US20100057137A1 - Modular Pedicle Screw System - Google Patents

Modular Pedicle Screw System Download PDF

Info

Publication number
US20100057137A1
US20100057137A1 US12/336,886 US33688608A US2010057137A1 US 20100057137 A1 US20100057137 A1 US 20100057137A1 US 33688608 A US33688608 A US 33688608A US 2010057137 A1 US2010057137 A1 US 2010057137A1
Authority
US
United States
Prior art keywords
threaded shank
pedicle screw
coupling member
modular
head portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/336,886
Inventor
Bradley A. Heiges
II David E. Lane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BHDL Holdings LLC
Original Assignee
BHDL Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BHDL Holdings LLC filed Critical BHDL Holdings LLC
Priority to US12/336,886 priority Critical patent/US20100057137A1/en
Assigned to BHDL HOLDINGS, LLC reassignment BHDL HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEIGES, BRADLEY A., LANE, DAVID E., II
Priority to US12/393,378 priority patent/US9339320B2/en
Priority to PCT/US2009/055599 priority patent/WO2010027967A1/en
Priority to PCT/US2010/025536 priority patent/WO2010099408A1/en
Publication of US20100057137A1 publication Critical patent/US20100057137A1/en
Priority to US13/314,828 priority patent/US8758413B2/en
Priority to US13/314,762 priority patent/US9138280B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1655Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for tapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/864Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8685Pins or screws or threaded wires; nuts therefor comprising multiple separate parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/031Automatic limiting or abutting means, e.g. for safety torque limiting

Definitions

  • the present invention relates to dynamic spinal stabilization systems.
  • the invention provides a modular pedicle screw attached to the vertebrae to anchor the stabilization system.
  • the spine is comprised of an intricate system of bones and assorted tissues that support the body and provides protection of the central nervous system including the spinal cord and associated nerves.
  • the spinal column Within the spinal column are stacked a plurality of vertebrae separated from one another by an intervertebral disc that dampens and cushions the compressive forces exerted upon the spinal column.
  • an intervertebral disc that dampens and cushions the compressive forces exerted upon the spinal column.
  • the vertebral canal Located behind the series of alternating vertebrae and discs is the vertebral canal which contains the spinal cord and other associated nerves.
  • vertebrae within the spinal column There are more than twenty vertebrae within the spinal column and they are categorized into one of four classifications: cervical, thoracic, lumbar or sacral.
  • the upper seven vertebrae, including the first seven extending downward from the base of the skull are referred to as the cervical vertebrae.
  • the next twelve extending downward from the cervical vertebrae are known as the thoracic vertebrae.
  • Extending downwardly from the thoracic vertebrae are the five lumbar vertebrae.
  • sacral bone which also includes the coccyx.
  • the spinal column is comprised of the vertebral body, the pedicle, the spinous process, the transverse process, the facet, the laminar arch, and the vertebral canal.
  • the vertebral body is the generally cylindrically shaped weight bearing structure of the vertebra.
  • the spinous process extends from the rear portion of the vertebra and the transverse processes extend from each side of each vertebra. Both the spinous process and the transverse process connect muscle tissue and ligaments to the spine.
  • the vertebral canal is formed between the vertebral body and the lamina and houses the spinal cord therein.
  • the pedicle is connected to the vertebral body and supports the lamina.
  • the spinal column may be subject to numerous abnormalities and disorders which can be caused by trauma, disease, or genetic defect such as ruptured or slipped discs, degenerative disc disease, fractured vertebrae as so forth. Such defects can result in conditions causing extreme pain and reduced or abnormal nerve function. These spinal abnormalities can potentially cause damage to the nervous system and in particular the spinal cord and likewise impair the normal freedom of motion of the spinal column.
  • spinal fusion may limit the spinal cord's range of motion in rotation and lateral bending.
  • spinal fusion may increase the stress placed upon non fused adjacent vertebral bodies thereby diminishing their structural integrity.
  • the fusion device or material may become dislodged and move away from the area of implantation.
  • a wide variety of approaches have been in use to achieve spinal fusion by implanting artificial devices in or on the spinal column to result in immobilization.
  • One approach utilizes an anterior implant where the implant is located on the anterior, or front portion, of the vertebral body.
  • An anterior stabilization can include full or partial disc replacement by a rigid spacer that is approximately the size of the disc that has been removed.
  • a different approach involves the utilization of a posterior implant.
  • Posterior implants include rods that are attached to either the lamina or transverse process by hooks or by pedicle screws.
  • Other posterior implants allow for flexible or dynamic stabilization using pedicle screws connected by rigid or flexible rod member.
  • Prior art posterior pedicle screw based stabilization systems create forces that are often transferred to the anchored pedicle screws. Patients having a relatively brittle bone structure cannot withstand the magnitude of these forces without resulting in the failure of the anchoring system.
  • the device includes an element for anchoring in a bone or vertebra and a head connected to the shank, a receiving part for receiving the head, and a pressure element acting on the head, wherein the pressure element is resilient so that upon a movement of the element from a first angular position of the shank relative to said receiving part into a second angular position the pressure element exerts a return force onto the head to urge the element towards the first angular position.
  • the dynamic stabilization system disclosed therein includes bone anchors having a flexible portion between the bone engaging and head portions of the anchor.
  • U.S. Patent Application Publication 2005/0216003 to Biedermann et al discloses a bone anchoring element such as a screw.
  • the screw has a shaft and a first head.
  • a second head is elastically connected to the first head.
  • the second head is arranged in the receiving member such that the second head can pivot or swivel.
  • the second head is fixed in the resting member in an angular resting position.
  • the screw is deflectable from the angular head position relative to the second head.
  • the second head is elastically connected to the first head such that a restoring force returns the screw to the angular resting position.
  • the resting angular position of the shaft relative to the receiving part is adjustable.
  • U.S. Patent Application Publication 2006/0129147 to Biedermann et al discloses a stabilization device for bones or vertebrae that comprises a substantially cylindrical elastic element.
  • the elastic element has a first end and a second end opposite to the first end.
  • An elastic section extends between the first end and the second end.
  • the elastic section includes at least first and second helical coils.
  • the first and second helical coils are arranged coaxially so that the first helical coil extends at least in a portion between the second helical coil.
  • the elastic element may form, for example, a portion of a rod, bone anchoring element, or plate.
  • U.S. Patent Application Publication 2007/0055236 to Hudgins et al discloses an apparatus and method for stabilizing the facet joints of the spine.
  • the facet implant may be in the form of a screw or other anchor with the intermediate portion in the form of a polyaxial head, a cord a spring, etc.
  • the device includes an intermediate element for a detachable, lockable, ball joint like connection having an outer wall concentric with the longitudinal axis and an inner wall forming a coaxial cavity. Either the outer wall or the inner wall comprises one of two contact zones that form the ball joint like connection.
  • the intermediate element is at least partly made of a super elastic material.
  • U.S. Published Patent Application 2008/0021465 to Shadduck et al discloses a spine implant device for fusion or dynamic stabilization of a spine segment that includes a fixation device with a shaft portion for engaging bone and a proximal end for coupling to a rod that allows for limited flexing of the proximal end relative to the shaft portion.
  • a further example of a dynamic spinal stabilization system is disclosed in US Published Patent Application 2008/0071273 to Hawkes et al.
  • a system for stabilizing at least one spinal motion segment that includes a fastener having an anchoring portion and a coupling portion and a longitudinal support member couple to the fastener wherein a portion of the system is formed from a super-elastic material.
  • the present invention relates to a spinal stabilization system that provides for dynamic stabilization using a modular screw in conjunction with a rigid or non-rigid rod that permits load transfer at the pedicle screw rod interface as opposed to the dynamic rod per se.
  • the screw has an elastic segment interposed between a threaded portion of the screw and the screw head portion, also referred to as a “tulip”.
  • the amount or degree of motion can be varied based on the rigidity or flexibility of the elastic material as well as the length and diameter of the elastic material.
  • the pedicle screw is designed to be used in a percutaneous dynamic spinal stabilization system.
  • the screw can be used in a single or multi-level construct in combination with a titanium, PEEK or Nitinol rod.
  • the dynamic screw design enables percutaneous delivery of the stabilization system although the dynamic system can be used in an open application as well.
  • the dynamic spinal stabilization system includes a dynamic modular pedicle screw system which in turn preserves motion in the posterior column of the human spine.
  • the dynamic screws can be used in conjunction with a rigid or non-rigid rod.
  • the dynamic pedicle screw used with a rigid rod will allow for the load transfer to occur at the screw/rod interface as opposed to a non-physiologic load transferred through a dynamic rod alone.
  • the modular pedicle screw can include a rigid segment interposed between a threaded portion of the screw and the screw head portion, also referred to as a “tulip”.
  • the anchoring device is a three part design including a threaded rigid shank, an intermediate component that is an elastic polymer or rigid material, and a rigid multi-axial tulip.
  • the kit would include a plurality of threaded shanks of varying sizes, a plurality of intermediate portions of varying geometries and rigidities, and a plurality of tulip heads.
  • the ability to change the dynamism of the stabilization system without removing the threaded shank portion allows the surgeon to maintain the original bone purchase in the patient which facilitates the procedure, the healing process and improves the potential for long term success.
  • Another distinct objective of the system is to provide a more comprehensive yet less invasive method to address more complex spine cases, i.e. spinal deformity cases.
  • dynamic systems are limited in their applicability and mostly ruled out for use in more complex spine cases.
  • One reason may be due to the limited ability to manipulate the individual spine segments in order to obtain the overall correction/objective. This reinforces a current perception that a more invasive technique is always required.
  • This system may not be applicable in all complex cases however it will be a minimally invasive/percutaneous dynamic screw option for surgeons to consider.
  • FIG. 1 is a perspective disassembled view of the dynamic modular pedicle screw.
  • FIG. 2 is a perspective view of the dynamic spine stabilization system showing a multi level construction utilizing a pair of dynamic pedicle screws and a stabilization rod.
  • FIG. 3A is a top view of the elastic intermediate member.
  • FIG. 3B is a side view of the elastic intermediate member.
  • FIG. 3C is a sectional perspective view of the elastic intermediate.
  • FIG. 4A is a top view of a second embodiment for the elastic intermediate member.
  • FIG. 4B is a side view of the second embodiment for the elastic intermediate member.
  • FIG. 4C is a sectional perspective view of the second embodiment for the elastic intermediate member.
  • FIGS. 5A and 5B show various configurations for the elastic portion and their relative dynamic properties.
  • FIGS. 6A and 6B show a third and fourth embodiment for the elastic intermediate member.
  • FIG. 7A is an exploded side view of the lower coupling the intermediate member and the threaded shank.
  • FIG. 7B is a top view of the lower coupling member of the intermediate member.
  • FIG. 7C is a top of view of the threaded shank portion.
  • FIG. 8A is a side view of the upper coupling member and the tulip head.
  • FIG. 8B is a top view of the tulip head component.
  • FIG. 8C is a top view of the upper coupling member of the intermediate element.
  • FIG. 1 shows a dissembled view of the modular dynamic pedicle screw 1 .
  • Screw 1 includes a threaded shank portion 2 having a one end that tapers into a point 4 at one end and has an opposite end 6 that includes a coupling element 8 .
  • Coupling element 8 includes internal female threads 10 .
  • the pedicle screw 1 has a channel 20 through the entire length of the pedicle screw, including the tulip head 12 , the intermediate component 14 , and the threaded shank portion 2 . This channel 20 allows the pedicle screw 1 to be maneuvered on a Kirschner wire 22 , also know as a K-wire.
  • the K-wire is positioned within the patient using fluoroscopy, or other imaging techniques, so as to provide precise positioning of the pedicle screw 1 .
  • the K-wire can be easily removed through the channel 20 which is open at the end of the threaded shank portion and extends through the uppermost portion of the head portion or tulip 12 .
  • the threaded shank 2 is externally threaded.
  • the threads 3 can be fenestrated or partially fenestrated. Fenestrated threads are particularly appropriate for osteoporotic patients or patients who require greater assurance of increased pedicle screw purchase based on bone quality.
  • the threaded shank 2 of the pedicle 1 are appropriately sized in relation to the patient's pathology and can be formed in different lengths and external threaded diameters.
  • the head or tulip portion 12 of the pedicle screw 1 includes upwardly extending cylindrical wall 15 wherein grooves 17 are positioned in diametrically opposed relationship. These opposing grooves 18 allow for top loading of either a rigid or non rigid rod 30 into the tulip.
  • the tulip may be fixed or multi axial.
  • the inner portion of the cylindrical wall accepts a threaded lock screw 32 to secure the rod 30 to the pedicle screw 1 .
  • the tulip design can accept tulip extension towers, attached to tulip portion 12 , which will facilitate the percutaneous passing of the rod 30 through multiple screws based upon the number of spinal segments involved in the overall dynamic spinal stabilization system.
  • the tulip extensions allow for external control of the tulip head during the rod delivery process.
  • the screw extensions that are attached to the tulip portions remain in place until the percutaneous delivery and placement of the rod 30 has been achieved and threaded lock screws 32 have been finally tightened.
  • the pedicle screw 1 is also configured to receive a shank extension tower.
  • the screw extension tower is a completely rigid device that extends dorsally through the skin incision. This feature enables three dimensional manipulation of the spine segment. Once the rigid manipulation of the segment is complete the screw extension tower is removed and the dynamic member is fully functional.
  • the tulip design allows for top loading of the rod 30 delivered under direct visualization as is possible when the surgery is performed under open conditions.
  • a coupling element 21 having a cylindrical wall with external threads for engagement with the intermediate member 14 is attached to tulip portion 12 with a ball and socket arrangement 24 .
  • the intermediate portion 14 of the dynamic pedicle screw includes an elastic portion 40 , an upper coupling member 16 and a lower coupling member 18 .
  • portion 40 is generally cylindrical in shape and includes a passageway 42 concentric with the longitudinal axis of the cylindrical body.
  • the portion 40 is formed from elastic motion preserving dynamic material which allows for the requisite degree of motion and is capable of standing the mechanical loads associated with the human spine. This provides intraoperative flexibility for the surgeon to choose or customize the construct to address the patient's specific pathology.
  • the portion 40 is available in varying levels, ranges and modes of dynamism, such as dynamic, motion preserving, non-fusion and rigid.
  • Dynamism can be adjusted based on the type of material used, for example Nitinol or polycarbonate, the length of the cylinder, the diameter and or wall thickness of the cylinder or any combination of the above variables (as shown in FIGS. 5A and 5B ).
  • a jacket 44 made from a polyester material, or the like, which extends outwardly from each end of the cylinder 40 , as shown in FIGS. 3A through 3C .
  • a second embodiment, shown in FIGS. 4A through 4C utilizes a polyester, or the like, jacket that surrounds the outer surfaces of cylindrical member 40 and extends outwardly from each end of the cylinder 40 .
  • Extending portions 48 of the jacket extend into tabs formed in the upper and lower coupling members, 16 and 18 respectively, to complete the assembly of the intermediate portion 14 .
  • Upper coupling member 16 includes a cylindrical wall having an externally threaded surface.
  • Upper coupling member 16 is threadably connected to tulip coupling member 21 .
  • lower coupling member 18 includes a cylindrical wall having an externally threaded surface.
  • Lower coupling member 18 is screwed on to coupling member 8 positioned on the threaded shank portion 2 .
  • cylindrical member 40 can be bonded, glued or molded directly on to the upper and lower coupling members, 16 and 18 respectively, without the utilization of a jacket.
  • the intermediate portion can also be rigid allowing for rigid fixation.
  • a non-elastic intermediate portion 14 is coupled to the threaded shank portion 2 and the tulip head portion 12 .
  • cylindrical member 40 can be made from the same material as the threaded shank 2 or the tulip head 12 or some other rigid compatible material.
  • the non-elastic cylindrical member 40 can be threaded into upper and lower coupling members or otherwise suitably affixed thereto.
  • FIGS. 6A and 6B illustrate a third and fourth embodiment for the intermediate member 54 .
  • intermediate member 54 includes an upper coupling member 56 that includes a threaded portion 57 which is sized and configured to threadably connect to tulip coupling member 21 .
  • Upper coupling member 54 is generally cylindrical in shape. It includes an upper cylindrical portion 51 adjacent the threaded portion 57 having a first diameter.
  • a post like cylindrical portion 53 having a center coincident with the upper cylindrical portion diameter 51 .
  • an interengaging cylindrical portion 55 whose center is coincident with both the upper cylindrical portion 56 and the post like cylindrical portion 53 .
  • the diameter of the interengaging cylindrical portion 55 is greater that the post like cylindrical portion 53 but less than the upper cylindrical portion 51 .
  • Intermediate member 54 also includes a lower coupling member 58 having a threaded portion that is sized and configured to threadably engage threads 10 on coupling member 8 .
  • the lower coupling member 58 has a lower cylindrical portion 57 having a diameter substantially the same size as the upper cylindrical portion 51 of the upper coupling member 56 .
  • Extending upwardly from the lower cylindrical member is a hollow cylindrical wall 70 .
  • the upper portion of the hollow cylindrical wall terminates in an annular flange 72 that extends radially inward to form a cylindrical cavity having a reduced diameter aperture.
  • the diameter of the aperture is sufficiently large to allow the interengaging cylindrical portion 55 to pass there through when introduced at an appropriate angle.
  • the degree of elasticity of intermediate member 54 can be varied.
  • the synthetic material can be appropriately color coded, and or otherwise marked with indicia, to provide a visual indication of the elasticity of the injection molded material.
  • the surfaces of the upper and lower coupling elements are properly surface treated prior to injection of the synthetic material to provide an optimum amount of adhesion between the synthetic material and the upper and lower coupling members.
  • the assembled intermediate member 54 including the upper and lower coupling members and the synthetic material 50 is designed to handle a torque in the range of 80 to 120 inch pounds of force.
  • the intermediate member provides five degrees of motion, including flexion/extension and is capable of handling force in the order of 250 to 400 newtons.
  • the upper and lower coupling members 56 and 58 are made from titanium or any other suitable biocompatible material, either metallic or synthetic. All surface edges of the upper and lower coupling members are rounded to remove sharp surface edges from the intermediate member.
  • FIG. 6B The embodiment shown in FIG. 6B is similar to that shown in FIG. 6A except that in this embodiment upper flanges 62 and lower flanges 64 are substituted for the threaded portions 57 and 59 respectively.
  • Flanges 62 and 64 include two or more spaced flange segments ( 62 A, 62 B and 64 A, 64 B) that cooperate with complimentary recesses and grooves formed on the tulip coupling member 21 and the threaded shank member 2 .
  • FIG. 7A illustrates the lower coupling member 18 and the threaded shank 2 with its coupling member 8 .
  • Annular threads 10 on coupling 8 mate with external threads on lower coupling member 18 .
  • FIG. 7B is a top view of lower coupling member 18 showing a socket 19 that includes a portion of channel 20 .
  • Socket 19 is designed to operatively engage an insertion or removal tool which can be inserted through the intermediate portion 14 via channel 20 . Should it be necessary to change the dynamic characteristics of the spinal support system the surgeon would remove the rod 30 from the head 12 by first removing threaded lock screw 32 . Following removal of the rod 30 the head portion 12 would be unthreaded from the intermediate portion 14 using an appropriate tool.
  • a tool would be inserted through the channel 20 in the intermediate member 14 to engage socket 19 formed in lower coupling member 18 .
  • the lower coupling 18 of the intermediate member will be unthreaded from the second coupling 8 formed on the threaded shank portion 2 .
  • the intermediate portion can then be removed from the patient.
  • a new intermediate portion 14 can then be positioned over the existing threaded shank portion 2 .
  • a tool would be inserted through channel 20 of the intermediate member 14 and engage socket 19 formed in the lower coupling member 8 .
  • the lower coupling 18 of the intermediate member 14 will be threaded into the second coupling formed on the treaded shank 2 .
  • FIG. 7C is a top view of the threaded shank 2 with channel 20 and coupling threads 10 .
  • FIG. 8A is a side view showing tulip head member 12 with cylindrical side walls 15 and groove 17 .
  • a coupling element 21 having a cylindrical wall with external threads for engagement with the intermediate member 14 is attached to tulip portion 12 with a ball and socket arrangement 24 .
  • FIG. 8B is a side view of tulip head member 12 .
  • FIG. 8C is a top view of the upper coupling member 16 .
  • the rod 30 connects multiple screws based upon the number of segments involved in the overall construct.
  • the rod can be of any compatible material (PEEK, Titanium, Nitinol, etc). This also increases the versatility of the system allowing for more control in defining the rigidity or dynamism of the overall construct.
  • the rod 30 used in conjunction with the dynamic pedicle screw system can be either rigid or non rigid.
  • the components namely the intermediate members, the threaded shanks, the tulip heads and rods, etc. are individually wrapped and terminally sterilized. They are brought to the operating room as a kit and individually selected by the surgeon based on the case presented to them by the patient. Once the sterilized package is opened the device contained therein is either used or discarded. The component can not be resterilized.

Abstract

A modular anchoring device including a threaded shank for anchoring within a vertebra, an intermediate element and a head portion configured to receive and secure a rigid or non-rigid stabilization rod. The threaded shank, the intermediate element and the head portion of the anchoring device are cannulated to permit percutaneous implantation of the device. The intermediate portion is designed to be removable from the threaded shank portion subsequent to implantation of the anchoring device to enable substitution of another intermediate element having different dynamic characteristics.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Non-Provisional application Ser. No. 12/202,802, entitled “Modular Pedicle Screw System”, and was filed on Sep. 2, 2008, the entire contents of which are hereby expressly incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to dynamic spinal stabilization systems. The invention provides a modular pedicle screw attached to the vertebrae to anchor the stabilization system.
  • BACKGROUND OF THE INVENTION
  • The spine is comprised of an intricate system of bones and assorted tissues that support the body and provides protection of the central nervous system including the spinal cord and associated nerves. Within the spinal column are stacked a plurality of vertebrae separated from one another by an intervertebral disc that dampens and cushions the compressive forces exerted upon the spinal column. Located behind the series of alternating vertebrae and discs is the vertebral canal which contains the spinal cord and other associated nerves.
  • There are more than twenty vertebrae within the spinal column and they are categorized into one of four classifications: cervical, thoracic, lumbar or sacral. The upper seven vertebrae, including the first seven extending downward from the base of the skull are referred to as the cervical vertebrae. The next twelve extending downward from the cervical vertebrae are known as the thoracic vertebrae. Extending downwardly from the thoracic vertebrae are the five lumbar vertebrae. At the base of the spinal column is the sacral bone which also includes the coccyx. The structural and functional relationship of the vertebrae, discs, muscles, ligaments and nerves enables a healthy normal spinal column to move and articulate freely almost without limitation.
  • The spinal column is comprised of the vertebral body, the pedicle, the spinous process, the transverse process, the facet, the laminar arch, and the vertebral canal. The vertebral body is the generally cylindrically shaped weight bearing structure of the vertebra. The spinous process extends from the rear portion of the vertebra and the transverse processes extend from each side of each vertebra. Both the spinous process and the transverse process connect muscle tissue and ligaments to the spine. The vertebral canal is formed between the vertebral body and the lamina and houses the spinal cord therein. The pedicle is connected to the vertebral body and supports the lamina.
  • The spinal column may be subject to numerous abnormalities and disorders which can be caused by trauma, disease, or genetic defect such as ruptured or slipped discs, degenerative disc disease, fractured vertebrae as so forth. Such defects can result in conditions causing extreme pain and reduced or abnormal nerve function. These spinal abnormalities can potentially cause damage to the nervous system and in particular the spinal cord and likewise impair the normal freedom of motion of the spinal column.
  • It is not uncommon to treat such abnormalities surgically by spinal fusion wherein one or more vertebral bodies are fused together. However, spinal fusion may limit the spinal cord's range of motion in rotation and lateral bending. In addition, spinal fusion may increase the stress placed upon non fused adjacent vertebral bodies thereby diminishing their structural integrity. Moreover, the fusion device or material may become dislodged and move away from the area of implantation.
  • A wide variety of approaches have been in use to achieve spinal fusion by implanting artificial devices in or on the spinal column to result in immobilization. One approach utilizes an anterior implant where the implant is located on the anterior, or front portion, of the vertebral body. An anterior stabilization can include full or partial disc replacement by a rigid spacer that is approximately the size of the disc that has been removed. A different approach involves the utilization of a posterior implant. Posterior implants include rods that are attached to either the lamina or transverse process by hooks or by pedicle screws. Other posterior implants allow for flexible or dynamic stabilization using pedicle screws connected by rigid or flexible rod member. Prior art posterior pedicle screw based stabilization systems create forces that are often transferred to the anchored pedicle screws. Patients having a relatively brittle bone structure cannot withstand the magnitude of these forces without resulting in the failure of the anchoring system.
  • DESCRIPTION OF THE PRIOR ART
  • One example of a dynamic anchoring device is disclosed in US Patent Application Publication 2004/0025289 by Biedermann et al. The device includes an element for anchoring in a bone or vertebra and a head connected to the shank, a receiving part for receiving the head, and a pressure element acting on the head, wherein the pressure element is resilient so that upon a movement of the element from a first angular position of the shank relative to said receiving part into a second angular position the pressure element exerts a return force onto the head to urge the element towards the first angular position.
  • Another example of a dynamic anchoring device is disclosed in US Patent Application Publication 2005/014823 to Boyd et al. The dynamic stabilization system disclosed therein includes bone anchors having a flexible portion between the bone engaging and head portions of the anchor.
  • U.S. Patent Application Publication 2005/0216003 to Biedermann et al discloses a bone anchoring element such as a screw. The screw has a shaft and a first head. A second head is elastically connected to the first head. The second head is arranged in the receiving member such that the second head can pivot or swivel. The second head is fixed in the resting member in an angular resting position. The screw is deflectable from the angular head position relative to the second head. The second head is elastically connected to the first head such that a restoring force returns the screw to the angular resting position. The resting angular position of the shaft relative to the receiving part is adjustable.
  • U.S. Patent Application Publication 2006/0129147 to Biedermann et al discloses a stabilization device for bones or vertebrae that comprises a substantially cylindrical elastic element. The elastic element has a first end and a second end opposite to the first end. An elastic section extends between the first end and the second end. The elastic section includes at least first and second helical coils. The first and second helical coils are arranged coaxially so that the first helical coil extends at least in a portion between the second helical coil. The elastic element may form, for example, a portion of a rod, bone anchoring element, or plate.
  • U.S. Patent Application Publication 2007/0055236 to Hudgins et al discloses an apparatus and method for stabilizing the facet joints of the spine. The facet implant may be in the form of a screw or other anchor with the intermediate portion in the form of a polyaxial head, a cord a spring, etc.
  • Another device for the dynamic fixation of impaired spinal column segments in disclosed in U.S. Published Patent Application 2007/0233087 to Schlapfer. The device includes an intermediate element for a detachable, lockable, ball joint like connection having an outer wall concentric with the longitudinal axis and an inner wall forming a coaxial cavity. Either the outer wall or the inner wall comprises one of two contact zones that form the ball joint like connection. The intermediate element is at least partly made of a super elastic material.
  • U.S. Published Patent Application 2008/0021465 to Shadduck et al discloses a spine implant device for fusion or dynamic stabilization of a spine segment that includes a fixation device with a shaft portion for engaging bone and a proximal end for coupling to a rod that allows for limited flexing of the proximal end relative to the shaft portion.
  • A further example of a dynamic spinal stabilization system is disclosed in US Published Patent Application 2008/0071273 to Hawkes et al. Disclosed is a system for stabilizing at least one spinal motion segment that includes a fastener having an anchoring portion and a coupling portion and a longitudinal support member couple to the fastener wherein a portion of the system is formed from a super-elastic material.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a spinal stabilization system that provides for dynamic stabilization using a modular screw in conjunction with a rigid or non-rigid rod that permits load transfer at the pedicle screw rod interface as opposed to the dynamic rod per se. The screw has an elastic segment interposed between a threaded portion of the screw and the screw head portion, also referred to as a “tulip”. The amount or degree of motion can be varied based on the rigidity or flexibility of the elastic material as well as the length and diameter of the elastic material. The pedicle screw is designed to be used in a percutaneous dynamic spinal stabilization system. The screw can be used in a single or multi-level construct in combination with a titanium, PEEK or Nitinol rod. The dynamic screw design enables percutaneous delivery of the stabilization system although the dynamic system can be used in an open application as well.
  • The dynamic spinal stabilization system includes a dynamic modular pedicle screw system which in turn preserves motion in the posterior column of the human spine. The dynamic screws can be used in conjunction with a rigid or non-rigid rod. The dynamic pedicle screw used with a rigid rod will allow for the load transfer to occur at the screw/rod interface as opposed to a non-physiologic load transferred through a dynamic rod alone. Alternatively, the modular pedicle screw can include a rigid segment interposed between a threaded portion of the screw and the screw head portion, also referred to as a “tulip”.
  • Accordingly, it is a primary objective of the instant invention to provide a semi dynamic spinal stabilization system that allows for variable customization of the elastic member thereby increasing the ability to specifically address a greater number of pathologies.
  • It is a further objective of the instant invention to provide absorption of the dynamic force transmission within the anchoring screw and not at the bone-screw interface.
  • It is yet another objective of the instant invention to provide a modular pedicle screw that is designed to be used in a percutaneous dynamic stabilization system.
  • It is a still further objective of the invention to provide a kit of modular anchoring devices for a dynamic spinal stabilization system. The anchoring device is a three part design including a threaded rigid shank, an intermediate component that is an elastic polymer or rigid material, and a rigid multi-axial tulip. The kit would include a plurality of threaded shanks of varying sizes, a plurality of intermediate portions of varying geometries and rigidities, and a plurality of tulip heads.
  • It is a further object of the invention to provide an intermediate component that is designed to be removable from the threaded shank portion subsequent to implantation of the pedicle screw should the pathology change thereby necessitating a change in the flexibility of the dynamic system. The ability to change the dynamism of the stabilization system without removing the threaded shank portion allows the surgeon to maintain the original bone purchase in the patient which facilitates the procedure, the healing process and improves the potential for long term success.
  • Another distinct objective of the system is to provide a more comprehensive yet less invasive method to address more complex spine cases, i.e. spinal deformity cases. Currently, dynamic systems are limited in their applicability and mostly ruled out for use in more complex spine cases. One reason may be due to the limited ability to manipulate the individual spine segments in order to obtain the overall correction/objective. This reinforces a current perception that a more invasive technique is always required. This system may not be applicable in all complex cases however it will be a minimally invasive/percutaneous dynamic screw option for surgeons to consider.
  • Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with any accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. Any drawings contained herein constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective disassembled view of the dynamic modular pedicle screw.
  • FIG. 2 is a perspective view of the dynamic spine stabilization system showing a multi level construction utilizing a pair of dynamic pedicle screws and a stabilization rod.
  • FIG. 3A is a top view of the elastic intermediate member.
  • FIG. 3B is a side view of the elastic intermediate member.
  • FIG. 3C is a sectional perspective view of the elastic intermediate.
  • FIG. 4A is a top view of a second embodiment for the elastic intermediate member.
  • FIG. 4B is a side view of the second embodiment for the elastic intermediate member.
  • FIG. 4C is a sectional perspective view of the second embodiment for the elastic intermediate member.
  • FIGS. 5A and 5B show various configurations for the elastic portion and their relative dynamic properties.
  • FIGS. 6A and 6B show a third and fourth embodiment for the elastic intermediate member.
  • FIG. 7A is an exploded side view of the lower coupling the intermediate member and the threaded shank.
  • FIG. 7B is a top view of the lower coupling member of the intermediate member.
  • FIG. 7C is a top of view of the threaded shank portion.
  • FIG. 8A is a side view of the upper coupling member and the tulip head.
  • FIG. 8B is a top view of the tulip head component.
  • FIG. 8C is a top view of the upper coupling member of the intermediate element.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a dissembled view of the modular dynamic pedicle screw 1. Screw 1 includes a threaded shank portion 2 having a one end that tapers into a point 4 at one end and has an opposite end 6 that includes a coupling element 8. Coupling element 8 includes internal female threads 10. The pedicle screw 1 has a channel 20 through the entire length of the pedicle screw, including the tulip head 12, the intermediate component 14, and the threaded shank portion 2. This channel 20 allows the pedicle screw 1 to be maneuvered on a Kirschner wire 22, also know as a K-wire. In practice the K-wire is positioned within the patient using fluoroscopy, or other imaging techniques, so as to provide precise positioning of the pedicle screw 1. Once the components are securely positioned the K-wire can be easily removed through the channel 20 which is open at the end of the threaded shank portion and extends through the uppermost portion of the head portion or tulip 12. The threaded shank 2 is externally threaded. The threads 3 can be fenestrated or partially fenestrated. Fenestrated threads are particularly appropriate for osteoporotic patients or patients who require greater assurance of increased pedicle screw purchase based on bone quality. The threaded shank 2 of the pedicle 1 are appropriately sized in relation to the patient's pathology and can be formed in different lengths and external threaded diameters.
  • The head or tulip portion 12 of the pedicle screw 1 includes upwardly extending cylindrical wall 15 wherein grooves 17 are positioned in diametrically opposed relationship. These opposing grooves 18 allow for top loading of either a rigid or non rigid rod 30 into the tulip. The tulip may be fixed or multi axial. The inner portion of the cylindrical wall accepts a threaded lock screw 32 to secure the rod 30 to the pedicle screw 1. The tulip design can accept tulip extension towers, attached to tulip portion 12, which will facilitate the percutaneous passing of the rod 30 through multiple screws based upon the number of spinal segments involved in the overall dynamic spinal stabilization system. The tulip extensions allow for external control of the tulip head during the rod delivery process. The screw extensions that are attached to the tulip portions remain in place until the percutaneous delivery and placement of the rod 30 has been achieved and threaded lock screws 32 have been finally tightened. In addition, the pedicle screw 1 is also configured to receive a shank extension tower. The screw extension tower is a completely rigid device that extends dorsally through the skin incision. This feature enables three dimensional manipulation of the spine segment. Once the rigid manipulation of the segment is complete the screw extension tower is removed and the dynamic member is fully functional. The tulip design allows for top loading of the rod 30 delivered under direct visualization as is possible when the surgery is performed under open conditions. A coupling element 21 having a cylindrical wall with external threads for engagement with the intermediate member 14 is attached to tulip portion 12 with a ball and socket arrangement 24.
  • The intermediate portion 14 of the dynamic pedicle screw includes an elastic portion 40, an upper coupling member 16 and a lower coupling member 18. As shown in FIGS. 3A-3C, portion 40 is generally cylindrical in shape and includes a passageway 42 concentric with the longitudinal axis of the cylindrical body. The portion 40 is formed from elastic motion preserving dynamic material which allows for the requisite degree of motion and is capable of standing the mechanical loads associated with the human spine. This provides intraoperative flexibility for the surgeon to choose or customize the construct to address the patient's specific pathology. The portion 40 is available in varying levels, ranges and modes of dynamism, such as dynamic, motion preserving, non-fusion and rigid. Dynamism can be adjusted based on the type of material used, for example Nitinol or polycarbonate, the length of the cylinder, the diameter and or wall thickness of the cylinder or any combination of the above variables (as shown in FIGS. 5A and 5B). Embedded within the wall of cylindrical portion 40 is a jacket 44 made from a polyester material, or the like, which extends outwardly from each end of the cylinder 40, as shown in FIGS. 3A through 3C. A second embodiment, shown in FIGS. 4A through 4C utilizes a polyester, or the like, jacket that surrounds the outer surfaces of cylindrical member 40 and extends outwardly from each end of the cylinder 40. Extending portions 48 of the jacket extend into tabs formed in the upper and lower coupling members, 16 and 18 respectively, to complete the assembly of the intermediate portion 14. Upper coupling member 16 includes a cylindrical wall having an externally threaded surface. Upper coupling member 16 is threadably connected to tulip coupling member 21. Likewise, lower coupling member 18 includes a cylindrical wall having an externally threaded surface. Lower coupling member 18 is screwed on to coupling member 8 positioned on the threaded shank portion 2. As an alternative, cylindrical member 40 can be bonded, glued or molded directly on to the upper and lower coupling members, 16 and 18 respectively, without the utilization of a jacket.
  • The intermediate portion can also be rigid allowing for rigid fixation. In order to assemble a rigid modular screw a non-elastic intermediate portion 14 is coupled to the threaded shank portion 2 and the tulip head portion 12. In this instance, cylindrical member 40 can be made from the same material as the threaded shank 2 or the tulip head 12 or some other rigid compatible material. The non-elastic cylindrical member 40 can be threaded into upper and lower coupling members or otherwise suitably affixed thereto.
  • FIGS. 6A and 6B illustrate a third and fourth embodiment for the intermediate member 54. As shown in FIG. 6A intermediate member 54 includes an upper coupling member 56 that includes a threaded portion 57 which is sized and configured to threadably connect to tulip coupling member 21. Upper coupling member 54 is generally cylindrical in shape. It includes an upper cylindrical portion 51 adjacent the threaded portion 57 having a first diameter. Depending downward from the upper cylindrical portion is a post like cylindrical portion 53 having a center coincident with the upper cylindrical portion diameter 51. Depending downward from the post like cylindrical portion 53 is an interengaging cylindrical portion 55 whose center is coincident with both the upper cylindrical portion 56 and the post like cylindrical portion 53. The diameter of the interengaging cylindrical portion 55 is greater that the post like cylindrical portion 53 but less than the upper cylindrical portion 51. Intermediate member 54 also includes a lower coupling member 58 having a threaded portion that is sized and configured to threadably engage threads 10 on coupling member 8. The lower coupling member 58 has a lower cylindrical portion 57 having a diameter substantially the same size as the upper cylindrical portion 51 of the upper coupling member 56. Extending upwardly from the lower cylindrical member is a hollow cylindrical wall 70. The upper portion of the hollow cylindrical wall terminates in an annular flange 72 that extends radially inward to form a cylindrical cavity having a reduced diameter aperture. The diameter of the aperture is sufficiently large to allow the interengaging cylindrical portion 55 to pass there through when introduced at an appropriate angle. Once the upper and lower coupling members are properly positioned, with the interengagement cylinder 55 of the upper coupling member 56 located within the cylindrical cavity of the lower coupling member 58, a synthetic material 50, such as a polycarbonate urethane, is injected into the space formed between the upper and lower coupling members. The modulus of elasticity of the injection molded material 50 is variable and can provide a range of stiffness from rigid to flexible. Likewise, the lengths and diameters of the upper and lower coupling members can be changed to allow for varying amounts of synthetic material 50 to be injected between the two members. By varying the length, diameter, or wall thickness of synthetic material 50 the degree of elasticity of intermediate member 54 can be varied. The synthetic material can be appropriately color coded, and or otherwise marked with indicia, to provide a visual indication of the elasticity of the injection molded material. The surfaces of the upper and lower coupling elements are properly surface treated prior to injection of the synthetic material to provide an optimum amount of adhesion between the synthetic material and the upper and lower coupling members. The assembled intermediate member 54, including the upper and lower coupling members and the synthetic material 50 is designed to handle a torque in the range of 80 to 120 inch pounds of force. In addition the intermediate member provides five degrees of motion, including flexion/extension and is capable of handling force in the order of 250 to 400 newtons. The upper and lower coupling members 56 and 58 are made from titanium or any other suitable biocompatible material, either metallic or synthetic. All surface edges of the upper and lower coupling members are rounded to remove sharp surface edges from the intermediate member.
  • The embodiment shown in FIG. 6B is similar to that shown in FIG. 6A except that in this embodiment upper flanges 62 and lower flanges 64 are substituted for the threaded portions 57 and 59 respectively. Flanges 62 and 64 include two or more spaced flange segments (62A,62B and 64A, 64B) that cooperate with complimentary recesses and grooves formed on the tulip coupling member 21 and the threaded shank member 2.
  • FIG. 7A illustrates the lower coupling member 18 and the threaded shank 2 with its coupling member 8. Annular threads 10 on coupling 8 mate with external threads on lower coupling member 18. FIG. 7B is a top view of lower coupling member 18 showing a socket 19 that includes a portion of channel 20. Socket 19 is designed to operatively engage an insertion or removal tool which can be inserted through the intermediate portion 14 via channel 20. Should it be necessary to change the dynamic characteristics of the spinal support system the surgeon would remove the rod 30 from the head 12 by first removing threaded lock screw 32. Following removal of the rod 30 the head portion 12 would be unthreaded from the intermediate portion 14 using an appropriate tool. Thereafter, a tool would be inserted through the channel 20 in the intermediate member 14 to engage socket 19 formed in lower coupling member 18. Upon rotation of the tool the lower coupling 18 of the intermediate member will be unthreaded from the second coupling 8 formed on the threaded shank portion 2. The intermediate portion can then be removed from the patient. A new intermediate portion 14 can then be positioned over the existing threaded shank portion 2. Thereafter a tool would be inserted through channel 20 of the intermediate member 14 and engage socket 19 formed in the lower coupling member 8. Upon rotation of the tool the lower coupling 18 of the intermediate member 14 will be threaded into the second coupling formed on the treaded shank 2. The head portion 12 can then be threaded onto the intermediate portion 14 and the rod 30 can be affixed thereto by locking screw 32. The ability to change the dynamism of the stabilization system without removing the threaded shank portion allows the surgeon to maintain the original bone purchase in the patient which facilitates the procedure, the healing process and improves the potential for long term success. FIG. 7C is a top view of the threaded shank 2 with channel 20 and coupling threads 10.
  • FIG. 8A is a side view showing tulip head member 12 with cylindrical side walls 15 and groove 17. A coupling element 21 having a cylindrical wall with external threads for engagement with the intermediate member 14 is attached to tulip portion 12 with a ball and socket arrangement 24. FIG. 8B is a side view of tulip head member 12. FIG. 8C is a top view of the upper coupling member 16.
  • The rod 30 connects multiple screws based upon the number of segments involved in the overall construct. The rod can be of any compatible material (PEEK, Titanium, Nitinol, etc). This also increases the versatility of the system allowing for more control in defining the rigidity or dynamism of the overall construct. The rod 30 used in conjunction with the dynamic pedicle screw system can be either rigid or non rigid.
  • Various types and sizes of the components, namely the intermediate members, the threaded shanks, the tulip heads and rods, etc. are individually wrapped and terminally sterilized. They are brought to the operating room as a kit and individually selected by the surgeon based on the case presented to them by the patient. Once the sterilized package is opened the device contained therein is either used or discarded. The component can not be resterilized.
  • All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
  • It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.
  • One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.

Claims (26)

1. A modular dynamic pedicle screw system comprising:
a plurality of modular dynamic pedicle screws and a rod,
each modular pedicle screw including a head portion, an intermediate portion, and a threaded shank portion,
said head portion including a cylindrical wall with diametrically opposed grooves that extend downward from the top of said cylindrical wall, said grooves are sized and configured to receive said rod within said diametrically opposed grooves, and a lock screw configured to engage threads formed on an inner surface of said cylindrical wall thereby securing said rod to said head portion, said head portion including a first channel formed coincident with its longitudinal axis and open at the top and the bottom of the head portion, and, a first coupling element connected to said head portion,
said intermediate portion including an elastic portion and an upper coupling member and a lower coupling member, said elastic portion being directly molded onto said upper and lower coupling, said intermediate portion including a second channel extending coincident with its longitudinal axis and open at the top and bottom of said intermediate member,
said threaded shank portion including a threaded and tapered outer surface and a second coupling member formed at one end thereof, said threaded shank portion and said second coupling member each having a third channel formed coincident with the longitudinal axis of said threaded shank portion and open at the top and bottom of said threaded shank portion,
said first, second and third channels are configured to be in alignment with one another,
whereby a wire can pass freely from the open bottom end of the threaded shank portion, through the intermediate portion, and out the open top end of the head portion and be completely removed from the pedicle screw.
2. The modular dynamic pedicle screw system of claim 1, wherein the first coupling of the head portion is threadably engaged by the upper coupling of the intermediate portion.
3. The modular dynamic pedicle screw system of claim 1, wherein the second coupling of the threaded shank portion is threadably engaged by the lower coupling of the intermediate portion.
4. The modular dynamic pedicle screw system of claim 1, wherein said upper coupling member includes an upper cylindrical portion, a cylindrical post portion depending therefrom and a cylindrical interengaging portion depending from the cylindrical post portion.
5. The modular dynamic pedicle screw system of claim 4, wherein in the lower coupling member includes a lower cylindrical portion and extending upwardly from the lower cylindrical portion is a hollow cylindrical wall, the upper portion of the hollow cylindrical wall terminating in an annular flange that extends radially inward to form a cylindrical cavity having a reduced diameter aperture.
6. The modular dynamic pediele screw system of claim 4, wherein the diameter of the aperture is sufficiently large to allow the interengaging cylindrical portion to pass there through when introduced at an appropriate angle, a synthetic material located between the upper coupling member and the lower coupling member.
7. The modular dynamic pedicle screw system of claim 1 wherein said head portion includes a ball and socket connection between the cylindrical wall portion and the first coupling element.
8. The modular dynamic pedicle screw system of claim 1, wherein said rod is flexible.
9. The modular dynamic pedicle screw system of claim 1, wherein said rod is rigid.
10. The modular dynamic pedicle screw system of claim 1, wherein said lower coupling includes at least one surface that can be engaged by a tool passing through the second channel whereby the intermediate portion can be rotated in either direction causing the lower coupling to be either threaded or unthreaded from the second coupling on the threaded shank.
11. The modular dynamic pedicle screw system of claim 1, wherein the dimensions and or composition of the elastic member can be varied to affect the amount of elasticity of the intermediate element.
12. A modular dynamic pedicle screw comprising:
said modular dynamic pedicle screw including a head portion, an intermediate portion, and a threaded shank portion,
said head portion including a cylindrical wall with diametrically opposed grooves that extend downward from the top of said cylindrical wall, said grooves are sized and adapted to receive a rod within said diametrically opposed grooves, and a lock screw configured to engage threads formed on an inner surface of said cylindrical wall thereby securing said rod to said head portion,
said head portion including a first channel formed coincident with its longitudinal axis and open at the top and the bottom of the head portion, and, a first coupling element connected to said head portion,
said intermediate portion including an elastic portion and an upper coupling member and a lower coupling member, said elastic portion and said upper and lower coupling being directly molded onto said upper coupling member and said lower coupling member, said intermediate portion including a second channel extending coincident with its longitudinal axis and open at the top and bottom of said intermediate member,
said threaded shank portion including a threaded and tapered outer surface and a second coupling member formed at one end thereof, said threaded shank portion and said second coupling member each having a third channel formed coincident with the longitudinal axis of said threaded shank portion and open at the top and bottom of said threaded shank portion,
said first, second and third channels are configured to be in alignment with one another,
whereby a wire can pass freely from the open bottom end of the threaded shank portion, through the intermediate portion, and out the open top end of the head portion and be completely removed from the modular dynamic pedicle screw.
13. The modular dynamic pedicle screw of claim 12, wherein the first coupling of the head portion is threadably engaged by the upper coupling of the intermediate portion.
14. The modular dynamic pedicle screw of claim 12, wherein the second coupling of the threaded shank portion is threadably engaged to the lower coupling of the intermediate portion.
15. The modular dynamic pedicle screw of claim 12, wherein said elastic portion is generally cylindrical in shape.
16. The modular dynamic pedicle screw of claim 15, wherein said upper coupling member includes an upper cylindrical portion, a cylindrical post portion depending there from and a cylindrical interengaging portion depending from the cylindrical post portion and
said lower coupling member includes an lower cylindrical portion and extending upwardly from the lower cylindrical portion is a hollow cylindrical wall, the upper portion of the hollow cylindrical wall terminating in an annular flange that extends radially inward to form a cylindrical cavity having a reduced diameter aperture.
17. The modular dynamic pedicle screw of claim 16, wherein the diameter of the aperture is sufficiently large to allow the interengaging cylindrical portion to pass there through when introduced at an appropriate angle, and further including a synthetic material located between the upper coupling member and the lower coupling member.
18. The modular dynamic screw of claim 12, wherein said head portion includes a ball and socket connection between the cylindrical wall portion and the first coupling element.
19. The modular dynamic screw of claim 12, wherein said lower coupling includes a socket that can be engaged by a tool passing through the second channel whereby the intermediate portion can be rotated in either direction causing the lower coupling to be either threaded or unthreaded from the second coupling on the threaded shank.
20. The modular dynamic screw of claim 12, wherein the dimensions and or composition of the elastic member can be varied to affect the amount of elasticity of the intermediate element.
21. A kit for a modular screw stabilization system comprising;
components to assemble a plurality of modular pedicle screws and one or more rods,
each modular pedicle screw including a head portion, an intermediate portion, and a threaded shank portion,
said kit including a plurality of said head portions each including a cylindrical wall with diametrically opposed grooves that extend downwards from the top of said cylindrical wall, said grooves are sized and configured to receive said rod within said diametrically opposed grooves, and a lock screw configured to engage threads formed on an inner surface of said cylindrical wall thereby securing said rod to said head portion, said head portions including a first channel formed coincident with its longitudinal axis and open at the top and the bottom of the head portion, and, a first coupling element connected to each of said head portion,
said kit further including a plurality of intermediate portions each including an elastic portion or a rigid portion directly molded onto an upper coupling member and a lower coupling member, said elastic or rigid portion and said upper and lower coupling being fixedly connected, each of said plurality of intermediate portions including a second channel extending coincident with its longitudinal axis and open at the top and bottom of said intermediate member,
said kit also including a plurality of said threaded shank portions, each including a threaded and tapered outer surface and a second coupling member formed at one end thereof, each said threaded shank portions and each of said second coupling members each having a third channel formed coincident with the longitudinal axis of each of said threaded shank portions and open at the top and bottom of each of said threaded shank portions, said first, second and third channels are configured to be in alignment with one another,
whereby a wire can pass freely from the open bottom end of the threaded shank portion, through the intermediate portion, and out the open top end of the head portion and be completely removed from the pedicle screw.
22. The kit for a dynamic screw stabilization system as set forth in claim 21, wherein said plurality of threaded shank portions are of the same or different lengths and external diameters.
23. The kit for a dynamic screw stabilization system as set forth in claim 21, wherein at least some of the threaded shank portions have fenestrated and partially fenestrated threads.
24. The kit for a dynamic screw stabilization system as set forth in claim 21, wherein the plurality of intermediate portions have elastic portions of same or varying rigidity.
25. The kit for a dynamic screw stabilization system as set for in claim 24, wherein the elastic portion varies in rigidity from rigid to flexible.
26. A modular dynamic pedicle screw system comprising:
a plurality of pedicle screws and a rod,
each modular pedicle screw including a head portion, an intermediate portion, and a threaded shank portion,
said head portion including a cylindrical wall with diametrically opposed grooves that extend downward from the top of said cylindrical wall, said grooves are sized and configured to receive said rod within said diametrically opposed grooves, and a lock screw configured to engage threads formed on an inner surface of said cylindrical wall thereby securing said rod to said head portion, said head portion including a first channel formed coincident with its longitudinal axis and open at the top and the bottom of the head portion, and, a first coupling element connected to said head portion,
said intermediate portion including a rigid portion and an upper coupling member and a lower coupling member, said rigid portion and said upper and lower coupling being fixedly connected, said intermediate portion including a second channel extending coincident with its longitudinal axis and open at the top and bottom of said intermediate member,
said threaded shank portion including a threaded and tapered outer surface and a second coupling member formed at one end thereof, said threaded shank portion and said second coupling member each having a third channel formed coincident with the longitudinal axis of said threaded shank portion and open at the top and bottom of said threaded shank portion,
said first, second and third channels are configured to be in alignment with one another,
whereby a wire can pass freely from the open bottom end of the threaded shank portion, through the intermediate portion, and out the open top end of the head portion and be completely removed from the modular pedicle screw.
US12/336,886 2008-09-02 2008-12-17 Modular Pedicle Screw System Abandoned US20100057137A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/336,886 US20100057137A1 (en) 2008-09-02 2008-12-17 Modular Pedicle Screw System
US12/393,378 US9339320B2 (en) 2008-09-02 2009-02-26 Modular pedicle screw system with tap and screw driver device
PCT/US2009/055599 WO2010027967A1 (en) 2008-09-02 2009-09-01 Modular pedicle screw system
PCT/US2010/025536 WO2010099408A1 (en) 2008-09-02 2010-02-26 Modular pedicle screw with tap and screw driver device
US13/314,828 US8758413B2 (en) 2008-09-02 2011-12-08 Method for selecting and installing a dynamic pedicle screw
US13/314,762 US9138280B2 (en) 2008-09-02 2011-12-08 Torque drive device for use with a dynamic pedicle screw

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/202,802 US8137384B2 (en) 2008-09-02 2008-09-02 Modular pedicle screw system
US12/336,886 US20100057137A1 (en) 2008-09-02 2008-12-17 Modular Pedicle Screw System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/202,802 Continuation-In-Part US8137384B2 (en) 2008-09-02 2008-09-02 Modular pedicle screw system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/393,378 Continuation-In-Part US9339320B2 (en) 2008-09-02 2009-02-26 Modular pedicle screw system with tap and screw driver device

Publications (1)

Publication Number Publication Date
US20100057137A1 true US20100057137A1 (en) 2010-03-04

Family

ID=41726507

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/202,802 Expired - Fee Related US8137384B2 (en) 2008-09-02 2008-09-02 Modular pedicle screw system
US12/336,886 Abandoned US20100057137A1 (en) 2008-09-02 2008-12-17 Modular Pedicle Screw System
US13/396,945 Expired - Fee Related US8758410B2 (en) 2008-09-02 2012-02-15 Modular pedicle screw system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/202,802 Expired - Fee Related US8137384B2 (en) 2008-09-02 2008-09-02 Modular pedicle screw system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/396,945 Expired - Fee Related US8758410B2 (en) 2008-09-02 2012-02-15 Modular pedicle screw system

Country Status (2)

Country Link
US (3) US8137384B2 (en)
WO (1) WO2010027967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319190A1 (en) * 2011-02-19 2013-12-05 John Nino Enhanced high torque device
US10279146B2 (en) 2015-06-02 2019-05-07 Eca Medical Instruments Cannulated disposable torque limiting device with plastic shaft

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339320B2 (en) 2008-09-02 2016-05-17 Bhdl Holdings, Llc Modular pedicle screw system with tap and screw driver device
US8137384B2 (en) * 2008-09-02 2012-03-20 Bhdl Holdings, Llc Modular pedicle screw system
GB0818852D0 (en) * 2008-10-15 2008-11-19 Everingham John S Occlusive plug
US9078701B2 (en) * 2009-11-09 2015-07-14 Centinel Spine, Inc. System and method for stabilizing a posterior fusion over motion segments
US20120143257A1 (en) * 2010-12-02 2012-06-07 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a cannulated bone anchor having a deflectable post and a compound spinal rod
US8257397B2 (en) * 2009-12-02 2012-09-04 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
DE102010040236A1 (en) 2010-09-03 2012-03-08 Aces Gmbh Dynamic stabilization device for joints or spinal column segments, having head region that is connected to fixing block via joint kinematics
DE102011082044A1 (en) 2011-09-02 2013-03-07 Aces Gmbh Dynamic bone mounting device for joints, particularly vertebral column segments, has section to be mounted with bone, head area and fixing block which is suitable to receive bar
US8523922B2 (en) 2011-10-24 2013-09-03 Warsaw Orthopedic Dynamic multi-axial fastener
US9023087B2 (en) * 2012-11-09 2015-05-05 Blackstone Medical, Inc. Percutaneous modular head-to-head cross connector
EP2964116A4 (en) * 2013-03-08 2016-11-23 Anand K Agarwal Pedicle screw assembly
US9610104B2 (en) 2013-07-25 2017-04-04 Amendia, Inc. Percutaneous pedicle screw revision system
US10758274B1 (en) 2014-05-02 2020-09-01 Nuvasive, Inc. Spinal fixation constructs and related methods
US10117679B2 (en) * 2015-03-02 2018-11-06 Globus Medical, Inc. Adjustable height pedicle screw
FR3035318B1 (en) * 2015-04-24 2017-05-19 Medicrea Int MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US9603634B1 (en) 2015-11-13 2017-03-28 Amendia, Inc. Percutaneous rod-to-rod cross connector
WO2018023030A1 (en) * 2016-07-29 2018-02-01 Zimmer Biomet Spine, Inc. Bone screw threaded enlarger
WO2018183486A1 (en) 2017-03-30 2018-10-04 K2M, Inc. Modular offset screw
EP3600095B1 (en) * 2017-03-30 2023-03-15 K2M, Inc. Bone anchor apparatus
US11298156B2 (en) 2017-03-30 2022-04-12 K2M, Inc. Modular screw
CN108392245B (en) * 2018-02-11 2019-10-18 袁志峰 A kind of bone surgery synthetism auxiliary machine
US20210290272A1 (en) * 2020-01-13 2021-09-23 Xiangyang Ma Customized posterior atlantoaxial reduction fixatorwith screws and rods

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040172022A1 (en) * 2002-10-30 2004-09-02 Landry Michael E. Bone fastener assembly for a spinal stabilization system
US20040225289A1 (en) * 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20050059972A1 (en) * 2003-09-16 2005-03-17 Spineco, Inc., An Ohio Corporation Bone anchor prosthesis and system
US20050143823A1 (en) * 2003-12-31 2005-06-30 Boyd Lawrence M. Dynamic spinal stabilization system
US20050154390A1 (en) * 2003-11-07 2005-07-14 Lutz Biedermann Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US20050203513A1 (en) * 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US20050216003A1 (en) * 2004-03-03 2005-09-29 Biedermann Motech Gmbh Bone anchoring element for anchoring in a bone or vertebra, and stabilization device with such a bone anchoring element
US20060129149A1 (en) * 2004-04-08 2006-06-15 Andrew Iott Polyaxial screw
US20060129147A1 (en) * 2004-04-16 2006-06-15 Biedermann Motech Gmbh Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US20060149244A1 (en) * 1997-01-22 2006-07-06 Synthes (Usa) Device for connecting a longitudinal bar to a pedicle screw
US20060241593A1 (en) * 2005-04-08 2006-10-26 Sdgi Holdings, Inc. Multi-piece vertebral attachment device
US20070055236A1 (en) * 2005-09-02 2007-03-08 Zimmer Spine, Inc. Translaminar facet augmentation and flexible spinal stabilization
US20070093826A1 (en) * 2005-10-04 2007-04-26 Hawkes David T Modular pedicle screw systems and methods of intra-operatively assembling the same
US20070123862A1 (en) * 2004-10-25 2007-05-31 Warnick David R Bone fixation system and method for using the same
US20070233087A1 (en) * 2004-07-12 2007-10-04 Fridolin Schlapfer Device for the dynamic fixation of bones
US20080021465A1 (en) * 2006-07-20 2008-01-24 Shadduck John H Spine treatment devices and methods
US20080071273A1 (en) * 2006-09-15 2008-03-20 Hawkes David T Dynamic Pedicle Screw System
US20100057136A1 (en) * 2008-09-02 2010-03-04 Heiges Bradley A Modular pedicle screw system with tap and screw driver device
US20100057135A1 (en) * 2008-09-02 2010-03-04 Heiges Bradley A Modular pedicle screw system
US7833251B1 (en) * 2004-01-06 2010-11-16 Nuvasive, Inc. System and method for performing spinal fixation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966910B2 (en) * 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US7476228B2 (en) 2002-10-11 2009-01-13 Abdou M Samy Distraction screw for skeletal surgery and method of use
DE502004006687D1 (en) 2003-11-07 2008-05-08 Biedermann Motech Gmbh BONE ANCHORING ELEMENT AND STABILIZATION DEVICE WITH SUCH A BONE ANCHORING ELEMENT

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149244A1 (en) * 1997-01-22 2006-07-06 Synthes (Usa) Device for connecting a longitudinal bar to a pedicle screw
US20040172022A1 (en) * 2002-10-30 2004-09-02 Landry Michael E. Bone fastener assembly for a spinal stabilization system
US20040225289A1 (en) * 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20050059972A1 (en) * 2003-09-16 2005-03-17 Spineco, Inc., An Ohio Corporation Bone anchor prosthesis and system
US20050203513A1 (en) * 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US20050203517A1 (en) * 2003-09-24 2005-09-15 N Spine, Inc. Spinal stabilization device
US20050154390A1 (en) * 2003-11-07 2005-07-14 Lutz Biedermann Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US20050143823A1 (en) * 2003-12-31 2005-06-30 Boyd Lawrence M. Dynamic spinal stabilization system
US7833251B1 (en) * 2004-01-06 2010-11-16 Nuvasive, Inc. System and method for performing spinal fixation
US20050216003A1 (en) * 2004-03-03 2005-09-29 Biedermann Motech Gmbh Bone anchoring element for anchoring in a bone or vertebra, and stabilization device with such a bone anchoring element
US20060129149A1 (en) * 2004-04-08 2006-06-15 Andrew Iott Polyaxial screw
US20060129147A1 (en) * 2004-04-16 2006-06-15 Biedermann Motech Gmbh Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US20070233087A1 (en) * 2004-07-12 2007-10-04 Fridolin Schlapfer Device for the dynamic fixation of bones
US20070123862A1 (en) * 2004-10-25 2007-05-31 Warnick David R Bone fixation system and method for using the same
US20060241593A1 (en) * 2005-04-08 2006-10-26 Sdgi Holdings, Inc. Multi-piece vertebral attachment device
US20070055236A1 (en) * 2005-09-02 2007-03-08 Zimmer Spine, Inc. Translaminar facet augmentation and flexible spinal stabilization
US20070093826A1 (en) * 2005-10-04 2007-04-26 Hawkes David T Modular pedicle screw systems and methods of intra-operatively assembling the same
US20080021465A1 (en) * 2006-07-20 2008-01-24 Shadduck John H Spine treatment devices and methods
US20080071273A1 (en) * 2006-09-15 2008-03-20 Hawkes David T Dynamic Pedicle Screw System
US20100057136A1 (en) * 2008-09-02 2010-03-04 Heiges Bradley A Modular pedicle screw system with tap and screw driver device
US20100057135A1 (en) * 2008-09-02 2010-03-04 Heiges Bradley A Modular pedicle screw system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319190A1 (en) * 2011-02-19 2013-12-05 John Nino Enhanced high torque device
US9242357B2 (en) * 2011-02-19 2016-01-26 Eca Medical Instruments Enhanced high torque device
US10279146B2 (en) 2015-06-02 2019-05-07 Eca Medical Instruments Cannulated disposable torque limiting device with plastic shaft

Also Published As

Publication number Publication date
US8758410B2 (en) 2014-06-24
US20120150233A1 (en) 2012-06-14
WO2010027967A1 (en) 2010-03-11
US20100057135A1 (en) 2010-03-04
US8137384B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
US8758410B2 (en) Modular pedicle screw system
US9339320B2 (en) Modular pedicle screw system with tap and screw driver device
US20230093976A1 (en) Spinal fixation devices and methods of use
US20200323644A1 (en) Spinal implant system and method
US7799057B2 (en) Translaminar facet augmentation and flexible spinal stabilization
AU2011291476B2 (en) Spinal fixation system
US20100174325A1 (en) Poly-axial pedicle screw assembly
AU2019210628B2 (en) Spinal implant system and method
US20130211467A1 (en) Connector and fastener system
US20090240291A1 (en) Breached pedicle screw
AU2014200455B2 (en) Spinal Fixation System

Legal Events

Date Code Title Description
AS Assignment

Owner name: BHDL HOLDINGS, LLC,GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEIGES, BRADLEY A.;LANE, DAVID E., II;REEL/FRAME:021993/0338

Effective date: 20081208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION