (d, J=6.0 Hz, 1H), 8.10 (d, J=2.4 Hz, 1H), 7.66 (dd, J=2.1, 9.0 Hz, 1H), 7.60 to 7.56 (m, 2H), 7.41 (d, J=9.0 Hz, 1H), 7.32 (d, J=2.7 Hz, 1H), 7.17 to 7.09 (m, 3H), 4.52 (d, J=4.5 Hz, 2H); MS LC-MS [M+H]+=494, RT=2.88 min; TLC (100% EtOAc), Rf=0.15.
  • Example 10 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-[3-({2-[(2,2-dimethylhydrazino)-carbonyl]pyridin-4-yl}oxy)phenyl]urea
  • Figure US20100075971A1-20100325-C00043
  • To a solution of 4-[3-({[(4-chloro-3-trifluoromethyl-phenyl)amino]carbonyl}amino)-phenoxy]pyridine-2-carboxylic acid (120 mg, 0.27 mmol) in anhydrous DMF (3 mL) was added 1,1-dimethylhydrazine (20 mg, 0.27 mmol), HOBT (80 mg, 0.58 mmol), EDCl (80 mg, 0.40 mmol) and N-methylmorphine (60 mg, 0.58 mmol). The reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure. The crude product was purified by HPLC and neutralized with aqueous sodium bicarbonate (1N) to give 100 mg (75.5%) of the title compound. 1H-NMR (CD3OD) δ 8.48 (d, J=5.4 Hz, 1H), 7.97 (d, J=2.4 Hz, 1H), 7.63 (dd, J=5.4, 2.4 Hz, 1H), 7.51 (d, J=3.0 Hz, 1H), 7.48 to 7.39 (m, 3H), 7.32 to 7.31 (m, 1H), 7.13 (dd, J=5.7, 3.0 Hz, 1H), 6.84 (dd, J=7.2, 1.5 Hz, 1H), 2.68 (s, 6H); MS LC-MS [M+H]+=494, RT=3.46 min.
  • Example 11 Preparation of 4-{3-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]-phenoxy}-N-[2-(dimethylamino)ethyl]pyridine-2-carboxamide
  • Figure US20100075971A1-20100325-C00044
  • The title compound was prepared in the same manner described for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[3-({2-[(2,2-dimethylhydrazino)-carbonyl]pyridin-4-yl}oxy)phenyl]-urea, substituting N-aminopiperidine for 1,1-dimethylhydrazine. 1H-NMR (DMSO-d6) δ 9.53 (s, 1H), 9.22 (s, 1H), 9.10 (s, 1H), 8.51 (d, J=5.7 HZ, 1H), 8.05 (d, J=1.8 Hz, 1H), 7.60 to 7.58 (m, 2H), 7.47 to 7.17 (m, 4H), 6.82 (dd, J=7.2, 1.5 Hz, 1H), 2.78 to 2.74 (m, 4H), 1.57 to 1.54 (m, 4H), 1.32 to 1.30 (m, 2H); MS LC-MS [M+H]+=534, RT=3.28 min.
  • Example 12 Preparation of 4-{3-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]-phenoxy}-N-morpholin-4-ylpyridine-2-carboxamide
  • Figure US20100075971A1-20100325-C00045
  • The title compound was prepared in the same manner described for N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[3-({2-[(2,2-dimethylhydrazino)-carbonyl]pyridin-4-yl}oxy)phenyl]-urea, substituting N-aminopiperidine for 1,1-dimethylhydrazine. 1H-NMR (CD3OD) δ 8.48 (d, J=4.8 Hz, 1H), 7.97 (d, J=2.4 Hz, 1H), 7.65 to 7.57 (m, 2H), 7.48 to 7.30 (m, 4H), 7.11 to 7.09 (m, 1H), 6.82 (dd, J=2.1, 1.0 Hz, 1H), 3.81 to 3.78 (m, 4H), 2.92 to 2.89 (m, 4H); MS LC-MS [M+H]+=536, RT=3.10 min.
  • Example 13 Preparation of N-Piperidin-1-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxamide
  • Figure US20100075971A1-20100325-C00046
  • To a mixture of {4-[3-(2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxin-6-yl)phenoxy]phenyl}-acetic acid (100 mg, 0.21 mmol) in DMF (3 mL) at RT was added 1-aminopiperidine (20 mg, 0.21 mmol), HOBT (60 mg, 0.46 mmol), EDCl (60 mg, 0.31 mmol), and N-methylmorpholine (50 mg, 0.46 mmol). The mixture was stirred at RT overnight. The solvent was removed and the residue diluted with DCM (10 mL), and then washed with H2O (3 mL). The crude product was purified by HPLC and neutralized with NaHCO3 to give 56 mg (45%) of the title product. 1H-NMR (DMSO-d6) δ 9.65 (s, 1H), 9.19 (s, 1H), 9.14 (s, 1H), 8.51 (d, 1H), 8.07 (d, 1H), 7.62 (dd, 1H), 7.38 to 7.49 (m, 4H), 7.30 (dd, 1H), 7.21 (dd, 1H), 6.85 (dd, 1H), 2.72 to 2.79 (m, 4H), 1.55 to 1.59 (m, 4H), 1.34 (m, 2H); MS LC-MS [M+H]+=562, RT=3.28 min.
  • Example 14 Preparation of N-Morpholin-4-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxamide
  • Figure US20100075971A1-20100325-C00047
  • The title compound was prepared in the same manner described for N-piperidin-1-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]-carbonyl}amino)phenoxy]pyridine-2-carboxamide, substituting 4-aminomorpholine for N-aminopiperidine. 1H-NMR (DMSO-d6) δ 9.81 (s, 1H), 9.17 (s, 1H), 9.12 (s, 1H), 8.50 (d, 1H), 8.06 (d, 1H), 7.60 (dd, 1H), 7.37-7.48 (m, 4H), 7.29 (dd, 1H), 7.21 (dd, 1H), 6.83 (dd, 1H), 3.61-3.64 (m, 4H), 2.71-2.87 (m, 4H); MS LC-MS [M+H]+=564, RT=3.20 min.
  • Example 15 Preparation of 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]-N-morpholin-4-ylpyridine-2-carboxamide
  • Figure US20100075971A1-20100325-C00048
  • To a mixture of 4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]-pyridine-2-carboxylic acid (70 mg, 0.17 mmol) in DMF (3 mL) at RT was added 4-aminomorpholine (20 mg, 0.17 mmol), HOBT (50 mg, 0.38 mmol), EDCl (50 mg, 0.26 mmol), and N-methylmorpholine (40 mg, 0.38 mmol). The reaction mixture was stirred at RT overnight. The solvent was removed and the residue diluted with methylene DCM (10 mL) and then washed with H2O (3 mL). The crude product was purified by HPLC and neutralized with NaHCO3 to give 38 mg (44%) of the title product. 1H-NMR (CD3OD) δ 8.46 (d, 1H), 7.89 (s, 1H), 7.83 (d, 1H), 7.57 (d, 1H), 7.45-7.50 (m, 2H), 7.35-740 (m, 2H), 7.26 (dd, 1H), 7.08 (dd, 1H), 6.76 (dd, 1H), 4.04 (s, 3H), 3.76-3.79 (m, 4H), 2.84-2.91 (m, 4H); MS LC-MS [M+H]+=488, RT=2.86 min.
  • Example 16 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1H-tetrazol-5-yl)pyridin-4-yl]-oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00049
  • A mixture of the N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]phenyl}urea (300 mg, 0.23 mmol), sodium azide (1.5 mmol, 67.6 mg), and triethylamine hydrochloride (143 mg, 1.5 mmol) in toluene (20 mL) was heated at 80° C. for 2 days. The solvent was removed, and the residue was purified by flash chromatography (40:30:28:2 v/v EtOAc:hexane:MeOH:NH4OH) to give 210 mg (63%) of the desired product. 1H-NMR (DMSO-d6) δ 9.55 (s, 1H), 9.21 (s, 1H), 8.42 (d, 1H), 8.19 (s, 2H), 7.65 (m, 1H), 7.60 (m, 3H), 7.42 (s, 1H), 7.20 (m, 2H), 6.95 (s, 1H); MS LC-MS [M+H]+=476, RT=3.11 min.
  • Example 17 Preparation of 1 N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4,5-dihydro-1H-imidazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00050
  • A mixture of N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-{4-[(2-cyanopyridin-4-yl)oxy]-phenyl}urea (100 mg, 0.23 mmol), ethylenediamine (42 mg, 0.69 mmol), and sulfur (22 mg, 0.69 mmol) in DMF (3 mL) was heated at 80° C. overnight. The solvent was removed, and the residue was purified by preparative HPLC to give 81 mg (73%) of the desired product. 1H-NMR (DMSO-d6) δ 9.22 (s, 1H), 9.05 (s, 1H), 8.50 (d, 1H), 7.60 (m, 5H), 7.39 (s, 1H), 7.19 (m, 3H), 3.65 (s, 4H); MS LC-MS [M+H]+=476, RT=2.74 min.
  • Example 18 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00051
  • The title compound was prepared in the same manner described for 4-[4-({[(4-Chloro-3-trifluoromethylphenyl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxylate, substituting 4-(2-[1,3,4]oxadiazol-2-yl-pyridin-4-yloxy)phenylamine for 4-(4-aminophenoxy)pyridine-2-carboxylic acid methyl ester. 1H-NMR (Acetone-d6) δ 9.06 (s, 1H), 8.70 (s, 1H), 8.63 (d, J=6.0 Hz, 1H), 8.54 (s, 1H), 8.17 (d, J=2.7 Hz, 1H), 7.79 to 7.58 (m, 4H), 7.55 (d, J=9.3 Hz, 1H), 7.24 to 7.20 (m, 2H), 7.14 to 7.10 (m, 1H); MS LC-MS [M+H]+=476, RT=3.37 min; TLC (100% EtOAc), Rf=0.45.
  • Example 19 Preparation of N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4-methyl-1,3-thiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00052
  • To 4-{4-[({[4-Chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-pyri-dine-2-carbothioamide (150 mg, 0.32 mmol) in anhydrous EtOH (20 mL) was added chloroacetyl chloride (30.6 μL, 0.38 mmol, 1.2 eq), and the reaction mixture was refluxed under argon for 18 h. The mixture was poured into diethyl ether (100 mL), and the organic layer was washed with water and brine, dried over Na2SO4, filtered, and concentrated at reduced pressure. The crude residue was purified by MPLC (biotage) eluted with 50% ethyl acetate-hexane to afford 145 mg (89%) of the title product, 1H-NMR (Acetone-d6) δ 8.60 (s, 1H), 8.45 (d, J=2.4 Hz, 1H), 8.43 (s, 1H), 8.17 (d, J=2.4 Hz, 1H), 7.79 to 7.68 (m, 3H), 7.58 to 7.55 (m, 2H), 7.26 to 7.18 (m, 3H), 7.01 to 6.99 (m, 1H), 2.40 (s, 3H); MS LC-MS [M+H]+=505, RT=3.79 min; TLC (50% EtOAc/Hexane), Rf=0.25.
  • Example 20 Preparation of N-quinolin-6-yl-N′-(4-{[2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00053
  • To 4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carbothioamide (50 mg, 0.12 mmol) in anhydrous MeOH (20 mL) was added hydrazine hydrate (60 mg, 1.20 mmol), and the reaction mixture was stirred under Ar at RT for 18 h. The mixture was poured into diethyl ether (100 mL), and the organic layer was washed with water and brine, dried over Na2SO4, filtered, and concentrated at reduced pressure. To the crude hydrazine amide was added anhydrous MeOH (30 mL) followed by carbon disulfide (55 mg, 0.73 mmol). The reaction mixture was stirred under Ar at room temperature for 18 h and then taken up in ethyl acetate (100 mL). The reaction mixture was washed with water and brine, dried over Na2SO4, filtered, and concentrated at reduced pressure. Purification of the residue using preparative TLC (100% EtOAc) afforded 2 mg (6%) of the title product. 1H-NMR (Acetone-d6) δ 8.74 (d, 1H), 8.44 (d, 1H), 8.40 (s, 1H), 7.96 to 7.84 (m, 4H), 7.44 to 7.38 (m, 2H), 7.18 to 7.14 (m, 2H), 7.18 (d, J=9.0 Hz, 2H), 7.08 to 7.00 (m, 2H); MS LC-MS [M+H]+=473, RT=3.16 min; TLC (100% EtOAc), Rf=0.15.
  • Example 21 Preparation of N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
  • Figure US20100075971A1-20100325-C00054
  • The title compound was prepared in the same manner described for N-quinolin-6-yl-N′-(4-{[2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea, substituting, 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-pyridine-2-carbo-thioamide for 4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carbothioamide, and substituting phosgene for carbon disulfide. 1H-NMR (DMSO-d6) δ 12.75 (s, 1H), 9.21 (s, 1H), 8.99 (s, 1H), 8.55 (d, J=5.7 Hz, 1H), 8.10 (d, J=2.4 Hz, 1H), 7.66 to 7.55 (m, 4H), 7.23 (d, J=2.4 Hz, 1H), 7.20 to 7.16 (m, 2H), 7.11 to 7.08 (m, 1H); MS LC-MS [M+H]+=492, RT=3.16 min; TLC (10% MeOH/DCM), Rf=0.84.
  • Example 22 Preparation of N-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
  • Figure US20100075971A1-20100325-C00055
  • The title compound was prepared in the same manner described for N-[4-Chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}-phenyl)urea, substituting 4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}-amino)phenoxy]pyridine-2-carboxamide for 4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}-carbonyl)amino]phenoxy}pyridine-2-carbothioamide. 1H-NMR (DMSO-d6) δ 12.75 (s, 1H), 9.15 (s, 1H), 9.01 (s, 1H), 8.55 (d, J=6.0 Hz, 1H), 8.10 (d, J=2.7 Hz, 1H), 7.68 to 7.57 (m, 3H), 7.42 (d, J=8.7 Hz, 1H), 7.23 (d, J=2.7 Hz, 1H), 7.19 to 7.16 (m, 2H), 7.11 to 7.08 (m, 1H); MS LC-MS [M+H]+=520, RT=3.20 min; TLC (10% MeOH/DCM), Rf=0.72.
  • It is believed that one skilled in the art, using the preceding information and information available in the art, can utilize the present invention to its fullest extent.
  • It should be apparent to one of ordinary skill in the art that changes and modifications can be made to this invention without departing from the spirit or scope of the invention as it is set forth herein.
  • The topic headings set forth above and below are meant as guidance where certain information can be found in the application, but are not intended to be the only source in the application where information on such topic can be found.
  • All publications and patents cited above are incorporated herein by reference.

Claims (47)

1) A compound of formula (I)
Figure US20100075971A1-20100325-C00056
or a pharmaceutically acceptable salt, wherein
A is phenyl, naphthyl, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, tetrazole, thiadiazole, oxadiazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine, benzoxazole, indazole, quinoline, quinazoline, imidazopyrimidine, naphtyridine, or a group of the formula,
or a group of the formula
Figure US20100075971A1-20100325-C00057
optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, oxide, amino, cyano, or nitro;
B is phenyl, naphthyl, or pyridyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro;
L is
(a) —(CH2)m—O—(CH2)l—,
(b) —(CH2)m—(CH2)l—,
(c) —(CH2)m—C(O)—(CH2)l—,
(d) —(CH2)m—NR3—(CH2)l—,
(e) —(CH2)m—NR3C(O)—(CH2)l—,
(f) —(CH2)m—S—(CH2)l—,
(g) —(CH2)m—C(O)NR3—(CH2)l—, or
(h) a single bond;
m and l are integers independently selected from 0-4;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
(3) tetrazolyl;
(4) imidazolyl;
(5) imidazoline-2-yl;
(6) 1,3,4-oxadiazoline-2-yl;
(7) 1,3-thiazoline-2-yl;
(8) 5-thioxo-4,5-dihydro-1,3,4-thiazoline-2-yl;
(9) 5-oxo-4,5-dihydro-1,3,4-oxadiazoline-2-yl; or
(10) a group of the formula
Figure US20100075971A1-20100325-C00058
wherein each of R1, R2, R3, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is a tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine or; benzoxazole, indazole, quinoline, quinazoline, imidazopyrimidine or naphtyridine
R4 and R5 may additionally be taken together to form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, up to perhalo substituted C1-C5 linear or branched alkyl, C1-C3 alkoxy, hydroxy, oxo, carboxy, amino, C1-C3 alkylamino, C1-C6dialkylamino, halogen, cyano, or nitro;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) cyano,
(d) nitro,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —C(O)R7, where R7 is C1-C5 linear, branched, or cyclic alkyl;
R7 is hydrogen or linear, branched, or cyclic C1-C5 alkyl;
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
2) A compound of claim 1 wherein B is phenyl or pyridinyl, optionally substituted with 1-4 halogen.
3) (canceled)
4) (canceled)
5) A compound of claim 1 wherein A and B follow one of the following combinations:
A=phenyl and B=phenyl,
A=indazolyl and B=phenyl,
A=quinolinyl and B=phenyl,
A=4H-benzo[1,3]dioxin-6-yl and B=phenyl;
A=phenyl and B=pyridyl,
A=indazolyl and B=pyridyl,
A=quinolinyl and B=pyridyl, or
A=4H-benzo[1,3]dioxin-6-yl and B=pyridyl.
6) A compound which is
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)urea
N-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[3-({2-[(2,2-dimethylhydrazino)carbonyl]pyridin-4-yl}oxy)phenyl]urea
4-{3-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-piperidin-1-ylpyridine-2-carboxamide
N-piperidin-1-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxamide
4-{3-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-morpholin-4-ylpyridine-2-carboxamide
N-morpholin-4-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxamide
4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]-N-morpholin-4-ylpyridine-2-carboxamide
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1H-tetrazol-5-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4,5-dihydro-1H-imidazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4-methyl-1,3-thiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-quinolin-6-yl-N′-(4-{[2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboximidamide
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carboximidamide
N-methyl-4-[4-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboximidamide
N-methyl-4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carboximidamide
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carbothioamide
4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carbothioamide or
4-[4-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carbothioamide
7) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 1 and a physiologically acceptable carrier.
8) A method for treating or preventing a hyper-proliferative disorder in a human or other mammal comprising administering to a human or other mammal in need thereof a compound of claim 1.
9) A method for treating or preventing a hyper-proliferative disorder in a human or other mammal comprising administering to a human or other mammal in need thereof a compound of claim 1 and an additional anti-proliferative agent.
10) A method for treating or preventing cancer in a human or other mammal comprising administering to a human or other mammal in need thereof a compound of claim 1 and a cytotoxic agent or cytostatic chemotherapeutic agent.
11) A method for treating or preventing a disease in a human or other mammal regulated by tyrosine kinase, associated with an aberration in the tyrosine kinase signal transduction pathway, comprising administering to a human or other mammal in need thereof a compound of claim 1.
12) A method for treating or preventing a disease in a human or other mammal mediated by the VEGF-induced signal transduction pathway, comprising administering to a human or other mammal in need thereof a compound of claim 1.
13) A method for treating or preventing a disease in a human or other mammal characterized by abnormal angiogenesis or hyperpermeability processes, comprising administering to a human or other mammal in need thereof a compound of claim 1.
14) A method for treating or preventing a disease in a human or other mammal characterized by abnormal angiogenesis or hyperpermeability processes, comprising administering to a human or other mammal in need thereof a compound of claim 1 simultaneously with another angiogenesis inhibiting agent in the same formulation or in separate formulations.
15) A method for treating or preventing one or more of the following conditions in humans and/or other mammals: tumor growth, retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, age related macular degeneration; rheumatoid arthritis, psoriasis, a bolos disorder associated with subepidermal blister formation, including bullous pemphigoid, erythema multiforme, or dermatitis herpetiformis, comprising administering to a human or other mammal in need thereof a compound of claim 1.
16) A method for treating or preventing one or more of the following conditions in humans and/or other mammals: tumor growth, retinopathy, diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, age related macular degeneration; rheumatoid arthritis, psoriasis, bullous disorder associated with subepidermal blister formation, bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis, in combination with an infectious disease selected from the group consisting of: tuberculosis, Helicobacter pylori infection during peptic ulcer disease, Chaga's disease resulting from Trypanosoma cruzi infection, effects of Shiga-like toxin resulting from E. coli infection, effects of enterotoxin A resulting from Staphylococcus infection, meningococcal infection, and infections from Borrelia burgdorferi, Treponema pallidum, cytomegalovirus, influenza virus, Theiler's encephalomyelitis virus, and the human immunodeficiency virus (HIV),
said method comprising administering to a human or other mammal in need thereof a compound of claim 1.
17) A method for treating or preventing diseases mediated by the VEGF-induced signal transduction pathway comprising administering a compound selected from the group consisting of:
4-{4-[3-(4-Chloro-3-trifluoromethyl-phenyl)-ureido]-phenoxy}-pyridine-2-carbothioic acid amide;
4-{3-[3-(2,2,4,4-Tetrafluoro-4H-benzo[1,3]dioxin-6-yl)-ureido]-phenoxy}-pyridine-2-carboxylic acid (1-piperidyl)-amide;
4-{3-[3-(2,2,4,4-Tetrafluoro-4H-benzo[1,3]dioxin-6-yl)-ureido]-phenoxy}-pyridine-2-carboxylic acid (4-morpholino)-amide;
4-{3-[3-(1-Methyl-1H-indazol-5-yl)-ureido]-phenoxy}-pyridine-2-carboxylic acid (4-morpholino)-amide;
4-{4-[3-(4-Chloro-3-trifluoromethyl-phenyl)-ureido]-phenoxy}-pyridine-2-carboxamidine;
1-(4-Chloro-3-trifluoromethyl-phenyl)-3-{4-[2-(1H-tetrazol-5-yl)-pyridinyl-4-oxy]-phenyl}-urea;
1-(4-Chloro-3-trifluoromethyl-phenyl)-3-{4-[2-(4,5-dihydro-1H-imidazol-2-yl)-pyridinyl-4-oxy]-phenyl}-urea;
4-{4-[3-(4-Chloro-3-trifluoromethyl-phenyl)-ureido]-phenoxy}-N-methyl-pyridine-2-carboxamidine;
or a salt form, prodrug or metabolite thereof.
18) A method for treating or preventing cancer comprising administering a compound selected from the group consisting of:
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)urea
N-(4-{[2-(hydrazinocarbonyl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-[3-({2-[(2,2-dimethylhydrazino)carbonyl]pyridin-4-yl}oxy)phenyl]urea
4-{3-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-piperidin-1-ylpyridine-2-carboxamide
N-piperidin-1-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxamide
4-{3-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-morpholin-4-ylpyridine-2-carboxamide
N-morpholin-4-yl-4-[3-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboxamide
4-[3-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]-N-morpholin-4-ylpyridine-2-carboxamide
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1H-tetrazol-5-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4,5-dihydro-1H-imidazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(4-methyl-1,3-thiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-quinolin-6-yl-N′-(4-{[2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-[4-chloro-3-(trifluoromethyl)phenyl]-N′-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)urea
N-(4-{[2-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridin-4-yl]oxy}phenyl)-N′-(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)urea
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}-N-methylpyridine-2-carboximidamide
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carboximidamide
N-methyl-4-[4-({[(2,2,4,4-tetrafluoro-4H-1,3-benzodioxin-6-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carboximidamide
N-methyl-4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carboximidamide
4-{4-[({[4-chloro-3-(trifluoromethyl)phenyl]amino}carbonyl)amino]phenoxy}pyridine-2-carbothioamide
4-(4-{[(quinolin-6-ylamino)carbonyl]amino}phenoxy)pyridine-2-carbothioamide
4-[4-({[(1-methyl-1H-indazol-5-yl)amino]carbonyl}amino)phenoxy]pyridine-2-carbothioamide,
or a salt form, prodrug or metabolite thereof.
19) (canceled)
20) (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24) (canceled)
25) (canceled)
26) A compound of claim 1 wherein L is —O— and B is phenyl, optionally substituted with 1-4 halogen.
27) A compound of formula (I)
Figure US20100075971A1-20100325-C00059
or a pharmaceutically acceptable salt, wherein A is phenyl, naphthyl, indazolyl, quinolinyl, pyridyl, benzo[1,3]dioxolan-5-yl, 2,3-dihydro-benzo[1,4]dioxin-6-yl or 4H-benzo[1,3]dioxin-6-yl, optionally substituted with 1-4 substituents which are independently R1 and halogen,
L is —O— and B is phenyl, optionally substituted with 1-4 halogen;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
(3) tetrazolyl;
(4) imidazolyl;
(5) imidazoline-2-yl;
(6) 1,3,4-oxadiazoline-2-yl;
(7) 1,3-thiazoline-2-yl;
(8) 5-thioxo-4,5-dihydro-1,3,4-thiazoline-2-yl;
(9) 5-oxo-4,5-dihydro-1,3,4-oxadiazoline-2-yl; or
(10) a group of the formula
Figure US20100075971A1-20100325-C00060
wherein each of R1, R2, R3, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine or benzoxazole, indazole, quinoline, quinazoline, imidazopyrimidine or naphtyridine;
R4 and R5 may additionally be taken together to form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, up to perhalo substituted C1-C5 linear or branched alkyl, C1-C3 alkoxy, hydroxy, oxo, carboxy, amino, C1-C3 alkylamino, C1-C6dialkylamino, halogen, cyano, or nitro;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) cyano,
(d) nitro,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —C(O)R7, where R7 is C1-C5 linear, branched, or cyclic alkyl;
R7 is hydrogen or linear, branched, or cyclic C1-C5 alkyl;
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
28) A compound of formula (I)
Figure US20100075971A1-20100325-C00061
or a pharmaceutically acceptable salt thereof, wherein
A is
Figure US20100075971A1-20100325-C00062
wherein A is optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, oxide, amino, cyano, or nitro;
B is phenyl, or pyridyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro;
L is
(a) —(CH2)m—O—(CH2)l—,
(b) —(CH2)m—(CH2)l—,
(c) —(CH2)m—C(O)—(CH2)l—,
(d) —(CH2)m—NR3—(CH2)l—,
(e) —(CH2)m—NR3C(O)—(CH2)l—,
(f) —(CH2)m—S—(CH2)l—,
(g) —(CH2)m—C(O)NR3—(CH2)l—, or
(h) a single bond;
m and l are integers independently selected from 0-4;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
(3) tetrazolyl;
(4) imidazolyl;
(5) imidazoline-2-yl;
(6) 1,3,4-oxadiazoline-2-yl;
(7) 1,3-thiazoline-2-yl;
(8) 5-thioxo-4,5-dihydro-1,3,4-thiazoline-2-yl;
(9) 5-oxo-4,5-dihydro-1,3,4-oxadiazoline-2-yl; or
(10) a group of the formula
Figure US20100075971A1-20100325-C00063
wherein each of R1, R2, R3, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is a tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine or benzoxazole, indazole, quinoline, quinazoline, imidazopyrimidine or naphtyridine;
R4 and R5 may additionally be taken together to form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, up to perhalo substituted C1-C5 linear or branched alkyl, C1-C3 alkoxy, hydroxy, oxo, carboxy, amino, C1-C3 alkylamino, C1-C6dialkylamino, halogen, cyano, or nitro;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) cyano,
(d) nitro,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —C(O)R7, where R7 is C1-C5 linear, branched, or cyclic alkyl;
R7 is hydrogen or linear, branched, or cyclic C1-C5 alkyl;
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
29) A compound of claim 28 wherein B is phenyl or pyridinyl, optionally substituted with 1-4 halogen.
30) A compound of claim 28 wherein L is —O— and B is phenyl or pyridinyl, optionally substituted with 1-4 halogen.
31) A compound as in claim 28 wherein B is phenyl or pyridyl, L is —O—, M a pyridine ring substituted only by Q, and Q is
C(S)NR4R5;
C(O)NR7—NR4R5;
or
a group of the formula
Figure US20100075971A1-20100325-C00064
with each of R4 and R5, independently:
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where the substituent X is pyridinyl and the variable q is preferably an integer 0 or 1, and
R6 is:
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl, or
(c) cyano.
32) A compound of formula (I)
Figure US20100075971A1-20100325-C00065
or a pharmaceutically acceptable salt thereof, wherein
A is
Figure US20100075971A1-20100325-C00066
wherein A is optionally substituted with 1-4 substituents which are independently R1, OR1, or halogen
B is phenyl or pyridinyl, optionally substituted with 1-4 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, cyano, or nitro,
L is —O—,
M is a pyridine ring,
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
(3) tetrazolyl;
(4) imidazolyl;
(5) imidazoline-2-yl;
(6) 1,3,4-oxadiazoline-2-yl;
(7) 1,3-thiazoline-2-yl;
(8) 5-thioxo-4,5-dihydro-1,3,4-thiazoline-2-yl;
(9) 5-oxo-4,5-dihydro-1,3,4-oxadiazoline-2-yl; or
(10) a group of the formula
Figure US20100075971A1-20100325-C00067
wherein each of R1, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is a tetrahydropyrane, tetrahydrofurane, 1,3-dioxolane, 1,4-dioxane, morpholine, thiomorpholine, piperazine, piperidine, piperidinone, tetrahydropyrimidone, pentamethylene sulfide, tetramethylene sulfide, dihydropyrane, dihydrofurane, dihydrothiophene, pyrrole, furan, thiophene, imidazole, pyrazole, thiazole, oxazole, isoxazole, isothiazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, triazine or benzoxazole, indazole, quinoline, quinazoline, imidazopyrimidine or naphtyridine;
R4 and R5 may additionally be taken together to form a 5 or 6 membered aliphatic ring, which may be interrupted by an atom selected from N, O or S, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, up to perhalo substituted C1-C5 linear or branched alkyl, C1-C3 alkoxy, hydroxy, oxo, carboxy, amino, C1-C3 alkylamino, C1-C6dialkylamino, halogen, cyano, or nitro;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) cyano,
(d) nitro,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —C(O)R7, where R7 is C1-C5 linear, branched, or cyclic alkyl;
R7 is hydrogen or linear, branched, or cyclic C1-C5 alkyl;
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
33) A compound of claim 32 wherein B is phenyl or pyridinyl, substituted with 1-4 halogen.
34) A compound as in claim 32 wherein
M a pyridine ring substituted only by Q, and Q is
C(S)NR4R5;
C(O)NR7—NR4R5;
or
a group of the formula
Figure US20100075971A1-20100325-C00068
with each of R4 and R5, independently:
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where the substituent X is pyridinyl and the variable q is preferably an integer 0 or 1, and
R6 is:
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl, or
(c) cyano.
35) An ester derivative of a compound of formula I of claim 1.
36) An ester derivative of a compound of formula I of claim 10.
37) A compound of formula (I)
Figure US20100075971A1-20100325-C00069
or a pharmaceutically acceptable salt, wherein
A is phenyl;
optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, oxide, amino, cyano, or nitro;
L is —O— and B is phenyl, optionally substituted with 1-4 halogen;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
or
(3) a group of the formula
Figure US20100075971A1-20100325-C00070
wherein each of R1, R2, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is pyridine;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl, or
(c) up to per-halo substituted C1-C5 linear or branched alkyl, or
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
38) A compound of formula (I)
Figure US20100075971A1-20100325-C00071
or a pharmaceutically acceptable salt, wherein
A is pyridine optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, oxide, amino, cyano, or nitro;
L is —O— and B is phenyl, optionally substituted with 1-4 halogen;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
or
(3) a group of the formula
Figure US20100075971A1-20100325-C00072
wherein each of R1, R2, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is pyridine;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl, or
(c) up to per-halo substituted C1-C5 linear or branched alkyl, or
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
39) A compound of formula (I)
Figure US20100075971A1-20100325-C00073
or a pharmaceutically acceptable salt, wherein
A is pyrazole optionally substituted with 1-4 substituents which are independently R1, OR1, S(O)pR1, C(O)R1, C(O)OR1, C(O)NR1R2, halogen, hydroxy, oxide, amino, cyano, or nitro;
L is —O— and B is phenyl, optionally substituted with 1-4 halogen;
M is a pyridine ring, optionally substituted with 1-3 substituents which are independently C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C3 alkoxy, hydroxy, oxide, amino, C1-C3 alkylamino, C1-C6 dialkylamino, halogen, or nitro;
Q is:
(1) C(S)NR4R5;
(2) C(O)NR7—NR4R5;
or
(3) a group of the formula
Figure US20100075971A1-20100325-C00074
wherein each of R1, R2, R4 and R5 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl,
(c) phenyl,
(d) C1-C3 phenyl-alkyl,
(e) up to per-halo substituted C1-C5 linear or branched alkyl, or
(f) —(CH2)q—X, where X is pyridine;
R6 is independently
(a) hydrogen,
(b) C1-C5 linear, branched, or cyclic alkyl, or
(c) up to per-halo substituted C1-C5 linear or branched alkyl, or
q is an integer 0, 1, 2, 3, or 4 and
p is an integer 0, 1, or 2.
40) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 27 and a physiologically acceptable carrier.
41) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 27 and a physiologically acceptable carrier.
42) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 28 and a physiologically acceptable carrier.
43) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 31 and a physiologically acceptable carrier.
44) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 32 and a physiologically acceptable carrier.
45) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 37 and a physiologically acceptable carrier.
46) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 38 and a physiologically acceptable carrier.
47) A pharmaceutical composition which comprises an effective amount of at least one compound of claim 39 and a physiologically acceptable carrier.
US12/628,735 2003-02-28 2009-12-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders Abandoned US20100075971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/628,735 US20100075971A1 (en) 2003-02-28 2009-12-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US45034803P 2003-02-28 2003-02-28
US45032303P 2003-02-28 2003-02-28
US45032403P 2003-02-28 2003-02-28
US10/789,446 US20040229937A1 (en) 2003-02-28 2004-03-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders
US12/628,735 US20100075971A1 (en) 2003-02-28 2009-12-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/789,446 Continuation US20040229937A1 (en) 2003-02-28 2004-03-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders

Publications (1)

Publication Number Publication Date
US20100075971A1 true US20100075971A1 (en) 2010-03-25

Family

ID=32966445

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/788,029 Expired - Fee Related US7557129B2 (en) 2003-02-28 2004-02-27 Cyanopyridine derivatives useful in the treatment of cancer and other disorders
US10/789,446 Abandoned US20040229937A1 (en) 2003-02-28 2004-03-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders
US10/788,426 Expired - Fee Related US8076488B2 (en) 2003-02-28 2004-03-01 Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US10/788,405 Expired - Fee Related US7928227B2 (en) 2003-02-28 2004-03-01 2-oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatory disorders
US12/628,735 Abandoned US20100075971A1 (en) 2003-02-28 2009-12-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/788,029 Expired - Fee Related US7557129B2 (en) 2003-02-28 2004-02-27 Cyanopyridine derivatives useful in the treatment of cancer and other disorders
US10/789,446 Abandoned US20040229937A1 (en) 2003-02-28 2004-03-01 Substituted pyridine derivatives useful in the treatment of cancer and other disorders
US10/788,426 Expired - Fee Related US8076488B2 (en) 2003-02-28 2004-03-01 Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US10/788,405 Expired - Fee Related US7928227B2 (en) 2003-02-28 2004-03-01 2-oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatory disorders

Country Status (22)

Country Link
US (5) US7557129B2 (en)
EP (1) EP1599467B1 (en)
JP (1) JP4658037B2 (en)
KR (1) KR101109262B1 (en)
AR (1) AR043437A1 (en)
AT (1) ATE468331T1 (en)
AU (1) AU2004217977B2 (en)
BR (1) BRPI0407897A (en)
CA (1) CA2517361C (en)
CY (1) CY1111143T1 (en)
DE (1) DE602004027218D1 (en)
DK (1) DK1599467T3 (en)
ES (1) ES2344347T3 (en)
HK (1) HK1089155A1 (en)
IL (1) IL170503A (en)
MX (1) MXPA05009067A (en)
PL (1) PL1599467T3 (en)
PT (1) PT1599467E (en)
SI (1) SI1599467T1 (en)
TW (1) TW200504053A (en)
UY (1) UY28213A1 (en)
WO (1) WO2004078747A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038080A1 (en) * 2003-07-23 2005-02-17 Stephen Boyer Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US20070020704A1 (en) * 2003-05-20 2007-01-25 Scott Wilhelm Diaryl ureas with kinase inhibiting activity
US20100173953A1 (en) * 2006-10-11 2010-07-08 Alfons Grunenberg 4-[4-(amino)-3-fluorophenoxy]-N-methylpyridine-2-carboxamide monohydrate
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
ATE556713T1 (en) 1999-01-13 2012-05-15 Bayer Healthcare Llc OMEGA-CARBOXYARYL SUBSTITUTED DIPHENYL UREAS AS P38 KINASE INHIBITORS
US7371763B2 (en) * 2001-04-20 2008-05-13 Bayer Pharmaceuticals Corporation Inhibition of raf kinase using quinolyl, isoquinolyl or pyridyl ureas
US20080108672A1 (en) * 2002-01-11 2008-05-08 Bernd Riedl Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors
DK1580188T3 (en) 2002-02-11 2012-02-06 Bayer Healthcare Llc Compounds of arylurea as kinase inhibitors
WO2003068228A1 (en) 2002-02-11 2003-08-21 Bayer Pharmaceuticals Corporation Aryl ureas with angiogenesis inhibiting activity
NZ540878A (en) * 2003-01-14 2008-06-30 Cytokinetics Inc Compounds, compositions and methods
NZ562412A (en) * 2003-02-21 2009-02-28 Resmed Ltd Nasal assembly for pillow mask
UY28213A1 (en) 2003-02-28 2004-09-30 Bayer Pharmaceuticals Corp NEW CYANOPIRIDINE DERIVATIVES USEFUL IN THE TREATMENT OF CANCER AND OTHER DISORDERS.
US20070134273A1 (en) * 2004-02-10 2007-06-14 Francois Romagne Composition and method for the treatment of carcinoma
EP1751139B1 (en) 2004-04-30 2011-07-27 Bayer HealthCare LLC Substituted pyrazolyl urea derivatives useful in the treatment of cancer
NZ552404A (en) * 2004-06-17 2010-04-30 Cytokinetics Inc Compounds, compositions and methods
WO2006034797A1 (en) * 2004-09-29 2006-04-06 Bayer Healthcare Ag Thermodynamically stable form of bay 43-9006 tosylate
ATE384723T1 (en) * 2004-10-13 2008-02-15 Merck Patent Gmbh N,N'-DIPHENYL UREA DERIVATIVES SUITABLE AS KINASE INHIBITORS
DE102004054216A1 (en) 2004-11-10 2006-05-11 Merck Patent Gmbh Substituted 4-amino-pyridopyrimidinones
EP1835934A4 (en) 2004-12-23 2010-07-28 Deciphera Pharmaceuticals Llc Enzyme modulators and treatments
KR101478933B1 (en) 2004-12-28 2015-01-02 키넥스 파마슈티컬즈, 엘엘씨 Compositions and methods of treating cell proliferation disorders
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
CA2601955C (en) * 2005-03-07 2012-07-10 Bayer Healthcare Ag Pharmaceutical composition comprising an omega-carboxyaryl substituted diphenyl urea for the treatment of cancer
WO2007008926A1 (en) 2005-07-11 2007-01-18 Aerie Pharmaceuticals, Inc. Isoquinoline compounds
US7538223B2 (en) * 2005-08-04 2009-05-26 Cytokinetics, Inc. Compounds, compositions and methods
ES2718323T3 (en) 2005-08-31 2019-07-01 Abraxis Bioscience Llc Compositions comprising low water soluble pharmaceutical agents
KR101457834B1 (en) 2005-08-31 2014-11-05 아브락시스 바이오사이언스, 엘엘씨 Compositions and methods for preparation of poorly water soluble drugs with increased stability
US7825120B2 (en) * 2005-12-15 2010-11-02 Cytokinetics, Inc. Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas
EP1959947A2 (en) * 2005-12-15 2008-08-27 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US20070208000A1 (en) * 2005-12-15 2007-09-06 Morgan Bradley P Certain chemical entities, compositions and methods
AR058347A1 (en) * 2005-12-15 2008-01-30 Cytokinetics Inc ENTITIES CHEMIES COMPOSITIONS AND METHODS
EP1959962A2 (en) 2005-12-16 2008-08-27 Cytokinetics, Inc. Certain chemical entities, compositions, and methods
JP5178526B2 (en) * 2005-12-19 2013-04-10 サイトキネティクス・インコーポレーテッド Compounds, compositions and methods
US8580798B2 (en) 2005-12-21 2013-11-12 Bayer Intellectual Property Gmbh Substituted pyrimidine derivatives useful in the treatment of cancer and other disorders
TW200804349A (en) * 2005-12-23 2008-01-16 Kalypsys Inc Novel substituted pyrimidinyloxy ureas as inhibitors of protein kinases
EP1984009B1 (en) 2006-01-18 2012-10-24 Qps, Llc Pharmaceutical compositions with enhanced stability
JP2009538317A (en) 2006-05-26 2009-11-05 バイエル ヘルスケア リミティド ライアビリティ カンパニー Drug combinations using substituted diarylureas for cancer treatment
US8017129B2 (en) * 2006-06-15 2011-09-13 SciClone Pharmaceuticals International Ltd Use of thymosin alpha 1 for preparing a medicament for the treatment of stage IV malignant melanoma
DE102006029795A1 (en) * 2006-06-27 2008-01-03 Schebo Biotech Ag New urea derivatives and their uses
JPWO2008001929A1 (en) 2006-06-28 2009-12-03 あすか製薬株式会社 Treatment for inflammatory bowel disease
JP5564251B2 (en) * 2006-06-29 2014-07-30 キネックス ファーマシューティカルズ, エルエルシー Biaryl compositions and methods for modulating kinase cascades
US8188113B2 (en) 2006-09-14 2012-05-29 Deciphera Pharmaceuticals, Inc. Dihydropyridopyrimidinyl, dihydronaphthyidinyl and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
EP2068878B1 (en) 2006-09-20 2019-04-10 Aerie Pharmaceuticals, Inc. Rho kinase inhibitors
US7935697B2 (en) 2006-12-28 2011-05-03 Kinex Pharmaceuticals, Llc Compositions for modulating a kinase cascade and methods of use thereof
US7939529B2 (en) 2007-05-17 2011-05-10 Kinex Pharmaceuticals, Llc Process for the preparation of compositions for modulating a kinase cascade and methods of use thereof
US8455513B2 (en) 2007-01-10 2013-06-04 Aerie Pharmaceuticals, Inc. 6-aminoisoquinoline compounds
WO2008089389A2 (en) 2007-01-19 2008-07-24 Bayer Healthcare Llc Treatment of cancers with acquired resistance to kit inhibitors
CN101657203B (en) * 2007-03-02 2012-09-05 卧龙岗大学 Compositions and methods for delivery of anti-cancer agents
AU2007349284B2 (en) * 2007-03-20 2012-10-04 Curis, Inc. Raf kinase inhibitors containing a zinc binding moiety
EP2146718A4 (en) * 2007-04-20 2010-08-11 Deciphera Pharmaceuticals Llc Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
US20110189167A1 (en) * 2007-04-20 2011-08-04 Flynn Daniel L Methods and Compositions for the Treatment of Myeloproliferative Diseases and other Proliferative Diseases
US20080300166A1 (en) * 2007-06-01 2008-12-04 Sciclone Pharmaceuticals, Inc. Treatment of Melanoma with Alpha Thymosin Peptides
JP5319682B2 (en) * 2007-11-09 2013-10-16 アールエヌエル バイオ カンパニー リミテッド Method for isolating and culturing adult stem cells derived from human amnion epithelium
US8455514B2 (en) 2008-01-17 2013-06-04 Aerie Pharmaceuticals, Inc. 6-and 7-amino isoquinoline compounds and methods for making and using the same
US8450344B2 (en) 2008-07-25 2013-05-28 Aerie Pharmaceuticals, Inc. Beta- and gamma-amino-isoquinoline amide compounds and substituted benzamide compounds
CN105574346A (en) * 2008-09-05 2016-05-11 新基阿维罗米克斯研究公司 Design method and detection method for polypeptide conjugate and irreversible inhibitor
JP5444365B2 (en) * 2008-10-29 2014-03-19 デシフェラ ファーマシューティカルズ,エルエルシー Cyclopropanamide and similar substances with anticancer and antiproliferative activity
ES2672624T3 (en) 2009-05-01 2018-06-15 Aerie Pharmaceuticals, Inc. Dual mechanism inhibitors for the treatment of diseases
WO2010138820A2 (en) 2009-05-28 2010-12-02 President And Fellows Of Harvard College N,n-diarylurea compounds and n,n'-diarylthiourea compounds as inhibitors of translation initiation
RU2012114902A (en) 2009-09-16 2013-10-27 Авила Терапьютикс, Инк. CONJUGATES AND PROTEINKINASE INHIBITORS
WO2011082285A1 (en) 2009-12-30 2011-07-07 Avila Therapeutics, Inc. Ligand-directed covalent modification of protein
US20130096119A1 (en) 2010-03-31 2013-04-18 Daniel Bur Isoquinolin-3-Ylurea Derivatives
AR081060A1 (en) 2010-04-15 2012-06-06 Bayer Schering Pharma Ag PROCEDURE TO PREPARE 4- {4 - [({[4-CHLORINE-3- (TRIFLUOROMETIL) PHENYL] AMINO} CARBONYL) AMINO] -3-FLUOROPHENOXY} -N-METHYLPIRIDIN-2-CARBOXAMIDE
EP2558085B1 (en) 2010-04-16 2017-08-30 Athenex, Inc. Compositions and methods for the prevention and treatment of cancer
EP2595628A1 (en) 2010-07-19 2013-05-29 Bayer HealthCare LLC Drug combinations with fluoro-substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US20130230458A1 (en) * 2010-09-01 2013-09-05 President And Fellows Of Harvard College Cell Permeable Inhibitors of Anaphase Promoting Complex
AR088729A1 (en) 2011-03-29 2014-07-02 Actelion Pharmaceuticals Ltd DERIVATIVES OF 3-UREIDOISOQUINOLIN-8-ILO AND A PHARMACEUTICAL COMPOSITION
US8461179B1 (en) 2012-06-07 2013-06-11 Deciphera Pharmaceuticals, Llc Dihydronaphthyridines and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
SI2890680T1 (en) 2012-08-30 2018-08-31 Athenex, Inc. Conventus Building N-(3-fluorobenzyl)-2-(5-(4-morpholinophenyl)pyridin-2-yl) acetamide as protein tyrosine kinase modulators
US10420761B2 (en) 2013-03-15 2019-09-24 University Of Florida Research Foundation, Inc. Allosteric inhibitors of thymidylate synthase
JP2016515520A (en) 2013-03-15 2016-05-30 アエリエ・ファーマシューティカルズ・インコーポレーテッド Combination therapy
DK3105222T3 (en) 2014-02-14 2018-07-23 Respivert Ltd AROMATIC HETEROCYCLIC COMPOUNDS AS ANTI-INFLAMMATORY COMPOUNDS
US9572788B2 (en) 2014-05-13 2017-02-21 President And Fellows Of Harvard College Cell permeable inhibitors of anaphase promoting complex
WO2016209688A1 (en) 2015-06-24 2016-12-29 University Of Florida Research Foundation, Incorporated Compositions for the treatment of cancer and uses thereof
WO2017036405A1 (en) * 2015-09-02 2017-03-09 陈昆锋 Compound having protein tyrosine phosphatase shp-1 agonist activity
US9643927B1 (en) 2015-11-17 2017-05-09 Aerie Pharmaceuticals, Inc. Process for the preparation of kinase inhibitors and intermediates thereof
CN108601355B (en) 2015-11-17 2021-03-30 爱瑞制药公司 Process for preparing kinase inhibitors and intermediates thereof
WO2018045091A1 (en) 2016-08-31 2018-03-08 Aerie Pharmaceuticals, Inc. Ophthalmic compositions
SG11201908179UA (en) 2017-03-31 2019-10-30 Aerie Pharmaceuticals Inc Aryl cyclopropyl-amino-isoquinolinyl amide compounds
CN108918713B (en) * 2018-07-18 2021-03-16 香港浸会大学深圳研究院 Ammonium triclosan sulfonate and preparation method and application thereof
AU2019337703B2 (en) 2018-09-14 2023-02-02 Aerie Pharmaceuticals, Inc. Aryl cyclopropyl-amino-isoquinolinyl amide compounds
EP3983383A1 (en) * 2019-06-14 2022-04-20 IFM Due, Inc. Compounds and compositions for treating conditions associated with sting activity

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1792156A (en) * 1928-01-17 1931-02-10 Gen Aniline Works Inc 5-halogen-2-amino-1-alkyloxy and 1-aralkyloxy-benzenes and intermediate products thereof and process of preparing them
US2781330A (en) * 1953-02-09 1957-02-12 Monsanto Chemicals Rubber containing urea compound as an anti-exposure cracking agent
US2867659A (en) * 1953-12-22 1959-01-06 Geigy Ag J R Polyhalogen substituted monohydroxydiphenyl urea and thiourea compounds
US2877268A (en) * 1956-12-24 1959-03-10 Monsanto Chemicals Substituted ureas
US2973386A (en) * 1943-01-05 1961-02-28 Harry A Weldon Purification of sym dichloro-bis (2, 4, 6-trichlorophenyl)urea
US3230141A (en) * 1959-08-14 1966-01-18 Geigy Ag J R Method for protecting fibers against attack by insects and bacteria with diphenyl urea compositions
US3242761A (en) * 1963-05-27 1966-03-29 Outboard Marine Corp Cable actuating device
US3424760A (en) * 1966-03-07 1969-01-28 Robins Co Inc A H 3-ureidopyrrolidines
US3424762A (en) * 1966-03-07 1969-01-28 Robins Co Inc A H Certain 3-ureidopyrrolidines
US3639668A (en) * 1968-04-19 1972-02-01 Bayer Ag N-(2 2 4 4-tetrafluoro-1 3-benzodioxanyl)-ureas
US3646059A (en) * 1969-05-05 1972-02-29 Du Pont Plant growth regulatory ureidopyrazoles
US3860645A (en) * 1973-05-23 1975-01-14 Givaudan Corp Bacteriostatic substituted carbanilides
US4001256A (en) * 1973-12-26 1977-01-04 The Upjohn Company Pyridylalkyl phenyl ureas and their n-oxides
US4009847A (en) * 1974-04-17 1977-03-01 E. I. Du Pont De Nemours And Company 1-Tertiary-alkyl-3-(substituted thienyl)ureas and 1-tertiary-alkyl-3-(substituted thietyl)ureas as antihypertensive agents
US4071524A (en) * 1976-11-08 1978-01-31 Riker Laboratories, Inc. Derivatives of urea
US4183854A (en) * 1976-11-10 1980-01-15 John Wyeth & Brother Limited Thiazole compound
US4437878A (en) * 1982-03-31 1984-03-20 Basf Aktiengesellschaft Dihydrothiophenecarboxylates and their use for controlling undersirable plant growth
US4499097A (en) * 1983-03-10 1985-02-12 American Cyanamid Company 2-(Pyridyl)imidazolyl ketones
US4511571A (en) * 1981-10-20 1985-04-16 Ciba Geigy Corporation N-(2-Pyridyloxyphenyl)-N'-benzoyl ureas, pesticidal compositions containing same and pesticidal methods of use
US4514571A (en) * 1982-05-25 1985-04-30 Ube Industries, Ltd. Process for the preparation of urea derivatives
US4643849A (en) * 1982-11-12 1987-02-17 Toyama Chemical Co., Ltd. Intermediates for urea and thiourea derivatives
US4740520A (en) * 1985-11-26 1988-04-26 Bayer Aktiengesellschaft Use of thienylurea derivatives as selective fungicides
US4808588A (en) * 1986-07-31 1989-02-28 Beecham Group, P.L.C. Heterocyclic ureas and carbonates useful as pharmaceuticals
US4820871A (en) * 1986-10-24 1989-04-11 Bayer Aktiengesellschaft Process for the preparation of N,N-diaryl-ureas
US4983605A (en) * 1986-10-23 1991-01-08 Ishihara Sangyo Kaisha Ltd. Pharmaceutical composition
US4985449A (en) * 1986-10-03 1991-01-15 Ishihara Sangyo Kaisha Ltd. N-benzoyl-N-pyridyloxy phenyl urea compounds and pesticide compositions containing them
US4996325A (en) * 1987-10-16 1991-02-26 Ciba-Geigy Corporation Pesticides
US5098907A (en) * 1989-01-24 1992-03-24 Ishihara Sangyo Kaisha Ltd. Powdery pharmaceutical composition containing benzoyl urea, a dispersant and silicic acid
US5100883A (en) * 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
US5177110A (en) * 1989-10-27 1993-01-05 Ciba-Geigy Corporation Injectable parasiticidal composition
US5185358A (en) * 1991-06-24 1993-02-09 Warner-Lambert Co. 3-heteroatom containing urea and thiourea ACAT inhibitors
US5283354A (en) * 1991-04-02 1994-02-01 The Trustees Of Princeton University Nucleic acids encoding hematopoietic stem cells receptors flk-1
US5378725A (en) * 1993-07-19 1995-01-03 The Arizona Board Of Regents Inhibition of phosphatidylinositol 3-kinase with wortmannin and analogs thereof
US5399566A (en) * 1990-06-19 1995-03-21 Meiji Seika Kabushiki Kaisha Pyridine derivatives having angiotensin II antagonism
US5480906A (en) * 1994-07-01 1996-01-02 Eli Lilly And Company Stereochemical Wortmannin derivatives
US5500424A (en) * 1993-08-13 1996-03-19 Nihon Nohyaku Co., Ltd. Pyrimidine and pyridine derivatives, their production and use
US5508288A (en) * 1992-03-12 1996-04-16 Smithkline Beecham, P.L.C. Indole derivatives as 5HT1C antagonists
US5596001A (en) * 1993-10-25 1997-01-21 Pfizer Inc. 4-aryl-3-(heteroarylureido)quinoline derivatves
US5597719A (en) * 1994-07-14 1997-01-28 Onyx Pharmaceuticals, Inc. Interaction of RAF-1 and 14-3-3 proteins
US5710094A (en) * 1994-10-27 1998-01-20 Nippon Paper Industries Co. Ltd. Reversible multi-color thermal recording medium
US5721237A (en) * 1991-05-10 1998-02-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
US5726167A (en) * 1993-10-12 1998-03-10 Eli Lilly And Company Inhibition of phosphatidylinositol 3-kinase with viridin, demethoxyviridin, viridiol, demethoxyviridiol, virone, wortmannolone, and analogs thereof
US5869043A (en) * 1993-09-17 1999-02-09 Smithkline Beecham Corporation Drug binding protein
US5871934A (en) * 1993-09-17 1999-02-16 Smithkline Beecham Corporation Screening methods using cytokine suppressive anti-inflammatory drug (CSAID) binding proteins
US5886044A (en) * 1995-02-17 1999-03-23 Smithkline Beecham Corporation IL-8 receptor antagonists
US6015908A (en) * 1997-01-23 2000-01-18 Smithkline Beecham Corporation IL-8 receptor antagonists
US6017692A (en) * 1993-01-29 2000-01-25 The General Hospital Corporation Methods of detecting a malignant cell in a biological sample comprising measuring Mxi gene expression alterations
US6020345A (en) * 1996-11-21 2000-02-01 Pierre Fabre Medicament Pyridin-2-yl-methylamine derivatives, method of preparing and application as medicine
US6022884A (en) * 1997-11-07 2000-02-08 Amgen Inc. Substituted pyridine compounds and methods of use
US6025151A (en) * 1997-06-05 2000-02-15 Dalhousie University Uses for compounds which reduce c-jun gene expression
US6040339A (en) * 1995-09-18 2000-03-21 Sankyo Company, Limited Urea derivatives having ACAT inhibitory activity, their preparation and their therapeutic and prophylactic use
US6174901B1 (en) * 1998-12-18 2001-01-16 Amgen Inc. Substituted pyridine and pyridazine compounds and methods of use
US6178399B1 (en) * 1989-03-13 2001-01-23 Kabushiki Kaisha Toshiba Time series signal recognition with signal variation proof learning
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US6180631B1 (en) * 1997-10-06 2001-01-30 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds
US6187799B1 (en) * 1997-05-23 2001-02-13 Onyx Pharmaceuticals Inhibition of raf kinase activity using aryl ureas
US6193965B1 (en) * 1993-07-19 2001-02-27 The Regents Of The University Of California Oncoprotein kinase
US6204267B1 (en) * 1997-05-02 2001-03-20 Sugen, Inc. Methods of modulating serine/thereonine protein kinase function with quinazoline-based compounds
US6339045B1 (en) * 1995-12-28 2002-01-15 Kureha Kagaku Kogyo Kabushiki Kaisha N-(unsubstituted or substituted)-4-substituted-6-(unsubstituted or substituted)phenoxy-2-pyridinecarboxamides or thiocarboxamides, processes for producing the same, and herbicides
US6344476B1 (en) * 1997-05-23 2002-02-05 Bayer Corporation Inhibition of p38 kinase activity by aryl ureas
US6352977B1 (en) * 1998-07-13 2002-03-05 Aventis Pharma Limited Substituted β-alanines
US6358945B1 (en) * 1999-03-12 2002-03-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US6358525B1 (en) * 1997-04-28 2002-03-19 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
US6361773B1 (en) * 1993-09-17 2002-03-26 Smithkline Beecham Corporation Antibodies produced against cytokine suppressive anti-inflammatory drug binding proteins
US20020037276A1 (en) * 1998-06-01 2002-03-28 Andrzej Ptasznik Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6511800B1 (en) * 1997-11-25 2003-01-28 Medical University Of South Carolina Methods of treating nitric oxide and cytokine mediated disorders
US6511997B1 (en) * 1998-12-25 2003-01-28 Teikoku Hormone Mfg. Co., Ltd. Aminopyrazole derivatives
US6521592B2 (en) * 1998-12-18 2003-02-18 Bristol-Myers Squibb Pharma Co. N-ureidoalkyl-piperidines as modulators of chemokine receptor activity
US6521407B1 (en) * 1998-02-18 2003-02-18 Theryte Limited Methods for determining chemosensitivity of cancer cells based upon expression of negative and positive signal transduction factors
US6524832B1 (en) * 1994-02-04 2003-02-25 Arch Development Corporation DNA damaging agents in combination with tyrosine kinase inhibitors
US6525091B2 (en) * 2001-03-07 2003-02-25 Telik, Inc. Substituted diarylureas as stimulators for Fas-mediated apoptosis
US6525046B1 (en) * 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6525065B1 (en) * 1997-06-30 2003-02-25 Targacept, Inc. Pharmaceutical compositions and methods for effecting dopamine release
US6673777B1 (en) * 1996-11-15 2004-01-06 Cytokine Pharmasciences, Inc. Guanylhydrazones useful for treating diseases associated with T cell activation
US20040023961A1 (en) * 2002-02-11 2004-02-05 Bayer Corporation Aryl ureas with raf kinase and angiogenisis inhibiting activity
US6689560B1 (en) * 1991-08-23 2004-02-10 The United States Of America As Represented By The Department Of Health And Human Services Raf protein kinase therapeutics
US20040052880A1 (en) * 2000-12-08 2004-03-18 Yoshinori Kobayashi Oral preparations having itching-relievign or antipruritic activity
US20050032798A1 (en) * 2003-02-28 2005-02-10 Stephen Boyer 2-Oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatory disorders
US20050038080A1 (en) * 2003-07-23 2005-02-17 Stephen Boyer Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US20050059703A1 (en) * 2003-05-20 2005-03-17 Scott Wilhelm Diaryl ureas for diseases mediated by PDGFR
US20050069963A1 (en) * 2003-08-15 2005-03-31 Lokshin Anna E. Multifactorial assay for cancer detection
US20060058358A1 (en) * 2004-08-27 2006-03-16 Jacques Dumas Pharmaceutical compositions for the treatment of hyper-proliferative disorders
US20070037224A1 (en) * 2005-08-11 2007-02-15 Hamer Peter J Quantitative assays for PDGFR-beta in body fluids
US20070066660A1 (en) * 2003-10-24 2007-03-22 Merck Patent Gmbh Benzimidazolyl derivatives
US20080009527A1 (en) * 1997-12-22 2008-01-10 Jacques Dumas Inhibition of raf kinase using aryl and heteroaryl substituted heterocyclic ureas
US20080027061A1 (en) * 1999-01-13 2008-01-31 Bernd Riedl omega-Carboxy Aryl Substituted Diphenyl Ureas As p38 Kinase Inhibitors
US20080032979A1 (en) * 1999-01-13 2008-02-07 Bernd Riedl Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinease Inhibitors
US20080045589A1 (en) * 2006-05-26 2008-02-21 Susan Kelley Drug Combinations with Substituted Diaryl Ureas for the Treatment of Cancer
US20080045546A1 (en) * 2003-10-15 2008-02-21 Axel Bouchon Tetradydro-Naphthalene And Urea Derivatives
US20090068146A1 (en) * 2005-10-31 2009-03-12 Scott Wilhelm Diaryl ureas and combinations
US20100035888A1 (en) * 2005-11-10 2010-02-11 Bater Healthcare AG Diaryl Urea for Treating Pulmonary Hypertension
US7678811B2 (en) * 2002-02-11 2010-03-16 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors

Family Cites Families (287)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US502504A (en) 1893-08-01 Hermann thoms
GB111554A (en) 1916-12-11 1917-12-06 Centrale D Entpr S Armand D Ri Electro-magnet for Lifting Materials.
DE487014C (en) 1927-10-23 1929-12-09 I G Farbenindustrie Akt Ges Process for the preparation of urea derivatives
DE511468C (en) 1928-01-18 1930-10-30 I G Farbenindustrie Akt Ges Process for the preparation of 5-chloro-2-amino-1-methoxybenzene
DE523437C (en) 1928-12-25 1931-05-05 I G Farbenindustrie Akt Ges Process for the preparation of 5-chloro- and 5-bromo-2-amino-1-alkyloxy- and 1-aralkyloxybenzenes
US2093265A (en) 1931-03-31 1937-09-14 Ici Ltd Process for the manufacture of diaryl ureas
US2046375A (en) 1931-06-04 1936-07-07 Ici Ltd p-halogen-omicron-alkoxy-aniline derivatives and process of preparing the same
US2288422A (en) 1938-11-11 1942-06-30 Gen Aniline & Film Corp Mixed ureas
DE920245C (en) 1950-04-29 1954-11-18 Variapat Ag Process for the preparation of aromatic, colorless, water-soluble unsymmetrical ureas or thioureas containing trifluoromethyl and sulfo acid groups
US2683082A (en) 1950-12-09 1954-07-06 Ethyl Corp Nu-aryl-nu'-(p-hydroxyphenyl) ureas as antioxidants for petroleum hydrocarbon fuels
US2722544A (en) 1950-12-26 1955-11-01 Variapat Ag Trifluoromethyl halogenated diphenylcarbamide sulfonic acids and their preparation
NL90162C (en) 1953-03-06
US2745874A (en) 1953-06-18 1956-05-15 Geigy Ag J R Insecticidal derivatives of diphenyl urea
GB771333A (en) 1953-12-22 1957-03-27 Geigy Ag J R Improvements relating to halogen substituted diphenyl urea and thiourea compounds and their use
GB828231A (en) 1955-10-20 1960-02-17 Geigy Ag J R Improvements relating to insecticidal compounds and their use
US2960488A (en) 1958-04-25 1960-11-15 Eastman Kodak Co Poly-alpha-olefins containing substituted ureas
BE616734A (en) 1961-04-21
CH428747A (en) 1961-09-11 1967-01-31 Wander Ag Dr A Process for the production of new urea and thiourea derivatives
US3505057A (en) 1962-03-22 1970-04-07 Du Pont Method for the control of plants
US3200035A (en) 1962-06-01 1965-08-10 Ciba Ltd Treatment of synthetic products, especially synthetic fibers
US3284433A (en) 1963-07-17 1966-11-08 Merck & Co Inc 4-phenoxy-carbanilides
US3505323A (en) 1963-12-06 1970-04-07 Du Pont Tetrahydro-s-triazin-2-(1h)-ones and thiones
FR1457172A (en) 1964-12-12 1966-10-28 Ferrania Spa Process for the production of color photographic images and corresponding photographic material
FR90420E (en) 1965-06-09 1968-02-21
US3424761A (en) 1966-03-07 1969-01-28 Robins Co Inc A H 3-ureidopyrrolidines
US3547940A (en) 1967-10-31 1970-12-15 Du Pont Substituted ureido isoxazoles
US3743498A (en) 1967-10-31 1973-07-03 Du Pont Method of selectively controlling undesirable vegetation
SE370866B (en) 1968-03-21 1974-11-04 Ciba Geigy Ag
US3698886A (en) 1968-06-04 1972-10-17 Monsanto Co 1-(3 - trifluoromethylphenyl) - 4,6-diisopropyl - 3,5 - dimethylhexahydro-1,3,5-triazin-2-one as a herbicide
US3754887A (en) 1969-05-05 1973-08-28 Du Pont Ureidopyrazoles defoliants
BE754782A (en) 1969-08-14 1971-02-12 May & Baker Ltd THIOPHENE DERIVATIVES WITH HERBICIDAL ACTION
US3823161A (en) 1970-05-07 1974-07-09 Exxon Research Engineering Co Aminothiophene derivatives
US3666222A (en) 1970-10-28 1972-05-30 Arthur U Griggers Supporting frame for receptacle with anchor therefor
US3860593A (en) 1972-10-10 1975-01-14 Velsicol Chemical Corp Thiadiazole substituted triazines
DE2221787A1 (en) 1972-05-04 1973-11-22 Hoechst Ag HEXAHYDROTRIAZINONE DERIVATIVES AND THEIR USE AS A SELECTIVE AGENT FOR WEED CONTROL
JPS5031039A (en) 1973-07-27 1975-03-27
US4212981A (en) 1973-07-27 1980-07-15 Shionogi & Co., Ltd. Process for preparing 3-isoxazolylurea derivatives
US4062861A (en) 1973-07-27 1977-12-13 Shionogi & Co., Ltd. 3-Isoxazolylurea derivatives
US4111680A (en) 1973-07-27 1978-09-05 Shionogi & Co., Ltd. Herbicidal compositions containing 3-isoxazolylurea derivatives
US3914224A (en) 1973-11-12 1975-10-21 Du Pont 1,3,5-S-Triazines
US3931201A (en) 1974-01-22 1976-01-06 The Dow Chemical Company Substituted pyridinyloxy(thio)phenyl -acetamides, -ureas and urea derivatives
US3990879A (en) 1974-12-26 1976-11-09 Eli Lilly And Company Method of controlling aquatic weeds
US4111683A (en) 1975-06-27 1978-09-05 Chevron Research Company N-alkyl or alkoxy-N'-substituted hydrocarbyl urea
DE2637947C2 (en) 1976-08-24 1985-09-19 Bayer Ag, 5090 Leverkusen Tetrafluoro-1,3-benzodioxanyl-benzoylureas, process for their preparation and their use as insecticides
JPS5840946B2 (en) 1976-10-29 1983-09-08 石原産業株式会社 N-benzoyl-N'-pyridyloxyphenylurea compounds, methods for producing them, and insecticides containing them
US4173637A (en) 1976-10-29 1979-11-06 Ishihara Sangyo Kaisha Ltd. N-Benzoyl-N'-pyridyloxy phenyl urea and insecticidal compositions thereof
US4042372A (en) 1976-11-19 1977-08-16 Eli Lilly And Company Substituted thiadiazolotriazinediones and method of preparation
US4152516A (en) 1978-02-09 1979-05-01 Ppg Industries, Inc. 1-(3-Alkyl- or -alkaryl-4-H-alkyl- or -aryl-5-isothiazolyl)-2-oxo-3,5-dimethylhexahydro-1,3,5-triazines
DE2817449A1 (en) 1978-04-21 1979-10-31 Bayer Ag MEANS OF REGULATING PLANT GROWTH
GB1590870A (en) 1978-05-31 1981-06-10 Shionogi & Co N-(5-t-butyl-3-isoxazolyl) alkanamide derivatives having herbicidal activity
JPS5562066A (en) 1978-11-03 1980-05-10 Toshihiko Okamoto N-(2-substituted-4-pyridyl)-urea and thio urea, their preparation and plant growth regulator
DE2848330A1 (en) 1978-11-03 1980-05-14 Schering Ag METHOD FOR PRODUCING 1,2,3-THIADIAZOL-5-YL UREA
FI800559A (en) 1979-03-14 1980-09-15 Hoffmann La Roche URINAEMNEDERIVAT
JPS55124763A (en) 1979-03-19 1980-09-26 Ishihara Sangyo Kaisha Ltd 5-trifluoromethyl-2-pyridone derivative
DE2928485A1 (en) 1979-07-14 1981-01-29 Bayer Ag USE OF UREA DERIVATIVES AS A MEDICINAL PRODUCT IN THE TREATMENT OF FATTY METABOLISM DISORDERS
US4468380A (en) 1979-12-26 1984-08-28 Eli Lilly And Company Anticoccidial combinations comprising polyether antibiotics and carbanilides
BR8106184A (en) 1980-01-25 1981-11-24 Reanal Finomvegyszergyar PROCESS FOR THE PREPARATION OF N-ARYL-N 'DERIVATIVES - (MONO-OR DISSUBSTITUTED) -UREA
DE3174885D1 (en) 1981-02-03 1986-07-31 Ici Plc Process for the extraction of metal values and novel metal extractants
US4526997A (en) 1981-05-06 1985-07-02 Doherty George O P O Anticoccidial combinations comprising polyether antibiotics and carbanilides
US4623662A (en) 1985-05-23 1986-11-18 American Cyanamid Company Antiatherosclerotic ureas and thioureas
US4473579A (en) 1982-01-26 1984-09-25 American Cyanamid Company Antiatherosclerotic tetrasubstituted ureas and thioureas
IL69621A0 (en) 1982-09-02 1983-12-30 Duphar Int Res Pharmaceutical compositions having antitumor activity,comprising certain phenylurea derivatives
DE3305866A1 (en) 1983-02-19 1984-08-23 Basf Ag, 6700 Ludwigshafen THIOPHEN-CARBONESTER, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR CONTROLLING UNWANTED PLANT GROWTH
GB8325496D0 (en) 1983-09-23 1983-10-26 Hider R C Pharmaceutical compositions
JPS6183A (en) 1984-02-03 1986-01-06 Kureha Chem Ind Co Ltd Tetrahydrobenzothiazolyl-1,3,5-triazinone derivative and herbicide containing said derivative
US4540566A (en) 1984-04-02 1985-09-10 Forest Laboratories, Inc. Prolonged release drug dosage forms based on modified low viscosity grade hydroxypropylmethylcellulose
US4727077A (en) 1985-02-20 1988-02-23 Ishihara Sangyo Kaisha Ltd. Benzoyl urea compounds, process for their production, and antitumorous compositions containing them
DE3529247A1 (en) 1985-05-17 1986-11-20 Bayer Ag, 5090 Leverkusen USE OF THIENYL UREAS AND ISOHARNS AS AN PERFORMANCE DRIVER IN ANIMALS, NEW THIENYL URINS AND ISOHARNS AND THEIR PRODUCTION
US4734414A (en) 1985-06-06 1988-03-29 Biomeasure, Inc. Anti-inflammatory and anti-arthritic pyrazolo-[1,5-a]-1,3,5-triazine derivatives, compositions, and method of use therefor
US4767858A (en) 1985-06-06 1988-08-30 Biomeasure, Incorporated Anti-arthritic pyrazolo-triazine derivatives
EP0222566A3 (en) 1985-11-08 1988-07-13 Sumitomo Chemical Company, Limited Stabilised polyolefin composition
DE3540377A1 (en) 1985-11-14 1987-05-21 Bayer Ag THIENOOXAZINONE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS A PERFORMANCE PROVIDER
AU594098B2 (en) 1985-12-11 1990-03-01 Ishihara Sangyo Kaisha Ltd. N-benzoyl urea compounds, antitumorous compositions containing them, and process for their preparation
EP0230400A3 (en) 1986-01-21 1990-02-14 Ciba-Geigy Ag N-3-(5-trifluoromethyl-pyridyl-2-oxy)phenyl-n'-benzoylureas for combating helminths in livestock
JPS62185013A (en) 1986-02-08 1987-08-13 Green Cross Corp:The Easily absorbable pharmaceutical composition
DE3612830A1 (en) 1986-04-16 1987-10-22 Basf Ag THIADIAZOLYL URINE CONTAINING AGENT FOR DEBELING PLANTS
DD253997A1 (en) 1986-11-26 1988-02-10 Karl Marx Uni Buero Fuer Neuer PROCESS FOR PREPARING SUBSTITUTED 2-ARYLUREIDOPHENOLES
EP0278610A3 (en) 1987-02-13 1990-03-14 Sumitomo Chemical Company, Limited Novel pyridinyl-s-triazine derivatives, method for production thereof and a fungicide containing them as the active ingredient
JPH06100808B2 (en) 1987-05-28 1994-12-12 富士写真フイルム株式会社 Processing method of silver halide color photographic light-sensitive material
DE3810382A1 (en) 1988-03-26 1989-10-12 Bayer Ag 5-AMINO-1-PHENYLPYRAZOLE, METHOD AND 5-HALOGEN-1-PHENYLPYRAZOLE AS INTERMEDIATE PRODUCTS FOR THE PRODUCTION THEREOF AND THEIR USE AS HERBICIDES
JPH0278699A (en) 1988-09-12 1990-03-19 Green Cross Corp:The Benzoylurea compound-albumin complex
FR2662692B1 (en) 1990-05-30 1995-04-28 Novapharme HETEROCYCLIC DERIVATIVES WITH ANTICONVULSIVE ACTIVITY, PREPARATION METHOD AND PHARMACEUTICAL COMPOSITION.
FR2639636B1 (en) 1988-11-30 1994-03-04 Novapharme NOVEL HETEROCYCLIC COMPOUNDS WITH ANTICONVULSIVE ACTIVITY, PREPARATION METHOD AND THERAPEUTIC COMPOSITIONS CONTAINING THEM
JPH02237922A (en) 1989-01-24 1990-09-20 Green Cross Corp:The Antiviral agent
EP0379915A1 (en) 1989-01-26 1990-08-01 Bayer Ag Substituted phenoxybenzonitrile derivatives, processes for their preparation and their use as herbicides and plant growth regulators
US4973675A (en) 1989-04-13 1990-11-27 University Of Tennessee Research Center Hybrid nitrosoureidoanthracyclines having antitumor activity
JPH0395153A (en) 1989-06-15 1991-04-19 Mitsubishi Kasei Corp Diphenyl urea derivative
US5096907A (en) 1989-06-29 1992-03-17 American Cyanamid Company Antibiotic LL-E19085
US5665543A (en) 1989-07-18 1997-09-09 Oncogene Science, Inc. Method of discovering chemicals capable of functioning as gene expression modulators
IL95860A0 (en) 1989-10-13 1991-07-18 Ciba Geigy Ag Thienylthioureas,-isothioureas and-carbodiimides
EP0425443A1 (en) 1989-10-27 1991-05-02 Ciba-Geigy Ag Injectable antiparasitic agent
JP3108097B2 (en) 1991-01-21 2000-11-13 塩野義製薬株式会社 3-benzylidene-1-carbamoyl-2-pyrrolidone analogs
JP2671693B2 (en) 1991-03-04 1997-10-29 松下電器産業株式会社 Biosensor and manufacturing method thereof
US5120842A (en) 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5270458A (en) 1991-04-02 1993-12-14 The Trustees Of Princeton University Nucleic acids encoding fragments of hematopoietic stem cell receptor flk-2
US5118678A (en) 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
JPH05112573A (en) 1991-04-17 1993-05-07 American Home Prod Corp Carbamic acid ester of rapamycin
US5118677A (en) 1991-05-20 1992-06-02 American Home Products Corporation Amide esters of rapamycin
US5162360A (en) 1991-06-24 1992-11-10 Warner-Lambert Company 2-heteroatom containing urea and thiourea ACAT inhibitors
DE4128789A1 (en) 1991-08-30 1993-03-04 Bayer Ag SUBSTITUTED PYRIDYLTRIAZINE, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND NEW INTERMEDIATE PRODUCTS
US5151413A (en) 1991-11-06 1992-09-29 American Home Products Corporation Rapamycin acetals as immunosuppressant and antifungal agents
US5312820A (en) 1992-07-17 1994-05-17 Merck & Co., Inc. Substituted carbamoyl and oxycarbonyl derivatives of biphenylmethylamines
US5256790A (en) 1992-08-13 1993-10-26 American Home Products Corporation 27-hydroxyrapamycin and derivatives thereof
JP2717481B2 (en) 1992-08-25 1998-02-18 富士写真フイルム株式会社 Silver halide color photographic materials
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
TW272942B (en) 1993-02-10 1996-03-21 Takeda Pharm Industry Co Ltd
DK41193D0 (en) 1993-04-07 1993-04-07 Neurosearch As ion channel openers
DE4322806A1 (en) 1993-07-08 1995-01-12 Janich Gmbh & Co Device for sealing between two parts of the system
US5441947A (en) 1993-08-25 1995-08-15 Eli Lilly And Company Methods of inhibiting vascular restenosis
US5468773A (en) 1993-08-25 1995-11-21 Eli Lilly And Company Methods for inhibiting bone loss and cartilage degradation using wortmannin and its analogs
US5783664A (en) 1993-09-17 1998-07-21 Smithkline Beecham Corporation Cytokine suppressive anit-inflammatory drug binding proteins
US5547966A (en) 1993-10-07 1996-08-20 Bristol-Myers Squibb Company Aryl urea and related compounds
JPH07141053A (en) 1993-11-17 1995-06-02 Nec Niigata Ltd Clock generating circuit
CH686211A5 (en) 1994-01-27 1996-02-15 Ciba Geigy Ag Moth and Koferschutzmittel.
DE4412334A1 (en) 1994-04-11 1995-10-19 Hoechst Ag Substituted N-heteroaroylguanidines, process for their preparation, their use as a medicament or diagnostic agent, and medicament containing them
US5559137A (en) 1994-05-16 1996-09-24 Smithkline Beecham Corp. Compounds
US5744362A (en) 1994-05-31 1998-04-28 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of raf gene expression
US5656612A (en) 1994-05-31 1997-08-12 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of raf gene expression
US5447957A (en) 1994-06-02 1995-09-05 Smithkline Beecham Corp. Anti-inflammatory compounds
US5470882A (en) 1994-06-02 1995-11-28 Smithkline Beecham Corp. Anti-inflammatory compounds
US5786362A (en) 1994-06-16 1998-07-28 University Of Miami Method of treating Hormone independent cancer
EP0690344A1 (en) 1994-06-29 1996-01-03 Konica Corporation Silver halide color photographic light-sensitive material
FR2722319B1 (en) 1994-07-08 1996-08-14 Thomson Csf COLOR DISPLAY DEVICE
EP0708085B1 (en) 1994-10-19 2002-07-17 Novartis AG Antiviral ethers of aspartate protease substrate isosteres
JP3591938B2 (en) 1994-10-27 2004-11-24 キヤノン株式会社 Ink jet recording medium and image forming method using the same
TW313568B (en) 1994-12-20 1997-08-21 Hoffmann La Roche
US5780483A (en) 1995-02-17 1998-07-14 Smithkline Beecham Corporation IL-8 receptor antagonists
US5624937A (en) 1995-03-02 1997-04-29 Eli Lilly And Company Chemical compounds as inhibitors of amyloid beta protein production
US5814646A (en) 1995-03-02 1998-09-29 Eli Lilly And Company Inhibitors of amyloid beta-protein production
DE19512639A1 (en) 1995-04-05 1996-10-10 Merck Patent Gmbh Benzonitriles and fluorides
JP3198049B2 (en) 1995-05-31 2001-08-13 平田 政弘 Rectification type constant flow water saving valve device
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
US5773459A (en) 1995-06-07 1998-06-30 Sugen, Inc. Urea- and thiourea-type compounds
IL118544A (en) 1995-06-07 2001-08-08 Smithkline Beecham Corp Imidazole derivatives, process for their preparation and pharmaceutical compositions comprising them
JP4009681B2 (en) 1995-11-07 2007-11-21 キリンファーマ株式会社 Quinoline derivatives and quinazoline derivatives that inhibit platelet-derived growth factor receptor autophosphorylation and pharmaceutical compositions containing them
US5807876A (en) 1996-04-23 1998-09-15 Vertex Pharmaceuticals Incorporated Inhibitors of IMPDH enzyme
US6005008A (en) 1996-02-16 1999-12-21 Smithkline Beecham Corporation IL-8 receptor antagonists
US6103692A (en) 1996-03-12 2000-08-15 The General Hospital Corporation Inhibiting protein interactions
US6211373B1 (en) 1996-03-20 2001-04-03 Smithkline Beecham Corporation Phenyl urea antagonists of the IL-8 receptor
US6262113B1 (en) 1996-03-20 2001-07-17 Smithkline Beecham Corporation IL-8 receptor antagonists
ATE189814T1 (en) 1996-04-15 2000-03-15 Takeda Chemical Industries Ltd HYDROXYPYRIDINE DERIVATIVES, THEIR PREPARATION AND THEIR PHARMACEUTICAL USE
JPH09301858A (en) 1996-05-13 1997-11-25 Senju Pharmaceut Co Ltd Aqueous medicine containing stabilized cholorohexidine gluconate
US5910417A (en) 1996-05-31 1999-06-08 National Jewish Center For Immunology And Respiratory Medicine Regulation of cytokine production in a hematopoietic cell
KR20000022274A (en) 1996-06-27 2000-04-25 스튜어트 알. 수터, 스티븐 베네티아너, 피터 존 기딩스 Il-8 receptor antagonist
JP2000514789A (en) 1996-06-27 2000-11-07 スミスクライン・ビーチャム・コーポレイション IL-8 receptor antagonist
US6218539B1 (en) 1996-06-27 2001-04-17 Smithkline Beecham Corporation IL-8 receptor antagonists
US5861419A (en) * 1996-07-18 1999-01-19 Merck Frosst Canad, Inc. Substituted pyridines as selective cyclooxygenase-2 inhibitors
US6150415A (en) 1996-08-13 2000-11-21 The Regents Of The University Of California Epoxide hydrolase complexes and methods therewith
US5808080A (en) 1996-09-05 1998-09-15 Eli Lilly And Company Selective β3 adrenergic agonists
US5965573A (en) 1996-10-23 1999-10-12 Zymogenetics, Inc. Compositions and methods for treating bone deficit conditions
AU738037B2 (en) 1997-04-04 2001-09-06 Pfizer Products Inc. Nicotinamide derivatives
US20020111495A1 (en) 1997-04-04 2002-08-15 Pfizer Inc. Nicotinamide acids, amides, and their mimetics active as inhibitors of PDE4 isozymes
ES2191292T3 (en) 1997-04-10 2003-09-01 Upjohn Co POLYAROMATIC ANTIVIRAL COMPOUNDS.
WO1998049150A1 (en) * 1997-04-25 1998-11-05 Takeda Chemical Industries, Ltd. Triazine derivatives, their production and agrochemical composition
US6316479B1 (en) 1997-05-19 2001-11-13 Sugen, Inc. Isoxazole-4-carboxamide compounds active against protein tryosine kinase related disorders
US6514977B1 (en) 1997-05-22 2003-02-04 G.D. Searle & Company Substituted pyrazoles as p38 kinase inhibitors
US6150395A (en) 1997-05-30 2000-11-21 The Regents Of The University Of California Indole-3-carbinol (I3C) derivatives and methods
US6294350B1 (en) 1997-06-05 2001-09-25 Dalhousie University Methods for treating fibroproliferative diseases
AU749337B2 (en) 1997-06-27 2002-06-27 Kureha Kagaku Kogyo Kabushiki Kaisha 6-phenoxypicolinic acid, alkylidenehydrazide derivatives, process for producing the same, and herbicide
US6093742A (en) 1997-06-27 2000-07-25 Vertex Pharmaceuticals, Inc. Inhibitors of p38
IL135836A0 (en) 1997-10-31 2001-05-20 Aventis Pharma Ltd Substituted anilides
EP1028953A1 (en) 1997-11-03 2000-08-23 Boehringer Ingelheim Pharmaceuticals Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
US6635421B1 (en) 1997-12-09 2003-10-21 Children's Medical Center Corporation Neuropilins and use thereof in methods for diagnosis and prognosis of cancer
SK282727B6 (en) 1997-12-19 2002-11-06 Slovakofarma, A. S. 1,3-Disubstituted ureas - ACAT inhibitors and method of preparing
JP4395823B2 (en) 1997-12-22 2010-01-13 バイエル コーポレイション Inhibition of RAF kinase using aryl and heteroaryl substituted heterocyclic ureas
US20070244120A1 (en) 2000-08-18 2007-10-18 Jacques Dumas Inhibition of raf kinase using substituted heterocyclic ureas
BR9814374B1 (en) 1997-12-22 2013-09-17 "Substituted heterocyclic ureas and compositions comprising them"
US20080300281A1 (en) 1997-12-22 2008-12-04 Jacques Dumas Inhibition of p38 Kinase Activity Using Aryl and Heteroaryl Substituted Heterocyclic Ureas
US7517880B2 (en) 1997-12-22 2009-04-14 Bayer Pharmaceuticals Corporation Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
JP2001501979A (en) 1998-01-21 2001-02-13 ザイモジェネティクス,インコーポレイティド Dialkyl ureas as mimetics of calcitonin.
FR2774824B1 (en) 1998-02-09 2000-04-28 Moving Magnet Tech IMPROVED LINEAR ACTUATOR
UA60365C2 (en) 1998-06-04 2003-10-15 Пфайзер Продактс Інк. Isothiazole derivatives, a method for preparing thereof, a pharmaceutical composition and a method for treatment of hyperproliferative disease of mammal
US6667340B1 (en) 1998-06-26 2003-12-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Inhibitors of phosphatidyl myo-inositol cycle
US6383734B1 (en) 1998-09-30 2002-05-07 Advanced Research And Technology Institute, Inc. Method to determine inhibition of PAK3 activation of Raf-1
JP3144634B2 (en) 1998-10-09 2001-03-12 日本電気株式会社 Light emitting and receiving device for infrared communication and method of manufacturing the same
DE19846687C2 (en) * 1998-10-09 2001-07-26 Auer Dorothee Auxiliary surgical device for use in performing medical procedures and methods for generating an image in the context of medical procedures
US6130053A (en) 1999-08-03 2000-10-10 Cell Pathways, Inc. Method for selecting compounds for inhibition of neoplastic lesions
US6114517A (en) 1998-12-10 2000-09-05 Isis Pharmaceuticals Inc. Methods of modulating tumor necrosis factor α-induced expression of cell adhesion molecules
UY25842A1 (en) 1998-12-16 2001-04-30 Smithkline Beecham Corp IL-8 RECEPTOR ANTAGONISTS
US6147107A (en) 1998-12-20 2000-11-14 Virginia Commonwealth University Specific inhibition of the P42/44 mitogen activated protein (map) kinase cascade sensitizes tumor cells
US20080269265A1 (en) 1998-12-22 2008-10-30 Scott Miller Inhibition Of Raf Kinase Using Symmetrical And Unsymmetrical Substituted Diphenyl Ureas
US7351834B1 (en) 1999-01-13 2008-04-01 Bayer Pharmaceuticals Corporation ω-Carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US20020065296A1 (en) 1999-01-13 2002-05-30 Bayer Corporation Heteroaryl ureas containing nitrogen hetero-atoms as p38 kinase inhibitors
US7928239B2 (en) 1999-01-13 2011-04-19 Bayer Healthcare Llc Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
TWI284642B (en) * 1999-01-18 2007-08-01 Hoffmann La Roche Novel heterocyclic sulfonamides
UA73492C2 (en) 1999-01-19 2005-08-15 Aromatic heterocyclic compounds as antiinflammatory agents
PL204856B1 (en) 1999-01-22 2010-02-26 Kirin Pharma Kk Quinoline derivatives and quinazoline derivatives
CA2361998C (en) 1999-03-12 2009-04-07 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
DE20080291U1 (en) 1999-03-26 2002-06-27 Euro Celtique Sa Aryl-substituted pyrazoles, imidazoles, oxazola, thiazoles and pyrroles
US6140124A (en) 1999-04-06 2000-10-31 Isis Pharmaceuticals Inc. Antisense modulation of P38 mitogen activated protein kinase expression
US6316462B1 (en) 1999-04-09 2001-11-13 Schering Corporation Methods of inducing cancer cell death and tumor regression
DE60009480T2 (en) 1999-05-05 2005-09-01 Aventis Pharma Ltd., West Malling UREAES AS MODULATORS OF CELL ADHESION
JP2003520195A (en) 1999-05-14 2003-07-02 イムクローン システムズ インコーポレイティド Treatment of refractory human tumors with epidermal growth factor receptor antagonists
DE19927835A1 (en) 1999-06-18 2000-12-21 Clariant Gmbh Use of improved cyan pigments in electrophotographic toners and developers, powder coatings and ink jet inks
WO2001004115A2 (en) 1999-07-09 2001-01-18 Boehringer Ingelheim Pharmaceuticals, Inc. Novel process for synthesis of heteroaryl-substituted urea compounds
WO2001007411A1 (en) 1999-07-26 2001-02-01 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
US6387900B1 (en) 1999-08-12 2002-05-14 Pharmacia & Upjohn S.P.A. 3(5)-ureido-pyrazole derivatives process for their preparation and their use as antitumor agents
US6372933B1 (en) 1999-08-26 2002-04-16 Smithkline Beecham Corporation Process for preparing certain phenyl urea compounds
US6794393B1 (en) 1999-10-19 2004-09-21 Merck & Co., Inc. Tyrosine kinase inhibitors
AU1617901A (en) * 1999-11-16 2001-05-30 Boehringer Ingelheim Pharmaceuticals, Inc. Urea derivatives as anti-inflammatory agents
AU781028B2 (en) 1999-12-24 2005-04-28 Bayer Aktiengesellschaft Imidazo (1,3,5) triazinones and the use thereof
MXPA02007632A (en) 2000-02-07 2004-08-23 Abbott Gmbh & Co Kg 2 benzothiazolyl urea derivatives and their use as protein kinase inhibitors.
US6608052B2 (en) 2000-02-16 2003-08-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
AU4194601A (en) 2000-03-02 2001-09-12 Ludwig Institute For Cancer Research Methods for treating, screening for, and detecting cancers expressing vascular endothelial growth factor
US6667300B2 (en) 2000-04-25 2003-12-23 Icos Corporation Inhibitors of human phosphatidylinositol 3-kinase delta
US6403588B1 (en) 2000-04-27 2002-06-11 Yamanouchi Pharmaceutical Co., Ltd. Imidazopyridine derivatives
RU2003105882A (en) 2000-08-04 2005-01-20 Лома Линда Юниверсити Медикал Сентер (Us) ORDERED IRON-CONTAINING PROTEIN-2 AS A DIAGNOSTIC MEANS FOR NEURODEREGENERATIVE DISEASES
US20020173507A1 (en) 2000-08-15 2002-11-21 Vincent Santora Urea compounds and methods of uses
KR20040066184A (en) 2000-08-17 2004-07-23 샤단호칭키타사토겐큐쇼 Novel pseudoerythromycin derivatives
DE60137273D1 (en) 2000-10-20 2009-02-12 Eisai R&D Man Co Ltd Process for the preparation of 4-phenoxyquinoline derivatives
JP3768800B2 (en) 2000-10-31 2006-04-19 キヤノン株式会社 Image forming apparatus
KR100362390B1 (en) 2000-12-29 2002-11-23 삼성전자 주식회사 Developing device-toner cartridge assembly for image forming apparatus
US7235576B1 (en) 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
MXPA03006666A (en) 2001-01-25 2004-05-31 Guilford Pharm Inc Trisubstituted carbocyclic cyclophilin binding compounds and their use.
FR2820136A1 (en) 2001-01-26 2002-08-02 Aventis Pharma Sa NOVEL UREA DERIVATIVES, PROCESS FOR THEIR PREPARATION, USE THEREOF AS MEDICAMENTS, PHARMACEUTICAL COMPOSITIONS AND USE THEREOF
DK2269603T3 (en) 2001-02-19 2015-08-24 Novartis Ag TREATMENT OF BREAST TUMORS WITH A RAPAMYCIN DERIVATIVE IN COMBINATION WITH EXEMESTAN
UA76977C2 (en) 2001-03-02 2006-10-16 Icos Corp Aryl- and heteroaryl substituted chk1 inhibitors and their use as radiosensitizers and chemosensitizers
EP2359849A1 (en) 2001-04-02 2011-08-24 Genentech, Inc. Combination therapy
WO2002083628A1 (en) 2001-04-13 2002-10-24 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzo-fused compounds
US20030207914A1 (en) 2001-04-20 2003-11-06 Bayer Corporation Inhibition of raf kinase using quinolyl, isoquinolyl or pyridyl ureas
US7371763B2 (en) 2001-04-20 2008-05-13 Bayer Pharmaceuticals Corporation Inhibition of raf kinase using quinolyl, isoquinolyl or pyridyl ureas
JP2004536845A (en) 2001-07-11 2004-12-09 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド Methods for treating cytokine-mediated diseases
US7173032B2 (en) 2001-09-21 2007-02-06 Reddy Us Therapeutics, Inc. Methods and compositions of novel triazine compounds
SI2305255T1 (en) 2001-12-03 2012-10-30 Bayer Healthcare Llc Aryl urea compounds in combination with other cytostatic or cytotoxic agents for treating human cancers
WO2003047523A2 (en) 2001-12-04 2003-06-12 Onyx Pharmaceuticals, Inc. Raf-mek-erk pathway inhibitors to treat cancer
US20040096855A1 (en) 2001-12-24 2004-05-20 Michael Stratton Genes
US20080108672A1 (en) 2002-01-11 2008-05-08 Bernd Riedl Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors
US20030207872A1 (en) 2002-01-11 2003-11-06 Bayer Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
DK1580188T3 (en) 2002-02-11 2012-02-06 Bayer Healthcare Llc Compounds of arylurea as kinase inhibitors
WO2003068228A1 (en) 2002-02-11 2003-08-21 Bayer Pharmaceuticals Corporation Aryl ureas with angiogenesis inhibiting activity
US8299108B2 (en) 2002-03-29 2012-10-30 Novartis Ag Substituted benzazoles and methods of their use as inhibitors of raf kinase
DE10221524A1 (en) 2002-05-14 2003-12-04 Kmb Produktions Ag Felben Method and device for producing consumer goods
US7202244B2 (en) * 2002-05-29 2007-04-10 Millennium Pharmaceuticals, Inc. Chk-1 inhibitors
TW200406374A (en) 2002-05-29 2004-05-01 Novartis Ag Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
DE10224462A1 (en) 2002-06-03 2003-12-11 Bayer Ag Use of cGMP stimulating compounds
AU2003246927A1 (en) 2002-07-03 2004-01-23 Astex Technology Limited 3-`(hetero) arylmethoxy ! pyridines and their analogues as p38 map kinase inhibitors
FR2842809A1 (en) 2002-07-26 2004-01-30 Greenpharma Sas NOVEL SUBSTITUTED PYRAZOLO [1,5-a] -1,3,5-TRIAZINES AND THEIR ANALOGUES, PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME, USE AS A MEDICAMENT AND METHODS FOR THEIR PREPARATION
CN100537562C (en) 2002-07-31 2009-09-09 西巴特殊化学品控股有限公司 Pyridyl-triazine derivatives as microbicidal active substances
JP2005539041A (en) 2002-08-27 2005-12-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Glycinamide derivatives as RAF kinase inhibitors
MXPA05002493A (en) 2002-09-05 2005-05-27 Neurosearch As Diarylurea derivatives and their use as chloride channel blockers.
WO2004028454A2 (en) 2002-09-24 2004-04-08 Koronis Pharmaceuticals, Incorporated 1, 3, 5-triazines for treatment of viral diseases
SE0203654D0 (en) 2002-12-09 2002-12-09 Astrazeneca Ab New compounds
US20030232400A1 (en) 2002-12-20 2003-12-18 Susan Radka Methods of screening subjects for expression of soluble receptors of vascular endothelial growth factor (VEGF) for use in managing treatment and determining prognostic outcome
US7202257B2 (en) 2003-12-24 2007-04-10 Deciphera Pharmaceuticals, Llc Anti-inflammatory medicaments
US7531553B2 (en) 2003-03-21 2009-05-12 Amgen Inc. Heterocyclic compounds and methods of use
PL377124A1 (en) 2003-03-24 2006-01-23 Merck Patent Gmbh Oxamide derivatives useful as raf-kinase inhibitors
WO2004084889A1 (en) 2003-03-28 2004-10-07 Pfizer Inc. Use of protein kinase c inhibitor for suppressing sustained slow postsynaptic excitation (sspe) of enteric neurons
US6896863B2 (en) 2003-04-01 2005-05-24 E. I. Du Pont De Nemours And Company Sodium cyanide process
US20040259926A1 (en) 2003-06-05 2004-12-23 Bruendl Michelle M. 3-Aryloxy and 3-heteroaryloxy substituted benzo[b]thiophenes as therapeutic agents
MXPA05013061A (en) 2003-06-05 2006-03-02 Warner Lambert Co Cycloalkyl and heterocycloalkyl substituted benzothiophenes as therapeutic agents.
JP2006219374A (en) 2003-06-13 2006-08-24 Daiichi Asubio Pharma Co Ltd Imidazotriazinone derivative having pde 7 inhibition
WO2005002673A1 (en) 2003-07-03 2005-01-13 Astex Therapeutics Limited Raf kinase inhibitors
MXPA06000117A (en) 2003-07-08 2006-04-27 Novartis Ag Use of rapamycin and rapamycin derivatives for the treatment of bone loss.
JP4823903B2 (en) 2003-07-11 2011-11-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Benzimidazole derivatives
JP5001650B2 (en) 2003-07-11 2012-08-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Benzimidazole carboxamide
US20060234931A1 (en) 2003-07-17 2006-10-19 Biggs William H Iii Treatment of diseases with kinase inhibitors
TW200523262A (en) 2003-07-29 2005-07-16 Smithkline Beecham Corp Inhibitors of AKT activity
DE10334663A1 (en) 2003-07-30 2005-03-10 Merck Patent Gmbh urea derivatives
DE10344223A1 (en) 2003-09-24 2005-04-21 Merck Patent Gmbh New 2-anilino-1,3-benzoxazole derivatives, are inhibitors of kinases, especially tyrosine- or Raf-kinases, useful e.g. for treating solid tumors, angiogenesis, diabetic retinopathy, inflammation or psoriasis
US7423150B2 (en) 2003-10-16 2008-09-09 Novartis Ag Substituted benzazoles and methods of their use as inhibitors of Raf kinase
AU2004281154A1 (en) 2003-10-16 2005-04-28 Novartis Vaccines And Diagnostics, Inc. 2,6-disubstituted quinazolines, quinoxalines, quinolines and isoquinolines as inhibitors of Raf kinase for treatment of cancer
DE10352979A1 (en) 2003-11-13 2005-06-09 Merck Patent Gmbh Pyridopyrimidinone
DE10354060A1 (en) 2003-11-19 2005-06-02 Merck Patent Gmbh pyrrole
WO2005058832A1 (en) 2003-12-10 2005-06-30 Merck Patent Gmbh Diacylhydrazine derivatives
JP2007515957A (en) 2003-12-12 2007-06-21 バイエル・フアーマシユーチカルズ・コーポレーシヨン Methods for cancer prognosis and prognosis and cancer therapy monitoring
AR047969A1 (en) 2004-02-25 2006-03-15 Schering Corp PIRAZOLOTRIAZINAS AS QUINASA INHIBITORS
EP1751139B1 (en) 2004-04-30 2011-07-27 Bayer HealthCare LLC Substituted pyrazolyl urea derivatives useful in the treatment of cancer
CN101048140B (en) 2004-08-27 2013-06-19 拜尔保健公司 Novel pharmaceutical compositions for the treatment of cancer
WO2006034797A1 (en) 2004-09-29 2006-04-06 Bayer Healthcare Ag Thermodynamically stable form of bay 43-9006 tosylate
WO2006076592A1 (en) 2005-01-14 2006-07-20 Cgi Pharmaceuticals, Inc. 1,3 substituted diaryl ureas as modulators of kinase activity
WO2006079972A1 (en) 2005-01-31 2006-08-03 Nxp B.V. Improved communication between a communication station and data carriers
CA2601955C (en) 2005-03-07 2012-07-10 Bayer Healthcare Ag Pharmaceutical composition comprising an omega-carboxyaryl substituted diphenyl urea for the treatment of cancer
DE102005015253A1 (en) 2005-04-04 2006-10-05 Merck Patent Gmbh New pyrazole derivatives are tyrosine kinase inhibitors useful to treat e.g. solid tumors, diabetic retinopathy, age-related macular degeneration or inflammatory disease, osteoarthritis and rickets
CA2609389A1 (en) 2005-05-27 2006-11-30 Bayer Healthcare Ag Combination therapy comprising a diaryl urea compound and a pi3, akt kinase or mtor inhibitors (rapamycins) for cancer treatment
BRPI0610090A2 (en) 2005-05-27 2008-12-09 Bayer Healthcare Ag combination therapy comprising diary ureas to treat diseases
CN101287706A (en) 2005-09-21 2008-10-15 尼科梅德有限责任公司 Sulphonylpyrrole hydrochloride salts as histone deacetylases inhibitors
RU2395090C2 (en) 2005-10-21 2010-07-20 БАЙЕР ХелсКер ЛЛСи Methods of forecasting and prediction of cancer and control on therapy of cancer
US8329408B2 (en) 2005-10-31 2012-12-11 Bayer Healthcare Llc Methods for prognosis and monitoring cancer therapy
CA2627873A1 (en) 2005-10-31 2007-05-10 Scott Wilhelm Treatment of cancer with sorafenib
US20080311604A1 (en) 2005-11-02 2008-12-18 Elting James J Methods for Prediction and Prognosis of Cancer, and Monitoring Cancer Therapy
BRPI0618092A2 (en) 2005-11-02 2011-08-16 Bayer Healthcare Llc "in vitro" methods for monitoring disease status, therapy selection and cancer diagnosis
CA2628847A1 (en) 2005-11-10 2007-05-18 Bayer Healthcare Ag Diaryl ureas for treating pulmonary hypertension
EP1963849A2 (en) 2005-11-14 2008-09-03 Bayer Healthcare, LLC Methods for prediction and prognosis of cancer, and monitoring cancer therapy
WO2007059155A1 (en) 2005-11-14 2007-05-24 Bayer Pharmaceuticals Corporation Treatment of cancers having resistance to chemotherapeutic agents
US20090227637A1 (en) 2005-12-15 2009-09-10 Olaf Weber Diaryl ureas for treating virus infections
AU2007336873A1 (en) 2006-12-20 2008-07-03 Bayer Healthcare Llc 4-{4-[({3-tert-Butyl-1-[3-(hydroxymethyl) phenyl]-1H-pyrazol-5-yl } carbamoyl)-amino] -3-fluorophenoxy} -N-methylpyridine-2-carboxamide as well as prodrugs and salts thereof for the treatment of cancer

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1792156A (en) * 1928-01-17 1931-02-10 Gen Aniline Works Inc 5-halogen-2-amino-1-alkyloxy and 1-aralkyloxy-benzenes and intermediate products thereof and process of preparing them
US2973386A (en) * 1943-01-05 1961-02-28 Harry A Weldon Purification of sym dichloro-bis (2, 4, 6-trichlorophenyl)urea
US2781330A (en) * 1953-02-09 1957-02-12 Monsanto Chemicals Rubber containing urea compound as an anti-exposure cracking agent
US2867659A (en) * 1953-12-22 1959-01-06 Geigy Ag J R Polyhalogen substituted monohydroxydiphenyl urea and thiourea compounds
US2877268A (en) * 1956-12-24 1959-03-10 Monsanto Chemicals Substituted ureas
US3230141A (en) * 1959-08-14 1966-01-18 Geigy Ag J R Method for protecting fibers against attack by insects and bacteria with diphenyl urea compositions
US3242761A (en) * 1963-05-27 1966-03-29 Outboard Marine Corp Cable actuating device
US3424760A (en) * 1966-03-07 1969-01-28 Robins Co Inc A H 3-ureidopyrrolidines
US3424762A (en) * 1966-03-07 1969-01-28 Robins Co Inc A H Certain 3-ureidopyrrolidines
US3639668A (en) * 1968-04-19 1972-02-01 Bayer Ag N-(2 2 4 4-tetrafluoro-1 3-benzodioxanyl)-ureas
US3646059A (en) * 1969-05-05 1972-02-29 Du Pont Plant growth regulatory ureidopyrazoles
US3860645A (en) * 1973-05-23 1975-01-14 Givaudan Corp Bacteriostatic substituted carbanilides
US4001256A (en) * 1973-12-26 1977-01-04 The Upjohn Company Pyridylalkyl phenyl ureas and their n-oxides
US4009847A (en) * 1974-04-17 1977-03-01 E. I. Du Pont De Nemours And Company 1-Tertiary-alkyl-3-(substituted thienyl)ureas and 1-tertiary-alkyl-3-(substituted thietyl)ureas as antihypertensive agents
US4071524A (en) * 1976-11-08 1978-01-31 Riker Laboratories, Inc. Derivatives of urea
US4183854A (en) * 1976-11-10 1980-01-15 John Wyeth & Brother Limited Thiazole compound
US4511571A (en) * 1981-10-20 1985-04-16 Ciba Geigy Corporation N-(2-Pyridyloxyphenyl)-N'-benzoyl ureas, pesticidal compositions containing same and pesticidal methods of use
US4437878A (en) * 1982-03-31 1984-03-20 Basf Aktiengesellschaft Dihydrothiophenecarboxylates and their use for controlling undersirable plant growth
US4514571A (en) * 1982-05-25 1985-04-30 Ube Industries, Ltd. Process for the preparation of urea derivatives
US4643849A (en) * 1982-11-12 1987-02-17 Toyama Chemical Co., Ltd. Intermediates for urea and thiourea derivatives
US4499097A (en) * 1983-03-10 1985-02-12 American Cyanamid Company 2-(Pyridyl)imidazolyl ketones
US4740520A (en) * 1985-11-26 1988-04-26 Bayer Aktiengesellschaft Use of thienylurea derivatives as selective fungicides
US4808588A (en) * 1986-07-31 1989-02-28 Beecham Group, P.L.C. Heterocyclic ureas and carbonates useful as pharmaceuticals
US4985449A (en) * 1986-10-03 1991-01-15 Ishihara Sangyo Kaisha Ltd. N-benzoyl-N-pyridyloxy phenyl urea compounds and pesticide compositions containing them
US4983605A (en) * 1986-10-23 1991-01-08 Ishihara Sangyo Kaisha Ltd. Pharmaceutical composition
US4820871A (en) * 1986-10-24 1989-04-11 Bayer Aktiengesellschaft Process for the preparation of N,N-diaryl-ureas
US4996325A (en) * 1987-10-16 1991-02-26 Ciba-Geigy Corporation Pesticides
US5098907A (en) * 1989-01-24 1992-03-24 Ishihara Sangyo Kaisha Ltd. Powdery pharmaceutical composition containing benzoyl urea, a dispersant and silicic acid
US6178399B1 (en) * 1989-03-13 2001-01-23 Kabushiki Kaisha Toshiba Time series signal recognition with signal variation proof learning
US5177110A (en) * 1989-10-27 1993-01-05 Ciba-Geigy Corporation Injectable parasiticidal composition
US5399566A (en) * 1990-06-19 1995-03-21 Meiji Seika Kabushiki Kaisha Pyridine derivatives having angiotensin II antagonism
US5283354A (en) * 1991-04-02 1994-02-01 The Trustees Of Princeton University Nucleic acids encoding hematopoietic stem cells receptors flk-1
US5100883A (en) * 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
US5721237A (en) * 1991-05-10 1998-02-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
US5185358A (en) * 1991-06-24 1993-02-09 Warner-Lambert Co. 3-heteroatom containing urea and thiourea ACAT inhibitors
US6689560B1 (en) * 1991-08-23 2004-02-10 The United States Of America As Represented By The Department Of Health And Human Services Raf protein kinase therapeutics
US5508288A (en) * 1992-03-12 1996-04-16 Smithkline Beecham, P.L.C. Indole derivatives as 5HT1C antagonists
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US6017692A (en) * 1993-01-29 2000-01-25 The General Hospital Corporation Methods of detecting a malignant cell in a biological sample comprising measuring Mxi gene expression alterations
US5378725A (en) * 1993-07-19 1995-01-03 The Arizona Board Of Regents Inhibition of phosphatidylinositol 3-kinase with wortmannin and analogs thereof
US6193965B1 (en) * 1993-07-19 2001-02-27 The Regents Of The University Of California Oncoprotein kinase
US5500424A (en) * 1993-08-13 1996-03-19 Nihon Nohyaku Co., Ltd. Pyrimidine and pyridine derivatives, their production and use
US5871934A (en) * 1993-09-17 1999-02-16 Smithkline Beecham Corporation Screening methods using cytokine suppressive anti-inflammatory drug (CSAID) binding proteins
US6033873A (en) * 1993-09-17 2000-03-07 Smithkline Beecham Corporation Drug binding protein
US6361773B1 (en) * 1993-09-17 2002-03-26 Smithkline Beecham Corporation Antibodies produced against cytokine suppressive anti-inflammatory drug binding proteins
US5869043A (en) * 1993-09-17 1999-02-09 Smithkline Beecham Corporation Drug binding protein
US5726167A (en) * 1993-10-12 1998-03-10 Eli Lilly And Company Inhibition of phosphatidylinositol 3-kinase with viridin, demethoxyviridin, viridiol, demethoxyviridiol, virone, wortmannolone, and analogs thereof
US5596001A (en) * 1993-10-25 1997-01-21 Pfizer Inc. 4-aryl-3-(heteroarylureido)quinoline derivatves
US6524832B1 (en) * 1994-02-04 2003-02-25 Arch Development Corporation DNA damaging agents in combination with tyrosine kinase inhibitors
US5480906A (en) * 1994-07-01 1996-01-02 Eli Lilly And Company Stereochemical Wortmannin derivatives
US5597719A (en) * 1994-07-14 1997-01-28 Onyx Pharmaceuticals, Inc. Interaction of RAF-1 and 14-3-3 proteins
US5710094A (en) * 1994-10-27 1998-01-20 Nippon Paper Industries Co. Ltd. Reversible multi-color thermal recording medium
US6180675B1 (en) * 1995-02-17 2001-01-30 Smithkline Beecham Corporation IL-8 receptor antagonists
US5886044A (en) * 1995-02-17 1999-03-23 Smithkline Beecham Corporation IL-8 receptor antagonists
US6040339A (en) * 1995-09-18 2000-03-21 Sankyo Company, Limited Urea derivatives having ACAT inhibitory activity, their preparation and their therapeutic and prophylactic use
US6339045B1 (en) * 1995-12-28 2002-01-15 Kureha Kagaku Kogyo Kabushiki Kaisha N-(unsubstituted or substituted)-4-substituted-6-(unsubstituted or substituted)phenoxy-2-pyridinecarboxamides or thiocarboxamides, processes for producing the same, and herbicides
US6673777B1 (en) * 1996-11-15 2004-01-06 Cytokine Pharmasciences, Inc. Guanylhydrazones useful for treating diseases associated with T cell activation
US6020345A (en) * 1996-11-21 2000-02-01 Pierre Fabre Medicament Pyridin-2-yl-methylamine derivatives, method of preparing and application as medicine
US6043374A (en) * 1997-01-23 2000-03-28 Smithkline Beecham Corporation Benzisothiazolidine Compounds
US6015908A (en) * 1997-01-23 2000-01-18 Smithkline Beecham Corporation IL-8 receptor antagonists
US6358525B1 (en) * 1997-04-28 2002-03-19 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
US6204267B1 (en) * 1997-05-02 2001-03-20 Sugen, Inc. Methods of modulating serine/thereonine protein kinase function with quinazoline-based compounds
US6187799B1 (en) * 1997-05-23 2001-02-13 Onyx Pharmaceuticals Inhibition of raf kinase activity using aryl ureas
US20100063088A1 (en) * 1997-05-23 2010-03-11 Wood Jill E Raf Kinase Inhibitors
US6344476B1 (en) * 1997-05-23 2002-02-05 Bayer Corporation Inhibition of p38 kinase activity by aryl ureas
US6025151A (en) * 1997-06-05 2000-02-15 Dalhousie University Uses for compounds which reduce c-jun gene expression
US6525065B1 (en) * 1997-06-30 2003-02-25 Targacept, Inc. Pharmaceutical compositions and methods for effecting dopamine release
US6180631B1 (en) * 1997-10-06 2001-01-30 Asta Medica Aktiengesellschaft Methods of modulating serine/threonine protein kinase function with 5-azaquinoxaline-based compounds
US6022884A (en) * 1997-11-07 2000-02-08 Amgen Inc. Substituted pyridine compounds and methods of use
US6511800B1 (en) * 1997-11-25 2003-01-28 Medical University Of South Carolina Methods of treating nitric oxide and cytokine mediated disorders
US7329670B1 (en) * 1997-12-22 2008-02-12 Bayer Pharmaceuticals Corporation Inhibition of RAF kinase using aryl and heteroaryl substituted heterocyclic ureas
US20080009527A1 (en) * 1997-12-22 2008-01-10 Jacques Dumas Inhibition of raf kinase using aryl and heteroaryl substituted heterocyclic ureas
US6521407B1 (en) * 1998-02-18 2003-02-18 Theryte Limited Methods for determining chemosensitivity of cancer cells based upon expression of negative and positive signal transduction factors
US20020037276A1 (en) * 1998-06-01 2002-03-28 Andrzej Ptasznik Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6352977B1 (en) * 1998-07-13 2002-03-05 Aventis Pharma Limited Substituted β-alanines
US6521592B2 (en) * 1998-12-18 2003-02-18 Bristol-Myers Squibb Pharma Co. N-ureidoalkyl-piperidines as modulators of chemokine receptor activity
US6174901B1 (en) * 1998-12-18 2001-01-16 Amgen Inc. Substituted pyridine and pyridazine compounds and methods of use
US6511997B1 (en) * 1998-12-25 2003-01-28 Teikoku Hormone Mfg. Co., Ltd. Aminopyrazole derivatives
US20080032979A1 (en) * 1999-01-13 2008-02-07 Bernd Riedl Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinease Inhibitors
US20080027061A1 (en) * 1999-01-13 2008-01-31 Bernd Riedl omega-Carboxy Aryl Substituted Diphenyl Ureas As p38 Kinase Inhibitors
US6358945B1 (en) * 1999-03-12 2002-03-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US6525046B1 (en) * 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US20040052880A1 (en) * 2000-12-08 2004-03-18 Yoshinori Kobayashi Oral preparations having itching-relievign or antipruritic activity
US6525091B2 (en) * 2001-03-07 2003-02-25 Telik, Inc. Substituted diarylureas as stimulators for Fas-mediated apoptosis
US7678811B2 (en) * 2002-02-11 2010-03-16 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US20040023961A1 (en) * 2002-02-11 2004-02-05 Bayer Corporation Aryl ureas with raf kinase and angiogenisis inhibiting activity
US20050038031A1 (en) * 2003-02-28 2005-02-17 Jacques Dumas Novel bicyclic urea derivatives useful in the treatment of cancer and other disorders
US20050032798A1 (en) * 2003-02-28 2005-02-10 Stephen Boyer 2-Oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatory disorders
US20070020704A1 (en) * 2003-05-20 2007-01-25 Scott Wilhelm Diaryl ureas with kinase inhibiting activity
US20050059703A1 (en) * 2003-05-20 2005-03-17 Scott Wilhelm Diaryl ureas for diseases mediated by PDGFR
US20050038080A1 (en) * 2003-07-23 2005-02-17 Stephen Boyer Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US20050069963A1 (en) * 2003-08-15 2005-03-31 Lokshin Anna E. Multifactorial assay for cancer detection
US20080045546A1 (en) * 2003-10-15 2008-02-21 Axel Bouchon Tetradydro-Naphthalene And Urea Derivatives
US20070066660A1 (en) * 2003-10-24 2007-03-22 Merck Patent Gmbh Benzimidazolyl derivatives
US20060058358A1 (en) * 2004-08-27 2006-03-16 Jacques Dumas Pharmaceutical compositions for the treatment of hyper-proliferative disorders
US20070037224A1 (en) * 2005-08-11 2007-02-15 Hamer Peter J Quantitative assays for PDGFR-beta in body fluids
US20090068146A1 (en) * 2005-10-31 2009-03-12 Scott Wilhelm Diaryl ureas and combinations
US20100035888A1 (en) * 2005-11-10 2010-02-11 Bater Healthcare AG Diaryl Urea for Treating Pulmonary Hypertension
US20080045589A1 (en) * 2006-05-26 2008-02-21 Susan Kelley Drug Combinations with Substituted Diaryl Ureas for the Treatment of Cancer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020704A1 (en) * 2003-05-20 2007-01-25 Scott Wilhelm Diaryl ureas with kinase inhibiting activity
US20050038080A1 (en) * 2003-07-23 2005-02-17 Stephen Boyer Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US20100173953A1 (en) * 2006-10-11 2010-07-08 Alfons Grunenberg 4-[4-(amino)-3-fluorophenoxy]-N-methylpyridine-2-carboxamide monohydrate
US9957232B2 (en) 2006-10-11 2018-05-01 Bayer Healthcare Llc 4-[4-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)-3-fluorophenoxy]-N-methylpyridine-2-carboxamide monohydrate
US11813251B2 (en) 2019-08-12 2023-11-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11344536B1 (en) 2019-08-12 2022-05-31 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11576904B2 (en) 2019-08-12 2023-02-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11426390B2 (en) 2019-08-12 2022-08-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11433056B1 (en) 2019-08-12 2022-09-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11529336B2 (en) 2019-08-12 2022-12-20 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11534432B2 (en) 2019-08-12 2022-12-27 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11576903B2 (en) 2019-12-30 2023-02-14 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11844788B1 (en) 2019-12-30 2023-12-19 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11612591B2 (en) 2019-12-30 2023-03-28 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11918564B1 (en) 2019-12-30 2024-03-05 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11793795B2 (en) 2019-12-30 2023-10-24 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11801237B2 (en) 2019-12-30 2023-10-31 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11850240B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11850241B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11896585B2 (en) 2019-12-30 2024-02-13 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11903933B2 (en) 2019-12-30 2024-02-20 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11911370B1 (en) 2019-12-30 2024-02-27 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors

Also Published As

Publication number Publication date
DE602004027218D1 (en) 2010-07-01
DK1599467T3 (en) 2010-09-06
CY1111143T1 (en) 2015-06-11
US20040229937A1 (en) 2004-11-18
MXPA05009067A (en) 2005-11-17
IL170503A (en) 2012-02-29
KR101109262B1 (en) 2012-01-30
US7928227B2 (en) 2011-04-19
ATE468331T1 (en) 2010-06-15
ES2344347T3 (en) 2010-08-25
AR043437A1 (en) 2005-07-27
AU2004217977A1 (en) 2004-09-16
TW200504053A (en) 2005-02-01
KR20050106050A (en) 2005-11-08
SI1599467T1 (en) 2010-09-30
US8076488B2 (en) 2011-12-13
EP1599467B1 (en) 2010-05-19
CA2517361A1 (en) 2004-09-16
JP2006519264A (en) 2006-08-24
WO2004078747A1 (en) 2004-09-16
WO2004078747A8 (en) 2004-11-04
US7557129B2 (en) 2009-07-07
HK1089155A1 (en) 2006-11-24
BRPI0407897A (en) 2006-03-01
CA2517361C (en) 2012-05-15
PT1599467E (en) 2010-07-15
JP4658037B2 (en) 2011-03-23
UY28213A1 (en) 2004-09-30
EP1599467A1 (en) 2005-11-30
PL1599467T3 (en) 2010-10-29
US20040235829A1 (en) 2004-11-25
AU2004217977B2 (en) 2010-04-01
US20050038031A1 (en) 2005-02-17
US20050032798A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US20100075971A1 (en) Substituted pyridine derivatives useful in the treatment of cancer and other disorders
JP4927533B2 (en) Substituted pyridine derivatives useful for the treatment of cancer and other diseases
EP1599466B1 (en) 2-oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatrory disorders
EP1751139B1 (en) Substituted pyrazolyl urea derivatives useful in the treatment of cancer
CA2516931C (en) Novel bicyclic urea derivatives useful in the treatment of cancer and other disorders
US8580798B2 (en) Substituted pyrimidine derivatives useful in the treatment of cancer and other disorders

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE